Corporate Environmental Programs General Electric Company 100 Woodlawn Ayenue, Pittsfield, MA 01201 Transmitted Via Overnight Courier January 31, 2003 Mr. Bryan Olson EPA Project Coordinator U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023 Re: GE-Pittsfield/Housatonic River Site East Street Area 2-South (GECD150) Pre-Design Investigation Report Dear Mr. Olson: In accordance with GE's approved Pre-Design Investigation Work Plan for the East Street Area 2-South Removal Action (October 2001) and Addendum to Pre-Design Investigation Work Plan for the East Street Area 2-South Removal Action (April 2002), enclosed is the Pre-Design Investigation Report for the East Street Area 2-South Removal Action. This report summarizes activities performed and results obtained during the pre-design investigation for East Street Area 2-South. In addition, this report presents other data have been obtained and will be incorporated, as appropriate, in future RD/RA evaluations. For the most part, the results of the recent pre-design activities, including the information obtained from other investigations at this RAA, are sufficient to characterize the soils within East Street Area 2-South, and thus to support future RD/RA activities. However, some additional information is needed to support GE's future technical evaluations and preparation of a Conceptual RD/RA Work Plan. Therefore this report also presents a proposal for the additional pre-design activities identified as necessary to prepare a Conceptual RD/RA Work Plan. Please call John Novotny or me if you have any questions about this report. Very truly yours, Andrew T. Silfer, P.E. GE Project Coordinator Enclosure V:\GE_Pittsfield_CD_ESA_2_South\Reports and Presentations\ESA2S PD1 Report\0183\tr doc cc: Tim Conway, EPA Holly Inglis, EPA Michael Nalipinski, EPA Rose Howell, EPA K.C. Mitkevicius, USACE Dawn Jamros, Weston Susan Steenstrup, MDEP (2 copies) Alan Weinberg, MDEP (cover letter only) Robert Bell, MDEP (cover letter only) Thomas Angus, MDEP (cover letter only) Susan Keydel, MDEP Nancy E. Harper, MA AG Dale Young, MA EOEA Mayor Sara Hathaway, City of Pittsfield Thomas Hickey, Director, PEDA Jeffrey Bernstein, Bernstein, Cushner & Kimmel Teresa Bowers, Gradient Michael Carroll, GE (cover letter only) John Novotny, GE Rod McLaren, GE (cover letter only) James Nuss, BBL James Bieke, Shea & Gardner Jeffrey Porter, Mintz, Levin Richard Nasman, Berkshire Gas Company Michael McHugh, Rich May Robert Cataldo, ENSR David Mauro, META GE Internal Repository Public Information Repositories # REPURT Pre-Design Investigation Report for the East Street Area 2-South Removal Action Volume I of III **General Electric Company Pittsfield, Massachusetts** January 2003 # Pre-Design Investigation Report for the East Street Area 2-South Removal Action Volume I of III General Electric Company Pittsfield, Massachusetts January 2003 # Table of Contents #### **VOLUME I - REPORT** | 1.1 General 1 1.2 Format of Document 1 1.3 Description of East Street Area 2-South RAA 1 Section 2. Summary of Pre-Design Investigations 2 2.1 General 2 2.2 Summary of Pre-Design Sampling and Analysis Activities 2 2.3 Modifications to Pre-Design Sampling and Analysis Activities 2 2.4 Summary of Available Soil Data 2 2.5 Data Quality Assessment 2 2.6 Assessment of Potential Data Needs 2 Section 3. Future Activities and Schedule 3 3.1 General 3 3.2 Supplemental Pre-Design Soil Investigations 3 3.3 Additional Pre-Design Activities 3 | Section | 1. | Introduction | 1-1 | |---|---------|-----|--|-----| | 1.2 Format of Document | | 1.1 | General | 1-1 | | 1.3 Description of East Street Area 2-South RAA | | 1.2 | Format of Document | | | 2.1 General | | 1.3 | Description of East Street Area 2-South RAA | 1-4 | | 2.2 Summary of Pre-Design Sampling and Analysis Activities | Section | 2. | Summary of Pre-Design Investigations | 2-1 | | 2.2 Summary of Pre-Design Sampling and Analysis Activities | | 2.1 | General | 2- | | 2.3 Modifications to Pre-Design Sampling and Analysis Activities | | 2.2 | Summary of Pre-Design Sampling and Analysis Activities | 2-1 | | 2.4 Summary of Available Soil Data | | 23 | Modifications to Pre-Design Sampling and Analysis Activities | 2-2 | | 2.5 Data Quality Assessment | | | Summary of Available Soil Data | 2-4 | | 2.6 Assessment of Potential Data Needs | | | Data Quality Assessment | 2-5 | | 3.1 General | | | Assessment of Potential Data Needs | 2-7 | | 3.2 Supplemental Pre-Design Soil Investigations | Section | 3. | Future Activities and Schedule | 3-1 | | 3.2 Supplemental Pre-Design Soil Investigations | | 3.1 | General | 3- | | 3.3 Additional Pro Design Activities | | 3.2 | Supplemental Pre-Design Soil Investigations | | | | | 3.3 | Additional Pre-Design Activities | | | 3.4 Schedule for Future Activities | | | Schedule for Future Activities | 3-3 | #### **Tables** - 1 Pre-Design Investigation Soil Sampling Data for PCBs - 2 Pre-Design Investigation Soil Sampling Data for Appendix IX+3 Constituents - 3 Historical Soil Sampling Data for PCBs - 4 Historical Soil Sampling Data for Appendix IX+3 Constituents - 5 EPA Soil Sampling Data for PCBs - 6 EPA Soil Sampling Data for Appendix IX+3 Constituents - 7 Berkshire Gas Company Appendix IX+3 Soil Sampling Data - 8 Berkshire Gas Company PAH Soil Sampling Data - 9 Proposed Supplemental Pre-Design Investigation Soil Sampling Locations #### **Figures** - 1 Site Plan - 2 Soil Sample Locations - 3 PCB Soil Sampling Locations (0- to 1-Foot Depth Interval) - 4 Appendix IX + 3 Soil Sampling Locations (0- to 1-Foot Depth Interval) - 5 PCB Soil Sampling Locations (1- to 6-Foot Depth Interval) - 6 Appendix IX + 3 Soil Sampling Locations (1- to 6-Foot Depth Interval) - 7 PCB Soil Sampling Locations (6- to 15-Foot Depth Interval) - 8 Appendix IX + 3 Soil Sampling Locations (6- to 15-Foot Depth Interval) - 9 Proposed Supplemental Pre-Design Investigation Soil Sampling Locations ### **VOLUME II - APPENDICES (Bound Separately)** ### **Appendices** - A Soil Boring Logs - Soil Analytical Results ### **VOLUME III - APPENDICES (Bound Separately)** #### **Appendices** - B Soil Analytical Results Continued - C Soil Sampling Data Validation Report ## 1. Introduction #### 1.1 General On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and several other government agencies, was entered by the United States District Court for the District of Massachusetts. The CD requires (among other things) the performance of Removal Actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents present in soils, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts. These RAAs are part of the GE-Pittsfield/Housatonic River Site (the Site). For each Removal Action, the CD and accompanying Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD) establish Performance Standards that must be achieved, as well as specific work plans and other documents that must be prepared to support the response actions for each RAA. These work plans/documents include a Pre-Design Investigation Work Plan, a Pre-Design Investigation Report, a Conceptual Removal Design/Removal Action (RD/RA) Work Plan (for some Removal Actions), and a Final RD/RA Work Plan. The present document constitutes GE's *Pre-Design Investigation Report for East Street Area 2-South Removal Action* (Pre-Design Report). It summarizes the pre-design soil investigations performed by GE within East Street Area 2–South, as well as related activities conducted by EPA and the Berkshire Gas Company (Berkshire Gas). This report also evaluates the sufficiency of the data obtained from those investigations, in combination with data available from prior soil investigations, to support the development of a Conceptual RD/RA Work Plan for this Removal Action. The pre-design investigation activities for East Street Area 2-South were performed in accordance with documents entitled *Pre-Design Investigation Work Plan for the East Street Area 2-South Removal Action* (PDI Work Plan) dated October 2001 and *Addendum to Pre-Design Investigation Work Plan for the East Street Area 2-South Removal Action* (PDI Work Plan Addendum) dated April 2002. These documents were conditionally approved by EPA in letters dated March 5, 2002 and May 2, 2002, respectively. The activities described in the PDI Work Plan and PDI Work Plan Addendum (collectively, the PDI Work Plans) were completed by GE between April 22 and October 18, 2002, and resulted in the collection of the majority of the pre-design soil data that will be used for future RD/RA evaluations for this area. In addition to the pre-design soil data collected under the PDI Work Plans between April 22 and October 18, 2002, other data have been obtained and will be incorporated, as appropriate, in future RD/RA evaluations.
These data include the following: - As described in Section 1.3, a portion of the East Street Area 2-South RAA will be developed as a recreational area for use by the City of Pittsfield. This area -- referred to as the Future City Recreational Area (FCRA) -- is subject to several soil-related Performance Standards in the CD and SOW. Pre-design investigations of this area were performed in advance of the remainder of the investigations of East Street Area 2-South. The results of these investigations were previously submitted to EPA and are included herein because some of those data may affect the evaluation of the remainder of East Street Area 2-South (e.g., samples from depths greater than 3 feet and PCB samples with polygons extending outside the FCRA limits), and otherwise for completeness. - During preparation of the PDI Work Plans, an assessment of existing data was performed. From that effort, it was determined that certain data could be used to satisfy pre-design investigation requirements for this area and/or to support future RD/RA evaluations. These usable data have been compiled and presented in this Pre-Design Report. - During the performance of the pre-design investigations, EPA representatives were present in the field to provide oversight of GE's sampling activities and to conduct additional investigations at EPA-selected locations. During these activities, EPA representatives collected numerous "split" samples (i.e., soil samples from the same locations and depths being sampled by GE), as well as other soil samples for separate laboratory analyses. - In addition, during portions of the pre-design investigations, representatives of Berkshire Gas were present to observe sample collection activities. In certain instances, Berkshire Gas representatives collected soil samples for analysis at a Berkshire Gas-selected laboratory. (The quality of these analytical data will need to be reviewed and evaluated prior to their consideration in the RD/RA evaluations, as noted in Section 2.5.) This Pre-Design Report presents the soil data from all of the investigations listed above. In total, the soil data available to support RD/RA evaluations include results from approximately 2,900 analyses of soil samples collected from approximately 390 locations. Depending on the specific sample location and depth, these sampling data include results for PCBs and/or other constituents listed in Appendix IX of 40 CFR Part 264 (excluding pesticides and herbicides), plus three additional constituents -- benzidine, 2-chloroethylvinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3). #### 1.2 Format of Document Pursuant to the CD and SOW, this report summarizes the results of the pre-design investigation activities and provides an assessment regarding: (1) the sufficiency of the available soil data to support the design and evaluation of response actions to achieve the soil-related Performance Standards for the East Street Area 2-South RAA; and (2) whether there is any additional information needed prior to the preparation of the Conceptual RD/RA Work Plan. For the most part, the results of the recent pre-design activities, including the information obtained from other investigations at this RAA, are sufficient to characterize the soils within East Street Area 2-South, and thus support future RD/RA activities. However, some additional information is needed to support GE's future technical evaluations and preparation of a Conceptual RD/RA Work Plan. For example, certain supplemental soil sampling has been identified as necessary and is proposed herein. In addition, although detailed site mapping (depicting the structures, surface cover types, topography, and sample locations) is available for much of the East Street Area 2-South, such mapping will need to be prepared for other areas of this RAA. The remainder of this section provides a brief description of the East Street Area 2-South RAA. Section 2 describes the pre-design investigations conducted by GE, provides an overview of the available soil data from this area, and presents an assessment of remaining soil-related data needs. Section 3 presents a proposal for the additional pre-design activities identified as necessary to prepare a Conceptual RD/RA Work Plan. That section also presents a proposed schedule for those additional pre-design activities. Note that the pre-design activities summarized in this report pertain to soils only. East Street Area 2-South is one of several RAAs that have been combined to form the Plant Site 1 Groundwater Management Area (GMA 1) for purposes of groundwater quality monitoring and non-aqueous phase liquid (NAPL) monitoring/recovery. GE currently operates a number of groundwater/NAPL recovery wells and a groundwater treatment facility within the central to eastern portion of East Street Area 2-South, and performs additional groundwater and NAPL-related investigations and response actions under the GMA 1 groundwater quality and NAPL monitoring programs. Activities concerning groundwater quality and NAPL are addressed separately as part of activities concerning GMA 1. #### 1.3 Description of East Street Area 2-South RAA East Street Area 2-South occupies an area of approximately 50 acres and is generally located in the western portion of the GE facility. As shown on Figure 1, this GE-owned industrial area is generally bounded by East Street to the north, Newell Street to the east, the Housatonic River to the south, and Lyman Street Area to the west. The western portion of this RAA is composed mainly of the 60s Complex and is otherwise mostly paved. The eastern portion of the site contains a former Housatonic River oxbow that was formed when the river meandered through this area. This area is currently characterized as mostly open areas, with a small wooded area located south of the former oxbow. RD/RA evaluations of East Street Area 2-South will be performed for five separate averaging areas within this RAA, which are identified on Figure 1. A general description of each area and a summary of pre-design soil investigations specific to each area are provided below. #### 200-Foot-Wide Riparian Removal Zone (200-Foot RRZ) (Averaging Area 4E): This area consists of a strip of land approximately 200 feet wide by approximately 1,400 feet long located along the southern edge of the western-half of East Street Area 2-South, adjacent to the Housatonic River. The Performance Standards established in the CD and SOW for the 200-Foot RRZ require the removal of existing buildings/structures, concrete/asphalt/gravel surfaces, and underlying soils (as needed) to a total depth of 1 foot, followed by the installation of a 1-foot-thick vegetative engineered barrier, except that installation of the vegetative engineered barrier is not required where the recreational cleanup standards are met (i.e., where the spatial average PCB concentrations do not exceed 10 ppm in the top foot, 15 ppm in the 1- to 3-foot depth increment, and 100 ppm in the top 15 feet). The Performance Standards also require the planting of vegetation and placement of certain habitat enhancement items as part of natural resource restoration/enhancement activities. During preparation of the PDI Work Plans, and based on a preliminary review of the available soils data, GE determined that installation of a vegetative engineered barrier will be needed in the portion of the 200-Foot RRZ located between the former Thermal Oxidizer and the Building 68 Area. For this particular area, although the SOW does not specify any soil sampling requirements, EPA required GE to characterize existing soils (using either existing data or through collection of pre-design samples) on a 100-foot grid. For those portions of the 200-Foot RRZ where a vegetative engineered barrier may not be needed, the SOW requires sampling on a 50-foot grid for the uppermost 1 foot of soil that remains after removal of existing pavement and building floor slabs, and on a 100-foot sampling grid for the following depth increments (again after removal of existing pavement and floor slabs): 1 to 3 feet, 3 to 6 feet, and 6 to 15 feet. As described in the PDI Work Plans, it was considered impractical to collect all of the potentially required soil samples from certain portions of the 200-Foot RRZ. Specifically, since several of the required grid sampling nodes within the 200-Foot RRZ fall within the footprint of existing buildings and since these buildings are not scheduled for demolition at any time in the near future, it would have been difficult to perform the required pre-design investigations because of access limitations. As a result, GE proposed, and EPA approved, a modified, iterative scope of sampling involving the initial performance of soil sampling at the 100-foot grid nodes within the footprint of the existing buildings. If the resulting data indicated that a vegetative engineered barrier is needed in such area(s), then no additional soil sampling would be necessary. However, if the data indicated that such a barrier may not be needed, GE would then complete the required surface soil sampling in such area(s) on a 50-foot grid pattern. Section 2.4 and the associated tables include a summary of the available soil information for this area, and Section 2.6 includes an assessment of the need for additional pre-design investigations in this area. #### 60s Complex (Averaging Area 4A): This area, located in the western portion of East Street Area 2-South, consists of the portion of the 60s Building Complex north of the 200-Foot RRZ. The pre-design soil investigations performed in this area were consistent with the requirements in the SOW related to paved and unpaved areas within the GE Plant Area. #### 200-Foot-Wide Industrial Averaging Strip (Averaging Area 4D): This area consists of a strip of land approximately 200 feet wide by approximately 1,100 feet long located along the southern edge of the eastern-half of East Street Area
2-South, adjacent to the Housatonic River. This strip is considered to be in industrial use, but will most likely remain in a grassy/vegetative condition, and GE is required by the SOW to place certain habitat enhancement items within this strip. As summarized in Section 2.2, the pre-design activities performed in this area were consistent with the SOW requirements. #### Former Gas Plant/Scrap Yard Area (Averaging Area 4B): This area consists of the remainder of the central and eastern portions of East Street Area 2-South north of the 200-Foot RRZ and the 200-Foot-Wide Industrial Averaging Strip, except for the FCRA. This area contains the former Scrap Yard Area, the former oxbow area, and the area of Berkshire Gas's former manufactured gas plant and associated facilities. As summarized in Section 2.2, the pre-design soil investigations performed in this area were consistent with the requirements in the SOW related to paved and unpaved areas within the GE Plant Area. 1-5 #### Future City Recreational Area (Average Area 4C): Separate from the CD, GE entered into a Definitive Economic Development Agreement (DEDA) with the City of Pittsfield and the Pittsfield Economic Development Authority (PEDA), effective upon entry of the CD. As part of the DEDA, GE agreed to construct (and lease to the City) a youth athletic field (i.e., the FCRA) in the northeastern corner of East Street Area 2-South. The location of the approximately 4-acre FCRA is shown on Figure 1. The Performance Standards established in the CD and SOW for the FCRA require the installation of a 1-foot-thick (minimum) soil cover over the surface of the FCRA, the achievement of a 15 ppm cleanup level for PCBs in the next 2 feet of soil, and an evaluation of non-PCB constituents in that 2-foot depth increment consistent with the procedures specified in the SOW. The response actions for soils present at greater depths are to be determined as part of response actions for the remainder of East Street Area 2-South and specifically the Former Gas Plant/Scrap Yard Area (Averaging Area 4B). GE conducted pre-design soil investigations for the FCRA between January 17 and February 1, 2001, pursuant to the Pre-Design Investigation Work Plan for Portion of East Street Area 2-South Removal Action - Future City Recreational Area (FCRA PDI Work Plan) dated November 2000. The results of these investigations, set forth in the Pre-Design Investigation Report for Portion of East Street Area 2-South: Future City Recreational Area (FCRA Pre-Design Report), dated April 2001, were used to prepare the Removal Design/Removal Action Work Plan for the Future City Recreational Area (FCRA RD/RA Work Plan), which was submitted to EPA in December 2001. As part of these investigations, GE also collected several of the pre-design soil samples required for the remainder of East Street Area 2-South that were located in close proximity to the FCRA (i.e., adjacent to or beneath the area). At the time when the FCRA RD/RA Work Plan was submitted to EPA, several open issues remained to be resolved and certain activities were yet to be performed. Certain of the remaining activities related to the implementation of construction activities, while other activities related to the final configuration of the ballfield area and related appurtenances. The current design of the FCRA calls for the installation of a gravel access road between a parking area located within the footprint of the FCRA and a point of access along Newell Street. As designed, a portion of the anticipated access road will be located outside of the FCRA and within the remainder (Averaging Area 4B) of East Street Area 2-South. Based on discussions with EPA, it was determined that, since the access road will not be part of the ballfield area, installation of a 1-foot soil cover is not necessary in the area of the access road. At the same time, based on the anticipated recreational use of the access road, the commercial/industrial Performance Standards that would otherwise be applicable to this portion of East Street Area 2-South would not apply to the top 3 feet of soil in the access road area. In view of these circumstances, GE and EPA have agreed that the uppermost 3 feet of soil within the access road area will be subject to the Performance Standards for that depth increment at other GE-owned recreational areas within the CD Site (e.g., those set forth in Paragraphs 25.d(iv) and 26.b(i) of the CD). For PCBs, these Performance Standards require soil removal and replacement as necessary to achieve spatial average PCB concentrations of 10 ppm in the 0- to 1-foot depth increment and 15 ppm in the 1- to 3-foot depth increment. For other Appendix IX+3 constituents, the applicable Performance Standards for the uppermost 3 feet of soil will be those set forth in the SOW for recreational areas. For purposes of these evaluations, the uppermost 3 feet of soil in the access road area will be considered a separate averaging area. It was also agreed that the area associated with the access road, as generally shown on Figures 2 through 8, will be demarcated through the installation of fencing to separate it from the remainder of East Street Area 2-South. Finally, it was agreed that soils present at depths greater than 3 feet in the access road area will continue to be addressed as part of the rest of East Street Area 2-South. Any response actions for depths greater than 3 feet will be determined as part of the evaluations conducted for the overall East Street Area 2-South averaging area within which the access road will be located (i.e., Averaging Area 4B--the Former Gas Plant/Scrap Yard Area), and will take into account the anticipated performance of any response actions for the uppermost 3 feet of soil within the access road area. Based on the above requirements, additional pre-design soil sampling was performed in the access road area in January 2002. The scope of that sampling incorporated the pre-design investigations previously identified for this area of East Street Area 2-South. In addition, the pre-design investigations for this particular area were expanded to include additional PCB soil sampling consistent with the requirements established in the CD and SOW for recreational areas (i.e., the collection of soil samples from the uppermost foot within a 50-foot grid) and to include additional soil sampling and analysis for Appendix IX+3 constituents (due to an increase in the number of PCB samples to be collected from within the access road area). The results of the additional soil investigations described above, the evaluation of these data with respect to potential soil-related response actions in the access road area, and additional information concerning the design and configuration of the FCRA will be presented to EPA in an Addendum to the FCRA RD/RA Work Plan, which is due to EPA on April 30, 2003. # 2. Summary of Pre-Design Investigations #### 2.1 General As discussed in Section 1 of this Pre-Design Report, the data that will be used to support future RD/RA evaluations of soils within East Street Area 2-South will be derived from a number of different sources and sampling activities. The majority of the data was obtained by GE as part of the pre-design investigations conducted between January 17, 2001 and October 18, 2002 in accordance with the PDI Work Plans and the FCRA PDI Work Plan. These investigations were performed on behalf of GE by Blasland, Bouck & Lee (BBL), while analytical services were provided by CT&E Environmental Services, Inc. During the performance of these activities, Weston Solutions, Inc. (Weston) performed oversight activities on behalf of EPA, including collection and analysis of split samples and additional samples at certain locations identified by EPA. In addition, soil samples were also provided to ENSR International, representing Berkshire Gas, for select analyses by META Environmental, Inc. (META). In total, the pre-design soil sampling effort (including the combined efforts of GE, EPA, and Berkshire Gas) involved the collection and analysis of more than 700 soil samples from 230 locations. Each sample location was surveyed to obtain coordinates consistent with GE's plant survey datum. Figure 2 identifies the sample locations, including the locations of usable historical soil samples, as well as samples collected and analyzed by GE, EPA, and Berkshire Gas during the pre-design investigation. #### 2.2 Summary of Pre-Design Sampling and Analysis Activities With certain limited exceptions (discussed later in this section), the sample locations, frequencies, depths, and analytes associated with the pre-design investigations conducted under the PDI Work Plans were consistent with those Work Plans. All field and analytical activities conducted by GE were performed in accordance with GE's approved Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP). Soil boring logs are presented in Appendix A to this report. Soil samples collected by GE for PCB analysis during the pre-design investigation were analyzed for Aroclor-specific PCBs by EPA Method 8082. The PCB results were reported on a dry-weight basis with a detection limit of approximately 0.05 ppm for all Aroclors. Select GE soil samples were also analyzed for Appendix IX+3 constituents (excluding pesticides and herbicides) utilizing methods and reporting limits consistent with those presented in the FSP/QAPP. In addition, soil samples were provided upon request to representatives from Weston and ENSR for additional analyses on behalf of EPA and Berkshire Gas, respectively. #### 2.3 Modifications to Pre-Design Sampling and Analysis Activities During the performance of the pre-design investigation, several modifications to the sampling program outlined in the PDI Work Plans were implemented based on field conditions, investigation results, and/or communications with EPA. The following modifications to the work scope identified in the PDI Work Plans
were implemented, with concurrence of EPA field representatives: • The following 29 soil borings were shifted slightly from the locations presented in the PDI Work Plans due to equipment refusal (i.e., subsurface obstructions encountered during drilling) or access restrictions at the proposed location (e.g., presence of subsurface utilities): | Soil Boring | Distance &
Direction Moved | |-------------|-------------------------------| | RAA4-A33 | 5 feet west & 2 feet south | | RAA4-B34 | 30 feet north | | RAA4-C29 | 25 feet west | | RAA4-C31 | 5 feet east | | RAA4-D19 | 7 feet south | | RAA4-D31 | 25 feet east | | RAA4-E23 | 10 feet south | | RAA4-E31 | 10 feet south | | RAA4-F27 | 4 feet south | | RAA4-F43 | 23 feet north | | RAA4-G14 | 44 feet east | | RAA4-G27 | 5 feet west | | RAA4-H03 | 2 feet northwest | | RAA4-H17 | 5 feet east | | RAA4-I27 | 10 feet north | | Soil Boring | Distance &
Direction Moved | |-------------|-------------------------------| | RAA4-K03 | 4 feet east | | RAA4-K25 | 5 feet west | | RAA4-K27 | 15 feet north | | RAA4-K28 | 10 feet south | | RAA4-M05 | 5 feet west | | RAA4-M08 | 5 feet north | | RAA4-M15 | 16 feet west | | RAA4-M21 | 2 feet west | | RAA4-N15 | 10 feet south | | RAA4-N16 | 10 feet north | | RAA4-O03 | 2 feet east | | RAA4-005 | 17 feet east & 5 feet north | | RAA4-P03 | 16 feet east | | RAA4-P06 | 10 feet north | Soil borings RAA4-B33 and RAA4-E25 encountered refusal prior to obtaining soil samples from the 6- to 15-foot depth interval. Therefore, the proposed sampling and analysis for Appendix IX+3 constituents at these locations/depths were not conducted. - An additional soil sample from soil boring RAA4-H27 was collected from the 0- to 1-foot depth interval and analyzed for PCBs and VOCs. At this location, only the 1- to 6-foot depth interval was proposed for Appendix IX+3 sampling. The 0- to 1-foot soil sample was collected after initial attempts to install the deeper boring encountered refusal at 3 feet. However, a later attempt to collect the 1- to 6-foot sample using a different drill rig was successful. - Soil samples collected from the 0- to 1-foot depth interval at borings RAA4-E23, RAA4-I11S, and RAA4-M17 were not submitted for analyses of Appendix IX+3 constituents as proposed (the photoionization detector [PID] headspace readings were less than 1.0 ppm PID units at these locations). Instead, based on field observations (discussed below), several alternate soil samples were added for Appendix IX+3 analyses at other locations. - The following additional soil samples were collected by GE for analysis of PCBs and/or certain Appendix IX+3 constituents -- based on field observations or elevated PID screening results -- as substitute locations/depths for samples that were proposed but could not be collected or were not analyzed (as described above). | Boring Location | Depth Interval | Analyses | |-----------------|----------------|---| | RAA4-I5 | 0 to 1 foot | Appendix IX+3 (excluding pesticides/herbicides) | | RAA4-I21 | 0 to 1 foot | Appendix IX+3 (excluding pesticides/herbicides) | | RAA4-H24 | 0 to 1 foot | PCBs | | RAA4-D29 | 6 to 15 feet | VOCs | | RAA4-E27 | 6 to 15 feet | VOCs and SVOCs | | RAA4-E35 | 6 to 15 feet | VOCs and SVOCs | | RAA4-K29 | 6 to 15 feet | VOCs and SVOCs | | RAA4-I19 | 6 to 15 feet | SVOCs | | RAA4-I25 | 6 to 15 feet | VOCs | None of the EPA-approved modifications identified above significantly affect the overall characterization of the soils within East Street Area 2-South. Although samples from some of the proposed pre-design locations could not be collected, GE did identify and collect alternate and/or additional sample locations at the appropriate depth increments, such that the amount of soil data available to characterize existing soils did not vary to any great extent. In addition, the sampling data resulting from the separately performed EPA sampling and analyses, as well as split sampling data collected by EPA and Berkshire Gas, further expand the available data set from which RD/RA evaluations will be conducted. During the pre-design investigations, soil samples from borings RAA4-E23, RAA4-E31, RAA4-G21, RAA4-I19, RAA4-I23, and RAA4-K23 indicated the presence of NAPL within certain soil samples, while a sheen was noted on the pore water of saturated soil samples at borings RAA4-E33, RAA4-E35, RAA4-H24, RAA4-K29, and RAA4-O15. As required by Technical Attachment D to the SOW (Protocols for Additional Soil Investigations), for any soil samples in which NAPL was encountered as part of soil characterization activities, GE has assessed the need for the installation of a monitoring well. At each of the soil borings where NAPL was observed, the sampling location is within or near a known area of NAPL occurrence that is currently being addressed under GE's ongoing NAPL monitoring and recovery activities. However, this information will be incorporated into the ongoing NAPL-related evaluations and reports described in Section 1.2. Any future well installations or changes to the current NAPL monitoring/recovery activities will be proposed in reports submitted by GE under its GMA 1 NAPL monitoring program. #### 2.4 Summary of Available Soil Data For East Street Area 2-South, the soil data available to support future technical evaluations and the preparation of a Conceptual RD/RA Work Plan include the results of GE's recent pre-design investigations, as well as data available from prior investigations, the data collected by EPA, and potentially the data obtained by Berkshire Gas. The following table summarizes the current data set (not including QA/QC analyses, with the exception of field duplicate soil samples) for several constituent groups: | Analytical
Parameter | GE
Pre-Design
Analyses ¹ | EPA
Pre-Design
Analyses | Berkshire Gas Pre-Design Analyses | Historical
Soil
Analyses | Total
Soil
Analyses | |-------------------------|---|-------------------------------|-----------------------------------|--------------------------------|---------------------------| | PCBs | 565 | 253 | 0 | 579 | 1,397 | | VOCs | 184 | 49 | 30 | 110 | 373 | | SVOCs | . 184 | 112 | 34 | 94 | 424 | | Pesticides/Herbicides | 0 | 24 | 0 | 52 | 76 | | PCDDs/PCDFs | 205 | 36 | 0 | 38 | 279 | | Inorganics | 174 | 111 | 0 | 93 | 378 | ¹ Includes data from FCRA Pre-Design Report. 2-4 The locations from which these soil samples were collected are shown, by relevant depth increment, on Figures 3 through 8. Specifically, Figures 3 and 4 show the locations of the 0- to 1-foot soil samples for PCBs and other Appendix IX+3 constituents, respectively (excluding the samples from within the FCRA); Figures 5 and 6 show the locations of the samples from the 1- to 6-foot depth increment for PCBs and other Appendix IX+3 constituents, respectively; and Figures 7 and 8 show the locations of the samples from the 6- to 15-foot depth increment for PCBs and other Appendix IX+3 constituents, respectively. (Note that Figures 3 and 5 also show the utility bands that are discussed further in Section 2.6.) The analytical results for soil samples collected by GE are provided in Tables 1 through 4. Tables 1 and 2 provide the results of GE's recent pre-design investigations (including the investigations conducted under the FCRA PDI Work Plan) for PCBs and other Appendix IX+3 constituents, respectively; while historical soil data are summarized in Tables 3 and 4 for PCBs and other Appendix IX+3 constituents, respectively. Tables 5 and 6 provide the results for PCBs and other Appendix IX+3 constituents, respectively, for the samples analyzed by EPA. These results include the data from samples that were split with GE and samples from other separate locations (e.g., soil borings 60-1 through 60-5). Finally, the analytical results for soil samples collected by Berkshire Gas are provided in Tables 7 and 8. All of these tables that present Appendix IX+3 data summarize the results for constituents that were detected in one or more sample during the respective investigations. A complete listing of the Appendix IX+3 laboratory results is included in Appendix B. All the data provided in these eight tables have been utilized to evaluate the need for additional soil sampling prior to conducting RD/RA activities for East Street Area 2-South. #### 2.5 Data Quality Assessment For the pre-design activities performed by GE, quality control samples (i.e., matrix spike/matrix spike duplicates, field duplicates, and field blanks) were collected in accordance with the FSP/QAPP. The FSP/QAPP also presents the quality control criteria and corrective action procedures to be followed for each analytical and field-generated quality control sample. Overall project quality assurance was provided by following the procedures for sample collection and analysis, corrective action, and data reporting and validation specified in the FSP/QAPP. Appendix C further describes the quality assessment procedures that were performed for the GE sampling activities. All of the GE pre-design soil analytical data have undergone data review validation in accordance with Section 7.5 of the FSP/QAPP. The results of this assessment for the most recent pre-design samples are summarized in Appendix C, while Appendix B of the FCRA Pre-Design Report and Appendix A of the FCRA RD/RA Work Plan present the data validation summaries previously prepared for soils collected within and beneath the FCRA. As discussed in the data validation report presented in Appendix C, 99.8% of the recent GE pre-design data are considered to be usable, which is greater than the minimum required usability of 90% as specified in the FSP/QAPP. All of the analytical results for VOCs, PCBs, and inorganic constituents were found to be usable, while 98.6% of the SVOC results and 99.9% of the results for polychlorinated dibenzo-p-dioxins (PCDDs) and
polychlorinated dibenzo-furans (PCDFs) were of acceptable quality. The rejected sample data from these investigations included the analytical results for 97 individual SVOCs from sample location RAA4-H33 (0- to 1-foot depth increment), 102 individual SVOCs from sample location RAA4-K27 (1 to 3 feet), 17 individual SVOCs from sample location RAA4-Q8 (0 to 1 foot) and 17 individual SVOCs from sample location RAA4-O7 (0 to 1 foot) due to low surrogate standard recoveries. These samples were re-extracted by the laboratory and matrix interferences were demonstrated. The rejected sample data also included the analytical results for a single PCDF (1,2,3,4,7,8,9-HpCDF) at two sample locations (RAA4-M29 and RAA4-Q6, each from the 1- to 3-foot depth increment) due to deviant laboratory cleanup standard. These limited rejections of certain individual SVOC and PCDF results do not affect the overall usability of the pre-design investigation data set to characterize these constituents at East Street Area 2-South because, in each case, sufficient usable SVOC or PCDD/PCDF data exist from other, nearby sample locations to characterize these constituents in the areas involved. Thus, the overall pre-design soil data set meets the data quality objectives set forth in the PDI Work Plans and the FSP/QAPP. As indicated in the PDI Work Plans, the historical soil data were previously reviewed for overall quality, based on the accompanying laboratory documentation (where available). That data review resulted in the designation of some data as usable both to satisfy pre-design investigation requirements and for future RD/RA evaluations, other data as supplemental data for use in RD/RA evaluations, and other data as rejected or eliminated. The data presented in this report consist of the data in the first two of these categories. Based on the reviews in the PDI Work Plans, these data were found to be of acceptable quality for use in satisfying RD/RA requirements for the response actions for East Street Area 2-South (except for certain "supplemental" Appendix IX+3 that the PDI Work Plans indicated would be re-evaluated in the Conceptual RD/RA Work Plan after the PCB-related response actions have been defined). It is GE's understanding that the analytical results for the soil samples collected and analyzed by EPA were validated by EPA prior to receipt by GE. Therefore, these data are considered acceptable for use in future evaluations pertaining to RD/RA activities. The summary data package received by GE containing analytical results for soil samples collected between April 25, 2002 and June 5, 2002 and analyzed by Berkshire Gas cannot be validated at the present time. Those data packages indicate that laboratory-modified analytical methods were utilized for the preparation and analyses of these soil samples. Specifically, the soil samples analyzed for select volatile organic compounds (VOCs) were prepared by Soxhlet extraction using dichloromethane (DCM) (EPA Method 3540) and analyzed using a combination of EPA Methods 8260 and 8270, as modified by the laboratory (META). In addition, some soil samples collected by Berkshire Gas were analyzed for SVOCs using the same combination method (8260/8270) mentioned above and others were analyzed by EPA Method 8270, as modified by the laboratory. These methods differ from those set forth in GE's FSP/QAPP, as approved by EPA. To determine if the results of these sample analyses can be used in future RD/RA evaluations at East Street Area 2-South, the quality of the data and the laboratory's modifications of the analytical methods need to be reviewed. To complete this review, Standard Operating Procedures (SOPs) for the methods used by META and a full CLP-like data package are necessary. GE has requested this information from Berkshire Gas and will perform a data quality review upon receipt. The results of this data quality review will be included in the Supplement to this Pre-Design Report, which is discussed in Section 3. #### 2.6 Assessment of Potential Data Needs In accordance with Section 3.2 of the SOW, the Pre-Design Investigation Report is required to consider the sufficiency of the available data in terms of supporting subsequent RD/RA activities, and whether any additional or remaining data are needed. If additional data are needed, the Pre-Design Investigation Report is to include a proposal for further studies/investigations, as well as a schedule for such activities and the submission of any supplemental predesign reports. The PDI Work Plans identified the activities proposed by GE to characterize existing soil conditions, satisfy the investigation requirements specified in the CD and SOW, and thus support the preparation of a Conceptual RD/RA Work Plan for East Street Area 2-South. Based on completion of the pre-design activities, the available soil characterization data are, for the most part, sufficient to support the necessary evaluations for this RAA, including an assessment of current soil conditions and the need for, type of, and scope of response actions to achieve the applicable Performance Standards. Although minor modifications to the scope of sampling specified in the PDI Work Plans were implemented during the field activities, none of the modifications (described in Section 2.3) affected the overall characterization of soils within this RAA that was gained from the remaining sampling data. Nevertheless, GE has identified a number of data needs to support future RD/RA evaluations and allow preparation of the Conceptual RD/RA Work Plan. These data needs are described below, and proposals to satisfy these data needs are provided in Section 3.2. #### 200-Foot RRZ: As discussed in Section 1.3, GE proposed, and EPA approved, an iterative sampling approach for the portions of the 200-Foot RRZ covered by existing buildings. Given this approach, GE has conducted a preliminary evaluation of the existing data within the 200-Foot RRZ to determine whether a vegetative engineered barrier will be necessary for the portions of that RRZ covered by the buildings. The results of this evaluation indicate that, in a portion of the 200-Foot RRZ that includes Buildings 61, 62, and 63, PCB levels in soil may achieve the applicable Performance Standards or can meet the applicable standards through response actions other than a vegetative engineered barrier, such as limited soil removal to bring the PCB levels to below the levels specified in the Performance Standards. This area consists of a portion of the 200-Foot RRZ located beneath and between Buildings 61, 62, and 63, extending from the eastern edge of Building 63 to the downstream boundary of the RAA, as shown on Figures 2 through 8. As a result, consistent with the approach presented in the PDI Work Plans, GE will collect additional surface (0 to 1 foot) soil samples in this portion of the 200-Foot RRZ at the 50-foot grid nodes that are located within the buildings and were not previously sampled. Section 3.2 describes the proposed supplemental investigations for this area. #### **Utility Bands:** In its May 2, 2002 conditional approval letter for the PDI Work Plans, EPA required GE to further assess the existing soil data and pre-design sample locations with respect to their characterization of soils in proximity to existing subsurface utilities that are subject to emergency repair. The required assessment has been performed by GE consistent with the approach used at other RAAs within the Site and with the utility-related PCB Performance Standard for the GE Plant Area, as well as in consideration of the current and planned future uses of the East Street Area 2-South RAA. A summary of the assessment is provided below. Initially, GE identified the types and locations of several subsurface utilities that are present within East Street Area 2-South, including active stormwater, sanitary sewer, potable water, and electrical utilities. However, before assessing the available soil data and their sufficiency to characterize soils within each of the corresponding utility bands, GE considered the future site conditions at East Street Area 2-South, and specifically the planned demolition of the buildings in the 60s Complex and the related activities, including abandonment of utilities. After taking into account these future site conditions, a further assessment was conducted of those utilities that will remain — which are primarily associated with GE's active groundwater, stormwater, and NAPL programs (i.e., Buildings 64, 64G, 64T, several oil/water separators, and several NAPL recovery systems). The assessment considered the availability of PCB soil data to satisfy the following criteria: Soils associated with a given utility corridor are considered to be sufficiently characterized for RD/RA purposes if PCB data are available within a 50-foot band centered along the utility line, at linear intervals of approximately 100 to 150 feet along the utility and to a depth of 6 feet below the ground surface. The 50-foot-wide utility bands for the utilities that will remain after the planned demolition of the buildings in the 60s Complex (and the related abandonment of associated utilities) and that are subject to future emergency repairs are shown on Figures 3, 5, and 9. Using the above criteria, portions of the following utilities were identified for additional PCB soil characterization: | Utility | Location | |---|---| | Electrical | Associated with a service to Building 64; | | | Associated with a service from Building 64 to Building 64T | | | Associated with a service between Buildings 61R & 64W. | | Municipal Water Main | Associated with service to Building 64. | | Sanitary Sewer | Associated with Trunk Main traversing from the north side of | | | East Street along the western side of Building 61 and | | | continuing under the Housatonic River. | | Storm
Sewer | Trunk Lines associated with routing water from the north | | | side of East Street through the site to the Housatonic River. | | | Laterals associated with collecting storm water runoff from | | | East Street Area 2-South. | | | Trunk Lines associated with routing water to the oil | | , | separator. | | Water Mains – Fire Protection | Associated with a service to a fire hydrant located southwest | | | of Building 64. | As presented in Section 3.2, GE has identified 25 additional locations for PCB soil sampling and analysis in order to further characterize soils within utility bands. #### Areas Near RAA Boundary: At soil borings RAA4-H3 and RAA4-I3 (located west of Building 61), PCBs were detected at 50 ppm and 6.5 ppm in the respective surface soil samples (i.e., 0- to 1-foot depth increment). These borings are located approximately 15 to 20 feet east of the East Street Area 2-South RAA boundary in this area. Since no other sampling data are available to the west of these locations, and no other RAA is located to the west of East Street Area 2-South in this area, additional sampling and analysis for PCBs are necessary to delineate the horizontal extent of PCBs to the west of these locations. To fill this data need, as described in Section 3.2, additional surface (0- to 1-foot) soil samples will be collected for PCB analysis at locations approximately 10 feet west of existing boring locations RAA4-H3 and RAA4-I3 within the boundary of East Street Area 2-South. Subsurface soil samples are not necessary at these locations since the PCB concentrations in the subsurface samples from borings RAA4-H3 and RAA4-I3 were low (non-detect to 2.5 ppm). However, if the additional surface samples from these locations show elevated PCB concentrations, further sampling and analysis will be proposed to define the horizontal and vertical extent of those elevated PCB concentrations. A third sampling location (RAA4-O1) located adjacent to the western boundary of this RAA (northwest of Building 62) also exhibited PCB concentrations greater than 2 ppm in the surface soil sample. However, since this portion of the RAA abuts the Lyman Street Area RAA, no further PCB delineation sampling is proposed. 2-10 # 3. Future Activities and Schedule #### 3.1 General As discussed in Section 2.6, some additional data needs have been identified that need to be addressed prior to the development of the Conceptual RD/RA Work Plan for the East Street Area 2-South. The additional pre-design soil sampling activities that are proposed to satisfy those data needs are described in Section 3.2. Other remaining pre-design activities are presented in Section 3.3. Finally, Section 3.4 presents the proposed schedule for future activities and summarizes the anticipated contents of the Conceptual RD/RA Work Plan. #### 3.2 Supplemental Pre-Design Soil Investigations Section 2.6 identifies the need for additional surface soil sampling and analysis for PCBs in a portion of the 200-Foot Wide RRZ located within and between Buildings 61, 62, and 63 where a vegetative engineered barrier may not be necessary. For this area, GE proposes to collect surface soil samples (0- to 1-foot depth) at the 50-foot grid node locations that were not previously sampled. A total of 26 surface soil samples will be collected and analyzed for PCBs, and eight of those samples will also be analyzed for Appendix IX+3 constituents. Table 9 lists the locations at which these soil samples will be collected and Figure 9 depicts those locations. As also discussed in Section 2.6, GE has conducted an evaluation of future subsurface utilities at this RAA and has identified the need for additional PCB soil sampling and analysis to characterize the soils within the corresponding utility bands. To satisfy this data need, GE proposes to advance 25 soil borings and collect soil samples at depth intervals consistent with the SOW requirements (e.g., 0 to 1 foot, 1 to 6 feet). Table 9 lists the locations at which these soil borings will be advanced and the sampling depth intervals and Figure 9 depicts those locations. In addition, as noted in Section 2.6, additional surface soil samples need to be collected to the west of soil borings RAA4-H3 and RAA4-I3 to determine if PCBs are present to the west of these two locations. To satisfy this data need, GE proposes to collect two soil samples approximately 10 feet west of borings RAA4-H3 and RAA4-I3. Soil samples will be only be collected from the surface interval (0 to 1 foot) since this is the only interval within each of the two prior borings that exhibited elevated PCB results. Table 9 lists the locations at which these soil samples will be collected and Figure 9 depicts those locations. All of these sampling and analysis activities will be conducted in accordance with the procedures set forth in GE's approved FSP/QAPP. The results of these investigations will be presented in a Supplement to this Pre-Design Report on the schedule described in Section 3.4. #### 3.3 Additional Pre-Design Activities In addition to the supplemental soil investigation soil investigations described in Section 3.2, GE has identified certain other activities that may or will be performed to support the preparation of the Conceptual RD/RA Work Plan. These activities are described below. Portions of the available site mapping for East Street Area 2-South are not sufficient to support the type of detailed RD/RA evaluations that will be performed by GE. The current mapping, as depicted on Figures 2 through 8 in this report, was primarily generated from aerial photogrammetry mapping conducted in 1990. Although this mapping is useful for identifying prominent features within this RAA (e.g., buildings, roadways, surface water features, etc.) and the approximate locations of the soil sampling locations (as shown on Figure 2), additional detailed site mapping is required to support the development of spatial average PCB concentrations and other RD/RA actions. Recent surveys of the 60s Complex and FCRA have been completed by GE, in addition to survey data that exist for areas along the Housatonic River. GE will review these surveys to identify where additional surveys will be required to adequately cover the remainder of this RAA, and such surveys will be performed where necessary. GE will then proceed with developing an overall detailed site map for East Street Area 2–South that will include the following information: - Existing buildings, structures; - Paved, gravel and unpaved areas; - · Surface elevations and topography; - 100-year floodplain demarcation; - Property boundaries and easements (e.g., utility); - Selected utilities (e.g., manholes, catch basins, telephone poles, etc.); - Existing soil sampling locations; and - Other prominent site features. The mapping will be prepared by a licensed Land Surveyor and will be consistent and compatible with the plant survey datum currently in place for the GE Pittsfield, Massachusetts facility. Once the site mapping is completed, GE will be able to proceed with the RD/RA evaluations. In addition, as discussed in Section 2.5, GE has not received sufficient information from the laboratory that analyzed the soil samples collected by Berkshire Gas to determine whether those data are usable in future RD/RA evaluations at East Street Area 2-South. Upon receipt of additional documentation concerning those analyses, GE will perform a data quality review. The results of that review will be included in the Supplement to this Pre-Design Report. As a separate matter, during the development of the Conceptual RD/RA Work Plan, the RD/RA evaluations may indicate that soil removal is necessary to achieve the applicable soil-related Performance Standards. Under the CD and SOW, GE has several options available for the disposition of removed materials. To further assess these options and develop the Conceptual RD/RA Work Plan, GE may collect additional soil samples for characterization purposes, specifically to identify whether the subject material(s) are potentially classified as hazardous waste pursuant to EPA's regulations under the Resource Conservation and Recovery Act (RCRA) set forth in 40 CFR 264. If such sampling is identified, GE will follow the procedures established in its *Waste Characterization Plan*, which is a component of the *Project Operations Plan*. #### 3.4 Schedule for Future Activities GE proposes to conduct the supplemental soil investigations described in Section 3.2 and submit a Supplement to this Pre-Design Report within 115 days from receipt of EPA approval of this Pre-Design Report. This schedule assumes that no major weather-related delays are encountered and that no significant additional data needs are identified based on comments from EPA or otherwise. If these or other factors cause a delay in the schedule proposed above, GE will notify EPA and propose for EPA approval a revised schedule for submitting the Supplement. The Supplement to this Pre-Design Report will include a proposed schedule for submitting the Conceptual RD/RA Work Plan for the East Street Area-2 South Removal Action. The contents of the Conceptual RD/RA Work Plan will be consistent with Section 3.3 of the SOW and address the following topics: Results of the pre-design studies/investigations; - An evaluation of the areas and depths subject to response actions to meet the PCB-related Performance Standards set forth in the CD and the SOW; - An evaluation of the need for additional response actions to address non-PCB constituents and (if needed) the type of such response actions; - An evaluation of other issues that may affect the type and extent of response actions; - Preliminary plans and specifications to support the response actions; - Summary of preliminary response action quantities, including soil removal, capping areas, etc.; - · Design assumptions and parameters; and - Identification of Applicable or Relevant and
Appropriate Requirements (ARARs) in accordance with Attachment B to the SOW. # **Tables** # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |---|-------------|-------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------| | | · | | | | | ng Area 4A | | | | | | RAA4-E15 | 0-1 | 6/7/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0,035) | 0.16 | 0.42 | 0.58 | | | 1-6 | 6/7/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.027 J | 0.027 J | | *************************************** | 6-15 | 6/7/2002 | ND(0.036) | RAA4-G5 | 0-1 | 6/11/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 0.59 | 0.64 | 1.23 | | | 1-6 | 6/11/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 3.2 | 1.3 | 4.5 | | | 6-15 | 6/11/2002 | ND(0.045) | RAA4-G7 | 0-1 | 7/2/2002 | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | 3.8 | ND(0.42) | 3.8 | | | 1-6 | 7/2/2002 | ND(0.036) | | 6-15 | 7/2/2002 | ND(0.042) | RAA4-G11 | 0-1 | 6/28/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.17 | 0.15 | 0.32 | | | 1-6 | 6/28/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.096 | 0.11 | 0.206 | | | 6-15 | 6/28/2002 | ND(0.036) | RAA4-G14 | 0-1 | 7/8/2002 | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | 2.1 | 1.5 | 3.6 | | | 1-6 | 7/8/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.88 | 0.56 | 1.44 | | | 6-12 | 7/8/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 1.7 | 0.98 | 2.68 | | RAA4-G17 | 6-15 | 6/7/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.054 | 0.054 | | RAA4-H3 | 0-1 | 6/11/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 30 | 20 | 50 | | | 1-6 | 6/11/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.064 | 0.063 | 0.127 | | | 6-15 | 6/11/2002 | ND(0.043) | RAA4-H7 | 0-1 | 6/13/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.036 J | 0.036 J | | | 1-6 | 6/13/2002 | ND(0.036) [ND(0.036)] (ND(0.036)) | | | 6-15 | 6/13/2002 | ND(0.040) | RAA4-13 | 0-1 | 6/24/2002 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 2.5 | 4.0 | 6.5 | | | 1-6 | 6/24/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 1.8 | 0.69 | 2.49 | | | 6-15 | 6/24/2002 | ND(0.038) | RAA4-15 | 0-1 | 7/3/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 1.2 | 1.2 | | | 1-6 | 7/3/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.038 | 0.064 | 0.102 | | | 6-15 | 7/3/2002 | ND(0.046) | RAA4-19 | 0-1 | 6/17/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.48 | 0.58 | 1.06 | | | 1-6 | 6/17/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.46 | 0.46 | | | 6-15 | 6/17/2002 | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | 0.029 J | 0.072 | 0.101 | | RAA4-I11 | 1-6 | 6/25/2002 | ND(0.036) | | 6-15 | 6/25/2002 | ND(0.039) | RAA4-I13 | 6-15 | 7/2/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.10 | 0.052 | 0.152 | | RAA4-I15 | 0-1 | 4/25/2002 | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 2.0 | 4.7 | 6.7 | | RAA4-K3 | 0-1 | 6/11/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.27 | 0.32 | 0.59 | | | 1-6 | 6/11/2002 | ND(0.040) | | 6-15 | 6/11/2002 | ND(0.044) | RAA4-K5 | 0-1 | 6/11/2002 | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | 5.8 | 13 | 18.8 | | | 1-6 | 6/11/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.11 | 0.095 | 0.205 | | | 6-15 | 6/11/2002 | | | ND(0.042) [ND(0.041)] | ND(0.042) IND(0.041) | ND(0 042) IND(0 041) | ND(0.042) [0.053] | ND(0.042) [ND(0.041)] | ND(0.042) [0.053] | | RAA4-K11 | 0-1 | 7/2/2002 | ND(0.036) | ND(0,036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.066 | 0.044 | 0.11 | | | 1-6 | 7/2/2002 | ND(0.037) | | | 6-15 | 7/2/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.037)
ND(0.041) | ND(0.037)
ND(0.041) | ND(0.037) | | RAA4-L8 | 0-1 | 6/13/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.12 | ND(0.041)
0.12 | | | 1-6 | 6/13/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.23 | 0.12 | 0.12
0.61 | | | 6-15 | 6/13/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.036)
ND(0.041) | 0.23
ND(0.041) | 0.36
ND(0.041) | | | RAA4-M3 | 0-1 | 6/11/2002 | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.041) | ND(0.041)
ND(0.042) | 0.23 | 0.28 | ND(0.041) | | | 1-6 | 6/11/2002 | ND(0.041) | ND(0.041) | ND(0.042) | ND(0.042)
ND(0.041) | ND(0.042)
ND(0.041) | | | 0.51 | | | 6-15 | 6/11/2002 | ND(0.044) | ND(0.041) | ND(0.041)
ND(0.044) | ND(0.041)
ND(0.044) | | ND(0.041) | ND(0.041) | ND(0.041) | | RAA4-M5 | 0-1 | 4/25/2002 | ND(0.19) | ND(0.044) | ND(0.044) | | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | | | 1-6 | 4/25/2002 | ND(0.19)
ND(0.036) | ND(0.19)
ND(0.036) | ND(0.19)
ND(0.036) | ND(0.19) | ND(0.19) | 0.82 | 3.0 | 3.82 | | | 6-15 | 4/25/2002 | ND(0.030)
ND(0.040) | ND(0.036)
ND(0.040) | | ND(0.036) | ND(0.036) | ND(0.036) | 0.073 | 0.073 | | | 1 1 3 | TEUILUUL | 140(0,040) | 140(0,040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |--------------------|--|-------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------| | | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | | | | Averaging Area | a 4A (continued) | | | | | | RAA4-M7 | 0-1 | 7/3/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.033 J | ND(0.036) | 0.033 J | | | 1-6 | 7/3/2002 | ND(0.036) | | 6-15 | 7/3/2002 | ND(0.040) | RAA4-01 | 0-1 | 4/25/2002 | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | 13 | 12 | 25 | | | 1-6 | 4/25/2002 | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | 6.0 | 7.6 | 13.6 | | | 6-15 | 4/25/2002 | ND(0.045) | | | | | | | ig Area 4B | y | | y | | | RAA4-1 | 0-1 | 1/30/2001 | R | R | R | R | R | R | R | R | | RAA4-2 | 0-1 | 1/24/2001 | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | 1,4 | ND(0.24) | 1.4 | | | 1-6 | 1/24/2001 | ND(0.22) | | 6-15 | 1/24/2001 | ND(0.23) | RAA4-3 | 0-1 | 1/30/2001 | ND(0.051) | ND(0.051) | ND(0.051) | ND(0.051) | ND(0.051) | 0.68 | ND(0.051) | 0.68 | | RAA4-4 | 0-1 | 1/24/2001 | ND(24) | ND(24) | ND(24) | ND(24) | ND(24) | 180 | 320 | 500 | | | 1-6 | 1/24/2001 | ND(0.22) | ND(0.22) | ND(0.22) | ND(0.22) | ND(0.22) | 1.4 | ND(0.22) | 1.4 | | | 6-15 | 1/24/2001 | ND(0.21) | RAA4-5 | 0-1 | 1/30/2001 | ND(0.45) | ND(0,45) | ND(0.45) | ND(0.45) | ND(0.45) | 2.8 | 6.6 | 9.4 | | RAA4-6 | 0-1 | 1/30/2001 | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | 14 | 14 | | RAA4-7 | 0-1 | 1/30/2001 | ND(0.22) | ND(0.22) | ND(0.22) | ND(0.22) | ND(0.22) | 0.55 | 0.73 | 1.28 | | RAA4-8 | 0-1 | 1/30/2001 | ND(0.22) [ND(0.26)] | 3.5 [5.4] | 3.5 [5.4] | | RAA4-9 | 0-1 | 1/30/2001 | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.44
ND(0.24) | 1.2
3.9 | 1.64 | | RAA4-10 | 0-1 | 1/30/2001 | ND(0.24) | ND(0.24) | ND(0.24)
ND(0.51) | ND(0.24)
ND(0.51) | ND(0.24)
ND(0.51) | ND(0.24)
ND(0.51) | 5.0 | 3.9
5.0 | | RAA4-11
RAA4-12 | 0-1
0-1 | 1/30/2001 | ND(0.51) | ND(0.51)
ND(0.22) | ND(0.31)
ND(0.22) | ND(0.22) | ND(0.51)
ND(0.22) | ND(0.31)
ND(0.22) | 7,9 | 7.9 | | RAA4-12 | 0-1 | 1/30/2001 | ND(0.22)
ND(0.055) | ND(0.22)
ND(0.055) | ND(0.22)
ND(0.055) | ND(0.22) | ND(0.22) | ND(0.22) | 0.79 | 0.79 | | RAA4-14 | 0-1 | 1/30/2001 | ND(0.055)
ND(0.044) | ND(0.055)
ND(0.044) | ND(0.055)
ND(0.044) | 0.14 | ND(0.033)
ND(0.044) | 0.66 | 0.90 | 1.7 | | KAA4-14 | 1-3 | 1/3/2001 | | | ND(0.041) [ND(0.041)] | | | | ND(0.041) [0.022 J] | ND(0.041) [0.022 J] | | RAA4-15 | 0-1 | 1/30/2001 | ND(0.041) [ND(0.041)] | ND(0.041) [ND(0.041)] | ND(0.046) | ND(0.046) | ND(0.041) [ND(0.041)] | 0.34 | 0.50 | 0.84 | | IVW4-13 | 1-3 | 1/2/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.035 J | 0.041 | 0.076 | | RAA4-16 | 0-1 | 1/24/2001 | ND(1.2) | ND(0.030) | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.2) | | 1004-10 | 1-6 | 1/24/2001 | ND(1.1) | | 6-15 | 1/24/2001 | ND(1.1) | ND(1.1) | ND(1.1) | ND(1.1) | ND(1.1) | ND(1.1) | 20 | 20 | | RAA4-17 | 0-1 | 1/29/2001 | ND(0.53) | ND(0.53) | ND(0.53) | ND(0.53) | ND(0.53) | 3.3 | 6.8 | 10.1 | | | 1-6 | 1/29/2001 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.030 J | 0.030 J | | | 6-15 | 1/29/2001 | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | 0.50 | 0.50 | | RAA4-18 | 0-1 | 1/29/2001 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.46 | 1.5 | 1.96 | | | 1-6 | 1/29/2001 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.35 | 0.73 | 1.08 | | | 6-15 | 1/29/2001 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.26 | 0.26 | | RAA4-19 | 0-1 | 1/29/2001 | ND(0.048) | ND(0.048) | ND(0.048) | ND(0.048) | ND(0.048) | ND(0.048) | 2.2 | 2.2 | | | 1-6 | 1/29/2001 | ND(0.036) | | 6-15 | 1/29/2001 | ND(0.052) [ND(0.036)] | RAA4-20 | 0-1 | 1/29/2001
 ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.53 | 1.4 | 1.93 | | | 1-6 | 1/29/2001 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0,039) | ND(0.039) | ND(0.039) | | | 6-15 | 1/29/2001 | ND(0.039) | RAA4-21 | 0-1 | 1/29/2001 | ND(0.039) | ND(0.039) | ND(0,039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | | | 1-3 | 1/3/2002 | ND(0.036) | | 1-6 | 1/29/2001 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.16 | 0.22 | 0.38 | | 1 | 3-6 | 1/3/2002 | ND(0.040) | | 6-15 | 1/29/2001 | ND(0.055) | RAA4-22 | 0-1 | 1/31/2001 | ND(0.056) | ND(0.056) | ND(0.056) | ND(0.056) | ND(0.056) | 0.24 | 0.46 | 0.70 | | | 1-3 | 1/3/2002 | ND(0.038) | 1 | 1-6 | 1/31/2001 | ND(0.045) | 1 | 3-6 | 1/3/2002 | ND(0.037) | 1 | 6-15 | 1/31/2001 | ND(0.048) # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |---|-------------|---|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-------------------|-------------------| | | | | | | Averaging Are | a 4B (continued) | | | | | | RAA4-23 | 0-1 | 1/2/2002 | ND(0.79) | ND(0.79) | ND(0.79) | ND(0.79) | ND(0.79) | 18 | 20 | 38 | | | 1-3 | 1/2/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 0.028 J | 0.030 J | 0.058 J | | RAA4-A33 | 0-1 | 5/16/2002 | ND(0.041) [ND(0.20)] | 0.28 [ND(0.20)] | 0.78 [0.54] | 1.06 [0.54] | | | 1-6 | 5/16/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.28 | 0.61 | 0.89 | | inumination (spinostalium on orași estimatica (spinostalium on orași estimatica) (spinostalium on orași estimat | 6-15 | 5/16/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.29 | 0.29 | | RAA4-A34 | 0-1 | 5/16/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.11 | 0.29 | 0.40 | | | 1-6 | 5/16/2002 | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | 0.81 | 0.98 | 1.79 | | | 6-15 | 5/16/2002 | ND(0.039) | RAA4-A35 | 0-1 | 5/16/2002 | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 0.67 | 0.67 | | | 1-6 | 5/16/2002 | ND(0.74) | 20.4.4.2.8.0.79 | 6-10 | 5/16/2002 | ND(0.75) | RAA4-A37 | 0-1 | 5/15/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.10 | 0.20 | 0.30 | | | 1-6 | 5/15/2002 | ND(0.75) | ND(0.75) | ND(0.75) | ND(0.75)
ND(0.76) | ND(0.75) | ND(0.75)
ND(0.76) | 1.2
0.75 J | 1.2 | | Passa Paga | 6-15 | 5/15/2002 | ND(0.76) | ND(0.76) | ND(0.76) | | ND(0.76) | | | 0.75 J
1.4 | | RAA4-B29 | 0-1 | 5/20/2002 | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20)
ND(0.037) | 1.4
1.3 | 1.3 | | | 1-6 | 5/20/2002
5/20/2002 | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | | 0.019 J | 0.019 J | | D 4 4 4 D 24 | 6-15 | CONTRACTOR OF THE PROPERTY | | | ND(0.038) | | ND(0.038)
ND(0.75) | ND(0.038)
4.1 | 8.3 | 12.4 | | RAA4-B31 | 0-1
1-6 | 5/20/2002 | ND(0.75) | ND(0.75) | | ND(0.75)
ND(0.038) | | 0.040 | 1 | 0.040 | | | 6-15 | 5/20/2002
5/20/2002 | ND(0.038)
ND(0.35) | ND(0.038)
ND(0.35) | ND(0.038)
ND(0.35) | ND(0.036)
ND(0.35) | ND(0.038)
ND(0.35) | ND(0.35) | ND(0.038)
3,5 | 3.5 | | RAA4-B33 | 0-1 | 5/16/2002 | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | 0.67 | 0.67 | | RAA4-B34 | 0-1 | 5/16/2002 | ND(0.97) | ND(0.39)
ND(0.97) | ND(0.97) | ND(0.97) | ND(0.39)
ND(0.97) | ND(0.39)
ND(0.97) | 1.1 | 1.1 | | RAA4-034 | 1-6 | 5/16/2002 | ND(0.97)
ND(0.21) | ND(0.97)
ND(0.21) | ND(0.97)
ND(0.21) | ND(0.97)
ND(0.21) | ND(0.97)
ND(0.21) | ND(0.97)
ND(0.21) | ND(0.21) | ND(0.21) | | | 6-15 | 5/16/2002 | ND(0.21) | RAA4-B35 | 0-15 | 5/15/2002 | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | 1.2 | 1.2 | | 17444-033 | 1-6 | 5/15/2002 | ND(0.77) | ND(0.77) | ND(0.83)
ND(0.77) | ND(0.77) | ND(0.77) | ND(0.33)
ND(0.77) | ND(0.77) | ND(0.77) | | | 6-15 | 5/15/2002 | ND(0.78) | ND(0.78) | ND(0.77) | ND(0.78) | ND(0.78) | ND(0.78) | 1.0 | 1.0 | | RAA4-C23 | 0-1 | 6/5/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.18 | 0.17 | 0.35 | | 10011 020 | 1-6 | 6/5/2002 | | | | ND(0.037) [ND(0.037)] | | 0.011 J [ND(0.037)] | 0.022 J [0.012 J] | 0.033 J [0.012 J] | | | 6-15 | 6/5/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.63 | 1.5 | 2.13 | | RAA4-C25 | 0-1 | 6/4/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.050 | 0.070 | 0.12 | | | 1-6 | 6/4/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 0.044 | 0.044 | | | 6-15 | 6/4/2002 | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | 0.16 | 0.16 | | RAA4-C27 | 0-1 | 4/22/2002 | ND(0.76) | ND(0.76) | ND(0.76) | ND(0.76) | ND(0.76) | 7.4 | 20 | 27.4 | | | 1-6 | 4/22/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.73 | 0.73 | | | 6-15 | 4/22/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.39 | 1,1 | 1.49 | | RAA4-C29 | 0-1 | 5/21/2002 | ND(0.044) [ND(0.041)] | 0.049 [0.077] | 0.18 [0.26] | 0.229 [0.337] | | | 1-6 | 5/21/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.14 | 0.14 | | | 6-15 | 5/21/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.12 | ND(0.039) | 0.12 | | RAA4-C31 | 0-1 | 5/20/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 6.3 | 15 | 21.3 | | | 1-6 | 5/20/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 3.1 | 7.9 | 11 | | | 6-15 | 5/20/2002 | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | 1.3 | 1.3 | | RAA4-C33 | 0-1 | 5/20/2002 | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | 16 | 15 | 31 | | | 1-6 | 5/20/2002 | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | 5.2 | 6.9 | 12.1 | | | 6-15 | 5/20/2002 | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | 2.0 | 4.7 | 6.7 | | RAA4-C34 | 0-1 | 5/17/2002 | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.56 | 0.56 | | | 1-6 | 5/17/2002 | ND(0.86) | ND(0.86) | ND(0.86) | ND(0.86) | ND(0.86) | ND(0.86) | 1.1 | 1.1 | | | 6-15 | 5/17/2002 | ND(0.84) | ND(0.84) | ND(0.84) | ND(0.84) | ND(0.84) | ND(0.84) | 0.89 | 0.89 | | RAA4-C35 | 0-1 | 5/17/2002 | ND(0.89) | ND(0.89) | ND(0.89) | ND(0.89) | ND(0.89) | ND(0.89) | 1.9 | 1.9 | | | 1-6 | 5/17/2002 | ND(0.88) | ND(0.88) | ND(0.88) | ND(0.88) | ND(0.88) | ND(0.88) | 8.9 | 8.9 | | | 6-15 | 5/17/2002 | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | 5.9 | 5.9 | | RAA4-D19 | 0-1 | 6/4/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.24 | 0.27 | 0.51 | | | 1-6 | 6/4/2002 | ND(0.040) | | 6-15 | 6/4/2002 | ND(0.037) | | | Date | | 4 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |------------|-------------|-----------|-------------------|-------------------|------------------------|------------------------|------------------------|------------------------
--|---------------------| | Sample ID | Depth(Feet) | Collected | Aroclor-1016 | Aroclor-1221 | | | AIUCIOI-1240 | Alociot-1204 | Alociol-1200 | TOTALL COS | | | · | | , | 1000000 | | 4B (continued) | ND(0.035) | 0.032 J | 0.051 | 0.083 | | RAA4-D21 | 0-1 | 5/30/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | | | 1-6 | 5/30/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039)
ND(0.038) | ND(0.039)
ND(0.038) | ND(0.039) | ND(0.038) | ND(0.038) | | | 6-15 | 5/30/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.035) | ND(0.035) | 0.024 J | 0.036 | 0.060 | | RAA4-D23 | 0-1 | 5/30/2002 | ND(0.035) | ND(0.035) | ND(0.035) | | ND(0.035)
ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | | | 1-6 | 5/30/2002 | ND(0.037) | ND(0.037) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | 0.72 | 0.72 | | | 6-15 | 5/30/2002 | ND(0.038) | ND(0.038) | | ND(0.035) | ND(0.035) | 0.060 | 0.12 | 0.18 | | RAA4-D25 | 0-1 | 4/24/2002 | ND(0.035) | ND(0.035) | ND(0.035) | | ND(0.035)
ND(0.037) | ND(0.037) | 0.014 J | 0.014 J | | | 1-6 | 4/24/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037)
ND(0.038) | ND(0.037)
ND(0.038) | ND(0.038) | ND(0.038) | | | 6-15 | 4/24/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | | 0.32 J | 1.0 | 1.32 | | RAA4-D27 | 0-1 | 5/21/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38)
ND(0.37) | ND(0.37) | 0.99 | 0.99 | | | 1-6 | 5/21/2002 | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | | | 3,0 | 3.0 | | | 6-15 | 5/21/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38)
13 | 23 | 36 | | RAA4-D29 | 6-15 | 4/23/2002 | ND(0.80) | ND(0.80) | ND(0.80) | ND(0.80) | ND(0.80) | | CHENOGONIC CONTROL CON | 0.99 | | RAA4-D31 | 1-6 | 5/21/2002 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 0.99 | ND(0.40)
56 | 0.99
56 | | | 6-15 | 5/21/2002 | ND(4.1) | ND(4.1) | ND(4.1) | ND(4.1) | ND(4.1) | ND(4.1) | 1.9 | 2.72 | | RAA4-D33 | 0-1 | 5/21/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 0.82 | | | | | 1-6 | 5/21/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 2.3 | 6.4 | 8.7 | | | 6-15 | 5/21/2002 | ND(0.40) | RAA4-D34 | 0-1 | 4/23/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 3.7 | 20 | 23.7 | | | 1-6 | 4/23/2002 | ND(3.8) | ND(3.8) | ND(3.8) | ND(3.8) | ND(3.8) | 9.2 | ND(3.8) | 9.2 | | | 6-15 | 4/23/2002 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 2.0 | ND(2.0) | 2.0 | | RAA4-D36 | 0-1 | 5/15/2002 | ND(0.72) | ND(0.72) | ND(0,72) | ND(0.72) | ND(0.72) | ND(0.72) | 2.4 | 2.4 | | | 1-6 | 5/15/2002 | ND(0.82) | ND(0.82) | ND(0.82) | ND(0.82) | ND(0.82) | ND(0.82) | 21 | 21 | | | 6-15 | 5/15/2002 | ND(7.6) | ND(7.6) | ND(7.6) | ND(7.6) | ND(7.6) | ND(7.6) | 120 | 120 | | RAA4-E17 | 6-15 | 6/7/2002 | ND(0.042) | RAA4-E19 | 0-1 | 5/30/2002 | ND(0.75) | ND(0.75) | ND(0.75) | ND(0.75) | ND(0.75) | ND(0.75) | 2.3 | 2.3 | | | 1-6 | 5/30/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.70 | 0.67 | 1.37 | | | 6-15 | 5/30/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.040 | 0.077 | 0.117 | | RAA4-E21 | 0-1 | 5/30/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 0.028 J | 0.028 J | | | 1-6 | 5/30/2002 | ND(0.039) | | 6-15 | 5/30/2002 | | | ND(0.039) [ND(0.039)] | ND(0.039) [ND(0.039)] | ND(0.039) [ND(0.039)] | ND(0.039) [ND(0.039)] | ND(0.039) [0.022 J] | ND(0.039) [0.022 J] | | RAA4-E23 | 1-6 | 4/24/2002 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 12 | 11 | 23 | | | 6-15 | 4/24/2002 | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | 0.93 | 2.4 | 3.33 | | RAA4-E27 | 0-1 | 6/4/2002 | ND(3.6) [ND(1.8)] | 110 [29] | 110 [29] | | | 1-6 | 6/4/2002 | ND(88) | ND(88) | ND(88) | ND(88) | ND(88) | ND(88) | 770 | 770 | | | 6-15 | 6/4/2002 | ND(41) | ND(41) | ND(41) | ND(41) | ND(41) | ND(41) | 680 | 680 | | RAA4-E29 | 6-15 | 5/21/2002 | ND(9.0) | ND(9.0) | ND(9.0) | ND(9.0) | ND(9.0) | ND(9.0) | 160 | 160 | | RAA4-E33 | 0-1 | 6/24/2002 | ND(22) | ND(22) | ND(22) | ND(22) | ND(22) | ND(22) | 49 | 49 | | | 1-6 | 6/24/2002 | ND(4.0) | ND(4.0) | ND(4.0) | ND(4.0) | ND(4.0) | ND(4.0) | 34 | 34 | | | 6-15 | 6/24/2002 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 5.6 | 10 | 15.6 | | RAA4-E35 | 0-1 | 5/17/2002 | ND(0.98) | ND(0.98) | ND(0.98) | ND(0.98) | ND(0.98) | 28 | 41 | 69 | | 1 | 1-6 | 5/17/2002 | ND(0.91) | ND(0.91) | ND(0.91) | ND(0.91) | ND(0.91) | 19 | 30 | 49 | | | 6-15 | 5/17/2002 | ND(0.25) | ND(0.25) | ND(0.25) | ND(0.25) | ND(0.25) | ND(0.25) | 0.55 | 0.55 | | RAA4-E36 | 1-6 | 4/23/2002 | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | 26 | 26 | | RAA4-F25 | 0-1 | 6/4/2002 | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | 1.5 | 1.5 | | RAA4-F27 | 0-1 | 5/22/2002 | ND(77) [ND(38)] | 1500 [1300] | 1500 [1300] | | | 1-6 | 5/22/2002 | ND(400) | ND(400) | ND(400) | ND(400) | ND(400) | ND(400) | 3900 | 3900 | | | 6-15 | 5/22/2002 | ND(4.5) | ND(4.5) | ND(4.5) | ND(4.5) | ND(4.5) | ND(4.5) | 110 | 110 | | RAA4-F29 | 0-1 | 5/22/2002 | ND(7.1) [ND(7.3)] | 150 [110] | 240 [180] | 390 [290] | | 1 | 1-6 | 5/22/2002 | ND(4.0) | ND(4.0) | ND(4.0) | ND(4.0) | ND(4.0) | 49 | 55 | 104 | | | 6-15 | 5/22/2002 | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | 23 | 8.4 | 31.4 | | RAA4-F31 | 0-1 | 5/22/2002 | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 0.70 | 0.70 | | 1.37371.01 | 1-6 | 5/22/2002 | ND(7.6) | ND(7.6) | ND(7.6) | ND(7.6) | ND(7.6) | 200 | 160 | 360 | | | | 1 2122000 | 1 110(1.0) | 110(110) | ND(0.76) | ND(0.76) | ND(0.76) | 15 | 17 | 32 | | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |--|-------------|----------------------
------------------------------|------------------------------|------------------------------|--------------------|--------------------|------------------|--------------|---------------| | | | | | | Averaging Area | a 4B (continued) | | | | | | RAA4-F33 | 0-1 | 5/28/2002 | ND(0.88) | ND(0.88) | ND(0.88) | ND(0.88) | ND(0.88) | 1.7 | 2.4 | 4.1 | | | 1-6 | 5/28/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.034 J | 0.052 | 0.086 | | | 6-15 | 5/28/2002 | ND(0.036) | RAA4-F34 | 0-1 | 5/28/2002 | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | 0.55 | 0.83 | 1.38 | | | 1-6 | 5/28/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.052 | 0.12 | 0.172 | | | 6-15 | 5/28/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.016 J | 0.016 J | | RAA4-F35 | 0-1 | 5/28/2002 | ND(0.040) | - ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 1.3 | ND(0.040) | 1.3 | | | 1-6 | 5/28/2002 | ND(0.76) | ND(0.76) | ND(0.76) | ND(0.76) | ND(0.76) | 7.5 | 8.9 | 16.4 | | | 6-15 | 5/28/2002 | ND(0.038) | RAA4-G27 | 0-1 | 5/22/2002 | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | 870 | 870 | | | 1-6 | 5/22/2002 | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | 150 | 150 | | and approach of the form of the first and the first approximate th | 6-15 | 5/22/2002 | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | 520 | 520 | | RAA4-G31 | 0-1 | 6/24/2002 | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | 1.8 | 1.8 | | | 1-6 | 6/24/2002 | ND(0.036) | | 6-15 | 6/24/2002 | ND(0.039) | RAA4-G33 | 0-1 | 6/20/2002 | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | 0.68 | 0.95 | 1.63 | | | 1-6 | 6/20/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.020 J | 0.020 J | | | 6-15 | 6/20/2002 | ND(0.039) | RAA4-G34 | 0-1 | 6/24/2002 | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | 1.9 | 1.5 | 3.4 | | | 1-6 | 6/24/2002 | ND(0.037) | | 6-15 | 6/24/2002 | ND(0.036) | RAA4-H17 | 0-1 | 6/14/2002 | ND(0.72) | ND(0.72) | ND(0.72) | ND(0.72) | ND(0.72) | 7.2 | 11 | 18.2 | | PARA LIO | 6-15 | 6/14/2002 | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043)
1.6 | 0.064
5.8 | 0.064 | | RAA4-H21 | 0-1 | 6/4/2002 | ND(0.20) | ND(0.20) | ND(0.20)
ND(19) | ND(0.20)
ND(19) | ND(0.20) | ND(19) | 210 | 7.4
210 | | | 1-6
6-15 | 6/4/2002
6/4/2002 | ND(19)
ND(19) | ND(19)
ND(19) | ND(19)
ND(19) | ND(19)
ND(19) | ND(19)
ND(19) | ND(19)
ND(19) | 32 | 32 | | RAA4-H24 | 0-1 | 6/10/2002 | ND(19)
ND(20) | ND(19)
ND(20) | ND(19)
ND(20) | ND(19)
ND(20) | ND(20) | 140 | 260 | 400 | | RAM4-1124 | 1-6 | 6/10/2002 | ND(3.6) [ND(1.8)] | ND(20)
ND(3.6) [ND(1.8)] | ND(3.6) [ND(1.8)] | ND(3.6) [ND(1.8)] | ND(3.6) [ND(1.8)] | 20 [22] | 32 [41] | 52 [63] | | | 6-15 | 6/10/2002 | ND(3.9) [ND(1.8)]
ND(1.9) | ND(3.0) [ND(1.0)]
ND(1.9) | ND(3.0) [ND(1.0)]
ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 77 | 52 [65]
77 | | RAA4-H29 | 0-13 | 5/22/2002 | ND(100) | ND(1.9) | ND(100) | ND(100) | ND(100) | ND(100) | 1300 | 1300 | | 10044-1125 | 1-6 | 5/22/2002 | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | 710 | 710 | | | 6-15 | 5/22/2002 | ND(5.2) | ND(5.2) | ND(5.2) | ND(5.2) | ND(5.2) | ND(5.2) | 16 | 16 | | RAA4-H31 | 0-13 | 6/20/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.37 | 0.50 | 0.87 | | 10014-1101 | 1-6 | 6/20/2002 | ND(0.037) | | 6-15 | 6/20/2002 | ND(0.039) | ND(0.039) | ND(0.039) | 1.0 | ND(0.039) | 0.54 | 0.62 | 2.16 | | RAA4-I19 | 0-1 | 6/7/2002 | ND(7.5) | ND(7.5) | ND(7.5) | ND(7.5) | ND(7.5) | 28 | 20 | 48 | | 100,471,0 | 1-6 | 6/7/2002 | ND(7.7) | ND(7.7) | ND(7.7) | ND(7.7) | ND(7.7) | 18 | ND(7.7) | 18 | | | 6-15 | 6/7/2002 | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | 20 | 20 | | RAA4-121 | 0-1 | 4/22/2002 | ND(0.78) | ND(0.78) | ND(0.78) | ND(0.78) | ND(0.78) | 8.1 | 10 | 18.1 | | RAA4-123 | 0-1 | 4/25/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 86 | 79 | 165 | | | 1-6 | 4/25/2002 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 83 | 90 | 173 | | | 6-15 | 4/25/2002 | ND(2.1) [ND(0.86)] | 22 [18] | 34 [24] | 56 [42] | | RAA4-125 | 0-1 | 6/3/2002 | ND(0.80) | ND(0.80) | ND(0.80) | ND(0.80) | ND(0.80) | 3.8 | 8.4 | 12.2 | | | 1-6 | 6/3/2002 | ND(78) | ND(78) | ND(78) | ND(78) | ND(78) | ND(78) | 500 | 500 | | | 6-15 | 6/3/2002 | ND(40) | ND(40) | ND(40) | ND(40) | ND(40) | ND(40) | 160 | 160 | | RAA4-127 | 0-1 | 6/3/2002 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 26 | 26 | | | 1-6 | 6/3/2002 | ND(9.0) | ND(9.0) | ND(9.0) | ND(9.0) | ND(9.0) | ND(9.0) | 58 | 58 | | RAA4-K19 | 0-1 | 6/13/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 25 | 13 | 38 | | | 6-15 | 6/13/2002 | ND(0.041) | RAA4-K21 | 6-15 | 6/3/2002 | ND(0.82) | ND(0.82) | ND(0.82) | ND(0.82) | ND(0.82) | ND(0.82) | 9.7 | 9.7 | | RAA4-K23 | 1-6 | 4/25/2002 | ND(18) | ND(18) | ND(18) | ND(18) | ND(18) | ND(18) | 330 | 330 | | | 6-15 | 4/25/2002 | ND(21) | ND(21) | ND(21) | ND(21) | ND(21) | ND(21) | 290 | 290 | | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |--|---|---------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------|------------------------|-----------------------|------------------------| | | | | | | | 4B (continued) | | | | · | | RAA4-K25 | 0-1 | 6/3/2002 | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | 2.9 | 6.9 | 9.8 | | | 1-6 | 6/3/2002 | ND(80) | ND(80) | ND(80) | ND(80) | ND(80) | ND(80) | 870 | 870 | | | 6-15 | 6/3/2002 | ND(0.22) [ND(0.21)] | 1,4 [1.3] | 1.4 [1.3] | | | , , , , , , , , , , , , , , , , , , , | | 112/2 2/1) | NO(0.044) | | g Area 4C
ND(0.044) | ND(0.044) | 0.54 | 0.74 | 1.28 | | CRA-1 | 0-2 | 1/17/2001 | ND(0.044) | ND(0.044) | ND(0.044)
ND(0.042) | ND(0.044)
ND(0.042) | ND(0.044)
ND(0.042) | 0.54
ND(0.042) | ND(0.042) | ND(0.042) | | | 2-5 | 1/17/2001 | ND(0.042) | ND(0.042)
ND(0.043) | ND(0.042)
ND(0.043) | ND(0.042)
ND(0.043) | ND(0.042) | ND(0.042)
ND(0.043) | ND(0.042) | ND(0.042)
ND(0.043) | | | 5-14 | 1/17/2001 | ND(0.043) | | ND(0.043)
ND(0.047) | ND(0.043)
ND(0.047) | ND(0.043) | 0.49 | 0.70 | 1.19 | | CRA-2 | 0-2 | 1/17/2001 | ND(0.047) | ND(0.047)
ND(0.047) | ND(0.047)
ND(0.047) | ND(0.047)
ND(0.047) | ND(0.047) | ND(0.047) | ND(0.047) | ND(0.047) | | | 2-5
5-14 | 1/17/2001 | ND(0.047)
ND(0.044) | ND(0.047)
ND(0.044) | ND(0.047)
ND(0.044) | ND(0.047) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | | 004.0 | | 1/17/2001 | | ND(0.44) | ND(0.44)
ND(0.46) | ND(0.44) | ND(0.46) | ND(0.44) | ND(0.46) | ND(0.44) | | CRA-3 | 0-2 | 1/17/2001 | ND(0.46) | | ND(0.46)
ND(0.27) | ND(0.46)
ND(0.27) | ND(0.46)
ND(0.27) | ND(0.40)
ND(0.27) | ND(0.46) | ND(0.27) | | | 2-5 | 1/17/2001 | ND(0.27) | ND(0.27) | ND(0.27)
ND(0.047) [ND(0.044)] | | | | | | | | 5-14 | 1/17/2001 | | ND(0.047) [ND(0.044)]
ND(0.051) | ND(0.047) [ND(0.044)] | ND(0.047) [ND(0.044)]
ND(0.051) | ND(0.047) [ND(0.044)] | 0.10 | 0.10 | 0.20 | | CRA-4 | 0-2 | 1/18/2001 | ND(0.051) | ND(0.051)
ND(0.047) | ND(0.051)
ND(0.047) | ND(0.051)
ND(0.047) | ND(0.031)
ND(0.047) | 0.10 | 0.10 | 0.20 | | | 2-5 | 1/18/2001 | ND(0.047) | | ND(0.047)
ND(0.043) | ND(0.043) | ND(0.047) | ND(0.043) | ND(0.043) | ND(0.043) | | en e | 5-14 | 1/18/2001 | ND(0.043) | ND(0.043) | ND(0.043)
ND(0.049) | ND(0.049) | ND(0.049) | 0.35 | 0.49 | 0.84 | | CRA-5 | 0-2 | 1/18/2001 | ND(0.049) | ND(0.049) | ND(0.049)
ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | | | 2-5 | 1/18/2001 | ND(0.044) | ND(0.044) | ND(0.044)
ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | | 0010 | 5-14 | 1/18/2001 | ND(0.044) | ND(0.044) | ND(0.044)
ND(0.047) | ND(0.044) | ND(0.044) | 0.064 | 0.22 | 0.284 | | CRA-6 | 0-2 | 1/18/2001 | ND(0.047) | ND(0.047)
ND(0.049) | ND(0.047) | ND(0.047)
ND(0.049) | ND(0.047) | ND(0.049) | ND(0.049) | ND(0.049) | | | 2-5 | 1/18/2001 | ND(0.049) | ND(0.049)
ND(0.044) | ND(0.049)
ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | | ODA 7 | 5-14 | 1/18/2001 | ND(0.044) | | ND(0.044)
ND(0.048) | ND(0.044) | ND(0.044) | 0.048 | 0.063 | 0.111 | | CRA-7 | 0-2 | 1/18/2001 | ND(0.048) | ND(0.048)
ND(0.052) | ND(0.052) | ND(0.046)
ND(0.052) | ND(0.052) | ND(0.052) | ND(0.052) | ND(0.052) | | | 2-5 | 1/18/2001 | ND(0.052) | | | ND(0.044) [ND(0.044)] | | | ND(0.044) [ND(0.044)] | ND(0.044) [ND(0.044)] | | CDA 6 | 5-14 | 1/18/2001 | | | ND(0.044) [ND(0.044)]
ND(2.2) | ND(0.044) [ND(0.044)] | ND(0.044) [ND(0.044)] | ND(0.044) [ND(0.044)] | ND(2.2) | ND(2.2) | | CRA-8 | 0-2
2-5 | 1/22/2001 | ND(2.2)
ND(0.040) | ND(2.2)
ND(0.040) | ND(2.2)
ND(0.040) | ND(2.2)
ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | | | | 1 | | ND(0.040)
ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | 0.094 | 0.094 | | | 5-14 | 1/22/2001 | ND(0.045) | | ND(0.045)
ND(0.24) | ND(0.043) | ND(0.043)
ND(0.24) | ND(0.043) | 5.6 | 5.6 | | CRA-9 | 0-2
2-5 | 1/22/2001 | ND(0.24)
ND(0.048) | ND(0.24)
ND(0.048) | ND(0.24) | ND(0.24)
ND(0.048) | ND(0.048) | ND(0.24)
ND(0.048) | 0.029 J | 0.029 J | | | 2-5
5-14 | 1/22/2001 | ND(0.048) | ND(0.048)
ND(0.042) | ND(0.046)
ND(0.042) | ND(0.048) | ND(0.048) | ND(0.042) | ND(0.042) | ND(0.042) | | CRA-10 | 0-2 | | ND(0.042)
ND(0.049) | ND(0.042)
ND(0.049) | ND(0.042)
ND(0.049) | ND(0.042)
ND(0.049) | ND(0.042) | 0.28 | 0.45 | 0.73 | | CRA-10 | 2-5 | 1/22/2001 | ND(0.049)
ND(0.044) | ND(0.049) |
ND(0.049)
ND(0.044) | ND(0.049)
ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | | | 1 | | | ND(0.044) | 70 P3 X 2 2 | 5-14 | 1/22/2001 | ND(0.044) | ND(0.044)
ND(0.047) | ND(0,044) | ND(0.044)
ND(0.047) | ND(0.044) | 0.28 | 0.78 | 1.06 | | CRA-11 | 0-2
2-5 | 1/23/2001 1/23/2001 | ND(0.047) | | ND(0.047)
ND(0.041) [ND(0.041)] | | | | | | | | 5-14 | 1/23/2001 | ND(0.041) [ND(0.041)] | ND(0.043) | ND(0.043) | ND(0.043) | | CDA 10 | 0-2 | 1/23/2001 | ND(0.043)
ND(0.46) | ND(0.443) | ND(0.443)
ND(0.46) | ND(0.46) | ND(0.46) | ND(0.46) | 3.4 | 3.4 | | CRA-12 | 2-5 | 1/23/2001 | ND(0.46)
ND(0.22) | ND(0.46)
ND(0.22) | ND(0.46)
ND(0.22) | ND(0.48) | ND(0.22) | 1.8 | 0.92 | 2.72 | | | 5-14 | 1/23/2001 | ND(0.045) | ND(0.22)
ND(0.045) | ND(0.045) | ND(0.22)
ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | | CRA-13 | 0-2 | 1/23/2001 | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.046) | ND(0.046) | ND(0.046) | ND(0.046) | ND(0.046) | | CRA-13 | 2-5 | 1/23/2001 | ND(0.046) | | 5-14 | 1/23/2001 | ND(0.054) | CRA-14 | 0-2 | 1/19/2001 | ND(0.034) | ND(0.034)
ND(0.21) | ND(0.034)
ND(0.21) | ND(0.034) | ND(0.034) | 0.61 | 1.2 | 1.81 | | C174-14 | 2-5 | 1/19/2001 | ND(0.21)
ND(0.042) | ND(0.042) | | 5-14 | 1/19/2001 | ND(0.042) | ND(0.042)
ND(0.041) | ND(0.042) | ND(0.042)
ND(0.041) | ND(0.042) | ND(0.041) | ND(0.041) | ND(0.041) | | CRA-15 | 0-2 | 1/19/2001 | ND(0.041) | ND(0.041)
ND(0.23) | ND(0.041) | ND(0.041) | ND(0.23) | 0.80 | 1.5 | 2.3 | | CKA-15 | 2-5 | 1/19/2001 | ND(0.23)
ND(0.047) | ND(0.23)
ND(0.047) | ND(0.23)
ND(0.047) | ND(0.23)
ND(0.047) | ND(0.23) | ND(0.047) | ND(0.047) | ND(0.047) | | | 2-5
5-14 | 1/19/2001 | ND(0.047)
ND(0.050) | ND(0.047)
ND(0.050) | ND(0.047)
ND(0.050) | ND(0.047)
ND(0.050) | ND(0.047)
ND(0.050) | ND(0.050) | 0.13 | 0.13 | | CDA 16 | 0-2 | 1/19/2001 | ND(0.050)
ND(0.044) | ND(0.050)
ND(0.044) | ND(0.050)
ND(0.044) | ND(0.050)
ND(0.044) | ND(0.050)
ND(0.044) | 0.32 | 0.13 | 0.13 | | CRA-16 | 1 | 1 | | | | ND(0.044)
ND(0.044) | ND(0.044)
ND(0.044) | 0.32 | 0.79 | 1.14 | | | 2-5 | 1/19/2001 | ND(0.044) | ND(0.044) | ND(0.044) | | | 0.063 | 0.79 | 0.145 | | | 5-14 | 1/19/2001 | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | 0.003 | L U.UOZ | L 0,140 | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |-------------|-------------|-------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|------------------------|------------------------| | | | | | | | a 4C (continued) | | | | | | CRA-17 | 0-2 | 1/19/2001 | ND(4.2) | ND(4.2) | ND(4.2) | ND(4.2) | ND(4.2) | ND(4.2) | 42 | 42 | | | 2-5 | 1/19/2001 | ND(0.042) | | 5-14 | 1/19/2001 | ND(0.042) | CRA-18 | 0-2 | 1/23/2001 | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.32 | 0.32 | | | 2-5 | 1/23/2001 | ND(0.043) | | 5-14 | 1/23/2001 | ND(0.045) | CRA-19 | 0-2 | 1/23/2001 | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.14 | 0.24 | 0.38 | | | 2-5 | 1/23/2001 | ND(0.042) | | 5-14 | 1/23/2001 | ND(0.048) | CRA-20 | 0-2 | 1/31/2001 | ND(0.048) | ND(0.048) | ND(0.048) | ND(0.048) | ND(0.048) | 0.026 J | 0.032 J | 0.058 J | | | 2-5 | 1/31/2001 | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | 0.13 | 0.22 | 0.35 | | | 5-14 | 1/31/2001 | ND(0.042) | CRA-21 | 0-2 | 1/31/2001 | ND(0.047) | | 2-5 | 1/31/2001 | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.085 | 0.12 | 0.205 | | | 5-14 | 1/31/2001 | ND(0.040) [ND(0.041)] | CRA-22 | 0-2 | 1/31/2001 | ND(0.058) | ND(0.058) | ND(0.058) | ND(0.058) | ND(0.058) | 0.43 | 0.52 | 0.95 | | | 2-5 | 1/31/2001 | ND(0.048) | | 5-14 | 1/31/2001 | ND(0.044) | | | | <u> </u> | | Averagir | ng Area 4D | | ha an an | | | | RAA4-24 | 0-1 | 1/2/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.080 | 0.22 | 0.15 | 0.45 | | | 1-3 | 1/2/2002 | ND(0.035) | RAA4-25 | 0-1 | 1/2/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.97 | 0.97 | | | 1-3 | 1/2/2002 | | | ND(0.035) [ND(0.035)] | ND(0.035) [ND(0.035)] | ND(0.035) [ND(0.035)] | ND(0.035) [0.022 J] | 0.026 J [0.023 J] | 0.026 J [0.045 J] | | RAA4-26 | 0-1 | 1/2/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.38 | 0.38 | | 1.0017 20 | 1-3 | 1/2/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.074 | 0.074 | | RAA4-E38 | 0-1 | 5/14/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.12 | 0.24 | 0.36 | | | 1-6 | 5/14/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.079 | 0.13 | 0.209 | | | 6-15 | 5/14/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.53 | 0.53 | | RAA4-E39 | 0-1 | 5/14/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.16 | 0.16 | | | 1-6 | 5/14/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.28 | 0.28 | | | 6-15 | 5/14/2002 | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | 3.3 | 3.3 | | RAA4-E40 | 0-1 | 5/13/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.67 | 1.2 | 1.87 | | 1004 630 | 1-6 | 5/13/2002 | | | | ND(0.038) [ND(0.038)] | | | ND(0.038) [0.024 J] | ND(0.038) [0.024 J] | | | 6-15 | 5/13/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 6.0 | 6.0 | | RAA4-E41 | 1-6 | 5/13/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.024 J | 0.024 J | | 1004-241 | 6-15 | 5/13/2002 | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 2.5 | 2.5 | | RAA4-E42 | 0-13 | 1/3/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.22 | ND(0.40) | 0.22 | | | 1-3 | 1/3/2002 | ND(0.035) | | 3-6 | 1/3/2002 | ND(0.040) | | 6-15 | 1/3/2002 | ND(0.040) | ND(0.037) | ND(0.040)
ND(0.037) | ND(0.040) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | | RAA4-F36 | 1-6 | 5/14/2002 | ND(0.037) | FCAV44-F-30 | 6-15 | 5/14/2002 | ND(0.037)
ND(0.038) | RAA4-F37 | 0-13 | 5/14/2002 | ND(7.1) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038)
ND(7.1) | ND(0.038)
ND(7.1) | 61 | 61 | | RAA4-F41 | 0-1 | 4/24/2002 | ND(7.1)
ND(0.036) | ND(0.036) | | ND(0.036) | ND(7.1)
ND(0.036) | 0.071 | 0.14 | 0.211 | | | 1-6 | 4/24/2002 | ND(0.036)
ND(0.037) | ND(0.036)
ND(0.037) | ND(0.036)
ND(0.037) | ND(0.036)
ND(0.037) | ND(0.036)
ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | | | 6-15 | 4/24/2002 | ND(0.037)
ND(0.037) | ND(0.037)
ND(0.037) | ND(0.037)
ND(0.037) | ND(0.037)
ND(0.037) | ND(0.037)
ND(0.037) | | 0.012 J | 0.012 J | | DANA EAG | | | | | | | | ND(0.037) | | | | RAA4-F42 | 0-1 | 5/13/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.36 | 0.42 | 0.78 | | | 1-6 | 5/13/2002 | ND(0.041) | | 6-15 | 5/13/2002 | ND(0.041) | RAA4-F43 | 0-1 | 7/8/2002 | ND(0.038) | | 1-6 | 7/8/2002 | | | | ND(0.038) [ND(0.039)] | | | ND(0.038) [ND(0.039)] | | | | 6-15 | 7/8/2002 | ND(0.037) # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |------------------|-------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|--------------|------------| | | | | | | Averaging Are | a 4D (continued) | | | | | | RAA4-G35 | 0-1 | 6/24/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.26 | 0.26 | | | 1-6 | 6/24/2002 | ND(0.036) | | 6-15 | 6/24/2002 | ND(0.036) | RAA4-G36 | 0-1 | 5/14/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.045 | 0.045 | | | 1-6 | 5/14/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.020 J | 0.020 J | | | 6-15 | 5/14/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.022 J | 0.044 | 0.066 | | RAA4-H33 | 0-1 | 6/20/2002 | ND(0.43) [ND(0.43)] | 1.3 [2.9] | 1.6 [3.4] | 2.9 [6.3] | | | 1-6 | 6/20/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.34 | 0.54 | 0.88 | | | 6-15 | 6/20/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.21 | 0.21 | | RAA4-H34 | 0-1
1-6 | 6/6/2002 | ND(0.97) | ND(0.97) | ND(0.97) | ND(0.97) | ND(0.97) | 13 | 26 | 39 | | | 6-15 | 6/6/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.76 | 1.0 | 1.76 | | RAA4-H35 | 0-15 | 6/6/2002
4/23/2002 | ND(0.035) | KAM4-HJD | 1-6 | 4/23/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.12 | 0.28 | 0.40 | | | 6-15 | 4/23/2002 | ND(0.039) | DAAA 124 | | | ND(0.036) | RAA4-I31 | 0-1 | 5/29/2002 | ND(3.9) | ND(3.9) | ND(3.9) | ND(3.9) | ND(3.9) | 120 | 110 | 230 | | | 1-6 | 5/29/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.22 | 0.34 | 0.56 | | RAA4-133 | 6-15
0-1 | 5/29/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.015 J | 0.015 J | | KAM4-133 | 1 | 6/6/2002 | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | 3.4 | 5.7 | 9.1 | | | 1-6 | 6/6/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.45 | 0.86 | 1.31 | | RAA4-134 | 6-15 | 6/6/2002 | ND(0.037) | ND(0.037) | ND(0.037) |
ND(0.037) | ND(0.037) | ND(0.037) | 0.043 | 0.043 | | KAM4-134 | 0-1 | 6/6/2002 | ND(0.27) | ND(0.27) | ND(0.27) | ND(0.27) | ND(0.27) | 1.5 | 3.5 | 5.0 | | | 1-6 | 6/6/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.067 | 0.12 | 0.187 | | 5344105 | 6-15
0-1 | 6/6/2002 | ND(0.040) | RAA4-135 | | 6/6/2002 | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.34 | 0.50 | 0.84 | | | 1-6 | 6/6/2002 | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 3.0 | 3.0 | | P. S. S. A. 1700 | 6-15 | 6/6/2002 | ND(0.038) | RAA4-K33 | 0-1 | 6/6/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.094 | 0.16 | 0.254 | | | 1-6 | 6/6/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.033 J | 0.037 | 0.070 | | | 6-15 | 6/6/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.016 J | 0.016 J | | D * * * 100 | | 010010000 | | | | ng Area 4E | | | | | | RAA4-130 | 0-1 | 6/25/2002 | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | 390 | 390 | | RAA4-J28 | 0-1 | 6/25/2002 | ND(8.9) | ND(8.9) | ND(8.9) | ND(8,9) | ND(8.9) | ND(8.9) | 54 | 54 | | RAA4-J29 | 0-1 | 6/25/2002 | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | ND(0.73) | 6.6 | 7.2 | 13.8 | | RAA4-J30 | 0-1 | 6/25/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 1.1 | 1.1 | | RAA4-J31 | 0-1 | 6/25/2002 | ND(1.8) | ND(1.8) | ND(1.8) | ND(1,8) | ND(1.8) | 8.5 | 15 | 23.5 | | RAA4-K27 | 0-1 | 6/17/2002 | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | 39 | 39 | | | 1-3 | 6/17/2002 | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | 540 | 540 | | | 3-6 | 6/17/2002 | ND(100) | ND(100) | ND(100) | ND(100) | ND(100) | ND(100) | 1100 | 1100 | | | 6-15 | 6/17/2002 | ND(4.9) [ND(9.6)] | 78 [270] | 78 [270] | | RAA4-K28 | 0-1 | 6/25/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.51 | 0.76 | 1.27 | | RAA4-K29 | 0-1 | 5/29/2002 | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | 2.4 | 2.2 | 4.6 | | | 1-3 | 5/29/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.052 | 0.052 | | | 3-6 | 5/29/2002 | ND(0.040) | ND(0.040) | ND(0.040) | 0.15 | ND(0.040) | 0.30 | 0.18 | 0.63 | | | 6-15 | 5/29/2002 | ND(39) | ND(39) | ND(39) | 300 | ND(39) | 570 | 280 | 1150 | | RAA4-K30 | 0-1 | 4/22/2002 | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | 6.1 | 14 | 20.1 | | RAA4-K31 | 0-1 | 6/17/2002 | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | 16 | 29 | 45 | | | 1-3 | 6/17/2002 | ND(36) | ND(36) | ND(36) | ND(36) | ND(36) | 110 | 120 | 230 | | | 3-6 | 6/17/2002 | ND(18) | ND(18) | ND(18) | ND(18) | ND(18) | ND(18) | 220 | 220 | | | 6-15 | 6/17/2002 | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | 140 | 140 | | RAA4-L27 | 0-1 | 6/25/2002 | ND(88) | ND(88) | ND(88) | ND(88) | ND(88) | ND(88) | 970 | 970 | | RAA4-L28 | 0-1 | 6/25/2002 | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | 1.2 | 1.5 | 2.7 | | RAA4-L29 | 0~1 | 6/25/2002 | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | 24 | 24 | | RAA4-L30 | 0-1 | 6/25/2002 | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | 4.1 | 4.1 | | RAA4-L31 | 0-1 | 6/25/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 11 | 8.0 | 19 | #### TABLE 1 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR PCBs | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |---|-------------|-------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|------------------|-----------------------|------------------| | | · | | | · | | a 4E (continued) | | | | | | RAA4-M8 | 0-1 | 6/25/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 3.5 | 3.1 | 6.6 | | RAA4-M9 | 0-1 | 7/2/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 0.13 | 0.063 | 0.193 | | | 1-3 | 7/2/2002 | ND(0.037) [ND(0.037)] | ND(0.037) [ND(0.037)] | | ND(0.037) [ND(0.037)] | | 0.059 [0.096] | 0.021 J [0.049] | 0.080 [0.145] | | | 3-6 | 7/2/2002 | ND(0.037) | *************************************** | 6-15 | 7/2/2002 | ND(0.038) | RAA4-M11 | 0-1 | 7/2/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.33 | 0.12 | 0.45 | | | 1-3 | 7/2/2002 | ND(2.1) | | 3-6 | 7/2/2002 | ND(2.1) | | 6-15 | 7/2/2002 | ND(0.043) | RAA4-M13 | 0-1 | 6/28/2002 | ND(18) | ND(18) | ND(18) | ND(18) | ND(18) | 140 | ND(18) | 140 | | | 1-3 | 6/28/2002 | ND(3.9) | ND(3.9) | ND(3.9) | ND(3.9) | ND(3.9) | 120 | ND(3.9) | 120 | | | 3-6 | 6/28/2002 | ND(0.038) | | 6-15 | 6/28/2002 | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | 0.030 J | ND(0.045) | 0.030 J | | RAA4-M14 | 0-1 | 6/26/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.039 | 0.031 J | 0.070 | | RAA4-M15 | 0-1 | 7/8/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.068 | 0.060 | 0.128 | | | 1-3 | 7/8/2002 | ND(0.037) | | 3-6 | 7/8/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.017 J | 0.018 J | 0.035 J | | | 6-15 | 7/8/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.014 J | ND(0.041) | 0.033 J | | RAA4-M16 | 0-1 | 7/8/2002 | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | 85 | 47 | | | RAA4-M17 | 6-15 | 6/10/2002 | ND(0.041) 132 | | RAA4-M19 | 0-1 | 6/10/2002 | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | | | ND(0.041) | | | 1-3 | 6/10/2002 | ND(0.75) | ND(0.75) | ND(0.75) | ND(0.75) | | 2.3
8.5 | 0.85 | 3.15 | | | 3-6 | 6/10/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(0.75)
ND(1.9) | ND(0.75) | | 2.6 | 11,1 | | | 6-15 | 6/10/2002 | ND(0.043) | ND(0.043) | ND(0.043) | ND(1.9)
ND(0.043) | ND(1.9) | 22 | 8.0 | 30 | | RAA4-M21 | 0-1 | 6/13/2002 | ND(3.5) | ND(3.5) | ND(0.043)
ND(3.5) | | ND(0.043) | 0.20 | 0.11 | 0.31 | | 1000 11121 | 1-3 | 6/13/2002 | ND(3.8) | | | ND(3.5) | ND(3.5) | 78 | 20 | 98 | | | 3-6 | 6/13/2002 | ND(3.7) | ND(3.8) | ND(3.8) | ND(3.8) | ND(3.8) | 140 | 33 | 173 | | | 6-15 | 6/13/2002 | ND(0.042) | ND(3.7) | ND(3.7) | ND(3.7) | ND(3.7) | 44 | ND(3.7) | 44 | | RAA4-M23 | 0-1 | 6/14/2002 | | ND(0.042) | ND(0.042) | ND(0.042) | ND(0.042) | 0.018 J | ND(0.042) | 0.018 J | | 10-014-10123 | 1-3 | 6/14/2002 | ND(75) | ND(75) | ND(75) | ND(75) | ND(75) | 1100 | 690 | 1790 | | | 3-6 | 6/14/2002 | ND(74) | ND(74) | ND(74) | ND(74) | ND(74) | ND(74) | 970 | 970 | | | | | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | 110 | 110 | | RAA4-M27 | 6-15 | 6/14/2002 | ND(0.042) [ND(0.039)] | | ND(0.042) [ND(0.039)] | | | 0.042 [0.034 J] | ND(0.042) [ND(0.039)] | 0.042 [0.034 J] | | KAA4-M27 | 0-1 | 5/29/2002 | ND(0.76) | ND(0.76) | ND(0.76) | ND(0.76) | ND(0.76) | 14 | 18 | 32 | | | 1-3 | 5/29/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.33 | 0.45 | 0.78 | | | 3-6 | 5/29/2002 | ND(0.77) | ND(0.77) | ND(0.77) | ND(0.77) | ND(0.77) | 1.4 | ND(0.77) | 1.4 | | | 6-15 | 5/29/2002 | ND(0.045) [ND(0.046)] | ND(0.045) [ND(0.046)] | | ND(0.045) [0.066] | ND(0.045) [ND(0.046)] | 0.058 [0.17] | 0.068 [0.16] | 0.126 [0.396] | | RAA4-M28 | 0-1 | 6/25/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 0.026 J | 0.041 | 0.067 | | RAA4-M29 | 0-1 | 6/18/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.22 | 0.22 | 0.44 | | | 1-3 | 6/18/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.86 | 0.75 | 1,61 | | profes Olderer (essententes estatues essentes estatues essentes | 3-6 | 6/18/2002 | ND(0.035) | RAA4-M30 | 0-1 | 4/22/2002 | ND(0.72) | ND(0.72) | ND(0.72) | ND(0.72) | ND(0.72) | 15 | 34 | 49 | | RAA4-N5 | 0-1 | 6/26/2002 | ND(0.034) | RAA4-N8 | 0-1 | 6/25/2002 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 6.5 | 13 | 19.5 | | RAA4-N16 | 0-1 | 6/26/2002 | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | 23 | 5.6 | 28.6 | | RAA4-03 | 0-1 | 6/12/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.017 J | 0.070 | 0.087 | | | 1-3 | 6/12/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.043 | 0.043 | | | 3-6 | 6/12/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.020 J | 0.043
0.020 J | | | 6-15 | 6/12/2002 | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.020 J
0.025 J | | | RAA4-04 | 0-1 | 6/26/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.040)
ND(0.034) | 0.33 | 0.025 J
0.34 | 0.025 J | | RAA4-05 | 0-1 | 6/12/2002 | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | 12 | | 0.67 | | | 1-3 | 6/12/2002 | ND(0.036) | ND(0.036) | ND(0.74) | | | | 17 | 29 | | | 3-6 | 6/12/2002 | ND(0.037) | ND(0.036)
ND(0.037) | | ND(0.036) | ND(0.036) | 1,1 | 0.56 | 1.66 | | | 6-15 | 6/12/2002 | | NEW DATE NEW DATE | ND(0.037) | ND(0.037) | ND(0.037) | 0.91 | 0.41 | 1.32 | | RAA4-06 | 0-1 | 6/25/2002 | ND(0.40) | ND(0.042) [ND(0.042)] | | ND(0.042) [ND(0.042)] | | 0.33 [ND(0.042)] | 1.5 [ND(0.042)] | 1.83 [ND(0.042)] | | 13/7/11/7/ | T | GIZGIZUUZ | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 1.2 | 3.1 | 4.3 | #### TABLE 1 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR PCBs | Sample ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |-----------|-------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------| | | | | | | Averaging Are | a 4E (continued) | | | | | | RAA4-07 | 0-1 | 7/3/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.22 | 0.21 | 0.43 | | | 1-3 | 7/3/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) |
0.24 | 0.24 | 0.48 | | | 3-6 | 7/3/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 0.12 | 0.088 | 0.208 | | | 6-15 | 7/3/2002 | ND(0.042) | RAA4-09 | 0-1 | 6/12/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 1.0 | 0.92 | 1.92 | | | 1-3 | 6/12/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.027 J | 0.065 | 0.092 | | | 3-6 | 6/12/2002 | ND(0.037) | | 6-15 | 6/12/2002 | ND(0.043) | RAA4-011 | 0-1 | 7/2/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.074 | 0.045 | 0.119 | | | 1-3 | 7/2/2002 | ND(0.040) [ND(0.037)] | ND(0.040) [0.022 J] | ND(0.040) [0.034 J] | ND(0.040) [0.056 J] | | | 3-6 | 7/2/2002 | ND(0.038) | | 6-15 | 7/2/2002 | ND(0.041) | RAA4-013 | 0-1 | 6/12/2002 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.13 | 0.10 | 0.23 | | | 1-3 | 6/12/2002 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.12 | 0.057 | 0.177 | | | 3-6 | 6/12/2002 | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.041) | 0.041 J | 0.041 J | | | 6-15 | 6/12/2002 | ND(0.040) | RAA4-014 | 0-1 | 6/26/2002 | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | ND(0.70) | 6.5 | 3.0 | 9.5 | | RAA4-015 | 0-1 | 6/14/2002 | ND(3.5) | ND(3.5) | ND(3.5) | ND(3.5) | ND(3.5) | ND(3.5) | 97 | 97 | | | 1-3 | 6/14/2002 | ND(3.8) | ND(3.8) | ND(3.8) | ND(3.8) | ND(3.8) | 75 | 28 | 103 | | | 3-6 | 6/14/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | . 4.3 | 2.0 | 6.3 | | | 6-15 | 6/14/2002 | ND(1.0) | ND(1.0) | ND(1.0) | ND(1.0) | ND(1.0) | 1.6 | ND(1.0) | 1.6 | | RAA4-O16 | 0-1 | 6/26/2002 | ND(19) | ND(19) | ND(19) | ND(19) | ND(19) | 120 | 140 | 260 | | RAA4-017 | 0-1 | 6/10/2002 | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | . ND(0.034) | 0.31 | 0.64 | 0.95 | | | 1-3 | 6/10/2002 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 15 | 52 | 67 | | | 3-6 | 6/10/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 16 | 31 | 47 | | | 6-15 | 6/10/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 2.0 | 3.9 | 5.9 | | RAA4-019 | 0-1 | 6/27/2002 | ND(17) | ND(17) | ND(17) | ND(17) | ND(17) | 180 | 600 | 780 | | | 1-3 | 6/27/2002 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 32 | 23 | 55 | | | 3-6 | 6/27/2002 | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | 24 | 24 | | | 6-15 | 6/27/2002 | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | 8.5 | ND(2.5) | 8.5 | | RAA4-025 | 6-15 | 6/14/2002 | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | 290 | ND(20) | 290 | | RAA4-P2 | 0-1 | 6/25/2002 | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | 2.6 | 2.3 | 4,9 | | RAA4-P3 | 0-1 | 7/8/2002 | ND(0.037) | RAA4-P6 | 0-1 | 6/26/2002 | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.74) | 1.2 | 1.3 | 2.5 | | RAA4-P9 | 0-1 | 6/25/2002 | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | ND(0.37) | 5.0 | 3.3 | 8.3 | | RAA4-P14 | 0-1 | 6/26/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.33 | 0.30 | 0,63 | | RAA4-Q3 | 0-1 | 6/28/2002 | ND(0.45) | ND(0.45) | ND(0.45) | ND(0.45) | ND(0.45) | 1.1 | 2.5 | 3.6 | | | 1-3 | 6/28/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.50 | 0.42 | 0.92 | | | 3-6 | 6/28/2002 | ND(0.036) | | 6-15 | 6/28/2002 | ND(0.046) | ND(0.046) | ND(0.046) | ND(0.046) | ND(0.046) | 0.032 J | ND(0.046) | 0.032 J | | RAA4-Q4 | 0-1 | 6/26/2002 | ND(0.79) | ND(0.79) | ND(0.79) | ND(0.79) | ND(0.79) | ND(0.79) | 19 | 19 | | RAA4-Q05 | 0-1 | 6/27/2002 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.77 | 0.60 | 1.37 | | | 1-3 | 6/27/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.13 | 0.23 | 0.36 | | | 3-6 | 6/27/2002 | ND(0.037) | | 6-15 | 6/27/2002 | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | 0.014 J | 0.018 J | 0.032 J | | RAA4-Q6 | 0-1 | 6/18/2002 | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | 2.5 | 2.5 | | | 1-3 | 6/18/2002 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.10 | 0.10 | | | 3-6 | 6/18/2002 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.083 | 0.083 | | | 6-15 | 6/18/2002 | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | ND(0.043) | 0.46 | 0.42 | 0.88 | | RAA4-Q8 | 0-1 | 6/26/2002 | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | 0.73 | 0.56 | 1,29 | | RAA4-Q9 | 0-1 | 6/26/2002 | ND(0.71) | ND(0.71) | ND(0.71) | ND(0.71) | ND(0.71) | 17 | 11 | 28 | | RAA4-R4 | 0-1 | 6/26/2002 | ND(2.0) [ND(4.0)] | 70 [54] | ND(2.0) [ND(4.0)] | 70 [54] | | RAA4-R5 | 0-1 | 6/26/2002 | ND(38) | ND(38) | ND(38) | ND(38) | ND(38) | 1300 | ND(38) | 1300 | #### TABLE 1 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR PCBs # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) #### Notes: - Samples were collected by Blasland, Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of PCBs. - 2. ND Analyte was not detected. The number in parentheses is the associated detection limit. - 3. Duplicate sample results are presented in brackets. - Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002). #### Data Qualifiers: #### Organics - J Indicates that the associated numerical value is an estimated concentration. - R Data was rejected due to a quality assurance/quality control deficiency. | | Averaging Area:
Sample ID: | 4A
RAA4-E15 | 4A
RAA4-G5 | 4A
RAA4-G7 | 4A
RAA4-G7 | 4A
RAA4-G11 | |-------------------------------------|---|--------------------------|--------------------------|------------------------|--------------------------|--------------------------| | | Sample Depth(Feet): | 0-1 | 0-1 | 6-15 | 10-12 | 1-3 | | Parameter | Date Collected: | 06/07/02 | 06/11/02 | 07/02/02 | 07/02/02 | 06/28/02 | | Volatile Organi | | NESTO POTO: | 1 2000 0000 | | L NEW ORSON | ND(0.0052) | | 1,1,1-Trichloroe 1,1-Dichloroetha | | ND(0.0053)
ND(0.0053) | ND(0.0057)
ND(0.0057) | NS
NS | ND(0.0059)
ND(0.0059) | ND(0.0052) | | 1.2-Dichloroetha | | ND(0.0053) | ND(0.0057) | N5 | ND(0.0059) | ND(0.0052) | | 2-Butanone | 312-2 | ND(0.011) | ND(0.011) | NS | ND(0.012) | ND(0.0002) | | 2-Chloroethylvin | vlether | ND(0.0053) | ND(0.0057) | NS | ND(0.0059) | ND(0.0052) | | Acetone | | ND(0.021) | ND(0.023) | NS | ND(0.024) | ND(0.021) | | Benzene | | ND(0.00530) | ND(0.0057) | NS | ND(0.00590) | ND(0.00520) | | Carbon Disulfide | 3 | ND(0.0053) | ND(0.0057) | NS | ND(0.0059) | ND(0.0052) | | Chlorobenzene | | ND(0.0053) | ND(0.0057) | NS | ND(0.0059) | ND(0.0052) | | Ethylbenzene | | ND(0.00530) | ND(0.0057) | NS | ND(0.00590) | ND(0.00520) | | Methylene Chlo | ride | ND(0.0053) | ND(0.0057) | NS NS | ND(0.0059) | ND(0.0052) | | Styrene | | ND(0.00530) | ND(0.0057) | NS | ND(0.00590) | ND(0.00520) | | Tetrachloroethe | ne | ND(0.0053) | ND(0.0057) | NS
NS | ND(0.0059) | ND(0.0052) | | Toluene
Trichloroethene | | ND(0.00530) | ND(0.0057) | NS
NS | ND(0.00590) | ND(0.00520) | | Trichiorofluoron | othono | ND(0.0053)
ND(0.0053) | ND(0.0057)
ND(0.0057) | NS
NS | ND(0.0059)
ND(0.0059) | ND(0.0052)
ND(0.0052) | | Xvlenes (total) | ien iane | ND(0.0053) | ND(0.0057)
ND(0.0057) | NS
NS | ND(0.0059) | ND(0.0052) | | Semivolatile O | rganics | 110(0.0000) | 1 140(0.0007) | 110 | 140(0.0000) | 145(0.0002) | | 1.2.4.5-Tetrachi | <u> </u> | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 1,2,4,5-retracin | | ND(0.350) | ND(0.610) | ND(0.430) | NS NS | NS
NS | | 1,2-Dichloroben | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 1,2-Diphenylhyd | | ND(0.35) | ND(0.61) | ND(0.43) | NS | NS | | 1,3-Dichloroben | zene | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 1,3-Dinitrobenze | ene | ND(0.710) | ND(0.760) | ND(0.790) | NS | NS | | 1,4-Dichloroben | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 2,4-Dimethylphe | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 2-Chloronaphth | alene | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 2-Chlorophenol | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 2-Methylnaphtha | aiene | ND(0.350)
ND(0.350) | ND(0.610) | ND(0.430)
ND(0.430) | NS
NS | NS
NS | | 2-Methylphenol
2-Nitroaniline | | ND(0.350)
ND(1.80) | ND(0.610)
ND(3.00) | ND(0.430)
ND(2.20) | NS
NS | NS
NS | | 3&4-Methylpher | | ND(0.710) | ND(0.760) | ND(0.790) | NS NS | NS
NS | | 4-Chloroaniline | 101 | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | 4-Chlorobenzilat | te . | ND(0.710) | ND(0.760) | ND(0.790) | NS | NS | | 4-Phenylenedia | | ND(0.71) J | ND(0.76) J | ND(0.79) J | NS | NS | | Acenaphthene | | ND(0.350) | ND(0.510) | ND(0.430) | NS | NS | | Acenaphthylene | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | Acetophenone | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | Aniline | | ND(0.350) | 2.50 | ND(0.430) | NS | NS | | Anthracene | | ND(0.350) | 0.150 J | ND(0.430) | NS | NS | | Benzo(a)anthrac | | ND(0.350) | 0.870 | ND(0.430) | NS NS | NS | | Benzo(a)pyrene | | ND(0.350)
ND(0.350) | 1.00 | ND(0.430) | NS
NS | NS
NS | | Benzo(b)fluoran | | ND(0.350)
ND(0.350) | 1.10
0.880 | ND(0.430)
ND(0.430) | NS
NS | NS
NS | | Benzo(g.h,i)per)
Benzo(k)fluoran | | ND(0.350) | 0.960 | ND(0.430)
ND(0.430) | NS NS | NS
NS | | Benzyl Alcohol | vi i u i Fu | ND(0.710) | ND(1.20) | ND(0.860) | NS NS | NS
NS | | bis(2-Ethylhexyl |)ohthalate | ND(0.350) | 0.590 | ND(0.390) | NS NS | NS NS | | Chrysene | ····· | ND(0.350) | 1,10 | ND(0.430) | NS | NS | | Dibenzo(a,h)ant | hracene | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | Dibenzofuran | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | |
Diethylphthalate | ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | Dimethylphthala | | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | Di-n-Butylphthal | ate | ND(0.350) | 0.270 J | ND(0.430) | NS | NS | | Diphenylamine | | ND(0.35) | ND(0.61) | ND(0.43) | NS . | NS | | Fluoranthene | | ND(0.350) | 2.10 | ND(0.430) | NS
NS | NS | | Fluorene | 10.60 | ND(0.350) | ND(0.610) | ND(0.430) | NS
NC | NS
NS | | Hexachlorobenz | | ND(0.350) | ND(0.610) | ND(0.430) | NS
NS | NS
NS | | Indeno(1,2,3-cd | уругене | ND(0.350)
ND(0.350) | 0.670
ND(0.610) | ND(0.430)
ND(0.430) | NS
NS | NS
NS | | Naphthalene
Nitrobenzene | | ND(0.350)
ND(0.350) | ND(0.610) | ND(0.430)
ND(0.430) | NS NS | NS
NS | | N-Nitrosodipher | ivlamine | ND(0.350) | ND(0.610) | ND(0.430) | NS NS | NS
NS | | o-Toluidine | | ND(0.350) | ND(0.610) | ND(0.430) | NS NS | NS NS | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4A | 4A | 4A | 4A | 4A | | |-----------------------------------|-------------------|---|----------------------------|----------|----------|--| | Sample ID: | RAA4-E15 | RAA4-G5 | RAA4-G7 | RAA4-G7 | RAA4-G11 | | | Sample Depth(Feet): | 0-1 | 0-1 | 6-15 | 10-12 | 1-3 | | | Parameter Date Collected: | 06/07/02 | 06/11/02 | 07/02/02 | 07/02/02 | 06/28/02 | | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | | Pentachlorophenol | ND(1.80) | ND(3.00) | ND(2.20) | NS | NS | | | Phenanthrene | ND(0.350) | 0.930 | ND(0.430) | NS | NS | | | Phenol | ND(0.350) | 0 180 J | ND(0.430) | NS | NS | | | Pyrene | ND(0.350) | 1.70 | ND(0.430) | NS | NS | | | Pyridine | ND(0.350) | ND(0.610) | ND(0.430) | NS | NS | | | Furans | | *************************************** | <u> </u> | | | | | 2,3,7,8-TCDF | 0.0000023 Y | 0.000076 Y | 0.00000015 J | NS | NS | | | TCDFs (total) | 0.000030 | 0.00086 Q | 0.00000025 | NS | NS | | | 1,2,3,7,8-PeCDF | 0.0000015 JQ | 0.000042 | ND(0.00000026) | NS | NS | | | 2,3,4,7,8-PeCDF | 0.0000086 Q | 0.00010 | ND(0.00000026) | NS | NS | | | PeCDFs (total) | 0.00014 Q | 0.0015 QI | ND(0.00000026) | NS | NS | | | 1,2,3,4,7,8-HxCDF | 0.0000033 | 0.000079 | ND(0.00000026) | NS | NS | | | 1,2,3,6,7,8-HxCDF | 0.0000033 Q | 0.000053 | ND(0.00000026) | NS | NS | | | 1,2,3,7,8,9-HxCDF | 0.00000098 J | 0.000013 | ND(0.00000026) | NS | NS | | | 2,3,4,6,7,8-HxCDF | 0.000011 | 0.00013 | ND(0.00000025) | NS | NS | | | HxCDFs (total) | 0.00017 Q | 0.00181 | ND(0.00000026) | NS | NS NS | | | 1,2,3,4,6,7,8-HpCDF | 0.0000084 | 0.00017 | ND(0.00000010) X | NS | NS | | | 1,2,3,4,7,8,9-HpCDF | 0.0000010 J | 0.000019 | ND(0.00000026) | NS | NS | | | HpCDFs (total) | 0.000023 | 0.00040 | ND(0,00000026) | NS | NS | | | OCDF | 0.0000044 J | 0.00012 | ND(0.00000053) | NS | NS | | | Dioxins | | | 7.040.000000 | ,,,, | 740 | | | 2,3,7,8-TCDD | ND(0.00000014) | 0.0000010 | ND(0.00000011) | NS | NS | | | TCDDs (total) | ND(0.00000014) | 0.000022 Q | ND(0.00000037) | NS | NS
NS | | | 1,2,3,7,8-PeCDD | ND(0.00000014) | ND(0.000037) X | ND(0.00000037) | NS NS | NS NS | | | PeCDDs (total) | ND(0.00000026) | 0.000035 | ND(0.00000023) | NS NS | NS NS | | | 1,2,3,4,7,8-HxCDD | ND(0.00000028) XQ | 0.000055 | ND(0.00000043) | NS NS | NS NS | | | 1,2,3,6,7,8-HxCDD | 0.00000042 JQ | 0.0000031 | ND(0.00000026) | NS NS | NS NS | | | 1,2,3,7,8,9-HxCDD | 0.00000072 JQ | 0.0000075 | ND(0.00000026) | NS NS | NS
NS | | | HxCDDs (total) | 0.00000027 3Q | 0.0000073 | 0.00000011 | NS
NS | NS NS | | | 1,2,3,4,6,7,8-HpCDD | 0.0000032 | 0.000098 | 0.00000011
0.00000054 J | NS NS | NS NS | | | HpCDDs (total) | 0.0000052 | 0.00011 | 0.0000034 3 | NS NS | NS
NS | | | OCDD | 0.000000 J | 0.00023 | 0.000016 | NS NS | NS
NS | | | Total TEQs (WHO TEFs) | 0.0000203 | 0.000095 | 0.000018 | NS NS | NS NS | | | Inorganics | 0,000000 | 0.000030 | 0.00000037 | INO | CPI | | | Antimony | 1.40 B | 61.0 | ND(6.00) | NS | NS | | | Arsenic | 1.70 | 3.10 | 3.00 | NS
NS | NS
NS | | | Barium | ND(20.0) | 38.0 | ND(20.0) J | NS
NS | NS NS | | | Beryllium | 0.120 B | 0.150 B | ND(0.500) | NS
NS | NS
NS | | | Cadmium | ND(0.500) | 0.610 | ND(0.500) | NS
NS | NS NS | | | Chromium | 2.90 | 16.0 | 6.20 | NS NS | NS NS | | | Cobalt | ND(5.00) | 13.0 J | 5.70 J | NS NS | NS
NS | | | Copper | 9.50 | 83.0 | 26.0 | NS
NS | | | | Cyanide | ND(0.110) | ND(0.110) | ND(0.120) | NS
NS | NS
NS | | | Lead | 4.40 J | 86.0 | 4.90 | NS NS | NS
NS | | | Mercury | ND(0.110) | 0.120 | ND(0.120) | NS NS | NS NS | | | Nickel | 6.10 | 20.0 | 9.10 | NS
NS | NS
NS | | | Selenium | ND(1.00) | ND(1.00) J | ND(1.00) | NS NS | NS
NS | | | Silver | ND(1.00) | ND(1.00) 3 | ND(1.00) | NS NS | NS
NS | | | Sulfide | 36.0 | 33.0 | 24.0 | NS
NS | NS
NS | | | Thailium | ND(1.10) | ND(1.70) J | ND(1,80) J | NS
NS | NS NS | | | Tio | ND(1.10) | ND(1.70) 3
ND(10.0) | 4.00 B | | | | | Vanadium | ND(5.00) | 12.0 | 6.70 | NS
NS | NS
Ne | | | Zinc | 21.0 | 1100 | 40.0 J | NS
NS | NS
NS | | | C14 1V | 41.0 | 1100 | +U.U.U 1 | Įγ. | CVI | | | | Averaging Area:
Sample ID: | 4A
RAA4-G11 | 4A
RAA4-G14 | 4A
RAA4-G17 | 4A
RAA4-H3 | 4A
RAA4-H7 | |-----------------------------------|-------------------------------|----------------------|----------------|----------------|---------------|---------------------------| | S | ample Depth(Feet): | 1-6 | 1-6 | 0-1 | 6-15 | 1-2 | | Parameter | Date Collected: | 06/28/02 | 07/08/02 | 06/07/02 | 06/11/02 | 06/13/02 | | Volatile Organic | S | | | | | | | 1,1,1-Trichloroeth | iane | NS | NS | l NS | NS | ND(0.0055) (ND(0.0055)) | | 1,1-Dichloroethar | | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | 1,2-Dichloroethar | 1e | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | 2-Butanone | | NS | NS | NS | NS | ND(0.011) [ND(0.011)] | | 2-Chloroethylviny | ether | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Acetone | | NS | NS | NS | NS | ND(0.022) J [ND(0.022) J] | | Benzene | | NS | NS | NS | NS | ND(0.00550) [ND(0.00550)] | | Carbon Disulfide | | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Chlorobenzene | | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Ethylbenzene | | NS | NS | NS | NS | ND(0.00550) [ND(0.00550)] | | Methylene Chloric | de | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Styrene | | NS | NS | NS | NS | ND(0.00550) [ND(0.00550)] | | Tetrachloroethen | e | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Toluene | | NS | NS | NS | NS | ND(0.00550) [ND(0.00550)] | | Trichloroethene | 4 | NS | NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Trichlorofluorome | tnane | NS NS | NS NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Xylenes (total) | | NS | NS NS | NS | NS | ND(0.0055) [ND(0.0055)] | | Semivolatile Org | | | · | | | | | 1,2,4,5-Tetrachlor | | ND(1.00) | NS | NS | NS | NS NS | | 1,2,4-Trichlorobe | | ND(1.00) | NS | NS | NS | NS | | 1,2-Dichlorobenze | | ND(1.00) | NS | NS | NS | NS | | 1,2-Diphenylhydra | | ND(1.0) | NS | NS | NS | NS | | 1,3-Dichlorobenze | | ND(1.00) | NS | NS | NS | NS | | 1,3-Dinitrobenzen | | ND(1.00) | NS | NS | N\$ | NS | | 1,4-Dichlorobenze | | ND(1.00) | NS | NS NS | NS | NS | | 2,4-Dimethylphen | | ND(1.00) | NS | NS | NS | l NS | | 2-Chloronaphthal | ene | ND(1.00) | NS | NS | NS NS | · NS | | 2-Chlorophenol | | ND(1.00) | NS | NS | NS | NS | | 2-Methylnaphthal | ene | 0.300 J | NS | NS | NS | NS | | 2-Methylphenol | | ND(1.00) | NS | NS | NS | NS | | 2-Nitroanfline
3&4-Methylpheno | | ND(5.20) | NS
NS | NS NS | NS | NS | | 4-Chloroaniline | <u> </u> | ND(1.00) | NS
NS | NS
NS | NS | NS NS | | 4-Chlorobenzilate | | ND(1.00)
ND(1.00) | NS
NS | NS
NS | NS
NS | NS | | 4-Phenylenediam | | ND(1.0) J | NS NS | NS NS | NS NS | l NS | | Acenaphthene | iiie | 1.60 | NS NS | NS NS | NS
NS | NS | | Acenaphthylene | | ND(1.00) | NS NS | NS NS | NS
NS | NS NS | | Acetophenone | | ND(1.00) | NS NS | NS NS | NS
NS | NS NS | | Aniline | | ND(1.00) | NS NS | NS NS | NS NS | NS NS | | Anthracene | | 1.70 | NS NS | NS NS | NS NS | NS NS | | Benzo(a)anthrace | ne - | 3.90 | NS | NS | NS NS | NS NS | | Benzo(a)pyrene | | 3.80 | NS NS | NS NS | NS NS | NS NS | | Benzo(b)fluoranth | ene | 3.40 | NS NS | NS | NS | NS NS | | Benzo(g,h,i)peryle | | 1.80 | NS | NS | NS | NS NS | | Benzo(k)fluoranth | | 4.00 | NS | NS | NS NS | T NS | | Benzyl Alcohol | | ND(2.10) | NS | NS | NS | NS NS | | bis(2-Ethylhexyl); | hthalate | ND(0.520) | NS | NS | NS | NS NS | | Chrysene | | 4.40 | NS | NS | NS | NS | | Dibenzo(a,h)anthi | racene | ND(1.00) | NS | NS NS | NS | NS NS | | Dibenzofuran | | 0.660 J | NS | NS | NS NS | NS NS | | Diethylphthalate | | ND(1.00) | NS | NS | NS | NS NS | | Dimethylphthalate | · | ND(1.00) | NS | NS | NS | NS NS | | Di-n-Butylphthalai | | ND(1.00) | NS | NS | NS | NS NS | | Diphenylamine | | ND(1.0) | NS | NS | NS | NS NS | | Fluoranthene | | 8.00 | NS | NS | NS | NS NS | | Fluorene | | 1.00 J | NS | NS | NS | NS NS | | Hexachlorobenze | ne | ND(1.00) | NS | NS | NS | NS | | Indeno(1,2,3-cd)p | | 1.80 | NS | NS | NS | NS NS | | Naphthalene | | 1.80 | NS | NS | NS | NS NS | | Nitrobenzene | | ND(1.00) | NS | NS | NS | NS NS | | N-Nitrosodipheny | amine | ND(1.00) | NS | NS | NS | NS NS | | o-Toluidine | | ND(1.00) | NS | NS | NS | NS | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4A
RAA4-G11 | 4A
RAA4-G14 | 4A
RAA4-G17 | 4A
RAA4-H3 | 4A
RAA4-H7 | |---|--------------------------|----------------------------|-------------------------|--------------------------------|---------------| | Sample Depth(Feet): Parameter Date Collected: | 1-6 | 1-6 |
0-1 | 6-15 | 1-2 | | | 06/28/02 | 07/08/02 | 06/07/02 | 06/11/02 | 06/13/02 | | Semivolatile Organics (continued) | | | | y | · | | Pentachlorobenzene | ND(1.00) | NS | NS | NS | NŚ | | Pentachiorophenol | ND(5.20) | NS | NS | NS | NS NS | | Phenanthrene
Phenol | 10.0 | NS
NS | NS NS | NS NS | NS NS | | Pyrene | ND(1.00) | NS
NS | NS | NS | NS NS | | Pyridine | 10.0
ND(1.00) | NS
NS | NS | NS | NS | | Furans | NU(1.00) | พร | NS | NS | NS | | | A 00000000 | | | , | | | 2,3,7,8-TCDF | 0.0000038 Y | 0.000016 Y | 0.00023 Y | ND(0.00000021) | NS | | TCDFs (total)
1,2,3,7,8-PeCDF | 0.000023 | 0.00016 | 0.0034 QI | 0.0000034 | NS | | 1,2,3,7,6-F6CDF
2,3,4,7,8-PeCDF | 0.0000013 J | 0.0000078 | 0.00022 | ND(0.00000020) | NS | | PeCDFs (total) | 0.0000031 | 0.000021 | 0.00073 | ND(0.00000030) | NS | | 1,2,3,4,7,8-HxCDF | 0.000030 Q | 0.00023 1 | 0.012 QI | 0.0000025 Q | NS | | 1,2,3,4,7,6-HXCDF
1,2,3,6,7,8-HXCDF | 0.0000034
0.0000920 J | 0.000016 | 0.00068 | ND(0.00000033) X | NS NS | | 1,2,3,6,7,6~HXCDF
1,2,3,7,8,9-HxCDF | 0.00000020 J | 0.000012 | 0.00050 | ND(0.00000029) | NS
NC | | 2,3,4,6,7,8-HxCDF | 0.0000074 3 | 0.0000021 J
0.000025 | 0.000094 | ND(0.00000027) | NS
NC | | HxCDFs (total) | 0.000039 | 0.00034 | 0.00096
0.014 | ND(0.00000037) | NS
NS | | 1,2,3,4,6,7,8-HpCDF | 0.0000043 | 0.00034 | 0.0014
0.0013 EJ | 0.0000021 | | | 1,2,3,4,7,8,9-HpCDF | ND(0.00000000) X | 0.000034 | 0.0013 23 | 0.00000096 J
ND(0.00000027) | NS
NS | | HpCDFs (total) | 0.0000065 | 0.000078 | 0.0025 | 0.0000011 | NS | | OCDF | 0.0000050 | 0.000078 | 0.0023 | 0.0000011
0.00000057 J | NS NS | | Dioxins | 0.0000000 | 0.000022 | 0.0014 | 0.000000373 | 143 | | 2.3.7.8-TCDD I | ND(0.00000015) X | ND(0.00000032) X | 0.0000005 | NID(0.00000044) | No. | | TCDDs (total) | 0.0000026 | 0.0000065 | 0.0000025
0.000056 Q | ND(0.00000011)
0.00000013 | NS
NS | | 1,2,3,7,8-PeCDD | 0.0000024 J | 0.0000003
0.00000096 J | ND(0.000036) X | ND(0.00000011) X | NS NS | | PeCDDs (total) | 0.0000038 Q | 0.0000097 | 0.00013 Q | ND(0.00000011) X | NS NS | | 1,2,3,4,7,8-HxCDD | 0.000000046 J | 0.00000037
0.00000082 J | 0.00013 Q | ND(0.00000037) | NS NS | | 1,2,3,6,7,8-HxCDD | 0.00000071 J | 0.00000002 J | 0.000017 | ND(0.00000012) X | NS NS | | 1,2,3,7,8,9-HxCDD | 0.000000113 | 0.00000133 | 0.000020 | 0.00000017 J | NS | | HxCDDs (total) | 0.0000092 | 0.000021 | 0.00034 | ND(0.0000053) | NS | | 1,2,3,4,6,7,8-HpCDD | 0.0000026 | 0.000021 | 0.00034 | ND(0.00000033) | NS | | HpCDDs (total) | 0.0000053 | 0.000017 | 0.00016 | 0.0000026 | NS | | OCDD | 0.000013 | 0.000086 | 0.00025 | 0.000020 | NS NS | | Total TEQs (WHO TEFs) | 0.0000036 | 0.000020 | 0.00067 | 0.00000031 | NS NS | | Inorganics | | 2,74,74,74 | 0.00007 | 0.00000001 | | | Antimony | ND(6.00) | NS | NS | ND(6.00) | NS | | Arsenic | 6.50 | NS | NS NS | 4.80 | NS NS | | Barium | 55.0 | NS | NS
NS | 35.0 | NS NS | | Beryllium | ND(0.500) | NS | NS | ND(0.500) | NS | | Cadmium | ND(0.500) | NS | NS | ND(0.500) | NS NS | | Chromium | 7.80 | NS | NS NS | 11.0 | NS NS | | Cobalt | 6.40 J | NS | NS | 8.60 J | NS NS | | Copper | 81.0 | NS | NS | 36.0 | NS | | Cyanide | ND(0.100) | NS | NS | ND(0.130) | NS | | Lead | 100 | NS . | NS | 41.0 | NS | | Mercury | 0.200 | NS | NS | ND(0.130) | NS | | Nickel | 11.0 | NS | NS | 19.0 | NS | | Selenium | ND(1.00) J | NS | NS | ND(1.00) J | NS | | Silver | ND(1.00) J | NS | N\$ | ND(1.00) | NS | | Sulfide | 39.0 | NS | NS | 81.0 | NS | | Thallium | ND(1.60) J | NS | NS | ND(1.80) | NS | | Tìn | ND(12.0) | NS | NS | 63.0 | NS | | Vanadium | 6.00 | NS | NS | 15.0 | NS NS | | Zinc | 180 J | NS | NS | 72.0 | NS | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4A
RAA4-H7 | 4A
RAA4-13 | 4A
RAA4-15 | 4A
RAA4-15 | |---|--|---------------------------------------|------------------------|---------------| | Sample Depth(Feet): | 1-6 | 1 | | 8-10 | | Parameter Date Collected: | 06/13/02 | 0-1
06/24/02 | 6-15 | 1 | | | 00/13/02 | 1 00/24/02 | 07/03/02 | 07/03/02 | | Volatile Organics | - No | NO (0.000) | | 1 15.70 06.60 | | 1.1,1-Trichloroethane 1.1-Dichloroethane | NS NS | ND(0,0060) | NS
NS | ND(0.0069) | | 1.2-Dichloroethane | NS
NS | ND(0.0060) | NS | ND(0 0069) | | | NS NS | ND(0.0060) | NS | ND(0.0069) | | 2-Butanone | NS | ND(0.012) | NS | ND(0.014) | | 2-Chloroethylvinylether Acetone | NS | ND(0.0060) | NS | ND(0.0069) | | | NS NS | ND(0.024) | NS | ND(0.028) | | Benzene
Carbon Disulfide | NS
NS | ND(0.00600) | NS NS | ND(0.00690) | | *************************************** | NS
NS | ND(0.0060) | NS . | ND(0 0069) | | Chiorobenzene | NS
NS | ND(0.0050) | NS | ND(0.0059) | | Ethylbenzene
Methylene Chloride | NS
NS | ND(0.00600) | NS | 2.00 | | Styrene | NS NS | ND(0.0060) | NS NS | ND(0.0069) | | | *************************************** | ND(0.00600) | NS | ND(0.00690) | | Tetrachloroethene | NS
NS | ND(0.0060) | NS | ND(0.0069) | | Toluene | NS
NS | ND(0.00600) | NS | 0.0190 | | Trichloroethene | NS NS | ND(0.0060) | NS
NS | ND(0.0069) | | Trichlorofluoromethane | NS
NC | ND(0.0060) | NS
NC | ND(0.0069) | | Xylenes (total) | NS | ND(0.0060) | NS | 13 | | Semivolatile Organics | | | | - | | 1,2,4,5-Tetrachlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 1,2,4-Trichlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 1,2-Dichlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 1,2-Diphenylhydrazine | ND(0.37) [ND(0.36)] | ND(0.40) | ND(0.46) | NS | | 1,3-Dichlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 1,3-Dinitrobenzene | ND(0.740).[ND(0.730)] | ND(0.810) | ND(0.930) | NS | | 1,4-Dichlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 2,4-Dimethylphenol | ND(0.370) [ND(0.360)] | ND(0.400) | 0.410 J | NS | | 2-Chloronaphthalene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.46) J | NS | | 2-Chlorophenol | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 2-Methylnaphthalene | 0.0840 J [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 2-Methylphenol | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 2-Nitroaniline | ND(1.90) [ND(1.90)] | ND(2.00) | ND(2.40) | NS | | 3&4-Methylphenol | ND(0.740) [ND(0.730)] | ND(0.810) | ND(0.930) | NS | | 4-Chloroaniline | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | 4-Chlorobenzilate | ND(0.740) [ND(0.730)] | ND(0.810) | ND(0.930) | NS | | 4-Phenylenediamine | ND(0.74) J [ND(0.73) J] | ND(0.81) J | ND(0.93) J | NS | | Acenaphthene | ND(0.370) [ND(0.360)] | 0.220 J | ND(0.460) | NS | | Acenaphthylene | 0.650 [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | Acetophenone | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | Aniline | ND(0.370) [ND(0.360)] | 1.90 | ND(0.460) | NS NS | | Anthracene | 0.300 J [ND(0.360)] | 0.410 | ND(0.460) | NS
NS | | Benzo(a)anthracene
Benzo(a)pyrene | 2.0 J [0.35 J]
2.9 J [0.46 J] | 0.880
0.820 | ND(0.460) | NS
NS | | Benzo(a)pyrene
Benzo(b)fluoranthene | 2.5 J [0.50 J] | 1.00 | ND(0.460)
ND(0.460) | NS
NS | | | | 0.340 J | | NS NS | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | 3.4 J [0.27 J]
2.3 J [0.42 J] | 0.340 J | ND(0.460) | NS
NS | | Benzyl Alcohol | ND(0.740) [ND(0.730)] | ND(0.810) | ND(0.460)
ND(0.930) | NS
NE | | bis(2-Ethylhexyl)phthalate | ND(0.360) [ND(0.360)] | ND(0.400) | ND(0.460) | NS
NS | | Chrysene | 2.0 J [0.40 J] | 0.930 | | NS NS | | Dibenzo(a,h)anthracene | 0.820 [ND(0.360)] | ND(0.400) | ND(0.460) | NS
NS | | Dibenzo(a,manuracene
Dibenzofuran | ND(0.370) [ND(0.360)] | 0.110 J | ND(0.460) | ***** | | Diethylphthalate | ND(0.370) [ND(0.360)]
ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460)
ND(0.460) | NS
No | | Dimethylohthalate | ND(0.370) [ND(0.360)] | ND(0.400) | | NS
NC | | Di-n-Butvlohthalate | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460)
ND(0.460) | NS
NS | | Diphenylamine | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | | | Pluoranthene | | · · · · · · · · · · · · · · · · · · · | | NS NS | | Fluoranthene
Fluorene | 2.5 J [0.55 J] | 2.00 | ND(0.460) | NS
NS | | | ND(0.370) [ND(0.360)] | 0.160 J | ND(0.460) | NS | | Hexachlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | Indeno(1,2,3-cd)pyrene | 2.1 J [0.19 J]
0.250 J [ND(0.360)] | 0.270 J | ND(0.450) | NS | | | 0.250.11MHO 360V | ND(0.400) | ND(0.460) | NS | | Naphthalene | | | | ···· | | Naphthalene
Nitrobenzene
N-Nitrosodiphenylamine | ND(0.370) [ND(0.360)]
ND(0.370) [ND(0.360)] | ND(0.400)
ND(0.400) | ND(0.460)
ND(0.460) | NS
NS | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4A | 4A | · 4A | 4A | |-----------------------------------|-----------------------------------|------------------|------------------|----------| | Sample ID: | RAA4-H7 | RAA4-I3 | RAA4-I5 | RAA4-15 | | Sample Deptn(Feet): | 1-6 | 0-1 | 6-15 | 8-10 | | Parameter Date Collected: | 06/13/02 | 06/24/02 | 07/03/02 | 07/03/02 | | Semivolatile Organics (continued) | | | | | | Pentachlorobenzene | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | Pentachlorophenol | ND(1.90) [ND(1.90)] | ND(2.00) | ND(2.40) | NS | | Phenanthrene | 0.73 J [0.19 J] | 2.00 | ND(0.460) | NS | | Phenal | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | Pyrene | 3.2 J [0.53 J] | 3.00 | ND(0.460) | NS | | Pyridine | ND(0.370) [ND(0.360)] | ND(0.400) | ND(0.460) | NS | | Furans | | | | | | 2,3,7,8-TCDF | 0.00000018 J [ND(0.00000032) X] | 0.000028 Y | ND(0.00000018) | NS | | TCDFs (total) | 0.0000020 [0.0000012] | 0.00024 | ND(0.00000018) | NS | | 1,2,3,7,8-PeCDF | 0.00000012 J [ND(0.00000014) X] | 0.000014 |
ND(0.00000012) X | NS | | 2,3,4,7,8-PeCDF | 0.00000022 J [0.00000022 J] | 0.000024 | ND(0.00000015) X | NS | | PeCDFs (total) | 0.0000012 Q [0.0000016 QI] | 0.00031 QI | 0.00000050 | NS | | 1,2,3,4.7,8-HxCDF | 0.00000014 J [0.00000050 J] | 0.000026 | ND(0.00000032) | NS | | 1,2,3,6,7,8-HxCDF | ND(0.00000018) X [0.00000043 J] | 0.000011 | 0.00000014 J | NS | | 1,2,3,7,8,9-HxCDF | ND(0.00000023) [ND(0.00000022)] | 0.0000035 | ND(0.00000032) | NS | | 2,3,4,6,7,8-HxCDF | ND(0.00000012) X [0.00000022 J] | 0.000018 | 0.000000048 J | NS | | HxCDFs (total) | 0.00000058 J [0.0000021 J] | 0.00028 | 0.00000019 | NS | | 1,2,3,4,6,7,8-HpCDF | 0.00000034 J [0.0000088 J] | 0.000040 | ND(0.00000018) X | NS | | 1,2,3,4,7,8,9-HpCDF | ND(0.00000023) [ND(0.00000023)] | 0.0000068 | ND(0.00000032) | NS | | HpCDFs (total) | 0.00000042 J [0.0000011 J] | 0.000084 | ND(0.00000032) | NS | | OCDF | 0.00000055 J [0.0000011 J] | 0.000045 | ND(0.00000064) | NS | | Dioxins | | | | | | 2,3,7,8-TCDD | ND(0.00000018) [ND(0.000000088)] | ND(0.00000038) X | ND(0.00000016) | NS | | TCDDs (total) | ND(0.00000026) [0.00000071] | 0.0000058 | ND(0.00000040) | NS | | 1,2,3,7,8-PeCDD | ND(0.00000023) [ND(0.00000022)] | ND(0.0000012) X | ND(0.00000032) | NS | | PeCDDs (total) | 0.00000043 [ND(0.0000035)] | 0.0000088 | ND(0.00000052) | NS | | 1,2,3,4,7,8-HxCDD | ND(0.00000023) [ND(0.00000022)] | 0.0000017 J | ND(0.00000032) | NS | | 1,2,3,6,7,8-HxCDD | ND(0.00000013) X [ND(0.00000022)] | 0.0000022 J | ND(0.00000032) | NS | | 1,2,3,7,8,9-HxCDD | 0.00000012 J [ND(0.00000022)] | 0.0000018 J | ND(0.00000032) | NS | | HxCDDs (total) | 0.0000012 J [0.00000054 J] | 0.000030 | ND(0.00000034) | NS | | 1,2,3,4,6,7,8-HpCDD | 0.0000016 J [ND(0.0000012) X] | 0.000033 | 0.0000010 J | . NS | | HpCDDs (total) | 0.0000036 J [0.0000011 J] | 0.000063 | 0.0000023 | NS | | OCDD | 0.000071 J [0.000036 J] | 0.00030 | 0.000020 | NS | | Total TEQs (WHO TEFs) | 0.00000044 [0.0000046] | 0.000024 | 0.00000040 | NS | | norganics | | | | | | Antimony | 1.00 B [ND(6.00)] | 6.10 | ND(6.00) | NS | | Arsenic | 6.30 [6.40] | 5.60 | 2.90 | NS | | Barium | 25.0 [28.0] | 44.0 | 74.0 | NS | | Beryllium | ND(0.500) [ND(0.500)] | ND(0.500) | 0.560 | NS | | Cadmium | ND(0.500) [0.160 B] | ND(0.500) | ND(0.500) | NS | | Chromium | 7.00 [7.20] | 10.0 | 14.0 | NS | | Cobalt | 6.40 [7.30] | 6.60 | 9.40 | NS | | Copper | 20.0 [21.0] | 120 | 23.0 | NS | | Cyanide | ND(0.220) [ND(0.220)] | 0.110 B | ND(0.140) | NS | | .ead | 76.0 [56.0] | 46.0 | 13.0 | NS | | Mercury | 0.280 J [ND(0.110) J] | 0.390 | 0.0560 B | NS | | Vickel | 12.0 [13.0] | 12.0 | 15.0 | NS | | Selenium | ND(1.00) J [ND(1.00) J] | ND(1.00) | ND(1.00) | NS | | Silver | ND(1.00) [ND(1.00)] | ND(1,00) | ND(1.00) | NS | | Sulfide | 65.0 [75.0] | 35.0 | 250 | NS | | Thallium | 1.50 J [1.50 J] | ND(1.80) | 1.80 B | NS | | Tin | ND(10.0) [ND(10.0)] | ND(10.0) | ND(5.50) | NS | | Vanadium | 9.90 (9.00] | 21.0 | 16.0 | NS | | Zinc | 48.0 [40.0] | 140 | 55.0 | NS | | Averaging Area:
Sample ID: | 4A
RAA4-19 | 4A
RAA4-113 | 4A
RAA4-113 | 4A
RAA4-115 | 4A
RAA4-K3 | |--|---------------------------|---------------------------|------------------|---------------------------|------------------------| | Sample Depth(Feet): Parameter Date Collected: | 0-1
06/17/ 02 | 0-1
07/02/02 | 6-15
07/02/02 | 0-1
04/25/02 | 1-6
06/11/02 | | Volatile Organics | 00/11/02 | 01102102 | 01102/02 | 04/25/02 | V0/13/UZ | | 1,1,1-Trichloroethane | ND(0.0057) | ND(0 0052) | NS | ND(0.0057) | NS | | 1.1-Dichloroethane | ND(0.0057) | ND(0.0052) | NS NS | ND(0.0057) | NS NS | | 1,2-Dichloroethane | ND(0.0057) | ND(0.0052) | NS | ND(0.0057) | NS NS | | 2-Butanone | ND(0.011) | ND(0.010) | NS | ND(0.011) | NS | | 2-Chloroethylvinylether | ND(0.0057) | ND(0.0052) | NS | ND(0.9057) J | NS | | Acetone | ND(0.023) | ND(0.021) | NS | ND(0.023) | NS | | Benzene | ND(0.00570) | ND(0.00520) | NS | ND(0.00570) | NS | | Carbon Disulfide | ND(0.0057) | ND(0.0052) | NS | ND(0.0057) | NS | | Chlorobenzene | ND(0.0057) | ND(0.0052) | NS | ND(0.0057) | NS | | Ethylbenzene | ND(0.00570) | ND(0.00520) | NS | ND(0.00570) | NS | | Methylene Chloride | ND(0.0057) | ND(0.0052) | NS | ND(0.0057) | NS | | Styrene Tetrachloroethene | ND(0.00570) | ND(0.00520) | NS NS | ND(0.00570) | NS | | Toluene | ND(0.0057)
ND(0.00570) | ND(0.0052) | NS
NS | ND(0.0057) | NS NS | | Trichloroethene | ND(0.00570) | ND(0.00520)
ND(0.0052) | NS
NS | ND(0.00570)
ND(0.0057) | NS
NS | | Trichlorofluoromethane | ND(0.0057) | ND(0.0052) | NS
NS | ND(0.0057) | NS NS | | Xylenes (total) | ND(0.0057) | ND(0.0052) | NS | ND(0.0057) | NS NS | | Semivolatile Organics | | (/ | | (0.0001) | .,,, | | 1,2,4,5-Tetrachiorobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | 1,2,4-Trichlorobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | 1,2-Dichlorobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | 1,2-Diphenylhydrazine | ND(7.4) | ND(0.38) | NS | ND(0.57) | ND(0.40) | | 1,3-Dichlorobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | 1,3-Dinitrobenzene | ND(7.40) | ND(0.700) | NS | ND(0.760) | ND(0.790) | | 1,4-Dichlorobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | 2,4-Dimethylphenol
2-Chloronaphthalene | 23.0 | ND(0.380) | NS | 4.00 | ND(0.400) | | 2-Chlorophenol | ND(7.40)
ND(7.40) | ND(0.380)
ND(0.380) | NS
NS | ND(0.570) | ND(0.400) | | 2-Methylnaphthalene | ND(7.40) | ND(0.380) | NS NS | ND(0.570) | ND(0.400) | | 2-Methylphenol | 15.0 | ND(0.380) | NS
NS | ND(0.570)
3.40 | ND(0.400)
ND(0.400) | | 2-Nitroaniline | ND(37.0) | ND(1.90) | NS NS | ND(2.80) | ND(2.00) | | 3&4-Methylphenol | 28.0 | ND(0.700) | NS | 5.40 | ND(0.790) | | 4-Chloroaniline | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | 4-Chlorobenzilate | ND(7.40) | ND(0.700) | NS | ND(0.760) | ND(0.790) | | 4-Phenylenediamine | ND(7.4) J | ND(0.70) J | NS | ND(0.76) J | ND(0.79) J | | Acenaphthene | 2.50 J | ND(0.380) | NS | 0.420 J | ND(0.400) | | Acenaphthylene | ND(7.40) | ND(0.380) | NS | 0.150 J | ND(0.400) | | Acetophenone | ND(7.40) | ND(0.380) | NS | 0.470 J | ND(0.400) | | Aniline
Anthracene | 530 | ND(0.380) | NS NS | 66.0 | ND(0.400) | | Benzo(a)anthracene | 6.10 J
11.0 | ND(0.380)
ND(0.380) | NS
NS | 1.70 | ND(0.400) | | Benzo(a)pyrene | 10.0 | ND(0.380) | NS
NS | 6.00
7.00 | ND(0.400)
ND(0.400) | | Benzo(b)fluoranthene | 9.50 | ND(0.380) | NS NS | 6.30 | ND(0.400)
ND(0.400) | | Benzo(g,h,i)perylene | 5.70 J | ND(0.380) | NS NS | 5.20 | ND(0.400) | | Benzo(k)fluoranthene | 8.20 | ND(0.380) | NS | 6.00 | ND(0.400) | | Benzyl Alcohol | ND(15) J | ND(0.760) | NS | ND(1.10) | ND(0.790) | | ois(2-Ethylhexyl)phthalate | ND(3.70) | ND(0.340) | NS | ND(0.370) | ND(0.390) | | Chrysene | 9.10 | ND(0.380) | NS | 5.70 | ND(0.400) | | Dibenzo(a,h)anthracene | ND(7.40) | ND(0.380) | NS | 1.70 | ND(0.400) | | Dibenzofuran Diakan Dia | ND(7.40) | ND(0.380) | NS | 0.230 J | ND(0.400) | | Diethylphthalate | ND(7.40) | ND(0.380) | NS NS | ND(0.570) | ND(0.400) | | Dimethylphthalate
Di-n-Butylphthalate | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | Diphenylamine | 2.20 J
ND(7.4) | ND(0.380) | NS
NC | 0.470 J | ND(0.400) | | Fluoranthene | 24.0 | ND(0.38)
ND(0.380) | NS
NS | ND(0.57) | ND(0.40) | | luorene | 2.80 J | ND(0.380) | NS
NS | 10.0
0.530 J | ND(0.400)
ND(0.400) | | 1exachlorobenzene | ND(7.40) | ND(0.380) | NS
NS | ND(0.570) | ND(0.400)
ND(0.400) | | ndeno(1,2,3-cd)pyrene | 5.00 J | ND(0.380) | NS NS | 5.70 | ND(0.400)
ND(0.400) | | Vaphthalene | 2.70 J | ND(0.380) | NS | 0.320 J | ND(0.400) | | Vitrobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | N-Nitrosodiphenylamine | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | -Toluidine | 38.0 | ND(0.380) | NS | ND(0.570) | ND(0.400) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST
STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4A
RAA4-19 | 4A
RAA4-113 | 4A | 4A | 44 | |-----------------------------------|--------------------|----------------------|------------------|--------------------|-------------------| | Sample Depth(Feet): | 0-1 | 1 | RAA4-113 | RAA4-115 | RAA4-K3 | | Parameter Date Collected: | 06/17/02 | 0-1
07/02/02 | 6-15
07/02/02 | 0-1
04/25/02 | 1-6
06/11/02 | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | Pentachiorophenol | ND(37.0) | ND(1.90) | NS | ND(2.80) | ND(2.00) | | Phenanthrene | 25.0 | ND(0.380) | NS | 5.80 | ND(0.400) | | Phenol | 73.0 | ND(0.380) | NS | 12 EJ | ND(0.400) | | Pyrene | 29.0 | ND(0.380) | NS | 8.20 | ND(0.400) | | Pyridine | ND(7.40) | ND(0.380) | NS | ND(0.570) | ND(0.400) | | Furans | | | 4 | · | <u> </u> | | 2,3,7,8-TCDF | 0.000079 Y | 0.0000054 Y | 0.0000026 Y | 0.000019 Y | 0.00000066 J | | TCDFs (total) | 0.00065 Q | 0.0000791 | 0.000024 | 0.00031 | 0.0000062 | | 1,2,3,7,8-PeCDF | 0.000049 | 0.0000041 | 0.0000014 J | 0.0000056 | ND(0.0000032) | | 2,3,4,7,8-PeCDF | 0.000076 | 0.000017 | 0.0000027 | 0.000012 | ND(0.00000041) | | PeCDFs (total) | 0.00065 QI | 0.00017 I | 0.000025 | 0.00041 | 0.0000049 | | 1,2.3,4,7,8-HxCDF | 0.000055 | 0.0000093 | 0.0000031 | 0.000025 | 0.0000050 J | | 1,2,3,6,7,8-HxCDF | 0.000035 | 0.0000067 | 0.0000018 J | 0.000012 | ND(0.00000030) | | 1,2,3,7,8,9-HxCDF | 0.0000074 Q | 0.0000021 J | 0.00000048 J | ND(0.0000051) X | 0.000000067 J | | 2,3,4,6,7,8-HxCDF | 0.000059 | 0.000014 | 0.0000024 J | 0.000024 | ND(0.00000034) | | HxCDFs (total) | 0.00078 Q | 0.00018 | 0.000033 | 0.00040 | 0.0000033 | | 1,2,3,4,6,7,8-HpCDF | 0.000087 | 0.000016 | 0.0000044 | 0.000035 | U 08000000.0 | | 1,2,3,4,7,8,9-HpCDF | 0.000012 | 0 0000029 | 0.00000084 J | 0.0000042 J | ND(0.00000010) X | | HpCDFs (total) | 0.00019 | 0.000042 | 0.000010 | 0.000094 | 0.0000012 | | OCDF | 0.000070 | 0.0000097 | 0.0000037 J | 0.000039 | 0.00000083 J | | Dioxins | | | | | | | 2,3,7,8-TCDD | 0.00000061 JQ | 0.00000016 J | ND(0.00000016) X | 0.00000035 J | ND(0.000000098) | | TCDDs (total) | 0.000031 Q | 0.0000015 | 0.00000046 | 0.0000052 | 0.00000013 | | 1,2,3,7,8-PeCDD | ND(0.0000038) X | ND(0.00000057) X | ND(0.00000027) | 0.0000011 J | ND(0.00000013) X | | PeCDDs (total) | 0.000038 Q | 0.0000032 | 0.0000011 | 0.0000046 | ND(0.00000042) | | 1,2,3,4,7,8-HxCDD | 0.0000037 | 0.00000034 J | 0.00000015 J | 0.0000011 J | ND(0 000000073) X | | 1,2,3,6,7,8-HxCDD | 0.000011 | 0.0000010 J | 0.00000022 J | 0.0000039 J | ND(0.00000011) X | | 1,2,3,7,8,9-HxCDD | 0.0000066 | 0.00000065 J | ND(0.00000018) X | 0.0000026 J | ND(0.00000011) | | HxCDDs (total) | 0.00010 | 0.000010 | 0.0000023 | 0.000060 | ND(0.00000052) | | 1,2,3,4,6,7,8-HpCDD | 0.000068 | 0.0000040 | 0.0000011 J | 0.00011 | ND(0.00000078) | | HpCDDs (total) | 0.00015 | 0.0000086 | 0.0000021 | 0.00089 | 0.0000016 | | OCDD | 0.00042 | 0.000022 | ND(0.0000058) | 0.0011 | 0.0000099 | | Total TEQs (WHO TEFs) | 0.000070 | 0.000013 | 0.0000028 | 0.000018 | 0.00000041 | | norganics | | | | | | | Antimony | 15.0 | ND(6.00) | NS NS | 6.60 J | ND(6.00) | | Arsenic | 6.50 | 3.50 | NS | 25.0 J | 1.50 J | | Barium | 86.D | ND(20.0) J | NS | 23.0 J | 21.0 | | 3eryllium | ND(0.500) | 0.0990 B | NS | 0.140 B | ND(0.500) | | Cadmium | 0.740 | ND(0.500) | NS | 0.530 | ND(0.500) | | Chromium · | 11.0 | 3.00 | NS | 7.20 | 9.00 | | Cobalt | 8.70 | 24.0 J | NS | 5.00 | 9.10 J | | Copper | 93.0 J | 16.0 | NS NS | 97.0 | 19.0 | | Cyanide | 0.280 J | ND(0.210) | NS
NC | ND(0.110) | ND(0.120) | | Lead
Mercury | 110 | 5.30
ND(0.100) | NS
NS | 50.0 J | 15.0 | | vercury
Nickel | 0.470
12.0 | ND(0.100)
22.0 | NS
NC | 0.540 | ND(0.120) | | Selenium | ND(1.00) J | 22.0
ND(1.00) | NS
NC | 10.0 J | 15.0 | | | | | NS
NS | ND(1.00) J | ND(1.00) J | | Silver
Sulfide | ND(1.00)
46.0 J | ND(1.00) J | NS
NS | ND(1.00) | ND(1.00) | | Thallium | | 6.60
ND/1.60\ L | NS
NG | 27.0 | 34.0 | | | - ND(1.70) J | ND(1.60) J | NS | ND(1.10) J | ND(1.80) J | | | ND/40 0) | NID/2 COV | NC I | | | | rin
√anadium | ND(10.0)
12.0 | ND(3.60)
ND(5.00) | NS
NS | ND(10.0)
9.30 J | ND(4.00)
9.40 | | | Averaging Area:
Sample ID: | 4A
RAA4-K3 | 4A
RAA4-K11 | 4A
RAA4-K11 | 4A
RAA4-K15 | 4A
RAA4-L8 | |--|---|---------------------------|------------------------|---------------------------|----------------|---------------------------| | San | nple Depth(Feet): | 4-6 | 1-6 | 4-6 | 1-6 | 0-1 | | Parameter | Date Collected: | 06/11/02 | 07/02/02 | 07/02/02 | 06/18/02 | 06/13/02 | | Volatile Organics | | | | | | | | 1.1,1-Trichloroetha | | ND(0.0059) | NS NS | ND(0.0055) | NS NS | ND(0.0057) | | 1,1-Dichloroethane
1,2-Dichloroethane | *** *********************************** | ND(0.0059)
ND(0.0059) | NS
NS | ND(0.0055) | NS
NO | ND(0.0057) | | 2-Butanone | | ND(0.012) | NS NS | ND(0.0055)
ND(0.011) | NS
NS | ND(0.0057)
ND(0.011) | | 2-Chloroethylvinyle | ther | ND(0.0059) | NS NS | ND(0.0055) | NS NS | ND(0,0057) | | Acetone | | 0.015 J | NS | ND(0.022) | NS NS | ND(0.023) | | Benzene | | ND(0.00590) | NS | ND(0.00550) | NS | ND(0.00570) | | Carbon Disulfide | | ND(0.0059) | NS | ND(0.0055) | NS | ND(0.0057) | | Chlorobenzene | | 0.0031 J | NS | ND(0.0055) | NS | ND(0.0057) | | Ethylbenzene | | ND(0.00590) | NS | ND(0.00550) | NS | ND(0.00570) | | Methylene Chloride | | ND(0.0059) | NS | ND(0.0055) | NS | ND(0.0057) | | Styrene | | ND(0.00590) | NS | ND(0.00550) | NS | ND(0.00570) | | Tetrachioroethene
Toluene | | ND(0.0059)
ND(0.00590) | NS
NS | ND(0.0055) | NS
NS | ND(0.0057) | | Trichloroethene | | ND(0.00590) | NS
NS | ND(0.00550)
ND(0.0055) | NS | ND(0.00570)
ND(0.0057) | | Trichlorofluorometh | ane | ND(0.0059) | NS NS | ND(0.0055) | NS NS | ND(0.0057) | | Xylenes (total) | | ND(0.0059) | NS NS | ND(0.0055) | NS NS | ND(0.0057) | | Semivolatile Orga | nics | | | 1 (((((((((| | 12 (0.0007) | | 1,2,4,5-Tetrachloro | | NS | ND(0.400) | NS | NS | ND(0.380) | | 1,2,4-Trichlorobenz | | NS | ND(0.400) | NS | NS | ND(0.380) | | 1,2-Dichlorobenzen | | NS | ND(0.400) | NS | NS | ND(0.380) | | 1,2-Diphenylhydraz | | NS | ND(0.40) | NS | NS | ND(0.38) | | 1,3-Dichlorobenzen | е | NS | ND(0.400) | NS | NS | ND(0.380) | | 1.3-Dinitrobenzene | | NS | ND(0.740) | NS | NS | ND(0.760) | | 1,4-Dichlorobenzen | | NS | ND(0.400) | NS NS | NS | ND(0.380) | | 2.4-Dimethylphenol | | NS
NS | ND(0.400) | NS | NS NS | 0.600 | | 2-Chloronaphthaler
2-Chlorophenol | 16 1 | NS NS | ND(0.400)
ND(0.400) | NS
NS | NS
NS | ND(0.380)
ND(0.380) | | 2-Methylnaphthaler | 16 | NS NS | ND(0.400) | NS NS | NS NS | ND(0.380) | | 2-Methylphenol | <u>'</u> | NS NS | ND(0.400) | NS | NS NS | 0.360 J | | 2-Nitroaniline | | NS T | ND(2.00) | NS | NS NS | ND(1.90) | | 3&4-Methylphenol | | NS | ND(0.740) | NS | NS | 0.690 J | | 4-Chloroaniline | | NS | ND(0.400) | NS | NS | ND(0.380) | | 4-Chlorobenzilate | | NS | ND(0.740) | NS | NS | ND(0.760) | | 4-Phenylenediamin | e | NS | ND(0.74) J | NS | NS | ND(0.76) J | | Acenaphthene | | NS NS | ND(0.400) | NS | NS | ND(0.380) | | Acenaphthylene | | NS | ND(0.400) | NS
NS | NS NS | ND(0.380) | | Acetophenone Aniline | | NS NS | ND(0.400)
1.30 | NS
NS | NS
NS | ND(0.380)
ND(0.380) | | Anthracene | | NS NS | ND(0.400) | NS NS | NS NS | ND(0.380) | | Benzo(a)anthracen | e | NS NS | 0.120 J | NS T | NS NS | ND(0.380) | | Benzo(a)pyrene | | NS | 0.160 J | NS | NS NS | ND(0.380) | | Benzo(b)fluoranthe | ne | NS | ND(0.400) | NS NS | N\$ | ND(0.380) | | Benzo(g,h,i)perylen | | NS | ND(0.400) | NS _ | NS | ND(0.380) | | Benzo(k)fluoranthe | ne | NS | ND(0.400) | NS | NS | ND(0.380) | | Benzyl Alcohol | | NS | ND(0.810) | NS | NS | ND(0.760) | | bis(2-Ethylhexyl)phi | thalate | NS | ND(0.360) | NS | NS | ND(0.380) | | Chrysene | | NS | 0.160 J | NS NS | NS | ND(0.380) | | Dibenzo(a,h)anthra
Dibenzofuran | Cerie | NS NS | ND(0.400)
ND(0.400) | NS NS | NS
NS | ND(0.380) | | Diethylphthalate | | NS NS | ND(0.400)
ND(0.400) | NS NS | NS NS | ND(0.380)
ND(0.380) | | Dimethylphthalate | | NS NS | ND(0.400) | NS NS | NS NS | ND(0.380) | | Di-n-Butylphthalate | | NS | ND(0.400) | NS I | NS NS | 0.200 J | | Diphenylamine | | NS | ND(0.40) | NS | NS | ND(0.38) | | Fluoranthene | | NS | 0.220 J | NS | NS | ND(0.380) | | Fluorene | | NS | ND(0.400) | NS | NS | ND(0.380) | | Hexachlorobenzens | | NS I | ND(0.400) | NS | NS | ND(0.380) | | Indeno(1,2.3-cd)pyr | rene | NS I | ND(0.400) | NS NS | NS | ND(0.380) | | Naphthalene | | NS NS | ND(0.400) | NS NS | NS | 0.150 J | | | | NS | ND(0.400) | NS | NS | ND(0.380) | | Nitrobenzene
N-Nitrosodiphenylar | | NS NS | ND(0.400) | NS | NS | ND(0.380) | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4A
RAA4-K3 | 4A
RAA4-K11 | 4A
RAA4-K11 | 4A
RAA4-K15 | 4A
RAA4-L8 | |-----------------------------------|---------------|-----------------------------|----------------|--|----------------------| | Sample Depth(Feet): | 4-6 | 1-6 | 4-6 | 1-6 | 0-1 | | Parameter Date Collected: | 06/11/02 | 07/02/02 | 07/02/02 | 06/18/02 | 06/13/02 | | Semivolatile Organics (continued) | NO | 1 1000 100 | | | | | Pentachlorobenzene | NS NS | ND(0.400) | NS | NS. | ND(0.380) | | Pentachlorophenol | NS
NS | ND(2.00) | NS | NS | ND(1.90) | | Phenanthrene
Phenol | | 0.130 J | NS
NS | NS NS | ND(0.380) | | Pyrene | NS
NS | ND(0.400)
0.220 J | NS
NS | NS | 0.780 | | Pyridine | NS NS | ND(0.400) | NS | NS
NS | ND(0.380) | | Furans | 342
 1 (0.400) | 142 | į įys | ND(0.380) | | 2.3.7.8-TCDF | NS | ND(0.00000029) X | N HC1 | 0.5546.751.150.00006.751.0 | 0.00000000 | | TCDFs (total) | NS NS | 0.0000031 | NS
NC | 0.0010 YEIJ [0.00080 YEIJ] | 0.0000028 Y | | 1,2,3,7,8-PeCDF | NS
NS | 0.0000031
0.00000021 J | NS
NS | 0.0075 QI [0.0065 QI] | 0.000083 | | 2.3.4.7.8-PeCDF | NS
NS | 0.000000213
0.00000035 J | NS NS | 0.00040 Q [0.00027 Q] | ND(0.0000011) | | PeCDFs (total) | NS | 0.000000333
0.0000026 Q | NS
NS | 0.0020 EJ [0.0016 EJ]
0.022 QI [0.016 QI] | 0.000016
0.000231 | | 1,2,3,4,7,8-HxCDF | NS NS | 0.0000023 J | NS
NS | 0.0027 EJ [0.0018 EJ] | ND(0.000010) | | 1,2,3,6,7,8-HxCDF | NS | 0.000000323 | NS | 0.0027 E3 [0.0018 E3] | 0.0000035 | | 1,2,3,7,8,9-HxCDF | NS | 0.000000011 J | NS
NS | 0.00054 [0.00036] | ND(0.000011) | | 2,3,4,6,7,8-H×CDF | NS | 0.000000113 | NS NS | 0.0023 EJ [0.0017 EJ] | 0.000011) | | HxCDFs (total) | NS | 0.0000022 | NS NS | 0.030 [0.023] | 0.00019 | | 1,2,3,4,6,7,8-HpCDF | NS | 0.00000095 J | NS | 0.0023 EJ [0.0016 EJ] | 0.000012 | | 1,2,3,4,7,8,9-HpCDF | NS | 0.000000095 J | NS | 0.00070 J [0.00041 J] | 0.0000012 | | HpCDFs (total) | NS | 0.0000010 | NS NS | 0.0086 [0.0057] | 0.000033 | | OCDF | NS | 0.0000011 J | NS | 0.0013 [0.00081] | 0.0000055 | | Dioxins | | | | | | | 2,3,7,8-TCDD | NS | ND(0.00000010) | NS | 0.0000024 [0.0000021] | ND(0.00000019) | | TCDDs (total) | NS | 0.00000014 | NS | 0.000051 Q [0.000042 Q] | ND(0.00000019) | | 1,2,3,7,8-PeCDD | NS | ND(0,000000095) X | NS | 0.000025 [0.000018] | ND(0.0000016) X | | PeCDDs (total) | NS | 0.00000085 | NS | 0.000078 QJ [0.00014 QJ] | ND(0.00000023) | | 1,2,3,4,7,8-HxCDD | NS | ND(0.00000026) | NS | 0.000030 [0.000022] | ND(0.00000034) | | 1,2,3,6,7,8-HxCDD | NS | ND(0.00000014) X | NS | 0.000033 [0.000024] | ND(0.00000055) X | | 1,2,3,7,8,9-HxCDD | NS | 0.00000013 J | NS | 0.000025 [0.000018] | ND(0.00000031) | | HxCDDs (total) | NS | 0.0000012 | NS | 0.00039 [0.00030] | 0.0000038 | | 1,2,3,4,6,7,8-HpCDD | NS | 0.00000072 J | NS | 0.00022 [0.00016] | 0.0000037 | | HpCDDs (total) | NS | 0.0000012 | NS | 0.00042 [0.00032] | 0.0000080 | | OCDD | NS | ND(0.0000049) | NS | 0.00096 [0.00075] | 0.000020 | | Total TEQs (WHO TEFs) | NS | 0.00000045 | NS | 0.0019 [0.0014] | 0.000012 | | Inorganics | | | | | | | Antimony | NS | 1.60 B | NS . | NS | ND(6.00) | | Arsenic | NS | 7.90 | NS | NS . | 16.0 | | Barium | NS | 100 J | NS | NS NS | 50.0 | | Beryllium | พร | ND(0.500) | NS | NS | ND(0.500) | | Cadmium | NS | 0.880 | NS | N S | ND(0.500) | | Chromium | NS | 8.20 | NS | NS | 6.20 | | Cobalt | NS | 10.0 J | NS | NS | 5.30 | | Copper | NS | 80.0 | NS | NS | 44.0 | | Cyanide | NS | ND(0.220) | NS | NS | ND(0.230) | | Lead | NS NS | 88.0 | NS | NS NS | 22.0 | | Mercury | NS
NS | 0.340 | NS
NS | NS
NS | ND(0.110) J | | Nickel
Salanium | NS
NS | 20.0 | NS | NS NS | 11.0 | | Selenium | NS
NS | ND(1.00) | NS
NS | NS | ND(1.00) J | | Sulfido | NS
NS | ND(1.00) J | NS
NG | NS
NS | ND(1,00) | | Sulfide
Thallium | NS
NS | 140
ND(4.60) | NS
NS | NS
NS | 90.0 | | Thailium | NS
NS | ND(1.60) J
ND(14.0) | NS
NS | NS NS | 1.20 J | | | | | NS
NS | NS
NS | ND(10.0) | | Vanadium Zina | NS
NS | 8.20 | NS | NS
NS | 9.30 | | Zinc | CN | 120 J | NS | NS | 50.0 | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4A
RAA4-M3
0-1 | 4A
RAA4-M5
0-1 | 4A
RAA4-M7
0-1 | 4A
RAA4-01
0-1 | 4B
RAA4-1
0-1 | 4B
RAA4-2
6-8 | |--|--------------------------|--------------------------|------------------------|---------------------------|--------------------------|---------------------| | Parameter Date Collected: | 06/11/02 | 04/25/02 | 07/03/02 | 04/25/02 | 01/30/01 | 01/24/01 | | Volatile Organics | | | | | | | | 1,1.1-Trichloroethane | ND(0.0064) | ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.0069) | ND(0.43) | | 1,1-Dichloroethane | ND(0.0064) | ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.0069) | ND(0.43) | | 1,2-Dichloroethane | ND(0.0064) | ND(0.0057) | NO(0.0054) | ND(0.0055) | ND(0.0069) | ND(0.43) | | 2-Butanone | ND(0.013) | ND(0.011) | ND(0.011) | ND(0.011) | ND(0.10) | ND(8.7) | | 2-Chloroethylvinylether | ND(0.0064) | ND(0.0057) J | ND(0.0054) | ND(0.0055) J | ND(0.5069) | ND(0.43) J | | Acetone | ND(0.025) | ND(0.023) | ND(0.022) | ND(0.022) | ND(0.10) | ND(8.7) | | Benzene | ND(0.00640) | ND(0.00570) | 0.0050 J
ND(0.0054) | ND(0.00550)
ND(0.0055) | ND(0.00690)
ND(0.010) | 0.570
ND(0.87) | | Carbon Disulfide Chlorobenzene | ND(0.0064)
ND(0.0064) | ND(0.0057)
ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.010)
ND(0.0069) | ND(0.43) | | Ethylbenzene | ND(0.00640) | ND(0.0057) | ND(0.0054) | ND(0.00550) | ND(0.00690) | 2.40 | | Methylene Chloride | ND(0.0064) | ND(0.00570) | ND(0.0054) | ND(0.0055) | ND(0.0069) | ND(0.43) | | Styrene | ND(0.00640) | ND(0.00570) | ND(0.0054) | ND(0.00550) | ND(0.00690) | ND(0.430) | | Tetrachloroethene | ND(0.0064) | ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.0069) | ND(0.43) | | Toluene | ND(0.00640) | ND(0.00570) | 0.13 | ND(0.00550) | ND(0.00690) | 2.80 | | Trichloroethene | ND(0.0064) | ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.0069) | ND(0.43) | | Trichlorofluoromethane | ND(0.0064) | ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.0069) J | ND(0.43) | | Xylenes (total) | ND(0.0064) | ND(0.0057) | ND(0.0054) | ND(0.0055) | ND(0.0069) | 10 | | Semivolatile Organics | | | | | | | | 1,2,4,5-Tetrachlorobenzene | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | 1,2,4-Trichlorobenzene | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | 1,2-Dichlorobenzene | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | 1,2-Diphenylhydrazine | ND(0.42) | ND(0.50) | ND(0.36) | ND(0.37) | ND(4.6) | NS | | 1,3-Dichlorobenzene | ND(0.420) | ND(0.500) | ND(0.360)
ND(0.720) | ND(0.370)
ND(0.740) | ND(4.60)
ND(23.0) | NS
NS | | 1,3-Dinitrobenzene | ND(0.850)
ND(0.420) | ND(0.770)
ND(0.500) | ND(0.720)
ND(0.360) | ND(0,740)
ND(0.370) | ND(23.0)
ND(4.60) | NS
NS | | 2,4-Dimethylphenol | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS NS | | 2-Chloronaphthaiene | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | 2-Chlorophenol | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS NS | | 2-Methylnaphthalene | ND(0.420) | ND(0.500) | 0.160 J | ND(0.370) | ND(4.60) | NS | | 2-Methylphenol | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | 2-Nitroaniline | ND(2.20) | ND(2.50) | ND(1.80) | ND(1.90) | ND(23.0) | NS | | 3&4-Methylphenol | ND(0.850) | ND(0.770) | ND(0.720) | ND(0.740) | ND(9.20) | NS | | 4-Chloroaniline | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(9.20) | NS | | 4-Chlorobenzilate | ND(0.850) | ND(0.770) | ND(0.720) | ND(0.740) | ND(23.0) | NS | | 4-Phenylenediamine | ND(0.85) J | ND(0.77) J | ND(0.72) J | ND(0.74) J | ND(23.0) | NS | | Acenaphthene | ND(0.420) | 0.270 J | ND(0.360) | ND(0.370) | ND(4.60)
4.00 J | NS | | Acenaphthylene | ND(0.420)
ND(0.420) | ND(0.500)
ND(0.500) | ND(0.360)
ND(0.360) | ND(0.370)
ND(0.370) | 4.00 J
ND(4.60) | NS
NS | | Acetophenone
Aniline | 5.50 | 8.60 | 0.230 J | 0.370 | ND(4.60) | NS
NS | | Anthracene | ND(0.420) | 0.360 J | ND(0.360) | ND(0.370) | 1.20 J | NS NS | | Benzo(a)anthracene | 0.0910 J | 1.20 | 0.490 | 0.270 J | 10.0 | NS | | Benzo(a)pyrene | 0.110 J | 1,40 | 0.740 | 0.370 | 11.0 | NS | | Benzo(b)fluoranthene | 0.110 J | 1,40 | 1.60 | 0.380 | 6.10 | NS | | Benzo(g,h,i)perylene | 0.100 J | 0.970 | 0.860 | 0.320 J | 8.10 | NS | | Benzo(k)fluoranthene | 0.120 J | 1.40 | 0.790 | 0.290 J | 7.80 | NS | | Benzyl Alcohol | ND(0.850) | ND(0.990) | ND(0.720) | ND(0.740) | ND(9.20) | NS | | bis(2-Ethylhexyl)phthalate | ND(0.420) | ND(0.380) | ND(0.360) | ND(0.360) | ND(4.60) | NS | | Chrysene | 0.120 J | 1.40 | 0.770 | 0.290 J | 9.60 | NS | | Dibenzo(a,h)anthracene | ND(0.420) | ND(0.500) | 0.350 | ND(0.370) | ND(9.20) | NS
NS | | Dibenzofuran Diethylahthelate | ND(0.420)
ND(0.420) | 0.110 J
ND(0.500) | ND(0.360)
ND(0.360) | ND(0.370)
ND(0.370) | ND(4.60)
ND(4.60) | NS
NS | | Diethylphthalate Dimethylphthalate | ND(0.420)
ND(0.420) | ND(0.500)
ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60)
ND(4.60) | NS NS | | Di-n-Butylphthalate | 0.200 J | 0.370 よ | ND(0.360) | 0.130 J | ND(4.60) | NS NS | | Diphenylamine | ND(0.42) | ND(0.50) | ND(0.36) | ND(0.37) | ND(4.6) | NS | | Fluoranthene | 0.170 J | 2.50 | 0.720 | 0.570 | 12.0 | NS | | Fluorene | ND(0.420) | 0,180 J | ND(0.360) | ND(0.370) | ND(4.60) | NS | | Hexachlorobenzene | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | Indeno(1,2,3-cd)pyrene | ND(0.420) | 0.780 | 0.740 | 0.320 J | 7.20 J | NS | | Naphthalene | ND(0.420) | 0.110 J | 0.120 J | ND(0.370) | ND(4.60) | NS | | Nitrobenzene | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | N-Nitrosodiphenylamine | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | o-Toluidine | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | | Averaging Area: | 4A | 4A | 4A | 4A | 48 | 48 | |--------------------|---|------------------|------------------|----------------|---------------|------------------|----------| | | Sample ID: | RAA4-M3 | RAA4-M5 | RAA4-M7 | RAA4-01 | RAA4-1 | RAA4-2 | | } | Sample Depth(Feet): | | 0-1 | 0-1 | 0-1 | 0-1 | 6-8 | | Parameter | Date Collected: | 06/11/02 | 04/25/02 | 07/03/02 | 04/25/02 | 01/30/01 | 01/24/01 | | | rganics (continued) | | , | | | | | | Pentachloroben | | ND(0 420) | ND(0,500) | ND(0.360) | ND(0.370) | ND(4.60) | NS | | Pentachlorophe | nol | ND(2.20) | ND(2.50) |
ND(1.80) | ND(1.90) | ND(23.0) | NS | | Phenanthrene | | ND(0.420) | 1.80 | 0.360 J | 0.330 J | 2.00 J | NS | | Phenol | | ND(0.420) | 0.890 | ND(0.360) | ND(0.370) | ND(4.60) | NS | | Pyrene | | 0,150 J | 2.60 | 0.690 | 0.430 | 22.0 | NS | | Pyridine | | ND(0.420) | ND(0.500) | ND(0.360) | ND(0.370) | ND(4.6) J | NS | | Furans | | | | | | | | | 2,3,7,8-TCDF | | 0.000021 Y | 0.000019 YJ | 0.0000014 Y | 0.00017 Y | 0.000018 | NS | | TCDFs (total) | | 0.00021 | 0.00036 J | 0.0000072 | 0.0022 SEJ | 0.00012 | NS | | 1,2,3,7,8-PeCDI | | 0.0000098 | 0.000069 | 0.00000062 J | 0.000088 | 0.0000052 | NS | | 2,3,4,7,8-PeCDI | | 0.000011 | 0.000014 J | 0.00000075 J | 0.00014 | 0.0000074 | NS | | PeCDFs (total) | | 0.00014 | 0.00061 J | 0.0000061 Q | 0.0056 SEJ | 0.000084 Q | NS | | 1,2,3,4,7,8-HxC | | 0.000015 | 0.000037 | 0.00000080 J | 0.00044 | 0.0000049 | NS | | 1,2,3,6,7,8-HxC | | 0.0000080 | 0.000011 | 0.00000043 J | 0.00027 | 0.0000030 J | NS | | 1,2,3,7,8,9-HxC | | 0.0000016 J | 0.0000041 J | ND(0.00000026) | ND(0.00047) X | ND(0.00000079) X | NS | | 2,3,4,6,7,8-HxC | DF | 0.0000083 | 0.000017 | 0.00000053 J | 0.00079 | 0.0000042 | NS | | HxCDFs (total) | | 0.00012 | 0.00036 | 0.0000060 | 0.0085 SEJ | 0.000062 | NS | | 1,2,3,4,6,7,8-Hp | | 0.000023 | 0.000031 | 0.0000014 J | 0.0010 | 0.000018 | NS | | 1,2,3,4,7,8,9-Hp | CDF | 0.0000025 J | 0.0000035 J | 0.00000020 J | 0.00010 | 0.0000011 J | NS | | HpCDFs (total) | | 0.000038 | 0.000065 | 0.0000031 | 0.0027 | 0.000032 | NS | | OCDF | | 0.000020 | 0.000026 | 0.0000019 J | 0.00039 | 0.000011 | NS | | Dioxins | | | | | | | | | 2,3,7,8-TCDD | *************************************** | ND(0.00000030) X | 0.00000045 J | ND(0.00000015) | 0.0000028 | ND(0.00000034) X | NS | | TCDDs (total) | | 0.000012 | 0.0000041 J | 0.00000041 | 0.000038 | 0.00000082 | NS | | 1,2,3,7,8-PeCD[| | ND(0.0000014) X | ND(0.00000010) J | 0.00000022 J | 0.000016 | 0.00000043 J | NS | | PeCDDs (total) | | 0.000010 | ND(0.0000030) XJ | 0.0000028 Q | 0.000058 | 0.0000039 Q | NS | | 1,2,3,4,7,8-HxCl | | 0.00000077 J | ND(0.00000020) J | 0.00000031 J | 0.000021 | 0.00000045 J | NS | | 1,2,3,6,7,8-HxCI | | 0.0000012 J | ND(0.0000014) X | 0.00000050 J | 0.000030 | 0.00000078 J | NS | | 1,2,3,7,8,9-HxCI | DD | 0.0000011 J | ND(0.0000020) X | 0.00000068 J | 0.000027 | 0.00000067 J | NS | | HxCDDs (total) | | 0.000018 | 0.0000021 J | 0.0000078 | 0.00030 | 0.0000089 | NS | | 1,2,3,4,6,7,8-Hp | CDD | 0.000013 | 0.000013 | 0.000011 | 0.00022 | 0.0000080 | NS | | HpCDDs (total) | | 0.000027 | 0.000027 | 0.000023 | 0.00051 | 0.000016 | NS | | OCDD | | 0.00014 | 0.000098 | 0.00022 | 0.00086 | ND(0.000043) | NS | | Total TEQs (WH | OTEFs) | 0.000013 | 0.000020 | 0.0000013 | 0.00030 | 0.0000081 | NS | | Inorganics | | | | | | | | | Antimony | | ND(6.00) | ND(6.00) J | 0.890 B | 1.40 J | ND(12.0) | NS | | Arsenic | | 10.0 | 20.0 J | 6,60 | 5.20 J | ND(21.0) | NS | | Barium | | 44.0 | 40.0 J | 73.0 | 69.0 J | ND(42.0) | NS | | Beryllium | | ND(0.500) | ND(0.500) | ND(0.500) | 0.140 B | 0.360 | NS | | Cadmium | | ND(0.500) | 2.30 | ND(0.500) | 0.590 | ND(2.10) | NS | | Chromium | | 19.0 | 16.0 | 7.00 | 7.40 | 9.90 | NS | | Cobalt | | 6.30 | 8.90 | 16.0 | ND(5.00) | ND(10.0) | NS | | Copper | | 160 | 130 | 42.0 | 85.0 | 39.0 | NS | | Cyanide | | ND(0.130) | 0.260 J | 0.0770 B | ND(0.110) | 5.40 | NS | | Lead
Mercury | | 50.0 | 40.0 J | 14.0 | 49.0 J | 29.0 | NS | | Mercury
Nickel | | 0.160 | ND(0.110) | 0.0660 B | 0.310 | ND(0.280) | NS | | | | 22.0 | 15.0 J | 10.0 | 11.0 J | 21.0 | NS | | Selenium
Silvos | | ND(1.00) J | 1.50 J | 0.500 B | ND(1,00) J | ND(1.00) J | NS | | Silver
Sulfide | | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) | NS | | Surioe
Thallium | | 45.0
NO(2.50) | 77.0 | 520 | 60.0 | 20.0 | NS | | | | ND(2.50) | ND(1.10) J | 2.40 | ND(1.10) J | ND(2.10) | NS | | Tin
Vanadium | | 15.0 | ND(11.0) | ND(4.10) | ND(10.0) | ND(62.0) | NS | | Vanadium
Zinc | | 28.0 | 34.0 J | 12.0 | 6.80 J | 14.0 | NS | | CH IC | | 96.0 | 86.0 J | 33.0 | 110 J | 55.0 | NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4B | 48 | 48 | | | |---|----------------------|----------------------|--------------|----------------------|--| | Sample ID: | RAA4-2 | RAA4-4 | 4B
RAA4-4 | 4B
RAA4-5 | RAA4-8 | | Sample Depth(Feet): | 6-15 | 6-15 | 12-14 | 0-1 | 0-1 | | Parameter Date Collected: | 01/24/01 | 01/24/01 | 01/24/01 | 01/30/01 | 01/30/01 | | Volatile Organics | | | | | | | 1.1.1-Trichloroethane | NS | NS | ND(16) | ND(0.9067) | ND(0.0066) [ND(0.0080)] | | 1.1-Dichloroethane | NS | NS | ND(16) | ND(0.0067) | ND(0.0066) [ND(0.0080)] | | 1.2-Dichloroethane | NS | NS | ND(16) | ND(0.0067) | ND(0.0066) [ND(0.0080)] | | 2-Butanone | NS | NS | ND(320) | ND(0.10) | ND(0.10) [ND(0.10)] | | 2-Chloroethylvinylether | NS | NS | ND(16) | ND(0.0067) | ND(0.0066) [ND(0.0080)] | | Acetone | NS | NS | ND(320) | ND(0.10) | ND(0.10) [ND(0.10)] | | Benzene | NS | NS | 100 | ND(0.00670) | ND(0.00660) [ND(0.00800)] | | Carbon Disulfide | NS | NS | ND(32) | ND(0.010) | ND(0.010) [ND(0.010)] | | Chlorobenzene | NS | NS | ND(16) | ND(0.0067) | ND(0.0066) [ND(0.0080)] | | Ethylbenzene | NS | NS | 280 | ND(0.00570) | ND(0.00660) [ND(0.00800)] | | Methylene Chloride | NS | NS | ND(16) | ND(0.0067) | ND(0.0066) [ND(0.0080)] | | Styrene | NS | NS | ND(16.0) | ND(0.00670) | ND(0.00660) [ND(0.00800)] | | Tetrachioroethene | NS | NS | ND(16) | ND(0.0067) | ND(0.0066) [ND(0.0080)] | | Toluene | NS | NS | 640 | ND(0.00670) | ND(0.00660) [ND(0.00800)] | | Trichloroethene | NS NS | NS NS | ND(16) | ND(0.0057) | ND(0.0066) [ND(0.0080)] | | Trichlorofluoromethane | NS | NS | ND(16) | ND(0.0067) J | ND(0.0066) J [ND(0.0080)] | | Xylenes (total) | NS | NS | 450 | ND(0.0067) | ND(0.013) [ND(0.016)] | | Semivolatile Organics | NECT OF | 1 10072 ==: | | http://o.or: | Apple and them at a second | | 1,2,4,5-Tetrachlorobenzene | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | 1,2,4-Trichlorobenzene | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | 1,2-Dichlorobenzene | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | 1,2-Diphenylhydrazine | ND(4.6) | ND(4.3) | NS
NS | ND(8.9) | ND(4.3) [ND(5.3)] | | 1,3-Dichlorobenzene | ND(4.60)
ND(23.0) | ND(4.30)
ND(21.0) | NS
NS | ND(8.90)
ND(44.0) | ND(4.30) [ND(5.30)] | | 1,4-Dichlorobenzene | ND(23.0) | | NS NS | ND(8.90) | ND(22.0) [ND(26.0)] | | 2,4-Dimethylphenol | ND(4.60) | ND(4.30)
ND(4.30) | NS NS | ND(8.90) | ND(4.30) [ND(5.30)]
ND(4.30) [ND(5.30)] | | 2-Chloronaphthalene | ND(4.60) | ND(4.30) | NS NS | ND(8.90) | ND(4.30) [ND(5.30)] | | 2-Chlorophenol | ND(4.60) | ND(4.30) | NS NS | ND(8.90) | ND(4.30) [ND(5.30)] | | 2-Methylnaphthalene | 130 | 330 | NS I | 20.0 | 2.00 J [2.80 J] | | 2-Methylphenol | ND(4.60) | ND(4.30) | NS I | ND(8.90) | ND(4.30) [ND(5.30)] | | 2-Nitroaniline | ND(23) J | ND(21) J | NS | ND(44.0) | ND(22.0) [ND(26.0)] | | 3&4-Methylphenol | ND(9.30) | ND(8.60) | NS | ND(18.0) | ND(8.70) [ND(10.0)] | | 4-Chloroaniline | ND(9.30) | ND(8.60) | NS | ND(18.0) | ND(8.70) [ND(10.0)] | | 4-Chlorobenzilate | ND(23.0) | ND(21.0) | NS I | ND(44.0) | ND(22.0) [ND(26.0)] | | 4-Phenylenediamine | ND(23.0) | ND(21.0) | NS | ND(44.0) | ND(22.0) [ND(26.0)] | | Acenaphthene | 9.50 | 180 | NS | 8.00 J | 2.70 J [ND(5.30)] | | Acenaphthylene | 56.0 | 150 | NS | 71.0 | ND(4.30) [1.40 J] | | Acetophenone | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Aniline | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Anthracene | 58.0 | 290 | NS | 21.0 | 9.10 [1.80 J] | | Benzo(a)anthracene | 46.0 | 56.0 | NS | 63.0 | 15.0 [4.50 J] | | Benzo(a)pyrene | 30.0 | 50.0 | NS NS | 64.0 | 10.0 [3.10 J] | | Benzo(b)fluoranthene | 17.0 | 14.0 | NS
No | 40.0 | 6.70 [1.50 J] | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | 14.0
22.0 | 26.0
30.0 | NS
NS | 81.0
43.0 | 7.80 [2.50 J] | | Benzyl Alcohol | ND(9.30) | ND(8.60) | NS
NS | 43.0
ND(18.0) | 9.90 [2.80 J]
ND(8.70) [ND(10.0)] | | bis(2-Ethylhexyl)phthalate | ND(4.60) | ND(4.30) | NS NS | ND(8.90) | ND(8.70) [ND(10.0)]
ND(4.30) [ND(5.30)] | | Chrysene | 38.0 | 55.0 | NS NS | 46.0 | 15.0 [5.00 J] | | Dibenzo(a,h)anthracene | ND(9.30) | ND(8.60) | NS NS | 7.40 J | ND(8.70) [ND(10.0)] | | Dibenzofuran | ND(4.60) | 11.0 | NS I | 2.00 J | 2.40 J [ND(5.30)] | | Diethylphthalate | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Dimethylphthalate | ND(4.60) | ND(4.30) | NS I | ND(8.90) | ND(4.30) [ND(5.30)] | | Di-n-Butylphthalate | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Diphenylamine | ND(4.6) | ND(4.3) | NS | ND(8.9) | ND(4.3) [ND(5.3)] | | Fluoranthene | 57.0 | 81.0 | NS | 110 | 29.0 [7.30] | | Fluorene | 40.0 | 160 | NS | 38.0 | 3.90 J [1.80 J] | | Hexachlorobenzene | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Indeno(1,2,3-cd)pyrene | ND(9.30) | 16.0 | NS | 55.0 | 6.70 J [1.50 J] | | Naphthalene | 250 | 540 | NS | 6.90 J | 3.70 J [4.50 J] | | Nitrobenzene | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | N-Nitrosodiphenylamine | ND(4.60) | ND(4.30) | NS | ND(8,90) | ND(4.30) [ND(5.30)] | | o-Toluidine | ND(4.6) J | ND(4.3) J | NS | ND(8.90) | ND(4.30) [ND(5.30)] | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging A | rea: 4B | 4B | 4B | 4B | 4B | |--------------------------------|----------------|---------------|--|-----------------|-------------------------------------| | Sample | | RAA4-4 | RAA4-4 | RAA4-5 | RAA4-8 | | Sample Depth(Fe | 1 | 6-15 | 12-14 | 0-1 | 0-1 | | Parameter Date Collec | | 01/24/01 | 01/24/01 | 01/30/01 |
01/30/01 | | Semivolatile Organics (continu | red) | | | | | | Pentachlorobenzene | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Pentachlorophenol | ND(23.0) | ND(21.0) | NS | ND(44.0) | ND(22.0) [ND(26.0)] | | Phenanthrene | 86.0 | 390 | NS | 150 | 36.0 [14.0] | | Pheno! | ND(4.60) | ND(4.30) | NS | ND(8.90) | ND(4.30) [ND(5.30)] | | Pyrene | 190 | 420 | NS | 140 | 28.0 [10.0] | | Pyridine | ND(4.60) | ND(4.30) | NS | ND(8.9) J | ND(4.3) J [ND(5.3) J] | | Furans | | | ''''''''''''''''''''''''''''''''''''' | <u> </u> | | | 2,3,7,8-TCDF | ND(0.000040) | ND(0.00014) | N\$ | 0.000014 | 0.000044 [0.000032] | | TCDFs (total) | ND(0.000040) | ND(0.00014) | NS | 0.00016 | 0.00043 [0.00033] | | 1,2,3,7,8-PeCDF | ND(0.000052) | ND(0.000095) | NS | 0.0000069 | 0.000014 [0.000011] | | 2,3,4,7,8-PeCDF | ND(0.000051) | ND(0.000094) | NS | 0.000027 | 0.000076 [0.000057] | | PeCDFs (total) | ND(0.000052) | ND(0.000095) | NS | 0,00026 | 0.0010 [0.00081] | | 1,2,3,4,7,8-HxCDF | 0.000053 J | ND(0.00012) | NS | 0.000014 | 0.000018 [0.000013] | | 1,2,3,6,7,8-HxCDF | 0.000060 J | ND(0.00011) | NS | 0.0000097 | 0.000031 [0.000025] | | 1,2,3,7,8,9-HxCDF | 0.000064 J | ND(0.00013) | NS | 0.0000039 J | 0.0000078 [0.0000062] | | 2,3,4,6,7,8-HxCDF | 0.000058 J | ND(0.00012) | NS | 0.000021 | 0.00013 [0.000096] | | HxCDFs (total) | 0.00029 | ND(0.00012) | NS | 0.00028 | 0.0018 [0.0014] | | 1,2,3,4,6,7,8-HpCDF | 0.00013 J | ND(0.000082) | NS | 0.000042 | 0.00012 [0.000092] | | 1,2,3,4,7,8,9-HpCDF | ND(0.000075) | ND(0.000099) | NS | 0.0000061 | 0.000011 [0.0000098] | | HpCDFs (total) | 0.00013 | ND(0.000089) | NS | 0.000092 | 0.00034 [0.00027] | | OCDF | ND(0.00011) X | ND(0.000095) | NS | 0.000032 | 0.000040 [0.000036] | | Dioxins | | | | <u> </u> | | | 2,3,7,8-TCDD | ND(0.000042) | ND(0.00016) | NS | ND(0.0000011) X | ND(0.00000054) X [ND(0.00000043) X] | | TCDDs (total) | ND(0.000042) | ND(0.00016) | NS | 0.0000019 | 0.0000047 [0.0000057] | | 1,2,3,7,8-PeCDD | ND(0.000059) | ND(0.00018) | NS | 0.0000021 | 0.0000014 [0.0000011 J] | | PeCDDs (total) | ND(0.000059) | ND(0.00018) | NS | 0.0000089 | 0.000013 [0.000012] | | 1,2,3,4,7,8-HxCDD | ND(0.000039) | ND(0.00015) | NS | 0.0000016 J | 0.0000013 J [0.0000012 J] | | 1,2,3,6,7,8-HxCDD | ND(0.000039) | ND(0.00015) | NS | 0.0000028 J | 0.0000021 J [0.0000018 J] | | 1,2,3,7,8,9-HxCDD | ND(0.000056) X | ND(0.00014) | NS | 0.0000019 J | 0.0000015 [0.0000012 J] | | HxCDDs (total) | ND(0.000038) | ND(0.00014) | NS | 0.000018 | 0.000025 [0.000022] | | 1,2,3,4,6,7,8-HpCDD | ND(0.000054) | ND(0.000078) | NS | 0.000015 | 0.000027 [0.000020] | | HpCDDs (total) | ND(0.000054) | ND(0.000078) | NS | 0.000030 | 0.000053 [0.000040] | | OCDD | 0.00022 J | ND(0.00015) X | NS . | 0.000072 | 0.00011 [0.000080] | | Total TEQs (WHO TEFs) | 0.000099 | 0.00025 | NS | 0.000024 | 0.000066 [0.000049] | | Inorganics | | | | | | | Antimony | ND(12.0) | ND(12.0) | NS | ND(12.0) | ND(12.0) [ND(14.0)] | | Arsenic | ND(21.0) | ND(15.0) | NS | ND(20.0) | ND(15.0) [ND(15.0)] | | Barium | ND(42.0) | ND(30.0) | NS | ND(40.0) | 40.0 [54.0] | | Beryllium | 0.300 | 0.260 | NS | 0.280 | 0.290 [0.370] | | Cadmium | ND(2.10) | ND(1.90) | NS | ND(2.00) | ND(2.00) [ND(2.40)] | | Chromium | 12.0 | 7.70 | NS | 12.0 | 11.0 [13.0] | | Cobalt | 11.0 | 12.0 | NS - | ND(10.0) | 11.0 [15.0] | | Copper | 33.0 | 25.0 | NS | 34.0 | 46.0 [51.0] | | Cyanide | ND(1.00) | ND(1.00) | NS | 9.20 | ND(1.00) [ND(1.00)] | | Lead | 34.0 J | 17.0 J | NS | 34.0 | 44.0 [46.0] | | Mercury | ND(0.280) | ND(0.260) | NS | ND(0.270) | 0.300 [ND(0.320)] | | Nickel | 21.0 | 19.0 | NS | 14.0 | 19.0 [24.0] | | Selenium | ND(1.00) | ND(0.970) | NS | ND(1.00) J | ND(0.990) J [ND(1.20) J] | | Silver | ND(1.00) | ND(0.970) | NS | ND(1.00) | ND(0.990) [ND(1.20)] | | Sulfide | 160 J | 770 J | NS | 21.0 | 16.0 [ND(8.00)] | | Thallium | ND(2.10) | ND(1.90) | NS | ND(2.00) | ND(2.00) [ND(2.40)] | | Tin | ND(62.0) | ND(58.0) | NS | ND(60.0) | ND(59.0) [ND(72.0)] | | Vanadium | 11.0 | ND(9.70) | NS | 12.0 | 16.0 [19.0] | | Zinc | 91.0 J | 54.0 J | NS | 49.0 | 75.0 [97.0] | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4B
RAA4-10
0-1 | 4B
RAA4-13
0-1 | 4B
RAA4-15
0-1 | 4B
RAA4-16
6-15 | 4B
RAA4-16
12-14 | 4B
RAA4-17
0-1 | |--|---------------------------|------------------------|---------------------------|-----------------------|------------------------|--| | Parameter Date Collected: | 01/30/01 | 01/30/01 | 01/30/01 | 01/24/01 | 01/24/01 | 01/29/01 | | Volatile Organics | | | 1 | V 17 M -1 V 7 | | | | 1.1.1-Trichloroethane | ND(0.0073) | ND(0,0083) | ND(0.0069) | NS | T ND(0.82) | ND(0.0080) | | 1,1-Dichloroethane | ND(0.0073) | ND(0.0083) | ND(0.0069) | NS NS | ND(0.82) | ND(0.0080) | | 1.2-Dichloroethane | ND(0.0073) | ND(0.0083) | ND(0.0069) | NS | ND(0.82) | ND(0.0080) | | 2-Butanone | ND(0.10) | ND(0.0033)
ND(0.10) | ND(0.0009) | NS NS | ND(16) | ND(0.0000) | | 2-Chloroethylvinylether | ND(0.0073) | ND(0.0083) | ND(0.0069) | NS NS | ND(0.82) | ND(0.0080) | | Acetone | ND(0.0073) | ND(0.10) | ND(0.003) | NS NS | ND(16) | ND(0.10) | | Benzene | ND(0.00730) | ND(0.10) | ND(0.00690) | NS NS | 5.50 | ND(0.00800) | | Carbon Disulfide | ND(0.010) | ND(0.010) | ND(0.00090) | NS | ND(1.6) | ND(0.0000) | | Chlorobenzene | ND(0.0073) | ND(0.0083) | ND(0.0069) | NS | 0.66 J | ND(0.0080) | | Ethylbenzene | ND(0.0073) | ND(0.00830) | ND(0.00690) | NS NS | 21.0 | ND(0.00800) | | Methylene Chloride | ND(0.00730) | ND(0.00830) | ND(0.00690) | NS NS | ND(0.82) | ND(0.0080) | | Styrene Chonde | ND(0.0073) | ND(0.00830) | ND(0.00690) | NS NS | ND(0.820) | ND(0.0080) | | Tetrachloroethene | ND(0,00730) | ND(0.0083) | ND(0.00690) | NS NS | ND(0.82) | ND(0.00800) | | Toluene | ND(0.0073) | ND(0.00830) | ND(0.00690) | NS
NS | 27.0 | ND(0.00800) | | Frichloroethene | ND(0.00730) | | | | | | | Trichlorofluoromethane | ND(0.0073) J | ND(0.0083) | ND(0.0069) | NS
NS | ND(0.82) | ND(0.0080) | | | ND(0.0073) J
ND(0.015) | ND(0.0083) J | ND(0.0069) J
ND(0.014) | NS
NS | ND(0.82) | ND(0.0080) J
ND(0.0080) | | Xylenes (total) | (פוט.ע)טאו | ND(0.0083) | ND(0.014) | СМ | 87 | (טאטט.ט)עאו | | Semivolatile Organics | NEW CO. | | T | | 1 1 | The same of sa | | 1,2,4,5-Tetrachlorobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 1,2,4-Trichlorobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 1,2-Dichlorobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 1,2-Diphenylhydrazine | ND(0.48) | ND(5.5) | ND(0.88) | ND(5.0) | NS | ND(0.53) | | 1,3-Dichlorobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 1,3-Dinitrobenzene | ND(2.50) | ND(28.0) | ND(4.40) | ND(25.0) | NS | ND(2.70) | | I,4-Dichlorobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 2,4-Dimethylphenol | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 2-Chloronaphthalene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 2-Chlorophenol | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 2-Methylnaphthalene | ND(0.480) | ND(5.50) | ND(0.880) | 95.0 | NS | ND(0.530) | | 2-Methylphenol | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | 2-Nitroaniline | ND(2.50) | ND(28.0) | ND(4.40) | ND(25) J | NS | ND(2.70) | | 3&4-Methylphenol | ND(0.980) | ND(11.0) | ND(1.80) | ND(10.0) | NS NS | ND(1.10) | | 1-Chloroaniline | ND(0.980) | ND(11.0) | ND(1.80) | ND(10.0) | NS | ND(1.10) | | 1-Chlorobenzilate | ND(2.50) | ND(28.0) | ND(4.40) | ND(25.0) | NS | ND(2.70) | | 1-Phenylenediamine | ND(2.50) | ND(28.0) | ND(4.40) | ND(25.0) | NS | ND(2.70) | | Acenaphthene | ND(0.480) | ND(5.50) | ND(0.880)
 8.60 | NS | ND(0.530) | | Acenaphthylene | ND(0.480) | 4.80 J | ND(0.880) | 36.0 | NS | 0.180 J | | Acetophenone | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Aniline | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Anthracene | ND(0.480) | 4.70 J | ND(0.880) | 80.0 | NS | ND(0.530) | | Benzo(a)anthracene | 0.250 J | 49.0 | 0.210 J | 44.0 | NS | 0.280 J | | Benzo(a)pyrene | ND(0.480) | 38.0 | ND(0.880) | 37.0 | NS | 0.210 J | | Benzo(b)fluoranthene | ND(0.480) | 34.0 | ND(0.880) | 14.0 | NS | 0.170 J | | Benzo(g,h,i)perylene | 0.140 J | 25.0 | ND(0.880) | 22.0 | NS NS | 0.270 J | | Benzo(k)fluoranthene | ND(0.480) | 35.0 | ND(0.880) | 26.0 | NS | 0.310 J | | Benzyl Alcohol | ND(0.980) | ND(11.0) | ND(1.80) | ND(10.0) | NS I | ND(1.10) | | pis(2-Ethylhexyl)phthalate | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Chrysene | 0.280 J | 43.0 | 0.340 J | 40.0 | NS | 0.390 J | | Dibenzo(a,h)anthracene | ND(0.980) | 6.20 J | ND(1.80) | ND(10.0) | NS | ND(1.10) | | Dibenzofuran | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Diethylphthalate | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Dimethylphthalate | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Di-n-Butylphthalate | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Diphenylamine | ND(0.48) | ND(5.5) | ND(0.88) | ND(5.0) | NS | ND(0.53) | | luoranthene | 0.560 | 71.0 | 0.590 J | 76.0 | NS NS | 0.290 J | | luorene | ND(0.480) | ND(5.50) | ND(0,880) | 64.0 | NS NS | ND(0.530) | | dexachlorobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | ndeno(1,2,3-cd)pyrene | 0.120 J | 25.0 | ND(1.80) | 13.0 | NS NS | ND(0.330) | | Naphthalene | ND(0.480) | ND(5 50) | ND(0.880) | 880 | NS NS | ND(1.10)
ND(0.530) | | Vitrobenzene | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS NS | ND(0.530) | | *III ODGI IZGIIG | | | · | | | | | N-Nitrosodiphenylamine | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Averaging Area: | 4B | 4B | 4B | 4B | 4B | 4B | |-----------------------------------|---------------------------|----------------------|----------------------|------------------------|----------|----------------------| | Sample ID: | RAA4-10 | RAA4-13 | RAA4-15 | RAA4-16 | RAA4-16 | RAA4-17 | | Sample Depth(Feet): | 0-1 | 0-1 | 0-1 | 6-15 | 12-14 | 0-1 | | Parameter Date Collected: | 01/30/01 | 01/30/01 | 01/30/01 | 01/24/01 | 01/24/01 | 01/29/01 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | ND(0.480) | ND(5.50) | ! ND(0.880) | ND(5.00) | NS | ND(0 530) | | Pentachlorophenol | ND(2.50) | ND(28.0) | ND(4.40) | ND(25.0) | NS | ND(2.70) | | Phenanthrene | 0.520 | 2.30 J | 0,440 J | 280 | NS | 0.260 J | | Phenol | ND(0.480) | ND(5.50) | ND(0.880) | ND(5.00) | NS | ND(0.530) | | Pyrene | 0.520 | 76.0 | 0.530 J | 230 | NS | 0.810 | | Pyridine | ND(0.48) J | ND(5.5) J | ND(9.88) J | ND(5.00) | NS | ND(0.530) | | Furans | 4 | | | | | | | 2,3,7,8-TCDF | 0.0000038 | 0.000032 | 0.00013 | ND(0.000062) | NS | 0.0000087 | | TCDFs (total) | 0.000033 | 0.00034 | 0.0010 | ND(0.000062) | NS | 0.000121 | | 1,2,3,7,8-PeCDF | 0.0000013 J | 0.000012 | 0.000031 | ND(0.000059) | NS | 0.0000038 | | 2,3,4,7,8-PeCDF | 0.0000024 | 0.00018 | 0.000049 | ND(0.000058) | NS | 0.000035 | | PeCDFs (total) | 0.000024 | 0.0016 Q | 0.00055 Q | ND(0.000058) | NS | 0.00052 | | 1,2,3,4,7,8-HxCDF | 0.0000026 | 0.000017 | 0.000022 | ND(0.000054) | NS | ND(0.0000076) X | | 1,2,3,6,7,8-HxCDF | 0.0000013 J | 0.000030 | 0.000016 | ND(0.000050) | NS | 0,000016 | | 1,2,3,7,8,9-HxCDF | 0.00000037 J | 0.0000078 | 0.0000038 | ND(0.000059) | NS | ND(0.0000033) | | 2,3,4,6,7,8-HxCDF | 0.0000016 J | 0.000089 | 0.000026 | ND(0.000055) | NS | 0.000063 | | HxCDFs (total) | 0.000023 | 0.0011 | 0.00035 | ND(0.000054) | NS | 0.00086 | | 1,2,3,4,6,7,8-HpCDF | ND(0.0000056) | 0.000041 | 0.000042 | ND(0.000092) | NS | 0.000059 | | 1,2,3,4,7,8,9-HpCDF | 0.00000098 J | 0.00000.54 | 0.0000050 | ND(0.00011) | NS | 0.0000052 | | HpCDFs (total) | 0.000012 | 0.00011 | 0.000091 | ND(0.00010) | NS | 0.00017 | | OCDF | 0.000011 | 0.000030 | 0.000032 | ND(0.00011) | NS | 0.000016 | | Dioxins | | | | , | | | | 2,3,7,8-TCDD | ND(0.000000095) | ND(0.00000055) X | 0.0000011 | ND(0.000084) | NS | 0.00000083 | | TCDDs (total) | 0.00000030 | - 0.0000012 | 0.000023 | ND(0.000084) | NS | 0.0000083 | | 1,2,3,7,8-PeCDD | ND(0.000000070) | 0.0000019 J | 0.0000018 J | ND(0.000080) | NS | ND(0.0000011) X | | PeCDDs (total) | ND(0.00000082) | 0.000022 Q | 0.000026 Q | ND(0.000080) | NS | 0.000023 | | 1,2,3,4,7,8-HxCDD | ND(0.000000097) | 0.0000014 J | 0.00000086 J | ND(0.000064) | NS | 0.00000071 J | | 1,2,3,6,7,8-HxCDD | 0.00000026 | ND(0.0000035) X | 0.0000018 J | ND(0.000063) | NS | ND(0.00000098) X | | 1,2,3,7,8,9-HxCDD | ND(0.00000011) X | 0.0000020 J | 0.0000011 J | ND(0.000058) | NS | 0.00000071 J | | HxCDDs (total) | 0.0000012 | 0.000038 Q | 0.000020 | ND(0.000062) | NS | 0.000031 | | 1,2,3,4,6,7,8-HpCDD | ND(0.0000025) | 0.000029 | 0.000017 | ND(0.000077) | NS | 0.000011 | | HpCDDs (total) OCDD | 0.0000063 | 0.000056 | 0.000036 | ND(0.000077) | NS
NS | 0.000022 | | Total TEQs (WHO TEFs) | ND(0.000014)
0.0000024 | 0.00017
0.00011 | 0.000094
0.000050 | ND(0.00012)
0.00012 | NS
NS | 0.000041
0.000029 | | Inorganics | 0.0000024 | 0.00011 | 0.000050 | 0.00012 | 149 | 0.000029 | | Antimony | · ND(13.0) | ND(15.0) | ND(12.0) | ND(45A) | | NID(44.0) | | Arsenic | ND(15.0) | ND(13.0)
ND(25.0) | ND(12.0)
ND(15.0) | ND(12.0)
ND(15.0) | NS
NS | ND(14.0) | | Barium | 97.0 | ND(50.0) | 38.0 | 36.0 | NS
NS | ND(24.0)
ND(48.0) | | Beryllium | 0.330 | 0.310 | 0.340 | 0.350 | NS NS | 0.430 | | Cadmium | ND(2.20) | ND(2.50) | ND(2.10) | ND(2.00) | NS
NS | ND(2.40) | | Chromium | 15.0 | 11.0 | 16.0 | 9.80 | NS NS | 11.0 | | Cobait | 16.0 | ND(12.0) | 14.0 | 16.0 | NS | ND(12.0) | | Copper | 78.0 | 35.0 | 41.0 | 36.0 | NS | 33.0 | | Cyanide | ND(1.00) | ND(1.00) | ND(1.00) | 79.0 | NS | ND(1.00) | | Lead | 76.0 | 37.0 | 46.0 | 13.0 J | NS | 28.0 | | Mercury | ND(0.290) | ND(0.330) | ND(0.280) | ND(0.260) | NS | ND(0.320) | | Nickel | 30.0 | 20.0 | 25.0 | 27.0 | NS | 21.0 | | Selenium | ND(1,10) J | ND(1,20) J | ND(1.00) J | ND(0.980) | NS | ND(1.20) J | | Silver | ND(1.10) | ND(1.20) | ND(1.00) | ND(0.980) | NS | ND(1.20) | | Sulfide | 25.0 | ND(8.30) | ND(6.90) | 1600 J | NS | 23.0 | | Thallium | 2.30 | ND(2.50) | ND(2.10) | ND(2.00) | NS | ND(2.40) | | Tin | ND(66.0) | ND(75.0) | ND(62.0) | ND(59.0) | NS | ND(72.0) | | Vanadium | 16.0 | 14.0 | 14.0 | 12.0 | NS | 16.0 | | Zinc | 160 | 67.0 | 95.0 | 52.0 J | NS | 63.0 | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-18 | 4B
RAA4-18 | 4B
RAA4-19 | 4B
RAA4-19 | 4B
RAA4-19 | 4B
RAA4-21 | |---|------------------------|----------------------------|----------------------------|------------------------|----------------------------|------------------------| | Sample Depth(Feet): | 1-6 | 4-6 | 0-1 | 1-6 | 3-4 | 6-15 | | Parameter Date Collected: Volatile Organics | 01/29/01 | 01/29/01 | 01/29/01 | 01/29/01 | 01/29/01 | 01/29/01 | | 1,1,1-Trichloroethane | NO | NEVO COSTA | NO.00000 | LIO. | 1 10000000 | | | 1.1-Dichloroethane | NS
NS | ND(0.0057)
ND(0.0057) | ND(0.0072)
ND(0.0072) | NS
NS | ND(0.0054)
ND(0.0054) | NS
NS | | 1,2-Dichloroethane | NS NS | ND(0.0057) | ND(0.0072) | NS
NS | ND(0.0054) | | | 2-Butanone | NS | ND(0.10) | ND(0.0072) | NS NS | ND(0.10) | NS | | 2-Chloroethylvinylether | NS | ND(0.0057) | ND(0.0072) | NS | ND(0.0054) | NS | | Acetone | NS | ND(0,10) | ND(0.10) | NS NS | ND(0.10) | NS | | Benzene | NS | ND(0.00570) | ND(0.00720) | NS | ND(0.00540) | NS | | Carbon Disulfide | NS | ND(0.010) | ND(0.010) | NS | ND(0.010) | NS | | Chlorobenzene | NS | ND(0.0057) | ND(0.0072) | NS | ND(0.0054) | NS | | Ethylbenzene | NS | ND(0.00570) | ND(0.00720) | NS | ND(0.00540) | NS | | Methylene Chloride | NS | ND(0.0057) | ND(0.0072) | NS | ND(0.0054) | NS | | Styrene | NS | ND(0.00570) | ND(0.00720) | NS | ND(0.00540) | NS | | Tetrachloroethene | NS
NS | ND(0.0057) | ND(0.0072) | NS | ND(0.0054) | NS NS | | Toluene
Trichloroethene | NS
NS | ND(0.00570) | ND(0.00720) | NS
NC | ND(0.00540) | NS
NS | | Trichlorofluoromethane | NS NS | ND(0.0057)
ND(0.0057) J | ND(0.0072)
ND(0.0072) J | NS
NS | ND(0.0054)
ND(0.0054) J | NS
NS | | Xylenes (total) | NS NS | ND(0.0057) 3
ND(0.011) | ND(0.0072) 3
ND(0.014) | NS
NS | ND(0.0054) J
ND(0.011) | NS
NS | | Semivolatile Organics | 110 | 1 140(0,011) | 140(0.014) | į INO | I MOTORIAL I | - GRI | | 1,2,4,5-Tetrachlorobenzene | ND(0.380) | NS I | ND(0.480) | ND(0.360) | l NS | ND(0.550) | | 1,2,4-Trichlorobenzene | ND(0.380) | NS NS | ND(0,480)
ND(0.480) | ND(0.360) | NS NS | ND(0.550) | | 1,2-Dichlorobenzene | ND(0.380) | NS I | ND(0.480) | ND(0.360) | NS NS | ND(0.550) | | 1,2-Diphenylhydrazine | ND(0.38) | NS | ND(0.48) | ND(0.36) | NS | ND(0.55) | | 1,3-Dichlorobenzene | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | 1,3-Dinitrobenzene | ND(1.90) | NS | ND(2.40) | ND(1.80) | NS | ND(2.80) | | 1,4-Dichlorobenzene | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | 2,4-Dimethylphenol | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | 2-Chloronaphthalene | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | 2-Chlorophenol | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | 2-Methylnaphthalene | ND(0.380) | NS | 0.0970 J | ND(0.360) | NS | ND(0.550) | | 2-Methylphenol | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | 2-Nitroaniline | ND(1.90) | NS NS | ND(2.40) | ND(1.80) | NS | ND(2.80) | | 3&4-Methylphenol
4-Chloroaniline |
ND(0.760) | NS | ND(0.970) | ND(0.720) | NS | ND(1.10) | | 4-Chlorobenzilate | ND(0.760)
ND(1.90) | NS
NS | ND(0.970)
ND(2.40) | ND(0.720)
ND(1.80) | NS NS | ND(1.10) | | 4-Phenylenediamine | ND(1.90) | NS NS | ND(2.40) | ND(1.80) | NS NS | ND(2.80)
ND(2.80) | | Acenaphthene | ND(0.380) | NS NS | ND(0.480) | ND(0.360) | NS NS | ND(0.550) | | Acenaphthylene | ND(0.380) | NS NS | 0.200 J | ND(0.360) | NS NS | ND(0.550) | | Acetophenone | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | Aniline | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | Anthracene | ND(0.380) | NS | 0.170 J | ND(0.360) | NS | ND(0.550) | | Benzo(a)anthracene | ND(0.380) | NS | 0.570 | ND(0.360) | NS | ND(0.550) | | Benzo(a)pyrene | ND(0.380) | NS | 0.580 | ND(0.360) | NS | ND(0.550) | | Benzo(b)fluoranthene | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | ND(0.380) | NS
NS | 0.520 | ND(0.360) | NS | ND(0.550) | | Benzo(k)riuorantnene
Benzyl Alcohol | ND(0.380)
ND(0.760) | NS NS | 0.470 J | ND(0.360) | NS
NS | ND(0.550) | | bis(2-Ethylhexyl)phthalate | ND(0.760)
ND(0.380) | NS
NS | ND(0.970)
ND(0.480) | ND(0.720)
ND(0.360) | NS
NS | ND(1.10) | | Chrysene | 0.0880 J | NS NS | 0.610 | ND(0.360) | NS
NS | ND(0.550)
ND(0.550) | | Dibenzo(a,h)anthracene | ND(0.760) | NS NS | ND(0.970) | ND(0.360)
ND(0.720) | NS
NS | ND(0.550)
ND(1.10) | | Dibenzofuran | ND(0.380) | NS NS | ND(0.480) | ND(0.360) | NS NS | ND(1.10) | | Diethylphthalate | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | Dimethylphthalate | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | Di-n-Butylphthalate | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | | Diphenylamine | ND(0.38) | NS | ND(0.48) | ND(0.36) | NS | ND(0.55) | | iuoranthene | 0.0820 J | NS | 1.00 | ND(0.360) | N\$ | ND(0.550) | | uorene | ND(0.380) | NS | 0.160 J | ND(0.360) | NS | ND(0.550) | | fexachlorobenzene | ND(0.380) | NS I | ND(0.480) | ND(0.360) | NS | ND(0.550) | | ndeno(1,2,3-cd)pyrene | ND(0.760) | NS | 0.400 J | ND(0.720) | NS | ND(1.10) | | Naphthalene | ND(0.380) | NS | 0.200 J | ND(0.360) | NS | ND(0.550) | | Vitrobenzene | ND(0.380) | NS NS | ND(0.480) | ND(0.360) | NS NS | ND(0.550) | | N-Nitrosodiphenylamine | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS | ND(0.550) | #### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID
Sample Depth(Feet) | RAA4-18 | RAA4-18
4-6 | RAA4-19
0-1 | RAA4-19
1-6 | RAA4-19
3-4 | RAA4-21
6-15 | |-----------------------------------|-----------------|----------------|---------------------------|----------------|----------------|------------------------------| | Parameter Date Collected | | 01/29/01 | 01/29/01 | 01/29/01 | 01/29/01 | 01/29/01 | | Semivolatile Organics (continued) | | | 1 01120101 | 01120701 | 0 172070 1 | (01723/01 | | Pentachlorobenzene | ND(0.380) | NS | ND(0.480) | ND(0.350) | NS | ND(0.550) | | Pentachloropheno! | ND(1,90) | NS | ND(2.40) | ND(1.80) | NS NS | ND(2.80) | | Phenanthrene | ND(0.380) | NS | 1.10 | ND(0.360) | NS NS | 0.120 J | | Phenol | ND(0.380) | NS | ND(0.480) | ND(0.360) | NS NS | ND(0.550) | | Pyrene | 0.100 J | NS NS | 1.10 | ND(0.360) | NS | ND(0.550) | | Pyridine | ND(0.380) | NS | ND(0.480) | ND(0.350) | NS
NS | ND(0.550) | | Furans | 1 | | 1 (15(0.400) | (10(3.000) | 340 | 1 142(0.000) | | 2,3,7,8-TCDF | ND(0.000010) | NS | 0.000018 | ND(0.000011) | NS | ND(0.000014) | | TCDFs (total) | ND(0.000010) | NS NS | 0.00018 | ND(0.000011) | NS
NS | ND(0.000014) | | 1,2,3,7,8-PeCDF | ND(0.000020) | NS NS | 0.0000049 | ND(0.000011) | NS NS | ND(0.000014) | | 2.3.4.7,8-PeCDF | ND(0.000019) | NS NS | 0.0000049 | ND(0.000015) | NS
NS | ND(0.000017) | | PeCDFs (total) | 0.000042 | NS | 0.00011 | ND(0.000015) | NS
NS | ND(0.000017) | | 1,2,3,4,7,8-HxCDF | ND(0.00018) | NS | 0.000011 | ND(0.000094) | NS
NS | ND(0.000017) | | 1.2,3,6,7,8-HxCDF | ND(0.00017) | NS NS | 0.0000039 | ND(0.0000094) | NS
NS | ND(0.000012) | | 1,2,3,7,8,9-HxCDF | ND(0.00020) | NS NS | 0.00000088 J | ND(0.000010) | NS | ND(0.000011) | | 2,3,4,6,7,8-HxCDF | ND(0.00018) | NS | 0.0000077 | ND(0.0000095) | NS | ND(0.000013) | | HxCDFs (total) | 0.000066 | NS NS | 0.00011 | ND(0.0000095) | NS | ND(0.000012) | | 1,2,3,4,6,7,8-HpCDF | 0.000021 J | NS | 0.000012 | ND(0.0000087) | NS | ND(0.000012) | | 1,2,3,4,7,8,9-HpCDF | ND(0.000053) | NS | 0.0000012 | ND(0.000010) | NS | ND(0.000014) | | HpCDFs (total) | 0.000021 | NS | 0.000028 | ND(0.0000095) | NS
NS | ND(0.000014) | | OCDF | ND(0.000023) | NS | 0.000089 | ND(0.000033) | NS
NS | ND(0.000013) | | Dioxins | 1 110(0.000020) | 110 | 0.0000003 | 140(0.000022) | 180 | 140(0.000020) | | 2.3.7.8-TCDD | ND(0.000016) | NS | ND(0.00000030) X | ND(0.000018) | NS | ND(0.000019) | | TCDDs (total) | ND(0.000016) | NS NS | 0.0000027 | ND(0.000018) | NS NS | ND(0.000019) | | 1,2,3,7,8-PeCDD | ND(0.000016) | NS NS | ND(0.0000093) X | ND(0.000017) | NS NS | ND(0.000019) | | PeCDDs (total) | ND(0.000026) | NS NS | 0.000034 | ND(0.000017) | | ND(0.000020) | | 1,2,3,4,7,8-HxCDD | ND(0.000020) | NS NS | 0.0000034
0.00000028 J | ND(0.000011) | NS NS | ND(0.000020) | | 1,2,3,6,7,8-HxCDD | ND(0.000014) | NS NS | 0.00000020 J | ND(0.000011) | NS
NS | | | 1,2,3,7,8,9-HxCDD | ND(0.000014) | NS NS | 0.00000039 J | ND(0.000011) | NS NS | ND(0.000012)
ND(0.000011) | | HxCDDs (total) | ND(0.000014) | NS NS | 0.000000593 | ND(0.000011) | NS
NS | ND(0.000011) | | 1,2,3,4,6,7,8-HpCDD | ND(0.000014) | NS | 0.0000031 | ND(0.000011) | NS NS | ND(0.000012) | | HpCDDs (total) | ND(0.000023) | NS NS | 0.000017 | ND(0.000018) | NS
NS | ND(0.000021) | | OCDD | ND(0.000026) | NS NS | 0.000057 | ND(0.000027) | NS NS | ND(0.000021) | | Total TEQs (WHO TEFs) | 0.000066 | NS | 0.000037 | 0.000027 | NS NS | 0.000029 | | Inorganics | , | | 0.0000007 | 0.000020 | 140 | 0.000023 | | Antimony | ND(10.0) | NS | ND(13.0) | ND(9.70) | NS | ND(15.0) | | Arsenic | ND(15.0) | NS | ND(15.0) | ND(15.0) | NS
NS | ND(25.0) | | Barium | 32.0 | NS | 53.0 | ND(30.0) | NS NS | 76.0 | | Beryllium | 0.290 | NS | 0.410 | 0.250 | NS | 0.680 | | Cadmium | ND(1.70) | NS | ND(2.20) | ND(1,60) | NS NS | ND(2.50) | | Chromium | 7.30 | NS | 11.0 | 6.90 | NS NS | 17.0 | | Cobalt | 9.80 | NS | ND(11.0) | 8.20 | NS NS | 18.0 | | Copper | ND(17.0) | NS | 54.0 | 17.0 | NS | 30.0 | | Cyanide | ND(1.00) | NS | ND(1.00) | ND(1.00) | NS | ND(1.00) | | Lead | 12.0 | NS | 60.0 | 8.40 | NS | 18.0 | | Mercury | ND(0.230) | NS NS | ND(0.290) | ND(0.220) | NS NS | ND(0.330) | | Nickel | 15.0 | NS | 22.0 | 14.0 | NS NS | 32.0 | | Selenium | ND(0.850) J | NS | ND(1.20) J | ND(0.810) J | NS | ND(1.20) J | | Silver | ND(0.850) | NS | ND(1.10) | ND(0.810) | NS | ND(1.20) 3 | | Sulfide | 13.0 | NS | 23.0 | 6.90 | NS | 16.0 | | Thallium | ND(1.70) | NS | ND(2.20) | ND(1.60) | NS NS | ND(2.50) | | Tin | ND(51.0) | NS | ND(65.0) | ND(48.0) | NS NS | ND(74.0) | | Vanadium | ND(8.50) | NS | 24.0 | ND(8.10) | NS NS | 17.0 | | | | | | | . +1,2 | 17.9 | 48.0 NS 86.0 32.0 NS Zinc 88.0 # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-21 | 4B
RAA4-22 | 4B
RAA4-22 | 4B
RAA4-A33 | 4B
RAA4-A34 | 4B
RAA4-A35 | |---|----------------------------|------------------------|--------------------------|--------------------------|----------------|--------------------------| | Sample Depth(Feet): | 12-14 | 1-6 | 4-6 | 0-1 | 1-6 | 0-1 | | Parameter Date Collected: | 01/29/01 | 01/31/01 | 01/31/01 | 05/16/02 | 05/16/02 | 05/16/02 | | Volatile Organics 1,1,1-Trichloroethane | ND(0.0083) | NO | ! NEVO (0000) | L ND (0 0004) | bio. | 1 150/0.0000 | | 1,1-Dichloroethane | ND(0.0083) | NS
NS | ND(0.0068)
ND(0.0068) | ND(0.0061)
ND(0.0061) | NS
NS | ND(0.0056)
ND(0.0056) | | 1.2-Dichloroethane | ND(0.0083) | NS
NS | ND(0.0068) | ND(0.0061) | NS NS | ND(0.0056) | | 2-Butanone | ND(0.10) | NS | ND(0.10) | ND(0.012) | NS | ND(0.011) | | 2-Chloroethylvinylether | ND(0.0083) | NS NS | ND(0.0058) | ND(0.0061) | NS | ND(0.0056) | | Acetone | ND(0.10) | NS | ND(0.10) | ND(0.024) | NS | ND(0.022) | | Benzene | ND(0.00830) | NS | ND(0.00680) | ND(0.00610) | NS | ND(0.00560) | | Carbon Disulfide | ND(0.010) | NS | ND(0.010) | ND(0.0061) | NS | ND(0.0056) | | Chlorobenzene | ND(0.0083) | NS | ND(0.0068) | ND(0.0061) | NS | ND(0.0056) | | Ethylbenzene | ND(0.00830) | NS | ND(0.00680) | ND(0.00610) | NS | ND(0.00560) | | Methylene Chloride | ND(0.0083) | NS | ND(0.0068) | ND(0.0061) | NS | ND(0.0056) | | Styrene | ND(0.00830) | NS | ND(0.00680) | ND(0.00610) | NS | ND(0.00560) | | Tetrachloroethene | ND(0.0083) | NS | ND(0.0068) | ND(0.0061) | NS | ND(0.0056) | | Toluene | ND(0.00830) | NS | ND(0.00680) | ND(0.00610) | NS | ND(0.00560) | | Trichloroethene Trichlorofluoromethane | ND(0.0083)
ND(0.0083) J | NS
NS | ND(0.0068) | ND(0.0061) | NS
NS | ND(0.0056) | | Yylenes (total) | ND(0.0083) J
ND(0.0083) | NS
NS | ND(0.0068) J | ND(0.0061)
ND(0.0061) | NS
NS | ND(0.0056) | | Semivolatile Organics | 14040.0000) | CNI | ND(0.0068) | ן (דמטטיט)עואו | NS | ND(0.0056) | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.540) | NS | NID/O 440) | Ne | NID(0 270) | | 1,2,4-Trichlorobenzene | NS NS | ND(0.540)
ND(0.540) | NS
NS | ND(0.410)
ND(0.410) | NS
NS | ND(0.370)
ND(0.370) | | 1,2-Dichlorobenzene | NS NS | ND(0.540) | NS NS | ND(0.410)
ND(0.410) | NS
NS | ND(0.370)
ND(0.370) | | 1,2-Diphenylhydrazine | NS NS | ND(0.54) | NS NS | ND(0.41) | NS
NS | ND(0.370)
ND(0.37) | | I.3-Dichlorobenzene | NS I | ND(0.540) | NS | ND(0.410) |
NS NS | ND(0.370) | | .3-Dinitrobenzene | NS I | ND(2.70) | NS | ND(0.820) | NS NS | ND(0.750) | | ,4-Dichlorobenzene | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | 2,4-Dimethylphenol | NS NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | 2-Chloronaphthalene | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | 2-Chlorophenol | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | 2-Methylnaphthalene | NS | ND(0.540) | NS | 0.110 J | NS | ND(0.370) | | 2-Methylphenol | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | 2-Nitroaniline | NS | ND(2.70) | NS | ND(2.10) | NS | ND(1.90) | | 3&4-Methylphenol | NS | ND(1.10) | NS | ND(0.820) | NS | ND(0.750) | | 4-Chloroaniline | NS | ND(1.10) | NS | ND(0.410) | NS | ND(0.370) | | 1-Chlorobenzilate | NS | ND(2.70) | NS | ND(0.820) | NS | ND(0.750) | | 1-Phenylenediamine | NS NS | ND(2.70) | NS | ND(0.82) J | NS | ND(0.75) J | | Acenaphthene | NS
NS | ND(0.540) | NS NS | ND(0.410) | NS NS | ND(0.370) | | Acenaphthylene
Acetophenone | NS
NS | ND(0.540)
ND(0,540) | NS
NS | 0.720
ND(0.410) | NS NS | ND(0.370) | | Aniline | NS NS | ND(0,540)
ND(0.540) | NS
NS | ND(0.410)
ND(0.410) | NS NS | ND(0.370)
ND(0.370) | | Anthracene | NS I | 0.140 J | NS NS | 0.360 J | NS NS | ND(0.370) | | Benzo(a)anthracene | NS | 0.110 J | NS | 1.20 | NS | 0.150 J | | Benzo(a)pyrene | NS | 0.110 J | NS | 1.30 | NS NS | 0.170 J | | Benzo(b)fluoranthene | NS | ND(0.540) | NS | 0.680 | NS NS | 0.160 J | | Benzo(g,h,i)perylene | NS | ND(0.540) | NS | 1.00 | NS | 0.120 J | | Benzo(k)fluoranthene | NS | ND(0.540) | NS | 0.950 | NS | 0.130 J | | Benzyl Alcohol | NS | ND(1.10) | NS | ND(0.820) | NS | ND(0.750) | | pis(2-Ethylhexyl)phthalate | NS | ND(0.540) | NS | ND(0.400) | NS | ND(0.370) | | Chrysene | NS NS | 0.110 J | NS | 1.30 | NS | 0.170 J | | Dibenzo(a,h)anthracene | NS NS | ND(1.10) | NS | ND(0.410) | NS | ND(0.370) | | Dibenzofuran | NS NS | ND(0.540) | NS NS | ND(0.410) | NS | ND(0.370) | | Diethylphthalate | NS
NS | ND(0.540) | NS
NS | ND(0.410) | NS | ND(0.370) | | Dimethylphthalate Di-n-Butylphthalate | NS
NS | ND(0.540)
ND(0.540) | NS
NS | ND(0.410) | NS
NS | ND(0.370) | | Diphenylamine | NS NS | | NS
NS | 0.180 J | NS
NS | ND(0.370) | | luoranthene | NS
NS | ND(0.54)
0.310 J | NS
NS | ND(0.41) | NS
NS | ND(0.37) | | luorannene | NS NS | ND(0.540) | NS
NS | 1.80
0.150 J | NS
NS | 0.290 J | | lexachiorobenzene | NS NS | ND(0.540) | NS
NS | ND(0,410) | NS NS | ND(0.370) | | ndeno(1,2,3-cd)pyrene | NS | ND(1.10) | NS NS | 0.680 | NS
NS | ND(0.370)
ND(0.370) | | laphthalene | NS NS | 0.520 J | NS NS | 0.250 J | NS NS | ND(0.370)
ND(0.370) | | Vitrobenzene | NS | ND(0.540) | NS NS | ND(0.410) | NS | ND(0.370)
ND(0.370) | | V-Nitrosodiphenylamine | NS | ND(0.540) | NS NS | ND(0.410) | NS NS | ND(0.370) | | -Toluidine | NS NS | ND(0.540) | NS NS | ND(0.410) | NS NS | ND(0.370) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4B | 48 | 4B | 4B | · 48 | 4B | |--|-----------|------------------------------|----------|-------------|--------------------------|-----------------------------| | Sample ID: | RAA4-21 | RAA4-22 | RAA4-22 | RAA4-A33 | RAA4-A34 | RAA4-A35 | | Sample Depth(Feet): | 12-14 | 1-6 | 4-6 | 0-1 | 1-6 | 0-1 | | Parameter Date Collected: | .01/29/01 | 01/31/01 | 01/31/01 | 05/16/02 | 05/16/02 | 05/16/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | Pentachlorophenol | NS | ND(2.70) | NS | ND(2.10) | NS | ND(1.90) | | Phenanthrene | NS | 0.540 | NS | 1.50 | NS | 0.150 J | | Phenol | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | Pyrene | NS | 0.330 J | NS | 2.30 | NS | 0.240 J | | Pyridine | NS | ND(0.540) | NS | ND(0.410) | NS | ND(0.370) | | Furans | | | | | | | | 2,3,7,8-TCDF | NS | ND(0.000014) | NS | 0.000023 | 0.000022 | 0.0000052 | | TCDFs (total) | NS | ND(0.000014) | NS | 0.00013 | 0.000161 | 0.000034 | | 1,2,3,7,8-PeCDF | NS | ND(0.000020) | NS | 0.0000078 | 0.0000063 | 0.0000023 | | 2,3,4,7,8-PeCDF | NS | ND(0.000020) | NS | 0.000024 | 0.000021 | 0.0000055 | | PeCDFs (total) | NS | ND(0.000020) | NS | 0.00021 QI | 0.00022 Q1 | 0.000068 Q | | 1,2,3,4,7,8-HxCDF | NS | ND(0.000062) | NS | 0.000014 | 0.000012 | 0.0000054 | | 1,2,3,6,7,8-HxCDF | NS | ND(0.000058) | NS | 0.0000087 | 0.0000084 | 0.0000029 | | 1,2,3,7,8,9-HxCDF | NS | ND(0.000068) | NS | 0.0000031 | 0.0000020 J | 0.0000018 J | | 2,3,4,6,7,8-HxCDF | NS | ND(0.000063) | NS | 0.000019 | 0.000017 | 0.0000081 | | HxCDFs (total) | NS | ND(0.0052) | NS | 0.00032 | 0.00023 | 0.00010 | | 1,2,3,4,6,7,8-HpCDF | NS | ND(0.000040) | NS | 0.00022 | 0.000051 | 0.000016 | | 1,2,3,4,7,8,9-HpCDF | NS | ND(0.000048) | NS | 0.0000042 | 0.0000036 | 0.0000029 | | HpCDFs (total) | NS | ND(0.000044) | NS | 0.00040 | 0.00011 | 0.000042 | | OCDF | NS | ND(0.000038) | NS | 0.00017 | 0.000052 | 0.000034 | | Dioxins | | - Mario 555005 | | | | | | 2,3,7,8-TCDD | NS NS | ND(0.000020) | NS | 0.00000073 | 0.00000037 J | ND(0.00000021) X | | TCDDs (total) | NS NS | ND(0.000020) | NS | 0.0000038 | 0.0000039 | 0.00000029 | | 1,2,3,7,8-PeCDD | NS | ND(0.00021) | NS | 0.0000020 J | ND(0.0000011) X | ND(0.00000047) X | | PeCDDs (total) | NS | ND(0.00021) | NS
NS | 0.000015 Q | 0.0000067 Q | 0.0000019 Q | | 1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD | NS
NS | ND(0.000084) | NS
NG | 0.0000025 J | 0.0000010 J | 0.00000053 J | | 1,2,3,7,8,9-HxCDD | NS
NS | ND(0.000083)
ND(0.000076) | NS
NS | 0.0000084 | 0.0000026
0.0000017 J | 0.0000012 J
0.00000077 J | | HxCDDs (total) | NS NS | ND(0.000076) | NS | 0.0000034 | 0.0000017 3 | 0.000000773
0.0000010 Q | | 1,2,3,4,6,7,8-HpCDD | NS NS | ND(0.000081) | NS NS | 0.00012 | 0.000022 | 0.000010 Q | | HpCDDs (total) | NS NS | ND(0.000080) | NS | 0.00012 | 0.000038 | 0.000023 | | OCDD | NS NS | ND(0.000040) | NS NS | 0.00020 | 0.00033 | 0.00024 | | Total TEQs (WHO TEFs) | NS NS | 0.00015 | NS NS | 0.000027 | 0.000019 | 0.0000063 | | Inorganics | 110 | 1 0.00010 | | 0.000021 | 0.900070 | 0.000000 | | Antimony | NS | ND(12.0) | NS | ND(6.00) | NS | 1.50 B | | Arsenic | NS NS | ND(20.0) | NS NS | 5.10 | NS NS | 4.40 | | Barium | NS | ND(40.0) | NS | 34.0 | NS | 30.0 | | Beryllium | NS | 0.310 | NS | ND(0.500) | N\$ | ND(0.500) | | Cadmium | NS NS | ND(2.00) | NS | ND(0.500) | NS | ND(0.500) | | Chromium | NS | 13.0 | NS | 13.0 | NS | 5.20 | | Cobalt | NS | 16.0 | NS | 6.90 | NS | 5.30 | | Copper | NS | 32.0 | NS | 39.0 | NS | 21.0 | | Cyanide | NS | ND(1.00) | NS | 0.500 | NS | 0.220 | | Lead | NS | 21.0 | NS | 86.0 | NS | 24.0 | | Mercury | NS | ND(0.270) | NS | 0.300 | NS | 0.0770 B | | Nickel | NS | 27.0 | NS | 13.0 | NS | 8.90 | | Selenium | NS | ND(1.00) J | NS | ND(1.00) | NS | ND(1.00) | | Silver | NS | ND(1.00) | NS | ND(1.00) | NS | ND(1.00) | | Sulfide | NS | ND(6.80) | NS | 23.0 | NS | 25.0 | | Thallium | NS | ND(2.00) | NS | ND(1.20) J | NS | ND(1.10) J | | Tin | NS | ND(61.0) | . NS | ND(5.20) | NS | ND(4.50) | | Vanadium | NS | 11.0 | NS | 13.0 | NS | 6.50 | | Zinc | NS | 75.0 | NS | 75.0 | NS | 42.0 | | | Averaging Area:
Sample ID: | 4B
RAA4-B29 | 4B
RAA4-B34 | 4B
RAA4-B34 | 4B
RAA4-B35 | 4B
RAA4-C27 | 4B
RAA4-C29 | |-----------------------------------|--|------------------------|-----------------|------------------------|------------------------|-------------------------|------------------------| | Parameter | Sample Depth(Feet):
Date Collected: | 0-1
05/20/02 | 1-3
05/16/02 | 1-6
05/16/02 | 0-1
05/15/02 | 0-1
04/22/02 | 1-6
05/21/02 | | Volatile Organ | | 03/20/02 | 03/10/02 | 03/16/02 | 03/13/02 | 04122102 | 03/21/02 | | 1,1.1-Trichloro | | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | 1.1-Dichloroeth | | ND(0.0050) | ND(0.0064) | NS NS | ND(0.0064) | ND(0.0057) | NS
NS | | 1,2-Dichloroeth | | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | 2-Butanone | | ND(0.012) | ND(0.013) | NS | ND(0.013) | ND(0.011) | NS | | 2-Chloroethylvi | nylether | ND(0.0060) | ND(0.0054) | NS | ND(0.0064) | ND(0.0057) | NS | | Acetone | -1 | ND(0.024) | ND(0.025) | NS | 0.014 J | 0.012 J | NS | | Benzene | | ND(0.00600) | ND(0.00540) | NS | ND(0.00640) | ND(0.00570) | NS | | Carbon Disulfid | e | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | Chlorobenzene | | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | Ethylbenzene | | ND(0.00600) | ND(0.00640) | NS | ND(0.00640) | ND(0.00570) | NS | | Methylene Chlo | ride | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | Styrene | | ND(0.00600) | ND(0.00640) | NS | ND(0.00640) | ND(0.00570) | NS | | Tetrachloroethe | ene | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | Toluene | | ND(0.00600) | ND(0.00640) | NS | ND(0.00640) | ND(0.00570) | NS | | Trichloroethene | | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | ND(0.0057) | NS | | Trichlorofluoron | nethane | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | 0.0076 | NS | | Xylenes (total) | | ND(0.0060) | ND(0.0064) | NS | ND(0.0064) | 0.016 | NS | | Semivolatile C | | | | | | | | | 1,2,4,5-Tetrach | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 1,2,4-Trichlorot | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 1,2-Dichlorober | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 1,2-Diphenylhy | | ND(0.40) | NS | ND(0.43) | ND(0.42) | ND(0.46) | ND(0.38) | | 1,3-Dichlorober | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 1,3-Dinitrobenz | | ND(0.800) | NS | ND(0.860) | ND(0.860) | 0.920 | ND(0.770) | | 1,4-Dichlorober | nzene | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 2,4-Dimethylph | | ND(0.400)
| NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 2-Chioronaphth | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 2-Chlorophenol
2-Methylnaphth | | ND(0.400) | NS NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | z-weinyinapnin
2-Methylphenol | | 1.90
0.110 J | NS
NS | 1.00 | 0.0980 J | 0.110 J | 0.260 J | | z-Metriyiphenoi
2-Nitroaniline | | ND(2.00) | NS
NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | 3&4-Methylphe | ool . | ND(2.00)
ND(0.800) | NS
NS | ND(2.20)
ND(0.860) | ND(2.20) | ND(2.30) | ND(1.9) J | | 4-Chloroaniline | ITOI | 0.100 J | NS NS | ND(0.430) | ND(0.860)
ND(0.420) | ND(0.770)
ND(0.460) | ND(0.770)
ND(0.380) | | 4-Chlorobenzila | ıto . | ND(0.800) | NS NS | ND(0.860) | ND(0.860) | ND(0.770) | ND(0.380)
ND(0.770) | | 4-Phenylenedia | | ND(0.80) J | NS NS | ND(0.86) J | ND(0.86) J | ND(0.770)
ND(0.77) J | ND(0.770) | | Acenaphthene | | ND(0.400) | NS I | 0.210 J | ND(0.420) | ND(0.460) | ND(0.77/3 | | cenaphthylen | ÷ | 1.00 | NS | 0.920 | 0.190 J | 1.00 | 4.00 | | Acetophenone | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | Aniline | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | Anthracene | | 0.680 | NS | 0.720 | 0.230 J | 0.830 | 1.80 | | Benzo(a)anthra | cene | 3.80 | NS | 1.20 | 0.650 | 3.50 | 7.90 | | 3enzo(a)pyrene | · | 5.8 J | NS | 1.10 | 0.720 | 3.60 | 20.0 | | Benzo(b)fluorar | nthene | 3.9 J | NS | 0.480 | 0.440 | 2.10 | 18.0 | | Benzo(g.h,i)per | | 5.2 J | NS | 0.670 | 0.460 | 2.20 | 24.0 | | Benzo(k)fluorar | ithene | 4.8 J | NS | 0.760 | 0.660 | 2.30 | 17.0 | | 3enzyl Alcohol | | ND(0.80) J | NS NS | ND(0.86) J | ND(0.860) | ND(0.920) | ND(0.770) | | ois(2-Ethylhexy | l)phthalate | ND(0.390) | NS | ND(0.420) | ND(0.420) | ND(0.380) | ND(0.380) | | Chrysene | | 3.50 | NS | 1.40 | 0.700 | 4.00 | 8.20 | | Dibenzo(a,h)an | thracene | 0.640 | NS | ND(0.430) | ND(0.420) | 0.880 | 7.6 J | | Dibenzofuran | | 0.150 J | NS | 0.130 J | ND(0.420) | ND(0.460) | 0.220 J | | Diethylphthalate | | ND(0.400) | NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | Dimethylphthala | | ND(0.400) | NS NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | Di-n-Butylphtha | ıate | ND(0.400) | NS I | ND(0.430) | ND(0.420) | 0.280 J | ND(0.380) | | Diphenylamine | | ND(0.40) | NS
NS | ND(0.43) | ND(0.42) | ND(0.46) | ND(0.38) | | luoranthene | | 7.50 | NS NS | 2.10 | 1.10 | 5.20 | 10.0 | | Juorene | | 0.870 | NS
NS | 1.10 | ND(0.420) | 0.350 J | 0.850 | | lexachloroben: | | ND(0.400) | NS
No | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | ndeno(1,2,3-cd | npy:ene | 4.9 J | NS
NS | 0.590 | ND(0.420) | 2.10 | 19.0 | | laphthaiene | | 3.80
ND(0.400) | NS
NS | 1,40
NOVO 420V | 0.240 J | 0.220 J | 0.460 | | Nitrobenzene
N-Nitrosodipher | wamine | ND(0.400)
ND(0.400) | NS NS | ND(0.430)
ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | v-ivitrosogipnei
o-Toluidine | ryidilille | ND(0.400)
ND(0.400) | NS NS | ND(0.430)
ND(0.430) | ND(0.420)
ND(0.420) | ND(0.460)
ND(0.460) | ND(0.380)
ND(0.380) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | RAA4-B29 | 4B
RAA4-B34 | 4B
RAA4-B34 | 4B
RAA4-835 | 4B
RAA4-C27 | 4B
RAA4-C29 | |---|--------------------------|----------------|--|---|---------------------------------------|-------------------------| | Sample Depth(Feet): Parameter Date Collected: | | 1-3 | 1-6 | 0-1 | 0-1 | 1-6 | | | 05/20/02 | 05/16/02 | 05/16/02 | 05/15/02 | 04/22/02 | 05/21/02 | | Semivolatile Organics (continued) | 115/0 400 | | | | | Y | | Pentachlorobenzene Pentachlorophenol | ND(0.400) | NS NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | Phenanthrene | ND(2.00)
6.80 | NS NS | ND(2.20) | ND(2.20) | ND(2.30) | ND(1.90) | | Phenol | 0.620 | NS
No | 4.60 | 0.760 | 4.70 | 8.20 | | Pyrene | 11.0 | NS
NS | ND(0.430) | ND(0.420) | ND(0.460) | ND(0.380) | | Pyridine | ND(0.400) | NS NS | 2.80
1.40 | 1.50 | 7.90 | 15.0 | | Furans | 140(0.400) | NO . | 1.40 | ND(0.420) | ND(0.460) | ND(0.380) | | 2.3.7.8-TCDF | 0.000007 | | | | | | | TCDFs (total) | 0.000037 | NS
NS | 0.000042 | 0.0000097 | 0.000069 Y | 0.000072 | | 1,2,3,7,8-PeCDF | 0.00030 | NS
NS | 0.00034 | 0.000067 | 0.00065 X | 0.00042 | | 2,3,4,7,8-PeCDF | 0.000014 J
0.000029 J | NS NS | 0.0000099 J | 0.0000032 | 0.000037 | 0.000018 J | | PeCDFs (total) | 0.000029 3 | NS
NS | 0.000014 J | 0.0000094 | 0.000031 Q | 0.000027 | | 1,2,3,4,7,8-HxCDF | 0.00031
0.000019 J | NS NS | 0.00014
0.000091 J | 0.00011 Q
0.0000073 J | 0.00069 X
0.000085 | 0.00032 Q | | 1,2,3,6,7,8-HxCDF | 0.000015 J | NS NS | 0.0000059 J | *************************************** | | 0.000019 J | | 1,2,3,7,8,9-HxCDF | ND(0.0000133) X | NS
NS | ND(0.0000393 | 0.0000042 J
0.0000012 J | 0.000034
ND(0.000018) X | 0.000010 J | | 2,3,4,6,7,8-HxCDF | 0.000033 J | NS NS | 0.000011 J | 0.00000123 | 0.000040 | 0.0000026 J | | HxCDFs (total) | 0.00042 | NS NS | 0.000173 | 0.0000083 | 0.00067 | 0.000015 J
0.00022 | | 1,2,3,4,6,7,8-HpCDF | 0.000068 | NS | 0.000040 J | 0.00012 Q3 | 0.00007 | 0.00022 | | 1,2,3,4,7,8,9-HpCDF | 0.0000056 J | NS | 0.0000403 | 0.0000013 | 0.00012 | 0.000042
0.0000042 J | | HpCDFs (total) | 0,00014 | NS | 0.000079 | 0.000092 J | 0.00026 | 0.000087 | | OCDF | 0.000055 J | NS | 0.000073 | 0.0000323 | 0.00020 | 0.000037
0.000024 J | | Dioxins | | | 3.0000ZE 0 | 0.00000 | 0.00018 | 0.000024 3 | | 2.3.7.8-TCDD | ND(0.0000030) | NS | ND(0.0000025) | 0.0000072 | 0.0000012 | ND(0.0000011) | | TCDDs (total) | ND(0,0000061) | NS
NS | ND(0.0000050) | 0.000058 | 0.000012
0.000011 Q | 0.000011 | | 1,2,3,7,8-PeCDD | ND(0.0000026) X | NS | ND(0.0000016) X | 0.0000026 | 0.0000030 J | 0.0000099 J | | PeCDDs (total) | 0.0000060 | NS | 0.0000018 | 0.000074 Q | 0.0000080 | 0.000065 Q | | 1,2,3,4,7,8-HxCDD | ND(0.000011) | NS | ND(0.0000093) | 0.00000072 J | 0.0000020 J | 0.0000080 J | | 1,2,3,6,7,8-HxCDD | 0.0000061 J | NS | ND(0.0000093) | 0.0000027 | 0.0000068 | 0.000026 | | 1,2,3,7,8,9-HxCDD | 0.0000045 J | NS | ND(0.0000093) | 0.0000026 | 0.0000068 | 0.000030 | | HxCDDs (total) | 0.000031 | NS | 0.0000077 | 0.00012 Q | 0.000041 | 0.00028 | | 1,2,3,4,6,7,8-HpCDD | 0.000065 | NS | 0.000012 J | 0.000028 | 0.000070 | 0.00028 | | HpCDDs (total) | 0.00012 | NS | 0.000022 | 0.000055 | 0.00014 | 0.00051 | | OCDD | 0.00030 | NS | 0.000060 J | 0.00018 | 0.00024 | 0.00042 | | Total TEQs (WHO TEFs) | 0.000032 | NS | 0.000018 | 0.000019 | 0.000049 | 0.000046 | | Inorganics | | | ************************************** | | · · · · · · · · · · · · · · · · · · · | | | Antimony | ND(6.00) | NS | 1.20 B | ND(6.00) | 1.70 B | ND(6.00) | | Arsenic | 6.50 | NS | 9.00 | 5.30 | 9.70 | 30.0 | | Barium | 44.0 | NŞ | 23.0 | 41.0 | 59.0 | 40.0 | | Beryllium | ND(0.500) | NS | ND(0.500) | ND(0.500) | ND(0.500) | ND(0.500) | | Cadmium | 0.590 | NS | ND(0.500) | ND(0.500) | 0.630 | 0.520 | | Chromium · | 8.80 | NS | 14.0 | 18.0 | 11.0 | 10.0 | | Cobalt | 6.50 | NS | 11.0 | 8.30 | 8.60 | 6.90 | | Copper | 61.0 | NS | 37.0 | 32.0 | 73.0 | 52.0 | | Cyanide | 2.00 | NS | 3.00 | 0.600 | 1.40 | 1.40 | | Lead | 440 | NS | 110 | 36.0 | 96.0 | 94.0 J | | Mercury | 0.360 | NS | ND(0.130) | ND(0.130) | 0.230 J | 0.470 | | Nickel | 15.0 | NS | 18.0 | 14.0 | 19.0 | 20.0 | | Selenium | ND(1.00) J | NS | ND(1.00) | ND(1.00) | ND(1.00) | 8.40 J | | Silver | ND(1.00) | NS NS | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) | | Sulfide | 29.0 | NS | 33.0 | 8.20 | 92.0 | 84.0 | | Thallium | · ND(1.80) | NS | ND(1.30) J | ND(1.30) J | ND(1.10) J | ND(1.70) | | Tin | 4.70 B | NS | ND(4.40) | ND(10.0) | ND(10.0) | ND(10.0) | | Vanadium | 19.0 | NS | 9.60 | 14.0 | 19.0 | 17.0 | | Zinc | 87.0 | NS | 66.0 | 83.0 | 100 | 54.0 J | | Averaging Area:
Sample ID: | RAA4-C29 | 4B
RAA4-C31 | 4B
RAA4-C33 | 4B
RAA4-C35 | 4B
RAA4-C35 | 4B
RAA4-C36 | |--|--------------------------|------------------------|-----------------------|-------------------------|--------------------------|------------------------| | Sample Depth(Feet): Parameter Date Collected: | 4-6 | 0-1 | 0-1 | 6-15 | 13-15 | 0-1 | | Volatile Organics | 05/21/02 | 05/20/02 | 05/20/02 | 05/17/02 | 05/17/02 | 05/15/02 | | 1,1,1-Trichloroethane | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS NS | T NOW ORK | ND(0.0055) | | 1.1-Dichloroethane | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS NS | ND(0.0064)
ND(0.0064) | ND(0.0055) | | 1,2-Dichloroethane | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | 2-Butanone | ND(0.011) | ND(0.011) | ND(0.011) | T NS | ND(0.013) | ND(0.0033) | | 2-Chloroethylvinylether | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | Acetone | ND(0.023) | ND(0.023) | ND(0.022) | NS | ND(0.025) | ND(0.022) | | Benzene | ND(0.00570) | ND(0.00570) | ND(0.00550) | NS | ND(0.00640) | ND(0.00550) | | Carbon Disulfide | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | Chlorobenzene | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | Ethylbenzene | ND(0.00570) | ND(0.00570) | ND(0.00550) | NS | ND(0.00640) | ND(0.00550) | | Methylene Chloride | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | Styrene | ND(0.00570) | ND(0.00570) | ND(0.00550) | NS | ND(0.00640) | ND(0.00550) | | Tetrachloroethene
Toluene | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | | ND(0.00570) | ND(0.00570) | ND(0.00550) | NS | ND(0.00640) | ND(0.00550) | | Trichloroethene
Trichlorofluoromethane | ND(0.0057) | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | Xylenes (total) |
ND(0.0057)
ND(0.0057) | ND(0.0057) | ND(0.0055) | NS
NS | ND(0.0064) | ND(0.0055) | | Semivolatile Organics | ן וכטט.טטטון | ND(0.0057) | ND(0.0055) | NS | ND(0.0064) | ND(0.0055) | | 1,2,4,5-Tetrachlorobenzene | NS | NIDVO 3005 | NO(0.700) | NEGO (CC) | 1 110 | 14.12.1 | | 1,2,4,5-Tetrachioropenzene
1,2,4-Trichlorobenzene | NS
NS | ND(0.380) | ND(0.730) | ND(0.420) | NS NS | ND(0.370) | | 1,2-Dichlorobenzene | NS
NS | ND(0.380)
ND(0.380) | ND(0.730) | ND(0.420) | NS
NS | ND(0.370) | | 1,2-Dighenylhydrazine | NS
NS | ND(0.380) | ND(0.730)
ND(0.73) | ND(0.420)
ND(0.42) | NS NS | ND(0.370) | | 1,3-Dichlorobenzene | NS NS | ND(0.380) | ND(0.73)
ND(0.730) | -4 | NS NS | ND(0.37) | | .3-Dinitrobenzene | NS NS | ND(0.760) | ND(0.730) | ND(0.420)
ND(0.850) | NS
NS | ND(0.370) | | .4-Dichlorobenzene | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS
NS | ND(0.740) | | 2,4-Dimethylphenol | NS NS | ND(0.380) | ND(0.730) | ND(0.420) | NS
NS | ND(0.370) | | 2-Chloronaphthalene | NS NS | ND(0.380) | ND(0.730) | ND(0.420) | NS NS | ND(0.370)
ND(0.370) | | 2-Chlorophenoi | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | 2-Methylnaphthalene | NS | 0.110 J | 0.850 | ND(0.420) | NS I | 0.200 J | | 2-Methylphenol | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS NS | ND(0.370) | | 2-Nitroaniline | NS | ND(1.90) | ND(3.60) | ND(2.20) | NS | ND(1.90) | | 3&4-Methylphenol | NS | ND(0.760) | ND(0.730) | ND(0.850) | NS | ND(0.740) | | l-Chloroaniline | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | I-Chlorobenzilate | NS | ND(0.760) | ND(0.730) | ND(0.850) | NS | ND(0.740) | | I-Phenylenediamine | NS | ND(0.76) J | ND(0.73) J | ND(0.85) J | NS | ND(0.74) J | | Acenaphthene - | NS | ND(0.380) | 0.680 J | 0.110 J | NS | 0.150 J | | Acenaphthylene | NS | ND(0.380) | 0.700 J | 0.320 J | NS | 1.70 | | Acetophenone | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | 0.180 J | | Aniline | NS NS | ND(0.380) | ND(0.730) | ND(0.420) | NS NS | ND(0.370) | | Anthracene
Benzo(a)anthracene | NS
NS | 0.220 J | 1.40 | 0.180 J | NS | 0.230 J | | Benzo(a)antoracene
Benzo(a)pyrene | NS
NS | 0.810
1.00 | 3.00 | 0.510 | NS NS | 0.680 | | Benzo(a)pyrene
Benzo(b)fluoranthene | NS NS | 1.00 | 2.30 | 0.540
ND(0.420) | NS NS | 0.810 | | Benzo(g,h,i)perylene | NS NS | 1.10 | 1.70
1.90 | ND(0.420) | NS No | 0.610 | | Benzo(k)fluoranthene | NS NS | 0.800 | 2.10 | 0.370 J
0.440 | NS
NS | 1.20 | | Benzyl Alcohol | NS NS | ND(0.76) J | ND(1.4) J | ND(0.85) J | NS NS | 0.730
ND(0.740) | | is(2-Ethylhexyl)phthalate | NS | ND(0.370) | ND(0.360) | ND(0.83) 3
ND(0.420) | NS NS | ND(0.740)
ND(0.360) | | hrysene | NS | 1.00 | 2.90 | 0.500 | NS NS | 0.720 | | Dibenzo(a,h)anthracene | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS NS | ND(0.370) | |)ibenzofuran | NS | ND(0.380) | 0.400 J | ND(0.420) | NS I | ND(0.370) | | Diethylphthalate | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | Dimethylphthalate | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | i-n-Butylphthalate | NS | 0.160 J | ND(0.730) | ND(0.420) | NS | 0.200 J | | Piphenylamine | NS | ND(0.38) | ND(0.73) | ND(0.42) | NS | ND(0.37) | | luoranthene | NS | 1.10 | 5.40 | 0.770 | NS | 1.10 | | luorene | NS | ND(0.380) | 1.80 | 0.110 J | NS | ND(0.370) | | lexachlorobenzene | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | ndeno(1,2,3-cd)pyrene | NS | 0.810 | 1.50 | ND(0.420) | NS | 0.850 | | laphthalene | NS | 0.280 J | 2.00 | ND(0.420) | NS | 0.280 J | | litrobenzene | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | I-Nitrosodiphenylamine | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | -Toluidine | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4B | 4B | 48 | 48 | 4B | 4B | |-----------------------------------|-------------|------------------------|------------------------|---|----------|--| | Sample ID: | RAA4-C29 | RAA4-C31 | RAA4-C33 | RAA4-C35 | RAA4-C35 | RAA4-C36 | | Sample Depth(Feet): | 4-6 | 0-1 | 0-1 | 6-15 | 13-15 | 0-1 | | Parameter Date Collected: | 05/21/02 | 05/20/02 | 05/20/02 | 05/17/02 | 05/17/02 | 05/15/02 | | Semivolatile Organics (continued) | | ····· | | | | | | Pentachlorobenzene | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | Pentachlorophenol | NS | ND(1.90) | ND(3.60) | ND(2,20) | NS | ND(1.90) | | Phenanthrene | NS | 0.680 | 10.0 | 0.340 J | NS | 0.600 | | Phenoi | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | Pyrene | NS | 1.30 | 6.70 | 1.20 | NS | 1.10 | | Pyridine | NS | ND(0.380) | ND(0.730) | ND(0.420) | NS | ND(0.370) | | Furans | | | | *************************************** | | ************************************** | | 2,3,7,8-TCDF | NS | 0.000060 | 0.000033 | NS / | NS | 0.000024 | | TCDFs (total) | NS | 0.00048 | 0.00026 | NS | NS | 0.000171 | | 1,2,3,7,8-PeCDF | NS | 0.000028 J | 0.000016 J | NS | NS | 0.000078 | | 2,3,4,7,8-PeCDF | NS | 0.000066 | 0.000037 J | NS | NS | 0.000029 | | PeCDFs (total) | NS | 0.00069 | 0.00036 | NS | NS | 0.00034 QI | | 1,2,3,4,7,8-HxCDF | NS | 0.000072 | 0.000042 J | NS | NS | 0.000032 J | | 1,2,3,6,7,8-HxCDF | NS | 0.000035 J | 0.000022 J | NS | NS | 0.000012 J | | 1,2,3,7,8,9-HxCDF | NS | 0.000012 J | 0.000011 J | NS | NS | 0.0000078 | | 2,3,4,6,7,8-HxCDF | NS | 0.000074 | 0.000034 J | NS | NS | 0.000029 | | HxCDFs (total) | NS | 0.00096 | 0.00046 | NS | NS | 0.00037 J | | 1,2,3,4,6,7,8-HpCDF | NS | 0.00020 | 0.000059 | NS | NS | 0.000051 J | | 1,2,3,4,7,8,9-HpCDF | NS | 0.000028 J | 0.000011 J | NS | NS | 0.000016 | | HpCDFs (total) | NS | 0.00045 | 0.00013 | NS | NS | 0.00013 J | | OCDF | NS | 0.00030 | 0.000071 J | NS | NS | 0.000083 | | Dioxins | | | | | | | | 2,3,7,8-TCDD | NS | ND(0.0000021) | ND(0.0000024) | NS | NS | 0.00000062 | | TCDDs (total) | NS | 0.0000065 | 0.0000029 | NS | NS | 0.0000075 | | 1,2,3,7,8-PeCDD | NS | ND(0.0000038) X | ND(0.0000023) X | NS | NS | ND(0.0000019) X | | PeCDDs (total) | NS | 0.0000068 | 0.0000050 | NS | NS | 0.000011 Q | | 1,2,3,4,7,8-HxCDD | NS | 0.0000035 J | ND(0.0000016) X | NS | NS | 0.0000015 J | | 1,2,3,6,7,8-HxCDD | NS | 0.0000078 J | ND(0.0000039) X | NS | NS | 0.0000029 | | 1,2,3,7,8,9-HxCDD | NS | ND(0.0000045) X | 0.0000026 J | NS | NS | 0.0000017 J | | HxCDDs (total) | NS | 0.000053 | 0.0000068 | NS | NS | 0.000035 Q | | 1,2,3,4,6,7,8-HpCDD | NS | 0.000058 | 0.000023 J | NS | NS | 0.000025 | | HpCDDs (total) | NS | 0.00011 | 0.000041 | NS | NS | 0.000050 | | OCDD | NS | 0.00035 | 0.00010 J | NS | NS | 0.00013 | | Total TEQs (WHO TEFs) | NS | 0.000067 | 0.000037 | NS | NS | 0.000028 | | norganics | | | | | | | | Antimony | NS | ND(6.00) | ND(6.00) | NS | NS | 1.40 B | | Arsenic | NS | 6.50 | 5.70 | NS | NS | 5.50 | | Barium | NS | 54.0 | 34.0 | NS | NS | 26.0 | | Beryllium
Cadmium | NS NS | ND(0.500) | ND(0.500) | NS | NS | 0.140 B | | Chromium | NS
NS | 0.550 | ND(0.500) | NS NS | NS | ND(0.500) | | Cobalt | NS
NS | 13.0
7.50 | 11.0 | NS | NS | 11.0 | | Copper | | | 7.40 | NS NS | NS | 6.70 | | Cyanide | NS
NS | 40.0 | 48.0 | NS | NS | 56.0 | | Lead | NS
NS | 11.0
85.0 | 3.80
33.0 | NS
NS | NS
NC | 2.90 | | Mercury | NS
NS | 0.680 | 0.0790 B | NS
NS | NS
NS | 52.0 | | Nickel | NS
NS | 14.0 | 14.0 | NS
NS | NS
NS | 0.220 | | Selenium | NS NS | ND(1.00) J | ND(1.00) J | NS
NS | | 12.0 | | Silver | NS
NS | ND(1.00) 3
ND(1.00) | ND(1.00) 3
ND(1.00) | | NS
NS | ND(1.00) | | Sulfide | NS
NS | 71.0 | 260 | NS
NS | NS
NS | ND(1.00) | | hallium | NS NS | 71.0
ND(1.70) | ND(1.60) | NS NS | NS NS | 64.0 | | Fin | NS NS | ND(10.0) | 4.40 B | NS
NS | NS
NS | ND(1.10) J | | Vanadium | NS NS | 13.0 | 12.0 | NS NS | NS
NS | 21.0
11.0 | | | , , , , | 10.0 | 12.0 | 140 | ן כיוו | 11,0 | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | rificiphordurormethane NS ND(0.0054) NS ND(0.0052) NS ND(0.0052) Semivotatile Organics ND(0.0054) NS ND(0.0052) NS ND(0.0052) NS NS ND(0.0052) NS NS NS ND(0.0052) NS N | Averaging Area:
Sample ID: | 4B
RAA4-C36 | 4B
RAA4-C36 | 4B
RAA4-C36 | 4B
RAA4-D21 | 4B
RAA4-D23 | 4B
RAA4-D23 |
--|-------------------------------|------------------------|----------------|----------------|---|----------------|----------------| | Volume Organics | | | 1 1 | | i . | | | | 1,1,1-1/en/contrellmen | <u> </u> | 05/15/02 | 05/15/02 | 05/15/02 | 05/30/02 | 05/30/02 | 05/30/02 | | 1,50-chiorosehane | <u> </u> | \$. 3 f ² \ | ! ND(0.00E4) ! | r s | 1 100/2 00505 | N.C | L NOVA COST | | 1.2-Orbitrospetance | | | ~ _ | | | | | | Activation | | | | | | | | | NS | | | | | | | | | Name | | | | ······ | | | | | Senzerie NS NID(0.0544) NS NID(0.0525) NS ND(0.0565) | | | | | | | | | No. | <u> </u> | | | | | | | | Districtorienzene NS NDI 00549 NS NDI 00562 NS NDI 00569 NDI 00579 | | | | | | | | | Strybenzene | <u></u> | | | | | | | | Netropies | | | | | | | | | System | | | | | . (| | | | Perachicopethene NS ND(0,0052) | | | | | | | | | NS | | | | | | | | | NS | <u> </u> | | ~ _ | | | | | | NS ND(0.0054) NS ND(0.0054) NS ND(0.0052) NS ND(0.0055) NS ND(0.0056) ND(0.0057) NS NS ND(0.0056) NS NS ND(0.0057) N | | | | | | | ND(0.0067) | | Sylenes (total) NS ND(0.0052) NS ND(0.0052) NS ND(0.0052) | Trichlorofluoromethane | | | | · · · · · · · · · · · · · · · · · · · | | ND(0.0067) | | | Xylenes (total) | | | | | | ND(0.0067) | | 12.4 5-fertachrorbenzene | Semivolatile Organics | | | | · · · · · · | <u> </u> | <u> </u> | | 12.4-Trichlorobenzone | 1,2,4,5-Tetrachlorobenzene | ND(0.360) | NS I | NS | ND(0.350) | ND(0.370) | NS | | 1.2-Dichorobenzene | 1,2,4-Trichlorobenzene | | | | | | | | 12-Diphenythydrazine | 1,2-Dichlorobenzene | | | | | | | | 1.3-Dichlorobenzene | 1,2-Diphenylhydrazine | | | | | | | | | 1,3-Dichlorobenzene | ND(0.360) | NS | NS | | | NS | | A-Dichlorobenzene ND(0,360) NS NS 0,430 ND(0,370) NS | 1,3-Dinitrobenzene | | NS | | | | | | 2.4-Dimethyphenol ND(0.360) NS NS ND(0.350) ND(0.370) NS | 1,4-Dichlorobenzene | ND(0.360) | | NS | 0.430 | ND(0.370) | NS | | Page | 2,4-Dimethylphenol | ND(0.360) | | NS | ND(0.350) | ND(0.370) | NS | | 2-Methylphenol 0.190 J NS NS ND(0.350) ND(0.370) NS 2-Methylphenol ND(0.360) NS NS ND(0.350) ND(0.370) NS 2-Mitroanline ND(1.80) NS NS ND(1.81 J ND(0.370) NS 3-84-Methylphenol ND(0.720) NS NS ND(0.700) ND(0.740) NS 4-Chloroanline ND(0.720) NS NS ND(0.700) ND(0.370) NS 4-Chloroanline ND(0.720) NS NS ND(0.700) ND(0.740) NS 4-Chloroanline ND(0.350) NS NS ND(0.350) ND(0.740) NS 4-Chloroanline ND(0.350) NS NS ND(0. | 2-Chloronaphthalene | ND(0.360) | NS | NS | ND(0.350) | ND(0.370) | NS | | Public P | 2-Chlorophenol | ND(0.360) | NS | NS | ND(0.350) | ND(0.370) | NS | | Acceptable Acc | 2-Methylnaphthalene | 0.190 J | | NS | ND(0.350) | ND(0.370) | NS | | NBC | 2-Methylphenol | | | | | | | | Chloroaniline | 2-Nitroaniline | | | | | | | | Chlorobenzilate | | | | | | | | | Phenylenediamine | h | | | | | | | | Acenaphthene | | | | | | | | | Acetaphthylene 0.310 J NS NS ND(0.350) ND(0.370) NS | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | Acetophenone ND(0.360) NS NS ND(0.350) ND(0.370) NS | | | | | | | | | Anithine ND(0.360) NS NS ND(0.350) ND(0.370) NS | | | | | | | | | Anthracene | | | | | | | | | Senzo(a)anthracene | | | | | | | | | Senzo(a)pyrene | | | | | | | | | Benzo(b)fluoranthene 0.280 J NS NS NS 0.130 J 1.10 NS | | | | | | | | | Senzo(g,h,i)perylene 0.360 NS NS ND(0.350) 1.00 NS | | | | | | | | | Senzo Senz | | | | | | | | | Benzyl Alcohol | | | | | | | | | Dis(2-Ethylhexyl)phthalate ND(0.350) NS NS ND(0.350) ND(0.370) NS Chrysene 0.210 J NS NS 0.200 J 1.70 NS Dibenzo(a,h)anthracene ND(0.360) NS NS ND(0.350) 0.280 J NS Dibenzofuran ND(0.360) NS NS ND(0.350) 0.110 J NS Diethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Dinethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Diphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS Pluoranthene 0.180 J NS NS NS ND(0.35) ND(0.371) NS Fluorene ND(0.360) NS NS NS 0.400 3.40 NS Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachiorobenzene ND(0.360) NS NS <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | Chrysene 0.210 J NS NS 0.200 J 1.70 NS Dibenzo(a,h)anthracene ND(0.360) NS NS ND(0.350) 0.280 J NS Dibenzofuran ND(0.360) NS NS ND(0.350) 0.110 J NS Diethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Dire-Butylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Diphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS Pluoranthene 0.180 J NS NS NS ND(0.35) ND(0.370) NS Fluorene ND(0.360) NS NS NS ND(0.35) ND(0.370) NS Hexachlorobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Naphthalene 0.230 J NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS < | b | | | | | | | | Dibenzo(a,h)anthracene ND(0.360) NS NS ND(0.350) 0.280 J NS Dibenzofuran ND(0.360) NS NS ND(0.350) 0.110 J NS Diethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Dire-Butylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Diphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS Pluoranthene 0.180 J NS NS NS ND(0.35) ND(0.370) NS Fluorene ND(0.360) NS NS NS ND(0.35) ND(0.370) NS Hexachlorobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Naphthalene 0.230 J NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | <u> </u> | | | | | | | | Dibenzofuran ND(0.360) NS NS ND(0.350) 0.110 J NS Diethylphthalate ,ND(0.360) NS NS ND(0.350) ND(0.370) NS Dimethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Di-n-Butylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Diphenylamine ND(0.360) NS NS ND(0.35) ND(0.370) NS Fluoranthene 9.180 J NS NS NS ND(0.35) ND(0.37) NS Fluoranthene ND(0.360) NS NS NS ND(0.350) 0.270 J NS Hexachlorobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Naphthalene 0.230 J NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Dibenzo(a.h)anthracene | | | | | | | | Diethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Dimethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Di-n-Butylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Di-phenylamine ND(0.360) NS NS ND(0.35) ND(0.370) NS Fluorene 0.180 J NS NS NS 0.400 3.40 NS Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachlorobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS ndeno(1,2,3-cd)pyrene 0.310 J NS NS ND(0.350) 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Dibenzofuran | | | | | | | | Dimethylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Di-n-Butylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Diphenylamine ND(0.36) NS NS ND(0.35) ND(0.37) NS Fluoranthene 0.180 J NS NS NS 0.400 3.40 NS Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachlorobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS ndeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Diethylphthalate | | | | | | | | Di-n-Butylphthalate ND(0.360) NS NS ND(0.350) ND(0.370) NS Diphenylamine ND(0.36) NS NS ND(0.35) ND(0.37) NS Fluoranthene 0.180 J NS NS 0.400 3.40 NS Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachlorobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Indeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Dimethylphthalate | | | | | | | | Diphenylamine ND(0.36) NS NS ND(0.35) ND(0.37) NS Fluoranthene 0.180 J NS NS 0.400 3.40 NS Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachforobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Indeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine
ND(0.360) NS NS ND(0.350) ND(0.370) NS | Di-n-Butylphthalate | | | | 1 | | | | Fluoranthene 0.180 J NS NS 0.400 3.40 NS Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachforobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Indeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Diphenylamine | | | | ND(0.35) | | | | Fluorene ND(0.360) NS NS ND(0.350) 0.270 J NS Hexachforobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Indeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Fluoranthene | 0.180 J | | | | | | | Hexachforobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS Indeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Fluorene | | | | | | | | ndeno(1,2,3-cd)pyrene 0.310 J NS NS 0.110 J 0.900 NS Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Hexachlorobenzene | ND(0.360) | NS | | ND(0.350) | ND(0.370) | | | Naphthalene 0.230 J NS NS ND(0.350) 0.100 J NS Nitrobenzene ND(0.360) NS NS ND(0.350) ND(0.370) NS N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Indeno(1,2,3-cd)pyrene | | NS | | | | | | N-Nitrosodiphenylamine ND(0.360) NS NS ND(0.350) ND(0.370) NS | Naphthalene | | NS | | | 0.100 J | NS | | | Nitrobenzene | | | | | ND(0.370) | NS | | p-Toluidine ND(0.360) NS NS ND(0.350) ND(0.370) NS | N-Nitrosodiphenylamine | | | | | | NS | | | o-Toluidine | ND(0.360) | l NS | NS | ND(0.350) | ND(0.370) | L NS | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-C36 | 48
RAA4-C36 | 4B
RAA4-C36 | 4B
RAA4-D21 | 4B
RAA4-D23 | 4B
RAA4-D23 | |--|---|----------------------------------|----------------------------|---|---|----------------------------------| | Sample Depth(Feet): | 1-6 | 3-5 | 6-15 | 0-1 | 1-6 | 3-4 | | Parameter Date Collected: | 05/15/02 | 05/15/02 | 05/15/02 | 05/30/02 | 05/30/02 | 05/30/02 | | Semivolatile Organics (continued) | | | | | <u>'</u> | | | Pentachlorobenzene | ND(0.360) | NS | NŞ | ND(0.350) | ND(0.370) | NS | | Pentachlorophenol | ND(1.80) | NS | NS | ND(1.80) | ND(1.90) | NS | | Phenanthrene | 0.0810 J | NS | l NS | 0.210 J | 2.70 | NS | | Phenol | ND(0.360) | NS | l NS | ND(0.350) | ND(0.370) | NS | | Pyrene | 0.160 J | NS | NS | 0.330 J | 3.90 | NS | | Pyridine | ND(0.360) | NS | NS | ND(0.350) | ND(0 370) | NS | | Furans | | | | ************************************** | <u></u> | | | 2,3,7,8-TCDF | 0.0000011 | NS | 0.00000091 | 0.00000091 Y | ND(0.0000015) | NS | | TCDFs (total) | 0.0000068 | NS | 0.0000086 | 0.000010 | ND(0.0000015) | NS | | 1,2,3,7,8-PeCDF | ND(0.00000029) X | NS | 0.00000054 J | 0.00000056 J | ND(0.00000094) X | NS | | 2,3,4,7,8-PeCDF | 0.00000050 J | NS | 0.0000015 J | 0.0000018 J | 0.0000011 J | NS | | PeCDFs (total) | 0.0000046 | NS | 0.000014 (| 0.000025 | 0.0000044 | NS | | 1,2,3,4,7,8-HxCDF | 0.00000034 J | NS | 0.000012 | ND(0.00000088) X | ND(0.0000010) X | NS | | 1,2,3,6,7,8-HxCDF | ND(0.00000026) XJ | NS | 0.0000017 J | 0.0000010 J | 0.0000010 J | NS | | 1,2,3,7,8,9-HxCDF | ND(0.00000022) | NS | 0.0000014 J | 0.00000025 J | ND(0.0000026) | NS | | 2,3,4,6,7,8-H×CDF | 0.00000030 J | NS | 0.0000015 J | 0.0000027 J | 0.00000082 J | NS | | HxCDFs (total) | 0.0000034 J | NS | 0.0000301 | 0.000032 | 0.0000029 | NS | | 1,2,3,4,6,7,8-HpCDF | 0.0000013 J | NS | 0.000010 | 0.0000051 J | 0.0000017 J | NS | | 1,2,3,4,7,8,9-HpCDF | ND(0.00000022) | NS | 0.0000076 | 0.00000038 J | ND(0.0000026) | NS | | HpCDFs (total) | 0.0000013 J | NS | 0.0000331 | 0.0000055 | 0.0000017 | NS | | OCDF | 0.00000092 J | NS | 0.000045 | 0.0000059 J | ND(0.0000014) X | NS | | Dioxins | | | | | | | | 2,3, 7 ,8-TCDD | ND(0.00000011) | NS | ND(0.00000011) | ND(0.00000023) | ND(0.0000021) | NS | | TCDDs (total) | 0.00000075 | NS | 0.00000063 | ND(0.00000039) | ND(0.0000033) | NS | | 1,2,3,7,8-PeCDD | ND(0.00000022) | NS | 0.00000025 J | ND(0.00000022) X | ND(0.0000026) | NS | | PeCDDs (total) | 0.00000067 | NS | 0.0000028 | 0.00000060 | ND(0.0000044) | NS | | 1,2,3,4,7,8-HxCDD | ND(0.00000022) | NS | 0.00000035 J | 0.00000020 J | ND(0.0000026) | NS | | 1,2,3,6,7,8-HxCDD | ND(0.00000022) | NS | 0.00000064 J | 0.00000037 J | ND(0.0000026) | NS | | 1,2,3,7,8,9-HxCDD | ND(0.00000022) | NS | 0.00000039 J | 0.00000032 J | ND(0.0000026) | NS | | HxCDDs (total) | 0.00000034 | NS | 0.0000081 | 0.0000027 | ND(0.0000026) | NS | | 1,2,3,4,6,7,8-HpCDD | 0.00000096 J | NS | 0.0000027 | 0.0000040 J | ND(0.0000030) X | NS | | HpCDDs (total) | 0.0000018 | NS | 0.0000056 | 0.0000074 | ND(0.0000026) | NS | | OCDD | 0.0000047 | NS | 0.0000090 | 0.000027 | 0.000012 J | NS | | Total TEQs (WHO TEFs) | 0.00000068 | NS | 0.0000032 | 0.0000019 | 0.0000038 | NS | | norganics | | | | | | | | Antimony | 1.00 B | NS | NS | ND(6.00) | 1.30 B | NS | | Arsenic | 13.0 | NS | NS | 3.90 | 7.60 | NS | | Barium | 110 | NS | NS | ND(20.0) | 130 | NS | | Beryllium | ND(0.500) | NS | NS | ND(0.500) | ND(0.500) | NS | | Cadmium | ND(0.500) | NS | NS | 0.100 B | ND(0.500) | NS | | Chromium | 15.0 | NS | NS | 5.40 | 6.60 | NS | | Cobalt | 6.20 | NS | NS | 7.00 | 9.00 | NS | | | 60.0 | NS | NS
NS | 18.0 | 50.0 | NS | | Copper | 7.40 | | | ND(0.100) | 0.100 B | NS | | Cyanide | 7,10 | NS | | | 5001 | 110 | | Cyanide
Lead | 66.0 | NS | NS | 15.0 J | 52.0 J | NS
NS | | Cyanide
Lead
Mercury | 66.0
ND(0.110) | NS
NS | NS
NS | 15.0 J
ND(0.100) | 0.130 | NS | | Cyanide
Lead
Mercury
Nickel | 66.0
ND(0.110)
14.0 | NS
NS
NS | NS
NS
NS | 15.0 J
ND(0.100)
12.0 | 0.130
12.0 | NS
NS | | Cyanide
Lead
Mercury
Nickel
Selenium | 66.0
ND(0.110)
14.0
ND(1.00) | NS
NS
NS
NS | NS
NS
NS
NS | 15.0 J
ND(0.100)
12.0
ND(1.00) | 0.130
12.0
ND(1.00) | NS
NS
NS | | Cyanide
Lead
Mercury
Nickel
Selenium
Silver | 66.0
ND(0.110)
14.0
ND(1.00)
ND(1.00) | NS
NS
NS
NS | NS
NS
NS
NS
NS | 15.0 J
ND(0.100)
12.0
ND(1.00)
ND(1.00) | 0.130
12.0
ND(1.00)
ND(1.00) | NS
NS
NS
NS | | Cyanide Lead Mercury Nickel Selenium Silver Sulfide | 66.0
ND(0.110)
14.0
ND(1.00)
ND(1.00)
55.0 | NS
NS
NS
NS
NS | NS
NS
NS
NS
NS | 15.0 J
ND(0.100)
12.0
ND(1.00)
ND(1.00)
24.0 | 0.130
12.0
NO(1.00)
ND(1.00)
18.0 | NS
NS
NS
NS | | Cyanide Lead Mercury Nickel Selenium Silver Sulfide Thallium | 66.0
ND(0.110)
14.0
ND(1.00)
ND(1.00)
55.0
ND(1.10) J | NS
NS
NS
NS
NS
NS | NS NS NS NS NS NS NS NS NS | 15.0 J
ND(0.100)
12.0
ND(1.00)
ND(1.00)
24.0
ND(1.00) J | 0.130
12.0
NO(1.00)
ND(1.00)
18.0
ND(1.10) J | NS
NS
NS
NS
NS
NS | | Cyanide Lead Mercury Nickel Selenium Silver Sulfide | 66.0
ND(0.110)
14.0
ND(1.00)
ND(1.00)
55.0 | NS
NS
NS
NS
NS | NS
NS
NS
NS
NS | 15.0 J
ND(0.100)
12.0
ND(1.00)
ND(1.00)
24.0 | 0.130
12.0
NO(1.00)
ND(1.00)
18.0 | NS
NS
NS
NS | | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4B
RAA4-D23
13-14 | 4B
RAA4-D23
13-15 | 4B
RAA4-D25
0-1 | 4B
RAA4-D29
0-1 | 4B
RAA4-D29
8-10 | 4B
RAA4-D31
0-1 | |--|-------------------------|--------------------------|------------------------|---|------------------------|-----------------------| | Parameter Date Collected: | 05/30/02 | 05/30/02 | 04/24/02 | 04/23/02 | 04/23/02 | 05/21/02 | | Volatile Organics | | | | | <u> </u> | | | 1.1.1-Trichloroethane | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | 1,1-Dichloroethane | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | 1,2-Dichloroethane | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | 2-Butanone | ND(0.011) | NS | ND(0.010) | ND(0.011) | ND(0.030) | NS | | 2-Chloroethylvinylether | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Acetone | 0.011 J | NS | ND(0.021) | ND(0.022) | ND(0.060) | NS | | Benzene | ND(0.0054) | NS I | ND(0.00530) | ND(0.00540) | ND(0.0300) | NS | | Carbon Disulfide | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Chlorobenzene | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | 1.2 | NS | | Ethylbenzene | ND(0.0054) | NS . | ND(0.00530) | ND(0.00540) | ND(0.0300) | NS | | Methylene Chloride | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Styrene | ND(0.0054) | NS | ND(0.00530) | ND(0.00540) | ND(0.0300) | NS | | Fetrachloroethene | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Foluene | ND(0.0054) | NS | ND(0.00530) | ND(0.00540) | ND(0.0300) | NS | | richloroethene | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Trichlorofluoromethane | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Kylenes (total) | ND(0.0054) | NS | ND(0.0053) | ND(0.0054) | ND(0.030) | NS | | Semivolatile Organics | | | | | | | |
1,2,4,5-Tetrachlorobenzene | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | I,2,4-Trichlorobenzene | NS | ND(0.370) | ND(0.530) | 0.280 J | NS | NS | | ,2-Dichlorobenzene | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | ,2-Diphenylhydrazine | NS | ND(0.37) | ND(0.53) | ND(0.44) | NS | NS | | ,3-Dichlorobenzene | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | ,3-Dinitrobenzene | NS | ND(0.750) | ND(0.710) | ND(0.730) | NS | NS | | I,4-Dichlorobenzene | NS | 0.0780 J | ND(0.530) | ND(0.440) | NS | NS | | 2,4-Dimethylphenol | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | 2-Chloronaphthalene | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | 2-Chlorophenol | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | 2-Methylnaphthalene | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | 2-Methylphenol | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | 2-Nitroaniline | NS | ND(1.9) J | ND(2.60) | ND(2.20) | NS | NS | | 3&4-Methylphenol | NS | ND(0.750) | ND(0.710) | ND(0.730) | NS | NS | | I-Chloroaniline | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | I-Chlorobenzilate | NS | ND(0.750) | ND(0.710) | ND(0.730) | NS | NS | | 1-Phenylenediamine | NS | ND(0.75) J | ND(0.71) J | ND(0.73) J | NS | NS | | Acenaphthene | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | Acenaphthylene | NS | ND(0.370) | 0.180 J | ND(0.440) | NS | NS | | Acetophenone | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | Aniline | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | Anthracene | NS | ND(0.370) | ND(0.530) | 0.120 J | NS | NS | | Benzo(a)anthracene | NS | ND(0.370) | ND(0.530) | 0.490 | NS | NS | | Benzo(a)pyrene | NS | ND(0.370) | ND(0.530) | 0.420 J | NS | NS
NS | | Benzo(b)fluoranthene | NS
NC | ND(0.370) | 0.190 J | 0.270 J | NS
NC | NS
NC | | Benzo(g,h,i)perylene | NS
Ne | ND(0.370)
ND(0.370) | 0.230 J
ND(0.530) | 0.230 J
0.300 J | NS NS | NS
NE | | Senzo(k)fluoranthene | NS
Ne | | | | NS
NS | NS
NS | | Benzyl Alcohol | NS
NS | ND(0.750)
ND(0.370) | ND(1.00) | ND(0.870) | NS
NS | | | ois(2-Ethylhexyl)phthalate
Dhrysene | NS
NS | ND(0.370) | ND(0.350)
ND(0.530) | 0.770
0.550 | NS NS | NS
NS | | | NS
NS | ND(0.370) | ND(0.530)
ND(0.530) | 0.550
ND(0.440) | NS NS | NS NS | | Dibenzo(a,h)anthracene Dibenzofuran | NS
NS | ND(0.370) | ND(0.530)
ND(0.530) | ND(0.440)
ND(0.440) | NS NS | NS
NS | | Diethylphthalate | NS
NS | ND(0.370) | ND(0.530) | ND(0.440) | NS NS | NS
NS | | Dietnylphthalate Dimethylphthalate | NS
NS | ND(0.370) | ND(0.530)
ND(0.530) | ND(0.440)
ND(0.440) | NS
NS | NS
NS | | Dirn-Butylphthalate | NS
NS | ND(0.370) | ND(0.530)
ND(0.530) | 0.320 J | NS NS | NS
NS | | Diphenylamine | NS
NS | ND(0.370) | ND(0.53) | ND(0.44) | NS NS | NS
NS | | Juoranthene | NS
NS | ND(0.37)
ND(0.370) | ND(0.53)
ND(0.530) | 0.780 | NS NS | NS
NS | | | NS
NS | ND(0.370)
ND(0.370) | ND(0.530)
ND(0.530) | ND(0.440) | | NS
NS | | luorene | | | ND(0.530)
ND(0.530) | , , , , , , , , , , , , , , , , , , , | NS
NS | NS
NS | | dexachlorobenzene | NS . | ND(0.370)
ND(0.370) | ND(0,530)
ND(0.530) | ND(0.440)
0.190 J | NS NS | NS
NS | | ndeno(1,2,3-cd)pyrene | NS
NS | | ND(0.530)
ND(0.530) | 0.190 J
0.100 J | NS NS | NS
NS | | Naphthalene | | ND(0.370) | ND(0.530)
ND(0.530) | 0.100 J
ND(0.440) | | NS
NS | | Vitrobenzene | NS
NS | ND(0.370)
ND(0.370) | ND(0.530)
ND(0.530) | ND(0.440)
ND(0.440) | NS NS | NS
NS | | N-Nitrosodiphenylamine | ĆΓΙ | ND(0.370) | ND(0.530)
ND(0.530) | ND(0.440)
ND(0.440) | NS
NS | CN | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | | Averaging Area:
Sample ID: | 4B
RAA4-D23 | 4B
RAA4-D23 | 4B
RAA4-D25 | 4B
RAA4-D29 | 4B
RAA4-D29 | 4B
RAA4-D31 | |--------------------|--|-------------------|-------------------|------------------------|------------------------|------------------|-----------------| | Parameter | Sample Depth(Feet):
Date Collected: | 13-14
05/30/02 | 13-15
05/30/02 | 0-1
04/24/02 | 0-1
04/23/02 | 8-10
04/23/02 | 0-1
05/21/02 | | Semivolatile (| Organics (continued) | | | | | ,,,, | | | Pentachlorobe | nzene | NS | ND(0.370) | ND(0.530) | 0.200 J | NS | NS | | Pentachloroph | enol | NS | ND(1 90) | ND(2.60) | ND(2.20) | NS | NS | | Phenanthrene | } | NS | ND(0.370) | ND(0.530) | 0.480 | NS | NS | | Pheno! | | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | Pyrene | | NS | ND(0.370) | ND(0.530) | 1.40 | NS | NS | | Pyridine | | NS | ND(0.370) | ND(0.530) | ND(0.440) | NS | NS | | Furans | | | | | | | · | | 2,3,7,8-TCDF | | NS | NS | 0.0000010 YB | 0.00016 Y | NS | 0.000022 | | TCDFs (total) | | NS | NS | ND(0.000021) X | 0.0011 X | NS | 0.00012 | | 1,2,3,7,8-PeCI | OF . | NS | NS | ND(0.00000066) | 0.00010 | NS | 0.0000093 J | | 2,3,4,7,8-PeCl | OF . | NS | NS | ND(0.00000091) X | 0.00014 | NS | 0.000026 | | PeCDFs (total | | NS | NS | ND(0.000047) X | 0.0014 | NS | 0.00027 | | 1,2,3,4,7,8-Hx | | NS | NS | 0.0000022 JB | 0.00044 | NS | 0.000021 J | | 1,2,3,6,7,8-Hx | | NS | NS | 0.0000011 JB | 0.00016 | NS | 0.000012 J | | 1,2,3,7,8,9-Hx | | NS | NS | ND(0.00000030) | ND(0.000018) X | NS | 0.0000042 J | | 2,3,4,6,7,8-Hx | | NS | NS | ND(0.0000021) X | 0.00012 | NS | 0.000027 | | HxCDFs (total | | NS | NS | ND(0.000030) X | 0.0018 | NS | 0.00036 | | 1,2,3,4,6,7,8~} | | NS | NS | ND(0.0000032) X | 0.00044 | NS | 0.00011 | | 1,2,3,4,7,8,9-} | | NS | NS | ND(0.00000070) | 0.00011 | NS | 0.0000074 J | | HpCDFs (total |) | NS | NS | ND(0.0000069) X | 0.00097 | NS | 0.00023 | | OCDF | <u></u> | NS | NS | ND(0.0000030) | 0.0011 | NS | 0.000088 | | Dioxins | | | | | | | | | 2,3,7,8-TCDD | | NS | NS | ND(0.00000020) | 0.0000016 | NS | ND(0.0000012) X | | TCDDs (total) | | NS | NS | ND(0.00000020) | 0.000015 | NS | 0.0000050 | | 1,2,3,7,8-PeCI | | NS | NS | ND(0.00000030) | ND(0.0000042) X | NS | ND(0.0000061) X | | PeCDDs (total | | NS | NS | ND(0.0000021) X | 0.0000034 | NS | 0.0000023 | | 1,2,3,4,7,8-Hx | | NS | NS | ND(0.00000050) | 0.0000033 J | NS | ND(0.0000016) X | | 1,2,3,6,7,8-Hx | | NS | NS | ND(0.00000060) | 0.0000098 | NS | ND(0.0000038) X | | 1,2,3,7,8,9-Hx | | NS | NS | ND(0.00000060) | 0.000013 | NS | 0.0000021 J | | HxCDDs (total | | NS | NS | ND(0.00000060) | 0.000068 | NS | 0.000019 | | 1,2,3,4,6,7,8- | | NS | NS | ND(0.0000032) X | 0.000078 | NS | 0.000050 | | HpCDDs (total |) | NS | NS | 0.0000046 | 0.00017 | NS | 0.000099 | | OCDD | | NS | NS | 0.000026 | 0.00043 | NS | 0.00047 | | Total TEQs (W | (HO IEFs) | NS | NS | 0.0000012 | 0.00018 | NS | 0.000028 | | Inorganics | - | | 1 | | | | | | Antimony | | NS | NS | ND(6.00) | ND(6.00) | NS | NS | | Arsenic | | NS | NS | 4.70 | 11.0 | NS | NS | | Barium | | NS NS | NS | 22.0 | 42.0 | NS | NS | | Beryllium | | NS | NS | ND(0.500) | ND(0.500) | NS | NS
NS | | Cadmium | | NS
NS | NS
NS | 0.520 | 1.50 | NS | NS | | Chromium | | NS
NC | NS | 6.20 | 44.0 | NS | NS
NS | | Cobalt | | NS
NS | NS
NS | 6.20 | 9.40 | NS
NC | NS
NS | | Copper | | NS
NS | NS
NS | 15.0
NO(0.100) | 170 | NS
NS | NS
NS | | Cyanide | | NS
NS | NS
NS | ND(0.100) | 0.760 | NS
NS | NS
NS | | Lead | | NS
NS | | 14.0 J
ND(0.100) | 100
2.00 | NS
NS | NS
NS | | Mercury | | NS
NS | NS
NS | 12.0 | 45.0 | NS
NS | NS
NS | | Nickel
Selenium | | NS
NS | NS
NS | ND(1.00) J | 45.0
ND(1.00) | NS
NS | NS
NS | | | | NS
NS | NS
NS | ND(1.00) 3
ND(1.00) | ND(1.00)
ND(1.00) | NS
NS | NS
NS | | Silver
Sulfide | | NS
NS | NS
NS | ND(1.00)
8.40 | 78.0 | NS
NS | NS
NS | | | | NS
NS | NS
NS | ND(1.00) J | 78.0
ND(1,10) J | NS
NS | NS
NS | | Thallium
Tin | | NS
NS | NS
NS | ND(1.00) J
ND(10.0) | ND(1.30) J
ND(14.0) | NS
NS | NS
NS | | | I | GFI | | | | | | | Vanadium | 1 | NS | NS | 7.80 | 16.0 | NS | NS | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | | Averaging Area:
Sample ID: | 4B
RAA4-D33 | 4B
RAA4-D34 | 4B
RAA4-D34 | 4B
RAA4-D34 | 4B
RAA4-D35 | 4B
RAA4-E17 | |-----------------------------------|---|--------------------------|-------------------------|----------------|------------------------|----------------|-------------------------| | | Sample Depth(Feet): | 0-1
05/21/02 | 0-1 | 6-8 | 6-15 | 6-15 | 0-1 | | Parameter
Volatile Organi | | 05/21/02 | 04/23/02 | 04/23/02 | 04/23/02 | 05/17/02 | 06/07/02 | | 1.1.1-Trichloroet | | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS | ND(0.0055) | | 1,1-Theritorbetha | | ND(0.0057)
ND(0.0057) | ND(0.0057) | ND(0.0061) | NS
NS | NS NS | ND(0.0055) | | 1.2-Dichloroetha | | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS NS | NS NS | ND(0.0055) | | 2-Butanone | 110 | ND(0.011) | ND(0.0037) | 0.013 | NS NS | NS NS | ND(0.011) | | 2-Chloroethylvin | vlether | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS NS | ND(0.0055) | | Acetone | 7,00 | ND(0.023) | ND(0.023) | 0.032 | NS | NS | 0.031 | | Benzene | | ND(0.00570) | ND(0.00570) | ND(0,00610) | NS | NS | ND(0.00550) | | Carbon Disulfide | } | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS | ND(0.0055) | | Chlorobenzene | | ND(0.0057) | ND(0.0057) | 0.018 | NS | NS | ND(0.0055) | | Ethylbenzene | | ND(0.00570) | ND(0.00570) | 0.00310 J | NS | NS | ND(0.00550) | | Methylene Chlor | ide | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS | ND(0.0055) | | Styrene | | ND(0.00570) | ND(0.00570) | ND(0.00510) | NS | NS | ND(0.00550) | | Tetrachloroether | ne | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS | ND(0.0055) | | Toluene | |
ND(0.00570) | ND(0.00570) | ND(0.00610) | NS | NS | ND(0.00550) | | Trichloroethene | | ND(0.0057) | ND(0.0057) | ND(0.0051) | NS | NS | ND(0.0055) | | Trichlorofluorom | ethane | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS | ND(0.0055) | | Xylenes (total) | | ND(0.0057) | ND(0.0057) | ND(0.0061) | NS | NS | ND(0.0055) | | Semivolatile Or | | | | | | | | | 1,2,4,5-Tetrachle | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 1,2,4-Trichlorobe | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 1,2-Dichloroben: | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 1,2-Diphenylhyd | | ND(0.38) | ND(0.38) | NS | ND(0.41) | NS | ND(0.36) | | 3-Dichloroben | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 3-Dinitrobenze | | ND(0.760) | ND(0.760) | NS | ND(0.820) | NS | ND(0.730) | | 1,4-Dichlorobena | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 2,4-Dimethylphe | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 2-Chloronaphtha | ilene | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 2-Chlorophenol | ,, | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | 2-Methylnaphtha | lene | 1.20 | 0.320 J | NS | 3.40 | NS | ND(0.360) | | 2-Methylphenol | | ND(0.380) | ND(0.380) | NS | 0.260 J | NS | ND(0.360) | | 2-Nitroaniline
3&4-Methylphen | | ND(1.9) J | ND(1.90) | NS
NS | ND(2.10) | NS | ND(1.80) | | 304-Methylphen
4-Chloroaniline | <u>Ol</u> | ND(0.760)
ND(0.380) | ND(0.760)
ND(0.380) | NS
NS | 0.630 J | NS
NS | ND(0.730) | | 4-Chlorobenzilat | _ | ND(0.760) | ND(0.360)
ND(0.760) | NS
NS | ND(0.410)
ND(0.820) | NS NS | ND(0.360)
ND(0.730) | | 4-Phenylenedian | | ND(0.76) J | ND(0.760)
ND(0.76) J | NS NS | ND(0.82) J | NS NS | ND(0.73) J | | Acenaphthene | 111111111111111111111111111111111111111 | 0.0940 J | ND(0.78) 3
ND(0.380) | NS NS | 0.650 | NS NS | ND(0.73) 3
ND(0.360) | | Acenaphthylene | ······································ | 0.490 | 0.420 | NS NS | 1.60 | NS NS | ND(0.360) | | Acetophenone | | ND(0.380) | 0.190 J | NS | 0.220 J | NS | ND(0.360) | | Aniline | | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | Anthracene | | 0.420 | 0.420 | NS | 4.00 | NS NS | ND(0.360) | | Benzo(a)anthrac | ene | 2.00 | 1.30 | NS | 3.30 | NS | ND(0.360) | | Benzo(a)pyrene | | 2.50 | 1.30 | NS | 2.00 | NS | ND(0.360) | | 3enzo(b)fluorant | thene | 1.90 | 1.70 | NS | 2.70 | NS | ND(0.360) | | Benzo(g,h,i)pery | lene | 2.20 | 1.60 | NS | 0.690 | NS | ND(0.360) | | Benzo(k)fluorant | hene | 1.60 | 1.60 | NS | 1.80 | NS | ND(0.360) | | Benzyl Alcohol | | ND(0.760) | ND(0.760) | NS | ND(0.820) | NS | ND(0.730) | | ois(2-Ethylhexyl) | phthalate | ND(0.370) | ND(0.380) | NS | ND(0.400) | NS | ND(0.360) | | Chrysene | | 2.10 | 1.30 | NS | 2.80 | NS | ND(0.360) | | Dibenzo(a,h)anti | nracene | 0.600 | 0.660 | NS | ND(0.410) | NS | ND(0.360) | | Dibenzofuran | | 0.0920 J | 0.0980 J | NS | 3.10 | NS | ND(0.360) | | Diethylphthalate | ···· | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | Dimethylphthala: | | ND(0.380) | ND(0.380) | NS NS | ND(0.410) | NS | ND(0.360) | | Di-n-Butylphthala | ate | 0.180 J | 0.180 J | NS | ND(0.410) | NS | ND(0.360) | | Diphenylamine | | ND(0.38) | ND(0.38) | NS
NS | ND(0.41) | NS NS | ND(0.36) | | luoranthene | | 1.80 | 2.00 | NS | 15.0 | NS | ND(0.360) | | luorene | | 0.190 J | 0.110 J | NS
NS | 3.20 | NS | ND(0.360) | | lexachlorobenz | ····· | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | ndeno(1,2,3-cd) | pyrene | 1.80 | 1.70 | NS
NS | 0.700 | NS | ND(0.360) | | Naphthalene | | 2.40 | 1.20 | NS NS | 12.0 | NS
NS | ND(0 360) | | Vitrobenzene | Jamina | ND(0.380) | ND(0.380) | NS
NS | ND(0.410) | NS
NS | ND(0.360) | | V-Nitrosodiphen | ylamine | ND(0.380) | ND(0.380) | NS
NS | ND(0.410) | NS | ND(0.360) | | o-Totuidine | 1 | ND(0.380) | ND(0.380) | NS | ND(0.419) | NS | ND(0.360) | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 48 | 4B | 48 | 4B | 48 | 4B | |-----------------------------------|-----------------|-----------------|-------------|------------------|--------------|----------------| | Sample ID: | RAA4-D33 | RAA4-D34 | RAA4-D34 | RAA4-D34 | RAA4-D35 | RAA4-E17 | | Sample Depth(Feet): | 0-1 | 0-1 | 6-8 | 6-15 | 6-15 | 0-1 | | Parameter Date Collected: | 05/21/02 | 04/23/02 | 04/23/02 | 04/23/02 | 05/17/02 | 06/07/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | Pentachlorophenol | ND(1.90) | ND(1.90) | NS | ND(2.10) | NS NS | ND(1.80) | | Phenanthrene | 1.60 | 1.30 | NS | 20.0 | NS | ND(0.360) | | Phenol | ND(0.380) | 0.0930 J | NS | 0.710 | NS NS | ND(0.360) | | Pyrene | 5.40 | 2.80 | NS | 12.0 | NS | ND(0.360) | | Pyridine | ND(0.380) | ND(0.380) | NS | ND(0.410) | NS | ND(0.360) | | Furans | | | | | | | | 2,3,7,8-TCDF | 0.000055 | 0.000022 J | NS | 0.000011 YB | 0.0000018 | ND(0.00000015) | | TCDFs (total) | 0.00046 | 0.00024 | NS | 0.00014 X | 0.0000261 | ND(0.00000014) | | 1,2,3,7,8-PeCDF | 0.000017 J | 0.0000096 | NS | 0.0000036 JB | 0.0000020 J | ND(0.00000027) | | 2,3,4,7,8-PeCDF | 0.000033 | 0.000012 J | NS | 0.0000058 | 0.0000074 | ND(0.00000027) | | PeCDFs (total) | 0.00034 Q | 0.00021 | NS | 0.00025 | 0.0000591 | ND(0.00000034) | | 1,2,3,4,7,8-HxCDF | 0.000027 J | 0.000029 | NS | 0.0000088 | 0.000045 | ND(0.00000027) | | 1,2,3.6,7,8-HxCDF | 0.000016 J | 0.000015 | NS | 0.000011 | 0.0000059 | ND(0.00000027) | | 1,2,3,7,8,9-HxCDF | 0.0000061 J | ND(0.0000023) X | NS | ND(0.0000030) X | 0.0000067 | ND(0.00000027) | | 2,3,4,6,7,8-HxCDF | 0.000029 | 0.000028 YJ | NS | 0.000035 | 0.0000064 | ND(0.00000027) | | HxCDFs (total) | 0.00050 | 0.00046 | NS | 0.00054 | 0.000121 | ND(0.00000027) | | 1,2,3,4,6,7,8-HpCDF | 0.00028 | 0.00022 | NS | 0.000041 | 0.000039 | 0.00000012 J | | 1,2,3,4,7,8,9-HpCDF | 0.0000091 J | 0.0000082 | NS | 0.0000031 J | 0.000030 | ND(0.00000027) | | HpCDFs (total) | 0.00050 | 0.00039 | NS | 0.00010 | 0.00013 | 0.00000025 | | OCDF | 0.00014 | 0.00012 | NS | 0.000012 | 0.00017 | ND(0.00000055) | | Dioxins | | * | | | <u> </u> | <u> </u> | | 2,3,7,8-TCDD | ND(0.0000023) X | 0.00000092 JB | NS | ND(0.00000030) | 0.00000026 J | ND(0.00000011) | | TCDDs (total) | 0.0000066 | 0.0000070 | NS | 0.0000023 | 0.0000060 | ND(0.00000017) | | 1,2,3,7,8-PeCDD | ND(0.0000025) X | 0.0000013 J | NS | ND(0.00000030) | 0.0000013 J | ND(0.00000027) | | PeCDDs (total) | 0.0000099 Q | 0.0000049 | NS | 0.00000063 | 0.0000070 | ND(0.00000027) | | 1,2,3,4,7,8-HxCDD | 0.0000020 J | 0.0000011J | NS | 0.00000054 J | 0.0000017 J | ND(0.00000027) | | 1,2,3,6,7,8-HxCDD | 0.0000068 J | 0.0000033 J | NS | 0.00000077 J | 0.000030 | ND(0.00000027) | | 1,2,3,7,8,9-HxCDD | 0.0000050 J | 0.0000017 J | NS | ND(0.00000077) X | 0.0000017 J | ND(0.00000027) | | HxCDDs (total) | 0.000053 | 0.000019 | NS | 0.0000075 | 0.000033 | ND(0.00000033) | | 1,2,3,4,6,7,8-HpCDD | 0.00011 | 0.000047 | NS | 0.0000065 | 0.000011 | 0.00000028 J | | HpCDDs (total) | 0.00021 | 0.000092 | NS | 0.000012 | 0.000022 | 0.00000049 | | OCDD | 0.00084 | 0.00038 | NS | 0.000025 | 0.000031 | ND(0.0000024) | | Total TEQs (WHO TEFs) | 0.000039 | 0.000022 | NS | 0.000011 | 0.000013 | 0.00000024) | | Inorganics | | | | | | | | Antimony | 0.940 B | 1.50 B | NS | ND(6,00) | NS | ND(6.00) | | Arsenic | 7.50 | 6.60 | NS | 14.0 | NS | 4.80 | | Barium | 34.0 | 26.0 | NS | 59.0 | NS | 21.0 | | Beryllium | ND(0.500) | ND(0.500) | NS | ND(0.500) | NS | ND(0.500) | | Cadmium | 0.530 | ND(0.500) | NS | 0.800 | NS | ND(0.500) | | Chromium | 11.0 | 9.90 | NS | 17.0 | NS | 8.20 | | Cobalt | 8.20 | 6.60 | NS | 6.30 | NS | 7.40 | | Copper | 38.0 | 37.0 | NS | 92.0 | NS | 26.0 | | Cyanide | 1.40 | 5.30 | NS | 7.00 | NS | ND(0.110) | | Lead | 190 J | 47.0 | NS | 180 | NS | 11.0 J | | Mercury | ND(0.110) | 0.260 | NS | 0.490 | NS | ND(0.110) | | Nickel | 17.0 | 13.0 | NS | 20.0 | NS | 12.0 | | Selenium | 0.570 J | ND(1.00) | NS | 1.10 | NS | ND(1.00) | | Silver | ND(1.00) | ND(1.00) | NS | ND(1.00) | NS | ND(1.00) | | Sulfide | 34.0 | 82.0 | NS | 400 | NS | 17.0 | | Thailium | ND(1.70) | ND(1.10) J | NS | ND(1.20) J | NS | ND(1.10) | | Tin | 4.50 B | ND(10.0) | NS | 63.0 | NS | ND(3.40) | | Vanadium | 9.10 | 9.20 | NS | 17.0 | NS | 8.00 | | Zinc | 74.0 J | 64.0 | NS | 220 | NS | 44.0 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID:
Sample Depth(Feet): | 48
RAA4-E17
1-6 | 4B
RAA4-E23
0-1 | 4B
RAA4-E27
6-15 | 4B
RAA4-E27
13-15 | 4B
RAA4-E29
0-1 | 4B
RAA4-E29
1-6 | |--|-----------------------|---|------------------------|---|-----------------------|-----------------------| | Parameter Date Collected: | 06/07/02 | 04/24/02 | 06/04/02 | 06/04/02 | 05/21/02 | 05/21/02 | | Volatile Organics | | | 1 -210-105 | , | ~ CI = 11 CA | 1 30.21702 | | 1.1.1-Trichloroethane | NS | ND(0.0053) | NS | ND(0.031) | ND(0.36) | l NS | | 1.1-Dichloroethane | NS | ND(0.0053) | NS NS | ND(0.031) | ND(0.36) | NS | | 1.2-Dichloroethane | NS | ND(0.0053) | NS | 0.069 | ND(9.36) | NS | | 2-Butanone | NS NS | ND(0.010) | NS NS | ND(0.031) | ND(7.2) | NS NS | | 2-Chloroethylvinylether | NS NS | ND(0.0053) | NS | ND(0.031) | ND(0.36) | NS NS | | Acetone | NS NS | ND(0.021) | NS | 0.066 | ND(7.2) J | NS NS | | Benzene | NS | ND(0.00530) | NS | ND(0.0310) | ND(0.360) | NS | | Carbon Disulfide | NS NS | ND(0.0053) | NS | ND(0.031) | ND(0.72) | NS | | Chlorobenzene | NS | ND(0.0053) | NS | 28 | ND(0.36) | NS | | Ethylbenzene | NS NS | ND(0.00530) | NS
 0.480 | 5.80 | NS | | Methylene Chloride | NS NS | ND(0.0053) | NS | ND(0.031) | ND(0.36) | NS | | Styrene | NS | ND(0.00530) | NS NS | ND(0.0310) | ND(0.360) | NS | | Tetrachloroethene | NS | ND(0.0053) | NS | ND(0.031) | ND(0,36) | NS | | Foluene | NS NS | ND(0.00530) | NS | 0.0320 | ND(0.360) | NS | | richloroethene | NS NS | ND(0.0053) | NS NS | ND(0.031) | ND(0.36) | NS | | Trichlorofluoromethane | NS NS | ND(0.0053) | NS NS | ND(0.031) | ND(0.36) | NS | | (yienes (total) | NS | ND(0.0053) | NS | 3.0 | 10 | NS | | Semivolatile Organics | | , | | | | | | 2.4.5-Tetrachiorobenzene | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | 2.4-Trichlorobenzene | NS NS | ND(0.350) | ND(1.40) | NS
NS | 1,60 | NS NS | | 2-Dichlorobenzene | NS
NS | ND(0.350) | ND(1.40) | NS NS | ND(0.380) | NS NS | | .2-Diphenylhydrazine | NS | ND(0.35) | ND(1.4) | NS NS | ND(0.38) | NS NS | | .3-Dichlorobenzene | NS | ND(0.350) | 0.180 J | NS | ND(0.380) | NS NS | | .3-Dinitrobenzene | NS | ND(0.710) | ND(1.40) | NS | ND(0.770) | NS NS | | .4-Dichlorobenzene | NS | ND(0.350) | 0.770 J | NS | 1.90 | NS | | ,4-Dimethylphenol | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | 2-Chloronaphthalene | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | 2-Chlorophenol | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | -Methylnaphthalene | NS | ND(0.350) | 1.30 J | NS NS | 190 | NS | | 2-Methylphenol | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | 2-Nitroaniline | NS | ND(1.80) | ND(7.20) | NS | ND(1.9) J | NS | | &4-Methylphenol | NS | 0.200 J | ND(1.40) | NS | ND(0.770) | NS | | -Chloroaniline | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | -Chlorobenzilate | NS | ND(0.710) | ND(1.40) | NS | ND(0.770) | NS | | I-Phenylenediamine | NS | ND(0.71) J | ND(1.4) J | NS | ND(0.77) J | NS | | Acenaphthene | NS | ND(0.350) | 9.10 | NS | 110 | NS | | Acenaphthylene | NS | ND(0.350) | 0.880 J | NS | 12.0 | NS | | Acetophenone | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | niline | NS | 0.500 | ND(1.40) | NS | ND(0.380) | NS | | Anthracene | NS | 0.100 J | 10.0 | NS | 61.0 | NS | | Benzo(a)anthracene | NS | 0.220 J | 7,20 | NS | 53.0 | NS | | Benzo(a)pyrene | NS | 0.400 | 5.40 | NS | 42.0 | NS | | Benzo(b)fluoranthene | NS | 0.350 J | 2.70 | NS | 21.0 | NS | | Benzo(g,h,i)perylene | NS | 0.390 | 2.80 | NS | 24.0 | NS | | Benzo(k)fluoranthene | NS | 0.260 J | 2.90 | NS | 27.0 | NS | | Benzyl Alcohol | NS | ND(0.710) | ND(2.90) | NS | ND(0.770) | NS | | pis(2-Ethylhexyl)phthalate | NS | ND(0.350) | ND(0.720) | NS | ND(0.380) | NS | | Chrysene | NS | 0.240 J | 6.40 | NS | 47.0 | NS | | Dibenzo(a,h)anthracene | NS | ND(0.350) | 0.940 J | NS | 11.0 | NS | | Dibenzofuran | NS | ND(0.350) | 0.700 J | NS | ND(0.380) | NS | | Piethylphthalate | NS NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | imethylphthalate | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | i-n-Butylphthalate | NS | 0.400 | ND(1.40) | NS | ND(0.380) | NS | | piphenylamine | NS NS | ND(0.35) | ND(1.4) | NS | ND(0.38) | NS | | luoranthene | NS NS | 0.480 | 9.90 | NS | 66.0 | NS | | luorene | NS
NS | ND(0.350) | 7.20 | NS | 65.0 | NS | | exachlorobenzene | NS NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | ndeno(1,2,3-cd)pyrene | NS | 0.360 | 2.30 | NS | 21.0 | NS | | laphthalene | NS | ND(0.350) | 2.50 | NS | 410 | NS | | litrobenzene | NS NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | I-Nitrosodiphenylamine | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-E17 | 4B
RAA4-E23 | 4B
RAA4-E27 | 4B
RAA4-E27 | 4B
RAA4-E29 | 4B
RAA4-E29 | |-----------------------------------|------------------|---------------------|----------------|----------------|------------------|----------------| | Sample Depth(Feet): | 1-6 | 0-1 | 6-15 | 13-15 | 0-1 | 1-6 | | Parameter Date Collected: | 06/07/02 | 04/24/02 | 06/04/02 | 06/04/02 | 05/21/02 | 05/21/02 | | Semivolatile Organics (continued) | | · | | | | | | Pentachlorobenzene | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | Pentachlorophenol | NS | ND(1.80) | ND(7.20) | NS | ND(1.90) | NS | | Phenanthrene | NS | 0.380 | 38.0 | NS | 190 | NS | | Phenol | NS | 0.260 J | ND(1.40) | NS | ND(0.380) | NS | | Pyrens | NS | 0.500 | 35.0 | NS | 120 | NS | | Pyridine | NS | ND(0.350) | ND(1.40) | NS | ND(0.380) | NS | | Furans | | | | | | | | 2,3,7,8-TCDF | ND(0.00000011) | 0.000018 Y | NS | NS | 0.000068 | 0.00029 | | TCDFs (total) | ND(0.00000011) | 0.00020 | NS | NS | 0.00048 Q | 0.0028 Q | | 1,2,3,7,8-PeCDF | ND(0.00000027) | 0.0000071 | NS | NS | 0.000040 | 0.00011 | | 2,3,4,7,8-PeCDF | ND(0.00000027) | 0.000012 | NS | NS | 0.00012 | 0.00027 | | PeCDFs (total) | ND(0.00000027) | 0.00048 | NS | NS | 0.00088 Q | 0.0031 Q | | 1,2,3,4,7,8-HxCDF | ND(0.00000027) | 0.000038 | NS | NS | 0.00018 | 0.00034 | | 1,2,3,6,7,8-HxCDF | ND(0.00000027) | 0.000016 | NS | NS | 0.000059 | 0.00012 | | 1,2,3,7,8,9-HxCDF | ND(0.00000027) | ND(0.00012) X | NS | NS | 0.000041 | 0.000060 | | 2,3,4,6,7,8-HxCDF | ND(0.00000027) | 0.000026 | NS | NS | 0.000081 | 0.00020 | | HxCDFs (total) | 0.00000015 | 0.00094 | NS | NS | 0.0011 | 0.0030 | | 1,2,3,4,6,7,8-HpCDF | ND(0.00000014) X | 0.000063 | NS | NS | 0.00018 | 0.00051 | | 1,2,3,4,7,8,9-HpCDF | ND(0.00000027) | ND(0.000011) X | NS | NS | 0.000073 | 0.00018 | | HpCDFs (total) | ND(0.00000027) | 0.00013 | NS | NS | 0.00044 | 0.0013 | | OCDF | ND(0.00000054) | ND(0.000045) X | NS | NS | 0.00030 | 0.00076 | | Dioxins | | | | | | | | 2,3,7,8-TCDD | ND(0.00000011) | ND(0.00000047) | NS | NS | ND(0.00000080) | 0.000012 | | TCDDs (total) | ND(0.00000019) | 0.0000057 | NS | NS | 0.000016 | 0.000089 | | 1,2,3,7,8-PeCDD | ND(0.00000027) | 0.0000045 J | NS | NS | ND(0.00000081) X | ND(0.000025) X | | PeCDDs (total) | ND(0.00000027) | 0.000016 | NŚ | NS | 0.000040 Q | 0.00016 | | 1,2,3,4,7,8-HxCDD | ND(0.00000027) | 0.0000048 J | NS | NS | 0.0000077 J | 0.000022 J | | 1,2,3,6,7,8-HxCDD | ND(0.00000027) | 0.0000080 | NS | NS | 0.0000099 J | 0.000037 J | | 1,2,3,7,8,9-HxCDD | ND(0.00000027) | 0.0000062 | NS | NS | 0.0000073 J | 0.000030 J | | HxCDDs (total) | ND(0.00000035) | 0.000040 | NS | NS | 0.00012 | 0.00048 | | 1,2,3,4,6,7,8-HpCDD | 0.00000039 J | 0.000045 | NS | NS | 0.000062 | 0.00023 | | HpCDDs (total) | 0.00000039 | 0.00011 | NS | NS NS | 0.00012 | 0.00046 | | OCDD Total TEQs (WHO TEFs) | 0.0000025 J | 0.00013 | NS NS | NS | 0.00023 | 0.00092 | | | 0.00000037 | 0.000030 | NS | NS | 0.00011 | 0.00028 | | Inorganics | NO | 11570.003 | •10 | | | | | Antimony
Arsenic | NS
NS | ND(6.00) | NS NS | NS | ND(6.00) | NS | | Barium | NS
NS | 2.40 | NS | NS | 6.80 | NS NS | | Beryllium | NS
NS | ND(20.0)
0.140 B | NS
NS | NS
NS | 36.0 | NS | | Cadmium | NS NS | ND(0.500) | NS
NS | NS
NS | ND(0.500) | NS NS | | Chromium | NS NS | 3.80 | NS NS | NS
NS | 0.570 | NS
NS | | Cobalt | NS NS | ND(5.00) | NS NS | NS | 14.0
5.40 | NS
NS | | Copper | NS | 39.0 | NS NS | NS | 77.0 | NS
NS | | Cyanide | NS : | 0.100 | NS NS | NS | 3.40 | NS
NS | | Lead | NS NS | 57.0 J | NS NS | NS
NS | 3.40
140 J | NS
NS | | Mercury | NS | 0.150 | NS NS | NS
NS | 0.880 | NS
NS | | Nickel | NS NS | 7.80 | NS
NS | NS
NS | 12.0 | NS NS | | Selenium | NS | ND(1.00) J | NS NS | NS NS | 0.790 J | NS NS | | Silver | NS NS | ND(1.00) | NS NS | NS NS | 0.360 B | NS NS | | Sulfide | NS | 24.0 | NS NS | NS NS | 24.0 | NS
NS | | Thallium | NS NS | ND(1.00) J | NS | NS | ND(1.70) | NS NS | | Tin | NS | ND(10.0) | NS | NS | 14.0 | NS NS | | Vanadium | NS | 5.00 | NS | NS | 11.0 | NS NS | | Zinc | NS | 35.0 | NS | NS | 97.0 J | NS NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-E31 | 4B
RAA4-E31 | 4B
RAA4-E31 | 4B
RAA4-E31 | 4B
RAA4-E35 | 4B
RAA4-E35 | |---|---------------------------|---------------------------------------|--|----------------|------------------------|-------------------------| | Sample Depth(Feet): | 0-1 | 1-6 | 4-6 | 6-15 | 0-1 | 6-15 | | Parameter Date Collected: | 04/24/02 | 04/24/02 | 04/24/02 | 04/24/02 | 05/17/02 | 05/17/02 | | Volatile Organics | 110/0 0400 | | 115.00000 | | 10/2 0070 | 1 | | 1,1,1-Trichloroethane | ND(0.0056) | NS NS | ND(0.028) | NS NS | ND(0.0073) | NS | | 1,1-Dichloroethane | ND(0.0056) | NS | ND(0.028) | NS NS | ND(0.0073) | NS | | 1,2-Dichloroethane | ND(0.0056) | NS | ND(0.028) | NS NS | ND(0.0073) | NS | | 2-Butanone | ND(0.011) | NS NS | ND(0.028) | NS | ND(0.015) | NS | | 2-Chloroethylvinylether | ND(0.0056) | NS | ND(0.028) | NS | ND(0.0073) | NS | | Acetone | ND(0.022) | NS | 0.084 | NS NS | ND(0.029) | NS
NS | | Benzene
Carbon Disulfide | ND(0.00560) | NS
NS | 0.170 | NS
NS | ND(0.00730) | NS
NS | | Carbon Distince
Chlorobenzene | ND(0.0056)
ND(0.0056) | NS
NS | ND(0.028) | NS
NS | ND(0.0073) | NS
NS | | Ethylbenzene | | | ND(0.028) | | ND(0.0073) | | | Methylene Chloride | ND(0.00560) | NS
NS | 8.30
ND(0.028) | NS
NS | ND(0.00730) | NS | | Styrene | ND(0.0056) | | | NS | ND(0.0073) | NS | | Tetrachloroethene | ND(0.00560) | NS
NS | ND(0.0280) | NS
NS | ND(0.00730) | NS | | Toluene | ND(0.0056)
ND(0.00560) | NS
NS | ND(0.028) | NS
NS | ND(0.0073) | NS
NS | | Trichloroethene | | NS NS | 0.180 | | ND(0.00730) | | | | ND(0.0056)
ND(0.0056) | | ND(0.028) | NS | ND(0.0073) | NS
NC | | Trichlorofluoromethane Xylenes (total) | ND(0.0056)
ND(0.0056) | NS
NS | ND(0.028) | NS
NS | ND(0.0073) | NS
Ne | | | (ชอบบ.ช)นหา | 1 4/2 | 8,6 | NP | ND(0.0073) | NS | | Semivolatile Organics |
NIB/6 6%6 | NEUG COC | 1 110 | 1.75 | 1 1F2/2 100. | A177.12 | | 1,2,4,5-Tetrachlorobenzene | ND(0.370) | ND(0.380) | NS L | NS
NS | ND(0.490) | ND(0.480) | | 1,2,4-Trichlorobenzene | ND(0.370) | ND(0.380) | NS | NS NS | 0.110 J | ND(0.480) | | 1,2-Dichlorobenzene | ND(0,370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | 1,2-Diphenylhydrazine | ND(0.37) | ND(0.38) | NS | NS NS | ND(0.49) | ND(0.48) | | 1,3-Dichlorobenzene | ND(0.370) | ND(0.380) | NS NS | NS
NS | ND(0,490) | ND(0.480) | | 1,3-Dinitrobenzene 1,4-Dichlorobenzene | ND(0.750)
ND(0.370) | . ND(0.760)
ND(0.380) | NS
NS | NS
NS | ND(0.980) | ND(0.970)
0.120 J | | 2,4-Dimethylphenol | ND(0.370)
ND(0.370) | · · · · · · · · · · · · · · · · · · · | NS | NS | ND(0.490) | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | 2-Chloronaphthalene | ND(0.370) | ND(0.380) | NS | NS
NS | ND(0.490) | ND(0.480) | | 2-Chlorophenol 2-Methylnaphthalene | ND(0.370)
0.310 J | ND(0.380)
26.0 | NS
NS | NS
NS | ND(0.490) | ND(0.480) | | 2-Methylphenol | ND(0.370) | | ······································ | | 0.220 J | ND(0.480) | | 2-Metryphenol
2-Nitroaniline | ND(1.90) | ND(0.380)
ND(1.90) | NS
NS | NS
NS | ND(0.490) | ND(0.480) | | 3&4-Methylphenol | ND(1.90)
ND(0.750) | ND(1.90)
ND(0.760) | NS NS | NS NS | ND(2.50) | ND(2.50)
ND(0.970) | | 4-Chloroaniline | ND(0.750)
ND(0.370) | ND(0.780) | NS NS | NS NS | ND(0.980)
ND(0.490) | ND(0.970)
ND(0.480) | | 4-Chlorobenzilate | ND(0.750) | ND(0.760) | NS NS | NS NS | ND(0.980) | ND(0.480)
ND(0.970) | | 4-Phenylenediamine | ND(0.75) J | ND(0.76) J | NS NS | NS NS | ND(0.98) J | ND(0.970)
ND(0.97) J | | Acenaphthene | ND(0.370) | 13.0 | NS NS | NS NS | 0.170 J | 0.180 J | | Acenaphthylene | 1,10 | 7.20 | NS NS | NS NS | 1.10 | 0.250 J | | Acetophenone | 0.180 J | ND(0,380) | NS NS | NS NS | ND(0.490) | ND(0.480) | | Aniline | 0.130 J | ND(0.380) | NS NS | NS NS | 0.780 | ND(0.480) | | Anthracene | 0.480 | 8.90 | NS NS | NS NS | 0.920 | ND(0.480) | | Benzo(a)anthracene | 2.00 | 12.0 | NS NS | NS NS | 2.00 | 0.570 | | Benzo(a)pyrene | 2.60 | 19.0 | NS NS | NS | 2.10 | 0.640 | | Benzo(b)fluoranthene | 1.80 | 5.60 | NS NS | NS NS | 2.10 | 0.510 | | Benzo(q,h,i)perylene | 2.60 | 7.30 | NS NS | NS | 2.10 | 0.460 J | | Benzo(k)fluoranthene | 1.90 | 5.60 | NS | NS | 1.50 | 0.440 J | | Benzyl Alcohol | ND(0.750) | ND(0.760) | NS | NS | ND(0.98) J | ND(0.97) J | | bis(2-Ethylhexyl)phthalate | ND(0.370) | ND(0,380) | NS NS | NS | ND(0.480) | ND(0.480) | | Chrysene | 1.90 | 12.0 | NS | NS | 2.00 | 0.620 | | Dibenzo(a,h)anthracene | 0.750 | 2.50 | NS | NS | 0.420 J | ND(0.480) | | Dibenzofuran | ND(0.370) | 0.750 | NS | NS | 0.150 J | ND(0.480) | | Diethylphthalate | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | Dimethylphthalate | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | Di-n-Butylphthalate | 0.150 J | ND(0.380) | NS | NS | 0.680 | ND(0.480) | | Diphenylamine | ND(0.37) | ND(0.38) | NS | NS | ND(0.49) | ND(0.48) | | Fluoranthene | 2.00 | 18.0 | NS | NS | 3.50 | 0.990 | | Fluorene | 0.240 J | 7.60 | NS | NS | 0.290 J | 0.150 J | | Hexachlorobenzene | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | Indeno(1,2,3-cd)pyrene | 2.20 | 6.30 | NS | NS | 1.80 | 0.330 J | | Naphthalene | 0.560 | 51.0 | NS | NS | 0.510 | 0.110 J | | Nitrobenzene | ND(0.370) | ND(0.380) | NS NS | NS | ND(0.490) | ND(0.480) | | N-Nitrosodiphenylamine | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | o-Toluidine | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 48 | 4B | 48 | 4B · | 4B | 4B | |-----------------------------------|----------------------------|----------------------|---------------------------------------|-----------------------------|---|-----------| | Sample ID: | RAA4-E31 | RAA4-E31 | RAA4-E31 | RAA4-E31 | RAA4-E35 | RAA4-E35 | | Sample Depth(Feet): | 0-1 | 1-6 | 4-6 | 6-15 | 0-1 | 6-15 | | Parameter Date Collected: | 04/24/02 | 04/24/02 | 04/24/02 | 04/24/02 | 05/17/02 | 05/17/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | Pentachlorophenol | ND(1.90) | ND(1.90) | NS | NS | ND(2.50) | ND(2.50) | | Phenanthrene | 1.50 | 26.0 | NS | NS | 2.50 | 0.520 | | Phenol | 0.110 J | ND(0.380) | NS | NS | 0.510 | ND(0.480) | | Pyrene | 3.80 | 57.0 | NS | N\$ | 3.40 | 0.950 | | Pyridine | ND(0.370) | ND(0.380) | NS | NS | ND(0.490) | ND(0.480) | | Furans | | | | | *************************************** | | | 2,3,7,8-TCDF | 0.000064 Y | 0.000027 Y | NS | 0.000021 Y | 0.0037 | NS | | TCDFs (total) | 0.00055 | 0.00025 | NS | 0.00025 | 0.018 | NS | | 1,2,3,7,8-PeCDF | 0.000023 | 0.0000052 | NS | 0.0000073 J | 0.0026 | NS | | 2,3,4,7,8-PeCDF | 0.000021 | 0.0000079 | NS | ND(0.0000085) XJ | 0.0042 | NS | | PeCDFs (total) | 0.00047 | 0.00012 | NS | 0.000089 QJ | 0.028 1 | NS | | 1,2,3,4,7,8-HxCDF | 0.000038 | 0.000017 | NS | ND(0.0000071) | 0.0018 | NS | | 1,2,3,6,7,8-HxCDF | 0.000019 | 0.0000060 | NS | ND(0.000045) X | 0.0012 | NS | | 1,2,3,7,8,9-HxCDF | ND(0.0000087) X | 0.0000058 B | NS | ND(0.0000088) | 0.00041 | NS | | 2,3,4,6,7,8-HxCDF | 0.000021 | 0.0000074 | NS | ND(0.0000069) J | 0.0019 | NS | | HxCDFs (total) | 0.00041 | 0.00016 | NS | 0.000051 J | 0.018 | NS | | 1,2,3,4,6,7,8-HpCDF | 0.000048 | 0.000026 | NS | ND(0.000047) X | 0.0016 | NS | | 1,2,3,4,7.8,9-HpCDF | 0.0000060 | ND(0.0000016) | NS | ND(0.000013) J | 0.00026 | NS | | HpCDFs (total) OCDF | 0.00010 | 0.000047 | NS | 0.000072 J | 0.0034 | NS | | Dioxins | 0.000040 | 0.000034 | NS | ND(0.000083) X | 0.00046 | NS | | | ND/O COROCOTO | 115.00 45.05.00 | | | | | | 2,3,7,8-TCDD
TCDDs (total) | ND(0.00000053) X | ND(0.00000040) | NS | ND(0.0000030) | 0.000021 | NS | | 1.2.3.7.8-PeCDD | 0.000022 | 0.0000056 | NS | 0.0000048 | 0.000097 | NS | | PeCDDs (total) | ND(0.0000023) X | ND(0.00000060) | NS NS | ND(0.0000033) X | 0.000039 J | NS | | 1,2,3,4,7,8-HxCDD | 0.0000096 | ND(0.0000017) X | NS NS | 0.000089 Q | 0.00019 | NS | | 1,2,3,6,7,8-HxCDD | 0.0000021 JB | ND(0.0000011) | NS NS | ND(0.000010) | 0.000024 J | NS | | 1,2,3,7,8,9-HxCDD | 0.0000049 J
0.0000050 J | ND(0.0000012) | NS | ND(0.000011) | 0.000032 J | NS | | HxCDDs (total) | 0.0000503 | 0.0000024 JB | NS
NS | ND(0.000011) | 0.000014 J | NS | | 1,2,3,4,6,7,8-HpCDD | 0.000051 | 0.000015 | · · · · · · · · · · · · · · · · · · · | ND(0.000036) X | 0.00023 | NS | | HpCDDs (total) | 0.000031 | 0.000018
0.000036 | NS
NS | 0.000019 | 0.00025 | NS
NS | | DCDD | 0.00013 | 0.000057 | NS
NS | 0.000044 | 0.00049 | NS | | Total TEQs (WHO TEFs) | 0.000030 | 0.000037 | NS NS | ND(0.000087) XJ
0.000013 | 0.0016 | NS | | norganics | 0.00000 | 0.000012 | 140 | 0.000013 | 0.0032 | NS | | Antimony | ND(6.00) | ND(6.00) | 110 | NO | | | | Arsenic | 11.0 | 6.10 | NS
NS | NS
NS | 1,50 B | NS | | 3arium | 33.0 | 26.0 | NS NS | NS NS | 6.90
42.0 | NS
NS | | Beryllium | ND(0.500) | ND(0,500) | NS NS | NS | ND(0.500) | NS
NS | | Cadmium | 0.620 | ND(0.500) | NS NS | NS NS | ND(0.500) | NS
NS | | Chromium | 7.90 | 8.20 | NS I | NS NS | 14.0 | NS
NS | | Cobalt | 5.30 | 6.80 | NS NS | NS | 8.50 | NS | | Copper | 46.0 | 15.0 | NS NS | NS NS | 80.0 | NS | | Cyanide | 1.60 | 1.00 | NS | NS NS | 4.80 | NS | | ead | 74.0 J | 16.0 J | NS | NS NS | 72.0 | NS | | Mercury | 0.250 | ND(0.110) | NS | NS NS | 1.10 | NS | | Nicke! | 11.0 | 12.0 | NS | NS | 18.0 | NS | | Selenium | 0.510 J | ND(1.00) J | NS NS | NS NS | ND(1.10) | NS | | Silver | ND(1.00) | ND(1.00) | NS | NS | ND(1.10) | NS | | Sulfide | 23.0 | 68.0 | NS | NS NS | 42.0 | NS | | hallium | ND(1.10) J | ND(1.10) J | NS | NS | ND(1.50) J | NS | | [in | ND(10.0) | ND(4.00) | NS | NS | 33.0 | NS | | /anadium | 11.0 | 8.50 | NS | NS | 15.0 | NS | | Zinc Zinc | 51.0 | 53.0 | NS | NS | 95.0 | NS | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-E35 | 4B
RAA4-E36 | 4B
RAA4-F19 | 4B
RAA4-F19 | 4B
RAA4-F21 | |--|--|-------------------------|----------------|----------------|--| | Sample Depth(Feet): | 10-12 | 0-1 | 0-1 | 1-6 | 0-1 | | Parameter Date Collected: | 05/17/02 | 04/23/02 | 06/18/02 | 06/18/02 | 06/04/02 | | Volatile Organics | ······································ | | | | | | 1.1,1-Trichioroethane | ND(0.0073) | ND(0.0055) | NS | NS NS | ND(0.0053) [ND(0.0053)] | | 1,1-Dichloroethane | ND(0.0073) | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | 1,2-Dichloroethane | ND(0.0073) | ND(0.0055) | NS
NS | NS | ND(0.0053) [ND(0.0053)] | | 2-Butanone
2-Chloroethylvinylether | ND(0.014)
ND(0.0073) | ND(0.011)
ND(0.0055) | NS
NS | NS | ND(0.011) [ND(0.011)] | | Acetone | ND(0.029) | ND(0.0055) | NS
NS | NS
NS | ND(0.0053) [ND(0.0053)] | | Benzene | ND(0.00730) | ND(0.022) | NS NS | NS
NS | ND(0.021) [ND(0.021)]
ND(0.00530) [ND(0.00530)] | | Carbon Disulfide | ND(0.00730) | ND(0.0055) | NS NS | NS NS | ND(0.0053) [ND(0.0053)] | | Chlorobenzene | 0.0075 | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | Ethylbenzene | ND(0.00730) | ND(0.00550) | NS | NS NS | ND(0.00530) [ND(0.00530)] | | Methylene Chloride | ND(0.0073) | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | Styrene | ND(0.00730) | ND(0.00550) | NS | NS | ND(0.00530) [ND(0.00530)] | | Tetrachioroethene | ND(0.0073) | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | Toluene | ND(0.00730) | ND(0.00550) | NS | NS | ND(0.00530) [ND(0.00530)] | |
Trichloroethene | ND(0.0073) | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | Trichlorofluoromethane | ND(0.0073) | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | Xylenes (total) | ND(0.0073) | ND(0.0055) | NS | NS | ND(0.0053) [ND(0.0053)] | | Semivolatile Organics | | | | | | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | 1,2,4-Trichlorobenzene | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | 1,2-Dichlorobenzene | NS
NS | ND(0.480) | NS | NS NS | ND(0.350) [ND(0.360)] | | 1.2-Diphenylhydrazine | NS
NS | ND(0.48) | NS | NS NS | ND(0.35) [ND(0.36)] | | 1,3-Dichlorobenzene 1.3-Dinitrobenzene | NS
NS | ND(0.480)
ND(0.740) | NS
NS | NS | ND(0.350) [ND(0.360)] | | 1,4-Dichlorobenzene | NS NS | ND(0.740)
ND(0.480) | NS
NS | NS
NS | ND(0.710) [ND(0.720)] | | 2,4-Dimethylphenol | NS
NS | ND(0.480) | NS NS | NS NS | ND(0.350) [ND(0.360)]
ND(0.350) [ND(0.360)] | | 2-Chloronaphthalene | NS NS | ND(0.480) | NS
NS | NS NS | ND(0.350) [ND(0.360)] | | 2-Chlorophenol | NS NS | ND(0.480) | NS NS | NS NS | ND(0.350) [ND(0.360)] | | 2-Methylnaphthalene | NS | 0.150 J | NS NS | NS NS | ND(0.350) [ND(0.360)] | | 2-Methylphenol | NS | ND(0.480) | NS | NS NS | ND(0.350) (ND(0.360)) | | 2-Nitroaniline | NS | ND(2.40) | NS | NS | ND(1.80) [ND(1.80)] | | 3&4-Methylphenol | NS | ND(0.740) | NS | NS | ND(0.710) [ND(0.720)] | | 4-Chloroaniline | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | 4-Chlorobenzilate | NS | ND(0.740) | NS | NS | ND(0.710) [ND(0.720)] | | 4-Phenylenediamine | NS | ND(0.74) J | NS | NS | ND(0.71) J [ND(0.72) J] | | Acenaphthene | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | Acenaphthylene | NS | 0.690 | NS | NS | ND(0.350) [ND(0.360)] | | Acetophenone
Aniline | NS
NS | 0.210 J | NS | NS I | ND(0.350) [ND(0.360)] | | Anthracene | NS
NS | 0.700
0.410 J | NS
NS | NS NS | ND(0.350) [ND(0.360)] | | Benzo(a)anthracene | NS NS | 1.60 | NS | NS
NS | 0.190 J [ND(0.360)]
1.0 J [0.24 J] | | Benzo(a)pyrene | NS I | 1.40 | NS NS | NS NS | 0.88 J [0.25 J] | | Benzo(b)fluoranthene | NS | 1.40 | NS NS | NS NS | 0.81 J [0.21 J] | | Benzo(g,h,i)perylene | NS | 1.50 | NS | NS | 0.73 J [0.20 J] | | Benzo(k)fluoranthene | NS | 1.20 | NS | NS | 0.79 J [0.19 J] | | Benzyl Alcohol | NS | ND(0.960) | NS | NS | ND(0.710) [ND(0.72) J] | | bis(2-Ethylhexyl)phthalate | NS | ND(0.360) | NS | NS | ND(0.350) [ND(0.350)] | | Chrysene | NS | 1.60 | NS | NS | 0.90 J [0.22 J] | | Dibenzo(a,h)anthracene | NS | 0.430 J | NS | NS | 0.230 J [ND(0.360)] | | Dibenzofuran | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | Diethylphthalate | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | Dimethylphthalate | NS | ND(0,480) | NS NS | NS | ND(0.350) [0.250 J] | | Di-n-Butylphthalate | NS
NC | 0.360 J | NS NS | NS NS | ND(0.350) [ND(0.360)] | | Diphenylamine
Fluoranthene | NS
NS | ND(0.48) | NS
NS | NS NS | ND(0.35) [ND(0.36)] | | Fluorantnene | NS
NS | 2.50
0.120 J | NS
NS | NS NS | 2.1 J [0.52 J] | | Hexachlorobenzene | NS NS | ND(0.480) | NS
NS | NS NS | ND(0.350) [ND(0.360)]
ND(0.350) [ND(0.360)] | | Indeno(1,2,3-cd)pyrene | NS NS | 1.20 | NS NS | NS NS | 0.660 [0.170 J] | | Naphthalene | NS NS | 0.330 J | NS
NS | NS NS | ND(0.350) [ND(0.360)] | | Nitrobenzene | NS | ND(0.480) | NS | NS NS | ND(0.350) [ND(0.360)] | | N-Nitrosodiphenylamine | NS | ND(0.480) | NS NS | NS | ND(0.350) [ND(0.360)] | | o-Toluidine | NS | ND(0.480) | NS | NS NS | ND(0.350) [ND(0.360)] | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-E35 | 4B
RAA4-E36 | 4B
RAA4-F19 | 4B
RAA4-F19 | 4B
RAA4-F21 | |-----------------------------------|---|----------------|----------------|-----------------|-------------------------------------| | Sample Depth(Feet): | 10-12 | 0-1 | 0-1 | | 0-1 | | Parameter Date Collected: | 05/17/02 | 04/23/02 | 06/18/02 | 1-6
06/18/02 | 06/04/02 | | Semivolatile Organics (continued) | | • | | | | | Pentachlorobenzene | NS | ND(0.480) | NS | NS | ND(0.350) [ND(0.360)] | | Pentachlorophenol | NS | ND(2.40) | NS | NS | ND(1.80) (ND(1.80)) | | Phenanthrene | NS | 1.20 | NS | NS | 0.800 [ND(0.360)] | | Pheno! | NS | 0.410 J | NS | NS | ND(0.350) [ND(0.360)] | | Pyrene | NS | 2.80 | NS | NS | 1.9 J [0,44 J] | | Pyridine | NS | ND(0.480) | NS | NS | ND(0.350) (ND(0.360)) | | Furans | | | / | | | | 2,3,7,8-TCDF | NS | 0.000069 Y | 0.0000077 Y | 0.00015 Y | 0.0000049 Y [0.0000054 Y] | | TCDFs (total) | NS | 0.0019 EJ | 0.0000801 | 0.0014 QI | 0.000039 [0.000046] | | 1,2,3,7,8-PeCDF | NS | 0.000039 | 0.0000050 | 0.000056 Q | 0.0000018 J [0.0000026 J] | | 2,3,4,7,8-PeCDF | NS | 0.00011 | 0.000028 | 0.00032 | 0.0000044 [0.0000061] | | PeCDFs (total) | NS | 0.017 EJ | 0.00044 QI | 0.0065 QI | 0.000050 Q [0.000070 Q] | | 1,2,3,4,7,8-HxCDF | NS | 0.00022 | 0.000021 | 0.00014 | 0.0000032 [0.0000050] | | 1,2,3,6,7,8-HxCDF | NS | 0.00050 | 0.000015 | 0.00016 | 0.0000021 J [0.0000037] | | 1,2,3,7,8,9-HxCDF | NS | ND(0.00038) X | 0.0000038 | 0.000034 | 0.00000078 J [0.00000090 J] | | 2,3,4,6,7,8-HxCDF | NS | 0.0011 | 0.000041 | 0.00055 | 0.0000052 [0.0000072] | | HxCDFs (total) | NS | 0.016 EJ | 0.000601 | 0.0075 | 0.000067 [0.000096] | | 1,2,3,4,6,7,8-HpCDF | NS | 0.0016 | 0.000034 | 0.00046 | 0.0000067 [0.0000096] | | 1,2,3,4,7,8,9-HpCDF | NS | 0.000068 | 0.0000059 J | 0.000052 J | 0.0000010 J [0.0000011 J] | | HpCDFs (total) | NS | 0.0034 | 0.00011 | 0.0012 | 0.000016 [0.000022] | | OCDF | NS | 0.00022 | 0.000018 | 0.00016 | 0.0000054 [0.0000076] | | Dioxins | | | | <u> </u> | | | 2,3,7,8-TCDD | NS | 0.0000017 B | ND(0.00000012) | 0.00000095 | ND(0.00000018) X [ND(0.00000017) X] | | TCDDs (total) | NS | 0.000017 Q | 0.00000046 | 0.000022 Q | 0.00000036 [0.00000087] | | 1,2,3,7,8-PeCDD | NS | 0.0000088 | 0.00000058 J | 0.0000057 | ND(0.00000040) X [ND(0.00000031) X] | | PeCDDs (total) | NS | 0.000037 | 0.0000033 | 0.000050 Q | 0.0000013 Q (0.0000016 Q) | | 1,2,3,4.7,8-HxCDD | NS | 0.000015 | 0.00000062 J | 0.0000072 | ND(0.00000039) X [0.00000030 J] | | 1,2,3,6,7,8-HxCDD | NS | 0.000014 | 0.00000082 J | 0.0000078 | 0.0000054 J [0.0000043 J] | | 1,2,3,7,8,9-HxCDD | NS | 0.000012 | 0.00000064 J | 0.0000063 | 0.00000042 J [0.00000035 J] | | HxCDDs (total) | NS | 0.00019 | 0.0000090 | 0.00011 | 0.0000057 [0.0000058] | | 1,2,3,4,6,7,8-HpCDD | NS | 0.00017 | 0.0000062 | 0.000053 | 0.000044 [0.0000059] | | HpCDDs (total) | NS | 0.00034 | 0.000013 | 0.00011 | 0.000086 [0.000011] | | OCDD | NS | 0.00062 J | 0.000028 | 0.00022 | 0.000028 [0.000041] | | Total TEQs (WHO TEFs) | NS | 0.00030 | 0.000024 | 0.00028 | 0.0000044 [0.0000059] | | !norganics | *************************************** | | | | | | Antimony | NS | ND(6.00) | NS | NS | 0.860 J [ND(6.00) J] | | Arsenic | NS | 11.0 | NS | NS | 3.80 J [4.50 J] | | Barium | NS | 41.0 | NS | NS | 36.0 J [22.0 J] | | Beryllium | NS | ND(0,500) | NS | NS | ND(0.500) J [ND(0.500) J] | | Cadmium | NS | 1.20 | NS | NS | ND(0.500) J [ND(0.500) J] | | Chromium · | NS | 39.0 | NS | NS | 5.20 J (5.70 J) | | Cobalt | NS | 16.0 | NS | NS | 6.90 J [7.60 J] | | Copper | NS | 95.0 | NS | NS | 29.0 [16.0] | | Cyanide | NS | 1.50 | NS | NS | ND(0.110) [ND(0.110)] | | Lead | NS | 65.0 | NS | NS | 32.0 [15.0] | | Mercury | NS | 0.340 | NS | NS | 0.0700 J [0.180 J] | | Nickel | NS | 29.0 | NS | NS | 11.0 [12.0] | | Selenium | NS | 1.30 | NS | NS | ND(1.00) J [ND(1.00) J] | | Silver | NS | ND(1.00) | NS | NS | ND(1.00) [ND(1.00)] | | Sulfide | NS | 55.0 | NS | NS | 12.0 [10.0] | | Thallium | · NS | ND(1.10) J | NS | NS | ND(1.10) (ND(1.10)] | | Tin | NS | ND(10.0) | NS | NS | ND(4.30) [ND(3.40)] | | Vanadium | NS | 16.0 | NS | NS | 7.30 [6.60] | | Zinc | NS | 130 | NS | NS | 48.0 J [41.0 J] | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-F21 | 4B
RAA4-F23 | 4B
RAA4-F29 | 4B
RAA4-F33 | | |---------------------------------------|----------------|----------------|--|----------------|--| | Sample Depth(Feet): | 6-15 | 1-6 | 0-1 | 1-6 | | | Parameter Date Collected: | 06/04/02 | 06/04/02 | 05/22/02 | 05/28/02 | | | Volatile Organics | 1100 | . 10 | · | | | | 1.1,1-Trichloroethane | NS | NS | 0.15 [0.15] | NS | | | 1,1-Dichloroethane 1,2-Dichloroethane | NS
NS | NS
NS | 0.010 [0.011] | NS NS | | | 2-Butanone | NS
NS | NS
NS | 0.0058 [ND(0.0054)] | NS NS | | | 2-Duarione
2-Chloroethyivinylether | NS
NS | NS
NS | ND(0.010) [ND(0.011)] | NS
NS | | | Acetone | NS
NS | NS
NS | 0.0046 J [ND(0.0054)] | | | | Benzene | NS NS | NS NS | 0.0074 J [0.0079 J]
ND(0.00530) [ND(0.00540)] | NS
NS | | | Carbon Disulfide | NS NS | NS
NS | ND(0.00530) [ND(0.00540)] | NS NS | | | Chlorobenzene | NS : | NS NS | ND(0.0053) [ND(0.0054)] | NS NS | | | Ethylbenzene | NS | NS | ND(0.00530) [ND(0.00540)] | NS NS | | | Methylene Chloride | NS | NS | ND(0.0053) [ND(0.0054)] | NS NS | | | Styrene | NS | NS NS | ND(0.00530) [ND(0.00540)] | NS NS | | | Tetrachloroethene | NS | NS NS | 0.82 J [0.43 J] | NS | | | Toluene | NS | NS | ND(0.00530) [0.00460 J] | NS | | | Trichloroethene | NS | NS | 0.096 [0.10] | NS | | | Trichlorofluoromethane | NS | NS | ND(0.0053) [ND(0.0054)] | NS
NS | | | Kylenes (total) | NS | NS NS | ND(0.0053) [ND(0.0054)] | NS | | | Semivolatile Organics | | | ,, , , , , , , , , , , , , , , , , | | | | 1,2,4,5-Tetrachlorobenzene | NS | NS | 0.390 [0.600 J] | NS | | | 1,2,4-Trichtorobenzene | NS | NS NS | 0.560 [1.50] | NS | | | 1,2-Dichlorobenzene | NS | NS | ND(0.350) [ND(0.730)] | NS | | | 1,2-Diphenylhydrazine | NS | NS | ND(0.35) [ND(0.73)] | NS | | | ,3-Dichlorobenzene
| NS | NS | ND(0.350) [ND(0.730)] | NS | | | ,3-Dinitrobenzene | NS | NS | ND(0.710) [ND(0.730)] | NS | | | ,4-Dichlorobenzene | NS | NS | ND(0.350) [ND(0.730)] | NS | | | 2,4-Dimethylphenol | NS | NS | 0.120 J [0.220 J] | NS | | | ?-Chloronaphthalene | NS | NS | ND(0.350) [ND(0.730)] | NS | | | 2-Chlorophenol | NS | NS | ND(0.350) [ND(0.730)] | NS | | | 2-Methylnaphthalene | NS | NS | ND(0.350) [ND(0.730)] | NS | | | 2-Methylphenol | NS | NS | ND(0.350) [ND(0.730)] | NS | | | 2-Nitroaniline | NS | NS | ND(1.80) [ND(3.60)] | NS | | | 3&4-Methylphenol | NS | NS | 0.160 J [0.250 J] | NS | | | I-Chloroaniline | NS | NS | ND(0.350) [ND(0.730)] | NS | | | I-Chlorobenzilate | NS | NS | ND(0.710) [ND(0.730)] | NS | | | I-Phenylenediamine | NS | NS | ND(0.71) J [ND(0.73) J] | NS | | | Acenaphthene | NS | NS | 0.360 [0.730] | NS | | | Acenaphthylene | NS | NS | 0.0930 J [ND(0.730)] | NS | | | Acetophenone | NS NS | NS | ND(0.350) [ND(0.730)] | NS | | | Aniline | NS NS | NS NS | 1.2 J [6.5 J] | NS NS | | | Anthracene | NS
NS | NS
NS | 0.610 [1.10] | NS | | | Benzo(a)anthracene
Benzo(a)pyrene | NS NS | NS NS | 2.10 [3.90] | NS NS | | | Benzo(b)fluoranthene | NS NS | NS NS | 2.40 [3.90]
2.20 [3.80] | NS
NS | | | Benzo(g,h,i)perylene | NS NS | NS NS | 2.20 (3.80) | NS
NS | | | Benzo(k)fluoranthene | NS NS | NS
NS | 1.70 (3.30) | NS
NS | | | lenzyl Alcohol | NS NS | NS NS | ND(0.710) [ND(1.40)] | NS NS | | | is(2-Ethylhexyl)phthalate | NS NS | NS NS | 0.48 J [3.8 J] | NS | | | Chrysene | NS NS | NS NS | 2.00 [3.80] | NS NS | | | ibenzo(a.h)anthracene | NS NS | NS NS | 0.640 [1.20] | NS NS | | | Dibenzofuran | NS | NS | 0.190 J [0.350 J] | NS NS | | | liethylphthalate | NS | NS | ND(0.350) [ND(0.730)] | NS | | | imethylphthalate | NS | NS | ND(0.350) [ND(0.730)] | NS | | | i-n-Butylphthalate | NS | NS | 0.350 J [0.580 J] | NS | | | iphenylamine | NS | NS | ND(0.35) [ND(0.73)] | NS | | | luoranthene | NS | NS | 3.70 [6.90] | NS | | | luorene | NS | NS | 0.310 J [0.520 J] | NS | | | iexachlorobenzene | NS | NS | ND(0.350) [ND(0.730)] | NS | | | ndeno(1,2,3-cd)pyrene | NS | NS | 2.30 [3.90] | NS | | | laphthalene | NS | NS | 0.120 J [0.230 J] | NS | | | litrobenzene | NS | NS | ND(0.350) [ND(0.730)] | NS | | | I-Nitrosodiphenylamine | NS | NS | ND(0.350) [ND(0.730)] | NS | | | -Toluidine | NS | NS | ND(0.350) [ND(0.730)] | NS | | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-F21 | 4B
RAA4-F23 | 4B
RAA4-F29 | 4B
RAA4-F33 | |-------------------------------------|------------------|----------------------|--|---------------------------------| | Sample Depth(Feet): | 6-15
06/04/02 | 1-6 | 0-1 | 1-6 | | Parameter Date Collected: | 06/04/02 | 06/04/02 | 05/22/02 | 05/28/02 | | Semivolatile Organics (continued) | | 1 | | | | Pentachiorobenzene | NS NS | NS
NS | 1.10 [1.80] | NS | | Pentachiorophenol | NS
NS | NS | ND(1.80) [ND(3.60)] | NS | | Phenanthrene
Phenol | NS
NS | NS
NS | 2.80 [4.70] | NS | | | | | 0.240 J [0.800] | NS | | Pyrene | NS
NS | NS
NS | 3.10 [6.10] | NS | | Pyridine | INS | į NS | ND(0.350) [ND(0.730)] | NS | | 2.3.7.8-TCDF | A AAAAA → 17 | 0.00040.10 | | | | TCDFs (total) | 0.000087 Y | 0.00012 YI | 0.00074 [0.00065] | 0.0000059 Y | | | 0.00079 | 0.00221 | 0.0046 [[0.0042] | 0.000058 | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF | 0.000026 | 0.000047 | 0.00044 [0.00042] | 0.0000021 J | | | 0.000034 | 0.00039 | 0.00098 [0.00092] | 0.0000024 J | | PeCDFs (total)
1,2,3,4,7,8-HxCDF | 0.000381 | 0.0060 QI
0.00047 | 0.010 QI [0.0088 QI] | 0.000026 | | 1,2,3,6,7,8-HxCDF | 0.000038 | 0.00047 | 0.0012 [0.00098] | 0.0000018 J | | 1,2,3,6,7,8-HXCDF | 0.000020 | 0.00020 | 0.00051 [0.00045]
0.00022 [0.00028] | 0.0000010 J | | 2,3,4,6,7,8-HxCDF | 0.0000046 | 0.00057 | 0.00022 [0.00028] | ND(0.00000024) X
0.0000012 J | | HxCDFs (total) | 0.000026 | 0.00057
0.0078 Q | 0.012 [0.010] | | | 1,2,3,4,6,7,8-HpCDF | 0.00037 | 0.0078 Q | 0.0024 (0.0017) | 0.000014 | | 1,2,3,4,0,7,8,9-HpCDF | 0.000050 | 0.0010 | 0.0024 [0.0017] | 0.0000025 J
0.0000031 J | | HpCDFs (total) | 0.000092 | 0.0028 | 0.00043 [0.00029] | 0.00000313 | | OCDF | 0.00000 | 0.0024 | 0.0037 J [0.0015 J] | 0,0000044
0,0000021 J | | Dioxins | 0.000000 | 0.0024 | 0.0037 3 [0.0013 3] | 0,00000213 | | 2,3,7,8-TCDD | 0.00000065 J | ND(0.0000039) X | 0.0000052 (0.0000052 JI | ND(0.00000024) | | TCDDs (total) | 0.000013 | 0.000055 | 0.000032 [0.000040] | 0.00000038 | | 1,2,3,7,8-PeCDD | ND(0.000013) X | ND(0.000036) X | ND(0.000013) X [ND(0.000012) X] | ND(0.00000030) X | | PeCDDs (total) | 0.000012 | 0.00018 Q | 0.000013 J {0.000024 QJ] | 0.00000078 | | 1,2,3,4,7,8-HxCDD | 0.00000090 J | 0.000038 | 0.000013 J [0.000024 Q3] | ND(0.00000076 | | 1,2,3,6,7,8-HxCDD | 0.00000012 J | 0.000049 | 0.000022 J (0.00016 J) | ND(0.00000061) | | 1.2.3.7.8.9-HxCDD | 0.00000095 J | 0.000040 | 0.000011 J [0.0000086 J] | ND(0.00000061) | | HxCDDs (total) | 0.000017 | 0.00073 Q | 0.00020 [0.00016] | 0.00000049 | | 1,2,3,4,6,7,8-HpCDD | 0.0000071 | 0.00030 | 0.00013 [0.00011] | 0.00000094 J | | HpCDDs (total) | 0.000014 | 0.00066 | 0.00025 [0.00021] | 0.0000018 | | OCDD | 0.000028 | 0.0012 | 0.00045 [0.00042] | ND(0.0000046) | | Total TEQs (WHO TEFs) | 0.000038 | 0.00039 | 0.00095 [0.00085] | 0.0000027 | | Inorganics | | | 3.30300 (0.0000) | 0,0000021 | | Antimony | NS | NS | 6.00 [6.40] | NS | | Arsenic | NS | NS | 3.50 [4.00] | NS | | Barium | NS | NS | 32.0 [29.0] | NS NS | | Beryllium | NS | NS | ND(0.500) [ND(0.500)] | NS | | Cadmium | NS | NS | 0.660 [0.890] | NS | | Chromium | NS | NS | 15.0 J [16.0 J] | NS | | Cobalt | NS | NS | 5.30 [7.60] | NS | | Соррег | NS | NS | 71.0 J [67.0 J] | NS | | Cyanide | NS | NS | 0.150 [0.0960 B] | NS | | Lead | NS | NS | 62.0 [60.0] | NS | | Mercury | NS | NS | 3.90 [4.10] | NS | | Nickel | NS | NS | 13.0 [22.0] | NS | | Selenium | NS . | NS | ND(1.00) [ND(1.00)] | NS | | Silver | NS | NS | ND(1.00) [ND(1.00)] | NS | | Sulfide | NS | NS | 17.0 J [17.0 J] | NS | | Thallium | NS | NS | ND(1.60) [ND(1.60)] | NS | | Tin | NS | NS | ND(10.0) [ND(10.0)] | NS | | Vanadium | NS | NS | 11.0 [16.0] | NS | | Zinc | NS | NS | 140 [150] | NS | | | Averaging Area: | 48 | 4B | 4B | 4B | 4B | 4B | |--------------------------------|---|--|------------------------|---------------------------|------------------------|---------------------------|--| | 1 | Sample ID: | RAA4-F34 | RAA4-F34 | RAA4-F34 | RAA4-F35 | RAA4-F35 | RAA4-G21 | | Parameter | Sample Depth(Feet):
Date Collected: | 0-1
05/28/02 | 1-6
05/28/02 | 4-6
05/28/02 | 6-15
05/28/02 | 8-10
05/28/02 | 1-6
06/18/02 | | Volatile Orga | nics | | | | | | | | 1,1,1-Trichlore | pethane | ND(0.0064) | NS | ND(0.0657) | NS | ND(0.0058) | NS | | 1,1-Dichloroet | ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ | ND(0.0064) | NS | ND(0.0057) | NS | ND(0.0058) | NS | | 1,2-Dichloroet | thane | ND(0.0064) | NS | ND(0.0057) | NS | ND(0.0058) | NS | | 2-Butanone | | ND(0.013) | NS | ND(0.011) | NS | ND(0.012) | NS | | 2-Chloroethyli | vinylether | ND(0.0064) | NS | ND(0.0057) | NS | ND(0.0058) | NS | | Acetone | | ND(0.026) | NS | ND(0.023) | NS | ND(0.023) | NS | | Benzene | | ND(0.00640) | NS | ND(0.00570) | NS | ND(0.00580) | NS | | Carbon Disulf | | ND(0.0064) | NS | ND(0.0057) | NS | ND(0.0058) | NS NS | | Chlorobenzen
Ethylbenzene | | ND(0.0064)
ND(0.00640) | NS
NS | ND(0.0057)
ND(0.00570) | NS
NS | ND(0.0058)
ND(0.00580) | NS
NS | | Methylene Ch | | ND(0.00640) | NS NS | ND(0.00570) | NS
NS | ND(0.0058) | NS
NS | | Styrene | ionae | ND(0.00640) | NS
NS | ND(0.00570) | NS NS | ND(0.00580) | NS
NS | | Tetrachloroeth | nene | ND(0.0064) | NS NS | ND(0.0057) | NS | ND(0.0058) | NS | | Toluene | 10110 | ND(0.00640) | NS NS | ND(0.00570) | NS | ND(0.00580) | NS | | Trichloroether | ne | ND(0.0064) | NS NS | ND(0.0057) | NS NS | ND(0.0058) | NS | | Trichlorofluoro | | ND(0.0064) | NS | ND(0.0057) | NS | ND(0.0058) | NS | | Xylenes (total | | ND(0.0064) | NS | ND(0.0057) | NS | ND(0.0058) | NS | | Semivolatile | Organics | ······································ | | | | <u> </u> | ······································ | | | hlorobenzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 1,2,4-Trichlord | obenzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 1,2-Dichlorobe | enzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 1,2-Diphenylh | ydrazine | ND(0.47) | ND(0.38) | NS | ND(0.39) | NS | NS | | 1,3-Dichlorobe | enzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 1,3-Dinitrober | zene | ND(0.860) | ND(0.760) | NS | ND(0.780) | NS | NS | | 1,4-Dichlorobe | enzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 2,4-Dimethylp | | ND(0.470) | ND(0.380) | NS NS | ND(0.390) | NS | NS | | 2-Chloronaph | | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 2-Chlorophen | | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | 2-Methylnaph | | ND(0.470) | ND(0.380) | NS NS | 0.160 J | NS | NS | | 2-Methylphen | 01 | ND(0.470) | ND(0.380) | NS NS | ND(0.390) | NS. | NS | | 2-Nitroaniline | | ND(2.30) | ND(1.90) | NS NS | ND(2.00) | NS NS | NS NS | | 3&4-Methylph
4-Chloroanilin | | ND(0.860)
ND(0.470) | ND(0.760)
ND(0.380) | NS
NS | ND(0.780) | NS
NS | NS
NS | | 4-Chlorobenzi | | ND(0.470)
ND(0.860) | ND(0.360) | NS NS | ND(0.390)
ND(0.780) | NS NS | NS NS | | 4-Chlorobenzi
4-Phenylened | | ND(0.86) J | ND(0.76) J | NS NS | ND(0.78) J | NS NS | NS NS | | Acenaphthene | | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS NS | | Acenaphthyle | | ND(0.470) | ND(0.380) | NS | 0.800 | NS | NS | | Acetophenone | | ND(0.470) | ND(0.380) | NS NS |
ND(0.390) | NS | NS | | Aniline | | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | Anthracene | | ND(0.470) | ND(0.380) | NS | 0.240 J | NS | NS | | Benzo(a)anthi | racene | 0.0940 J | ND(0.380) | NS | 0.430 | NS | NS | | Benzo(a)pyrei | ne | 0.120 J | ND(0.380) | NS | 0.900 | NS | NS | | Benzo(b)fluora | | 0.0970 J | ND(0.380) | l NS | 0.440 | NS | NS | | Benzo(g,h,i)po | | ND(0.470) | ND(0.380) | NS | 1.20 | NS | NS | | Benzo(k)fluora | | 0.0670 J | ND(0.380) | NS | 0,470 | NS | NS | | Benzyl Alcoho | | ND(0.940) | ND(0.760) | NS | ND(0.780) | NS NS | NS NS | | bis(2-Ethylhe) | (yi)phthalate | ND(0.420) | ND(0.370) | NS
NC | ND(0.380) | NS NS | NS
NC | | Chrysene | | ND(0.470) | ND(0.380)
ND(0.380) | NS
NS | 0,490 | NS
NS | NS
NS | | Dibenzo(a,h)a
Dibenzofuran | | ND(0.470)
ND(0.470) | ND(0.380)
ND(0.380) | NS
NS | ND(0.390)
ND(0.390) | NS
NS | NS
NS | | Diethylphthala | | ND(0.470) | ND(0.380) | NS NS | ND(0.390)
ND(0.390) | NS NS | NS
NS | | Dimethylphtha | · | ND(0.470) | ND(0.380) | NS NS | ND(0.390) | NS NS | NS
NS | | Di-n-Butyiphth | | ND(0.470) | ND(0.380) | T NS | ND(0.390) | NS NS | NS
NS | | Diphenylamin | | ND(0.47) | ND(0.38) | NS NS | ND(0.39) | NS | NS NS | | Fluoranthene | <u>-</u> | 0.190 J | ND(0.380) | NS | 0.560 | NS I | NS | | Fluorene | ··· | ND(0.470) | ND(0.380) | NS NS | ND(0.390) | NS NS | NS | | Hexachlorobe | nzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS NS | NS | | Indeno(1,2,3- | ******** | ND(0.470) | ND(0.380) | NS | 0.760 | NS | NS | | Naphthalene | | ND(0.470) | ND(0.380) | NS | 0.370 J | NS | NS | | Nitrobenzene | | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | N-Nitrosodiph | enylamine | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | o-Toluidine | | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-F34 | 48
RAA4-F34 | 4B
RAA4-F34 | 4B
RAA4-F35 | 4B
RAA4-F35 | 4B
RAA4-G21 | |-------------------------------------|---|---------------------------------------|----------------|----------------------------------|----------------|----------------------| | Sample Depth(Feet): | 0-1 | 1-6 | 4-6 | 6-15 | 8-10 | 1-6 | | Parameter Date Collected: | 05/28/02 | 05/28/02 | 05/28/02 | 05/28/02 | 05/28/02 | 06/18/02 | | Semivolatile Organics (continued) | <u></u> | · · · · · · · · · · · · · · · · · · · | | | | <i></i> | | Pentachlorobenzene | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | Pentachlorophenol | ND(2.30) | ND(1.90) | NS | ND(2.00) | NS | NS | | Phenanthrene | 0.110 J | ND(0.380) | NS | 9.400 | NS | NS | | Phenol | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | Pyrene | 0.140 J | ND(0.380) | NS | 0.860 | NS | NS | | Pyridine | ND(0.470) | ND(0.380) | NS | ND(0.390) | NS | NS | | Furans | | | | | | | | 2,3,7,8-TCDF | 0.00014 Y | 0.0000028 Y | NS | ND(0.00000026) | NS | 0.00011 YQ | | TCDFs (total) | 0.0012 | 0.000025 | NS | ND(0.00000026) | NS | 0.00059 | | 1,2,3,7,8-PeCDF | 0.000046 | 0.0000011 J | NS | ND(0.00000064) | NS | 0.000044 | | 2,3,4,7,8-PeCDF | 0.000044 | 0.0000010 J | NS | ND(0.00000064) | NS | 0.00019 | | PeCDFs (total) | 0.00056 I | 0.000010 | NS | ND(0.00000064) | NS | 0.0017 Qi | | 1,2,3,4,7,8-HxCDF | 0.000040 | 0.0000012 J | NS | ND(0.00000064) | NS | 0.00025 | | 1,2,3,6,7,8-HxCDF | 0.000023 | 0.00000070 J | NS NS | ND(0.00000064) | NS | 0.00011 | | 1,2,3,7,8,9-H×CDF | 0.0000042 J | 0.00000013 J | NS | ND(0.00000064) | NS | 0.000048 | | 2,3,4,6,7,8-HxCDF | 0.000024 | 0.00000050 J | NS NS | ND(0.00000064) | NS | 0.00044 | | HxCDFs (total) | 0.00033 | 0.0000071 | NS NS | ND(0.00000064) | NS NS | 0.0055 | | 1,2,3,4,6,7,8-HpCDF | 0.000056 | 0.0000016 J | NS NS | ND(0.00000015) X | NS NS | 0.00046 | | 1,2,3,4,7,8,9-HpCDF | 0.0000068 J | 0.00000024 J | NS
NS | ND(0.00000064) | NS
NS | 0.00011 J | | HpCDFs (total) OCDF | 0.000098
0.000053 | 0.0000026 | NS | ND(0.00000064) | NS | 0.0012 | | | 0.000053 | 0.0000016 J | NS | ND(0.0000013) | NS | 0.00064 | | Dioxins | 0.0000010 | ND (2.0000000 () | | 1 10 (0 0000000) | | | | 2,3,7,8-TCDD | 0.0000013 J | ND(0.00000024) | NS | ND(0.00000026) | NS | 0.0000055 | | TCDDs (total)
1.2.3.7.8-PeCDD | 0.000020 | 0.00000024 | NS | ND(0.00000048) | NSNS_ | 0.000022 | | | ND(0.0000026) X | ND(0.00000060) | NS | ND(0.00000064) | NS | 0.000016 | | PeCDDs (total)
1,2,3,4,7,8-HxCDD | 0.000019
0.0000013 J | 0.00000036
ND(0.00000060) | NS
NS | ND(0.00000064)
ND(0.00000064) | NS
NS | 0.00012 Q | | 1.2.3.6.7.8-HxCDD | 0.0000013.3
0.0000020.J | ND(0.00000060) | NS
NS | ND(0.00000064) | NS
NS | 0.000026 | | 1,2,3,7,8,9-HxCDD | 0.0000025 J | ND(0.00000060) | NS
NS | ND(0.00000064) | NS NS | 0.000033
0.000025 | | HxCDDs (total) | 0.000025 | ND(0.00000060) | NS
NS | ND(0.00000064) | NS | 0.00044 | | 1,2,3,4,6,7,8-HpCDD | 0.000023 | 0.0000011 J | NS NS | 0.000000034) | NS | 0.00044 | | HpCDDs (total) | 0.000015 | 0.00000113 | NS
NS | 0.000000283 | NS | 0.00023 | | OCDD | 0.00018 | 0.000012 | NS NS | ND(0.0000018) | NS NS | 0.00043 | | Total TEQs (WHO TEFs) | 0.000051 | 0.0000016 | NS NS | 0.00000087 | NS | 0.00023 | | Inorganics | *************************************** | 4,0000010 | | 5.00000001 | 110 | 0.00020 | | Antimony | 1.20 B | 1.30 B | NS | 1,00 B | NS | NS | | Arsenic | 9.70 | 6.00 | NS | 3.20 | NS | NS | | Banum | 72.0 | 28.0 | NS | 22.0 | NS | NS | | Beryllium | 0.570 | ND(0.500) | NS | ND(0.500) | NS | NS | | Cadmium | 0.180 B | ND(0.500) | NS | 0.120 B | NS | NS | | Chromium | 31.0 | 7.70 | NS | 7.20 | NS | NS | | Cobalt | 11.0 | 9.70 | NS | 6.80 | NS | NS | | Copper | 30.0 | 21.0 | NS | 9.30 | NS | NS | | Cyanide | 0.160 | ND(0.230) | NS | ND(0.230) | NS | NS | | Lead | 38.0 | 10.0 | NS | 4.50 | NS | NS | | Mercury | 0.610 | ND(0.110) | NS | ND(0.120) | NS | NS | | Nickel | 16.0 | 13.0 | NS | 9.80 | NS | NS | | Selenium | ND(1.00) | ND(1.00) | NS | ND(1.00) | NS | NS | | Silver | ND(1.00) | ND(1.00) | NS | ND(1.00) | NS | NS | | Sulfide | 33.0 | 33.0 | NS | 39.0 | NS | NS | | Thallium | ND(1.30) J | ND(1.10) J | NS | ND(1,20) J | NS | NS | | Tin | ND(10.0) | ND(10.0) | NS | ND(3.60) | NS | NS | | Vanadium | 22.0 | 7.10 | NS | 7.90 | NS | NS | | Zinc | 84.0 | 45.0 | NS | 50.0 | NS | NS | | | Averaging Area: | 4B | 4B | 4B | 4B | 4B | 48 | |--------------------------------------|---|--------------------------|-------------------------|--------------------------|------------------------|--------------------------|--------------------------| | | Sample ID: | RAA4-G27 | RAA4-G31 | RAA4-G33 | RAA4-G33 | RAA4-G34 | RAA4-H17 | | | Sample Depth(Feet): | 0-1 | 0-1 | 6-8 | 6-15 | 0-1 | 0-1 | | Parameter | Date Collected: | 05/22/02 | 06/24/02 | 06/20/02 | 06/20/02 | 06/24/02 | 06/14/02 | | Volatile Organ | ····· | NEW BOSO | MB/0.004 | 1 - 11570 0000; T | | 1 1/5/0 0000 | NOVA COECT | | 1,1,1-Trichloroe | | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | 1,1-Dichloroeth:
1.2-Dichloroeth: | | ND(0.0056)
ND(0.0056) | ND(0 0061) | ND(0.0058)
ND(0.0058) | NS
NS | ND(0.0065)
ND(0.0065) | ND(0.0055)
ND(0.0055) | | 2-Butanone | ane | ND(0.0036)
ND(0.011) | ND(0.0061)
ND(0.012) | ND(0.0038) | NS NS | ND(0.0083) | ND(0.0033) | | 2-Chloroethylvir | gulathar | ND(0.0056) | ND(0.012) | ND(0.012) | NS
NS | ND(0.0065) | ND(0.0055) | | Acetone | 11/10/310/ | ND(0.022) | ND(0.024) | ND(0.023) | NS NS | ND(0.026) | ND(0.022) | | Benzene | | ND(0.00560) | ND(0.00610) | ND(0.00580) | NS
NS | ND(0.00650) | ND(0.022) | | Carbon Disulfid | e | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Chlorobenzene | | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Ethylbenzene | | ND(0.00560) | ND(0.00610) | ND(0.00580) | NS | ND(0.00650) | ND(0.00550) | | Methylene Chlo | ride | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Styrene | | ND(0.00560) | ND(0.00610) | ND(0.00580) | NS | ND(0.00650) | ND(0.00550) | | Tetrachloroethe | ene | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Toluene | | 0.00400 J | ND(0.00610) | ND(0.00580) | NS | ND(0.00650) | ND(0.00550) | | Trichloroethene | | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Trichlorofluorom | nethane | ND(0.0056) | ND(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Xylenes (total) | | ND(0.0056) | NÓ(0.0061) | ND(0.0058) | NS | ND(0.0065) | ND(0.0055) | | Semivolatile O | | | | | | | | | 1,2,4,5-Tetrach | | ND(0.370) | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | 1,2,4-Trichlorob | | 2.00 | ND(0.410) | NS | ND(0.390) | ND(0.430) | 0.920 | | 1,2-Dichloroben | | 1.00 | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | 1,2-Diphenylhyd | | ND(0.37) | ND(0.41) | NS | ND(0.39) | ND(0.43) | ND(0.36) | | 1,3-Dichloroben | | 0.420 | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | 1,3-Dinitrobenze | | ND(0.750) | ND(0.820) | NS | ND(0.780) | ND(0.870) | ND(0.730) | | 1,4-Dichloroben | izene | 2.50 | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | 2,4-Dimethylphe | | 0.370 J | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | 2-Chloronaphth | alene | 0.0770 J | ND(0.410) | NS NS | ND(0.390) | ND(0,430) | ND(0.360) | | 2-Chlorophenol | -1 | ND(0.370) | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | 2-Methylnaphth | | ND(0.370) | ND(0.410) | NS LIG | ND(0.390) | ND(0.430) | ND(0.360) | | 2-Methylphenol
2-Nitroaniline | | 0.590
ND(1.90) | ND(0.410) | NS
NS | ND(0.390) | ND(0.430) | ND(0.360) | | 3&4-Methylpher | nal | 0.500 J | ND(2.10)
ND(0.820) | NS NS | ND(2.00)
ND(0.780) | ND(2.20)
ND(0.870) | ND(1.90)
ND(0.730) | | 4-Chloroaniline | IOI | ND(0.370) | ND(0.410) |
NS NS | ND(0.780) | ND(0.430) | ND(0.360) | | 4-Chlorobenzila | te | ND(0.750) | ND(0.820) | NS NS | ND(0.780) | ND(0.430) | ND(0.730) | | 4-Phenylenedia | | ND(0.75) J | ND(0.82) J | NS NS | ND(0.78) J | ND(0.87) J | ND(0.733) J | | Acenaphthene | | ND(0.370) | ND(0.410) | NS NS | ND(0.390) | ND(0.430) | ND(0.360) | | Acenaphthylene | 3 | 0.0810 J | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | Acetophenone | | ND(0.370) | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | Aniline | | 14.0 | ND(0.410) | NS | ND(0.390) | ND(0.430) | 0.170 J | | Anthracene | | 0.150 J | ND(0.410) | NS | ND(0.390) | ND(0.430) | 0.160 J | | Benzo(a)anthra | cene | 0.460 | 0.110 J | NS | ND(0.390) | 0.0840 J | 0.760 | | Benzo(a)pyrene | | 0.690 | 0.130 J | NS | ND(0.390) | ND(0.430) | 0.880 | | Benzo(b)fluorar | *************************************** | 0.670 | 0.210 J | NS | ND(0.390) | ND(0.430) | 1.10 | | Benzo(g,h,i)per | | 0.930 | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | Benzo(k)fluoran | nthene | 0.600 | ND(0.410) | NS NS | ND(0.390) | ND(0.430) | 0.690 | | Benzyl Alcohol | | ND(0.750) | ND(0.820) | NS | ND(0.780) | ND(0.870) | ND(0.730) | | bis(2-Ethylhexyl | i)pnthalate | 1.80 | ND(0.400) | NS | ND(0.380) | ND(0.430) | ND(0.360) | | Chrysene | | 0.470 | 0.150 J | NS NS | ND(0.390) | 0.0940 J | 0.830 | | Dibenzo(a,h)ant | ınraçene | 0.240 J | ND(0.410) | NS
Ne | ND(0.390) | ND(0.430) | ND(0.360) | | Dibenzofuran
Diethylphthalate | | ND(0.370)
ND(0.370) | ND(0.410)
ND(0.410) | NS
NS | ND(0.390)
ND(0.390) | ND(0.430) | ND(0.360) | | Dietnyiphthalate
Dimethylphthala | | ND(0.370)
ND(0.370) | ND(0.410)
ND(0.410) | NS
NS | ND(0.390)
ND(0.390) | ND(0.430)
ND(0.430) | ND(0.360)
ND(0.360) | | Dimetriyiphthara
Di-n-Butylphtha | | 1.20 | ND(0.410)
ND(0.410) | NS NS | ND(0.390) | ND(0.430)
ND(0.430) | ND(0.360) | | Diphenylamine | iaio | 0.11 J | ND(0.410)
ND(0.41) | NS NS | ND(0.390)
ND(0.39) | ND(0.430)
ND(0.43) | ND(0.360) | | Fluoranthene | | 0.710 | 0.240 J | NS NS | ND(0.390) | 0.220 J | 0.990 | | Fluorene | | ND(0.370) | ND(0,410) | NS T | ND(0.390) | ND(0.430) | ND(0.360) | | Hexachlorobena | zene | 0.150 J | ND(0.410) | NS NS | ND(0.390) | ND(0.430) | ND(0.360) | | Indeno(1,2,3-cd | | 0.840 | ND(0.410) | NS | ND(0.390) | ND(0.430) | 0.620 | | Naphthalene | | 0.0800 J | ND(0.410) | NS | ND(0.390) | ND(0.430) | 0.0740 J | | Nitrobenzene | | ND(0.370) | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | N-Nitrosodipher | nvlamine | ND(0.370) | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | o-Toluidine | | ND(0.370) | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | Averaging Area:
Sample ID: | 4B
RAA4-G27 | 4B
RAA4-G31 | 4B
RAA4-G33 | 4B
RAA4-G33 | 4B
RAA4-G34 | 4B
RAA4-H17 | |-----------------------------------|--------------------|---------------------|----------------|--------------------------|-------------------|---------------------| | Sample Depth(Feet): | 0-1 | 0-1 | 6-8 | 6-15 | 0-1 | 0-1 | | Parameter Date Collected: | 05/22/02 | 06/24/02 | 06/20/02 | 06/20/02 | 06/24/02 | 06/14/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | 1.50 | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | Pentachlorophenol | ND(1.90) | ND(2.10) | NS | ND(2.00) | ND(2.20) | ND(1.90) | | Phenanthrene | 0.390 | 0.180 J | NS | ND(0.390) | 0.170 J | 0.730 | | Phenol | 2.10 | ND(0.410) | NS | 0.750 | ND(0.430) | ND(0.360) | | Pyrene | 0.600 | 0.320 J | NS | ND(0.390) | 0.330 J | 1.90 | | Pyridine | 0.410 | ND(0.410) | NS | ND(0.390) | ND(0.430) | ND(0.360) | | Furans | | | | | | | | 2,3,7,8-TCDF | 0.00012 | 0.00025 Y | NS | ND(0.00000044) X | 0.00032 Y | 0.00022 Y | | TCDFs (total) | 0.00096 | 0.0021 | NS | 0.0000016 | 0.0025 | 0.0017 QI | | 1,2,3,7,8-PeCDF | 0.00010 | 0.000098 | NS | 0.00000015 J | 0.000096 | 0.00016 Q | | 2,3.4,7,8-PeCDF | 0.00030 | 0.000097 | NS | ND(0.00000019) X | 0.00010 | 0.00028 | | PeCDFs (total) | 0.0022 | 0.000941 | NS | 0.00000092 | 0.0010 I | 0.0027 QI | | 1,2,3,4,7,8-HxCDF | 0.00061 | 0.000095 | NS | 0.00000017 J | 0.000081 | 0.00039 | | 1,2,3,6,7,8-HxCDF | 0.00018 | 0.000054 | NS | ND(0.00000014) X | 0.000044 | 0.00022 | | 1,2,3,7,8,9-HxCDF | 0.00013 | 0.000011 | NS | ND(0.00000024) | 0.0000035 | 0.000074 | | 2,3,4,6,7,8-HxCDF | 0.00023 | 0.000053 | NS | ND(0.00000011) X | 0.000045 | 0.00019 | | HxCDFs (total) | 0.0030 | 0.00070 | NS | 0.00000079 | 0.00070 | 0.0025 | | 1,2,3,4,6,7,8-HpCDF | 0.00059 | 0.00011 | NS | 0.00000022 J | 0.000096 | 0.00041 | | 1,2,3,4,7,8,9-HpCDF | 0.00022 | 0.000013 | NS | ND(0.00000024) | 0.000012 | 0.00011 | | HpCDFs (total) | 0.0016 | 0.00019 | NS | 0.00000064 | 0.00018 | 0.00082 | | OCDF | 0.0022 | 0.000082 | NS | 0.00000071 J | 0.000070 | 0.00036 | | Dioxins | | | | | | | | 2,3,7,8-TCDD | ND(0.0000016) X | 0.0000016 | NS | ND(0.00000015) | 0.0000021 | ND(0.0000021) | | TCDDs (total) | 0.000015 | 0.000049 | NS | ND(0.00000015) | 0.000056 | 0.000052 | | 1,2,3,7,8-PeCDD | ND(0.000037) X | ND(0.0000033) X | NS | ND(0.00000024) | 0.0000035 | 0.000013 | | PeCDDs (total) | 0.000023 | 0.000040 | NS | 0.00000011 | 0.000046 | 0.00012 Q | | 1,2,3,4,7,8-HxCDD | ND(0.0000045) X | 0.0000023 J | NS | ND(0.00000024) | 0.0000020 J | 0.000012 | | 1,2,3,6,7,8-HxCDD | 0.0000081 J | 0.0000032 | NS | ND(0.00000024) | 0.0000030 | 0.000016 | | 1,2,3,7,8,9-HxCDD | ND(0.0000053) X | 0.0000024 J | NS NS | ND(0.00000024) | 0.0000023 J | 0.000015 | | HxCDDs (total) | 0.000079 | 0.000044 | NS | 0.00000010 | 0.000047 | 0.00023 | | 1,2,3,4,6,7,8-HpCDD | 0.00012 | 0.000020 | NS NS | 0.00000058 J | 0.000023 | 0.000097 | | HpCDDs (total) | 0.00023 | 0.000041 | NS
NS | 0.00000058 | 0.000049 | 0.00021 | | OCDD Total TEQs (WHO TEFs) | 0.00073
0.00031 | 0.000080
0.00011 | NS
NS | 0.0000030 J | 0.00011 | 0.00069 | | 1 | 0.00031 | 0,00011 | INO | 0.0000036 | 0.00011 | 0.00028 | | Inorganics | | | | 1/5/2 221 | | | | Antimony | ND(6.00) | 1.10 B | NS | ND(6.00) | ND(6.00) | 7.80 | | Arsenic
Barium | 11.0
47.0 | 11.0
48.0 | NS NS | 4.80 | 14.0 | 46.0 | | Beryllium Beryllium | ND(0,500) | ND(0.500) | NS
NS | 22.0
ND(0.500) | 76.0
ND(0.500) | 71.0 | | Cadmium | 0.700 | ND(0.500) | NS | ND(0.500)
ND(0.500) J | ND(0.500) | ND(0.500) J
2.00 | | Chromium | 94.0 J | 7.90 | NS | 8.90 | 11.0 | 51,0 | | Cobalt | 6.80 | ND(5.00) | NS NS | 8.90 | 5.40 | 11.0 | | Copper | 130 J | 34.0 | NS NS | 21.0 | 53.0 | 680 | | Cyanide | 0.250 | 0.270 | NS | ND(0.120) | 0.300 | 0.190 | | Lead | 410 | 49.0 | NS NS | 7.60 | 78.0 | 290 | | Mercury | 5.50 | 0.350 | NS NS | ND(0.120) | 0.580 | 8.00 | | Nickel | 36.0 | 8.80 | NS NS | 16.0 | 15.0 | 50.0 | | Selenium | ND(1.00) | ND(1.00) | NS | ND(1.00) J | 0.910 B | ND(1.00) J | | Silver | ND(1.00) | ND(1.00) | NS | ND(1.00) | ND(1.00) | 0.410 B | | Sulfide | 47.0 J | 24.0 | NS | 28.0 | 35.0 | 70.0 | | Thallium | ND(1.70) | ND(1.80) | NS NS | ND(1.70) J | ND(1.90) | 3.50 J | | Tm | ND(12.0) | ND(10.0) | NS | ND(10.0) | ND(10.0) | 41.0 | | Vanadium | 37.0 | 19.9 | NS | 7.90 | 47.0 | 31.0 | | Zinc | 230 | 66.0 | NS | 43.0 | 96.0 | 440 | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-H17 | 4B
RAA4-H21 | 4B
RAA4-H27 | 4B
RAA4-H27 | 4B
RAA4-H27 | |---|----------------|--------------------------|---|--|--------------------| | Sample Depth(Feet): | 1-6 | 0-1 | 0-1
04/24/02 | 1-6
10/18/02 | 4-6
10/18/02 | | Parameter Date Collected: | 06/14/02 | 06/04/02 | 04/24/02 | 10/18/02 | 10/16/02 | | Volatile Organics | | 1 1/0/2 2050 | , | | | | 1,1,1-Trichioroethane | NS
NS | ND(0.0059)
ND(0.0059) | 0.0038 J
0.039 | NS
NS | 0.031
0.036 J | | 1,1-Dichloroethane
1,2-Dichloroethane | NS
NS | ND(0.0059) | 0.0039
0.0049 J | NS NS | 0.030 3 | | 2-Butanone | NS NS | ND(0.0039) | ND(0.012) | NS NS | ND(0.013) | | 2-Chloroethylvinylether | NS | ND(0.0059) | ND(0.0050) | NS NS | ND(0.0067) | | Acetone | NS NS | ND(0.024) | 0.013 J | NS NS | ND(0.027) | | Benzene | NS | ND(0.00590) | ND(0.00600) | NS | ND(0.00670) | | Carbon Disulfide | NS | ND(0.0059) | ND(0.0060) | NS | ND(0.0067) | | Chlorobenzene | NS | ND(0.0059) | ND(0.0060) | NS | ND(0.0067) | | Ethylbenzene | NS | ND(0.00590) | ND(0.00600) | NS | ND(0.00670) | | Methylerie Chloride | NS | ND(0.0059) | ND(0.0060) | NS | 0.12 J | | Styrene | NS | ND(0.00590) | ND(0.00600) | NS | ND(0.00670) | | Tetrachloroethene | NS | 0.082 | ND(0.0060) | NS NS | 0.028 | | Toluene | NS
NS | ND(0.00590) | ND(0.00600) | NS
NS | 0.00400 J
0.020 | | Trichloroethene Trichlorofluoromethane | NS
NS | ND(0.0059)
ND(0.0059) | 0,0081
ND(0,0060) | NS NS | ND(0.0067) | | Xvienes (total) | NS
NS | ND(0.0059) | ND(0.0060) | NS NS | ND(0.0067) | | Semivolatile Organics | 140 | 1 10(0.0008) | 1.10(0.0000) | 340 | 1 142(0.0001) | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.470) | NS | 0.99 J [1.7 J] | NS | | 1,2,4,3-Tetrachiorobenzene | NS
NS | ND(0.470) | NS NS | 3.90 [5.90] | NS NS | | 1.2-Dichlorobenzene | NS NS | ND(0,470) | NS | ND(0.440) [ND(0.460)] | NS | | 1,2-Diphenylhydrazine | NS | ND(0.47) | NS | ND(0.44) [ND(0.46)] | NS | | 1,3-Dichlorobenzene | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | 1,3-Dinitrobenzene | NS | ND(0.790) | NS | ND(0.900) [ND(0.930)] | NS | | 1,4-Dichlorobenzene | NS | ND(0.470) | NS | 0.280 J [0.370 J] | NS | | 2,4-Dimethylphenal | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | 2-Chloronaphthalene | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | 2-Chiorophenol | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | 2-Methylnaphthalene | NS | ND(0.470) | NS | 0.41 J [0.87 J] | NS | | 2-Methylphenol | NS
NS |
ND(0.470) | NS
NS | ND(0.440) [0.160 J] | NS
NS | | 2-Nitroaniline | NS
NS | ND(2.40)
ND(0.790) | NS
NS | ND(2.30) [ND(2.40)]
ND(0.900) [0.430 J] | NS NS | | 3&4-Methylphenol
4-Chloroaniline | NS
NS | ND(0.470) | NS NS | ND(0.440) [ND(0.460)] | NS NS | | 4-Chlorobenzilate | NS
NS | ND(0.790) | NS NS | ND(0.900) [ND(0.930)] | NS NS | | 4-Phenylenediamine | NS | ND(0.79) J | NS NS | ND(0.90) J [ND(0.93) J] | NS NS | | Acenaphthene | NS | ND(0.470) | NS | 0.670 [0.840] | NS | | Acenaphthylene | NS | ND(0.470) | NS | 0.39 J [0.95 J] | NS | | Acetophenone | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | Aniline | NS | ND(0.470) | NS | 3.70 [4.40] | NS | | Anthracene | NS | ND(0.470) | NS | 1.60 [2.30] | NS | | Benzo(a)anthracene | NS | 0.240 J | NS | 3.80 [5.80] | NS | | Benzo(a)pyrene | NS | 0.240 J | NS | 3.30 [4.70] | NS | | Benzo(b)fluoranthene | NS | 0.230 J | NS NS | 4.20 [4.90] | NS
NS | | Benzo(g,h,i)perylene | NS
NS | ND(0,470) | NS
NS | 1.80 [2.70] | NS
NS | | Benzo(k)fluoranthene | NS
NS | 0.240 J
ND(0.95) J | NS
NS | 1.40 [1.90]
ND(0.900) [ND(0.930)] | NS NS | | Benzyl Alcohol bis(2-Ethylhexyl)phthalate | NS NS | ND(0.390) | NS NS | 0.30 J [7.0 J] | NS NS | | Chrysene | NS NS | 0.290 J | NS NS | 4.20 [6.40] | NS NS | | Dibenzo(a,h)anthracene | NS | ND(0.470) | NS NS | 0.440 J [0.640] | NS | | Dibenzofuran | NS | ND(0.470) | NS | 0,300 J [0.360 J] | NS | | Diethylphthalate | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | Dimethylphthalate | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | Di-n-Butylphthalate | NS | 0.350 J | NS | ND(0.440) [ND(0.460)] | NS | | Diphenylamine | NS | ND(0.47) | NS | ND(0.44) [ND(0.46)] | NS | | Fluoranthene | NS | 0.650 | NS | 8.80 [12.0] | NS | | Fluorene | NS | ND(0.470) | NS NS | 1.1 J [2.1 J] | NS NS | | Hexachlorobenzene | NS NS | ND(0.470) | NS I | 0.18 J [0.44 J] | NS | | Indeno(1,2,3-cd)pyrene | NS | ND(0.470) | NS
NS | 1.40 [2.10] | NS
NS | | Naphthalene | NS
NS | ND(0.470) | NS
NS | 0.490 [0.580] | NS
NS | | Nitrobenzene | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | N-Nitrosodiphenylamine | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS NS | | Averaging Area: | 4B | 48 | 4B | 48 | 4B | |--|-------------------------------|--------------------------------|----------|--|----------| | Sample ID: | RAA4-H17 | RAA4-H21 | RAA4-H27 | RAA4-H27 | RAA4-H27 | | Sample Depth(Feet): | 1-6 | 0-1 | 0-1 | 1-6 | 4-6 | | Parameter Date Collected: | 06/14/02 | 06/04/02 | 04/24/02 | 10/18/02 | 10/18/02 | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | NS | ND(0.470) | NS | 4.3 J [9.2 J] | NS | | Pentachloropheno! | NS | ND(2.40) | NS | ND(2.30) [ND(2.40)] | NS | | Phenanthrene | NS | 0.260 J | NS | 10 J [17 J] | NS | | Phenol | NS | ND(0.470) | NS | 0.340 J [0.360 J] | NS | | Pyrene | NS | 049J | NS | 13.0 [20.0] | NS | | Pyridine | NS | ND(0.470) | NS | ND(0.440) [ND(0.460)] | NS | | Furans | | | | | | | 2,3,7,8-TCDF | 0.0000043 Y | 0.000027 Y | NS | 0.0094 YEQU [0.0076 YEIJ] | NS | | TCDFs (total) | 0.000048 Q | 0.00024 ! | NS | 0.050 QI [0.045 QI] | NS | | 1,2,3,7,8-PeCDF | 0.0000022 J | 0.000012 | NS | 0.0021 [0.0019] | NS | | 2,3,4,7,8-PeCDF | 0.0000072 | 0.000030 | NS | 0.0063 [0.0060] | NS | | PeCDFs (total) | 0.000092 QI | 0.00048 QI | NS | 0.056 Qt [0.053 Qt] | NS | | 1,2,3,4,7,8-HxCDF | 0.0000051 | 0.000025 | NS | 0.0050 [0.0048] | NS | | 1.2,3,6,7,8-HxCDF | 0.0000040 | 0.000019 | NS | 0.0031 [0.0027] | NS | | 1,2,3,7,8,9-HxCDF | 0.0000010 J | 0.0000043 | NS | 0.00086 [0.00079] | NS | | 2,3,4,6,7,8-HxCDF | 0.0000068 | 0.000046 | NS | 0.0054 [0.0056] | NS | | HxCDFs (total) | 0.000086 | 0.00061 | NS | 0.065 [0.069] | NS | | 1,2,3,4,6,7,8-HpCDF | 0.0000090 | 0.000060 | NS
NS | 0.0071 [0.0075] | NS NS | | 1,2,3,4,7,8,9-HpCDF
HpCDFs (total) | 0.0000015 J | 0.0000074 | NS
NS | 0.0017 [0.0016] | NS NS | | OCDF | 0.000021
0.0000079 | 0.00014
0.00054 | NS NS | 0.018 [0.019]
0.0048 [0.0064] | NS
NS | | Dioxins | 0.0000019 | 0.000054 | INO | 0.0046 [0.0064] | 142 | | 2.3.7.8-TCDD | ND/A AAAAAAA | 0.00000004 | NO | 0.000000 (0.000000) | No | | Add and an add and a second | ND(0.00000041) | 0.00000084 J | NS
NS | 0.000052 [0.000056] | NS NS | | TCDDs (total)
1.2.3.7.8-PeCDD | 0.0000027
ND(0.00000071) X | . 0.0000052
ND(0.0000024) X | NS
NS | 0.00093 Q [0.00090] | NS
NS | | PeCDDs (total) | 0.00000071) X | | NS
NS | ND(0.00034) X [ND(0.00038) X] | | | 1,2,3,4,7,8-HxCDD | 0.0000000
0.00000046 J | 0.0000072 Q ·
0.0000012 J | NS
NS | 0.0012 J [0.0026 J]
0.00047 [0.00056] | NS
NS | | 1,2,3,6,7,8-HxCDD | 0.00000048 J | 0.0000012 J | NS
NS | 0.00047 [0.00056] | NS NS | | 1,2,3,7,8,9-HxCDD | 0.00000072 J | 0.0000023 J | NS NS | 0.00037 [0.00047] | NS
NS | | HxCDDs (total) | 0.00000323 | 0.0000213 | NS | 0.0065 [0.0077] | NS NS | | 1,2,3,4,6,7,8-HpCDD | 0.0000013 | 0.000023 | NS NS | 0.0036 [0.0044] | NS NS | | HpCDDs (total) | 0.000022 | 0.000050 | NS | 0.0072 [0.0089] | NS | | OCDD | 0.00030 | 0.00015 | NS | 0.010 [0.012] | NS | | Total TEQs (WHO TEFs) | 0.0000068 | 0.000031 | NS NS | 0.0061 [0.0058] | NS | | Inorganics | | 1 | | | | | Antimony | NS | 1.20 J | NS | 12.0 [16.0] | NS | | Arsenic | NS | 5.30 J | NS | 14.0 [13.0] | NS NS | | Barium | NS | 46.0 J | NS | 240 [200] | NS | | Beryllium | NS | ND(0.500) J | NS | ND(0.500) [ND(0.500)] | NS | | Cadmium | NS | 0.610 J | NS | 3.60 [4.50] | NS | | Chromium | NS | 12.0 J | NS | 120 J [53 J] | NS | | Cobalt | NS | 9.00 J | NS | 23.0 [14.0] | NS | | Copper | NS | 28.0 | NS | 3100 [5000] | NS | | Cyanide | NS | 0.130 | NS | ND(0.270) [0.19 J] | NS | | Lead | NS | 23.0 | NS | 1600 [1900] | NS | | Mercury | NS | 1.10 J | NS | 7.40 [6.50] | NS | | Nickel | NS | 15.0 | NS | 620 [490] | NS | | Selenium | NS | 0.640 J | NS | ND(1.00) [ND(1.00)] | NS | | Silver | NS | ND(1,00) | NS | 0.660 B [ND(1.00)] | NS | | Sulfide | NS | 9.50 | NS | 53.0 [78.0] | NS | | Thallium | NS | ND(1.20) | NS | ND(2.0) J [ND(2.1) J] | NS | | Tin | NS | ND(4.60) | NS | 64.0 [77.0] | NS | | Vanadium | NS | 14.0 | NS | 3300 [2600] | NS | | Zinc | NS | 98.0 J | NS | 1100 J [1100 J] | NS | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | a trait Million of the Contract Contrac | Averaging Area:
Sample ID: | 4B
RAA4-H29 | 4B
RAA4-H31 | 4B
RAA4-H31 | 4B
RAA4-119 | 4B
RAA4-119 | 4B
RAA4-121 |
--|-------------------------------|------------------------|--------------------------|-----------------|------------------------|-------------------|------------------------| | | nple Depth(Feet): | 0-1
05/22/02 | 1 <i>-</i> 6
06/20/02 | 4-6
06/20/02 | 6-15
06/07/02 | 13-15
06/07/02 | 0-1
04/22/02 | | Parameter Volatile Organics | Date Collected: | 05/22/02 | 06/20/02 | 06/20/02 | 06/07/02 | 06/07/02 | 04/22/02 | | 1.1.1-Trichloroetha | 200 | ND(0.0060) | NS | ND(0.0056) | NS | ND(0.0058) | ND(0.0059) | | 1,1-Dichloroethane | | ND(0.0060) | NS
NS | ND(0.0056) | NS | ND(0.0058) | ND(0.0059) | | 1,2-Dichloroethane | | ND(0.0060) | NS | ND(0.0056) | NS NS | ND(0.0058) | ND(0.0059) | | 2-Butanone | 1 | ND(0.012) | NS NS | ND(0.011) | NS | ND(0.012) | ND(0.012) | | 2-Chloroethylvinyle | ther | ND(0 0060) | NS | ND(0.0056) | NS | ND(0.0058) | ND(0.0059) | | Acetone | | 0.012 J | NS | ND(0.022) | NS | 0.024 | ND(0.023) | | Benzene | | ND(0.00500) | NS | ND(0.00560) | NS | 0.00350 J | ND(0.00590) | | Carbon Disulfide | | ND(0.0060) | NS | ND(0.0056) | NS | ND(0.0058) | ND(0.0059) | | Chlorobenzene | | ND(0.0060) | NS | ND(0.0056) | NS | 3.5 | ND(0.0059) | | Ethylbenzene | | ND(0.00600) | NS | ND(0.00560) | NS | 0.0120 | ND(0.00590) | | Methylene Chloride | | ND(0.0060) | NS | ND(0.0056) | NS | ND(0.0058) | ND(0.0059) | | Styrene | | ND(0.00600) | NS | ND(0.00560) | NS | ND(0.00580) | ND(0.00590) | | Tetrachloroethene | # | ND(0.0060) | NS | ND(0.0056) | NS | ND(0.0058) | ND(0.0059) | | Toluene | | ND(0.00600) | NS | ND(0.00560) | NS | ND(0.00580) | ND(0.00590) | | Trichloroethene | | ND(0.0060) | NS | ND(0.0056) | NS
NC | ND(0.0058) | ND(0,0059) | | Trichlorofluorometh | ane | ND(0.0060) | NS NS | ND(0.0056) | NS
NC | ND(0.0058) | ND(0.0059) | | Xylenes (total) | | ND(0,0060) | NS | ND(0,0056) | NS | 0.11 | ND(0.0059) | | Semivolatile Orga | | 0.040 1 | ND/0.070\ | 1 10 | MD/0 070; | | ND/C CON | | 1,2,4,5-Tetrachloro | | 0.240 J | ND(0.370) | NS
Ne | ND(0.370) | NS
NS | ND(0.820)
ND(0.820) | | 1,2,4-Trichlorobenz | | 0.780
ND(0.400) | ND(0.370)
ND(0.370) | NS
NS | ND(0.370)
ND(0.370) | NS NS | ND(0.820)
ND(0.820) | | 1,2-Dichlorobenzer | | ND(0.400) | ND(0.370) | NS NS | ND(0.370)
ND(0.37) | NS NS | ND(0.820) | | 1,2-Diphenylhydraz
1,3-Dichlorobenzer | | ND(0.40) | ND(0.37)
ND(0.370) | NS NS | ND(0.37) | NS NS | ND(0.820) | | 1,3-Dicholobenzene | | ND(0.800) | ND(0.740) | NS NS | ND(0.740) | NS NS | ND(0.820) | | 1,4-Dichtorobenzer | | 0.0860 J | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | 2,4-Dimethylpheno | | ND(0,400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | 2-Chloronaphthaler | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | 2-Chlorophenol | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | 2-Methylnaphthaler | ne l | ND(0.400) | ND(0.370) | NS | 1.70 | NS | ND(0.820) | | 2-Methylphenol | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | 2-Nitroaniline | | ND(2.00) | ND(1.90) | NS | ND(1.90) | NS | ND(4.10) | | 3&4-Methylphenol | | ND(0.800) | ND(0.740) | NS | ND(0.740) | N\$ | ND(0.820) | | 4-Chloroaniline | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | 4-Chlorobenzilate | | ND(0.800) | ND(0.740) | NS | ND(0.740) | NS | ND(0.820) | | 4-Phenylenediamin | е | ND(0.80) J | ND(0.74) J | NS | ND(0.74) J | NS | ND(0.82) J | | Acenaphthene | | ND(0.400) | ND(0.370) | NS | 2.60 | NS | ND(0.820) | | Acenaphthylene | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Acetophenone | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS III | ND(0.820) | | Anitine | | 0.670 | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Anthracene | _ | ND(0.400) | ND(0.370) | NS
NS | 1.50 | NS
NS | ND(0.820)
0.190 J | | Benzo(a)anthracen | <u> </u> | 0.180 J
0.210 J | ND(0.370)
ND(0.370) | NS
NS | 0.660
0.500 | NS
NS | ND(0.820) | | Benzo(a)pyrene
Benzo(b)fluoranthe | ne | 0.240 J | ND(0.360) | NS NS | 0.220 J | NS NS | ND(0.820) | | Benzo(g,h,i)peryler | | 0.230 J | ND(0.370) | NS | ND(0.370) | NS NS | ND(0.820) | | Benzo(g,h,i/peryier
Benzo(k)fluoranthe | | 0.250 J | ND(0.370) | NS NS | 0.290 J | NS | ND(0.820) | | Benzyl Alcohol | | ND(0.800) | ND(0.740) | NS | ND(0.740) | NS | ND(1.60) | | bis(2-Ethylhexyl)ph | thalate | 6.70 | ND(0.370) | NS | ND(0.360) | NS | ND(0.410) | | Chrysene | | 0.160 J | ND(0.370) | NS | 0.580 | NS | 0.220 J | | Dibenzo(a,h)anthra | cene | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Dibenzofuran | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Diethylphthalate | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Dimethylphthalate | | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Di-n-Butylphthalate | | 0.510 | ND(0.370) | NS | ND(0.370) | NS | 0.340 J | | Diphenylamine | | 0.21 J | ND(0.37) | NS | ND(0.37) | NS | ND(0.82) | | Fluoranthene | | 0.210 J | ND(0.370) | NS | 1.90 | NS | 0.400 J | | Fluorene | | ND(0.400) | ND(0.370) | NS | 1.40 | NS NS | ND(0.820) | | Hexachiorobenzen | | 0.170 J | ND(0.370) | NS
NS | ND(0.370) | NS
NS | ND(0.820) | | Indeno(1,2,3-cd)py | rene | 0.200 J | ND(0.370) | NS
NS | ND(0.370) | NS
NS | ND(0.820) | | Naphthalene | | ND(0.400) | ND(0.370) | NS
NS | 0.220 J
ND(0.370) | NS
NS | ND(0.820) | | Nitrobenzene
N-Nitrosodiphenyla | mino | ND(0.400)
ND(0.400) | ND(0.370)
ND(0.370) | NS
NS | ND(0.370)
ND(0.370) | NS NS | ND(0.820)
ND(0.820) | | | contre (| NICEU.#UUT | (ND(U.5/U) | 1 1NO | IND(U.3/U) | CV: | INDIO.0201 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4B
RAA4-H29 | 4B
RAA4-H31 | 4B
RAA4-H31 | 4B
RAA4-119 | 4B
RAA4-I19 | 4B
RAA4-I21 | |--|------------------------|--------------------------------|----------------|----------------|----------------|---------------------------| | Sample Depth(Feet): | 0-1 | 1-6 | 4-6 | 6-15 | 13-15 | 0-1 | | Parameter Date Collected: | 05/22/02 | 06/20/02 | 06/20/02 | 06/07/02 | 06/07/02 | 04/22/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | 1.23 | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Pentachlorophenol | ND(2.00) | ND(1.90) | NS | ND(1.90) | NS | ND(4.10) | | Phenanthrene | 0.170 J | ND(0.370) | NS | 3.90 | NS | 0.200 J | | Phenol | 0.700 | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Pyrene | 0.260 J | ND(0.370) | NS | 2.00 | NS | 0.500 J | | Pyridine | ND(0.400) | ND(0.370) | NS | ND(0.370) | NS | ND(0.820) | | Furans | | | | | | | | 2,3,7,8-TCDF | 0.00069 | 0.00000055 J | NS | NS I | NS | 0.000056 Y | | TCDFs (total) | 0.0064 | 0.0000026 | NS | NS | NS | 0.00054 QX | | 1,2,3,7,8-PeCDF | 0.00063 | 0.00000020 J | NS | NS | NS | 0.000022 J | | 2,3,4,7,8-PeCDF | 0.0011 | 0.00000026 J | NS | NS | NS | 0.000061 Q | | PeCDFs (total) | 8800.0 | 0.0000020 | NS | NS | NS | 0.0016 QX | | 1,2,3,4,7,8-HxCDF | 0.0020 | ND(0.00000033) X | NS | NS NS | NS
NC | 0.000064 | | 1,2,3,6,7,8-HxCDF | 0.00094 | ND(0.00000021) X | NS NS | NS
NC | NS | 0.000060 | | 1,2,3,7,8,9-HxCDF | 0.00027 | ND(0.00000023) | NS
NS | NS
NS | NS
NS | ND(0.000010) X
0.00011 | | 2,3,4,6,7,8-HxCDF | 0.00046 | 0.00000012 J | NS
NS | NS NS | NS
NS | 0.00011
0.00087 X | | HxCDFs (total) | 0.0077
0.0017 | 0.00000076 | NS NS | NS NS | NS
NS | 0.00087 \ 0.00012 | | 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF | 0.0017 | 0.00000041 J
ND(0.00000023) | NS NS | NS NS | NS
NS | 0.00072 | | HpCDFs (total) | 0.00037 | 0.00000041 | NS NS | NS NS | NS NS | 0.00028 | | OCDF | 0.0049 | 0.00000041
0.00000070 J | NS NS | NS 1 | NS NS | 0.00025 | | Dioxins | 0.0043 | 0.0000007070 | 110 | 140 | | 0.000002 | | 2,3,7,8-TCDD | 0.0000062 | ND(0.00000016) |
NS | l NS l | NS | ND(0.0000015) X | | TCDDs (total) | 0.0000082 | ND(0.00000016) | NS NS | NS NS | NS | 0.0000039 Q | | 1,2,3,7,8-PeCDD | ND(0.000059) X | ND(0.00000010) | NS NS | NS I | NS | 0.0000027 J | | PeCDDs (total) | 0.00014 | ND(0.00000023) | NS | NS I | NS | 0.0000027 Q | | 1.2,3,4,7,8-HxCDD | 0.000014
0.000013 J | ND(0.00000023) | NS | NS | NS | ND(0.0000020) X | | 1,2,3,6,7,8-HxCDD | 0.000036 | ND(0.00000023) | NS | NS | NS | 0.0000048 J | | 1,2,3,7,8,9-HxCDD | 0:000033 J | ND(0.00000023) | NS | NS | NS | ND(0.0000039) X | | HxCDDs (total) | 0.00034 | ND(0.00000023) | NS | NS | NS | 0.0000048 | | 1,2,3,4,6,7,8-HpCDD | 0.00071 | ND(0.00000038) X | NS | NS | NS | 0.000046 | | HpCDDs (total) | 0.0013 | 0.00000027 | NS | NS | NS | 0.000092 | | OCDD | 0.0049 | 0.0000022 J | NS | NS | NS | 0.00027 | | Total TEQs (WHO TEFs) | 0.0011 | 0.00000048 | NS | NS | NS | 0.000067 | | Inorganics | | • | | | | | | Antimony | ND(6.00) | ND(6,00) | NS | NS | NS | 6.70 | | Arsenic | 9.40 | 7.70 | NS | NS | NS | 6.50 | | Barium | 36.0 | 22.0 | NS | NS | NS | 40.0 | | Beryllium | ND(0.500) | ND(0.500) | NS | NS | NS | ND(0.500) | | Cadmium | ND(0.500) | ND(0.500) J | NS | NS | NS | 0.740 | | Chromium | 33.0 J | 6.40 | NS | NS | NS | 19.0 | | Cobalt | 7.70 | 9.30 | NS | NS
NS | NS | 9.00 | | Copper | 190 J | 24.0 | NS
NS | NS
NS | NS
NS | 80.0 | | Cyanide | ND(0.120) | ND(0.110)
7.70 | NS
NS | NS
NS | NS
NS | 0.120
48.0 | | Lead | 180
11.0 | 7.70
ND(0.110) | NS
NS | NS NS | NS NS | 0.340 J | | Mercury
Nickel | 31.0 | 15.0 | NS
NS | NS NS | NS
NS | 19.0 | | Selenium | 0.590 B | ND(1,00) J | NS NS | NS NS | NS
NS | ND(1.00) | | Silver | 0.590 B
ND(1.00) | ND(1.00) 3 | NS
NS | NS NS | NS NS | 0.470 B | | Sulfide | 19.0 J | 30.0 | NS | NS NS | NS | 21.0 | | Thallium | ND(1.80) | ND(1.70) J | NS NS | NS NS | NS | ND(1.20) J | | Tin | 20.0 J | ND(10.0) | NS NS | NS | NS | ND(10.0) | | Vanadium | 34.0 | 5.60 | NS | NS | NS | 13.0 | | Zinc | 360 | 39.0 | NS | NS NS | NS | 260 | | Averaging Area:
Sample ID: | 4B
RAA4-123 | 48
RAA4-123 | 4B
RAA4-123 | 4B
RAA4-125 | |-------------------------------|----------------|-----------------------|-----------------------------|----------------| | Sample Depth(Feet): | 0-1 | 6-15 | 10-12 | 0-1 | | Parameter Date Collected: | 04/25/02 | 04/25/02 | 04/25/02 | 06/03/02 | | Volatile Organics | | | | | | 1,1,1-Trichioroethane | ND(0.0057) | l NS | ND(0.0063) [ND(0.0064)] | ND(0.0060) | | 1,1-Dichloroethane | ND(0.0057) | NS NS | ND(0.0063) [ND(0.0064)] | ND(0.0060) | | 1,2-Dichloroethane | ND(0.0057) | l NS | ND(0.0063) [ND(0.0064)] | ND(0.0060) | | 2-Butanone | ND(0.011) | l NS | 0.052 [ND(0.013)] | ND(0.012) | | 2-Chloroethylvinylether | ND(0.0057) J | NS | ND(0.0063) J [ND(0.0064) J] | ND(0.0060) | | Acetone | ND(0.023) | NS | 0.13 (ND(0.026)) | 0.015 J | | Benzene | ND(0.00570) | NS | 0.0160 (ND(0.00640)) | ND(0.00600) | | Carbon Disulfide | ND(0.0057) | NS | 0.0048 J [ND(0.0064)] | ND(0.0060) | | Chlorobenzene | ND(0.0057) | NS | 10 [ND(0.0064)] | ND(0.0060) | | Ethylbenzene | ND(0.00570) | NS | 0.0150 [ND(0.00640)] | ND(0.00600) | | Methylene Chloride | ND(0.0057) | NS | ND(0.0063) [ND(0.0064)] | ND(0.0060) | | Styrene | ND(0.00570) | NS | ND(0.00630) [ND(0.00640)] | ND(0.00600) | | Tetrachloroethene | ND(0.0057) | NS | ND(0.0063) [ND(0.0064)] | ND(0.0060) | | Toluene | ND(0.00570) | NS | ND(0.00630) [ND(0.00640)] | ND(0.00600) | | Trichloroethene | ND(0.0057) | NS | ND(0.0063) [ND(0.0064)] | ND(0,0060) | | Trichlorofluoromethane | ND(0.0057) | NS | ND(0.0063) [ND(0.0064)] | ND(0.0060) | | Xylenes (total) | 0.020 | NS | 0.043 [ND(0.0064)] | ND(0.0060) | | Semivolatile Organics | | A | | | | 1,2,4,5-Tetrachlorobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | l NS I | 0.500 J | | 1,2,4-Trichlorobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | 1.30 | | 1,2-Dichlorobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 1,2-Diphenylhydrazine | ND(0.49) | ND(4.2) [ND(7.3)] | NS NS | ND(0.96) | | 1.3-Dichlorobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 1.3-Dinitrobeлzene | ND(0.760) | . ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 1,4-Dichlorobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | NS I | ND(0.960) | | 2,4-Dimethylphenol | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 2-Chloronaphthalene | ND(0.490) | 12.0 [21.0] | NS I | 0.310 J | | 2-Chlorophenol | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 2-Methylnaphthalene | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 2-Methylphenol | ND(0.490) | ND(4.20) [4.90 J] | NS NS | ND(0.960) | | 2-Nitroaniline | ND(2.40) | ND(21.0) [ND(36 0)] | NS NS | ND(4.80) | | 3&4-Methylphenol | ND(0.760) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 4-Chloroaniline | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | 4-Chlorobenzilate | ND(0.760) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | 4-Phenylenediamine | ND(0.76) J | ND(4.2) J [ND(7.3) J) | NS | 0.96 J | | Acenaphthene | ND(0.490) | 2.10 J [2.80 J] | NS NS | ND(0.960) | | Acenaphthylene | ND(0.490) | ND(4.20) [ND(7.30)] | NS NS | ND(0.960) | | Acetophenone | ND(0.490) | ND(4.20) [2.00 J] | NS | ND(0.960) | | Aníline | ND(0.490) | 8.70 [13.0] | NS NS | 11.0 | | Anthracene | 0.120 J | 0.880 J [ND(7.30)] | NS NS | ND(0.960) | | Benzo(a)anthracene | 0.610 | ND(4.20) [1.60 J] | NS | ND(0.960) | | Benzo(a)pyrene | 0.640 | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Benzo(b)fluoranthene | 0.490 J | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Benzo(g,h,i)perylene | 0.440 J | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Benzo(k)fluoranthene | 0.630 | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Benzyl Alcohol | ND(0.980) | ND(8.40) [ND(14.0)] | NS | 1.9 J | | bis(2-Ethylhexyl)phthalate | ND(0.370) | ND(2.10) [17.0] | NS | 0.930 | | Chrysene | 0.620 | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Dibenzo(a,h)anthracene | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Dibenzofuran | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Diethylphthalate | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Dimethylphthalate | ND(0,490) | ND(4.20) [ND(7.30)] | NS | 0.610 J | | Di-n-Butylphthalate | 0.620 | ND(4.20) [ND(7.30)] | NS | 1.80 | | Diphenylamine | ND(0.49) | 6.3 [13] | NS | 1.1 | | Fluoranthene | 1.30 | 1.60 J [3.30 J] | NS | 0.510 J | | Fluorene | ND(0.490) | 1.30 J [1.80 J] | NS | ND(0.960) | | Hexachiorobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Indeno(1,2,3-cd)pyrene | 0.380 J | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | Naphthalene | ND(0.490) | ND(4.20) [1.60 J] | NS | ND(0.960) | | Nitrobenzene | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | | N-Nitrosodiphenylamine | ND(0 490) | ND(4.20) [ND(7.30)] | NS | 1.50 | | o-Toluidine | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.960) | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 48 | 4B | · 4B | 4B | |-----------------------------------|-----------------|---------------------------------|----------|---------------------------------------| | Sample ID: | RAA4-123 | RAA4-123 | RAA4-123 | RAA4-125 | | Sample Depth(Feet): | 0-1 | 6-15 | 10-12 | 0-1 | | Parameter Date Collected: | 04/25/02 | 04/25/02 | 04/25/02 | 06/03/02 | | Semivolatile Organics (continued) | | | | | | Pentachlorobenzene | ND(0.490) | ND(4 20) [ND(7.30)] | NS | 1.80 | | Pentachiorophenol | ND(2.40) | ND(21.0) [ND(36.0)] | NS | ND(4.80) | | Phenanthrene | 0.480 J | ND(4.20) [3,90 J] | NS | ND(0.960) | | Phenol | ND(0.490) | 12.0 [40.0] | NS | 4.30 | | Pyrene | 1.10 | 1.80 J [ND(7.30)] | NS | ND(0.960) | | Pyridine | ND(0.490) | ND(4.20) [ND(7.30)] | NS | ND(0.950) | | Furans | | | | | | 2,3,7,8-TCDF | 0.0010 Y | 0.000046 Y [0.000057 Y] | NS | 0.00010 Y | | TCDFs (lotal) | 0.013 | 0.00080 EJ [0.00094 EJ] | NS | 0.000821 | | 1,2,3,7.8-PeCDF | 0.00052 | ND(0.0000054) [ND(0.0000045)] | NS | 0.00010 | | 2,3,4,7,8-PeCDF | 0.00062 | ND(0.000034) X [0.000034] | NS | 0.00014 | | PeCDFs (total) | 0.0049EJ | 0.00084 [0.00082] | NS | 0.00151 | | 1,2,3,4,7,8-HxCDF | 0.00072 | 0.000099 [0.00011] | NS | 0.00028 | | 1,2,3,6,7,8-HxCDF | 0.00032 | 0.000041 [0.000052] | NS | 0.000096 | | 1,2,3,7,8,9-HxCDF | ND(0.000062) X | ND(0.000044) X [ND(0.000064) X] | NS | 0.000034 | | 2,3,4,6,7,8-HxCDF | 0.00033 | 0.000057 [0.000059] | NS | 0.00013 | | HxCDFs (total) | 0.0045 | 0.0011 [0.0012] | NS | 0.0020 J | | 1,2,3,4,6,7,8-HpCDF | 0.00045 | 0.00015 [0.00014] | NS | 0.00033 | | 1,2,3,4,7,8,9-HpCDF | 0.000081 | 0.000032 [ND(0.000032) X] | NS | 0.000094 | | HpCDFs (total) | 0.00095 | 0.00035 [0.00030] | NS | 0.00093 | | OCDF | 0.00028 | 0.00023 [0.00020] | NS | 0.0011 | | Dioxins | | | | | | 2,3,7,8-TCDD | 0.0000053 | ND(0.0000042) [ND(0.0000033)] | N\$ | 0.0000013 | | TCDDs (total) | 0.000033 | 0.000019 [ND(0.000027) X] | N\$ | 0.000016 | | 1,2,3,7,8-PeCDD | ND(0.0000068) X | ND(0.0000075) [ND(0.0000058)] | NS | ND(0.000032) X | | PeCDDs (total) | 0.0000076 | 6.4e-006 [ND(0.000034) XJ] | NS | ND(0.0000021) | | 1,2,3,4,7,8-HxCDD | ND(0.0000039) X | ND(0.000015) [ND(0.000010)] | NS | 0,0000050 | | 1,2,3,6,7,8-HxCDD | 0.0000095 | ND(0.0000079) X [ND(0.000011)] | NS | 0.000025 | | 1,2,3,7,8,9-HxCDD | 0.0000068 | ND(0.000015) [ND(0.000010)] | NS | 0.0000086 | | HxCDDs (total) | 0.000024 | 0.000021 J [0.000039 J] | NS | 0.00014 | | 1,2,3,4,6,7,8-HpCDD | 0.000074 | 0.000066 [0.000074] | NS | 0.00027 | | HpCDDs (total) | 0.00015 | 0.00013 [0.00015] | NS | 0.00048 | | OCDD | 0.00025 | 0.00049 [0.00059] | NS | 0.0021 | | Total TEQs (WHO TEFs) | 0.00059 | 0.000045 [0.000057] | NS | 0.00017 | | norganics | | | | · · · · · · · · · · · · · · · · · · · | | Antimony | 1.60 J | 1.50 J [1.70 J] | NS | ND(6.00) | | Arsenic | 8.20 J | 3.80 J [7.90 J] | NS | 19.0 | | Barium | 57.0 J | 36.0 J [44.0 J] | NS | 44.0 | | Beryllium | ND(0.500) | ND(0.500) [0.180 B] | NS | ND(0.500) | | Cadmium | 0.620
| 0.840 [0.870] | NS | 0.940 | | Chromium | 15.0 | 78.0 [9.60] | NS | 44.0 | | Cobalt | 8.00 | 7.60 [ND(5.00)] | NS | 8.10 | | Copper | 58.0 | 58.0 [140] | NS | 210 | | Cyanide | 0.130 J | 0.390 J [0.580 J] | NS | ND(0.240) | | _ead | 42.0 J | 360 J [74.0 J] | NS | 120 | | Mercury | 0.220 | 19.0 [62.0] | NS | 1.20 | | Vickel | 16.0 J | 27.0 J [14.0 J] | NS | 46.0 | | Selenium | ND(1.00) J | ND(1.00) J [ND(1.00) J] | NS | 0.700 B | | Silver | 0.830 B | 42.0 [3.40] | NS | ND(1.00) | | Sulfide | 42.0 | 580 [400] | NS | 15.0 | | Thallium | ND(1.10) J | ND(1.20) J [ND(1.30) J] | NS | ND(1.20) | | Tin | ND(10.0) | ND(10.0) [ND(16.0)] | NS | 13.0 | | /anadium | 10.0 J | 8.70 J [8.40 J] | NS | 24.0 | | Zinc | 98.0 J | 260 J [130 J] | NS | 240 | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 1 | 4B
RAA4-K19 | 4B
RAA4-K19 | 4B
RAA4-K19 | 4B
RAA4-K21 | 48
RAA4-K23 | |---|--------------------|---------------------------|------------------------|--------------------------|----------------|-----------------------------| | Sample Depth(Feet): | | 0-1 | 6-15 | 13-15 | 1-6 | 0-1 | | Parameter Date Collected: | 06/03/02 | 06/13/02 | 06/13/02 | 06/13/02 | 06/03/02 | 04/25/02 | | Volatile Organics | | | | | | | | 1,1,1-Trichloroethane | ND(0.030) | ND(0.0056) | NS | ND(0.0061) | NS | ND(0.0054) | | 1,1-Dichloroethane | ND(0.030) | ND(0.0056) | NS | ND(0.0061) | NS | ND(0.0054) | | 1,2-Dichloroethane | ND(0 030) | ND(0.0056) | NS NS | ND(0 0061) | NS | ND(0.0054) | | 2-Butanone | ND(0.030) | ND(0.011) | NS | ND(0 012) | NS | ND(0.011) | | 2-Chloroethylvinylether | ND(0.030) | ND(0.0056) | NS | ND(0.0061) | NS | ND(0.0054) J | | Acetone
Benzene | 0.094 | ND(0.022) J | NS | 0.060 J | NS | 0.021 J | | Carbon Disulfide | 0.340
ND(0.030) | ND(0.00560)
ND(0.0056) | NS
NS | ND(0.00610) | NS
NS | ND(0.00540) | | Chlorobenzene | 11 | ND(0.0056) | NS NS | ND(0.0061)
ND(0.0061) | NS
NS | ND(0.0054)
ND(0.0054) J | | Ethylbenzene | 0.0470 | ND(0.00560) | NS NS | ND(0.00610) | NS NS | ND(0.0054) 3
ND(0.00540) | | Methylene Chloride | ND(0.030) | ND(0.0056) | NS | 0.0041 J | NS NS | ND(0.0054) | | Styrene | ND(0.0300) | ND(0.00560) | NS | ND(0.00610) | NS | ND(0.00540) | | Tetrachloroethene | ND(0.030) | ND(0.0056) | NS | ND(0.0061) | NS | ND(0.0054) | | Toluene | ND(0.0300) | ND(0.00560) | NS | 0.0069 J | NS | ND(0.00540) | | Trichloroethene | ND(0.030) | 0.0050 J | NS | ND(0.0061) | NS | ND(0.0054) | | Trichlorofluoromethane | ND(0.030) | ND(0.0056) | NS | ND(0.0061) | NS | ND(0.0054) | | Xylenes (total) | 15 | ND(0.0056) | NS | ND(0.0061) | NS | ND(0.0054) | | Semivolatile Organics | , | | | | | | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | 1,2,4-Trichlorobenzene
1,2-Dichlorobenzene | NS NS | 0.170 J | ND(0.410) | NS NS | NS | 0.140 J | | | NS | ND(0.370) | ND(0.410) | NS NS | NS | ND(0.500) | | 1,2-Diphenylhydrazine 1,3-Dichlorobenzene | NS
NS | ND(0.37)
ND(0.370) | ND(0.41)
ND(0.410) | NS
NS | NS NS | ND(0.50) | | 1.3-Dinitrobenzene | NS NS | ND(0.750) | ND(0.410) | NS NS | NS
NS | ND(0.500)
ND(0.720) | | 1,4-Dichlorobenzene | NS | ND(0.370) | ND(0.410) | NS NS | NS
NS | ND(0.720)
ND(0.500) | | 2,4-Dimethylphenol | NS I | ND(0.370) | ND(0,410) | NS NS | NS NS | ND(0.500) | | 2-Chloronaphthalene | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | 2-Chlorophenol | NS | ND(0.370) | ND(0.410) | NS NS | NS | ND(0.500) | | 2-Methylnaphthalene | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | 2-Methylphenol | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | 2-Nitroaniline | NS | ND(1.90) | ND(2.10) | NS | NS | ND(2.50) | | 3&4-Methylphenol | NS | ND(0.750) | ND(0.820) | NS | NS | ND(0.720) | | 4-Chloroaniline | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | 4-Chlorobenzilate | NS NS | 0.440 J | ND(0.820) | NS | NS | ND(0.720) | | 4-Phenylenediamine
Acenaphthene | NS
NS | ND(0.75) J | ND(0.82) J | NS NS | NS | ND(0.72) J | | Acenaphthylene | NS
NS | ND(0.370)
ND(0.370) | ND(0.410) | NS NS | NS
NS | ND(0.500) | | Acetophenone | NS NS | ND(0.370) | ND(0.410)
ND(0.410) | NS
NS | NS
NS | ND(0.500)
ND(0.500) | | Aniline | NS | 2.90 | ND(0.410) | NS NS | NS
NS | 0.440 J | | Anthracene | NS | ND(0.370) | ND(0.410) | NS NS | NS NS | ND(0.500) | | Benzo(a)anthracene | NS | 0.110 J | ND(0.410) | NS I | NS | ND(0.500) | | Benzo(a)pyrene | NS | 0.220 J | ND(0.410) | NS | NS | ND(0.500) | | Benzo(b)fluoranthene | NS | 0.290 J | ND(0.410) | NS | NS | 0.160 J | | Benzo(g,h,i)perylene | NS | 0.240 J | ND(0.410) | NS | NS | ND(0.500) | | Benzo(k)fluoranthene | NS | 0.180 J | ND(0.410) | NS | NS | 0.190 J | | Benzyl Alcohol | NS NS | ND(0.750) | ND(0.820) | NS | NS | ND(1.00) | | bis(2-Ethylhexyl)phthalate | NS
NS | ND(0.370) | ND(0.400) | NS III | NS NS | ND(0,360) | | Chrysene
Dibenzo(a,h)anthracene | NS
NS | 0.250 J
ND(0.370) | ND(0.410)
ND(0.410) | NS
NS | NS
NS | 0.210 J | | Dibenzofuran Dibenzofuran | NS NS | ND(0.370)
ND(0.370) | ND(0.410)
ND(0.410) | NS NS | NS
NS | ND(0.500)
ND(0.500) | | Diethylphthalate | NS NS | ND(0.370) | ND(0.410) | NS NS | NS
NS | ND(0.500)
ND(0.500) | | Dimethylphthalate | NS NS | ND(0.370) | ND(0.410) | NS NS | NS NS | ND(0.500) | | Di-n-Butylphthalate | NS | ND(0.370) | ND(0.410) | NS | NS NS | ND(0.500) | | Diphenylamine | NS | ND(0.37) | ND(0.41) | NS | NS | ND(0.50) | | Fluoranthene | NS | 0.170 J | ND(0.410) | NS I | NS NS | 0.340 J | | Fluorene | NS | ND(0,370) | ND(0.410) | NS | NS | ND(0.500) | | Hexachlorobenzene | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | Indeno(1,2,3-cd)pyrene | NS | 0.180 J | ND(0.410) | NS | NS | ND(0.500) | | Naphthalene | NS | 0.0980 J | ND(0.410) | NS | NS | ND(0.500) | | Nitrobenzene | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | N-Nitrosodiphenylamine | NS | ND(0.370) | ND(0.410) | NS NS | NS | ND(0.500) | | o-Toluidine | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4B | 4B | 4B | 4B | 4B | 4B | |-----------------------------------|----------|----------------|------------------|----------|--|--| | Sample ID: | RAA4-125 | RAA4-K19 | RAA4-K19 | RAA4-K19 | RAA4-K21 | RAA4-K23 | | Sample Depth(Feet): | 8-10 | 0-1 | 6-15 | 13-15 | 1-6 | 0-1 | | Parameter Date Collected: | 06/03/02 | 06/13/02 | 06/13/02 | 06/13/02 | 06/03/02 | 04/25/02 | | Semivolatile Organics (continued) | | | | . " | | | | Pentachlorobenzene | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | Pentachiorophenol | NS | ND(1.90) | ND(2.10) | NS | NS | ND(2.50) | | Phenanthrene | NS | 0.170 J | ND(0.410) | NS | NS | 0.290 J | | Phenoi | NS | 0.0970 J | ND(0.410) | NS | NS | 0.120 J | | Pyrene | NS | 0.580 | ND(0.410) | NS | NS | 0.280 J | | Pyridine | NS | ND(0.370) | ND(0.410) | NS | NS | ND(0.500) | | Furans | | | | | * | | | 2,3,7,8-TCDF | NS | 0.00031 Y | 0.0000013 Y | NS | 0.010 YEIJ | 0.000045 Y | | TCDFs (total) | NS | 0.00331 | 0.000021 | NS | 0.089 QI | 0.0012 EJ | | 1,2,3,7,8-PeCDF | NS | 0.00018 | 0.00000092 J | NS | 0.0040 | 0.000022 | | 2,3,4,7,8-PeCDF | NS | 0.00044 | 0.0000018 J | NS | 0.0095 EJ | 0.000038 | | PeCDFs (total) | NS | 0.0060 QI | 0.000017 | NS | 0.10 QI | 0.0022 | | 1,2,3,4,7,8-HxCDF | NS | 0.00038 | 0.0000016 J | NS | 0.014 EJ | ND(0.000012) X | | 1,2,3,6,7,8-HxCDF | NS | 0.000241 | 0.0000011 J | NS | 0.0070 | 0.00014 | | 1,2,3,7,8,9-HxCDF | NS | 0.000063 | 0.00000025 J | NS | 0.0016 | ND(0.000038) X | | 2,3,4,6,7,8-HxCDF | NS | 0.00035 | 0.00000098 J | NS | 0.011 EJ | 0.00011 | | HxCDFs (total) | NS | 0.00491 | 0.000011 | NS | 0.17 | 0.0020 | | 1,2,3,4,6,7,8-HpCDF | NS | 0.00051 | 0.0000024 J | NS | 0.019 EJ | 0.00015 | | 1,2,3,4,7,8,9-HpCDF | NS | 0.000098 | 0.00000036 J | NS | 0.0042 | 0.000014 | | HpCDFs (total) | NS | 0.0010 | 0.0000035 | NS | 0.043 | 0.00038 | | OCDF | NS | 0.00029 | 0.0000013 J | NS | 0.027 EJ | 0.000097 | | Dioxins | | | | | * · · · · · · · · · · · · · · · · · · · | | | 2,3,7,8-TCDD | NS | 0.0000052 | ND(0.00000014) | NS | 0.000070 | ND(0.0000011) X | | TCDDs (total) | NS | 0.000089 | 0.00000014 | NS | 0.0012 Q | 0.0000071 | | 1,2,3,7,8-PeCDD | NS | ND(0.000038) X | ND(0.00000024) X | NS | ND(0.00036) X | ND(0.0000030) X | | PeCDDs (total) | NS | 0.00014 | 0.00000030 | NS | 0.0020 Q | 0.0000037 | | 1,2,3,4,7,8-HxCDD | NS | 0.000018 | 0.00000011J | NS | 0.00070 | 0.0000024 J | | 1,2,3,6,7,8-HxCDD | NS | 0.000033 | 0.00000019 J | NS | 0.00053 | 0.0000055 | | 1,2,3,7,8,9-HxCDD | NS | 0.000028 | 0.00000015 J | NS | 0.00039 | 0.0000051 | | HxCDDs (total) | NS | 0.00028 | 0.00000045 | NS | 0.0070 | 0.000040 | | 1,2,3,4,6,7,8-HpCDD | NS | 0.00012 | 0.00000062 J | NS | 0.0054 | 0.000055 | | HpCDDs (total) | NS | 0.00023 | 0.0000012 | NS | 0.010 | 0.00013 | | OCDD | NS | 0.00032 | 0.0000018 J | NS | 0.017 | 0.00054 | | Total TEQs (WHO TEFs) | NS | 0.00040 | 0.0000017 | NS | 0.010 | 0.000058 | | norganics | | | | | | ///////////////////////////////////// | | Antimony | NS | 11.0 | ND(6.00) | NS | NS | 1.20 J | | Arsenic | NS | 21.0 | 2.30 | NS | NS | 3.50 J | | Barium | NS | 220 | 30.0 | NS | NS | 33.0 J | | Beryllium | NS | ND(0.500) | ND(0.500) | NS | NS | ND(0.500) | | Cadmium | NS | 5.20 | ND(0.500) | NS | NS | 1.10 | | Chromium · | NS | 36.0 | 7.80 | NS | NS | 70.0 | | Cobalt | NS | 7.00 | 7.00 | NS | NS | 6.20 | | Copper | NS | 1200 | 8.90 | NS | NS | 53.0 | | Cyanide | NS | ND(0.220) | ND(0.120) | NS | NS | 0.150 J | | ead | NS | 2000 | 6.40 | NS | NS | 370 J | | Mercury | NS | 6.00 J | ND(0.120) J | NS | NS | ND(0.110)
 | Nickel | NS | 65.0 | 11.0 | NS | NS | 23.0 J | | Selenium | NS | ND(1.00) J | ND(1.00) J | NS | NS | ND(1.00) J | | Silver | NS | ND(1.00) | ND(1.00) | NS | NS | 20.0 | | Sulfide | NS | 230 | 59.0 | NS | NS | 140 | | Thallium | · NS | 2.50 J | 1.10 J | NS | NS | ND(1.10) J | | Tin | NS | 100 | ND(3.80) | NS | NS | ND(15.0) | | /anadium | NS | 11.0 | 8,40 | NS | NS | 7.40 J | | Zinc | NS | 1400 | 40.0 | NS | NS | 240 J | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | | Averaging Area: | 4B | 4B | 4B | 4B | 4C | 4C | |--------------------------------------|---------------------|----------|-------------------------|----------|----------|-------------------------|------------------------| | , | Sample ID: | RAA4-K23 | RAA4-K25 | X-16 | X-18 | CRA-1 | CRA-1 | | Š | Sample Depth(Feet): | 1-6 | 0-1 | 6-15 | 6-15 | 5-14 | 6-8 | | Parameter | Date Collected: | 04/25/02 | 06/03/02 | 01/31/01 | 02/01/01 | 01/17/01 | 01/17/01 | | Volatile Organi | | | | | | | | | 1,1,1-Trichloroet | | NS | ND(0.0053) | NS | NS | NS | ND(0.0064) | | 1,1-Dichloroetha | | NS I | ND(0.0053) | NS | NS | NS | ND(0.0064) | | 1,2-Dichloroetha | ine | NS | ND(0.0053) | NS | NS | NS | ND(0.0064) | | 2-Butanone
2-Chloroethylvin | Jothar | NS
NS | ND(0.010)
ND(0.0053) | NS
NS | NS
NS | NS
NS | ND(0.10)
ND(0.0064) | | 2-Chloroemylvin | Aienie: | NS NS | ND(0.0053) | NS
NS | NS | NS NS | ND(0.0084) | | Benzene | | NS NS | ND(0.00530) | NS NS | NS
NS | NS
NS | ND(0.00640) | | Carbon Disulfide | | NS | ND(0.0053) | NS | NS | NS NS | ND(0,010) | | Chlorobenzene | | NS | ND(0.0053) | NS | NS | NS | ND(0.0064) | | Ethylbenzene | | NS | ND(0.00530) | NS | NS | NS | 0.00370 J | | Methylene Chlor | ide | NS | ND(0.0053) | NS | NS | NS | ND(0.0064) | | Styrene | | NS | ND(0.00530) | NS | NS | NS | 0.0100 | | Tetrachloroether | ne | NS | ND(0.0053) | NS | NS | NS | ND(0.0064) | | Toluene | | NS | ND(0.00530) | NS | NS | NS | 0.0046 J | | Trichloroethene | | NS NS | ND(0.0053) | NS | NS NS | NS NS | ND(0.0064) | | Trichlorofluorom | etnane | NS
NS | ND(0.0053) | NS
NS | NS
NG | NS
NS | ND(0.0064) | | Xylenes (total) | raniae | NS | ND(0.0053) | NS | NS | NS | 0.025 | | Semivolatile Or
1,2,4,5-Tetrachio | | NS I | NEWO OKON | S/O | , kin | NID(0 40) 1 | 1 100 | | 1,2,4,5-Tetrachic | | NS
NS | ND(0.810)
ND(0.810) | NS
NS | NS
NS | ND(0.43) J
ND(0.430) | NS
NS | | 1.2-Dichloroben | | NS NS | ND(0.810) | NS
NS | NS
NS | ND(0.430) | NS NS | | 1.2-Diphenylhyd | | NS | ND(0.81) | NS NS | NS
NS | ND(0.430) | NS | | 1,3-Dichlorobena | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | 1,3-Dinitrobenze | | NS | ND(0.810) | NS | NS | ND(2.20) | NS | | 1,4-Dichloroben: | zene | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | 2,4-Dimethylphe | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | 2-Chloronaphtha | lene | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | 2-Chlorophenol | | NS I | ND(0.810) | NS | NS | ND(0.430) | NS | | 2-Methylnaphtha | ilene | NS NS | ND(0.810) | NS | NS | ND(0.430) | NS | | 2-Methylphenol | | NS I | ND(0.810) | NS · | NS
NS | ND(0.430) | NS | | 2-Nitroaniline | _1 | NS
NS | ND(4.10) | NS
NS | NS
NS | ND(2.20) | NS
NG | | 3&4-Methylphen
4-Chloroaniline | OI | NS NS | ND(0.810)
ND(0.810) | NS
NS | NS
NS | ND(0.860)
ND(0.860) | NS
NS | | 4-Chlorobenzilat | Δ | NS NS | ND(0.810) | NS
NS | NS
NS | ND(2.20) | NS NS | | 4-Phenylenedian | | NS | 0.81 J | NS | NS NS | ND(2.20) | NS | | Acenaphthene | | NS | ND(0.810) | NS NS | NS | ND(0.430) | NS | | Acenaphthylene | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Acetophenone | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Aniline | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Anthracene | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Benzo(a)anthrac | ene | NS NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Benzo(a)pyrene | | NS | ND(0.810) | NS | NS NS | ND(0.430) | NS | | Benzo(b)fluorant
Benzo(g.h.i)perv | | NS
NS | ND(0.810) | NS
NS | NS
NS | ND(0.430) | NS NS | | Benzo(g,n,i)pery
Benzo(k)fluorant | | NS NS | ND(0.810)
ND(0.810) | NS
NS | NS
NS | ND(0.43) J
ND(0.430) | NS
NS | | Benzyl Alcohol | INCIIC | NS NS | 1.6 J | NS NS | NS
NS | ND(0.860) | NS NS | | bis(2-Ethylhexyl) | iohthalate | NS NS | ND(0.410) | NS
NS | NS
NS | ND(0.430) | NS NS | | Chrysene | I | NS | ND(0.810) | NS | NS | ND(0.430) | † - NS | | Dibenzo(a,h)antl | nracene | NS | ND(0.810) | NS | NS | ND(0.86) J | NS | | Dibenzofuran | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Diethylphthalate | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Dimethylphthala | | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Di-n-Butylphthali | ate | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Diphenylamine | | NS | ND(0.81) | NS
NS | NS NS | ND(0.43) | NS NS | | Fluoranthene | | NS NS | 0.540 J | NS
NS | NS NS | ND(0.430) | NS | | Fluorene | | NS NS | ND(0.810) | NS
NC | NS
NS | ND(0.430) | NS
NS | | Hexachlorobenz | | NS
NS | ND(0.810)
ND(0.810) | NS
NS | NS
NC | ND(0.430) | NS
NE | | Indeno(1,2,3-cd) | ругеле | NS NS | ND(0.810)
ND(0.810) | NS
NS | NS
Ne | ND(0.860) | NS
NS | | Naphthalene
Nitrobenzene | | NS NS | ND(0.810)
ND(0.810) | NS
NS | NS
NS | ND(0.430)
ND(0.430) | NS
NS | | N-Nitrosodiphen | vlamine | NS NS | ND(0.810)
ND(0.810) | NS
NS | NS
NS | ND(0.430)
ND(0.430) | NS NS | | o-Toluidine | 7 | NS NS | ND(0.810) | NS I | NS NS | ND(0.430) | NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4B | 4B | 4B | 4B | 4C | 4Ç | |-----------------------------------|--------------|------------------|--------------|---------------|---------------|----------| | Sample ID: | RAA4-K23 | RAA4-K25 | X-16 | X-18 | CRA-1 | CRA-1 | | Sample Depth(Feet): | 1-6 | 0-1 | 6-15 | 6-15 | 5-14 | 6-8 | | Parameter Date Collected: | 04/25/02 | 06/03/02 | 01/31/01 | 02/01/01 | 01/17/01 | 01/17/01 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Pentachlorophenoi | NS | ND(4.10) | NS | NS | ND(2,20) | NS | | Phenanthrene | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Phenol | NS | ND(0.810) | NS | NS | ND(0.430) | NS | | Pyrene | NS | 0.420 J | NS | NS | ND(0.430) | NS | | Pyridine | NS | ND(0,810) | NS | NS | ND(0.430) | NS | | Furans | | | | | | | | 2,3,7,8-TCDF | 0.00069 Y | 0.000019 Y | ND(0.000015) | ND(0.00040) | ND(0.0000098) | NS | | TCDFs (total) | 0.012 | 0.00014 | ND(0.000015) | ND(0.00040) | ND(0.0000098) | NS | | 1,2,3,7,8-PeCDF | 0.00038 | 0.000010 | ND(0.000012) | ND(0.0011) | ND(0.000014) | NS | | 2,3,4,7,8-PeCDF | 0.00055 | 0.000027 | ND(0.000012) | ND(0.0011) | ND(0.000013) | NS | | PeCDFs (total) | 0.013 | 0.000261 | ND(0.000012) | ND(0.0011) | ND(0.000014) | NS | | 1,2,3,4,7,8-HxCDF | 0.0024 | 0.000031 | ND(0.000052) | 0.00039 J | ND(0.000017) | NS | | 1,2,3,6,7,8-HxCDF | 0.00093 | 0.000012 | ND(0.000049) | ND(0.00043) X | ND(0.000016) | NS | | 1,2,3,7,8,9-HxCDF | ND(0.0010) X | 0.0000047 | ND(0.000057) | 0.00066 J | ND(0.000019) | NS | | 2,3,4,6,7,8-HxCDF | 0.00054 | 0,000022 | ND(0.000053) | 0.00042 J | ND(0.000017) | NS | | HxCDFs (total) | 0.012 | 0.00029 | ND(0.000022) | 0.0015 | ND(0.000017) | NS | | 1,2,3,4,6,7,8-HpCDF | 0.0025 | 0.000036 | ND(0.000032) | 0.00042 J | ND(0.0000096) | NS | | 1,2,3,4,7,8,9-HpCDF | 0.00049 | 0.0000086 | ND(0.000038) | 0.00041 J | ND(0.000012) | NS | | HpCDFs (total) | 0.0051 | 0.000090 | ND(0.000035) | 0.00083 | ND(0.000010) | NS | | OCDF | 0.0053 | 0.00011 | ND(0.000030) | 0.0016 J | ND(0.000021) | NS | | Dioxìns | | | | | | | | 2,3,7,8-TCDD | 0.00017 J | ND(0.00000026) X | ND(0.000017) | ND(0.00032) | ND(0.000019) | NS | | TCDDs (total) | 0.00017 | 0.00000082 | ND(0.000017) | ND(0.00032) | ND(0.000019) | N\$ | | 1,2,3,7,8-PeCDD | 0.000026 | ND(0.0000080) X | ND(0.000017) | 0.00049 J | ND(0.000020) | NS | | PeCDDs (total) | 0.000097 | 0.00000089 | ND(0.000017) | 0.00049 | ND(0.000020) | NS | | 1,2,3,4,7,8-HxCDD | 0.000041 | 0.00000048 J | ND(0.000033) | 0.00041 J | ND(0.000013) | NS | | 1,2,3,6,7,8-HxCDD | 0.000060 | 0.00000077 J | ND(0.000033) | 0.00047 J | ND(0.000013) | NS | | 1,2,3,7,8,9-HxCDD | 0.000059 | 0.00000065 J | ND(0.000030) | 0.00052 J | ND(0.000019) | NS | | HxCDDs (total) | 0.00030 | 0.0000086 | ND(0.000032) | 0.0014 | ND(0.000013) | NS | | 1,2,3,4,6,7,8-HpCDD | 0.00058 | 0.0000059 | ND(0.000042) | ND(0.00029) | ND(0.000016) | NS | | HpCDDs (total) | 0.0012 | 0.000013 | ND(0.000042) | ND(0.00029) | ND(0.000016) | NS | | OCDD | 0.0023 | 0.000038 | ND(0.000037) | ND(0.0014) | ND(0.000024) | NS | | Total TEQs (WHO TEFs) | 0.0010 | 0.000028 | 0.000037 | 0.0013 | 0.000029 | NS | | Inorganics | | | | | | | | Antimony | NS | ND(6.00) | NS | NS | ND(12.0) J | NS | | Arsenic | NS | 4.10 | NS | NS | ND(19.0) | NS | | Barium | NS | ND(20.0) | NS | NS | ND(38.0) | NS | | Beryllium | NS | 0.150 B | NS | NS | 0.300 | NS | | Cadmium | NS | ND(0.500) | NS | NS | ND(1.90) J | NS | | Chromium | NS | 6.00 | NS | NS | 9.20 | NS | | Cobalt | NS | 7.20 | NS | NS | 12.0 | NS | | Copper | NS | 17.0 | NS | NS | 26.0 | NS | | Cyanide | NS | ND(0.210) | NS | NS | ND(1.00) | NS | | Lead | NS | 10.0 | NS | NS | 14.0 J | NS | | Mercury | NS | 0.120 | NS | NS | ND(0.260) | NS | | Nickel | NS | 12.0 | NS | NS | 17.0 | NS | | Selenium | NS | ND(1.00) | NS | NS | ND(0.960) J | NS | | Silver | NS | ND(1.00) | NS | NS | ND(0.960) | NS | | Sulfide | NS | 8.20 | NS | NS | ND(6.40) | NS | | Thallium | NS | ND(1.00) | NS | N\$ | ND(1,90) J | NS | | Tin | NS | ND(10.0) | NS | NS | ND(58.0) | NS | | Vanadium | NS | 5.50 | NS | NS | ND(9.60) | NS | | Zinc | NS | 35.0 | NS | NS | 56.0 J | NS | | | Averaging Area:
Sample ID: | 4C
CRA-2 |
4C
CRA-2 | 4C
CRA-3 | 4C
CRA-3 | |------------------------------------|---|---|------------------------|--|--| | | Sample Depth(Feet): | 2-4 | 2-5 | 0-2 | 5-14 | | Parameter | Date Collected: | 01/17/01 | 01/17/01 | 04/27/01 | 01/17/01 | | Volatile Organ | iics | | | | | | 1,1,1-Trichlore | ethane | ND(0.0071) | NS | NS | NS | | 1,1-Dichloroeth | ane | ND(0.0071) | NS | NS | NS | | 1,2-Dichloroeth | ane | ND(0.0071) | NS | NS | NS | | 2-Butanone | | ND(0.10) | NS | NS | NS | | 2-Chloroethylvi | nylether | ND(0.0071) | NS | NS | NS | | Acetone | | ND(0.10) | NS | NS | NS | | Benzene | | ND(0.00710) | NS | NS | NS | | Carbon Disulfid | | ND(0.010) | NS | NS | NS | | Chiorobenzene | | ND(0.0071) | NS | NS | NS | | Ethylbenzene | | ND(0.00710) | NS | NS | NS | | Methylene Chic | onde | ND(0.0071) | NS | NS | NS | | Styrene | | ND(0.00710) | NS | NS | NS | | Tetrachloroethe | ene | ND(0.0071) | NS NS | NS | NS | | Toluene | | ND(0.00710) | NS NS | NS | NS | | Trichloroethene | | ND(0.0071) | NS | NS | NS | | Trichlorofluoron | nemane | ND(0.0071) | NS NS | NS NS | NS | | Xylenes (total) | | ND(0.0071) | NS | NS | NS | | Semivolatile O | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | 1,2,4,5-Tetrach | | NS NS | ND(0.47) J | ND(0.440) [ND(0.420)] | ND(2.3) J [ND(2.1) J] | | 1,2,4-Trichlorot | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 1,2-Dichlorober | | NS NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 1,2-Diphenylhyd | | NS | ND(0.47) | ND(0.44) [ND(0.42)] | ND(2.3) [ND(2.1)] | | 1,3-Dichlorober | *************************************** | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 1,3-Dinitrobenz | | NS | ND(2.40) | ND(2.20) [ND(2.10)] | ND(12.0) [ND(10)] | | 1,4-Dichlorober | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 2,4-Dimethylph | ··· | NS I | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 2-Chloronaphth | | NS NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 2-Chlorophenol
2-Methylnaphth | | NS
NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | z-wetnymapnm
2-Methylphenol | | NS NS | ND(0.470) | ND(0.440) [ND(0.420)] | 290 [280] | | 2-Metriyapherior
2-Nitroaniline | | NS NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | 3&4-Methylphei | noi | NS NS | ND(2.40)
ND(0.950) | ND(2.20) [ND(2.10)]
ND(0.870) [ND(0.840)] | ND(12.0) [ND(10)] | | 4-Chloroaniline | 1101 | NS NS | ND(0.950)
ND(0.950) | ND(0.870) [ND(0.840)]
ND(0.870) [ND(0.840)] | ND(4.70) [ND(4.2)] | | 4-Chlorobenzila | at | NS NS | ND(2.40) | ND(2.20) [ND(2.10)] | ND(4.70) [ND(4.2)]
ND(12.0) [ND(10)] | | 4-Phenylenedia | | NS | ND(2.40) | ND(2.20) [ND(2.10)] | ND(12.0) [ND(10)] | | Acenaphthene | | NS NS | ND(0.470) | ND(0.440) [0.630] | 15.0 [16] | | Acenaphthylene | · | NS | ND(0.470) | ND(0.440) [0.440] | 43.0 [39] | | Acetophenone | | NS NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Aniline | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Anthracene | | NS | ND(0.470) | ND(0.440) [1.70] | 38.0 [36] | | Benzo(a)anthra | cene . | NS | ND(0.470) | 0.600 [3.00] | 42.0 [38] | | Benzo(a)pyrene | | NS | ND(0.470) | 0.600 [2.80] | 49.0 [53] | | 3enzo(b)fluorar | ··· | NS | ND(0.470) | 0.540 [2.10] | 23.0 [24] | | Benzo(g,h,i)per | ylene | NS | ND(0.47) J | ND(0.440) [1.90] | 34 J [33 J] | | Benzo(k)fluoran | ithene | NS | ND(0.470) | 0.510 [1.90] | 31.0 [27] | | Benzyl Alcohol | | NS | ND(0.950) | ND(0.870) [ND(0.840)] | ND(4.70) [ND(4.2)] | | ois(2-Ethylhexy | i)phthalate | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Chrysene | | NS | ND(0.470) | 0.540 [2.70] | 39.0 [36] | | Dibenzo(a,h)ant | thracene | NS | ND(0.95) J | ND(0.870) [ND(0.840)] | 6.5 J [5.5 J] | | Dibenzofuran | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | 8.30 [8.0] | | Diethylphthalate | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Dimethylphthala | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Di-n-Butylphtha | ate | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2:30) [ND(2:1)] | | Diphenylamine | | NS | ND(0.47) | ND(0.44) [ND(0.42)] | ND(2.3) [ND(2.1)] | | luoranthene | | NS | ND(0.470) | 1.20 [7.00] | 37.0 [33] | | luorene | | NS | ND(0.470) | ND(0.440) [0.840] | 47.0 [82] | | lexachlorobenz | | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | ndeno(1,2,3-cd |)pyrene | NS | ND(0.950) | ND(0.870) [2.10] | 27.0 [27] | | Vaphthalene | ļ | NS | ND(0.470) | ND(0.440) [0.830] | 430 [420] | | | | | | | | | Nitrobenzene
N-Nitrosodipher | | NS
NS | ND(0.470)
ND(0.470) | ND(0.440) [ND(0.420)]
ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)]
ND(2.30) [ND(2.1)] | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Are
Sample I | | 4C
CRA-2 | 4C
CRA-3 | 4C
CRA-3 | |---------------------------------|----------|-------------------|-----------------------|-----------------------------| | Sample Depth(Fee | | 2-5 | 0-2 | 5-14 | | Parameter Date Collecte | | 01/17/01 | 04/27/01 | 01/17/01 | | Semivolatile Organics (continue | d) | | | * | | Pentachlorobenzene | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Pentachlorophenol | NS | ND(2.40) | ND(2.20) [ND(2.10)] | ND(12.0) [ND(10)] | | Phenanthrene | NS | ND(0.470) | 0.640 [7.50] | 230 [230] | | Phenol | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Pyrene | NS | ND(0.470) | 0.880 [5.20] | 200 [210] | | Pyridine | NS | ND(0.470) | ND(0.440) [ND(0.420)] | ND(2.30) [ND(2.1)] | | Furans | | | | | | 2,3,7,8-TCDF | NS | ND(0.000014) | NS | ND(0.000018) [ND(0.000038)] | | TCDFs (total) | NS | ND(0.000014) | NS | ND(0.000018) [ND(0.000038)] | | 1,2,3,7,8-PeCDF | NS | ND(0.000014) | NS | ND(0.000032) [ND(0.000099)] | | 2,3,4,7,8-PeCDF | NS | ND(0.000014) | NS | ND(0.000032) (ND(0.000098)) | | PeCDFs (total) | NS | ND(0.000014) | NS | ND(0.000032) [ND(0.000099)] | | 1,2,3,4,7,8-HxCDF | NS | ND(0.000017) | NS | ND(0.000014) [ND(0.000047)] | | 1,2,3,6,7,8-HxCDF | NS | ND(0.000020) | NS | ND(0.000017) [ND(0.000044)] | | 1,2,3,7,8,9-HxCDF | NS | ND(0.000016) | NS | ND(0.000015) [ND(0.000052)] | | 2,3,4,6,7,8-HxCDF | NS | ND(0.000014) | NS | ND(0.000014) [ND(0.000048)] | | HxCDFs (total) | NS | ND(0.000014) | NS | ND(0.000014) [ND(0.000047)] | | 1,2,3,4,6,7,8-HpCDF | NS | ND(0.000014) | NS | ND(0.000017) [ND(0.000021)] | | 1,2,3,4,7,8,9-HpCDF | NS | ND(0.000017) | NŠ | ND(0.000020) [ND(0.000025)] | | HpCDFs (total) | NS | ND(0.000016) | NS | ND(0.000018) [ND(0.000023)] | | OCDF | NS | ND(0.000024) | NS | ND(0.000034) [ND(0.000039)] | | Dioxins | | | | | | 2,3,7,8-TCDD | N\$ | ND(0.000012) | NS | ND(0.000017) [ND(0.000031)] | | TCDDs (total) | NS | ND(0.000012) | NS | ND(0.000017) [ND(0.000031)] | | 1,2,3,7,8-PeCDD | NS | ND(0.000022) | NS | ND(0.000018) [ND(0.000063)] | | PeCDDs (total) | NS | ND(0.000022) | NS | ND(0.000018) [ND(0.000063)] | | 1,2,3,4,7,8-HxCDD | NS | ND(0.000014) | NS | ND(0.000014) [ND(0.000036)] | | 1,2,3,6,7,8-HxCDD | NS | ND(0.000014) | NS | ND(0.000014) [ND(0.000036)] | | 1,2,3,7,8,9-HxCDD | NS | ND(0.000013) | NS | 0:000024 J [ND(0:000033)] | | HxCDDs (total) | NS | ND(0.000014) | NS | 0.000024 [ND(0.000035)] | | 1,2,3,4,6,7,8-HpCDD | NS | ND(0.000025) | NS | ND(0.000922) [ND(0.000030)] | | HpCDDs (total) | NS | ND(0.000025) | NS | ND(0.000022) [ND(0.000030)] | | OCDD | NS | ND(0.000039) | NS | ND(0.000044) [ND(0.000050)] | | Total TEQs (WHO TEFs) | NS | 0.000027 | NS | 0.000034 [0.000091] | | Inorganics | | · | | | | Antimony | NS | ND(13.0) J | NS | ND(13.0) J [ND(11.0) J] | | Arsenic | NS | ND(21.0) | NS | ND(21.0) [ND(19.0)] | | Barium | NS | ND(43.0) | NS | 49.0 [48.0] | | Beryllium | NS | 0.260 | NS NS | 0.420 [0.340] | | Cadmium | NS NS | ND(2.10) J | NS | ND(2.10) J [ND(1.90) J] | | Chromium | NS | 12.0 | NS NS | 13.0 [12.0] | | Cobalt | NS
NS | 15.0 | NS | 12.0 [9.60] | | Copper
Cyanide | NS NS | 39.0 | NS | 28.0 [21.0] | | Lead | NS NS | ND(1.00) | NS NS | ND(1.00) [ND(1.00)] | | Mercury | NS NS | 12.0 J | NS | 24.0 J [23.0 J] | | Nickel | NS
NS | ND(0.280)
26.0 | NS
NE | ND(0.280) [ND(0.250)] | | Selenium | NS NS | | NS
NS | 24.0 [22.0] | | Silver | | ND(1.10) J | NS | ND(1.10) J [ND(0.950)] | | Sulfide | NS
NS | ND(1.10) | NS NS | ND(1.10) [ND(0.950)] | | Sunde
Thallium | NS
NS | ND(7.10) | NS
NS | 73.0 [71.0] | | Tin | | ND(2.10) J | NS
NS | ND(2.10) J [ND(1.90)] | | Vanadium | NS
Ne | ND(64.0) | NS NS | ND(64.0) [ND(57.0)] | | | NS
NS | ND(11.0) | NS NS | ND(11.0) [9.60] | | Zinc | NS | 63.0 J | NS NS | 98.0 J [82.0 J] | | Averaging Area:
Sample ID:
Sample Depth(Feet); | 4C
CRA-3
10-12 | 4C
CRA-5
0-2 | 4C
CRA-6
2-5 | 4C
CRA-6
4-5 | 4C
CRA-7
0-2 | |--|-----------------------|------------------------|---------------------------------------|--------------------|------------------------| | Parameter Date Collected: | 01/17/01 | 01/18/01 | 01/18/01 | 01/18/01 | 01/18/01 | | Volatile Organics | VIIIIVI | V // 10/ V I | 01/10/01 | 1 01/10/01 | 01/10/01 | | 1.1.1-Trichloroethane | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | 1.1-Dichloroethane | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | 1,2-Dichloroethane | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | 2-Butanone | ND(0.10) [ND(0.10)] | ND(0.10) | NS | ND(0.10) | ND(0.10) | | 2-Chloroethylvinylether | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | Acetone | ND(0.10) [ND(0.10)] | ND(0.10) | NS | ND(0.10) | ND(0.10) | | Benzene | 1.80 [1.80] | ND(0.00740) | NS |
ND(0.00730) | ND(0.00720) | | Carbon Disulfide | ND(0.036) [ND(0.032)] | ND(0.010) | NS | ND(0.010) | ND(0.010) | | Chlorobenzene | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | Ethylbenzene | 70.0 [62.0] | ND(0.00740) | NS | ND(0.00730) | ND(0.00720) | | Methylene Chloride | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | Styrene | 140 [160] | ND(0.00740) | NS | ND(0.00730) | ND(0.00720) | | [etrachloroethene | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | Toluene | 60.0 [56.0] | ND(0.00740) | NS | ND(0.00730) | ND(0.00720) | | Trichloroethene | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | Trichlorofluoromethane | ND(0.036) [ND(0.032)] | ND(0.0074) | NS | ND(0.0073) | ND(0.0072) | | (ylenes (total) | 240 [250] | ND(0.0074) | NS | ND(0.0073) | ND(0.014) | | Semivolatile Organics | | | · · · · · · · · · · · · · · · · · · · | | | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | 1,2,4-Trichlorobenzene | NS NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | 1,2-Dichlorobenzene | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | 1,2-Diphenylhydrazine | NS NS | ND(0.54) | ND(0.51) | NS | ND(0.48) | | I,3-Dichlorobenzene | NS NS | ND(0.540) | ND(0.510) | NS L | ND(0.480) | | ,3-Dinitrobenzene | NS
NS | ND(2.70) | ND(2.60) | NS NS | ND(2.40) | | I,4-Dichlorobenzene | NS
NS | ND(0.540)
ND(0.540) | ND(0.510) | NS
NS | ND(0.480)
ND(0.480) | | 2,4-Dimethylphenol
2-Chloronaphthalene | NS NS | ND(0.540)
ND(0.540) | ND(0.510)
ND(0.510) | NS NS | ND(0.480)
ND(0.480) | | 2-Chlorophenol | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | 2-Methylnaphthalene | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | 2-Methylphenol | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | 2-Nitroaniline | NS | ND(2.70) | ND(2.60) | NS T | ND(2.40) | | 3&4-Methylphenol | NS | ND(1.10) | ND(1.00) | NS | ND(0.970) | | I-Chloroaniline | NS | ND(1.1) J | ND(1.0) J | NS | ND(0.97) J | | 1-Chlorobenzilate | NS | ND(2.70) | ND(2.60) | NS | ND(2.40) | | 1-Phenylenediamine | NS | ND(2.70) | ND(2.60) | NS | ND(2.40) | | Acenaphthene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Acenaphthylene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Acetophenone | NS | ND(0.54) J | ND(0.51) J | NS | ND(0.48) J | | Aniline | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Anthracene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Benzo(a)anthracene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Benzo(a)pyrene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Benzo(b)fluoranthene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Benzo(g,h,i)perylene | NS | ND(0.540) | ND(0.510) | NS I | ND(0.480) | | Benzo(k)fluoranthene | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | Benzyl Alcohol | NS | ND(1.10) | ND(1.00) | NS NS | ND(0.970) | | ois(2-Ethylhexyl)phthalate | NS
NS | ND(0.540) | ND(0.510) | NS
NS | ND(0.480) | | Chrysene
Dibenzo(a,h)anthracene | NS
NS | ND(0.540) | ND(0.510) | NS
NC | ND(0.480) | | Dibenzo(a,n)anthracene
Dibenzofuran | NS
NS | ND(1.10)
ND(0.540) | ND(1.00)
ND(0.510) | NS
NS | ND(0.970)
ND(0.480) | | Diethylphthalate | NS NS | ND(0.540)
ND(0.540) | ND(0.510)
ND(0.510) | NS NS | ND(0.480)
ND(0.480) | | Dimethylphthalate | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | Di-n-Butylphthalate | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | Diphenylamine | NS NS | ND(0.54) | ND(0.510) | NS NS | ND(0.480) | | Huoranthene | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | Juorene | NS | ND(0.540) | ND(0.510) | NS T | ND(0.480) | | lexachlorobenzene | NS NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | ndeno(1,2,3-cd)pyrene | NS NS | ND(1.10) | ND(1.00) | NS NS | ND(0.970) | | Naphthalene | NS NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | Vitrobenzene | NS | ND(0.540) | ND(0,510) | NS | ND(0.480) | | N-Nitrosodiphenylamine | NS | ND(0.540) | ND(0.510) | NS NS | ND(0.480) | | -Toluidine | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4C
CRA-3 | 4C
CRA-5 | 4C
CRA-6 | 4C
CRA-6 | 4C
CRA-7 | |---|-------------------|------------------|-----------------|-----------------|-------------------| | Sample Depth(Feet): Parameter Date Collected: | 10-12
01/17/01 | 0-2
01/18/01 | 2-5
01/18/01 | 4-5
01/18/01 | 0-2
01/18/01 | | Semivolatile Organics (continued) | | | <u> </u> | | | | Pentachiorobenzene | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Pentachlorophenol | NS | ND(2.70) | ND(2.60) | NS | ND(2.40) | | Phenanthrene | NS | ND(0.540) | ND(0.510) | NS | ND(0,480) | | Phenol | NS | ND(0.540) | ND(0.510) | NS | ND(0.480) | | Pyrene | NS | 0.320 J | ND(0.510) | NS | ND(0.480) | | Pyridine | NS | ND(0.54) J | ND(0.51) J | NS | ND(0.48) J | | Furans | ***** | | <u> </u> | | | | 2,3,7,8-TCDF | NS | 0.000011 | ND(0.000026) | NS | ND(0.00000068) | | TCDFs (total) | NS | 0.000099 | ND(0.000026) | NS | 0.0000056 | | 1,2,3,7,8-PeCDF | NS | 0.0000026 | ND(0.000031) | NS | ND(0.00000023) | | 2,3,4,7,8-PeCDF | NS | 0.000035 | ND(0.000031) | NS | 0.00000052 J | | PeCDFs (total) | NS | 0.000048 | ND(0.000031) | NS | 0.0000050 | | 1,2,3,4,7,8-HxCDF | NS | 0.0000025 | ND(0.000021) | NS | 0.00000025 J | | 1,2,3,6,7,8-HxCDF | NS | 0.0000018 J | ND(0.000020) | NS | 0.00000024 J | | 1,2,3,7,8,9-HxCDF | NS | ND(0.00000031) | ND(0.000023) | NS | ND(0.000000070) | | 2,3,4,6,7,8-H×CDF | NS | 0.0000028 | ND(0.000021) | NS | 0.00000042 J | | HxCDFs (total) | NS | 0.000038 | ND(0.000021) | NS | 0.0000048 | | 1,2,3,4,6,7,8-HpCDF | NS | 0.0000079 | ND(0.000023) | NS | 0.00000095 J | | 1,2,3,4,7,8,9-HpCDF | NS | 0.00000089 J | ND(0.000028) | NS | 0.00000014 J | | HpCDFs (total) | NS | 0.000022 | ND(0.000025) | NS | 0.0000026 | | OCDF | NS | 0.000018 | ND(0.000048) | NS | ND(0.0000022) | | Dioxins | | | <u> </u> | | 7 | | 2.3.7.8-TCDD | NS | ND(0.00000023) X | ND(0.000026) | NS | ND(0.000000065) | | TCDDs (total) | NS | 0.0000011 | ND(0.000029) | NS | 0.00000018 | | 1.2.3.7.8-PeCDD | NS | ND(0.00000027) X | ND(0.000037) | NS | ND(0.000000098) X | | PeCDDs (total) | NS | 0.0000020 | ND(0.000037) | NS | 0.00000015 | | 1,2,3,4,7,8-HxCDD | NS | 0.00000023 J | ND(0.000027) | NS | ND(0.000000061) | | 1,2,3,6,7,8-HxCDD | NS | 0.0000008 J | ND(0.000026) | NS | ND(0.00000015) X | | 1,2,3,7,8,9-HxCDD | NS | 0.00000039 J | ND(0.000024) | NS | ND(0.00000012) X | | HxCDDs (total) | NS | 0.0000053 | ND(0.000026) | NS | 0.00000026 | | 1,2,3,4,6,7,8-HpCDD | NS | 0.000012 | ND(0.000035) | NS | 0.0000022 J | | HpCDDs (total) | NS | 0.000023 | ND(0.000035) | NS | 0.0000044 | | OCDD | NS | 0.000082 | ND(0.000060) | NS | 0.000016 | | Total TEQs (WHO TEFs) | NS | 0.0000043 | 0.000050 | NS | 0.00000053 | | norganics | | | | ···· | | | Antimony | NS | ND(15.0) | ND(15.0) | NS | ND(14.0) | | Arsenic | NS | ND(22.0) | ND(22.0) | NS | 16.0 | | Barium | NS | 47.0 | ND(44.0) | NS | 39.0 | | Beryllium | NS | ND(1.50) | ND(1.50) | NS | ND(1.40) | | Cadmium | NS | ND(2.20) | ND(2.20) | NS | ND(2.20) | | Chromium | NS | 12.0 | 9.60 | NS | 15.0 | | Cobalt | NS | ND(15.0) | 15.0 | NS | 26.0 | | Copper | NS | 41.0 | 41.0 | NS | 110 | | Cyanide | NS | ND(1.00) | ND(1.00) | NS | ND(1.00) | | _ead | NS | ND(30.0) | ND(29.0) | NS | 36.0 | | Mercury | NS | ND(0.300) | ND(0.290) | NS | ND(0.290) | | Nickel | N\$ | 25.0 | 24.0 | NS | 35.0 | | Selenium | NS | ND(1.50) | ND(1.50) | NS | ND(1.40) | | Silver | NS | ND(3.00) | ND(2.90) | NS | ND(2.90) | | Sulfide | NS | 12.0 | ND(7.30) | NS | ND(7.20) | | Thallium | NS | ND(3.00) | ND(2.90) | NS | ND(2.90) | | Tìn | NS | ND(11.0) | ND(11.0) | NS | ND(11.0) | | Vanadium | NS | ND(15.0) | ND(15.0) | NS | ND(14.0) | | Zinc | NS | 99.0 | 53.0 | NS | 170 | | | Averaging Area:
Sample ID: | 4C
CRA-7 | 4C
CRA-8 | 4C
CRA-8 | 4C
CRA-9 | 4C
CRA-9 | 4C
CRA-10 | |--|--|-----------------|-------------|------------------------|------------------------|-------------|------------------------| | San | nple Depth(Feet): | 0-2 | 2-4 | 2-5 | 5-14 | 12-14 | 2-5 | | Parameter | Date Collected: | 01/03/02 | 01/22/01 | 01/22/01 | 01/22/01 | 01/22/01 | 01/22/01 | | Volatile Organics | | | | | | | | | 1,1,1-Trichloroetha | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | 1,1-Dichloroethane | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | 1,2.Dichloroethane | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | 2-Butanone | | NS | ND(0.10) | NS | NS | ND(0.10) | NS | | 2-Chloroethylvinyle | ther | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Acetone | | NS | ND(0.10) | NS | NS | ND(0.10) | NS | | Benzene | | NS | ND(0.00610) | NS | NS | ND(0.00640) | NS | | Carbon Disulfide | | NS | ND(0.010) | NS | NS | ND(0.010) | NS | | Chlorobenzene | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Ethylbenzene | | NS | ND(0.00610) | NS | NS | ND(0.00640) | NS | | Methylene Chloride | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Styrene | | NS | ND(0.00610) | NS | NS | ND(0.00640) | NS | | Tetrachioroethene | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Toluene | | NS | ND(0.00610) | NS | NS | ND(0.00640) | NS | | Trichloroethene | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Trichlorofluorometh | ane | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Kylenes (total) | | NS | ND(0.0061) | NS | NS | ND(0.0064) | NS | | Semivolatile Orga | | ····· | | | | | | | 1,2,4,5-Tetrachloro | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 1,2,4-Trichlorobenz | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 1,2-Dichlorobenzen | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | ,2-Diphenylhydraz | | ND(0.42) |
NS | ND(0.40) | ND(0.42) | NS | ND(0.44) | | 1,3-Dichlorobenzen | e | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 1,3-Dinitrobenzene | | ND(0.850) | NS | ND(2.10) | ND(2.20) | NS | ND(2.30) | | ,4-Dichlorobenzen | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 2,4-Dimethylphenol | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 2-Chloronaphthaler | 16 | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 2-Chlorophenol | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 2-Methylnaphthaler | ie | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | 2-Methylphenol | | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | ?-Nitroaniline | | ND(2.20) | NS | ND(2.10) | ND(2.20) | NS | ND(2.30) | | 3&4-Methylphenol | | NS | NS | ND(0.810) | ND(0.850) | NS | ND(0.900) | | I-Chloroaniline | | NS | NS | ND(0.810) | ND(0.850) | NS NS | ND(0.900) | | 4-Chlorobenzilate | | ND(0.850) | NS
NS | ND(2.10) | ND(2.20) | NS | ND(2.30) | | I-Phenylenediamin | e į | NS
NS | NS
NG | ND(2.10) | ND(2.20) | NS NS | ND(2.30) | | Acenaphthene | | NS | NS NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | Acenaphthylene | | NS
NO(0.420) | NS
NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | Acetophenone
Aniline | | ND(0.420) | NS
NS | ND(0.400) | ND(0.420) | NS
NS | ND(0.440) | | Anthracene | | NS
NS | NS
NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | Benzo(a)anthracen | | NS I | | ND(0.400) | ND(0.420) | NS
NS | ND(0.440) | | senzo(a)anurraceni
Benzo(a)pyrene | - | NS
NS | NS
NS | ND(0.400)
ND(0.400) | ND(0.420)
ND(0.420) | NS
NS | ND(0.440) | | | ne | | | | ND(0.420)
ND(0.420) | | ND(0.440) | | 3enzo(b)fluoranthei
3enzo(g,h,i)perylen | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | NS
NS | NS
NS | ND(0.400)
ND(0.400) | ND(0.420)
ND(0.420) | NS NS | ND(0.440)
ND(0.440) | | Benzo(g,n,r)peryien
Benzo(k)fluoranthei | | NS
NS | NS
NS | ND(0.400)
ND(0.400) | ND(0.420)
ND(0.420) | NS
NS | ND(0.440)
ND(0.440) | | Benzyl Alcohol | | NS
NS | NS
NS | ND(0.400)
ND(0.810) | ND(0.420)
ND(0.850) | NS NS | ND(0.440)
ND(0.900) | | ois(2-Ethylhexyl)phi | thalate | NS | NS NS | ND(0.400) | ND(0.420) | NS NS | ND(0.900)
ND(0.440) | | Chrysene | | NS | NS NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440)
ND(0.440) | | Dibenzo(a,h)anthra | cene | NS | NS NS | ND(0.810) | ND(0.850) | NS NS | ND(0.900) | | Dibenzofuran | | NS NS | NS NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | Diethylphthalate | | NS | NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | Dimethylphthalate | | NS . | NS | ND(0.400) | ND(0,420) | NS NS | ND(0.440) | | i-n-Butylphthalate | | NS | NS
NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | Diphenylamine | | NS | NS | ND(0.40) | ND(0.42) | NS NS | ND(0.440) | | luoranthene | | NS | NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | luorene | | NS | NS NS | ND(0.400) | ND(0.420) | NS T | ND(0.440) | | lexachiorobenzene | | ND(0.420) | NS NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | ndeno(1,2,3-cd)pyr | | NS NS | NS NS | ND(0.810) | ND(0.850) | NS NS | ND(0.900) | | Naphthalene | <u> </u> | NS NS | NS NS | ND(0.400) | ND(0.420) | NS NS | ND(0.900)
ND(0.440) | | Vitrobenzene | · · | NS | NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | V-Nitrosodiphenylar | mine | NS NS | NS | ND(0.400) | ND(0.420) | NS NS | ND(0.440) | | | | ND(0.420) | NS NS | ND(0.400) | ND(0.420) | NS NS | ND(0,440) | | Averaging Area: | 4C | 4C | 4C | 4C | 4C | 4C | |---|-----------------|-----------------|-----------------|-------------------------------|-------------------|--| | Sample ID: | CRA-7 | CRA-8 | CRA-8 | CRA-9 | CRA-9 | CRA-10 | | Sample Depth(Feet): Parameter Date Collected: | 0-2
01/03/02 | 2-4
01/22/01 | 2-5
01/22/01 | 5-14
01/2 2/ 01 | 12-14
01/22/01 | 2-5
01/22/01 | | Semivolatile Organics (continued) | | | | · | | · · · · · · · · · · · · · · · · · · · | | Pentachlorobenzene | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | Pentachiorophenol | ND(2.20) | NS | ND(2.10) | ND(2.20) | NS | ND(2.30) | | Phenanthrene | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | Phenol | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0,440) | | Pyrene | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | Pyridine | NS | NS | ND(0.400) | ND(0.420) | NS | ND(0.440) | | Furans | | | | 1 | | | | 2.3.7.8-TCDF | NS | NS | ND(0.0000093) | ND(0.000011) | NS | ND(0.000011) | | TCDFs (total) | NS | NS | ND(0.0000093) | ND(0.000011) | NS | ND(0.000011) | | 1,2,3,7,8-PeCDF | NS | NS | ND(0.0000099) | ND(0.000013) | NS NS | ND(0.000015) | | 2.3,4,7,8-PeCDF | NS | NS | ND(0.0000098) | ND(0.000013) | NS | ND(0.000015) | | PeCDFs (total) | NS NS | NS
NS | ND(0.0000099) | ND(0.000013) | NS 143 | ND(0.000015) | | 1,2,3,4,7,8-HxCDF | NS | NS | ND(0.0000039) | ND(0.000091) | NS NS | ND(0.000013) | | 1,2,3,6,7,8-HxCDF | NS | NS NS | ND(0.0000085) | ND(0.0000091) | NS NS | | | 1,2,3,7,8,9-HxCDF | NS NS | NS NS | ND(0.0000075) | ND(0.0000084)
ND(0.000010) | NS NS | ND(0.0000078)
ND(0.0000092) | | 2,3,4,6,7,8-HxCDF | NS NS | NS | | ND(0.000010) | | ·4···································· | | | | | ND(0,0000081) | . ,, | NS NS | ND(0.0000085) | | HxCDFs (total) | NS | NS NS | ND(0.0000081) | ND(0.0000091) | NS | ND(0.0000084) | | 1,2,3,4,6,7,8-HpCDF | NS | NS NS | ND(0.0000086) | ND(0.0000094) | NS | ND(0.0000097) | | 1,2,3,4,7,8,9-HpCDF | NS | NS | ND(0.000010) | ND(0.000011) | NS | ND(0.000012) | | HpCDFs (total) | NS | NS | ND(0.0000094) | ND(0.000010) | NS | ND(0.000011) | | OCDF | NS | NS | ND(0.000024) | ND(0.000028) | NS | ND(0.000027) | | Dioxins | | | | | | | | 2,3,7,8-TCDD | NS | NS | ND(0.000012) | ND(0.000018) | NS | ND(0.000014) | | TCDDs (total) | NS | NS | ND(0.000012) | ND(0.000018) | NS | ND(0.000014) | | 1,2,3,7,8-PeCDD | NS | NS | ND(0.000014) | ND(0.000016) | NS | ND(0.000015) | | PeCDDs (total) | NS | NS | ND(0.000014) | ND(0.000016) | NS | ND(0.000015) | | 1,2,3,4,7,8-HxCDD | NS | NS | ND(0.000010) | ND(0.000011) | NS | ND(0.000014) | | 1,2,3,6,7,8-HxCDD | NS | NS | ND(0.0000099) | ND(0.000011) | NS | ND(0.000013) | | 1,2,3,7,8,9-HxCDD | NS | NS | ND(0.0000091) | ND(0.000010) | NS | ND(0.000012) | | HxCDDs (total) | NS | NS | ND(0.0000097) | ND(0.000011) | NS | ND(0.000013) | | 1,2,3,4,6,7,8-HpCDD | NS | NS | ND(0.000015) | ND(0.000018) | NS | ND(0.000019) | | HpCDDs (total) | NS | NS | ND(0.000015) | ND(0.000018) | NS | ND(0.000019) | | OCDD | NS | NS | ND(0.000037) | ND(0.000036) | NS | ND(0.000035) | | Total TEQs (WHO TEFs) | NS | NS | 0.000019 | 0.000025 | NS | 0.000023 | | Inorganics | | | | | | | | Antimony | NS | NS | ND(11.0) | ND(11.0) | NS | ND(12.0) J | | Arsenic | NS | NS | ND(18.0) | ND(19.0) | NS | ND(20.0) | | Barium | NS | NS | ND(36.0) | ND(38.0) | NS | ND(40.0) | | Beryllium | NS | NS | 0.180 | 0.320 | NS | 0.270 | | Cadmium | NS | NS | ND(1.80) | ND(1.90) | NS NS | ND(2.00) | | Chromium | NS | NS NS | 9.60 | 10.0 | NS
NS | 7.80 | | Cobalt | NS | NS | 13.0 | 11.0 | NS NS | 14.0 | | Copper | NS | NS NS | 42.0 | 23.0 | NS NS | 28.0 | | Cyanide | NS I | NS NS | ND(1.00) | ND(1.00) | NS NS | ND(1.00) | | Lead | NS | NS | 15.0 | 10.0 | NS NS | 18.0 J | | Mercury | NS | NS | ND(0.240) | ND(0.250) | NS NS | ND(0.270) | | Nickel | NS NS | NS
NS | 23.0 | 20.0 | NS
NS | 18.0 | | Selenium | NS NS | NS | ND(0.910) | ND(0.950) | | | | Silver | NS I | NS
NS | ~ ^ | | NS | ND(1.00) J | | ************************************** | | | ND(0.910) | ND(0.950) | NS | ND(1.00) | | Sulfide | NS NS | NS | 9.50 | 8,10
ND(4,00) | NS | 8.40 | | Thallium | NS NS | NS | ND(1.80) | ND(1.90) | NS | ND(2.00) | | Tin | NS | NS | ND(54.0) | ND(57.0) | NS | ND(60.0) | | Vanadium | NS | NS | ND(9.10) | ND(9.50) | NS | ND(10.0) | | Zinc | NS | NS | 61.0 | 58.0 | NS | 53.0 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area
Sample ID | 1 | 4C
CRA-11 | 4C
CRA-12 | 4C
CRA-13 | 4C
CRA-13 | 4C
CRA-14 | |---|---------------------------|---------------------------|---------------------------|------------------------|---------------------------|---------------------------| | Sample Depth(Feet) | | 0-2 | 0-2 | 5-14 | 10-12 | 0-2 | | Parameter Date Collected | : 01/22/01 | 01/23/01 | 01/23/01 | 01/23/01 | 01/23/01 | 01/19/01 | | Volatile Organics 1,1,1-Trichloroethane | ND(0.0067) | ND(0.0070) | ND(0.0069) | NS | L NOVO ACCON | ND(0.0064) | | 1,1-Dichloroethane | ND(0.0067) | ND(0.0070) | ND(0.0069) | NS
NS | ND(0.0082)
ND(0.0082) | ND(0.0064) | | 1,2-Dichloroethane | ND(0.0057) | ND(0.0070) | ND(0.0069) | NS NS | ND(0.0082) | ND(0.0064) | | 2-Butanone | ND(0.10) | ND(0.10) | ND(0.10) | NS | ND(0.10) | ND(0.10) | | 2-Chioroethylvinylether | ND(0.0067) | ND(0.0070) | ND(0.0069) | NS | ND(0.0082) | ND(0.0064) | | Acetone | ND(0.10) | NO(0.10) | ND(0.10) | NS | ND(0.10) | ND(0.10) | | Benzene | ND(0.00670) | ND(0.00700) | ND(0.00690) | NS | ND(0.00820) | ND(0.00640) | | Carbon Disulfide | ND(0.010) | ND(0.010) | ND(0.010) | NS | ND(0.010) | ND(0.010) | | Chlorobenzene | ND(0.0067) | ND(0.0070) | ND(0.0069) | NS | ND(0.0082) | ND(0.0064) | | Ethylbenzene | ND(0.00670) | ND(0.00700) | ND(0.00690) | NS | ND(0.00820) | ND(0.00640) | | Methylene Chloride | ND(0.0067) | ND(0.0070) | ND(0.0069) | NS | ND(0.0082) | ND(0.0064) | | Styrene
Tetrachloroethene | ND(0.00670)
ND(0.0067) | ND(0.00700)
ND(0.0070) | ND(0.00690)
ND(0.0069) | NS
NS | ND(0.00820) | ND(0.00640) | | Toluene | ND(0.00670) | ND(0.00700) | ND(0.0069) | NS | ND(0.0082)
ND(0.00820) | ND(0.0064)
ND(0.00640) | | Trichloroethene | ND(0.00670) | ND(0.00700) | ND(0.00690) | NS NS | ND(0.0082) | ND(0.0064) | | Trichlorofluoromethane |
ND(0.0067) | ND(0,0070) | ND(0.0069) | NS NS | ND(0.0082) | ND(0.0064) | | Xylenes (total) | ND(0.0067) | ND(0.0070) | ND(0.014) | NS | ND(0.0082) | ND(0.013) | | Semivolatile Organics | | , . | | | | | | 1,2,4,5-Tetrachlorobenzene | NS I | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | 1,2,4-Trichlorobenzene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | 1,2-Dichlorobenzene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | 1,2-Diphenylhydrazine | NS | ND(0.47) | ND(0.46) | ND(0.54) | NS | ND(2.1) | | 1,3-Dichlorobenzene | NS | ND(0.470) | ND(0.460) | ND(0.540) | N\$ | ND(2.10) | | 1,3-Dinitrobenzene | NS | ND(2.4) J | ND(2.3) J | ND(2.80) | NS | ND(10.0) | | 1,4-Dichlorobenzene | NS NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | 2,4-Dimethylphenol | NS NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | 2-Chloronaphthalene
2-Chlorophenol | NS
NS | ND(0.470)
ND(0.470) | ND(0.460)
ND(0.460) | ND(0.540) | NS
NS | ND(2.10) | | 2-Methylnaphthalene | NS NS | ND(0.470)
ND(0.470) | ND(0.460) | ND(0.540)
ND(0.540) | NS
NS | ND(2.10)
ND(2.10) | | 2-Methylphenol | NS NS | ND(0.470) | ND(0.460) | ND(0.540) | NS NS | ND(2.10) | | 2-Nitroaniline | NS | ND(2.40) | ND(2.30) | ND(2.8) J | NS NS | ND(10.0) | | 3&4-Methylphenol | NS | ND(0.940) | ND(0.920) | ND(1.10) | NS I | ND(4.10) | | 4-Chloroaniline | NS | ND(0.940) | ND(0.920) | ND(1,10) | NS | ND(4.10) | | 4-Chlorobenzilate | NS | ND(2.40) | ND(2.30) | ND(2.80) | NS | ND(10.0) | | 4-Phenylenediamine | NS | ND(2.40) | ND(2.30) | ND(2.80) | NS | ND(10.0) | | Acenaphthene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Acenaphthylene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Acetophenone | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Aniline | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS NS | ND(2 10) | | Anthracene
Benzo(a)anthracene | NS
NS | 0.100 J
0.560 | ND(0.460) | ND(0.540) | NS
NS | ND(2.10) | | Benzo(a)pyrene | NS NS | 0.490 | ND(0.460)
ND(0.460) | ND(0.540)
ND(0.540) | NS NS | ND(2.10)
ND(2.10) | | Benzo(b)fluoranthene | NS | 0.600 | ND(0.460) | ND(0.530) | NS NS | ND(2.10)
ND(2.10) | | Benzo(g,h,i)perylene | NS NS | 0.180 J | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Benzo(k)fluoranthene | NS | 0.890 | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Benzyl Alcohol | NS | ND(0.940) | ND(0.920) | ND(1.10) | NS | ND(4.10) | | bis(2-Ethylhexyl)phthalate | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Chrysene | NS | 1,10 | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Dibenzo(a,h)anthracene | NS NS | ND(0.940) | ND(0.920) | ND(1.10) | NS | ND(4.10) | | Dibenzofuran | NS
US | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Diethylphthalate | NS NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Dimethylphthalate | NS
NS | ND(0.470) | ND(0.460) | ND(0.540) | NS NS | ND(2.10) | | Di-n-Butylphthalate
Diphenylamine | NS
NS | ND(0.470)
ND(0.47) | ND(0.460)
ND(0.46) | ND(0.540)
ND(0.54) | NS
NS | ND(2.10) | | Fluoranthene | NS NS | 2.30 | ND(0.460) | ND(0.54)
ND(0.540) | NS NS | ND(2.1)
ND(2.10) | | Fluorene | NS | ND(0.470) | ND(0.460) | ND(0.540)
ND(0.540) | NS NS | ND(2.10)
ND(2.10) | | Hexachlorobenzene | NS I | ND(0.470) | ND(0.460) | ND(0.540) | NS NS | ND(2.10)
ND(2.10) | | Indeno(1,2,3-cd)pyrene | NS | 0.200 J | ND(0.920) | ND(1.10) | NS NS | ND(4.10) | | Naphthalene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Nitrobenzene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | N-Nitrosodiphenylamine | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | o-Toluidine | NS | ND(0 470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4C | 4C | 4C | 4C | 4C | 4C | |---------------------------------------|----------|------------------------|------------------------|------------------------|----------|------------------| | Sample ID: | CRA-10 | CRA-11 | CRA-12 | CRA-13 | CRA-13 | CRA-14 | | Sample Depth(Feet): | 4-5 | 0-2 | 0-2 | 5-14 | 10-12 | 0-2 | | Parameter Date Collected: | 01/22/01 | 01/23/01 | 01/23/01 | 01/23/01 | 01/23/01 | 01/19/01 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Pentachlorophenol | NS | ND(2.40) | ND(2.30) | ND(2.80) | NS | ND(10.0) | | Phenanthrene | NS | 0.670 | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Phenol | NS | ND(0.470) | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Pyrene | NS | 1.90 | ND(0.460) | ND(0.540) | NS | ND(2.10) | | Pyridine | NS | ND(0.47) J | ND(0.45) J | ND(0.540) | NS | ND(2.10) | | Furans | | | | | | | | 2,3,7,8-TCDF | NS | 0.000012 | 0.0000020 | ND(0.000012) | NS | 0.0000055 | | TCDFs (total) | NS | 0.0000991 | 0.000014 | ND(0.000012) | NS | 0.000046 | | 1,2,3,7,8-PeCDF | NS | 0.0000033 | 0.00000064 J | ND(0.000017) | NS | 0.0000017 J | | 2,3,4,7,8-PeCDF | NS | 0.000010 | 0.0000022 J | ND(0.000017) | NS | 0.0000028 | | PeCDFs (total) | NS | 0.00012 J | 0.000028 | ND(0.000017) | NS | 0.000032 | | 1,2,3,4,7,8-HxCDF | NS | 0.0000042 | 0.0000011 J | ND(0.0000093) | NS | 0.0000019 J | | 1,2,3,6,7,8-HxCDF | NS | 0.0000037 | 0.00000098 J | ND(0.0000086) | NS | 0.0000013 J | | 1,2,3,7,8,9-HxCDF | NS | ND(0.0000018) | ND(0.00000027) | ND(0.000010) | NS | 0.00000036 J | | 2,3,4,6,7,8-HxCDF | NS | 0.000010 | 0.0000023 | ND(0.0000094) | NS | 0.0000022 J | | HxCDFs (total) | NS | 0.00013 | 0.000031 | ND(0.0000093) | NS | 0.000029 | | 1,2,3,4,6,7,8-HpCDF | NS | 0.000015 | 0.0000038 | ND(0.000012) | NS | 0.0000041 | | 1,2,3,4,7,8,9-HpCDF | NS | 0.0000015 J | 0.00000039 J | ND(0.000014) | NS | 0.00000061 J | | HpCDFs (total) | NS NS | 0.000037 | 0.0000081 | ND(0.000013) | NS | 0.0000092 | | OCDF | NS | 0.000013 | 0.0000037 J | ND(0.000029) | NS | 0.0000036 J | | Dioxins | | | | | | · | | 2,3,7,8-TCDD | NS | ND(0.00000021) X | ND(0.00000013) X | ND(0.000021) | NS | ND(0.00000016) X | | TCDDs (total) | NS | 0.0000012 | ND(0.00000029) | ND(0.000021) | NS | 0.00000042 | | 1,2,3,7,8-PeCDD | NS | ND(0.0000020) X | ND(0.0000036) X | ND(0.000018) | NS | ND(0.0000011) X | | PeCDDs (total) | NS | 0.0000026 | ND(0.00000054) | ND(0.000018) | NS | 0.000000471 | | 1,2,3,4,7,8-HxCDD | NS
NS | 0.00000036 J | ND(0.000000087) | ND(0.000013) | NS | ND(0.00000017) | | 1,2,3,6,7,8-HxCDD | NS | 0.00000077 J | 0.00000034 J | ND(0.000013) | NS | ND(0.00000026) X | | 1,2,3,7,8,9-HxCDD | NS
NS | 0.00000053 J | 0.00000016 J | ND(0.000012) | NS | ND(0.00000016) | | HxCDDs (total) | NS
NS | 0.0000078 | 0.00000051 | ND(0.000012) | NS | 0.0000011 | | 1,2,3,4,6,7,8-HpCDD
HpCDDs (total) | NS
NS | 0.000011 | 0.0000021 J | ND(0.000021) | NS | 0.0000023 | | OCDD | NS
NS | 0.000023 | 0.0000042 | ND(0.000021) | NS | 0.0000023 | | Total TEQs (WHO TEFs) | NS
NS | 0.000069 | ND(0.000016) | ND(0.000036) | NS | 0.000013 | | Inorganics | NO. | 0.000000 | 0.0000038 | 0.000029 | NS | 0.0000033 | | Antimony | NS | NEV42 OV 1 | 1/0/42.00 | NB/ZEAS CONT | | 1 120/44 0 | | Arsenic | NS
NS | ND(13.0) J
ND(21.0) | ND(12.0) J
ND(15.0) | ND(15.0) J
ND(24.0) | NS
NS | ND(11.0) | | Barium | NS NS | ND(42.0) | 31.0 | ND(49.0) | NS
NS | ND(15.0) | | Beryllium | NS NS | 0.340 | 0.350 | 0.590 | NS NS | 46.0
0,230 | | Cadmium | NS | ND(2.10) | ND(2.10) | ND(2.40) | NS NS | ND(1.90) | | Chromium | NS NS | 10.0 | 12.0 | 11.0 | NS NS | 29.0 | | Cobalt | NS | 14.0 | 14.0 | 13.0 | NS NS | 11.0 | | Copper | NS | 47.0 | 58.0 | 34.0 | NS NS | 46.0 | | Cyanide | NS | ND(1.00) | ND(1.00) | ND(1.00) | NS | 4.80 | | Lead | NS | 64.0 | 21.0 | 16.0 | NS | 26.0 | | Mercury | NS | ND(0.280) | ND(0.280) | ND(0.330) | NS | ND(0.260) | | Nickel | NS | 25.0 | 25.0 | 21.0 | NS NS | 25.0 | | Selenium | NS | ND(1.00) | ND(1.00) | ND(1.20) | NS NS | ND(0.960) | | Silver | NS | ND(1.00) | ND(1.00) | ND(1,20) | NS | ND(0.960) | | Sulfide | NS | 9.00 | 13.0 | ND(8.20) | NS | 16.0 | | Thallium | NS | ND(2.10) J | ND(2.10) J | ND(2.40) J | NS | ND(1.90) | | Tin | NS | ND(64.0) | ND(62.0) | ND(74.0) | NS | ND(57.0) | | Vanadium | NS | ND(10.0) | 11.0 | ND(12.0) | NS | 23.0 | | Zinc | NS | 52.0 | 57.0 | 61.0 | NS | 67.0 | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | | Averaging Area:
Sample ID: | 4C
CRA-14 | 4C
CRA-15 | 4C
CRA-15 | 4C
CRA-16 | 4C
CRA-17 | 4C
CRA-17 | |--------------------|--|-----------------|------------------------|--------------|------------------------|------------------------|--------------| | | mple Depth(Feet): | 0-2 | 5-14 | 6-8 | 0-2 | 5-14 | 12-14 | | Parameter | Date Collected: | 01/03/02 | 01/19/01 | 01/19/01 | 01/19/01 | 01/19/01 | 01/19/01 | | Volatile Organics | | | | | | | | | 1,1,1-Trichloroeth | ······································ | NS | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | 1,1-Dichloroethan | | NS] | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | 1,2-Dichloroethan | е | NS | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | 2-Butanone | | NS | NS | ND(0.10) | ND(0.10) | NS | ND(0.10) | | 2-Chloroethylvinyl | ether | NS | NS | ND(0,0074) | ND(0.0057) | NS | ND(0.0064) | | Acetone | | NS | NS | ND(0.10) | ND(0,10) | NS | ND(0.10) | | Benzene | | NS | NS | ND(0.00740) | ND(0.00670) | NS | ND(0.00640 | | Carbon Disulfide | | NS | NS | ND(0.010) | ND(0.010) | NS | ND(0.010) | | Chlorobenzene | | NS | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | Ethylbenzene | | NS | NS | ND(0.00740) | ND(0.00670) | NS | ND(0.00640 | | Methylene Chlorid | е | NS | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | Styrene | | NS | NS | ND(0.00740) | ND(0.00670) | NS | ND(0.00640 | | Tetrachloroethene | | NS | NS
 ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | Toluene | | NS | NS | ND(0.00740) | ND(0.00670) | NS | ND(0.00640 | | Trichloroethene | | NS | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | Trichlorofluoromet | hane | NS | NS | ND(0.0074) | ND(0.0067) | NS | ND(0.0064) | | Xylenes (total) | | NS | NS | ND(0.0074) | ND(0.013) | NS | ND(0.0064) | | Semivolatile Org | | | | ., | | | | | 1,2,4,5-Tetrachlor | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 1,2,4-Trichlorober | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 1,2-Dichlorobenze | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 1,2-Diphenylhydra | ····· | ND(0.37) | ND(0.50) | NS | ND(0.44) | ND(0.50) | NS | | 1,3-Dichlorobenze | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 1,3-Dinitrobenzen | ······································ | ND(0.750) | ND(2.50) | NS | ND(2.30) | ND(2.50) | NS | | 1,4-Dichlorobenze | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 2,4-Dimethylphen | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 2-Chloronaphthale | ene | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 2-Chlorophenol | | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 2-Methylnaphthaic | ene | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | 2-Methylphenol | | NS | ND(0.500) | NS NS | ND(0.440) | ND(0.500) | NS | | 2-Nitroaniline | | ND(1.90) | ND(2.50) | NS | ND(2.30) | ND(2.50) | NS | | 3&4-Methylphenol | | NS | ND(1.00) | NS | ND(0.900) | ND(1.00) | NS | | 4-Chloroaniline | | NS | ND(1.00) | NS | ND(0.90) J | ND(1.0) J | NS | | 4-Chlorobenzilate | | ND(0.750) | ND(2.50) | NS | ND(2.30) | ND(2.50) | NS | | 4-Phenylenediami | ne | NS | ND(2.50) | NS | ND(2.30) | ND(2.50) | NS | | Acenaphthene | | NS | ND(0.500) | NS NS | ND(0.440) | ND(0.500) | NS | | Acenaphthylene | | NS | ND(0.500) | NS NS | ND(0.440) | ND(0.500) | NS | | Acetophenone | | 0.160 J | ND(0.500) | NS | ND(0.44) J | ND(0.50) J | NS | | Aniline | | NS NS | ND(0.500) | NS NS | ND(0.440) | ND(0.500) | NS | | Anthracene | | NS | ND(0.500) | NS NS | ND(0.440) | ND(0.500) | NS | | Benzo(a)anthrace | ne | NS | ND(0.500) | NS NS | 0.330 J | ND(0.500) | NS
NS | | Benzo(a)pyrene | | NS I | ND(0.500) | NS I | 0.350 J | ND(0.500) | NS
NS | | Benzo(b)fluoranth | · · · · · · · · · · · · · · · · · · · | NS | ND(0.500) | NS NS | 0.230 J | ND(0.500) | NS | | Benzo(g,h,i)peryle | | NS NS | ND(0.500) | NS NS | ND(0.440) | ND(0.500)
ND(0.500) | NS
NS | | Benzo(k)fluoranth | ene | NS NS | ND(0.500) | NS NS | 0.450
ND(0.900) | | NS | | Benzyl Alcohol | hthalata | NS
NS | ND(1.00) | NS
NS | ND(0.440) | ND(1,00) | NS
NS | | bis(2-Ethylhexyl)p | nmarate | NS
NS | ND(0.500)
ND(0.500) | NS
NS | ND(0.440)
0.430 J | ND(0.500)
ND(0.500) | NS
NS | | Chrysene | | | | | | | ··· | | Dibenzo(a,h)anthr | arene | NS
NS | ND(1.00)
ND(0.500) | NS
NS | ND(0.900) | ND(1.00)
ND(0.500) | NS
NS | | Dibenzofuran | | $\overline{}$ | ND(0.500)
ND(0.500) | NS NS | ND(0.440) | ND(0.500)
ND(0.500) | NS
NS | | Diethylphthalate | | NS
NS | ND(0.500)
ND(0.500) | NS NS | ND(0.440) | | NS
NS | | Dimethylphthalate | | | ND(0.500) | | ND(0.440)
ND(0.440) | ND(0.500)
ND(0.500) | NS
NS | | Di-n-Butylphthalat | g | NS
NS | ND(0.50) | NS
NS | ND(0.440)
ND(0.44) | ND(0.500) | NS NS | | Diphenylamine | | NS NS | ND(0.50)
ND(0.500) | | 0.660 | + | | | Fluoranthene | | | | NS
NS | | ND(0.500) | NS | | Fluorene | | NS
ND(0.370) | ND(0.500) | NS
NS | ND(0.440) | ND(0.500)
ND(0.500) | NS
NS | | Hexachlorobenzer | | | ND(0.500) | | ND(0.440) | | | | Indeno(1,2,3-cd)p | yrene | NS | ND(1.00) | NS
NS | ND(0.900) | ND(1.00) | NS
NS | | Naphthalene | | NS NS | ND(0.500) | NS
NS | ND(0.440) | ND(0.500) | NS
NS | | Nitrobenzene | | NS
NS | ND(0.500)
ND(0.500) | NS
NS | ND(0.440)
ND(0.440) | ND(0.500)
ND(0.500) | NS
NS | | N-Nitrosodiphenyl | | | | t 0.5% | NO BH 44(1) | | | #### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID Sample Depth(Feet) | | 4C
CRA-15
5-14 | 4C
CRA-15
6-8 | 4C
CRA-16
0-2 | 4C
CRA-17
5-14 | 4C
CRA-17
12-14 | |-----------------------------------|----------|----------------------|---------------------|----------------------|-----------------------|-----------------------| | Parameter Date Collected | | 01/19/01 | 01/19/01 | 01/19/01 | 01/19/01 | 01/19/01 | | Semivolatile Organics (continued) | | | | | | | | Pentachiorobenzene | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | Pentachiorophenol | ND(1.90) | ND(2.50) | NS | ND(2.30) | ND(2.50) | NS | | Phenanthrene | NS | ND(0.500) | NS | 0.490 | ND(0.500) | NS | | Phenol | NS | ND(0.500) | NS | ND(0.440) | ND(0.500) | NS | | Pyrene | NS | ND(0.500) | NS | 1.10 | ND(0.500) | NS | | Pyridine | NS | ND(0.500) | NS | ND(0.44) J | ND(0.50) J | NS | | Furans | | | | | | | | 2,3,7,8-TCDF | NS | ND(0.000016) | NS | 0.000014 | ND(0.000018) | NS | | TCDFs (total) | NS | ND(0,000016) | NS | 0.00013 | ND(0.000018) | NS | | 1,2,3,7,8-PeCDF | NS | ND(0.000020) | NS | 0.0000041 | ND(0.000066) | NS | | 2,3,4,7,8-PeCDF | NS | ND(0.000020) | NS | 0.0000054 | ND(0.000065) | NS | | PeCDFs (total) | NS | ND(0.000020) | NS | 0.0000681 | ND(0.000065) | NS | | 1,2,3,4,7,8-HxCDF | NS | ND(0.00019) | NS | 0.0000038 | ND(0.000066) | NS | | 1,2,3,6,7,8-HxCDF | NS | ND(0.00018) | NS | 0.0000027 | ND(0.000062) | NS | | 1,2,3,7,8,9-HxCDF | NS | ND(0.00021) | NS | 0.00000061 J | ND(0.000073) | NS | | 2,3,4,6,7,8-HxCDF | NS | ND(0.00020) | NS | 0.0000042 | ND(0.000067) | NS | | HxCDFs (total) | NS | ND(0.00020) | NS | 0.000053 | ND(0.000067) | NS | | 1,2,3,4,6,7,8-HpCDF | NS | ND(0.000020) | NS | 0.0000077 | ND(0.000018) | NS | | 1,2,3,4,7,8,9-HpCDF | NS | ND(0.000024) | NS | 0.00000087 J | ND(0.000022) | NS | | HpCDFs (total) | NS | ND(0.000021) | NS | 0.0000151 | ND(0.000020) | NS | | OCDF | NS | ND(0.000039) | NS | 0.0000053 | ND(0.000029) | NS | | Dioxins | | | | | | | | 2,3,7,8-TCDD | NS | ND(0.000017) | NS | ND(0.00000025) X | ND(0.000030) | NS | | TCDDs (total) | NS | ND(0.000017) | . NS | 0.0000024 | ND(0.000030) | NS | | 1,2,3,7,8-PeCDD | NS | ND(0.000029) | NS | ND(0.0000014) X | ND(0.000056) | NS | | PeCDDs (total) | NS | ND(0.000029) | NS | 0.000000271 | ND(0.000056) | NS | | 1,2,3,4,7,8-HxCDD | NS | ND(0.000079) | NS | 0.00000025 J | ND(0.000045) | NS | | 1,2,3,6,7,8-HxCDD | NS | ND(0.000078) | NS | 0.00000054 J | ND(0.000045) | NS | | 1,2,3,7,8,9-HxCDD | NS | ND(0.000071) | NS | 0.00000035 J | ND(0.000041) | NS | | HxCDDs (total) | NS | ND(0.000076) | NS | 0.0000024 | ND(0.000044) | NS | | 1,2,3,4,6,7,8-HpCDD | NS | ND(0.000031) | NS | 0.0000051 | ND(0.000024) | NS | | HpCDDs (total) | NS | ND(0.000031) | NS | 0.000011 | ND(0.000024) | NS | | OCDD | NS | ND(0.000036) | NS | 0.000029 | ND(0.000038) | NS | | Total TEQs (WHO TEFs) | NS | 0.000080 | NS | 0.0000065 | 0.000082 | NS | | Inorganics | | | | | | | | Antimony | NS | ND(13.0) | NS | ND(12.0) | ND(12.0) | NS | | Arsenic | NS | ND(22.0) | NS | ND(15.0) | ND(19.0) | NS | | Barium | NS | ND(45.0) | NS | 36.0 | ND(39.0) | NS | | Beryllium | NS | 0.280 | NS | 0.270 | 0.220 | NS | | Cadmiurn | NS | ND(2.20) | NS | ND(2.00) | ND(1.90) | NS | | Chromium | NS | 8.40 | NS | 9.40 | 8.20 | NS | | Cobalt | NS
NS | ND(11.0) | NS
NS | 11.0 | 10.0 | NS
NS | | Copper | NS | ND(22.0) | NS | 31.0 | 28.0 | NS
NS | | Cyanide | NS
NS | ND(1.00) | NS
NS | ND(1.00) | ND(1.00) | NS NS | | Lead | NS
NS | 5.00
ND(0.300) | NS
NS | 42.0
ND(0.270) | 12.0
ND(0.260) | NS
NS | | Mercury | NS
NS | 16.0 | NS
NS | 19.0 | 17.0 | NS
NS | | Nickel
Salasium | NS
NS | ND(1,10) | NS
NS | ND(1.00) | ND(0.970) | NS
NS | | Selenium | NS
NS | | NS | ND(1.00) | ND(0.970) | NS
NS | | Silver | NS
NS | ND(1.10)
ND(7.40) | NS
NS | ND(1.00)
ND(6.70) | ND(0.970)
ND(6.40) | NS | | Sulfide | | | | | ND(5.40)
ND(1.90) | | | Thallium | NS
NS | ND(2.20)
ND(67.0) | NS
NS | ND(2.00)
ND(60.0) | ND(1.90)
ND(58.0) | NS
NS | | Tin | NS NS | ND(11.0) | NS
NS | 11.0 | ND(9.70) | NS
NS | | Vanadium | I KIL | | | | | | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4C
CRA-18 | 4C
CRA-18 | 4C
CRA-19 | |-----------------------------------|--|--------------|--------------| | Sample Depth(Feet): | 0-2 | 0-2 | 2-4 | | Parameter Date Collected: | 01/23/01 | 01/03/02 | 01/23/01 | | Volatile Organics | | 07.00.02 | 3 0 1720 0 1 | | 1,1,1-Trichloroethane | ND(0.0067) [ND(0.0076)] | NS | ND(0,0064) | | 1,1-Dichloroethane | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | 1,2-Dichloroethane | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | 2-Butanone | ND(0.10) [ND(0.10)] | NS | ND(0.10) | | 2-Chloroethylvinylether | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | Acetone | ND(0.10) [ND(0.10)] | NS | ND(0.10) | | Benzene | ND(9.00670) [ND(0.00760)] | NS | ND(0,00640) | | Carbon Disulfide | ND(0.010) [ND(0.010)] | NS | ND(0.010) | | Chlorobenzene | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | Ethylbenzene | ND(0.00670) [ND(0.00760)] | NS | ND(0.00640) | | Methylene Chloride | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | Styrene | ND(0.00670) [ND(0.00760)] | NS | ND(0.00640) | | Tetrachloroethene | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | Toluene | ND(0.00670) [ND(0.00760)] | NS | ND(0.00640) | | Trichloroethene | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | Trichlorofluoromethane | ND(0.0067) [ND(0.0076)] | NS | ND(0.0064) | | Xylenes (total) | ND(0.013) [ND(0.0076)] | NS | ND(0.013) | | Semivolatile Organics | | | | | 1,2,4,5-Tetrachlorobenzene |
ND(0.440) [ND(0.500)] | NS | NS | | 1,2,4-Trichlorobenzene | ND(0.440) [ND(0.500)] | NS | NS | | 1,2-Dichlorobenzene | ND(0.440) [ND(0.500)] | NS | NS | | 1,2-Diphenylhydrazine | ND(0.44) [ND(0.50)] | NS | NS | | 1,3-Dichlorobenzene | ND(0.440) [ND(0.500)] | NS | NS | | 1,3-Dinitrobenzene | ND(2.3) J [ND(2.60)] | NS | NS | | 1,4-Dichlorobenzene | ND(0.440) [ND(0.500)] | NS | NS | | 2,4-Dimethylphenol | ND(0.440) [ND(0.500)] | NS | NS | | 2-Chloronaphthalene | ND(0.440) [ND(0.500)] | NS | NS | | 2-Chiorophenoi | ND(0.440) [ND(0.500)] | NS | NS | | 2-Methylnaphthalene | ND(0.440) [ND(0.500)] | NS | NS | | 2-Methylphenol | ND(0.440) [ND(0.500)] | NS | · NS | | 2-Nitroaniline | ND(2.30) [ND(2.6) J] | NS | NS | | 3&4-Methylphenol | ND(0.890) [ND(1.00)] | NS | NS | | 4-Chloroaniline | ND(0.890) [ND(1.00)] | NS | NS | | 4-Chlorobenzilate | ND(2.30) [ND(2.60)] | NS | NS | | 4-Phenylenediamine | ND(2.30) [ND(2.60)] | NS | NS | | Acenaphthene | 0.130 J [ND(0.500)] | NS | NS | | Acenaphthylene | ND(0.440) [ND(0.500)] | NS | NS NS | | Acetophenone | ND(0.440) [ND(0.500)] | NS | NS | | Aniline | ND(0.440) [ND(0.500)] | NS | NS | | Anthracene | 0.340 J [ND(0.500)] | NS | NS | | Benzo(a)anthracene | 1.00 [ND(0.500)] | NS | NS | | Benzo(a)pyrene | 1.00 [ND(0.500)] | NS NS | NS NS | | Benzo(b)fluoranthene | 0.840 [ND(0.500)] | NS NS | NS NS | | Benzo(g,h,i)perylene | 0.560 [ND(0.500)] | NS | NS | | Benzo(k)fluoranthene | 1.10 [ND(0.500)] | NS | NS NS | | Benzyl Alcohol | ND(0.890) [ND(1.00)] | NS NS | NS NS | | bis(2-Ethylhexyl)phthalate | ND(0.440) [ND(0.500)] | NS NS | NS NS | | Chrysene | 1.10 [ND(0.500)] | NS | NS | | Dibenzo(a,h)anthracene | ND(0.890) [ND(1.00)] | NS | NS NS | | Dibenzofuran | 0.140 J [ND(0.500)] | NS | NS | | Diethylphthalate | ND(0.440) [ND(0.500)] | NS
NS | NS
NS | | Dimethylphthalate | ND(0.440) [ND(0.500)] | NS
NC | NS NS | | Di-n-Butylphthalate Diphenylamine | ND(0.440) [ND(0.500)] | NS
NS | NS NS | | | ND(0.44) [ND(0.50)] | NS
NS | NS NS | | Fluoranthene | 2.10 [ND(0.500)] | NS
NS | NS NS | | Fluorene | 0.160 J [ND(0.500)] | NS
NS | NS NS | | Hexachiorobenzene | ND(0.440) [ND(0.500)] | | NS NS | | Indeno(1,2,3-cd)pyrene | 0.560 J [ND(1.00)] | NS
NS | NS NS | | Naphthalene | 0.170 J [ND(0.500)] | NS
NS | NS NS | | Nitrobenzene | ND(0.440) [ND(0.500)]
ND(0.440) [ND(0.500)] | NS
NS | NS
NS | | N-Nitrosodiphenylamine | | | | | Averaging Area: | 4C | 4C | 4C | | |-----------------------------------|--|----------|-------------|--| | Sample ID: | | CRA-18 | CRA-19 | | | Sample Depth(Feet): | | 0-2 | 2-4 | | | Parameter Date Collected: | 01/23/01 | 01/03/02 | 01/23/01 | | | Semivolatile Organics (continued) | | | | | | Pentachlorobenzene | ND(0.440) [ND(0.500)] | NS | NS | | | Pentachlorophenol | ND(2.30) [ND(2.60)] | NS | NS | | | Phenanthrene | 1.60 [ND(0.500)] | NS | NS | | | Phenol | ND(0.440) [ND(0.500)] | NS | NS | | | Pyrene | 2.20 [ND(0.500)] | NS | NS | | | Pyridine | ND(0.44) J [ND(0.500)] | NS | NS | | | Furans | | <u> </u> | | | | 2,3,7,8-TCDF | [800000.0] 800000.0 | NS | NS | | | TCDFs (total) | 0.000080 [0.000091] | NS | NS NS | | | 1,2,3,7,8-PeCDF | 0.0000039 (0.0000034) | NS | NS | | | 2,3,4,7,8-PeCDF | 0.000012 [0.000012] | NS | NS | | | PeCDFs (total) | 0.00011 [0.00012] | NS | NS NS | | | 1,2,3,4,7,8-HxCDF | 0.0000048 [0.0000038] | NS | NS NS | | | 1,2,3,6,7,8-HxCDF | 0.0000038 [0.0000034] | NS NS | NS NS | | | 1,2,3,7,8,9-HxCDF | 0.0000011 J [0.0000010 J] | NS NS | NS NS | | | 2,3,4,6,7,8-HxCDF | 0.000068 [0.000070] | NS NS | NS NS | | | HxCDFs (total) | 0.000084 [0.000091] | NS NS | NS NS | | | 1,2,3,4,6,7,8-HpCDF | 0.000004 [0.000082] | NS NS | NS NS | | | 1,2,3,4,7,8,9-HpCDF | 0.0000013 J [0.0000011 J] | NS | NS NS | | | HpCDFs (total) | 0.000021 [0.000020] | NS
NS | NS NS | | | OCDF | 0.000021 [0.000020] | NS NS | | | | Dioxins | 0.000003 [0.0000003] | l No | NS | | | 2.3,7,8-TCDD | NEW CORRESPONDENCE OF THE PROPERTY PROP | T | | | | 7CDDs (total) | ND(0.00000021) X [ND(0.00000018) X] | NS | NS | | | | 0.0000014 [0.0000016] | NS | NS | | | 1,2,3,7,8-PeCDD | ND(0.0000024) X [ND(0.0000013) X] | NS | NS | | | PeCDDs (total) | 0.0000022 [0.0000027] | NS NS | NS | | | 1,2,3,4,7,8-HxCDD | 0.00000022 J [0.00000021 J] | NS NS | NS | | | 1,2,3,6,7,8-HxCDD | 0.00000065 J [0.00000055 J] | NS | NS | | | 1,2,3,7,8,9-HxCDD | 0.00000040 J [0.00000033 J] | NS | NS | | | HxCDDs (total) | 0.0000063 [0.0000060] | NS | NS | | | 1,2,3,4,6,7,8-HpCDD | 0.0000079 [0.0000057] | NS | NS | | | HpCDDs (total) | 0.000017 [0.000012] | NS | NS | | | OCDD | 0.000057 [0.000039] | NS | NS | | | Total TEQs (WHO TEFs) | 0.000010 [0.0000097] | NS. | NS | | | Inorganics | | | | | | Antimony | ND(12.0) J [ND(14.0) J] | NS | NS NS | | | Arsenic | ND(15.0) [ND(23.0)] | NS | NS | | | Barium | 39.0 [ND(46.0)] | NS | NS | | | Beryllium | 0.300 [0.330] | NS | NS | | | Cadmium | ND(2.00) [ND(2.30)] | NS | NS | | | Chromium : | 12.0 [14.0] | NS | NS NS | | | Cobalt | 14.0 [17.0] | NS | NS | | | Copper | 56.0 [50.0] | NS | NS | | | Cyanide | ND(1.00) [ND(1.00)] | NS | NS | | | Lead | 38.0 [34.0] | NS | NS | | | Mercury | ND(0.270) [ND(0.300)] | NS NS | NS | | | Nickel | 26.0 [30.0] | NS | NS | | | Selenium | ND(1.00) [ND(1.10)] | NS | NS | | | Silver | ND(1.00) [ND(1.10)] | NS | NS | | | Sulfide | 21.0 [29.0] | NS | NS | | | Thallium | ND(2.00) J [ND(2.30) J] | NS | NS | | | Tin | ND(60.0) [ND(68.0)] | NS | NS | | | Vanadium | 12.0 [14.0] | NS | NS | | | Zinc | 69.0 [84.0] | NS | NS | | | | Averaging Area: | 4C | 4C | 4C | 4C · | 4C | 4C | |--|---------------------|------------------------|-------------------------|------------------------|---------------------------------------|------------------------|--------------------------| | | Sample ID: | CRA-19 | CRA-20 | CRA-20 | CRA-21 | CRA-22 | CRA-22 | | | Sample Depth(Feet): | 2-5 | 2-4 | 2-5 | 0-2 | 5-14 | 12-14 |
 Parameter | Date Collected: | 01/23/01 | 01/31/01 | 01/31/01 | 01/31/01 | 01/31/01 | 01/31/01 | | Volatile Organi | | | <u> </u> | | | | | | 1,1,1-Trichloroe | | NS | ND(0.0063) | NS | ND(0.0071) | NS | ND(0.0068) | | 1,1-Dichloroetha | | NS | ND(0.0063) | NS NS | ND(0.0071) | NS | ND(0.0068) | | 1,2-Dichloroetha | ane | NS NS | ND(0.0063) | NS | NO(0.0071) | NS | ND(0.0068) | | 2-Butanone | to the second | NS
NS | ND(0,10) | NS | ND(0.10) | l NS | ND(0.10) | | 2-Chloroethylvir
Acetone | tyletrier | NS
NS | ND(0.0063) | NS
NS | ND(0.0071) | NS NS | ND(0.0068) | | Benzene | | NS
NS | ND(0.10)
ND(0.00630) | NS
NS | ND(0.10) | NS
NS | ND(0.10) | | Carbon Disulfide | <u> </u> | NS NS | ND(0.00630) | NS NS | ND(0.00710)
ND(0.010) | NS NS | ND(0.00680)
ND(0.010) | | Chlorobenzene | - | NS NS | ND(0.010) | NS NS | ND(0.0071) | NS NS | ND(0.010)
ND(0.0068) | | Ethylbenzene | | NS NS | ND(0.00630) | NS NS | ND(0.00710) | NS NS | ND(0.00680) | | Methylene Chlor | ride | NS NS | ND(0.0063) | NS NS | ND(0.00710) | NS NS | ND(0.0068) | | Styrene | 100 | NS | ND(0.00630) | NS NS | ND(0.00710) | NS NS | ND(0.00680) | | Tetrachloroethe | ne | NS | ND(0.0063) | NS | ND(0.0071) | NS | ND(0.0068) | | Toluene | | NS | ND(0.00630) | NS | ND(0.00710) | NS NS | ND(0.00680) | | Trichloroethene | | NS | ND(0.0063) | NS | ND(0.0071) | NS | ND(0.0068) | | Trichlorofluorom | nethane | NS | ND(0.0063) J | NS | ND(0.0071) J | NS | ND(0.0068) J | | Xylenes (total) | | NS | ND(0.0063) | NS | ND(0.0071) | NS | ND(0.0068) | | Semivolatile Or | rganics | · | | | · · · · · · · · · · · · · · · · · · · | <u></u> | 1 | | 1,2,4,5-Tetrachi | orobenzene | ND(0.430) | NS I | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 1,2,4-Trichlorobe | | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 1,2-Dichloroben: | | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 1,2-Diphenylhyd | razine | ND(0.43) | NS | ND(0.42) | ND(0.47) | ND(0.44) | NS | | 1,3-Dichloroben: | zene | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 1,3-Dinitrobenz€ | ene | ND(2.2) J | NS | ND(2.20) | ND(2.40) | ND(2.30) | N\$ | | 1,4-Dichloroben: | | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 2,4-Dimethylphe | | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 2-Chloronaphtha | alene | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 2-Chlorophenol | | ND(0.430) | NS NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 2-Methylnaphtha | alene | ND(0.430) | NS | 0.130 J | ND(0.470) | ND(0.440) | NS | | 2-Methylphenol | | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | 2-Nitroaniline | | ND(2.20) | NS NS | ND(2.20) | ND(2.40) | ND(2.30) | NS | | 3&4-Methylphen | 101 | ND(0.860) | NS | ND(0.850) | ND(0.960) | ND(0.900) | NS | | 4-Chloroaniline
4-Chlorobenzilat | | ND(0.860) | NS
NS | ND(0.850) | ND(0.960) | ND(0.900) | NS NS | | 4-Phenylenediar | | ND(2.20)
ND(2.20) | NS
NS | ND(2.20) | ND(2.40) | ND(2.30) | NS | | Acenaphthene | tille | ND(0.430) | NS NS | ND(2.20)
ND(0.420) | ND(2.40)
ND(0.470) | ND(2.30)
ND(0.440) | NS
NS | | Acenaphthylene | | ND(0.430) | NS NS | 0.110 J | ND(0.470)
ND(0.470) | ND(0.440) | NS
NS | | Acetophenone | | ND(0.430) | NS I | ND(0.420) | ND(0.470) | ND(0.440) | NS NS | | Aniline | | ND(0.430) | NS I | ND(0.420) | ND(0.470) | ND(0.440) | NS NS | | Anthracene | | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Benzo(a)anthrac | cene | ND(0.430) | NS | 0.360 J | ND(0.470) | ND(0.440) | NS | | Benzo(a)pyrene | | ND(0.430) | NS | 0.370 J | ND(0.470) | ND(0.440) | NS | | Benzo(b)fluoran | thene | ND(0.430) | NS | 0.290 J | ND(0.470) | ND(0.440) | NS | | Benzo(g,h,i)pery | /lene | ND(0.430) | NS | 0.370 J | ND(0.470) | ND(0.440) | NS | | Benzo(k)fluorani | thene | ND(0.430) | NS | 0.400 J | ND(0.470) | ND(0.440) | NS | | Benzyl Alcohol | | ND(0.860) | NS | ND(0.850) | ND(0.960) | ND(0.900) | NS | | bis(2-Ethylhexyl) |)phthalate | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Chrysene | | ND(0.430) | NS | 0.460 | ND(0.470) | ND(0.440) | NS | | Dibenzo(a,h)antl | hracene | ND(0.860) | NS | ND(0.850) | ND(0.950) | ND(0.900) | NS | | Dibenzofuran | | ND(0.430) | NS | 0.0890 J | ND(0.470) | ND(0.440) | NS | | Diethylphthalate | ··· | ND(0.430) | NS NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Dimethylphthala | | ND(0.430) | NS I | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Di-n-Butylphthal | ate | ND(0.430) | NS
NS | ND(0.420) | ND(0,470) | ND(0.440) | NS | | Diphenylamine | | ND(0.43) | NS
NS | ND(0.42) | ND(0.47) | ND(0.44) | NS_ | | Fluoranthene | | ND(0.430) | NS NS | 0.570 | ND(0.470) | ND(0.440) | NS | | Fluorene | ~~~ | ND(0.430) | NS
NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Hexachiorobenz
indeno(1,2,3-cd) | | ND(0.430) | NS
NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | | ibiteria | ND(0.860)
ND(0.430) | NS
NS | 0.330 J | ND(0.960) | ND(0.900) | NS
NS | | Naphthalene
Nitrobenzene | | ND(0.430)
ND(0.430) | NS
NS | 0.170 J
ND(0.420) | ND(0.470)
ND(0.470) | ND(0.440) | NS
NE | | N-Nitrosodiphen | vlamine | ND(0.430)
ND(0.430) | NS NS | ND(0.420) | ND(0.470)
ND(0.470) | ND(0.440)
ND(0.440) | NS
NC | | CH-INSCRIPTION OF THE PROPERTY | yiditibiic | ND(0.430) | NS
NS | ND(0.420)
ND(0.420) | ND(0.470)
ND(0.470) | ND(0.440)
ND(0.440) | NS
NS | | Averaging Area: | 4C | 4C | 4C | 4C | 4C | 4C | |-----------------------------------|--|----------|--------------------------|----------------------|--------------|------------| | Sample ID: | CRA-19 | CRA-20 | CRA-20 | CRA-21 | CRA-22 | CRA-22 | | Sample Depth(Feet): | 2-5 | 2-4 | 2-5 | 0-2 | 5-14 | 12-14 | | Parameter Date Collected: | 01/23/01 | 01/31/01 | 01/31/01 | 01/31/01 | 01/31/01 | - 01/31/01 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | ND(0.430) | NS | ND(9.420) | ND(0.470) | ND(0.440) | NS | | Pentachlorophenol | ND(2.20) | NS | ND(2.20) | ND(2.40) | ND(2.30) | NS | | Phenanthrene | ND(0.430) | NS | 0.320 J | ND(0.470) | ND(0.440) | NS | | Phenol | ND(0.430) | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Pyrene | ND(0.430) | NS | 0.560 | ND(0.470) | ND(0.440) | NS | | Pyridine | ND(0.43) J | NS | ND(0.420) | ND(0.470) | ND(0.440) | NS | | Furans | | | | | | | | 2.3,7,8-TCDF | ND(0.0000094) | NS | ND(0.000014) | 0.00000051 J | ND(0.000013) | NS | | TCDFs (total) | ND(0.0000094) | N5 | ND(0.000014) | 0.0000036 | ND(0.000013) | NS | | 1,2,3,7,8-PeCDF | ND(0.000015) | NS | ND(0.0000095) | ND(0.00000023) X | ND(0.000010) | NS | | 2,3,4,7,8-PeCDF | ND(0.000015) | NS | ND(0.0000093) | 0.00000053 J | ND(0.000010) | NS | | PeCDFs (total) | ND(0.000015) | NS | ND(0.0000094) | 0.0000052 | ND(0.000010) | NS | | 1,2,3,4,7,8-HxCDF | ND(0.0000082) | NS | ND(0.00016) | 0.00000043 J | ND(0.00012) | NS | | 1,2,3,6,7,8-HxCDF | ND(0.0000076) | NS | ND(0.00014) | 0.00000038 J | ND(0.00011) | NS | | 1,2,3,7,8,9-H×CDF | ND(0.0000090) | NS | ND(0.00017) | ND(0.00000010) | ND(0.00013) | NS | | 2,3,4,6,7,8-HxCDF | ND(0.0000083) | NS | ND(0.00016) | 0.00000060 ป | ND(0.00012) | NS | | HxCDFs (total) | ND(0.0000083) | NS | ND(0.00017) | 0.0000079 | ND(0.00023) | NS | | 1,2,3,4,6,7,8-HpCDF | ND(0.000013) | NS | ND(0.000042) | 0.0000057 | ND(0.000045) | NS | | 1,2,3,4,7,8,9-HpCDF | ND(0.000016) | NS | ND(0.000050) | 0.00000044 J | ND(0.000055) | NS | | HpCDFs (total) | ND(0.000014) | NS | ND(0.000046) | 0.000015 | ND(0.000050) | NS | | OCDF | ND(0.000021) | NS | ND(0.000031) | 0.000018 | ND(0.000029) | NS | | Dioxins | | | | | | | | 2,3,7,8-TCDD | ND(0.000015) | NS | ND(0.000017) | ND(0.000000095) | ND(0.000017) | NS | | TCDDs (total) | ND(0.000015) | NS | ND(0.000017) | ND(0.00000042) | ND(0.000017) | NS | | 1,2,3,7,8-PeCDD | ND(0.000014) | NS | ND(0.000017) | ND(0,00000019) X | ND(0.000017) | NS | | PeCDDs (total) | ND(0.000014) | NS | ND(0.000017) | ND(0.00000062) | ND(0.000017) | NS | | 1,2,3,4,7,8-HxCDD | ND(0.000013) | NS | ND(0.000033) | 0.00000026 J | ND(0.00033) | NS | | 1,2,3,6,7,8-HxCDD | ND(0.000012) | NS | ND(0.000033) | 0.00000077 J | ND(0.00032) | NS | | 1,2,3,7,8,9-HxCDD | ND(0.000011) | NS | ND(0.000030) | 0.00000053 J | ND(0.00030) | NS | | HxCDDs (total) | ND(0.000012) | NS | ND(0.000032) | 0.0000048 | ND(0.00032) | NS | | 1,2,3,4,6,7,8-HpCDD | ND(0.000017) | NS | ND(0.000049) | 0.000018 | ND(0.00021) | NS | | HpCDDs (total) | ND(0.000017) | NS | ND(0.000049) | 0.000034 | ND(0.00021) | NS | | OCDD | ND(0.000039) | NS | 0.00014 J | 0.00013 | ND(0.000049) | NS | | Total TEQs (WHO TEFs) | 0.000023 | NS | 0.000057 | 0.0000010 | 0.000093 | NS | | Inorganics | | | , , | | , | | | Antimony | ND(12.0) J | NS | ND(11.0) | ND(13,0) | ND(12.0) | NS | | Arsenic | ND(15.0) | NS | ND(19.0) | ND(21.0) | ND(20.0) | NS | | Barium | ND(30.0) | NS | ND(38.0) | ND(43.0) | ND(40.0) | NS | | Beryllium | ND(0.190) | NS NS | 0.310 | 0.310 | 0.240 | NS | | Cadmium | ND(1.90) | NS NS | ND(1.90) | ND(2.10) | ND(2.00) | NS | | Chromium | 8.90 | NS | 12.0 | 11.0 | 9.80 | NS NS | | Cobalt | 11.0 | NS
NS | 14.0 | ND(11.0) | 12.0 | NS NS | | Copper | 30.0 | NS NS | 58.0 | ND(21.0) | ND(20.0) | NS NS | | Cyanide | ND(1.00) | NS NS | ND(1.00) | ND(1.00) | ND(1.00) | NS NS | | Lead | 14.0 | NS NS | 65.0 | 18.0 | 8.90 | NS NS | | Mercury | ND(0.260)
18.0 | NS
NC | 0.340
25.0 | ND(0.280) | ND(0.270) | NS
NS | | Nickel
Solonium | | NS
NC | | 16.0
ND(1.10) (| 23.0 | NS
NS | | Selenium | ND(0.960) | NS
NG | ND(0.950) J
ND(0.950) | ND(1.10) J | ND(1.00) J | NS
NS | | Silver | ND(0.960) | NS
NS | | ND(1.10) | ND(1.00) | NS | | Sulfide
Thallium | 14.0
ND(1.90) J | NS
NS | 30.0
2.50 | ND(7.10) | ND(6.80) | NS
NS | | Tin | ND(1.90) J
ND(58.0) | NS
NS | 2.50
ND(57.0) | ND(2.10)
ND(64.0) | ND(2.00) | NS
NC | | Vanadium | ND(9.60) | NS NS | 14.0 |
11.0 | ND(61.0) | NS
NS | | <u> </u> | ······································ | | | | ND(10.0) | | | Zinc | 45.0 | NS | 130 | 58.0 | 56.0 | NS | | Averaging Area:
Sample ID: | 4C
X-17 | 4D
RAA4-25 | 4D
RAA4-25 | 4D
RAA4-26 | |---------------------------------------|------------|------------------------|--|------------------------| | Sample Depth(Feet): | 0-2 | 0-1 | 1-3 | 1-3 | | Parameter Date Collected: | 01/31/01 | 01/02/02 | 01/02/02 | 01/02/02 | | Volatile Organics | | | | | | 1,1,1-Trichloroethane | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | 1,1-Dichloroethane | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | 1,2-Dichloroethane | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | 2-Butanone | NS | ND(0.011) | ND(0.010) [ND(0.011)] | ND(0.011) | | 2-Chloroethylvinylether | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Acetone | NS | ND(0.022) | ND(0.021) [ND(0.021)] | ND(0.021) | | Benzene | NS | ND(0.00540) | ND(0.00530) [ND(0.00530)] | ND(0.00530) | | Carbon Disulfide | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Chlorobenzene | NS | ND(0 0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Ethylbenzene | NS | ND(0.00540) | ND(0.00530) [ND(0.00530)] | ND(0.00530) | | Methylene Chloride | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Styrene | NS | ND(0.00540) | ND(0.00530) [ND(0.00530)] | ND(0.00530) | | Tetrachloroethene | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Toluene | NS | ND(0.00540) | ND(0.00530) [ND(0.00530)] | ND(0.00530) | | Trichloroethene | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Trichlorofluoromethane | NS
NS | ND(0.0054) J | ND(0.0053) J [ND(0.0053) J] | ND(0.0053) J | | Xylenes (total) | NS | ND(0.0054) | ND(0.0053) [ND(0.0053)] | ND(0.0053) | | Semivolatile Organics | | | | | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | 1,2,4-Trichlorobenzene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | 1,2-Dichlorobenzene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | 1,2-Diphenylhydrazine | NS | ND(0.36) | ND(0.35) [ND(0.35)] | ND(0.35) | | 1,3-Dichlorobenzene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | 1,3-Dinitrobenzene | NS | ND(0.730) | ND(0.700) [ND(0.710)] | ND(0.710)
ND(0.350) | | 1,4-Dichlorobenzene | NS
No | ND(0.360) | ND(0.350) [ND(0.350)] | | | 2,4-Dimethylphenol | NS
NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350)
ND(0.350) | | 2-Chloronaphthalene | NS
NS | ND(0.360)
ND(0.360) | ND(0.350) [ND(0.350)]
ND(0.350) [ND(0.350)] | ND(0.350)
ND(0.350) | | 2-Chlorophenol
2-Methylnaphthalene | NS
NS | ND(0.360)
ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | 2-Methylphenol | NS
NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | 2-Nitroaniline | NS | ND(1.8) J | ND(1.8) J [ND(1.8) J] | ND(1.8) J | | 3&4-Methylphenol | NS
NS | ND(0.730) | ND(0.700) [ND(0.710)] | ND(0.710) | | 4-Chloroaniline | NS | ND(0.750) | ND(0.350) [ND(0.350)] | ND(0.350) | | 4-Chlorobenzilate | NS NS | ND(0.730) | ND(0.700) [ND(0.710)] | ND(0.710) | | 4-Phenylenediamine | NS | ND(0.730) | ND(0.700) [ND(0.710)] | ND(0.710) | | Acenaphthene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Acenaphthylene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Acetophenone | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Aniline | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Anthracene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Benzo(a)anthracene | NS | 0.0840 J | ND(0.350) [ND(0.350)] | ND(0.350) | | Benzo(a)pyrene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Benzo(b)fluoranthene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Benzo(g,h,i)perylene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Benzo(k)fluoranthene | NS | 0.110 J | ND(0.359) [ND(0.350)] | ND(0.350) | | Benzyl Alcohol | NS | ND(0.730) | ND(0.700) [ND(0.710)] | ND(0.710) | | bis(2-Ethylhexyl)phthalate | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Chrysene | NS | 0.110 J | ND(0.350) [ND(0.350)] | ND(0.350) | | Dibenzo(a,h)anthracene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Dibenzofuran | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Diethylphthafate | , NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Dimethylphthalate | NS
NS | ND(0.360) | ND(0.350) [ND(0.350)]
ND(0.350) [ND(0.350)] | ND(0.350) | | Di-n-Butylphthalate | NS
NS | ND(0.360) | ND(0.350) [ND(0.350)]
ND(0.35) [ND(0.35)] | ND(0.350) | | Diphenylamine Elygraphone | NS NS | ND(0.36)
0.150 J | ND(0.35) [ND(0.35)]
ND(0.350) [ND(0.350)] | ND(0.35)
ND(0.350) | | Fluoranthene | NS
NS | ND(0.360) | ND(0.350) [ND(0.350)]
ND(0.350) [ND(0.350)] | ND(0.350) | | Fluorene | NS NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Hexachlorobenzene | NS NS | ND(0.360)
ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Indeno(1,2,3-cd)pyrene Naphthalene | NS NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | Nitrobenzene | NS NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | N-Nitrosodiphenylamine | NS NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | o-Toluidine | NS NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4C
X-17 | 4D
RAA4-25 | 4D
RAA4-25 | 4D
RAA4-26 | | |--|-------------------------------|------------------------------|--|-----------------------------|--| | Sample Depth(Feet): | 0-2 | 0-1 | 1-3 | 1-3 | | | Parameter Date Collected: | 01/31/01 | 01/02/02 | 01/02/02 | 01/02/02 | | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | | Pentachlorophenol | NS | ND(1.80) | ND(1.80) [ND(1.80)] | ND(1.80) | | | Phenanthrene | NS | 0.0960 J | ND(0.350) [ND(0.350)] | ND(0.350) | | | Phenol | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0 350) | | | Pyrene | NS | 0.150 J | ND(0.350) [ND(0.350)] | ND(0.350) | | | Pyridine | NS | ND(0.360) | ND(0.350) [ND(0.350)] | ND(0.350) | | | Furans | | | | | | | 2,3,7,8-TCDF | 0.000053 | 0.000013 | 0.0000014 [0.0000022] | 0.0000026 | | | TCDFs (total) | 0.00045 QI | 0.000089 | 0.000011 [0.000018] | 0.000015 | | | 1,2,3,7,8-PeCDF | 0.000014 | 0.0000067 | 0.00000052 J [0.00000080 J] | 0.0000014 J | | | 2,3,4,7,8-PeCDF | 0.000021 | 0.000019 | 0.0000019 J [0.0000028] | 0.0000028 | | | PeCDFs (total) | 0.00025 Q | 0.00020 | 0.000016 [0.000024] | 0.000028 | | | 1,2,3,4,7,8-HxCDF | 0.000011 | 0.0000071 | 0.00000095 J [0.0000011 J] | 0.0000015 J | | | 1,2,3,6,7,8-HxCDF | 0.0000072 | 0.0000060 | 0.00000074 J [0.00000080 J] | 0.0000012 J | | | 1,2,3,7,8,9-HxCDF | 0.0000018 J | 0.0000020 J | ND(0.00000038) [0.00000039 J] | ND(0.00000022) Q | | | 2,3,4,6,7,8-HxCDF
HxCDFs (total) | 0.000012 | 0.000012 | 0.0000014 J [0.0000017 J] | 0.0000021 J | | | | 0.00020 | 0.00014 | 0.000015 [0.000021] | 0.000024 Q | | | 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF | 0.00011 | 0.000014 | 0.0000017 J [0.0000022] | 0.0000039 | | | HpCDFs (total) | 0.0000028
0.00020 | 0.0000017 J
0.000033 | 0.00000022 J [0.00000032 J] | 0.00000045 J | | | OCDF | 0.00020 | 0.000033 | 0.0000019 [0.0000050]
0.0000012 J [0.0000013 J] | 0.0000043
0.0000017 J | | | Dioxins | 0.0000039 | 0.0000000 | 0.0000012.0 [0.0000013.0] | 0.00000173 | | | 2,3,7,8-TCDD | NOW COMMONS AT V | NEVO 00000040) V | NEW CONTROL OF THE CO | 1 NOVO 0000000111111 | | | TCDDs (total) | ND(0.00000061) X
0.0000093 | ND(0.00000010) X | ND(0.000000046) X [ND(0.000000044) X] | ND(0.000000044) X | | | 1,2,3,7,8-PeCDD | ND(0.0000013) X | 0.0000015
ND(0.0000024) X | 0.0000017
[0.0000062]
ND(0.00000022) X [ND(0.00000022) X] | 0.0000011 | | | PeCDDs (total) | 0.0000088 Q | 0.0000016 | 0.0000018 [0.0000063] | ND(0.00000022) X | | | 1,2,3,4,7,8-HxCDD | 0.0000088 Q | ND(0.0000026) X | ND(0.00000022) [ND(0.0000033)] | 0.0000012
ND(0.00000022) | | | 1,2,3,6,7,8-HxCDD | 0.0000002.3 | 0.00000086 J | ND(0.00000022) [ND(0.00000050 J] | 0.00000034 J | | | 1,2,3,7,8,9-HxCDD | 0.0000020 | ND(0.00000024) X | ND(0.00000022) X [0.00000032 J] | ND(0.00000022) Q | | | HxCDDs (total) | 0.000022 | 0.0000069 | 0.0000032 [0.0000062] | 0.0000022) Q | | | 1,2,3,4,6,7,8-HpCDD | 0.000038 | 0.000011 | 0.0000035 [0.0000052] | 0.0000028 G | | | HpCDDs (total) | 0.000070 | 0.000024 | 0.0000051 [0.0000030] | 0.00000223 | | | OCDD | 0.00025 | 0.000072 | ND(0.000014) [ND(0.0000081)] | ND(0.000016) | | | Total TEQs (WHO TEFs) | 0.000023 | 0.000014 | 0.0000017 [0.0000023] | 0.0000025 | | | Inorganics | | | | | | | Antimony | NS | ND(6.00) | ND(6.00) [ND(6.00)] | ND(6.00) | | | Arsenic | NS | 4.20 | 5.20 [4.10] | 4.00 | | | Barium | NS | 23.0 | 21.0 [ND(20.0)] | 22.0 | | | Beryllium | NS | 0.130 B | 0.150 B [0.150 B] | ND(0.500) | | | Cadmium | NS | 0.130 B | ND(0.500) [ND(0.500)] | ND(0.500) | | | Chromium | NS | 6.80 | 5.60 [4.70] | 5.20 | | | Cobalt | . NS | 7.10 | 8.60 [6.20] | 5.50 | | | Copper | N\$ | 22.0 | 19.0 [18.0] | 12.0 | | | Cyanide | NS | 0.130 | ND(0.210) [ND(0.110)] | ND(0.210) | | | Lead | NS | 21.0 | 25.0 [22.0] | 6.80 | | | Mercury | NS | 0.0120 B | 0.0220 B [0.0320 B] | 0.00530 B | | | Nickel | NS | 13.0 | 14.0 [10.0] | 9.40 | | | Selenium | NS | ND(1.00) | ND(1.00) [ND(1.00)] | ND(1.00) | | | Silver | NS | ND(1.00) | ND(1.00) [ND(1.00)] | ND(1.00) | | | Sulfide | NS | ND(8.70) | ND(5.30) [ND(25.0)] | ND(14.0) | | | Thallium | NS | ND(1.60) | ND(1.60) [ND(1.60)] | ND(1,60) | | | Tin | NS | ND(10.0) | 4.50 B [ND(10.0)] | 3.50 B | | | Vanadium | NS | 8.00 | ND(5.00) [ND(5.00)] | ND(5.00) | | | Zinc | NS | 38.0 | 32.0 [26.0] | 27.0 | | # PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Are
Sample i | D: RAA4-E38 | 4D
RAA4-E40 | 4D
RAA4-E42 | 4D
RAA4-F37 | 4D
RAA4-F39 | |---|----------------------|----------------------|--------------------------|--------------------------|--------------------------| | Sample Depth(Fee | , i | 0-1 | 0-1 | 0-1 | 0-1 | | Parameter Date Collecte Volatile Organics | ed: 05/14/02 | 05/13/02 | 01/03/02 | 05/14/02 | 04/22/02 | | 1,1,1-Trichloroethane | ND(0.0058) | ND(0.9061) | NID(O OOE4) | ND(0.0052) | ND(0,0053) | | 1,1-Dichloroethane | ND(0.0058) | ND(0.0061) | ND(0.0054)
ND(0.0054) | ND(0.0053) | | | 1,2-Dichloroethane | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0.0053)
ND(0.0053) | ND(0.0053)
ND(0.0053) | | Z-Butanone | ND(0.0038) | ND(0.0031) | ND(0.0034)
ND(0.011) | ND(0.0053) | ND(0.0053) | | 2-Chloroethylvinylether | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0.0053) | ND(0.0053) | | Acetone | ND(0.023) | 0.030 | ND(0.022) | ND(0,021) | ND(0.021) | | Benzene | ND(0.00580) | ND(0.00610) | ND(0.00540) | ND(0.00530) | ND(0.00530) | | Carbon Disulfide | ND(0.0058) | ND(0,0061) | ND(0.0054) | ND(0,0053) | ND(0.0053) | | Chlorobenzene | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0.0053) | ND(0.0053) | | Ethylbenzene | ND(0.00580) | ND(0.00610) | ND(0.00540) | ND(0.00530) | ND(0.00530) | | Methylene Chloride | ND(0.0058) | ND(0.0051) | ND(0.0054) | ND(0.0053) | ND(0.0053) | | Styrene | ND(0.00580) | ND(0.00610) | ND(0.00540) | ND(0.00530) | ND(0.00530) | | Tetrachloroethene | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0,0053) | ND(0.0053) | | Toluene | ND(0.00580) | ND(0.00610) | ND(0.00540) | ND(0.00530) | ND(0.00530) | | Trichloroethene | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0.0053) | ND(0.0053) | | Trichlorofluoromethane | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0.0053) | ND(0.0053) | | Xylenes (total) | ND(0.0058) | ND(0.0061) | ND(0.0054) | ND(0.0053) | ND(0.0053) | | Semivolatile Organics | | | | | | | 1,2,4,5-Tetrachlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | 1,2,4-Trichlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | 1,2-Dichlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | 1,2-Diphenylhydrazine | ND(0.38) | ND(0.41) | ND(0.36) | ND(0.36) | ND(0.35) | | 1,3-Dichlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | ,3-Dinitrobenzene | ND(0.770) | ND(0.820) | ND(0 720) | ND(0.710) | ND(0.710) | | ,4-Dichlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | 2,4-Dimethylphenol
2-Chloronaphthalene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | 2-Chlorophenol | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | 2-Methylnaphthalene | ND(0.380)
0.160 J | ND(0.410)
0.310 J | ND(0.360) | ND(0.360) | ND(0.350) | | 2-Methymaphthalene
2-Methylphenol | ND(0.380) | ND(0.410) | ND(0.360)
ND(0.360) | ND(0.360)
ND(0.360) | ND(0.350) | | 2-Nitroaniline | ND(0.300) | ND(0.410) | ND(1.80) | ND(0.360)
ND(1.80) | ND(0.350)
ND(1.80) | | 3&4-Methylphenol | ND(0.770) | ND(0.820) | ND(0.720) | ND(0.710) | ND(1.80)
ND(0.710) | | I-Chloroaniline | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | I-Chlorobenzilate | ND(0.770) | ND(0.820) | ND(0.720) | ND(0.710) | ND(0.710) | | -Phenylenediamine | ND(0.77) J | ND(0.82) J | ND(0.72) J | ND(0.71) J | ND(0.71) J | | Acenaphthene | 0.0830 J | 1.60 | ND(0.360) | ND(0.360) | ND(0.350) | | Acenaphthylene | 0.150 J | ND(0.410) | ND(0.360) | 0.0950 J | ND(0.350) | | Acetophenone | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | Aniline | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | Anthracene | 0.150 J | 2.10 | ND(0.360) | 0.280 J | ND(0.350) | | Benzo(a)anthracene | 0.460 | 3.90 | 0.110 J | 0.240 J | 0.190 J | | Benzo(a)pyrene | 0.440 | 2.80 | ND(0.360) | 0.220 J | 0.230 J | | Benzo(b)fluoranthene | 0.250 J | 2.10 | 0.0820 J | 0.150 J | 0.220 J | | Benzo(g,h,i)perylene | 0.310 J | 1.20 | ND(0.360) | 0.380 | ND(0.350) | | Benzo(k)fluoranthene | 0.430 | 2.90 | 0.160 J | 0.200 J | 0.180 J | | Benzyl Alcohol | ND(0.77) J | ND(0.820) | ND(0.720) | ND(0.71) J | ND(0.710) | | is(2-Ethylhexyl)phthalate
Chrysene | ND(0.380) | ND(0.400) | 0.110 J | ND(0.350) | ND(0.350) | | orysene
Dibenzo(a,h)anthracene | 0.540
ND(0.380) | 3.70
ND(0.410) | 0.140 J | 0.200 J | 0.190 J | | Dibenzofuran
Dibenzofuran | ND(0.380) | 1.00 | ND(0.360) | ND(0.350) | ND(0.350) | | Diethylphthalate | ND(0.380) | ND(0.410) | ND(0.360)
ND(0.360) | ND(0.360)
ND(0.360) | ND(0.350) | | Dimethylphthalate | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350)
ND(0.350) | | i-n-Butylphthalate | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350)
ND(0.350) | | Diphenylamine | ND(0.38) | ND(0.41) | ND(0.36) | ND(0.36) | ND(0.350)
ND(0.35) | | luoranthene | 0.720 | 11.0 | 0.220 J | 0.400 | 0.350 J | | luorene | 0.140 J | 1.40 | ND(0.360) | ND(0.360) | ND(0.350) | | fexachlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | ndeno(1,2,3-cd)pyrene | 0.200 J | 1.30 | ND(0.360) | 0.210 J | ND(0.350) | | Vaphthalene | 1.20 | 1.00 | ND(0.360) | ND(0.360) | ND(0.350) | | itrobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | I-Nitrosodiphenylamine | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | -Toluidine | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4D
RAA4-E38 | 4D
RAA4-E40 | 4D
RAA4-E42 | 4D
RAA4-F37 | 4D
RAA4-F39 | |--|----------------------------|--------------------------|-------------------------------|------------------------------|------------------------------| | Sample Depth(Feet): | 0-1 | 0-1 | 0-1 | 0-1 | 0-1 | | Parameter Date Collected: | 05/14/02 | 05/13/02 | 01/03/02 | 05/14/02 | 04/22/02 | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0,350) | | Pentachlorophenol | ND(2.00) | ND(2 10) | ND(1.80) | ND(1 80) | ND(1.80) | | Phenanthrene | 0.730 | 11.0 | 0.140 J | 0.220 J | 0.240 J | | Phenol | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | Pyrene | 0.890 | 7.10 | 0.200 J | 0.310 J | 0.440 | | Pyridine | ND(0.380) | ND(0.410) | ND(0.360) | ND(0.360) | ND(0.350) | | Furans | | | | | | | 2,3,7,8-TCDF | 0.000018 | 0.00012 | 0.000017 | 0.000026 | 0.000017 Y | | TCDFs (total) | 0.00016 QI | 0.00090 Q | 0.00014 | 0.000561 | 0.00014 X | | 1,2,3,7,8-PeCDF | 0.0000051 | 0.000032 | 0.0000083 | 0.000016 | 0.0000098 | | 2,3,4,7,8-PeCDF | 0.000016 | 0.000093 | 0.000029 | 0.00020 | 0.000016 | | PeCDFs (total) | 0.00020 QI | 0.00079 QI | 0.00030 | 0.0028 Q | 0.00026 X | | 1,2,3,4,7,8-HxCDF | 0.0000064 | 0.000035 | 0.0000089 | 0.00013 J | 0.000036 | | 1,2,3,6,7,8-HxCDF | 0.0000076 | 0.000025 | 0.0000082 | 9.000064 J | 0.000011 | | 1,2,3,7,8,9-HxCDF | 0.0000019 | 0.0000074 J | ND(0.0000024) | 0.000026 | 0.000011 | | 2,3,4,6,7,8-HxCDF | 0.000025 | 0.000052 | 0.000016 | 0.00018 | 0.000014 | | HxCDFs (total) | 0.00035 | 0.00069 | 0.00022 | 0.0028 IJ | 0.00025 X | | 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF | 0.000044 J | 0.000066 | 0.000025
0.0000019 J | 0.00026 J | 0.000039 | | HpCDFs (total) | 0.0000028 | 0.0000078 J | | 0.000064 | 0.0000088 | | OCDF | 0.000098
0.000022 | 0.00014 l
0.000047 | 0.000058
0.000022 | 0.00076 IJ
0.00053 | 0.000091 | | Dioxins | 0.000022 | 0.000047 | 0.000022 | 0,00055 | 0.000085 | | 2.3,7,8-TCDD | 0.00000063 | 0.0000044.1 | NE (0.0000000 (E) V | 0.0000000 | 117/0 00000001 | | TCDDs (total) | 0.0000003 | 0.0000011 J
0.0000046 | ND(0.000000045)
X
0.000032 | 0.00000060
0.000013 | ND(0.00000021) X | | 1,2,3,7,8-PeCDD | ND(0.0000073 | ND(0.0000036) X | ND(0.0000023) X | | 0.0000012 Q | | PeCDDs (total) | 0.0000073 | 0.000016 | 0.0000048 | ND(0.000011) X
0.000045 Q | ND(0.000000090)
0.0000043 | | 1,2,3,4,7,8-HxCDD | 0.0000075 | 0.000016
0.0000018 J | 0.0000048
0.0000054 J | 0.000045 | ND(0.0000020) | | 1,2,3,6,7,8-HxCDD | 0.000000003
0.0000011 J | 0.0000016 J | 0.00000034 3 | 0.0000043 | 0.0000017 J | | 1,2,3,7,8,9-HxCDD | 0.000000113 | 0.0000030 J | 0.0000010 J | 0.0000056 | ND(0.00000173) X | | HxCDDs (total) | 0.000014 | 0.000050 Q | 0.000016 | 0.00012 | 0.0000040 | | 1,2,3,4,6,7,8-HpCDD | 0.000012 | 0.000034 | 0.000022 | 0.000098 | 0.000022 | | HpCDDs (total) | 0.000024 | 0.000073 | 0.000043 | 0.00022 | 0.000065 | | OCDD | 0.000074 | 0.00022 | 0.00017 | 0.00080 | 0.00020 | | Total TEQs (WHO TEFs) | 0.000016 | 0.000077 | 0.000021 | 0.00016 | 0.000019 | | Inorganics | | | ***** | | | | Antimony | ND(6.00) | ND(6.00) | ND(6.00) | ND(6.00) | 1.30 B | | Arsenic | 4.90 | 6.30 | 2.90 | 2.80 | 4.60 | | Barium | 30.0 | 41.0 | ND(20.0) | 20.0 | 23.0 | | Beryllium | ND(0.500) | ND(0.500) | 0.0980 B | 0.100 B | 0.140 B | | Cadmium | ND(0.500) | ND(0.500) | ND(0.500) | ND(0.500) | ND(0.500) | | Chromium | 10.0 | 8.60 | 6.20 | 9.50 | 8.20 | | Cobait | 7.40 | 7.10 | ND(5.00) | ND(5.00) | 6.20 | | Copper | 19.0 | 96.0 | 58.0 | 25.0 | 34.0 | | Cyanide | 0.220 B | 0.280 | ND(0.220) | 0.290 | ND(0.210) | | Lead | 19.0 | 51.0 | 22.0 | 21.0 | 130 | | Mercury | 0.180 | 0.290 | 0.0580 B | ND(0.110) | 0.068 J | | Nickel | 14.0 | 13.0 | 9.50 | 9.30 | 12.0 | | Selenium | ND(1.00) | ND(1.00) J | ND(1.00) | ND(1.00) | ND(1.00) | | Silver | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) | | Sulfide | 20.0 | 39.0 | 8.60 | 32.0 | 24.0 | | Thallium | ND(1.20) | ND(1.20) | ND(1.60) | ND(1.10) | ND(1.10) J | | Tin | ND(3.90) | ND(4.50) | ND(10.0) | ND(10.0) | 4,00 B | | Vanadium | 11.0 | 11.0 | 6.10 | 18.0 | 8.40 | | Zinc | 58.0 | 53.0 | 35.0 | 65.0 | 43.0 | | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4D
RAA4-F41
0-1 | 4D
RAA4-F42
1-6 | 4D
RAA4-F42 | 4D
RAA4-F43 | 4D
RAA4-F43 | |--|-----------------------|-----------------------|-------------------------|--------------------------|----------------| | Parameter Date Collected: | 04/24/02 | 05/13/02 | 5-6
05/13/02 | 6-8
07/08/02 | 6-15 | | Volatile Organics | 04124102 | 03/13/02 | U3/13/02 | 07/08/02 | 07/08/02 | | 1,1,1-Trichloroethane | ND(0.0053) | l NC | N200 00041 | I NOVO OSCO | 210 | | 1,1-Dichloroethane | ND(0.0053) | NS
NS | ND(0.0061) | ND(0.0056) | NS NS | | 1,2-Dichloroethane | ND(0.0053) | NS
NS | ND(0.0061) | ND(0.0056) | NS NS | | 2-Butanone | ND(0.0033) | NS
NS | ND(0.0061) | ND(0.0056) | NS NS | | 2-Chloroethylvinylether | ND(0.0053) | NS NS | ND(0.012)
ND(0.0061) | ND(0.011) | NS
NS | | Acetone | ND(0.0033) | NS NS | | ND(0.0056)
ND(0.022) | NS
NS | | Benzene | ND(0.00530) | NS NS | 0.016 J
ND(0.00610) | ND(0.022)
ND(0.00560) | NS
NS | | Carbon Disulfide | ND(0.0053) | NS NS | ND(0.00610) | ND(0.0056) | NS
NS | | Chlorobenzene | ND(0.0053) | NS NS | ND(0.0061) | ND(0.0056) | NS NS | | Ethylbenzene | ND(0.00530) | NS | ND(0.00610) | ND(0.00560) | NS NS | | Methylene Chloride | ND(0.0053) | NS | ND(0.0051) | ND(0.0056) | NS NS | | Styrene | ND(0.00530) | NS NS | ND(0.00610) | ND(0.00560) | NS NS | | Tetrachloroethene | ND(0.0053) | NS | ND(0.0061) | ND(0.0056) | NS NS | | Toluene | ND(0.00530) | NS NS | ND(0.00610) | ND(0.00560) | NS NS | | Trichloroethene | ND(0.0053) | NS | ND(0.0061) | ND(0.0056) | NS NS | | Trichlorofluoromethane | ND(0.0053) | NS NS | ND(0.0061) | ND(0.0056) | NS | | Xylenes (total) | ND(0.0053) | NS | ND(0.0061) | ND(0.0056) | NS
NS | | Semivolatile Organics | | | | | 110 | | ,2,4,5-Tetrachlorobenzene | ND(0.360) | ND(0,410) | NS | NS | ND(0.370) | | 1,2,4-Trichlorobenzene | ND(0.360) | ND(0.410) | NS NS | NS NS | ND(0.370) | | ,2-Dichlorobenzene | ND(0.360) | ND(0.410) | NS
NS | NS NS | ND(0.370) | | ,2-Diphenylhydrazine | ND(0.36) | ND(0.41) | NS | NS NS | ND(0.370) | | ,3-Dichlorobenzene | ND(0.360) | ND(0.410) | NS | NS NS | ND(0.370) | | ,3-Dinitrobenzene | ND(0.720) | ND(0.820) | NS NS | NS NS | ND(0.740) | | ,4-Dichlorobenzene | ND(0.360) | ND(0.410) | NS | NS NS | ND(0.370) | | 2,4-Dimethylphenol | ND(0.360) | ND(0.410) | NS | NS NS | ND(0.370) | | 2-Chloronaphthalene | ND(0.360) | ND(0.410) | NS | NS NS | ND(0.370) | | 2-Chlorophenol | ND(0.360) | ND(0.410) | NS | NS I | ND(0.370) | | -Methylnaphthalene | ND(0.360) | ND(0.410) | NS NS | NS | ND(0.370) | | ?-Methylphenol | ND(0.360) | ND(0.410) | NS NS | NS | ND(0.370) | | 2-Nitroaniline | ND(1.80) | ND(2.10) | NS | NS | ND(1.90) | | &4-Methylphenol | ND(0.720) | ND(0.820) | NS | NS | ND(0.740) | | -Chloroaniline | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | l-Chlorobenzilate | ND(0.720) | ND(0.820) | NS | NS | ND(0.740) | | -Phenylenediamine | ND(0.72) J | ND(0.82) J | NS | NS | ND(0.74) J | | cenaphthene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | cenaphthylene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | cetophenone | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | voiline | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | Inthracene | 0.0980 J | ND(0.410) | NS | NS | ND(0.370) | | Benzo(a)anthracene | 0.310 J | ND(0.410) | NS | NS | ND(0.370) | | Benzo(a)pyrene | 0.300 J | ND(0.410) | NS | NS I | ND(0.370) | | Benzo(b)fluoranthene | 0.300 J | ND(0.410) | NS | NS | ND(0.370) | | enzo(g,h,i)perylene | 0.180 J | ND(0.410) | NS | NS | ND(0.370) | | enzo(k)fluoranthene | 0.240 J | ND(0.410) | NS | NS | ND(0.370) | | lenzyl Alcohol | ND(0.720) | ND(0.820) | NS | NS | ND(0.740) | | is(2-Ethylhexyl)phthalate | ND(0.350) | ND(0.400) | NS | NS | ND(0.370) | | hrysene | 0.300 J | ND(0.410) | NS | NS | ND(0.370) | | ibenzo(a,h)anthracene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | pibenzofuran | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | iethylphthalate | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | imethylphthalate | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | i-n-Butylphthalate | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | iphenylamine | ND(0.36) | ND(0.41) | NS | NS | ND(0.37) | | luoranthene | 0.600 | ND(0.410) | NS | NS | ND(0.370) | | luorene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | exachlorobenzene | ND(0.360) | ND(0,410) | NS | NS | ND(0.370) | | odeno(1,2,3-cd)pyrene | 0.100 J | ND(0.410) | NS | NS | ND(0.370) | | aphthalene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | itrobenzene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | -Nitrosodiphenylamine | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | -Toluidine | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | Averaging Area: | 4D | 4D | 4D | 4D | 4D | |-----------------------------------|------------------|----------------------|----------|----------|----------------------| | Sample ID: | | RAA4-F42 | RAA4-F42 | RAA4-F43 | RAA4-F43 | | Sample Depth(Feet): | 0-1 | 1-6 | 5-6 | 6-8 | 6-15 | | Parameter Date Collected: | 04/24/02 | 05/13/02 | 05/13/02 | 07/08/02 | 07/08/02 | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | Pentachlorophenol | ND(1.80) | ND(2.10) | NS | NS | ND(1.90) | | Phenanthrene | 0.440 | ND(0.410) | NS | NS | ND(0.370) | | Phenoi | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | Pyrene | 0.640 | ND(0.410) | NS | NS | ND(0.370) | | Pyridine | ND(0.360) | ND(0.410) | NS | NS | ND(0.370) | | Furans | | | | | | | 2,3,7,8-TCDF | 0.000014 Y | 0.00000024 J | NS | NS | ND(0.00000010) | | TCDFs (total) | 0.00014 | 0.00000054 | NS | NS | ND(0.00000010) | | 1,2,3,7,8-PeCDF | ND(0.0000022) X | 0.000000095 J | NS | NS | ND(0.00000025) | | 2,3,4,7,8-PeCDF | 0.0000041 J | ND(0.00000011) X | NS | NS | ND(0.000000048) | | PeCDFs (total) | 0.00012 | 0.00000054 | NS | NS | ND(0.000000048) | | 1,2,3,4,7,8-HxCDF | 0.0000093 | ND(0.000000086) X | NS | NS | ND(0.000000032) X | | 1,2,3,6,7,8-HxCDF | 0.0000027 JB | ND(0.00000013) X | NS | NS | 0.000000056 J | | 1,2,3,7,8,9-HxCDF | 0.0000012 JB | ND(0.00000030) | NS | NS | ND(0.00000025) | | 2,3,4,6,7,8-HxCDF | 0.0000025 J | 0.000000067 J | NS | NS | ND(0.00000025) | | HxCDFs (total) | 0.000056 | 0.00000080 | NS | NS | ND(0.00000011) | | 1,2,3,4,6,7,8-HpCOF | 0.0000065 | ND(0.00000021) X | NS | NS | 0.000000070 J | | 1,2,3,4,7,8,9-HpCDF | ND(0.00000099) X | ND(0.00000030) | NS | NS | ND(0.00000025) | | HpCDFs (total) | 0.0000065 | ND(0.00000019) | NS | NS | ND(0.000000070) | | OCDF | ND(0.0000054) X | ND(0.00000017) X | NS | NS | ND(0.00000050) | | Dioxins | | | | | | | 2,3,7,8-TCDD | ND(0.00000012) X | ND(0.00000014) | NS | NS | ND(0.00000010) | | TCDDs (total) | 0.0000011 - | 0.00000053 | NS | NS | ND(0.00000038) | | 1,2,3,7,8-PeCDD | ND(0.00000010) | ND(0.000000060) X | NS | NS | ND(0.00000025) | | PeCDDs (total) | ND(0.0000013) X | 0.00000075 | NS | NS | ND(0.00000042) | | 1,2,3,4,7,8-H×CDD | 0.00000036 JB | ND(0.00000030) | NS NS | NS | ND(0.00000025) | | 1,2,3,6,7,8-HxCDD | 0.00000048 JB | ND(0.00000030) | NS | NS | ND(0.00000025) | | 1,2,3,7,8,9-HxCDD | 0.00000049 JB | ND(0.00000030) | NS | NS | ND(0.00000025) | | HxCDDs (total) | 0.0000047 | ND(0.00000030) | NS | NS | ND(0.00000025) | | 1,2,3,4,6,7,8-HpCDD | 0.0000064 | ND(0.00000048) | NS | NS | ND(0.00000034) X | | HpCDDs (total) | 0.000030 | ND(0.00000091) | NS | NS | ND(0.00000025) | | OCDD
Total TEQs (WHO TEFs) | 0.000060 | ND(0.0000045) | NS | NS | ND(0.0000024) | | | 0.0000055 | 0.00000024 | NS | NS | 0.00000027 | | Inorganics | 115.70.00 | | · | | | | Antimony
Arsenic | ND(6.00) | ND(6.00) | NS NS | NS | ND(6.00) | | Barium | 9.00
39.0 | 8.20 | NS NS | NS | 6.40 | | Beryllium | ND(0.500) | 28.0 | NS | NS | 45.0 | | Cadmium | 1.00 | ND(0.500)
0.130 B | NS NS | NS NS | ND(0.500) | |
Chromium | 9.40 | | NS NS | NS NS | ND(0.500) | | Cobalt | 8.60 | 13.0
13.0 | NS NS | NS | 8.20 | | Copper | 53.0 | 28.0 | NS
NC | NS NS | 8.20 | | Coppe
Cyanide | ND(0.210) | ND(0.120) | NS NS | NS
NS | 11.0 | | Lead | 36.0 J | 11.0 | NS NS | NS NS | ND(0.110) | | Mercury | ND(0.110) | ND(0.120) | NS NS | NS
NS | 6.00
0.00440 B | | Nickel | 24.0 | 23.0 | NS NS | NS NS | 0.00440 B
14.0 | | Selenium | ND(1.00) J | ND(1.00) J | NS NS | NS NS | ND(1.00) | | Silver | ND(1.00) 0 | ND(1.00) 5 | NS NS | NS
NS | ND(1.00) | | Sulfide | 14.0 | 22.0 | NS NS | NS
NS | ND(1.00)
ND(5.60) | | Thallium | ND(1.10) J | ND(1.20) | NS NS | NS
NS | | | Tin | ND(10.0) | ND(1.20)
ND(3.70) | NS NS | NS
NS | 2.00 | | Vanadium | 12.0 | 10.0 | NS NS | NS NS | ND(3.60) | | | 1 | 10.0 | 110 | INO. | 6.90 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4D | 4D | 4D | 4D | 4D | |--|-------------------------|--------------------|--------------|-------------|----------------------------------| | Sample ID: | RAA4-G36 | RAA4-G38 | RAA4-G38 | RAA4-G38 | RAA4-H33 | | Sample Depth(Feet): | 0-1 | 0-1 | 1-6 | 3-5 | 0-1 | | Parameter Date Collected: | 05/14/02 | 04/23/02 | 04/23/02 | 04/23/02 | 06/20/02 | | Volatile Organics | • | | | | | | 1,1,1-Trichloroethane | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | 1,1-Dichloroethane | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | 1,2-Dichloroethane | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | 2-Butanone | ND(0.011) | ND(0.011) | NS | ND(0.011) | ND(0.013) [ND(0.013)] | | 2-Chloroethylvinylether | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0 0064) [ND(0.0064)] | | Acetone | ND(0.022) | 0.018 J | NS | 0.019 J | 0.016 J [0.026] | | Benzene | ND(0.00560) | 0.00400 J | NS | ND(0.00570) | ND(0.0064) [ND(0.0064)] | | Carbon Disulfide | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | Chlorobenzene | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | Ethylbenzene | ND(0.00560) | ND(0.00560) | NS | ND(0.00570) | ND(0.0064) [ND(0.0064)] | | Methylene Chloride | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0054) [ND(0.0064)] | | Styrene | ND(0.00560) | ND(0.00560) | NS | ND(0.00570) | ND(0.0064) [ND(0.0064)] | | Tetrachloroethene | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | Toluene | ND(0.00560) | ND(0.00560) | NS | ND(0.00570) | ND(0.0064) [ND(0.0064)] | | Trichloroethene | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | Trichlorofluoromethane | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | Xylenes (total) | ND(0.0056) | ND(0.0056) | NS | ND(0.0057) | ND(0.0064) [ND(0.0064)] | | Semivolatile Organics | | | / | | | | 1,2,4,5-Tetrachlorobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | 1,2,4-Trichlorobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | 1,2-Dichlorobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | 1,2-Diphenylhydrazine | ND(0.37) | ND(0.38) | ND(0.38) | NS | R [ND(0.43) J] | | 1,3-Dichlorobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | 1,3-Dinitrobenzene | ND(0.740) | ND(0.750) | ND(0.760) | NS | R [ND(0.86) J] | | 1,4-Dichlorobenzene | ND(0.370) | ND(0,380) | ND(0.380) | NS | R [ND(0.43) J] | | 2,4-Dimethylphenoi | ND(0.370) | ND(0.380) | ND(0.380) | NS | ND(0.420) [ND(0.430)] | | 2-Chloronaphthalene | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | 2-Chlorophenol | ND(0,370) | ND(0.380) | ND(0.380) | NS | ND(0.420) [ND(0.430)] | | 2-Methylnaphthalene | ND(0.370) | ND(0.380) | 0.100 J | NS | R [ND(0.43) J] | | 2-Methylphenol | ND(0.370) | ND(0.380) | ND(0.380) | NS | ND(0.420) [ND(0.430)] | | 2-Nitroaniline | ND(1.90) | ND(1.90) | ND(1.90) | NS | R [ND(2.2) J] | | 3&4-Methylphenol | ND(0.740) | ND(0.750) | ND(0.760) | NS | ND(0.860) [ND(0.860)] | | 4-Chloroaniline | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | 4-Chlorobenzilate | ND(0.740) | ND(0.750) | ND(0.760) | NS | R [ND(0.86) J] | | 4-Phenylenediamine | ND(0.74) J | ND(0.75) J | ND(0.76) J | NS | R [ND(0.86) J] | | Acenaphthene | ND(0.370) | ND(0.380) | 0.0880 J | NS NS | R [ND(0.43) J] | | Acenaphthylene | ND(0.370) | ND(0.380) | 0.110 J | NS NS | R [ND(0.43) J] | | Acetophenone | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | Aniline | ND(0.370) | ND(0.380) | ND(0.380) | NS
NS | R [0.20 J] | | Anthracene | ND(0.370)
ND(0.370) | 0.0980 J | 0.310 J | NS NS | R [ND(0.43) J] | | Benzo(a)anthracene | ND(0.370)
ND(0.370) | 0.290 J
0.290 J | 1.10
1.10 | NS
NS | R [ND(0.43) J]
R [ND(0.43) J] | | Benzo(a)pyrene | ND(0.370)
ND(0.370) | 0.290 J
0.250 J | 1.10 | NS
NS | R [ND(0.43) J]
R [ND(0.43) J] | | Benzo(b)fluoranthene
Benzo(g,h,i)perylene | ND(0.370)
ND(0.370) | 0.250 J | 0.840 | NS NS | R [ND(0.43) J]
R [ND(0.43) J] | | Benzo(k)fluoranthene | ND(0.370) | 0.300 J | 0.730 | NS NS | R [ND(0.43) J] | | Benzyl Alcohol | ND(0.74) J | ND(0.750) | ND(0.760) | NS NS | ND(0.86) J [ND(0.860)] | | bis(2-Ethylhexyl)phthalate | ND(0.74) 3
ND(0.370) | ND(0.750) | ND(0.760) | NS NS | R [ND(0.42) J] | | Chrysene | ND(0.370) | 0.280 J | 1.00 | NS NS | R [ND(0.43) J] | | Dibenzo(a,h)anthracene | ND(0.370) | ND(0.380) | 0.510 | NS NS | R (ND(0.43) J) | | Dibenzofuran | ND(0.370) | ND(0.380) | 0.0760 J | NS NS | R [ND(0.86) J] | | Diethylphthalate | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | Dimethy/phthalate | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | Di-n-Butylphthalate | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | Diphenylamine | ND(0.37) | ND(0.38) | ND(0.38) | NS NS | R [ND(0.43) J] | | Fluoranthene | ND(0.370) | 0.460 | 1.60 | NS NS | R (ND(0.43) J) | | Fluorene | ND(0.370) | ND(0.380) | 0.170 J | NS NS | R [ND(0.43) J] | | Hexachlorobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS I | R [ND(0.43) J] | | Indeno(1,2,3-cd)pyrene | ND(0.370) | 0.310 J | 0.700 | NS NS | R [ND(0.43) J] | | Naphthalene | ND(0.370) | 0.300 J | 0.310 J | NS NS | R [ND(0.86) J] | | Nitrobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | N-Nitrosodiphenylamine | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | o-Toluidine | ND(0.370) | ND(0.380) | ND(0.380) | NS NS | R [ND(0.43) J] | | | (0,0,0) | 1,50,000 | | 1 | | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4D | 4D | 4D | 4D | 1 AD | |-----------------------------------|----------------------|-------------------|-------------------|-----------|--------------------------------------| | Sample fD: | RAA4-G36 | RAA4-G38 | RAA4-G38 | RAA4-G38 | RAA4-H33 | | Sample Depth(Feet): | 0-1 | 0-1 | 1-6 | 3-5 | 0-1 | | Parameter Date Collected: | 05/14/02 | 04/23/02 | 04/23/02 | 04/23/02 | 06/20/02 | | Semivolatile Organics (continued) | | | | | | | Pentachiorobenzene | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | Pentachiorophenol | ND(1.90) | ND(1.90) | ND(1.90) | NS | ND(2.20) [ND(2.20)] | | Phenanthrene | ND(0.370) | 0.390 | 1.30 | NS | R [0.10 J] | | Phenol | ND(0.370) | ND(0.380) | ND(0.380) | NS | ND(0.420) [ND(0.430)] | | Pyrene | ND(0.370) | 0.600 | 2.80 | NS | R [0.12 J] | | Pyridine | ND(0.370) | ND(0.380) | ND(0.380) | NS | R [ND(0.43) J] | | Furans | | | | | • | | 2,3,7,8-TCDF | 0.0000045 | 0.000021 Y | 0.000019 Y | NS | 0.00050 YEJ [0.00037 Y] | | TCDFs (total) | 0.000030 | 0.00017 EJ | 0.00014 X | NS | 0.0040 [[0.0031]] | | 1,2,3,7,8-PeCDF | 0.0000016 J | 0.0000070 | ND(0.0000051) X | NS | 0.00019 [0.00015] | | 2,3,4,7,8-PeCDF | 0.0000026 | 0.000013 | 0.000013 J | NS | 0.00021 [0.00016] | | PeCDFs (total) | 0.000026 | 0.00030 X | 0.00021 X | NS | 0.0022 [[0.0017]] | | 1,2,3,4,7,8-HxCDF | 0.0000016 J | 0.000096 | 0.000069 | NS | 0.00017 [0.00013] | | 1,2,3,6,7,8-HxCDF | 0.0000013 J | ND(0.000029) X | 0.000014 | NS | 0.00010 [0.000078] | | 1,2,3,7,8,9-HxCDF | 0.00000024 J | ND(0.000080) X | ND(0.000039) X | NS | 0.000017 [0.000015] | | 2,3,4,6,7,8-HxCDF | 0.0000017 J | 0.000023 | 0.000013 | NS | 0.000097 [0.000074] | | HxCDFs (total) | 0.000021 J | 0.00049 X | 0.00022 X | NS | 0.0013 [0.0010] | | 1,2,3,4,6,7,8-HpCDF | 0.0000033 J | 0.00014 | 0.000097 | NS | 0.00019 [0.00015] | | 1,2,3,4,7,8,9-HpCDF | 0.00000032 | 0.000040 | 0.000026 | NS | 0.000025 [0.000020] | | HpCDFs (total) | 0.0000060 J | 0.00033 | 0.00023 | NS | 0.00033 [0.00026] | | OCDF | 0.0000024 J | 0.00025 | 0.00019 | NS | 0.00014 [0.00012] | | Dioxins | | | | | | | 2,3,7,8-TCDD | ND(0.00000014) | ND(0.00000073) X | ND(0.00000050) | NS | 0.0000034 [0.0000028] | | TCDDs (total) | 0.00000020 J | 0.0000092 Q | 0.000020 | NS | 0.000078 [0.000062] | | 1,2,3,7,8-PeCDD | ND(0.00000019) X | 0.0000037 J | 0.0000020 J | NS | ND(0.0000069) X [0.0000053] | | PeCDDs (total) | 0.00000033 | 0.0000054 Q | 0.0000080 | NS | 0.000056 [0.000053] | | 1,2,3,4,7,8-HxCDD | ND(0.00000023) | ND(0.0000030) X | 0.0000026 J | NS | 0.0000042 [0.0000032] | | 1,2,3,6,7,8-HxCDD | ND(0.00000023) | 0.0000080 | ND(0.0000056) X | NS | 0.0000056 [0.0000044] | | 1,2,3,7,8,9-H×CDD | ND(0.00000023) | 0.0000061 | 0.0000036 J | NS | 0.0000043 [0.0000031] | | HxCDDs (total) | ND(0.00000023) | 0.000053 | 0.000036 | NS NS | 0.000074 [0.000058] | | 1,2,3,4,6,7,8-HpCDD | 0.0000017 J | 0.000060 | 0.000040 | NS NS | 0.000043 [0.000033] | | HpCDDs (total) | 0.0000035 | 0.00013 | 0.000083 | NS | 0.000086 [0.000067] | | OCDD TELL | 0.000012 | 0.00035 | 0.00035 J | NS NS | 0.00021 [0.00015] | | Total TEQs (WHO TEFs) | 0.0000026 | 0.000034 | 0.000025 | NS | 0.00021 [0.00017] | | Inorganics | | 10.000 | 10.000 | | | |
Antimony
Arsenic | 1.20 B | ND(6.00) | ND(6.00) | NS
NS | 1.20 B [1.20 B] | | | 6.90 | 5.10 | 13.0 | NS NS | 8.70 [9.90] | | Barium | ND(20.0)
0.140 B | 38.0
ND(0.500) | 82.0
ND(0.500) | NS
NS | 48.0 [56.0]
ND(0.500) [ND(0.500)] | | Beryllium Cadmium | 0.140 B
ND(0.500) | 0.690 | 1.80 | <u>NS</u> | | | Chromium | 7,90 | 14.0 | 30.0 | NS | ND(0.500) J [0.530 J]
11.0 [14.0] | | Cobalt | 9.10 | 6.40 | 7.80 | NS NS | ND(5.00) [ND(5.00)] | | Copper | 42.0 | 110 | 170 | NS | 37.0 [46.0] | | Cyanide | ND(0.220) | 0.270 | 0.970 | NS NS | 0.330 [0.260] | | Lead | 16.0 | 84.0 | 300 | NS NS | 52.0 [59.0] | | Mercury | ND(0.110) | 0.160 | 0.290 | NS NS | 0.460 J [0.610 J] | | Nickel | 16.0 | 14.0 | 19.0 | NS | 8.30 [12.0] | | Selenium | ND(1.00) | ND(1.00) | 0.650 B | NS | 1.20 J [1.30 J] | | Silver | ND(1.00) | ND(1.00) | ND(1.00) | NS | ND(1.00) [ND(1.00)] | | Sulfide | 16.0 | 70.0 | 34.0 | NS NS | 37.0 [29.0] | | Thallium | ND(1.10) | ND(1.10) J | ND(1,10) J | NS | ND(1.90) J [ND(1.90) J] | | Tin | ND(4.40) | ND(12.0) | 19.0 | NS . | ND(10.0) [ND(10.0)] | | Vanadium | 10.0 | 17.0 | 19.0 | NS | 23.0 [29.0] | | Zinc | 48.0 | 78.0 | 120 | NS | 63.0 [70.0] | | Averaging Area:
Sample ID: | 4D
RAA4-H34 | 4D
RAA4-H34 | 4D
RAA4-H35 | 4D
RAA4-133 | 4D
RAA4-I33 | 4D
RAA4-133 | |---|------------------------|---------------------------|---------------------------|--------------------------|------------------------|--------------------------| | Sample Depth(Feet): Parameter Date Collected: | 1-6
06/06/02 | 2-4
06/06/02 | 0-1
04/23/02 | 0-1
06/06/02 | 6-15
06/06/02 | 8-10
06/06/02 | | Volatile Organics | 06/06/02 | 00/00/02 | 04/23/02 | 06/06/02 | 06/06/02 | 1 06/06/02 | | 1.1.1-Trichloroethane | NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | 1,1-Dichloroethane | NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | 1,2-Dichloroethane | NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | 2-Butanone | NS | ND(0.012) | ND(0.011) | ND(0.013) | NS | ND(0.011) | | 2-Chloroethylvinylether | NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | Acetone | NS | ND(0.023) | 0.013 J | 0.056 | NS | 0.027 | | Senzene | NS | ND(0.00580) | ND(0.00570) | ND(0.0064) | NS | ND(0.0055) | | Carbon Disulfide | NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | Chlorobenzene | NS | ND(9.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | Ethylbenzene | NS | ND(0.00580) | ND(0.00570) | ND(0.0064) | NS NS | ND(0.0055) | | Methylene Chloride | NS NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS | ND(0.0055) | | Styrene Tetrachloroethene | NS
NS | ND(0.00580) | ND(0.00570) | ND(0.0064) | NS NS | ND(0.0055) | | Toluene | NS NS | ND(0.0058)
ND(0.00580) | ND(0.0057)
ND(0.00570) | ND(0.0064)
ND(0.0064) | NS
NS | ND(0.0055)
ND(0.0055) | | Trichloroethene | NS
NS | ND(0.00580) | ND(0.00570) | ND(0.0064) | NS NS | ND(0.0055) | | Trichlorofluoromethane | NS NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS NS | ND(0.0055) | | Xylenes (total) | NS NS | ND(0.0058) | ND(0.0057) | ND(0.0064) | NS NS | ND(0.0055) | | Semivolatile Organics | | 1(0.0000) | 1,50(0.0001) | 1 .45(0.0004/) | . 10 | 1.5(0.0000) | | 1,2,4,5-Tetrachiorobenzene | ND(0.430) | NS I | ND(0.490) | ND(0.590) | ND(0.440) | l NS | | 1,2,4-Trichlorobenzene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 1,2-Dichlorobenzene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 1,2-Diphenylhydrazine | ND(0.43) | NS | ND(0.49) | ND(0.59) | ND(0.44) | NS | | 1,3-Dichlorobenzene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 1,3-Dinitrobenzene | ND(0.780) | NS | ND(0.760) | ND(0.850) | ND(0.740) | NS | | 1,4-Dichlorobenzene | ND(0.430) | NS | ND(0.490) | ND(0,590) | ND(0.440) | NS | | 2,4-Dimethylphenol | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 2-Chloronaphthalene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 2-Chlorophenol | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 2-Methylnaphthalene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | 2-Methylphenol
2-Nitroaniline | ND(0.430) | NS NS | ND(0.490) | ND(0.590) | ND(0.440) | NS NS | | 3&4-Methylphenol | ND(2.10)
ND(0.780) | NS NS | ND(2.40)
ND(0.760) | ND(3.00)
ND(0.850) | ND(2.20)
ND(0.740) | NS
NS | | 4-Chloroaniline | ND(0.430) | NS NS | ND(0.760)
ND(0.490) | ND(0.890)
ND(0.590) | ND(0.740)
ND(0.440) | NS NS | | 4-Chlorobenzilate | ND(0.780) | NS NS | ND(0.760) | ND(0.850) | ND(0.740) | NS NS | | 4-Phenylenediamine | ND(0.780) | NS | ND(0.76) J | ND(0.850) | ND(0.740) | NS NS | | Acenaphthene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Acenaphthylene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Acetophenone | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Aniline | ND(0.430) | NS | ND(0.490) | 1,10 | ND(0.440) | NS | | Anthracene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Benzo(a)anthracene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Benzo(a)pyrene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Benzo(b)fluoranthene | ND(0.430) | NS NS | ND(0.490) | ND(0.590) | ND(0.440) | NS NS | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | ND(0.430)
ND(0.430) | NS
NS | ND(0.490)
ND(0.490) | ND(0.590)
ND(0.590) | ND(0.440) | NS NS | | Benzyl Alcohol | ND(0.850) | NS NS | ND(0.490) | ND(1.20) | ND(0.440)
ND(0.880) | NS
NS | | bis(2-Ethylhexyl)phthalate | ND(0.380) | NS NS | ND(0.370) | ND(0.420) | ND(0.360) | NS NS | | Chrysene | ND(0.430) | NS I | ND(0.490) | ND(0.590) | ND(0.440) | NS NS | | Dibenzo(a,h)anthracene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS NS | | Dibenzofuran | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Diethylphthalate | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Dimethylphthalate | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Di-n-Butylphthalate | ND(0.430) | NS | ND(0,490) | ND(0.590) | ND(0.440) | NS | | Diphenylamine | ND(0.43) | NS | ND(0.49) | ND(0.59) | ND(0.44) | NS | | Fluoranthene | ND(0.430) | NS | ND(0.490) | 0.320 J | ND(0.440) | NS | | Fluorene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Hexachiorobenzene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | indeno(1,2,3-cd)pyrene | ND(0.430) | NS NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Naphthalene | ND(0.430) | NS NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Nitrobenzene | ND(0.430) | NS
NC | ND(0.490) | ND(0.590) | ND(0.440) | NS | | N-Nitrosodiphenylamine
o-Toluidine | ND(0.430)
ND(0.430) | NS
NS | ND(0.490)
ND(0.490) | ND(0.590)
ND(0.590) | ND(0.440)
ND(0.440) | NS | | v refutition (| 140/0.430) | 1140 | 1462(0.4400) | 1 142(0.330) | (ND(U.44U) | NS | | Averaging Area:
Sample ID: | 4D
RAA4-H34 | 4D
RAA4-H34 | 4D
RAA4-H35 | 4D
RAA4-I33 | 4D
RAA4-133 | 4D
RAA4-133 | |---|-----------------|-----------------|----------------------|-----------------|------------------------------------|------------------| | Sample Depth(Feet): Parameter Date Collected: | 1-6
06/06/02 | 2-4
06/06/02 | 0-1
04/23/02 | 0-1
06/06/02 | 6-15
06/06/02 | 8-10
06/06/02 | | Semivolatile Organics (continued) | 00/00/02 | 00/00/02 | U4123102 | 1 00/00/02 | 00/00/02 | 00/00/02 | | Pentachlorobenzene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Pentachtorophenol | ND(2.10) | NS | ND(2.40) | ND(3.00) | ND(2.20) | NS
NS | | Phenanthrene | ND(0.430) | NS
NS | ND(0.490) | ND(3.00) | ND(0.440) | NS
NS | | Phenol | ND(0.430) | NS NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Pyrene | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS NS | | Pyridine | ND(0.430) | NS | ND(0.490) | ND(0.590) | ND(0.440) | NS | | Furans | 7.0(5.430) | 110 | 140(0.430) | 1 140(0.030) | [140(0.440)] | 140 | | 2.3.7.8-TCDF | 0.00010 Y | NS | 0.000041 Y | 0.00033 Y | 0.00000014 J | VIC. | | TCDFs (total) | 0.00071 | NS NS | 0.0000411 | 0.00033 1 | 0.00000014 3 | NS
NS | | 1.2,3,7,8-PeCDF | 0.00077 | NS
NS | 0.00023 | 0.00241 | ND(0.00000014
ND(0.000000062) X | NS
NS | | 2,3,4,7,8-PeCDF | 0.000059 | NS NS | 0.000013 | 0.00017 | ND(0.000000080) | NS
NS | | PeCDFs (total) | 0.000601 | NS NS | 0.00014
0.00016 X | 0.0016 QI | ND(0.000000080) | NS NS | | 1,2,3,4,7,8-HxCDF | 0.000048 | NS NS | 0.000017 | 0.0016 | ND(0.00000003) | NS
NS | | 1.2.3.6.7.8-HxCDF | 0.000030 | NS NS | 0.0000017 | 0.00087 | ND(0.00000058) X | NS
NS | | 1,2,3,7,8,9-HxCDF | 0.0000065 | NS | ND(0.0000014) X | 0.000037 | ND(0.00000028) | NS NS | | 2,3,4,6,7,8-HxCDF | 0.000032 | NS | 0.0000088 | 0.000013 | ND(0.00000028) | NS | | HxCDFs (total) | 0.00036 | NS | 0.00013 | 0.0012 | ND(0.00000021) | N\$ | | 1,2,3,4,6,7,8-HpCDF | 0.000037 | NS | 0.000022 | 0.0012 | 0.00000011 J | NS NS | | 1.2.3.4.7.8.9-HoCDF | 0.000058 | NS | 0.0000023 J | 0.000026 | ND(0.00000028) | NS | | HpCDFs (total) | 0.000072 | NS | 0.000042 | 0.00040 | 0.00000011 | NS | | OCDF | 0.000071 | NS | 0.000011 | 0.00018 | 0.00000011
0.00000018 J | NS NS | | Dioxins | 1 | | 1 | 0.00070 | 0.000000100 | 710 | | 2.3.7.8-TCDD | 0.00000081 J | NS | ND(0.00000036) X | 0.0000027 | ND(0.00000011) | NS | | TCDDs (total) | 0.00000080 | NS NS | 0.0000016 | 0.000042 | ND(0.00000017) | NS
NS | | 1,2,3,7,8-PeCDD | ND(0.0000000 | NS | ND(0.0000073) X | ND(0.000087) X | ND(0.00000017) | NS
NS | | PeCDDs (total) | 0.0000061 | NS NS | ND(0.00000073) X | 0.000017 | ND(0.00000028) | NS | | 1,2,3,4.7,8-HxCDD | 0.00000011 J | NS | ND(0.00000041) X | 0.0000040 | ND(0.00000028) | NS NS | | 1,2,3,6,7,8-HxCDD | 0.0000036 | NS NS | ND(0.00000001) X | 0.0000092 | ND(0.00000028) | NS | | 1,2,3,7,8,9-HxCDD | 0.0000017 J | NS | 0.00000069 j | 0.0000048 |
ND(0.00000028) | NS
NS | | HxCDDs (total) | 0.000028 | NS
NS | 0.0000047 | 0.000077 | ND(0.00000030) | NS | | 1,2,3,4,6,7,8-HpCDD | 0.000019 | NS | 0.0000061 | 0.00017 | ND(0.00000035) X | NS | | HpCDDs (total) | 0.000034 | NS | 0.000014 | 0.00018 | 0.000000037 X | NS | | OCDD | 0.000083 | NS | 0.000032 | 0.00095 | ND(0.0000026) | NS | | Total TEQs (WHO TEFs) | 0.000061 | NS | 0.000016 | 0.00016 | 0.00000032 | NS | | Inorganics | | | | 0.00010 | 0.0000002 | 710 | | Antimony | 0.970 B | NS | 1.50 B | 1.20 B | ND(6.00) | NS | | Arsenic | 5.80 | NS | 4,70 | 7,40 | 3.50 | NS | | Barium | 33.0 | NS | 22.0 | 34.0 | ND(20.0) | NS NS | | Beryllium | ND(0.500) | NS | 0.160 B | ND(0.500) | ND(0.500) | NS NS | | Cadmium | ND(0.500) | NS | 0.510 | ND(0.500) | ND(0.500) | NS | | Chromium | 9.50 J | NS | 5.10 | 9.60 J | 6.40 J | NS | | Cobalt | 7.40 | NS | 6.40 | 9.00 | 8.00 | NS | | Copper | 23.0 | NS | 110 | 43.0 | 15.0 | NS | | Cyanide | ND(0.120) | NS | ND(0.230) | 0.370 | ND(0.110) | NS | | Lead | 20.0 J | NS | 16.0 | 43.0 J | 6.20 J | NS | | Mercury | ND(0.120) | NS | ND(0.110) | 0.270 | ND(0.110) | NS | | Nickel | 11.0 | NS | 12.0 | 17.0 | 12.0 | NS | | Selenium | ND(1.00) J | NS | ND(1.00) | 0.600 J | ND(1.00) J | NS | | Silver | ND(1.00) | NS | ND(1.00) | ND(1.00) | ND(1.00) | NS | | Sulfide | 20.0 | NS | 11.0 | 24.0 | 10.0 | NS | | Thallium | ND(1.20) J | NS | ND(1.10) J | ND(1.30) J | ND(1.10) J | NS | | fin | ND(3.70) | NS | ND(10.0) | ND(4.90) | ND(3.30) | NS | | Vanadium | 11,0 | NS | 10.0 | 22.0 | 6.20 | NS | | Zinc | 46.0 J | NS | 45.0 | 100 J | 36.0 J | NS | | Averaging Area:
Sample ID: | 4D
RAA4-134 | 4D
RAA4-135 | 4D
RAA4-K33 | 4E
RAA4-130 | 4E
RAA4-J28 | |--|------------------------|----------------|--------------------------|--------------------------|--------------------------| | Sample Depth(Feet): | 0-1 | 1-6 | 0-1 | .0-1 | 0-1 | | Parameter Date Collected: | 06/06/02 | 06/06/02 | 06/06/02 | 06/25/02 | 06/25/02 | | Volatile Organics 1,1,1-Trichloroethane | ND(0.0080) | N.C. | NEW COCCO | L MD(0.00E0) | NED/O 00543 | | 1.1-Dichloroethane | ND(0.0080) | NS
NS | ND(0.0059)
ND(0.0059) | ND(0.0059)
ND(0.0059) | ND(0.0054)
ND(0.0054) | | 1,2-Dichloroethane | ND(0.0080) | NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | 2-Butanone | ND(0.016) | NS | ND(0.012) | ND(0.0039) | ND(0.0034) | | 2-Chloroethylvinylether | ND(0.0080) | NS NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Acetone | ND(0.032) | NS | ND(0.023) | ND(0.023) | ND(0.022) | | Benzene | ND(0.0080) | NS | ND(0,00590) | ND(0.00590) | ND(0.00540) | | Carbon Disulfide | ND(0.0080) | NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Chlorobenzene | ND(0.0080) | NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Ethylbenzene | ND(0.0080) | NS | ND(0.00590) | ND(0.00590) | ND(0.00540) | | Methylene Chloride | ND(0.0080) | NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Styrene | ND(0.0080) | NS | ND(0.00590) | ND(0.00590) | ND(0.00540) | | Tetrachloroethene | ND(0.0080) | NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Toluene | ND(0.0080) | NS | ND(0.00590) | ND(0.00590) | ND(0.00540) | | Trichloroethene | ND(0.0080) | NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Trichlorofluoromethane Xylenes (total) | ND(0.0080) | NS
NS | ND(0.0059) | ND(0.0059) | ND(0.0054) | | Semivolatile Organics | ND(0.0080) | 145 | ND(0.0059) | ND(0.0059) | ND(0.0054) | | 1.2.4.5-Tetrachlorobenzene | NID/2 70\ | \$JC- | ND/0.4203 | | NOW SON | | 1,2,4,5-Tetrachioropenzene
1,2,4-Trichlorobenzene | ND(2.70)
ND(2.70) | NS
NS | ND(0.430)
ND(0.430) | ND(0.390)
ND(0.390) | ND(0.360)
0.180 J | | 1,2,4-Theritorobenzene
1,2-Dichtorobenzene | ND(2.70)
ND(2.70) | NS
NS | ND(0.430)
ND(0.430) | ND(0.390)
ND(0.390) | ND(0.360) | | 1,2-Diphenylhydrazine | ND(2.70) | NS
NS | ND(0.430) | ND(0.39) | ND(0.360) | | 1,3-Dichlorobenzene | ND(2.70) | NS
NS | ND(0.430) | ND(0.390) | 0.260 J | | 1,3-Dinitrobenzene | ND(2.70) | NS NS | ND(0.790) | ND(0.790) | ND(0.720) | | 1,4-Dichlorobenzene | ND(2.70) | NS | ND(0.430) | ND(0.390) | 0.680 | | 2,4-Dimethylphenol | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | 2-Chloronaphthalene | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | 2-Chlorophenol | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | 2-Methylnaphthaleле | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | 2-Methylphenol | ND(2.70) | NS | ND(0.430) | ND(0.390) | 0.160 J | | 2-Nitroaniline | ND(14.0) | NS_ | ND(2.20) | ND(2.00) | ND(1.80) | | 3&4-Methylphenol | ND(2.70) | NS | ND(0.790) | ND(0.790) | ND(0.720) | | 4-Chloroaniline | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | 4-Chlorobenzilate | ND(2.70) | NS NS | ND(0.790) | ND(0.790) | ND(0.720) | | 4-Phenylenediamine | ND(2.70) | NS
NS | ND(0.790) | ND(0.79) J | ND(0.72) J | | Acenaphthene Acenaphthylene | ND(2.70)
ND(2.70) | NS
NS | ND(0.430)
ND(0.430) | ND(0.390)
ND(0.390) | ND(0.360)
ND(0.360) | | Acetophenone | ND(2.70) | NS
NS | ND(0.430) | ND(0.390) | ND(0.360) | | Aniline | ND(2.70) | NS NS | ND(0.430) | ND(0.390) | 3.40 | | Anthracene | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | Benzo(a)anthracene | ND(2.70) | NS | ND(0.430) | 0.450 | 0.150 J | | Benzo(a)pyrene | ND(2.70) | NS | ND(0.430) | 0.570 | 0.180 J | | Benzo(b)fluoranthene | ND(2.70) | NS | ND(0.430) | 0.490 | 0.200 J | | Benzo(g,h,i)perylene | ND(2.70) | NS | ND(0.430) | 0.410 | 0.180 J | | Benzo(k)fluoranthene | ND(2.70) | NS | ND(0.430) | 0.480 | 0.180 J | | Benzyl Alcohol | ND(5.50) | NS | ND(0.860) | ND(0.79) J | ND(0.72) J | | bis(2-Ethylhexyl)phthalate | ND(1.40) | NS
NC | ND(0.390) | ND(0.390) | 0.530 | | Chrysene Dhanthrasana | ND(2.70) | NS
No | ND(0.430) | 0.500 | 0.200 J | | Dibenzo(a,h)anthracene Dibenzofuran | ND(2.70)
ND(2.70) | NS
NS | ND(0.430) | ND(0.390) | ND(0.360) | | Diethylphthalate | ND(2.70)
ND(2.70) | NS
NS | ND(0.430)
ND(0.430) | ND(0.390)
ND(0.390) | ND(0.360)
ND(0.360) | | Dimethylphthalate | ND(2.70) | NS NS | ND(0.430) | 0.520 | ND(0.360) | | Di-n-Butylphthalate | ND(2.70) | NS NS | ND(0.430) | ND(0.390) | 0.520 | | Diphenylamine | ND(2.7) | NS NS | ND(0.43) | ND(0.39) | ND(0.36) | | Fluoranthene | ND(2.70) | NS | ND(0.430) | 1.00 | 0.360 | | Fluorene | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | Hexachlorobenzene | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | Indeno(1,2,3-cd)pyrene | ND(2.70) | NS | ND(0.430) | 0.330 J | 0.100 J | | Naphthalene | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | Nitrobenzene | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | N-Nitrosodiphenylamine | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | o-Toluidine | ND(2.70) | NS | ND(0 430) | ND(0.390) | ND(0.360) | | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4D
RAA4-I34
0-1 | 4D
RAA4-135
1-6 | 4D
RAA4-K33
0-1 | 4E
RAA4-I30
0-1 | 4E
RAA4-J28
0-1 | |--|--|-----------------------|-----------------------|-----------------------|-----------------------| | Parameter Date Collected: | 06/06/02 | 06/06/02 | 06/06/02 | 06/25/02 | 06/25/02 | | Semivolatile Organics (continued) | | / | | | | | Pentachlorobenzene | ND(2.70) | NS | ND(0.430) | ND(0.390) | 0.100 J | | Pentachiorophenol | ND(14.0) | NS | ND(2.20) | ND(2.00) | ND(1.80) | | Phenanthrene | ND(2.70) | NS | ND(0.430) | 0.330 J | 0.270 J | | Phenol | ND(2.70) | NS | ND(0.430) | ND(0.390) | 1.60 | | Pyrene | ND(2.70) | NS | ND(0.430) | 0.860 | 0.450 | | Pyridine | ND(2.70) | NS | ND(0.430) | ND(0.390) | ND(0.360) | | Furans | ······································ | <u> </u> | · · · · | | | | 2,3,7,8-TCDF | 0.000047 Y | ND(0.00000041) X | 0.000011 Y | 0.014 YEJ | 0.000048 Y | | TCDFs (total) | 0.00032 | 0.0000011 | 0.000086 | 0.0701 | 0.00043 | | 1,2,3,7,8-PeCDF | 0.000025 | ND(0.00000021) X | 0.0000044 | 0.010 EJ | 0.000024 | | 2,3,4,7,8-PeCDF | 0.000024 | ND(0.00000023) X | 0.0000041 | 0.0073 EJ | 0.000041 | | PeCDFs (total) | 0.000261 | 0.0000012 | 0.000049 | 0.0681 | 0.00044 Q | | 1.2.3.4.7.8-HxCDF | 0.000022 | ND(0.00000024) X | 0.0000041 | 0.0064 EJ | 0.000088 | | 1,2,3,6,7,8-HxCDF | 0.000013 | ND(0.00000017) X | 0.0000024 J | 0.0039 | 0.000040 | | 1,2,3,7,8,9-HxCDF | 0.0000021 J | ND(0.00000028) | 0.00000053 J | 0.00089 | 0.0000089 | | 2,3,4,6,7,8-HxCDF | 0.000015 | 0.00000019 J | 0.0000020 J | 0.0028 | 0.000026 | | HxCDFs (total) | 0.00019 | 0.00000097 | 0.000030 | 0.033 | 0.00046 | | 1,2,3,4,6,7,8-HpCDF | 0.000022 | 0.00000062 J | 0.0000052 | 0.0024 | 0.000089 | | 1,2,3,4,7,8,9-HpCDF | 0.0000032 | ND(0.000000099) X | 0.00000074 J | 0.00065 | 0.000022 | | HpCDFs (total) | 0.000044 | 0.0000069 | 0.0000086 | 0.0048 | 0.00018 | | OCDF | 0.000016 | ND(0.00000066) X | 0.0000044 J | 0.0010 | 0.00022 | | Dioxins | | + | | ···· | <u> </u> | | 2.3.7.8-TCDD | 0.00000042 J | ND(0.00000013) | ND(0.00000019) X | 0.00017 | 0.00000042 J | | TCDDs (total) | 0.0000046 | ND(0.00000013) | 0.0000016 | 0.00089 Q | 0.0000099 | | 1.2.3.7.8-PeCDD | ND(0.0000022) X | ND(0.00000028) | ND(0.00000027) X | 0.00031 | ND(0.0000010) X | | PeCDDs (total) | 0.0000046 | ND(0.00000040) | 0.0000011 | 0.0012 Q | 0.0000034 Q | | 1,2,3,4,7,8-HxCDD | 0.00000055 J | ND(0.00000028) | ND(0.00000028) | 0.00014 | 0.0000011 J | | 1,2,3,6,7,8-HxCDD | 0.00000073 J | ND(0.00000028) | 0.00000020 J | 0.000092 | 0.0000020 J | | 1,2,3,7,8,9-HxCDD | 0.00000054 J | ND(0.00000028) | ND(0.00000028) | 0.000043 | 0.0000013 J | | HxCDDs (total) | 0.0000052 | ND(0.0000055) | 0.0000014 | 0.00076 | 0.000025 | | 1,2,3,4,6,7,8-HpCDD | 0.0000063 | ND(0.00000089) X | 0.0000019 J | 0.000092 | 0.000020 | | HpCDDs (total) | 0.000014 | 0.0000051 | 0.0000035 | 0.00016 | 0.000041 | | OCDD | 0.000036 | ND(0,0000037) | 0.000012 | 0.00016 | 0.00012 | | Total TEQs (WHO TEFs) | 0.000025 |
0.00000040 | 0.0000046 | 0.0075 | 0.000045 | | Inorganics | | <u> </u> | | | | | Antimony | 1.90 B | NS | ND(6.00) | ND(6.00) | 1.30 B | | Arsenic | 6.70 | NS | 5.00 | 16.0 | 4,80 | | Barium | 30.0 | NS | 28.0 | 40.0 | ND(20.0) | | Beryllium | 0.160 B | NS | ND(0.500) | ND(0.500) J | 0.140 J | | Cadmium | ND(0.500) | NS | 0.0970 B | 0.140 J | ND(0.500) J | | Chromium | 6.40 J | NS | 8.70 J | 11.0 | 21.0 | | Cobalt | 8.00 | NS | 9.00 | 7.90 | 7.10 | | Copper | 23.0 | NS | 19.0 | 24.0 | 150 | | Cyanide | 0.520 | NS | ND(0.120) | 0.0980 B | ND(0.110) | | Lead | 16.0 J | NS | 12.0 J | 49.0 | 42.0 | | Mercury | 0.200 | NS | ND(0.120) | 0.120 J | 12.0 | | Nickel | 12.0 | NS | 14.0 | 16.0 | 25.0 | | Selenium | ND(1,20) J | NS | ND(1.00) J | ND(1.00) J | ND(1.00) J | | Silver | ND(1.20) | NS NS | ND(1.00) | ND(1.00) J | 0.570 J | | Sulfide | 15.0 | NS | 21.0 | 30.0 | 28.0 | | Thallium | ND(1.60) J | NS | ND(1.20) J | 1.10 J | 1.00 J | | Tin | ND(4.90) | NS | ND(4.30) | ND(10.0) | ND(10.0) | | Vanadium | 11.0 | NS | 10.0 | 14.0 | 9.60 | | Zinc | 100 J | NS | 51.0 J | 330 | 220 | | | Averaging Area:
Sample ID: | 4E
RAA4-J30 | 4E
RAA4-K27 | 4E
RAA4-K27 | 4E
RAA4-K27 | |------------------------------------|---|------------------------|----------------|--|-------------------------| | | Sample Depth(Feet): | 0-1 | 1-3 | 6-15 | 10-12 | | Parameter | Date Collected: | 06/25/02 | 06/17/02 | 06/17/02 | 06/17/02 | | Volatile Organi | ics | | | | | | 1.1.1-Trichloroe | thane | ND(0.0056) | ND(0.0058) | NS | ND(0.037) [ND(0.037)] | | 1,1-Dichloroetha | | ND(0.0056) | ND(0.0058) | NS NS | ND(0.037) [ND(0.037)] | | 1,2-Dichloroetha | ane | ND(0.0056) | ND(0.0058) | NS | ND(0.037) [ND(0.037)] | | 2-Butanone | | ND(0.011) | ND(0.012) | NS NS | ND(0.037) [ND(0.037)] | | 2-Chloroethylvir | nylether [| ND(0.0056) | ND(0.0058) | NS | ND(0.037) [ND(0.037)] | | Acetone | | ND(0.023) | 0.038 J | NS NS | 0.097 [ND(0.074)] | | Benzene | | ND(0.00560) | 0 011 J | NS | 0.14 J [0.074 J] | | Carbon Disulfide | e | ND(0.0056) | ND(0.0058) | NS | ND(0.037) [ND(0.037)] | | Chlorobenzene | | ND(0.0056) | 22 J | NS | 33 [29] | | Ethylbenzene | | ND(0.00560) | 0.0095 J | NS | 0.44 J [0.25 J] | | Methylene Chlo | ride | ND(0.0056) | ND(0.0058) | NS | ND(0.037) [ND(0.037)] | | Styrene | | ND(0.00560) | ND(0.0058) J | NS | ND(0.0370) [ND(0.0370)] | | Tetrachloroethe | ne | ND(0.0056) | 0.081 J | NS NS | ND(0.037) [ND(0.037)] | | Toluene | | ND(0.00560) | 0.010 J | NS | ND(0.0370) [ND(0.0370)] | | Trichloroethene | | ND(0.0056) | 0.010 J | NS
NS | ND(0.037) [ND(0.037)] | | Trichlorofluoron | retnane | ND(0.0056) | ND(0.0058) | NS NS | ND(0.037) [ND(0.037)] | | Xylenes (total) | <u> </u> | ND(0.0056) | 0.040 J | NS | ND(0.037) [ND(0.037)] | | Semivolatile O | | | | | | | 1,2,4,5-Tetrachl | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | 1,2,4-Trichlorob | | ND(0.370) | 0.12 J | ND(0.490) [ND(0.490)] | NS | | 1,2-Dichloroben | | ND(0,370) | 0.10 J | 0.230 J [ND(0.490)] | NS | | 1,2-Diphenylhyd | | ND(0.37) | R | ND(0.49) [ND(0.49)] | NS | | 1,3-Dichloroben | | ND(0.370) | 0.14 J | 0.36 J [0.11 J] | NS | | 1,3-Dinitrobenze | ***** ******************************** | ND(0.760) | R | ND(0.990) [ND(0.990)] | NS NS | | 1,4-Dichloroben | | ND(0.370) | 0.36 J | 0.93 J [0.12 J] | NS NS | | 2,4-Dimethylphe | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS NS | | 2-Chloronaphth | alene | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS NS | | 2-Chlorophenol | | ND(0.370) | R | 2.10 [ND(0.490)] | NS
NS | | 2-Methylnaphth | alene | ND(0.370) | R | 3.50 [ND(0.490)] | | | 2-Methylphenol | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS
NS | | 2-Nitroaniline | | ND(1.90) | R | ND(2.50) [ND(2.50)] | NS NS | | 3&4-Methylpher | 101 | ND(0.760) | R | ND(0.990) [ND(0.990)]
ND(0.490) [ND(0.490)] | NS NS | | 4-Chloroaniline
4-Chlorobenzila | · · · · · · · · · · · · · · · · · · · | ND(0.370)
ND(0.760) | R | ND(0.490) [ND(0.490)]
ND(0.990) [ND(0.990)] | NS NS | | 4-Phenylenedia | | ND(0.76) J | R | ND(0.990) [ND(0.990)]
ND(0.99) J [ND(0.99) J] | NS NS | | Acenaphthene | mine - | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS NS | | Acenaphthylene | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS NS | | Acetophenone | , | ND(0.370) | t R | ND(0.490) [ND(0.490)] | NS NS | | Aniline | | ND(0.370) | 0.64 J | ND(0.490) [ND(0.490)] | NS NS | | Anthracene | | ND(0.370) | 0.043 | ND(0.490) [ND(0.490)] | NS NS | | Benzo(a)anthra | селе | ND(0,370) | R | ND(0.490) [ND(0.490)] | NS NS | | Benzo(a)pyrene | | ND(0.370) | R | 0.580 [ND(0.490)] | NS | | Benzo(b)fluoran | | ND(0.370) | 0.088 J | ND(0.490) [ND(0.490)] | NS | | Benzo(g,h,i)per | | ND(0.370) | 0.098 J | ND(0.490) [ND(0.490)] | NS | | Benzo(k)fluoran | | ND(0.370) | 0.077 J | ND(0.490) [ND(0.490)] | NS | | Benzyl Alcohol | | ND(0.76) J | R | ND(0.990) [ND(0.990)] | NS | | bis(2-Ethylhexy | i)phthalate | ND(0.370) | 0.35 J | ND(0.490) [ND(0.480)] | NS | | Chrysene | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Dibenzo(a,h)ant | thracene | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Dibenzofuran | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Diethylphthalate | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Dimethylphthala | ate | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Di-n-Butylphtha | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Diphenylamine | | ND(0.37) | R | ND(0.49) [ND(0.49)] | NS | | Fluoranthene | | ND(0.370) | 0.094 J | ND(0,490) [ND(0,490)] | NS NS | | Fluorene | | ND(0.370) | R | 0.340 J [ND(0.490)] | NS | | Hexachlorobena | zene l | ND(0.370) | R | ND(0.490) [0.520] | NS | | Indeno(1,2,3-cd | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Naphthalene | | ND(0.370) | R | 2.00 [ND(0.490)] | NS | | Nitrobenzene | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | N-Nitrosodipher | nylamine | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | o-Toluidine | | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Averaging Area: | 4E | 4E | 4E | 4E | |--|---------------------------|---------------------------|--|---| | Sample ID: | RAA4-J30 | RAA4-K27 | RAA4-K27 | RAA4-K27 | | Sample Depth(Feet): | 0-1 | 1-3 | 6-15 | 10-12 | | Parameter Date Collected: | 06/25/02 | 06/17/02 | 06/17/02 | 06/17/02 | | Semivolatile Organics (continued) | | | | | | Pentachlorobenzene | ND(0.370) | R | ND(0.490) [0.220 J] | NS NS | | Pentachlorophenoi | ND(1.90) | R | 2.70 [ND(2.50)] | NS | | Phenanthrene | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS
NS | | Phenol | ND(0.370) | 0.70 J | 1.90 [ND(0.490)] | NS | | Pyrene | ND(0.370) | 0.21 J | ND(0.490) [ND(0.490)] | NS
NS | | Pyridine | ND(0.370) | R | ND(0.490) [ND(0.490)] | NS | | Furans | | | | | | 2,3,7,8-TCDF | 0.000077 Y | 0.00023 Y | 0.000053 YJ [0.000030 YJ] | NS NS | | TCDFs (total) | 0.00044 | 0.0014 QI | 0.00046 [0.00027] | NS | | 1,2,3,7,8-PeCDF | 0.000057 | 0.00011 | 0.000018 [0.000012] | NS | | 2,3,4,7,8-PeCDF | 0.000059 | 0.00028 Q | 0.000068 [0.000042] | NS NS | | PeCDFs (total) | 0.00046 1 | 0.0024 QI | 0.00060 J J [0.00034 J J] | NS
NS | | 1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF | 0.000039
0.000024 | 0.00089 | 0.00035 J [0.00020 J] | NS
NS | | 1,2,3,5,7,8-HXCDF
1,2,3,7,8,9-HxCDF | 0.000024 | 0.00015
0.000093 | 0.000032 [0.000020] | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | 0.000020 | 0.00093 | 0.000036 J [0.000020 J] | NS
NS | | 2,3,4,6,7,8-HxCDF
HxCDFs (total) | 0.00020 | 0.00025 | 0.000040 [0.000024]
0.00097 J [0.00055 J] | NS NS | | 1,2,3,4,6,7,8-HpCDF | 0.00022 | 0.0040 | 0.00097 J [0.00055 J]
0.00033 J [0.00019 J] | NS NS | | 1,2,3,4,0,7,8-1 pCDF | 0.000019 | 0.00043 | 0.00033 3 [0.00019 3] | NS NS | | HpCDFs (total) | 0.000034 | 0.00043 | 0.00020 [0.00012]
0.0013 J [0.00076 J] | NS | | OCDF | 0.000034 | 0.0032
0.0051 EJ | 0.0013 3 [0.00076 3]
0.0022 J [0.0013 J] | NS NS | | Dioxins | 0.0000032 | 0.0001 2.0 | 0:0022 3 [0:00 10 3] | NO. | | 2,3,7,8-TCDD | 0.00000062 J | 0.0000024 Q | ND(0.00000045) X [ND(0.00000026) X] | NS | | TCDDs (total) | 0.000000623 | 0.0000024 Q
0.000043 Q | 0.000013 [0.0000088] | NS | | 1.2.3.7.8-PeCDD | 0.000001
0.0000012 J | ND(0.000026) X | ND(0.000028) X [ND(0.000019) X] | NS NS | | PeCDDs (total) | 0.00000123 | 0.000023 Q | ND(0.0000028) X [ND(0.0000019) X] | NS NS | | 1,2,3,4,7,8-HxCDD | 0.0000001
0.00000063 J | 0.000023 Q | ND(0.0000011) [0.0000014]
ND(0.00000062) [ND(0.00000037)] | NS
NS | | 1,2,3,6,7,8-HxCDD | 0.00000063 J | 0.0000038 | 0.0000042 J [0.0000021 J] | NS
NS | | 1,2,3,7,8,9-HxCDD | ND(0.00000032) X | 0.000033 | 0.0000042 3 [0.0000021 3]
0.0000015 J [0.00000082 J] | NS
NS | | HxCDDs (total) | 0.0000057 | 0.00041 | 0.000069 J [0.000033 J] | NS
NS | | 1,2,3,4,6,7,8-HpCDD | 0.00000037 | 0.00041
0.0013 EJ | 0.00011 J [0.000054 J] | NS NS | | HpCDDs (total) | 0.00000103 | 0.0031 | 0.00026 J [0.00034 3] | NS NS | | OCDD | ND(0.0000077) | 0.016 EJ | 0.0014 J [0.00064 J] | NS NS | | Total TEQs (WHO TEFs) | 0.000051 | 0.00036 | 0.00095 [0.000045] | NS NS | | Inorganics | ******** | 0.00000 | 0.50000 [0.000000] | 110 | | Antimony | ND(6.00) | ND(6.00) | ND(6.00) [ND(6.00)] | NS | | Arsenic | 5.10 | 8.40 | 1.90 [2.50] | NS NS | | Barium | 20.0 | 120 | 47.0 [31.0] | NS NS | | Beryllium | ND(0.500) J | ND(0.500) | ND(0.500) [ND(0.500)] | NS NS | | Cadmium | ND(0.500) J | 1.20 | ND(0.500) [ND(0.500)] | NS NS | | Chromium | 7.70 | 26.0 | 12.0 [9.50] | NS NS | | Cobalt | 5.80 | 6.80 | 7.30 [7.80] | NS | | Copper | 14.0 | 360 J | 13.0 J [13.0 J] | NS | | Cyanide | ND(0.110) | 0.160 J | ND(0.150) J [ND(0.150) J] | NS | | Lead | 9.80 | 110 | 8.30 [10.0] | NS | | Mercury | ND(0.110) J | 14.0 | ND(0.150) J [ND(0.150) J] | NS | | Nickel | 11.0 | 29.0 | 13.0 [12.0] | NS | | Selenium |
ND(1.00) J | ND(1.00) J | ND(1.10) J [ND(1.10) J] | NS | | Silver | ND(1.00) J | ND(1.00) | ND(1.10) [ND(1.10)] | NS | | Sulfide | 31.0 | 170 J | 88.0 J [40.0 J] | NS | | Thallium | ND(1.70) J | ND(1.70) J | ND(2.20) J [ND(2.20) J] | NS | | Tin | ND(3.70) | 28.0 J | ND(5.10) [ND(5.30)] | NS | | Vanadium | 8.50 | 42.0 | 12.0 [11.0] | NS | | Zinc | 40.0 | 2800 J | 120 J [210 J] | NS | | Averaging Area:
Sample ID: | 4E
RAA4-K29 | 4E
RAA4-K30 | 4E
RAA4-K31 | 4E
RAA4-L28 | 4E
RAA4-L31 | 4E
RAA4-M8 | |---|------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------| | Sample Depth(Feet): | 10-12 | 0-1 | 3-6 | 0-1 | 0-1 | 0-1 | | Parameter Date Collected: | 05/29/02 | 04/22/02 | 06/17/02 | 06/25/02 | 06/25/02 | 06/25/02 | | Volatile Organics | | | · | | | | | 1,1,1-Trichloroethane | 0.074 | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | 1,1-Dichloroethane | 0.040 | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | 1,2-Dichioroethane | ND(0.032) | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | 2-Butanone | ND(0.032)
ND(0.032) | ND(0.011) | ND(0.011) | ND(0.011) | ND(0.011) | ND(0.011) | | 2-Chloroethylvinylether Acetone | 0.044 J | ND(0.0056)
ND(0.022) | ND(0.0056)
0.0081 J | ND(0.0054)
ND(0.022) | ND(0.0056)
ND(0.022) | ND(0.0057)
ND(0.023) | | Benzene | 0.0400 | ND(0.00560) | ND(0.00560) | ND(0.00540) | ND(0.00560) | ND(0.00570) | | Carbon Disulfide | ND(0.032) | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Chlorobenzene | 13 | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Ethylbenzene | 0.0400 | ND(0.00560) | ND(0.00560) | ND(0.00540) | ND(0.00560) | ND(0.00570) | | Methylene Chloride | ND(0.032) | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Styrene | ND(0.0320) | ND(0.00550) | ND(0.00560) | ND(0.00540) | ND(0.00560) | ND(0.00570) | | Tetrachloroethene | ND(0.032) | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Toluene | ND(0.0320) | ND(0.00560) | ND(0.00560) | ND(0.00540) | ND(0.00560) | ND(0.00570) | | Trichloroethene | ND(0.032) | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Trichlorofluoromethane | ND(0.032) | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Xylenes (total) | 0.10 | ND(0.0056) | ND(0.0056) | ND(0.0054) | ND(0.0056) | ND(0.0057) | | Semivolatile Organics | | | | | | | | 1,2,4,5-Tetrachlorobenzene | 21.0 | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | 1,2,4-Trichlorobenzene | 160 | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | 1,2-Dichlorobenzene | 6.90 | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | 1,2-Diphenylhydrazine | ND(5.0) | ND(0.37) | ND(0.37) | ND(0.36) | ND(0.37) | 0.15 J | | 1,3-Dichlorobenzene | 18,0 | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | 1,3-Dinitrobenzene | ND(5.00) | ND(0,740) | ND(0.760) | ND(0.730) | ND(0.750) | ND(0.760) | | 1,4-Dichlorobenzene | 340 | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | 2,4-Dimethylphenol | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 3.50 | | 2-Chioronaphthalene
2-Chiorophenol | ND(5.00)
ND(5.00) | ND(0.370)
ND(0.370) | ND(0.370)
ND(0.370) | ND(0.360)
ND(0.360) | ND(0.370)
ND(0.370) | ND(0.380) | | 2-Methylnaphthalene | ND(5.00) | ND(0.370)
ND(0.370) | ND(0.370)
ND(0.370) | ND(0.360)
ND(0.360) | ND(0.370)
ND(0.370) | ND(0.380)
0.150 J | | 2-Methyliphenol | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370)
ND(0.370) | 5.10 | | 2-Nitroaniline | ND(25) J | ND(1.90) | ND(1.90) | ND(0.380) | ND(1.90) | 0.840 J | | 3&4-Methylphenol | ND(5.00) | ND(0.740) | ND(0.760) | ND(0.730) | ND(0.750) | 4.60 | | 4-Chloroaniline | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | 4-Chlorobenzilate | ND(5.00) | ND(0.740) | ND(0.760) | ND(0.730) | ND(0.750) | ND(0.760) | | 4-Phenylenediamine | ND(5.0) J | ND(0.74) J | ND(0.76) J | ND(0.73) J | ND(0.75) J | ND(0.76) J | | Acenaphthene | 3.70 J | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 1.00 | | Acenaphthylene | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 0.140 J | | Acetophenone | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 0.300 J | | Aniline | ND(5.00) | ND(0.370) | ND(0,370) | ND(0.360) | ND(0.370) | 270 | | Anthracene | ND(5.00) | 0.240 J | ND(0.370) | ND(0.360) | ND(0.370) | 1.10 | | Benzo(a)anthracene | ND(5.00) | 1.30 | ND(0.370) | ND(0.360) | 0.110 J | 3.60 | | Benzo(a)pyrene | ND(5.00) | 0.970 | ND(0.370) | 0.110 J | 0.220 J | 4.80 | | Benzo(b)fluoranthene | ND(5.00) | 1.00 | ND(0.370) | ND(0.360) | ND(0.360) | 5.20 | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | ND(5.00)
ND(5.00) | 0.730
0.860 | ND(0.370)
ND(0.370) | ND(0.360)
ND(0.360) | ND(0.370)
0.140 J | 3.00 | | Benzyl Alcohol | ND(5.00)
ND(10.0) | ND(0.740) | ND(0.370)
ND(0.760) | ND(0.360)
ND(0.73) J | 0.140 J
ND(0.75) J | 3.90
ND(0.76) J | | bis(2-Ethylhexyl)phthalate | 6.40 | ND(0.740) | ND(0.760)
ND(0.370) | ND(0.73) 3 | ND(0.73) 3
ND(0.370) | 0.380 | | Chrysene | ND(5.00) | 1,50 | ND(0.370) | 0.120 J | 0.140 J | 3.70 | | Dibenzo(a,h)anthracene | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 1.30 | | Dibenzofuran | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 0.380 | | Diethylphthalate | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | Dimethylphthalate | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | Di-n-Butylphthalate | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 2.30 | | Diphenylamine | ND(5.0) | ND(0.37) | ND(0.37) | ND(0.36) | ND(0.37) | ND(0.38) | | Fluoranthene | ND(5.00) | 3.40 | ND(0.370) | 0.160 J | 0.280 J | 8.30 | | Fluorene | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 0.620 | | Hexachlorobenzene | ND(5.00) | ND(0.370) | 0.0950 J | ND(0.360) | ND(0.370) | ND(0.380) | | Indeno(1,2,3-cd)pyrene | ND(5.00) | 0.590 | ND(0.370) | ND(0.360) | ND(0.370) | 3.10 | | Naphthalene | 2.20 J | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | 0.400 | | Nitrobenzene | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | N-Nitrosodiphenylamine | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | o-Toluidine | ND(5.00) | ND(0,370) | ND(0.370) | ND(0.360) | ND(0.370) | 6.10 | #### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Averaging Area: | 4E | 4E | 4E | 4E | 4E | 4E | |-----------------------------------|----------|-----------------|------------------|---------------------|--------------------------|--------------------| | Sample ID: | RAA4-K29 | RAA4-K30 | RAA4-K31 | RAA4-L28 | RAA4-L31 | RAA4-M8 | | Sample Depth(Feet): | 10-12 | 0-1 | 3-6 | 0-1 | 0-1 | 0-1 | | Parameter Date Collected: | 05/29/02 | 04/22/02 | 06/17/02 | 06/25/02 | 06/25/02 | 06/25/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | 37.0 | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | Pentach/orophenol | ND(25.0) | ND(1.90) | ND(1.90) | ND(1.80) | ND(1.90) | ND(1.90) | | Phenanthrene | ND(5.00) | 1.40 | ND(0.370) | ND(0,360) | ND(0.370) | 5.50 | | Phenol | ND(5.00) | ND(0.370) | ND(0,370) | ND(0.360) | ND(0.370) | 25.0 | | Pyrene | ND(5.00) | 4.30 | ND(0.370) | 0.150 J | 0.230 J | 6.70 | | Pyridine | ND(5.00) | ND(0.370) | ND(0.370) | ND(0.360) | ND(0.370) | ND(0.380) | | Furans | | | | | | | | 2,3,7,8-TCDF | NS | 0.0021 Y | 0.00018 Y | 0.000016 Y | 0.00011 Y | 0.00018 Y | | TCDFs (total) | NS | 0.015 | 0.00111 | 0.00013 | 0.00064 | 0.0022 | | 1,2,3,7,8-PeCDF | NS | ND(0.00040) X | 0.00017 | 0.0000063 | 0.000092 | 0.00010 | | 2,3,4,7,8-PeCDF | NS | 0.0018 | 0.00026 | 0.0000096 | 0.00014 | 0.00028 | | PeCDFs (total) | NS | 0.017 | 0.0016 QI | 0.00011 Q | 0.0011 QI | 0.0040 Q | | 1,2,3,4,7,8-HxCDF | NS | 0.0014 | 0.00041 | 0.000014 | 0.00013 | 0.00020 | | 1,2,3,6,7,8-HxCDF | NS | 0.0015 | 0.00012 | 0.0000062 | 0.000053 | 0.00014 | | 1,2,3,7,8,9-HxCDF | NS | 0.00014 | 0.00010 | 0.0000019 JQ | 0.000033 | 0.000040 | | 2,3,4,6,7,8-HxCDF | NS | 0.0012 | 0.00012 | 0.0000072 | 0.000073 | 0.00034 | | HxCDFs (total) | NS | 0.0059 | 0.0014 | 0.00010 Q | 0.00089 | 0.0046 | | 1,2,3,4,6,7,8-HpCDF | NS | 0.00096 | 0.00020 | 0.000015 | 0.000071 | 0.00046 | | 1,2,3,4,7,8,9-HpCDF | NS | 0.00024 | 0.00014 | 0.0000027 | 0.000022 | 0.000049 | | HpCDFs (total) | NS | 0.0018 | 0.00066 | 0.000028 | 0.00017 | 0.0011 | | OCDF | NS | 0.00017 | 0.00092 | 0.000015 | 0.000064 | 0.00035 | | Dioxins | | | · | | | | | 2,3,7,8-TCDD | NS | 0.000030 | 0.0000018 | ND(0.00000013) X | ND(0.00000073) X | 0.0000023 J | | TCDDs (total) | NS | 0.00014 | 0.000026 | 0.0000032 | 0.0000037 | 0.000046 | | 1,2,3,7,8-PeCDD | NS | 0.000053 | ND(0.0000058) X | 0.00000030 J | ND(0.0000040) X | ND(0.000010) X | | PeCDDs (total) | NS | 0.00015 | 0.000011 | 0.0000039 Q | 0.0000048 | 0.000081 Q | | 1,2,3,4,7,8-HxCDD | NS | 0.000028 | 0.0000041 | 0.00000034 J | 0.0000021 | 0.000013 | | 1,2,3,6,7,8-HxCDD | NS | 0.000025 | 0.0000034 | 0.00000040 J | 0.0000021 | 0.000018 | | 1,2,3,7,8,9-HxCDD | NS | ND(0.000022) X | 0.0000021 J | 0.00000040 J | 0.0000015 J | 0.000014 | | HxCDDs (total) | NS | 0.000092 | 0.000041 | 0.0000059 Q | 0.000024 | 0.00026 | | 1,2,3,4,6,7,8-HpCDD | NS | 0.000034 | 0.000023 | 0.0000033 | 0.000022 | 0.00019 | | HpCDDs (total) | NS | 0.000068 | 0.000043 | 0.0000062 | 0.000042 | 0.00057 | | OCDD | NS | 0.00017 | 0.000085 | 0.000017 | 0.00013 | 0.0018 | | Total TEQs (WHO TEFs) | NS | 0.0016 | 0,00024 | 0.000010 | 0.00012 | 0.00025 | | Inorganics | | | , | , | | | | Antimony | NS | ND(6.00) |
ND(6.00) | 1.10 B | ND(6.00) | 11.0 | | Arsenic | NS | 3.30 | 3.00 | 7.90 | 3.50 | 7.60 | | Barium | NS | 43.0 | ND(20.0) | 28.0 | 21.0 | 53.0 | | Beryllium | NS
NS | ND(0.500) | ND(0.500) | ND(0.500) J | ND(0.500) J | ND(0.500) J | | Cadmium
Chromium | NS
NS | 0.140 B
7.30 | 0,150 B
6.30 | ND(0.500) J
8.90 | ND(0.500) J | 0.970 J | | Cobalt | NS NS | 9.10 | 6.70 | 10.0 | 6.40
7.30 | 11.0
6.20 | | | NS | 17.0 | 16.0 J | 22.0 | 18.0 | | | Copper
Cyanide | NS NS | ND(0.110) | ND(0.110) J | ND(0.110) | ND(0.110) | 97.0
0.510 | | Lead | NS NS | 10.0 | 8.00 | 11.0 | 57.0 | 73.0 | | Mercury | NS
NS | 0.140 J | ND(0.110) J | ND(0.110) J | ND(0.110) J | 0.400 | | Nickel | NS | 13.0 | 11,0 | 16.0 | 14.0 | 20.0 | | Selenium | NS NS | ND(1.00) | ND(1.00) J | ND(1.00) J | ND(1.00) J | 20.0
ND(1.00) J | | Silver | NS
NS | ND(1.00) | ND(1.00) 3 | ND(1.00) J | ND(1.00) J
ND(1.00) J | 0.540 J | | Sulfide | NS | 16.0 | 38.0 J | 30.0 | 23.0 | 100 | | | NS
NS | ND(1.10) J | ND(1.70) J | 1.00 J | 23.0
ND(1.70) J | ND(1.70) J | | iThallium 1 | | | (14W(4,1V)J | 1,000 | (NU(1.70) 3 | IND(1.70) 3 | | Thallium
Tin | | | | VIU(3 8V/ | ND(2.4) | MD/40 0) | | Thallium
Tin
Vanadium | NS
NS | 3.40 B
6.90 | ND(3.60)
6.70 | ND(3.80)
8.00 | ND(3.4)
7.80 | ND(10.0)
14.0 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4E
RAA4-M11 | 4E
RAA4-M13 | 4E
RAA4-M15 | 4E
RAA4-M15 | 4E
RAA4-M17 | 4E
RAA4-M21 | |---------------------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--|--| | Sample Depth(Feet): | 0-1 | 1-3 | 0-1 | 3-6 | 0-1 | 0-1 | | Parameter Date Collected: | 07/02/02 | 06/28/02 | 07/08/02 | 07/08/02 | 06/10/02 | 06/13/02 | | Volatile Organics | | | | 7 | | | | 1.1.1-Trichloroethane | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | 1,1-Dichloroethane 1,2-Dichloroethane | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | 2-Butanone | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | 2-Chloroethylvinylether | ND(0.011)
ND(0.0056) | ND(0.012)
ND(0.0058) | ND(0.010) | ND(0.011) | ND(0.011) | ND(0.010) | | Acetone | ND(0.0036) | ND(0.0038) | ND(0.0050)
ND(0.020) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | Benzene | ND(0.00560) | ND(0.00580) | ND(0.020)
ND(0.00500) | ND(0.022)
ND(0.00550) | ND(0.023) | ND(0.021) J | | Carbon Disulfide | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.00570)
ND(0.0057) | ND(0.00530)
ND(0.0053) | | Chlorobenzene | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | Ethylbenzene | ND(0.00560) | ND(0.00580) | ND(0.00500) | ND(0.00550) | ND(0.00570) | ND(0.00530) | | Methylene Chloride | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | Styrene | ND(0.00560) | ND(0.00580) | ND(0.00500) | ND(0.00550) | ND(0.00570) | ND(0.00530) | | Tetrachloroethene | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | Toluene | ND(0.00560) | ND(0.00580) | ND(0.00500) | ND(0.00550) | ND(0.00570) | 0.0100 | | Trichloroethene | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | 0.011 | | Trichlorofluoromethane | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | Xylenes (total) | ND(0.0056) | ND(0.0058) | ND(0.0050) | ND(0.0055) | ND(0.0057) | ND(0.0053) | | Semivolatile Organics | | | | | ************************************* | ······································ | | 1,2,4,5-Tetrachlorobenzene | ND(0.410) | ND(0.390) | ND(0,460) | ND(0.370) | ND(0.480) | ND(0.350) | | 1,2,4-Trichlorobenzene | ND(0.410) | 0.480 | ND(0.460) | ND(0.370) | ND(0.480) | 0.710 | | 1,2-Dichlorobenzene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | 1,2-Diphenylhydrazine | ND(0.41) | ND(0.39) J | ND(0.46) | ND(0.37) | ND(0.48) | ND(0.35) | | 1,3-Dichlorobenzene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | 1,3-Dinitrobenzene | ND(0.750) | ND(0.780) | ND(0.750) | ND(0.740) | ND(0.760) | ND(0.710) | | 1,4-Dichlorobenzene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | 0.140 J | | 2.4-Dimethylphenol | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | 2-Chloronaphthalene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | 2-Chlorophenol 2-Methylnaphthalene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | 2-Methylphenol | 0.100 J | ND(0.390) | ND(0.460) | 0.0760 J | ND(0.480) | ND(0.350) | | 2-Nitroaniline | ND(0.410)
ND(2.00) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | 3&4-Methylphenol | ND(0.750) | ND(2.00)
ND(0.780) | ND(2.30)
ND(0.750) | ND(1.90) | ND(2.40) | ND(1.80) | | 4-Chloroaniline | ND(0.410) | ND(0.780) | ND(0.460) | ND(0.740)
ND(0.370) | ND(0.760) | ND(0.710) | | 4-Chlorobenzilate | ND(0.750) | ND(0.780) | ND(0.750) | ND(0.370)
ND(0.740) | ND(0.480)
ND(0.760) | ND(0.350)
ND(0.710) | | 4-Phenylenediamine | ND(0.75) J | ND(0.78) J | ND(0.75) J | ND(0.74) J | ND(0.760) | ND(0.710) | | Acenaphthene | 0.190 J | 0.220 J | 0.400 J | 0.780 | ND(0.480) | ND(0.350) | | Acenaphthylene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | Acetophenone | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | Aniline | 4.20 | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | Anthracene | 0.380 J | 0.460 | 0.310 J | 0.610 | ND(0.480) | 0.0760 J | | Benzo(a)anthracene | 1.50 | 0.870 | 1.60 | 1.90 | 0.820 | 0.140 J | | Benzo(a)pyrene | 1.60 | 1.00 | 1,70 | 1.90 | 0.890 | ND(0.350) | | Benzo(b)fluoranthene | 1.90 | 1.10 | 2.60 | 3.00 | 2.50 | 0.170 J | | Benzo(g,h,i)perylene | 1.30 | ND(0.390) | 0.530 | 0.980 | 2.60 | 0.0880 J | | Benzo(k)fluoranthene | 1.50 | 0.900 | 2.60 | 2.70 | 1.40 | 0.100 J | | Benzyl Alcohol | ND(0.820) | ND(0.78) J | ND(0.930) | ND(0.740) | ND(0.970) | ND(0.710) | | bis(2-Ethylhexyl)phthalate | ND(0.370) | ND(0.380) | ND(0.370) | ND(0,370) | ND(0.370) | ND(0.350) | | Chrysene Dibenzo(a,h)anthracene | 1.50
ND(0.410) | 1.00 | 2.10 | 2.00 | 2.00 | 0.200 J | | Dibenzo(a,n)anthracene Dibenzofuran | ND(0.410)
ND(0.410) | ND(0.390)
0.110 J | 0.300 J | 0.240 J | 0.730 | ND(0.350) | | Diethylphthalate | ND(0.410)
ND(0.410) | ND(0.390) | 0.110 J | 0.240 J | ND(0.480) | ND(0.350) | | Dimethylphthalate | ND(0.410) | ND(0.390) | ND(0.460)
ND(0.460) | ND(0.370)
ND(0.370) | ND(0.480) | ND(0.350) | | Di-n-Butylphthalate | ND(0.410) | ND(0.390)
ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | Diphenylamine | ND(0.41) | ND(0.39) | ND(0.460)
ND(0.46) | ND(0.370) | ND(0.480)
ND(0.48) | ND(0.350) | | Fluoranthene | 2.20 | 2.30 | 5.00 | 4.20 | 1.20 | ND(0.35)
0.210 J | | Fluorene | 0.160 J | 0.130 J | 0.180 J | 0.490 | ND(0.480) | | | Hexachlorobenzene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480)
ND(0.480) | ND(0.350)
ND(0.350) | | ndeno(1,2,3-cd)pyrene | 1.10 | 0.360 J | 0.460 J | 0.990 | 1,40 | ND(0.350) | | Vaphthalene | 0.180 J | ND(0.390) | ND(0.460) | 0.180 J | ND(0.480) | 0.0850 J | | Nitrobenzene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | N-Nitrosodiphenylamine | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | o-Toluidine | 0.180 J | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4E | 4E | 4E | 4E | 4E | 4E | |--|--|------------------------------|-----------------------------|----------------------------|-----------------------|--------------------| | Sample ID: | RAA4-M11 | RAA4-M13 | RAA4-M15 | RAA4-M15 | RAA4-M17 | RAA4-M21 | | Sample Depth(Feet): | 0-1 | 1-3 | 0-1 | 3-6 | 0-1 | 0-1 | | Parameter Date Collected: | 07/02/02 | 06/28/02 | 07/08/02 | 07/08/02 | 06/10/02 | 06/13/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachlorobenzene | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | Pentachlorophenol | ND(2.00) | ND(2.00) | ND(2.30) | ND(1.90) | ND(2.40) | ND(1.80) | | Phenanthrene | 1.80 | 2.50 | 3.70 | 3.50 | ND(0.480) | 0.260 J | | Phenol | 0.350 J | ND(0.390) | ND(0.450) | ND(0.370) | ND(0.480) | ND(0.350) | | Pyrene | 3.30 | 2.40 | 3.10 | 5.20 | 0.790 | 0.430 | | Pyridine | ND(0.410) | ND(0.390) | ND(0.460) | ND(0.370) | ND(0.480) | ND(0.350) | | Furans | ······································ | · | | | | | | 2,3,7,8-TCDF | 0.000051 Y | 0.000035 Y | ND(0.0000013) | 0.000013 Y | 0.00028 Y | 0.00063 YEIJ | | TCDFs (total) | 0.000681 | 0.00053 Q | 0.0000097 Q | 0.00031 | 0.0022 Q | 0.0068 QI | | 1,2,3,7,8-PeCDF | 0.000036 Q | 0.000042 | 0.0000014 J | 0.0000094 J | 0.00050 | 0.00056 | | 2,3,4,7,8-PeCDF | 0.000047 | 0.000065 | 0.0000016 J | 0.000017 J | 0.00050 | 0.0011 EJ | | PeCDFs (total) | 0.00063 QI | 0.00030 QI | 0.0000094 Q | 0.00019 Q | 0.0045 QI | 0.011 | | 1,2,3,4,7,8-HxCDF | 0.000072 | 0.00017 | 0.0000024 J | 0.000013 J | 0.00091 | 0.0016 EJ | | 1,2,3,6,7,8-HxCDF | 0.000046 | 0.000066 | ND(0.0000055) | 0.000014 J | 0.00046 | 0.00099 EJ | | 1,2,3,7,8,9-HxCDF
2.3,4.6,7,8-HxCDF | 0.000013 | 0.000041 | 0.0000013 J | 0.0000033 J | 0.00023 | 0.00020 | | HxCDFs (total) | 0.000065 | 0.000036 | 0.0000032 J | 0.000021 J | 0.00027 | 0.00082 | | 1,2,3,4,6,7,8-HpCDF | 0.00061 | 0.00054 Q | 0.000013 Q | 0.00014 | 0.0042 | 0.012 | | 1,2,3,4,6,7,6-npCDF |
0.00018
0.000018 | 0.000049 | 0.0000054 J | 0.000047 | 0.00065 | 0.0016 EJ | | HpCDFs (total) | 0.000018 | 0.000040 | ND(0.0000028) | 0.0000037 J | 0.00024 | 0.00039 | | OCDF | 0.00028 | 0.00013
0.00056 | 0.0000054
ND(0.000056) X | 0.000064 | 0.0013 | 0.0034 | | Dioxins | 0.000096 | 1 0.000036 | ND(0.00000056) X | 0.000017 J | 0.00055 | 0.0014 | | 2.3.7.8-TCDD | 0.0000028 | ND/0.00000000 | 110/0.0000000 | | | | | TCDDs (total) | 0.0000028 | ND(0.00000038) X
0.000065 | ND(0.0000026) | ND(0.0000028) | 0.0000016 | 0.0000075 | | 1,2,3,7,8-PeCDD | 0.000093 | ND(0.0000049) X | ND(0.0000026) | 0.000027 | 0.000025 Q | 0.00013 | | PeCDDs (total) | 0.0000083
0.00013 Q | 0.00000049) X | 0.0000012 J
0.0000041 Q | ND(0.0000036) X | 0.0000066 | 0.000070 Q | | 1,2,3,4,7,8-HxCDD | 0.00013 Q | ND(0.0000027 Q | ND(0.0000041 Q | 0.000047 Q
0.0000033 J | 0.000062 Q | 0.00054 Q | | 1,2,3,6,7,8-HxCDD | 0.000011 | 0.000000031) X | ND(0.0000078) | 0.0000033 J
0.0000054 J | 0.0000078 | 0.000057 | | 1,2,3,7,8,9-H×CDD | 0.000012 | 0.00000084 J | 0.0000013/ X | 0.0000034 J | 0.000012
0.0000086 | 0.000071 | | HxCDDs (total) | 0.00026 | 0.000012 | 0.00000743 | 0.000070 | 0.00016 | 0.000058 | | 1,2,3,4,6,7,8-HpCDD | 0.000094 | 0.0000069 | 0.0000037 Q | 0.000070
0.000024 J | 0.00079 | 0.0010 | | HpCDDs (total) | 0.00020 | 0.000014 | 0.0000165 | 0.0000243 | 0.00019 | 0.00035
0.00082 | | OCDD | 0.00017 | 0.00010 | 0.000078 | 0.000031 | 0.00019 | 0.0016 | | Total TEQs (WHO TEFs) | 0.000068 | 0.000071 | 0.0000051 | 0.000021 | 0.00051 | 0.0018 | | inorganics | | | | 3.0000£, | 0.00001 | 0.0011 | | Antimony | 16.0 | ND(6.00) | 0.900 B | ND(6.00) | 0.960 B | ND(6.00) | | Arsenic | 22.0 | 9.00 | 7.60 | 4.50 | 3.30 | 6.00 | | Barium | 220 J | 110 | 29.0 | 46.0 | 26.0 | 35.0 | | Beryllium | ND(0.500) | ND(0.500) | ND(0.500) | ND(0.500) | ND(0.500) | ND(0.500) | | Cadmium | 13.0 | 2.10 | NO(0.500) | 1.60 | 0.670 | ND(0.500) | | Chromium | 27.0 | 9.90 | 9.90 | 13.0 | 9.50 | 10.0 | | Cobalt | 6.80 J | 6.30 J | 9.30 | 5.10 | 6.30 | 7.00 | | Copper | 890 | 450 | 64.0 | 4500 | 53.0 | 230 | | Cyanide | 0.180 B | 0.380 | ND(0.110) | ND(0.220) | ND(0.110) | ND(0.100) | | _ead | 2600 | 560 | 20.0 | 1100 | 33.0 J | 170 | | Mercury | ND(0.110) | 0.860 | 0.0780 B | 0.200 | ND(0.110) | 0.280 J | | Vickel | 57.0 | 13.0 | 16.0 | 12.0 | 7.00 | 17.0 | | Selenium | 1.50 | ND(1.00) J | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) J | | Silver | ND(1.60) | 0.860 J | ND(1.00) | ND(1.00) | ND(1.00) | ND(1.00) | | Sulfide | 52.0 | 130 | 36.0 | 35.0 | 29.0 | 64.0 | | Thallium | ND(1.70) J | ND(1.70) J | 1.60 B | 2.40 | ND(1.10) | 1.20 J | | Tin | 140 | 41.0 | ND(10.0) | 85.0 | ND(10.0) | ND(15.0) | | /anadium | 14.0 | 9.90 | 10.0 | 10.0 | 14.0 | 5.50 | | Zinc | 1300 J | 740 J | 67.0 | 1600 | 87.0 | 170 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | | Averaging Area:
Sample ID: | 4E
RAA4-M21 | 4E
RAA4-M23 | 4E
RAA4-M27 | 4E
RAA4-M29 | 4E
RAA4-M30 | 4E
RAA4-N15 | |-----------------------------------|--|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------| | Parameter S | Sample Depth(Feet):
Date Collected: | 3-6
06/13/02 | 0-1
06/14/02 | 0-1
05/29/02 | 1-3
06/18/02 | 0-1
04/22/02 | 1-3
06/18/02 | | Volatile Organi | | 00/13/02 | 03/14/02 | 03/23/02 | 00/10/02 |) 04/22/02 | 00/10/02 | | 1.1.1-Trichloroel | | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0.0061) | ND(0.0054) | NS | | 1.1-Dichloroetha | | ND(0.0056) | ND(0.0057) | ND(0.0057) | 0.0059 J | ND(0.0054) | NS | | 1.2-Dichloroetha | ine | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0.0061) | ND(0.0054) | NS | | 2-Butanone | | ND(0.011) | ND(0.011) | ND(0.011) | ND(0.012) | ND(0.011) | NS - | | 2-Chloroethylvin | viether | ND(0.0056) | ND(0.0057) | ND(0 0057) | ND(0.0061) | ND(0.0054) | NS | | Acetone | | 0.036 J | ND(0.023) | ND(0.023) | ND(0.024) | ND(0.022) | NS | | Benzene | | ND(0.00560) | ND(0.00570) | ND(0.00570) | ND(0.00610) | ND(0.00540) | NS | | Carbon Disulfide | | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0.0051) | ND(0.0054) | NS | | Chlorobenzene | | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0.0061) | ND(0.0054) | NS | | Ethylbenzene
Methylene Chior | | ND(0.00560) | ND(0.00570) | ND(0.00570) | ND(0.00610) | ND(0.00540) | NS | | Styrene | iue | ND(0.0056)
ND(0.00560) | ND(0.0057)
ND(0.00570) | ND(0.0057)
ND(0.00570) | ND(0.0061) | ND(0.0054) | NS
NS | | Tetrachloroether | 30 | ND(0.0056) | ND(0.00570) | ND(0.00570)
ND(0.0057) | ND(0,00610)
ND(0,0061) | ND(0.00540)
ND(0.0054) | NS
NS | | Toluene | 10 | ND(0.00560) | ND(0.00570) | ND(0.00570) | ND(0.00610) | 0.0100 | NS
NS | | Trichloroethene | | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0,0061) | ND(0.0054) | NS | | Trichlorofluorom | ethane | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0.0061) | ND(0.0054) | NS | | Xylenes (total) | | ND(0.0056) | ND(0.0057) | ND(0.0057) | ND(0.0061) | ND(0.0054) | NS | | Semivolatile Or | ganics | | <u> </u> | | <u> </u> | | * | | 1,2,4,5-Tetrachic | | ND(0.370) | 1.40 | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 1,2,4-Trichlorobe | enzene | 0.0910 J | 33.0 | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 1,2-Dichlorobena | zene | ND(0.370) | 1.60 | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 1,2-Diphenylhyd | | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.40) | ND(0.36) | NS | | 1,3-Dichlorobena | | ND(0.370) | 2.20 | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 1,3-Dinitrobenze | | ND(0.740) | ND(0.760) | ND(0.760) | ND(0.820) | ND(0.730) | NS | | 1,4-Dichlorobenz | | 0.100 J | 9.30 | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 2,4-Dimethylphe | ···· | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 2-Chloronaphtha
2-Chlorophenol | nene | ND(0.370)
ND(0.370) | ND(0.380)
ND(0.380) | ND(0.380)
ND(0.380) | ND(0.400)
ND(0.400) | ND(0.360) | NS
NC | | 2-Methylnaphtha | lene | 0.0750 J | 0.200 J | ND(0.380) | ND(0.400) | ND(0.360)
ND(0.360) | NS
NS | | 2-Methylphenol | none | ND(0.370) | 0.0810 J | ND(0.380) | ND(0.400) | ND(0.360) | NS
NS | | 2-Nitroaniline | | ND(1.90) | 0.940 J | ND(1.90) | ND(2.10) | ND(1.80) | NS | | 3&4-Methylphen | ol | ND(0.740) | 0.0810 J | ND(0.760) | ND(0.820) | ND(0.730) | NS | | 4-Chloroaniline | | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | 4-Chlorobenzilat | e | ND(0.740) | ND(0.760) | ND(0.760) | ND(0.820) | ND(0.730) | NS | | 4-Phenylenedian | nine | ND(0.74) J | ND(0.76) J | ND(0.76) J | ND(0.82) J | ND(0.73) J | NS | | Acenaphthene | | 0.450 | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Acenaphthylene | | 0.170 J | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Acetophenone | | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Aniline | | 0.450 | 5.00 | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Anthracene
Benzo(a)anthrac | | 1.10
2.00 | ND(0.380)
ND(0.380) | ND(0.380)
0.260 J | ND(0.400)
ND(0.400) | 0.0900 J | NS | | Benzo(a)pyrene | 516 | 1.60 | 0.120 J | 0.310 J | ND(0.400)
ND(0.40) J | 0.560
0.900 | NS
NS | | Benzo(b)fluorant | hene | 1.90 | 0.270 J | 0.270 J | ND(0.40) J | 0.730 | NS | | Benzo(g,h,i)pery | | 1.00 | ND(0.380) | 0.300 J | ND(0.400) | 0.630 | NS | | Benzo(k)fluorant | | 1.20 | 0.120 J | 0.210 J | ND(0.400) | 0.750 | NS | | Benzyl Alcohol | | ND(0.740) | ND(0.760) | ND(0.760) | ND(0.820) | ND(0.730) | NS | | bis(2-Ethylhexyl) | phthalate | ND(0.370) | 0.580 | ND(0.370) | ND(0.400) | 0.350 J | NS | | Chrysene | | 1.60 | ND(0.380) | 0.300 J | ND(0.400) | 0.650 | NS | | Dibenzo(a,h)antl | nracene | 0.340 J | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Dibenzofuran | | 0.530 | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Diethylphthalate | | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS NS | | Dimethylphthalat | | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS NS | | Di-n-Butylphthala | ile | ND(0.370) | ND(0.380)
ND(0.38) | 0.140 J | ND(0.400) | ND(0.360) | NS
NC | | Diphenylamine
Fluoranthene | | ND(0.37)
4,60 | 0.270 J | ND(0.38)
0.460 | ND(0.40) | ND(0.36) | NS
NS | | Fluorantnene
Fluorene | | 0.860 | ND(0.380) | 0.460
ND(0.380) | ND(0.400)
ND(0.400) | 1,30
ND(0,360) | NS
NS | | Hexachlorobenzo | ene | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS
NS | | Indeno(1,2,3-cd) | ***** | 0.990 | ND(0.380) | 0.210 J | ND(0.400) | 0.510 | NS
NS | | Naphthaiene | E4 | ND(0.370) | 0.130 J | ND(0.380) | ND(0.400) | ND(0.360) | NS
NS | | Nitrobenzene | | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | N-Nitrosodiphen | ylamine | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | o-Toluidine | | ND(0,370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4E | 4E | 4E | 4E | 4E | 4E | |-----------------------------------|----------------|--------------------|--------------------|----------------------|--|--| | Sample ID: | RAA4-M21 | RAA4-M23 | RAA4-M27 | RAA4-M29 | RAA4-M30 | RAA4-N15 | | Sample Depth(Feet): | | 0-1 | 0-1 | 1-3 | 0-1 | 1-3 | | Parameter Date Collected: | 06/13/02 | 06/14/02 | 05/29/02 | 06/18/02 | 04/22/02 | 06/18/02 | | Semivolatile Organics (continued) | | | | | | | | Pentachiorobenzene | ND(0.370) | 1.40 | ND(0.380) | ND(0.400) | ND(0.350) | NS | | Pentachlorophenol | ND(1.90) | ND(1.90) | ND(1.90) | ND(2.10) | ND(1,80) | NS | | Phenanthrene | 4.00 | ND(0.380) | 0.160 J | ND(0.400) | 9.530 | NS | | Phenol | ND(0.370) | 0.660 |
ND(0.380) | ND(0.400) | ND(0.360) | NS | | Pyrene | 4.70 | 0.550 | 0.420 J | ND(9.400) | 0.910 | NS | | Pyridine | ND(0.370) | ND(0.380) | ND(0.380) | ND(0.400) | ND(0.360) | NS | | Furans | | | | | | | | 2,3,7,8-TCDF | 0.0023 YEJ | 0.0050 Y | 0.000050 Y | 0.00000045 J | 0.00023 Y | 0.0023 Y | | TCDFs (total) | 0.029 Q | 0.052 (| 0.00049 Q | 0.0000017 | 0.0012 X | 0.011 Q | | 1,2,3,7,8-PeCDF | 0.0014 | 0.0027 | 0.000027 | 0.00000012 J | 0.00014 | 0.0016 Q | | 2,3,4,7,8-PeCDF | 0.0018 | 0.016 | 0.00013 | 0.00000020 J | 0.00015 | 0.0019 | | PeCDFs (total) | 0.026 QI | 0.12 J | 0.0015 Q | 0.0000011 | 0.0016 X | 0.013 Q | | 1,2,3,4,7,8-HxCDF | 0.0059 EIJ | 0.010 | 0.000084 | 0.00000031 J | 0.00011 | 0.0041 | | 1,2,3,6,7,8-HxCDF | 0.00331 | 0.0059 | 0.000059 | 0.00000019 J | 0.000053 | 0.0021 | | 1,2,3,7,8,9-HxCDF | 0.00055 | 0.0019 | 0.000014 J | ND(0.00000027) | ND(0.000017) X | 0.0011 | | 2,3,4,6,7,8-HxCDF | 0.00096 | 0.0089 | 0.00018 | ND(0.00000027) | 0.000058 | 0.0012 | | HxCDFs (total) | 0.0211 | 0.12 | 0.0022 | 0.00000050 | 0.00078 | 0.020 | | 1,2,3,4,6,7,8-HpCDF | 0.0046 I | 0.0097 | 0.00018 | 0.00000029 J | 0.000066 | 0.00311 | | 1,2,3,4,7,8,9-HpCDF | 0.0013 | 0.0031 | 0.000026 | R | 0.000014 | 0.0013 | | HpCDFs (total) | 0.0076 | 0.025 | 0.00043 | 0.00000050 | 0.00015 | 0.00611 | | OCDF | 0.00811 | 0.013 | 0.00015 | j 0.00000040 J | 0.000055 | 0.0031 | | Dioxins | | | | , | | | | 2,3,7,8-TCDD | 0.000012 | 0.00012 | ND(0.0000016) | ND(0.00000011) | 0.0000017 | 0.000011 | | TCDDs (total) | 0.00043 Q | 0.0062 | 0.0000036 Q | ND(0.00000020) | 0.0000086 | 0.00018 | | 1,2,3,7,8-PeCDD | ND(0.000026) X | 0.0014 | ND(0.000013) X | ND(0.00000027) | 0.0000035 J | 0.000058 | | PeCDDs (total) | 0.00046 Q | 0.018 | 0.000014 | ND(0.00000027) | 0.0000071 | 0.00049 Q | | 1,2,3,4,7,8-HxCDD | 0.000034 | 0.00049 | 0.0000021 J | ND(0.00000027) | 0.0000013 J | 0.000074 | | 1,2,3,6,7,8-HxCDD | 0.000063 | 0.0018 | 0.0000023 J | ND(0.00000027) | 0.0000015 J | 880000.0 | | 1,2,3,7,8,9-HxCDD | 0.000046 | 0.0012 | 0.0000074 J | ND(0.00000027) | 0.0000016 J | 0.000077 | | HxCDDs (total) | 0.00089 | 0.022 | 0.000046 | ND(0.00000037) | 0.0000071 | 0.0013 | | 1,2,3,4,6,7,8-HpCDD | 0.00038 | 0.0027 | 0.000026 | 0.00000049 J | 0.0000082 | 0.00039 | | HpCDDs (total) OCDD | 0.00075 | 0.0064 | 0.000054 | 0.00000089 | 0.000016 | 0.00081 | | Total TEQs (WHO TEFs) | 0.00068 | 0.0031 | 0.00038 | 0.0000033 J | 0.000049 | 0.0012 | | | 0.0024 | 0.013 | 0.00012 | 0.00000047 | 0.00013 | 0.0023 | | norganics | | 1177.00.000 | | | | /************************************ | | Antimony | 16.0 | ND(6.00) | ND(6.00) | ND(6.00) | 1.30 B | N\$ | | Arsenic
Barium | 6.10 | 7.60 | 2.20 | 4.20 | 4.60 | NS | | Beryllium | 68.0 | 50.0 | ND(20.0) | 40.0 | 20.0 | NS | | Cadmium | ND(0.500) | ND(0.500) J | 0.120 B | ND(0.500) | 0.160 B | NS | | Chromium | 0.690
18.0 | 1.50 | 0.140 B | 0.100 B | ND(0.500) | NS | | Cobalt | 7.30 | 9.80
ND(5.00) | 3.90
ND(6.00) | 7.50
ND(5.00) | 7.20 | NS | | Copper | 240 | 130 | ND(5.00)
14.0 | | 5.50 | NS | | Dyanide Table 1 | 0.340 | 0.160 | ND(0.110) | 21.0
ND(0.120) | 15.0 | NS | | _ead | 360 | 480 | 6.50 | 36.0 | ND(0.110)
19.0 | NS | | Mercury | 4,40 J | 0.960 | ND(0.110) | ND(0.120) | 0.024 J | NS
NS | | Nickel | 18.0 | 8.30 | 6.80 | 6.30 | 9.40 | NS
NS | | Selenium | ND(1.00) J | ND(1.00) J | ND(1,00) | ND(1.00) | 9.40
ND(1.00) | | | | 1100110010 | | ND(1,00) | ND(1.00)
ND(1.00) | ND(1.00)
ND(1.00) | NS
NS | | | 0.500 B | ND/1 OO\ | | | | | | Silver | 0.500 B
150 | ND(1.00) | | | ······································ | | | Silver
Sulfide | 150 | 51.0 | 24.0 | 30.0 | 16.0 | NS | | Silver
Sulfide
Fhallium | 150
1.30 J | 51.0
ND(1.70) J | 24.0
ND(1.10) J | 30.0
ND(1.80) | 16.0
ND(1.00) J | NS
NS | | Silver
Sulfide | 150 | 51.0 | 24.0 | 30.0 | 16.0 | NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4E
RAA4-03
1-3 | 4E
RAA4-O3
6-15 | 4E
RAA4-03
12-15 | 4E
RAA4-04
0-1 | 4E
RAA4-07
0-1 | |---|---------------------------|------------------------|--------------------------|--------------------------|--------------------------| | Parameter Date Collected: | 06/12/02 | 10/18/02 | 10/18/02 | 06/26/02 | 07/03/02 | | Volatile Organics | | *** | <u> </u> | | | | 1.1.1-Trichloroethane | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | 1,1-Dichloroethane | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | 1,2-Dichloroethane | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | 2-Butanone | ND(0.012) | NS | ND(0.015) | ND(0.010) | ND(0.010) | | 2-Chloroethylvinylether | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | Acetone | ND(0.025) | NS | ND(0.031) | ND(0.020) | ND(0.021) | | Benzene | ND(0.00620) | NS | ND(0.00770) | ND(0.00510) | ND(0.0053) | | Carbon Disulfide | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | Chlorobenzene | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | Ethylbenzene | ND(0.00620) | NS | ND(0.00770) | ND(0.00510) | ND(0.0053) | | Methylene Chloride | ND(0.0062) | NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | Styrene
Tetrachloroethene | ND(0.00620) | NS
NS | ND(0.00770) | ND(0.00510) | ND(0.0053) | | Toluene | ND(0.0062) | NS
NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | Trichloroethene | ND(0.00620)
ND(0.0062) | NS
NS | ND(0.00770) | ND(0.00510) | ND(0.0053) | | Trichlorofluoromethane | ND(0.0062) | NS
NS | ND(0.0077)
ND(0.0077) | ND(0.0051)
ND(0.0051) | ND(0.0053)
ND(0.0053) | | Xylenes (total) | ND(0.0062) | NS NS | ND(0.0077) | ND(0.0051) | ND(0.0053) | | Semivolatile Organics | 110(0.0002) | 1,10 | 1 110(0.0077) | 140(0,0001) | (10(0.0000) | | 1,2,4,5-Tetrachlorobenzene | ND(0.410) | ND(0.510) | NS I | ND(0.380) | ND(0.350) | | 1,2,4-Trichlorobenzene | ND(0.410) | ND(0.510) | NS
NS | ND(0.380) | ND(0.350)
ND(0.350) | | 1,2-Dichlorobenzene | ND(0.410) | ND(0.510) | NS NS | ND(0.380) | ND(0.350) | | 1,2-Diphenylhydrazine | ND(0.41) | ND(0.51) | NS | ND(0.38) | ND(0.35) | | 1,3-Dichlorobenzene | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | 1,3-Dinitrobenzene | ND(0.830) | ND(1.00) | NS | ND(0.690) | ND(0.710) | | 1,4-Dichlorobenzene | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | 2,4-Dimethylphenol | ND(0.410) | ND(0.510) | NS | ND(0.380) | R | | 2-Chloronaphthalene | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | 2-Chiorophenol | ND(0.410) | ND(0.510) | NS | ND(0.380) | R | | 2-Methylnaphthalene | ND(0.410) | ND(0.510) | NS | 0.0840 J | ND(0.350) | | 2-Methylphenol | ND(0.410) | ND(0.510) | NS | ND(0.380) | R | | 2-Nitroaniline | ND(2.10) | ND(2.60) | NS | ND(1.90) | ND(1.80) | | 3&4-Methylphenol | ND(0.830) | ND(1.00) | NS | ND(0.690) | R | | 4-Chloroanitine | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | 4-Chlorobenzilate | ND(0.830) | ND(1.00) | NS NS | ND(0.690) | ND(0.710) | | 4-Phenylenediamine
Aceлaphthene | ND(0.83) J | ND(1.0) J | NS NS | ND(0.69) J | ND(0.71) J | | Acenaphthylene | ND(0.410)
ND(0.410) | ND(0.510)
ND(0.510) | NS NS | 0.170 J
ND(0.380) | ND(0.350)
ND(0.350) | | Acetophenone | ND(0.410) | ND(0.510) | NS NS | ND(0.380) | ND(0.350) | | Aniline | ND(0.410) | ND(0.510) | NS T | 5.80 | 0.420 | | Anthracene | ND(0.410) | ND(0.510) | NS | 0.410 | ND(0.350) | | Benzo(a)anthracene | ND(0.410) | ND(0.510) | NS | 1.40 | 0.0800 J | | Benzo(a)pyrene | ND(0.410) | ND(0.510) | NS | 1.20 | 0.0860 J | | Benzo(b)fluoranthene | ND(0.410) | ND(0.510) | NS | 1.40 | 0.120 J | | Benzo(g,h,i)perylene | ND(0.410) | ND(0.510) | NS | 0.930 | ND(0.350) | | Benzo(k)fluoranthene | ND(0.410) | ND(0.510) | NS | 1.10 | 0.0770 J | | Benzyl Alcohol | ND(0.830) | ND(1.00) | NS | ND(0.760) | R | | bis(2-Ethylhexyl)phthalate | ND(0.410) | ND(0.510) | NS | ND(0.340) | ND(0.350) | | Chrysene | ND(0.410) | ND(0.510) | NS | 1.50 | 0.200 J | | Dibenzo(a,h)anthracene | ND(0.410) | ND(0.510) | NS | 0.460 | ND(0.350) | | Dibenzofuran Di-A-1-01-01-01-01-01-01-01-01-01-01-01-01-0 | ND(0.410) | ND(0.510) | NS
NS | 0.0890 J | ND(0.350) | | Diethylphthalate | ND(0.410) | ND(0.510) | NS NS | ND(0.380) | ND(0.350) | | Dimethylphthalate | ND(0.410) | ND(0.510) | NS NS | ND(0.380) | ND(0.350) | | Di-n-Butylphthalate Diphenylamine | ND(0.410)
ND(0.41) | ND(0.510)
ND(0.51) | NS NS | 0.240 J
ND(0.38) | ND(0.350)
ND(0.35) | | Fluoranthene | ND(0.41)
ND(0.410) | ND(0.51) | NS NS | 1,80 | 0.260 J | | Fluorene | ND(0.410) | ND(0,510) | NS NS | 0.130 J | ND(0.350) | | Hexachiorobenzene | ND(0.410) | ND(0.510) | NS NS | ND(0.380) | ND(0.350) | | Indeno(1,2,3-cd)pyrene | ND(0.410) | ND(0.510) | NS NS | 0.780 | ND(0.350) | | Naphthalene | ND(0.410) | ND(0.510) | NS I | 0.160 J | ND(0.350) | | Nitrobenzene | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | N-Nitrosodiphenylamine | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | o-Toluidine | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Parameter Date Collected: 6612/02 | Averaging Area: | 4E | 4E | 4E | 4E | 4E |
--|--|---|---------------|---|---------------------------------------|---| | Parameter Date Collected: 06/12/02 10/18/02 06/26/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/02 07/03/03/03 07/03/03/03 07/03/03/03 07/03/03/03 07/03/03/03 07/03/03/03/03/03/03/03/03/03/03/03/03/03/ | Sample ID: | RAA4-03 | RAA4-03 | RAA4-03 | RAA4-04 | RAA4-07 | | Penticular/objective N2(0.410) | | _ | 1 3 | | T . | | | Penteshirophene ND[2 10] ND[2 60] NS ND[1 90] R Phenarithrene ND[0 410] ND[0 510] NS 180 C.220 J Phenol ND[0 410] ND[0 510] NS 0.240 J R Phenol ND[0 410] ND[0 510] NS 0.240 J R Phenol ND[0 410] ND[0 510] NS 0.240 J R Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.350) Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.350) Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.350) Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.350] Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.350] Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.380] Phenol ND[0 410] ND[0 510] NS ND[0.380] ND[0.380] Phenol ND[0 410] ND[0 510] NS 0.000031 0.000031 Phenol ND[0 510] ND[0 510] NS 0.000031 0.000031 Phenol ND[0 510] ND[0 510] NS 0.000031 0.000031 Phenol ND[0 510] ND[0 510] NS 0.0000032 0.000031 Phenol ND[0 510] ND[0 510] NS 0.0000032 0.000031 Phenol ND[0 510] ND[0 510] NS 0.0000032 0.000032 Phenol ND[0 510] ND[0 510] NS 0.000004 0.000002 Phenol ND[0 510] ND[0 510] NS 0.000004 0.000002 Phenol ND[0 510] ND[0 510] NS 0.000001 0.000001 | Semivolatile Organics (continued) | • | | | | | | Pentabliorophenois | Pentachlorobenzene | ND(0.410) | ND(0.510) | NS | ND(0.380) | ND(0.350) | | Phenol ND(0.419) | Pentachlorophenol | | ND(2.60) | NS | ND(1.90) | | | Phenol ND(0.419) | Phenanthrene | ND(0.410) | ND(0.510) | | 1.80 | | | Pyreine | Pheno! | ND(0.410) | | | | | | Pyrdine | Pyrene | ND(0.410) | | | 3.10 | 0.240 J | | 2.3.7.8-TCPF | Pyridine | ND(0.410) | | | ND(0.380) | | | TCDFs (total) | Furans | ······································ | * | *************************************** | • | <u> </u> | | TODEs (total) | 2.3.7.8-TCDF | 0.00000055 J | ND(0.0000021) | NS | 0.0000016 Y | 0.0000029 Y | | 12.3.7.8-PeCDF | | | | | | | | 2.3.4.7.8-PeCDF | 1,2,3,7,8-PeCDF | 0.0000013 J | | | | | | PeCDFs (total) | 2,3,4,7,8-PeCDF | | | | | | | 1,2,3,4,7,8+hCDF | PeCDFs (total) | *************************************** | · · · / · | | | | | 1.2,3,6.7,8-HxCDF | | | | | | | | 12.37.8.9-HxCDF | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <u> </u> | | | | | 2.3.4.6.7.8-HxCDF 0.0000043 J NID(0.0000026) NS 0.0000041 0.000015 J HxCDFs (total) 0.0000092 0.0000031 NS 0.000056 0.0000018 J 1.2.3.4.7.8-HyCDF 0.0000015 J 0.0000020 J NS 0.0000048 D 0.0000044 J 1.2.3.4.7.8-HyCDF 0.0000020 J ND(0.000026) NS 0.000011 J 0.0000044 J HyCDFs (total) 0.0000021 J 0.0000022 J NS 0.000011 J 0.00000083 J OCDF 0.0000051 J 0.0000032 J NS 0.0000024 J 0.00000045 J Dioxins DIOxid ND(0.0000018) X ND(0.0000024) NS ND(0.0000018) ND(0.0000034 J 0.00000034 | 1,2,3,7,8,9-HxCDF | | | | | | | HxCDPs (total) | | V-1-1-1-1-1 | | | | \$ | | 1.2.3.4.6.7.8-HpCDF 0.000015 J 0.000020 J NS 0.0000048 0.0000040 J 1.2.3.4.7.8.9-HpCDF 0.0000022 J ND(0.0000025) NS 0.0000013 D 0.0000049 J HpCDF (total) 0.0000022 J 0.0000022 NS 0.0000024 J 0.0000045 J Dioxins 0.0000031 J 0.0000022 J NS 0.0000024 J 0.0000045 J Dioxins 0.0000004 J ND(0.00000021 NS 0.0000004 J 0.00000032 J NS ND(0.0000018) ND(0.0000022) NS 0.00000038 ND(0.00000038 ND(0.0000028) NS 0.00000038 ND(0.0000038 ND(0.0000028) NS 0.00000038 ND(0.00000038 ND(0.0000028) NS 0.00000038 ND(0.0000038 ND(0.0000028) NS 0.00000038 ND(0.0000038 ND(0.0000028) NS 0.00000058 ND(0.0000038 ND(0.0000042) NS 0.00000058 ND(0.0000038 ND(0.0000042) NS 0.00000058 ND(0.0000058 NS 0.00000058 ND(0.0000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 ND(0.00000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 ND(0.0000058 NS 0.00000055 <td< td=""><td>HxCDFs (total)</td><td></td><td>(</td><td></td><td></td><td></td></td<> | HxCDFs (total) | | (| | | | | 1,2,3,4,7,8,9+pCDF | | *************************************** | | | | | | HpCDFs (total) | 1,2,3,4,7,8,9-HpCDF | | | *************************************** | | | | Dioxins Diox | HpCDFs (total) | | | | | | | Dioxins ND(0.0000012) X ND(0.0000024) NS ND(0.0000018) ND(0.0000022) X ND(0.0000021) ND(0.00000018) ND(0.00000022) X ND(0.00000034 0.00000038 1.2.3.7.8-PeCDD ND(0.00000018) X ND(0.0000026) NS ND(0.0000058) X ND(0.00000038) ND(0.00000058) X ND(0.0000058) ND(0.0000068) X ND(0.0000068) X ND(0.0000068) X ND(0.000012 X ND(0.0000068) X ND(0.000012 X ND(0.0000068) X ND(0.0000012 X ND(0.0000068) X ND(0.000012 X ND(0.0000068) X ND(0.000012 X ND(0.0000068) X ND(0.000008) X ND(0.000012 X ND(0.000008) X ND(0.000008) X ND(0.000012 X ND(0.000008) X ND(0.000008) X ND(0.000012 X ND(0.000008) X ND(0.000008) X ND(0.000008) X ND(0.000008) X ND(0.000008 X ND(0.000008) X ND(0.00008) X ND(0.00008) X ND(0.000012 X ND(0.000008) X ND(0.00008) ND(0.000 | OCDF | 0.00000051 J | | | | <u> </u> | | TCDDs (total) | Dioxins | **** | L | | | | | TCDDs (total) | 2,3,7,8-TCDD | ND(0.00000012) X | ND(0.0000024) | NS | ND(0.00000018) | ND(0.00000022) X | | 1,2,3,7,8-PeCDD | | | | | | | | PeCDDs (total) 0.00000070 ND(0.000042)
NS 0.0000012 0.0000056 1.2,3.4,7.8-HxCDD 0.00000017 J ND(0.0000026) NS 0.00000052 J 0.00000064 J 1.2,3.6,7.8-HxCDD 0.00000023 J ND(0.0000026) NS 0.00000052 J 0.00000065 J 1,2,3.7.8,9-HxCDD 0.00000011 J ND(0.0000026) NS ND(0.0000035) X 0.00000065 J 1,2,3.4,6,7.8-HpCDD 0.0000007 J 0.00000046 NS 0.0000061 0.0000012 1,2,3.4,6,7.8-HpCDD 0.00000067 J 0.0000039 J NS 0.0000040 0.000012 HpCDDs (total) 0.0000067 J 0.0000039 J NS 0.0000083 0.000012 OCDD 0.0000026 J 0.000022 J NS 0.000015 0.000013 Total TEQs (WHO TEFs) 0.0000011 J 0.000022 J NS 0.000035 0.000026 Inorganics Antenion ND(6.00) NS ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 7.70 Barlum | | | | | | | | 1.2,3,4,7,8-HxCDD 0.00000017 J ND(0.0000026) NS 0.00000055 J 0.00000046 J 1.2,3,6,7,8-HxCDD 0.00000023 J ND(0.0000026) NS 0.00000035 J 0.00000094 J 1.2,3,7,8-HxCDD 0.00000011 J ND(0.0000046) NS ND(0.0000035) X 0.0000065 J HxCDDs (total) 0.0000013 ND(0.0000046) NS 0.0000061 0.000012 0.0000012 1.2,3,4,6,7,8-HpCDD 0.0000012 0.0000039 J NS 0.0000040 0.000016 0.0000039 O.0000028 OCDD 0.0000025 J 0.0000039 NS 0.0000033 0.000028 0.0000035 0.000028 OCDD 0.0000026 J 0.000022 J NS 0.000035 0.000028 OCDD 0.0000026 J 0.000023 NS 0.0000035 0.0000038 Inorganics ND(6.00) ND(6.00) NS ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 7.70 3.10 7.70 Barium 36.0 41.0 NS 28.0 J 52.0 52.0 ND(6.00) Beryllium ND(0.500) ND(0.500) NS ND(0.500) NS ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) ND(0.500) NS ND(0.500) NS ND(0.500) ND(0.500) | | ······ | | | · | | | 1.2,3,6,7,8-HxCDD 0.00000023 J ND(0.0000026) NS 0.00000052 J 0.00000094 J 1,2,3,7,8,9-HxCDD 0.00000011 J ND(0.0000026) NS ND(0.0000035) X 0.00000065 J HxCDDS (total) 0.00000013 ND(0.0000046) NS 0.0000061 0.000012 1,2,3,4,6,7,8-HpCDD 0.0000007 J 0.0000039 J NS 0.0000083 0.000012 HpCDDs (total) 0.0000026 J 0.000023 J NS 0.0000083 0.000028 OCDD 0.0000026 J 0.000022 J NS 0.000035 0.000028 Inorganics 0.0000011 J 0.0000043 NS 0.0000035 0.000026 Inorganics ND(6.00) ND(6.00) NS ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 T 7.70 Beryllium ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 NS 6.20 ND(5.00) | | | | | | | | 1,2,3,7,8,9-HxCDD 0.00000011 J ND(0.0000026) NS ND(0.0000035) X 0.0000065 J HxCDDs (total) 0.0000013 ND(0.0000046) NS 0.0000061 0.000012 0.000012 1,2,3,4,6,7,8-HpCDD 0.00000067 J 0.0000039 J NS 0.0000040 0.000016 0.0000018 HpCDDs (total) 0.0000012 0.0000039 NS 0.0000033 0.000028 0.000015 0.000015 0.000013 OCDD 0.0000026 J 0.0000021 NS 0.0000035 NS 0.0000035 0.0000026 0.0000035 0.0000026 0.000015 0.0000035 0.0000026 Inorganics ND(6.00) NS ND(6.00) NS ND(6.00) NS ND(6.00) J 1.20 B ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 7.70 7.70 Barium 36.0 41.0 NS 28.0 J 52.0 ND(0.500) ND(0.500) Beryllium ND(0.500) ND(0.500) NS ND(0.500) NS ND(0.500) ND(0.500) ND(0.500) ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS NS ND(0.500) ND(0.500) ND(0.500) ND(0.500) ND(0.500) ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 10.0 NS 6.20 ND(5.00) ND(5.00) ND(0.500) ND(0.500) ND(0.500) ND(0.500) ND(0.500) Copper 14.0 35.0 NS NS NS NS ND(0.100) 0.200 ND(0.100) ND(0.120) NS NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS NS ND(0.100) NS ND(1.00) ND(1. | | | | | | | | HxCDDs (total) 0.0000013 ND(0.000046) NS 0.0000061 0.000012 1,2,3,4,6,7,8-HpCDD 0.0000067 J 0.0000039 J NS 0.0000040 0.000016 HpCDDs (total) 0.0000012 0.0000039 J NS 0.0000033 0.000028 OCDD 0.0000026 J 0.000023 J NS 0.000015 0.00013 Total TEQs (WHO TEFs) 0.0000011 0.0000043 NS 0.000035 0.000026 Inorganics | | ····· | | | | | | 1,2,3,4,6,7,8-HpCDD 0.0000067 J 0.0000039 J NS 0.0000040 0.000016 HpCDDs (total) 0.0000012 0.0000039 NS 0.0000083 0.000028 OCDD 0.0000021 0.000002 J NS 0.000015 0.00013 Total TEQs (WHO TEFs) 0.0000011 0.0000043 NS 0.0000035 0.0000026 Inorganics Antimony ND(6.00) ND(6.00) NS ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 7.70 Barium 36.0 41.0 NS 28.0 J 52.0 Beryllium ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chomium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Le | The state of s | | | | | | | HpCDDs (total) 0.0000012 0.0000039 NS 0.0000083 0.000028 | | | | | | | | OCDD 0.0000026 J 0.000022 J NS 0.000015 0.00013 Total TEQs (WHO TEFs) 0.0000011 0.0000043 NS 0.0000035 0.0000026 Inorganics National State of | | .,,,,, | | | | | | Total TEQs (WHO TEFs) 0.0000011 0.0000043 NS 0.0000035 0.0000026 Inorganics Antimony ND(6.00) ND(6.00) NS ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 7.70 Barium 36.0 41.0 NS 28.0 J 52.0 Beryllium ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 < | <u></u> | *************************************** | | | | | | ND(6.00) ND(6.00) NS ND(6.00) J 1.20 B | | | | | | | | Antimony ND(6.00) ND(6.00) NS ND(6.00) J 1.20 B Arsenic 4.00 10.0 NS 3.10 7.70 Barium 36.0 41.0 NS 28.0 J 52.0 Beryllium ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS 0.440 | | 0.0000011 | 0.00000 | 110 | 0.000000 | 0.0000020 | | Arsenic 4.00 10.0 NS 3.10 7.70 Barium 36.0 41.0 NS 28.0 J 52.0 Beryllium ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) ND(1.00) Sulfide 26.0 15.0 NS 0.440 B | | ND(6.00) | ND/6.00\ | NS | ND/6 00) I | 1 20 🗈 | | Barium 36.0 41.0 NS 28.0 J 52.0 Beryllium ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Silver ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(10 | | | | | | | | Beryllium ND(0.500) ND(0.500) NS ND(0.500) ND(0.500) Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Silver ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS < | | *************************************** | | | | | | Cadmium ND(0.500) 1.10 NS ND(0.500) ND(0.500) Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.2 | | | | | | | | Chromium 7.40 13.0 NS 4.00 14.0 Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J <td></td> <td></td> <td>· /</td> <td></td> <td></td> <td></td> | | | · / | | | | | Cobalt 5.40 10.0 NS 6.20 ND(5.00) Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | | | | | Copper 14.0 35.0 NS 12.0 J 83.0 Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | | | | | Cyanide ND(0.120) ND(0.150) NS ND(0.100) 0.200 Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | Lead 8.50 J 16.0 NS 4.90 67.0 Mercury ND(0.120) J 0.060 J NS
ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | ************************************** | - | | | | | Mercury ND(0.120) J 0.060 J NS ND(0.100) 0.0370 B Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | · · · · · · · · · · · · · · · · · · · | | | Nickel 13.0 21.0 NS 8.70 15.0 Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | | | | | Selenium ND(1.00) J ND(1.20) NS ND(1.00) J ND(1.00) Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | ~~~~~ | | *************************************** | | Silver ND(1.00) ND(1.20) NS 0.440 B ND(1.00) Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | | | | | Sulfide 26.0 15.0 NS 20.0 J 51.0 Thallium 1,40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | | | | | Thallium 1.40 B ND(2.3) J NS ND(1.50) J 3.30 Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | · | | | | Tin 10.0 B ND(12.0) NS ND(10.0) ND(10.0) Vanadium 7.50 15.0 NS 5.20 J 16.0 | | *************************************** | | | · | | | Vanadium 7.50 15.0 NS 5.20 J 16.0 | | | | | | | | | | | | | | | | | Zinc | 35.0 | 200 J | NS
NS | 5.20 J
26.0 | 15.0
41.0 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4E
RAA4-07 | 4E
RAA4-09 | 4E
RAA4-09 | 4E
RAA4-013 | 4E
RAA4-013 | |---|--------------------------|--------------------------|-----------------|--------------------------|-------------------------| | Sample Depth(Feet): Parameter Date Collected: | 1-3
07/03/02 | 0-1
06/12/02 | 3-6
06/12/02 | 0-1
06/12/02 | 3-6
06/1 2/02 | | Volatile Organics | 07/03/02 | 00/12/02 | U0/12/UZ | 00/12/02 | 00/12/02 | | 1.1.1-Trichloroethane | ND(0.0052) | ND(0.0056) | NS | ND(0.0057) | NS | | 1,1-Dichloroethane | ND(0.0052) | ND(0.0056) | NS NS | ND(0.0057) | NS NS | | 1.2-Dichloroethane | ND(0.0052) | ND(0.0056) | NS NS | ND(0.0057) | NS
NS | | 2-Butanone | ND(0.010) | ND(0.011) | NS | ND(0.011) | NS | | 2-Chloroethylvinylether | ND(0.0052) | ND(0.0056) | NS | ND(0.0057) | NS | | Acetone | ND(0.021) | ND(0.022) | NŞ | ND(0.023) | NS | | Benzene | ND(0.0052) | ND(0.00560) | NS | ND(0.00570) | NS | | Carbon Disulfide | ND(0.0052) | ND(0.0056) | NS | ND(0.0057) | NS | | Chlorobenzene | ND(0.0052) | ND(0.0056) | NS | ND(0.0057) | NS | | Ethylbenzene | ND(0.0052) | ND(0.00560) | NS | ND(0.00570) | NS | | Methylene Chloride | ND(0.0052) | ND(0.0056) | NS | ND(0.0057) | NS | | Styrene | ND(0.0052) | ND(0.00560) | NS | ND(0.00570) | NS NS | | Tetrachloroethene | ND(0.0052) | ND(0.0056) | NS | ND(0.0057) | NS NS | | Trichloroothogo | 0.0075 | ND(0.00560) | NS
NS | ND(0.00570) | NS
NS | | Trichloroethene Trichlorofluoromethane | ND(0.0052)
ND(0.0052) | ND(0.0056)
ND(0.0056) | NS
NS | ND(0.0057)
ND(0.0057) | NS
NS | | Xylenes (total) | ND(0.0052)
ND(0.0052) | ND(0.0056)
ND(0.0056) | NS
NS | ND(0.0057)
ND(0.0057) | NS
NS | | Semivolatile Organics | 14D(U.UUJE) | ן איט(ט.טטטטן | INO. | [ND(0.0007) | NO | | 1,2,4,5-Tetrachlorobenzene | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 1,2,4-Trichlorobenzene | ND(0.350)
ND(0.350) | ND(0.370)
ND(0.370) | NS
NS | ND(0.380)
ND(0.380) | NS
NS | | 1,2-Dichlorobenzene | ND(0.350) | ND(0.370) | NS NS | ND(0.380) | NS NS | | 1,2-Diphenylhydrazine | ND(0.35) | ND(0.37) | NS NS | ND(0.38) | NS | | .3-Dichlorobenzene | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS NS | | 1,3-Dinitrobenzene | ND(0.700) | . ND(0.750) | NS | ND(0.760) | NS | | 1,4-Dichlorobenzene | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 2,4-Dimethylphenol | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 2-Chloronaphthalene | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 2-Chlorophenol | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 2-Methylnaphthalene | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 2-Methylphenol | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 2-Nitroaniline | ND(1.80) | ND(1.90) | NS | ND(1.90) | NS | | 3&4-Methylphenol | ND(0.700) | ND(0.750) | NS | ND(0.760) | NS | | 1-Chloroaniline | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | 4-Chlorobenzilate | ND(0.700) | ND(0.750) | NS | ND(0.760) | NS | | 4-Phenylenediamine | ND(0.70) J | ND(0.75) J | NS | ND(0.76) J | NS | | Acenaphthene | ND(0.350) | ND(0.370) | NS
NS | ND(0.380) | NS | | Acenaphthylene
Acetophenone | ND(0.350)
ND(0.350) | ND(0.370)
ND(0.370) | NS
NS | ND(0.380)
ND(0.380) | NS
NS | | Aniline | 3.10 | ND(0.370) | NS NS | 0.860 | NS
NS | | Anthracene | ND(0.350) | ND(0.370) | NS
NS | 0.210 J | NS NS | | Benzo(a)anthracene | ND(0.350) | 0.420 | NS
NS | 0.960 | NS NS | | Benzo(a)pyrene | ND(0.70) J | 0.490 | NS | 1.00 | NS NS | | Benzo(b)fluoranthene | ND(0.70) J | 1.50 | NS | 1.20 | NS | | Benzo(g,h,i)perylene | ND(0.35) J | 0.950 | NS | 0.800 | NS | | Benzo(k)fluoranthene | ND(0.35) J | 0.750 | NS | 0.810 | NS | | Benzyl Alcohol | ND(0.700) | ND(0.750) | NS | ND(0.760) | NS | | pis(2-Ethylhexyl)phthalate | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | Chrysene | 0.130 J | 0.870 | NS | 1.00 | NS | | Diberizo(a,h)anthracene | ND(0.35) J | 0.370 J | NS | 0.260 J | NS | | Dibenzofuran | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | Diethylphthalate | ND(0.350) | ND(0.370) | NS
NS | ND(0.380) | NS NS | | Dimethylphthalate | ND(0.350) | ND(0.370) | NS
NS | ND(0.380) | NS NS | | Di-n-Butylphthalate | 0.130 J
ND(0.35) | ND(0.370) | NS
NS | 0.180 J | NS
NS | | Diphenylamine Diphenylamine | ND(0.35)
0.190 J | ND(0.37)
0.630 | NS
NS | ND(0.38) | NS
NS | | luoranthene
luorene | ND(0.350) | ND(0.370) | NS
NS | 1.80
ND(0.380) | NS
NS | | Hexachiorobenzene | ND(0.350) | ND(0.370) | NS
NS | ND(0.380) | NS
NS | | ndeno(1,2,3-cd)pyrene | ND(0.35) J | 0.740 | NS NS | 0.610 | NS NS | | Naphthalene | ND(0.350) | ND(0.370) | NS
NS | ND(0.380) | NS NS | | Vitrobenzene | 0.0950 J | ND(0.370) | NS NS | ND(0.380) | NS NS | | N-Nitrosodiphenylamine | ND(0.350) | ND(0.370) | NS NS | ND(0.380) | NS | | o-Toluidine | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4E | 4E | 4E | · 4E | 4E | |-----------------------------------|--------------------------|----------------------------|-----------------|----------------------------|------------------| | Sample ID: | RAA4-07 | RAA4-09 | RAA4-09 | RAA4-013 | RAA4-013 | | Sample Depth(Feet): | 1-3 | 0-1 | 3-6 | 0-1 | 3-6 | | Parameter Date Collected: | 07/03/02 | 06/12/02 | 06/12/02 | 06/12/02 | 06/12/02 | | Semivolatile Organics (continued) | | | | | | | Pentachiorobenzene | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | Pentachiorophenol | ND(1.80) | ND(1.90) | NS | ND(1.90) | NS | | Phenanthrene | 0.220 J | 0.180 J | NS | 1.00 | NS | | Phenol | 2.50 | ND(0.370) | NS | ND(0.380) | NS | | Pyrene | 0.240 J | 0.430 | NS | 1.60 | NS | | Pyridine | ND(0.350) | ND(0.370) | NS | ND(0.380) | NS | | Furans | | | | | | | 2,3,7,8-TCDF | 0.0000078 Y | 0.000017 Y | ND(0.00000011) | 0.0000022 Y | 0.00000091 J | | TCDFs (total) | 0.000101 | 0.00048 | 0.00000077 Q | 0.000021 | 0.000012 Q | | 1,2,3,7,8-PeCDF | 0.0000046 | 0.0000064 | ND(0.00000022) | 0.0000020 J | 0.00000083 J | | 2,3,4,7,8-PeCDF | 0.0000047 | 0.000080 | 0.00000019 J | 0.0000025 | 0.0000018 J | | PeCDFs (total) | 0.000072 QI | 0.00121 | 0.0000015 Q | 0.000028 | 0.000014 QI | | 1,2,3,4,7,8-HxCDF | 0.0000069 | 0.000013 | 0.00000012 J | 0.0000038 | 0.0000013 J | | 1,2,3,6,7,8-HxCDF | 0.0000036 | 0.000018 | 0.00000012 J | 0.0000021 J | 0.00000084 J | | 1,2,3,7,8,9-HxCDF | 0.0000010 J | 0.0000044 | ND(0.00000022) | 0.00000082 J | 0.00000036 J | | 2,3,4,6,7,8-HxCDF | 0.0000034 | 0.000059 | 0.00000017 J | 0.0000015 J | 0.00000098 J | | HxCDFs (total) | 0,000046 | 0.00082 | 0.0000014 | 0.000022 | 0.0000086 | | 1,2,3,4,6,7,8-HpCDF | 0.000014 | 0.000032 | 0.00000026 J | 0.0000023 | 0.0000027 | | 1,2,3,4,7,8,9-HpCDF | 0.0000016 J | 0.0000026 | ND(0.00000022) | 0.00000088 J | ND(0.00000039) X | | HpCDFs (total) | 0.000022 | 0.000084 | 0.00000026 | 0.0000047 | 0.0000027 | | OCDF | 0.000012 | 0.000013 | ND(0.00000045) | 0.0000021 J | 0.0000020 J | | Dioxins | | | | | | | 2,3,7,8-TCDD | ND(0.00000029) X | ND(0.00000022) X | ND(0.000000090) | ND(0.000000089) | ND(0.00000013) X | | TCDDs (total) | 0.000016 | 0.0000040 | 0.00000082 | 0.00000012 | 0.0000016 | | 1,2,3,7,8-PeCDD | 0.0000013 J | 0.0000010 J | 0.00000020 J | ND(0.00000022) | 0.00000025 J | | PeCDDs (total) | 0.000019 Q | 0.000015 | 0.0000036 | ND(0.00000033) | 0.0000030 Q | | 1,2,3,4,7,8-HxCDD | 0.0000017 J | 0.00000067 J | 0.00000032 J | 0.000000071 J | 0.00000023 J | | 1,2,3,6,7,8-HxCDD | 0.0000030 | 0.0000015 J | 0.00000040 J |
0.00000010 J | 0.00000034 J | | 1,2,3,7,8,9-HxCDD | 0.0000020 J | 0.0000011 J | 0.00000066 J | ND(0.000000092) X | 0.00000026 J | | HxCDDs (total) | 0.000044 | 0.000022 | 0.0000094 | 0.00000017 | 0.0000031 | | 1,2,3,4,6,7,8-HpCDD | 0.000025 | 0.000012 | 0.0000090 | 0.00000064 J | 0.0000017 J | | HpCDDs (total) | 0.000052 | 0.000026 | 0.000023 | 0.0000012 | 0.0000031 | | OCDD | 0.00026 | 0.000085 | 0.00037 | 0.0000026 J | 0.0000053 | | Total TEQs (WHO TEFs) | 0.0000074 | 0.000053 | 0.00000067 | 0.0000026 | 0.0000018 | | Inorganics | | , | | | | | Antimony | 0.860 B | ND(6.00) | NS | ND(6.00) | NS | | Arsenic | 8.50 | 5.30 | NS | 3.20 | NS | | Barium | 62.0 | 40.0 | NS | 24.0 | NS | | Beryllium | ND(0.500) | ND(0.500) | NS | ND(0.500) | NS | | Cadmium | ND(0.500) | ND(0.500) | NS | ND(0.500) | NS | | Chromium | 13.0 | 10.0 | NS | 8.00 | NS | | Cobalt | ND(5.00) | 6.40 | NS | 6.50 | NS | | Copper | 70.0 | 36.0 | NS NS | 11.0 | NS | | Cyanide | ND(0.210) | ND(0.110) | NS NS | ND(0.110) | NS | | Moreum/ | 66.0 | 40.0 | NS
NS | 7.10 J | NS
NS | | Mercury
Nickel | 0.0230 B
27.0 | ND(0.110) J
7.70 | NS
NS | ND(0.110) J | NS
NC | | | 27.0
ND(1.00) | 7.70
ND(1.00) J | NS
NS | 14.0
ND(1.00) 1 | NS
NS | | Selenium | | | NS
NS | ND(1.00) J | NS
NS | | Silver | ND(1.00) | ND(1.00) | NS | ND(1.00) | NS
NS | | | 45.0 | 63.0 | NS | 31.0 | NS NS | | Sulfide | 1.00 | 4 50 0 | | | | | Thallium | 1.60
ND/10.0\ | 1.50 B | NS
NS | 1.20 B | NS
NS | | | 1.60
ND(10.0)
15.0 | 1.50 B
ND(10.0)
17.0 | NS
NS
NS | 1.20 B
ND(3.70)
7.30 | NS
NS | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area:
Sample ID: | 4E
RAA4-015 | 4E
RAA4-016 | 4E
RAA4-019
1-3 | 4E
RAA4-025
0-1 | 4E
RAA4-025
3-6 | |---|------------------|---------------------------|--------------------------|----------------------------|------------------------| | Sample Depth(Feet): Parameter Date Collected: | 6-15
06/14/02 | 0-1
06/26/02 | 1-3
06/27/02 | 06/14/02 | 06/14/02 | | Volatile Organics | | | | | | | 1,1,1-Trichloroethane | NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | 1,1-Dichloroethane | NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | 1,2-Dichloroethane | NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | 2-Butanone | NS | ND(0.011) | 0.018 | ND(0.011) | ND(0.029) | | 2-Chloroethylvinylether | NS NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | Acetone Benzene | NS NS | ND(0.022) | 0.088 | ND(0.023) J
ND(0.00570) | 0.26
0.0580 | | Carbon Disulfide | NS
NS | ND(0.00560)
ND(0.0056) | ND(0.0056)
ND(0.0056) | ND(0.00570) | ND(0.029) | | Chlorobenzene | NS NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | 21 | | Ethylbenzene | NS NS | ND(0.00560) | 0.069 | ND(0.00570) | 0.0870 | | Methylene Chloride | NS NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | Styrene | NS | ND(0.00560) | ND(0.0056) | ND(0.00570) | ND(0.0290) | | Tetrachloroethene | NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | Toluene | NS | ND(0.00560) | 0.050 | ND(0.00570) | ND(0.0290) | | Trichloroethene | NS | ND(0.0056) | 0.032 | 0.0076 | ND(0.029) | | Trichlorofluoromethane | NS | ND(0.0056) | ND(0.0056) | ND(0.0057) | ND(0.029) | | Xylenes (total) | NS | ND(0.0056) | 0.18 | ND(0.0057) | 0.24 | | Semivolatile Organics | | | | | | | 1,2,4,5-Tetrachlorobenzene | NS | ND(0.510) | ND(8.70) | 0.320 J | 0.870 | | 1,2,4-Trichlorobenzene | NS | 0.240 J | ND(8.70) | 5.20 | 12.0 | | 1,2-Dichlorobenzene | NS | ND(0.510) | ND(8.70) | 0.240 J | 0.480 | | 1,2-Diphenylhydrazine | NS | ND(0.51) | ND(8.7) | ND(0.38) | ND(0.43) | | 1,3-Dichlorobenzene | NS | ND(0.510) | ND(8.70) | 0.590 | 1.40 | | 1,3-Dinitrobenzene | NS | ND(0.750) | ND(8.70) | ND(0. 7 70) | ND(0.790) | | 1,4-Dichlorobenzene | NS | ND(0,510) | ND(8.70) | 1.60 | 3.40 | | 2,4-Dimethylphenol | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | 2-Chloronaphthalene | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | 2-Chlorophenol | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | 2-Methylnaphthalene | NS | ND(0.510) | 100 | 0.0820 J | ND(0.430) | | 2-Methylphenol | NS
NS | ND(0.510) | ND(8.70) | 0.310 J | ND(0.430)
ND(2.20) | | 2-Nitroaniline | NS NS | ND(2.50)
ND(0.750) | ND(43.0)
ND(8.70) | ND(1.90)
0.350 J | ND(2.20)
ND(0.790) | | 3&4-Methylphenol | NS NS | ND(0.750)
ND(0.510) | ND(8.70)
ND(8.70) | ND(0.380) | ND(0.790) | | 4-Chloroaniline
4-Chlorobenzilate | NS NS | ND(0.750) | ND(8.70) | ND(0.386)
ND(0.770) | ND(0.790) | | 4-Chiologerizhate 4-Phenylenediamine | NS NS | ND(0.75) J | ND(8.7) J | ND(0.770) | ND(0.79) J | | Acenaphthene | NS | 0.370 J | 160 | ND(0.380) | ND(0.430) | | Acenaphthylene | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | Acetophenone | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | Aniline | NS | 4.40 | ND(8.70) | 14.0 | 1.60 | | Anthracene | NS | 0.780 | 180 | ND(0.380) | ND(0.430) | | Benzo(a)anthracene | NS | 2.40 | 140 | 0.240 J | 0.230 J | | Benzo(a)pyrene | NS | 2.00 | 140 | 0.280 J | 0.700 | | Benzo(b)fluoranthene | NS | 2.80 | 89.0 | 0.560 | 0.820 | | Benzo(g.h.i)perylene | NS | 1.20 | 68.0 | 0.480 | 0.780 | | Benzo(k)fluoranthene | NS | 2.10 | 90.0 | 0.310 J | 0.600 | | Benzyl Alcohol | NS | ND(1.00) | ND(17.0) | ND(0.770) | ND(0.860) | | bis(2-Ethylhexyl)phthalate | NS NS | ND(0.370) | ND(4.30) | 3.40 | ND(0.390) | | Chrysene | NS
NS | 3.00 | 160 | 0.340 J | 0.450 | | Dibenzo(a,h)anthracene | NS
NS | 0,480 J
0,360 J | 18.0
87.0 | ND(0,380)
ND(0,380) | ND(0.430)
ND(0.430) | | Dibenzofuran Diethylohthalate | NS NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | Directly iphthalate | NS NS | ND(0.510) | ND(8.70)
ND(8.70) | ND(0.380) | ND(0.430) | | Di-n-Butylphthalate | NS NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | Diphenylamine | NS NS | ND(0.51) | ND(8.7) | ND(0.38) | ND(0.430) | | Fluoranthene | NS NS | 5.20 | 290 | 0.290 J | 0.170 J | | Fluorene | NS | 0.320 J | 160 | ND(0.380) | ND(0.430) | | Hexachlorobenzene | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0,430) | | Indeno(1,2,3-cd)pyrene | NS | 0.980 | 45.0 | 0.300 J | 0.540 | | Naphthalene | NS | 0.110 J | 280 | 0.110 J | ND(0.430) | | Nitrobenzene | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | N-Nitrosodiphenylamine | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | o-Toluidine | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | ## PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4E | 4E | 4E | 4E | 4E | |-----------------------------------|--------------------------|-------------|----------------|---------------|-------------| | Sample ID: | RAA4-015 | RAA4-016 | RAA4-019 | RAA4-025 | RAA4-025 | | Sample Depth(Feet): | | 0-1 | 1-3 | 0-1 | 3-6 | | Parameter Date Collected: | 06/14/02 | 06/26/02 | 06/27/02 | 06/14/02 | 06/14/02 | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | NS | ND(0.510) | ND(8.70) | 0.420 | ND(0.430) | | Pentachiorophenol | NS | ND(2.50) | ND(43.0) | ND(1.90) | ND(2.20) | | Phenanthrene | NS | 3.20 | 790 | 0.220 J | 0.120 J | | Phenol | NS | 0.590 | ND(8.70) | 2.30 | ND(0.430) | | Pyrene | NS | 5.00 | 700 | 0.440 | 0.760 | | Pyridine | NS | ND(0.510) | ND(8.70) | ND(0.380) | ND(0.430) | | Furans | | | | | | | 2,3,7,8-TCDF | 0.00011 Y [0.00010 Y] | 0.00063 Y | ND(0.000055) | 0.0024 YEJ | 0.032 Y | | TCDFs (total) | 0.0024 및 [0.0019 및] | 0.0291 | ND(0.000055) Q | 0.020 ! | 0.261 | | 1,2,3,7,8-PeCDF | 0.00013 QI [0.00010 QI] | 0.00027 | 0.000082 J | 0.0016 | 0.021 | | 2,3,4,7,8-PeCDF | 0.00018 Q [0.00011 Q] | 0.0041 | ND(0.000054) X | 0.0035 | 0.037 | | PeCDFs (total) | 0.0021 QIJ [0.0012 QIJ] | 0.041 QI | 0.00024 Q | 0.0351 | 0.28 ! | | 1,2,3,4,7,8-HxCDF | 0.00024 [[0.00021] | 0.00092 | 0.00016 J | 0.0042 | 0.054 | | 1,2,3,6,7,8-HxCDF | 0.00020 [[0.00015 i] | 0.0010 | 0.000092 J | 0.0024 | 0.027 | | 1,2,3,7,8,9-HxCDF | 0.000066 [0.000044] | 0.00030 | ND(0.00010) | 0.00050 | 0.0051 | | 2,3,4.6,7,8-HxCDF | 0.00026 [0.00020] | 0.0034 | ND(0.00010) | 0.0024 | 0.015 | | HxCDFs (total) | 0.0021 [[0.0016]] | 0.057 | 0.00046 Q | 0.036 | 0.231 | | 1,2,3,4,6,7,8-HpCDF | 0.00080 [0.00053] | 0.0024 | 0.00013 JQ | 0.0042 | 0.040 J | | 1,2,3,4,7,8,9-HpCDF | 0.000090 [0.000064] | 0.00024 | 0.000063 J | 0.00087 | 0.0085 | | HpCDFs (total) | 0.0012 [0.00077] | 0.0071 | 0,00013 Q | 0.0088 | 0.069 J | | OCDF | 0.00047 [0.00031] | 0.00099 | 0.00015 J | 0.0039 | 0.10 | | Dioxins | | L | | 1 0.0000 | 0.101 | | 2,3,7,8-TCDD | 0.000012 Q [0.0000090 Q] | 0.0000039 J | ND(0.000046) Q | 0.000016 | 0.00034 | | TCDDs (total) | 0.00033 Q [0.00023 Q] | 0.000058 | ND(0.000046) | 0.00045 | 0.00034 | | 1,2,3,7,8-PeCDD | 0.000024 Q [0.000022 Q] | 0.000021 | ND(0.00010) | ND(0.00013) X | 0.0014 | | PeCDDs (total) | 0.00038 Q [0.00028 Q] | 0.00012 Q | ND(0.00010) Q | 0.00086 | 0.0014 | | 1,2,3,4,7,8-HxCDD | 0.000023 [0.000021] | 0.000031 | ND(0.00010) | 0.000086 | 0.0014 | | 1,2,3,6,7,8-HxCDD | 0.000046 [0.000038] | 0.000031 | ND(0.00010) | 0.00015 | 0.0022 | | 1,2,3,7,8,9-HxCDD | 0.000040 [0.000032] | 0.000032 | ND(0.00010) | 0.00013 | 0.0022 | | HxCDDs (total) | 0.00064 [0.00053 Q] | 0.00053 | ND(0.00014) | 0.00012 | 0.0017 | | 1,2,3,4,6,7,8-HpCDD | 0.00024 [0.00019] | 0.00026 | 0.00021 J | 0.00056 Q | 0.032 | | HpCDDs (total) | 0.00049 [0.00040] | 0.00055 | 0.00039 | 0.00036 Q | 0.011 | | OCDD | 0.00041 [0.00031] | 0.0013 | ND(0.0016) | 0.0012 Q | 0.025 | | Total TEQs (WHO TEFs) | 0.00024 [0.00018] | 0.0028 | 0.00015 | 0.0072 | 0.025 | | Inorganics | 3.3332.1 [0.333.13] | 0.0020 | 0.00010 | 0.0032 | 0.036 | | Antimony | NS | ND(6.00) J | ND(6.00) | 15.0 | 35.0 | | Arsenic | NS NS | 6.10 | 6.50 | 12.0 | 11.0 | | Barium |
NS | 83.0 J | 100 | 97.0 | 190 | | Beryllium | NS NS | ND(0.500) | 1,10 | ND(0.500) J | ND(0.500) J | | Cadmium | NS NS | 2.30 | 0.910 | 4.00 | 8.80 | | Chromium | NS NS | 22.0 | 17.0 | 160 | 93.0 | | Cobalt | NS | 9.60 | 7.00 | 8.60 | 10.0 | | Copper | NS | 9100 J | 1600 | 560 | 7400 | | Cyanide | NS | ND(0.110) | 3.60 | 1,40 | 0.550 | | Lead | NS NS | 850 | 930 | 2000 | 1800 | | Mercury | NS | 2.10 | ND(0.110) | 0.920 | 1.60 | | Vickel | NS | 25.0 | 39.0 | 45.0 | 75.0 | | Selenium | NS | ND(1.00) J | ND(1.00) J | ND(1.00) J | ND(1.00) J | | Silver | NS | ND(1.00) | ND(1.00) | 13.0 | ND(1.00) 3 | | Sulfide | NS | 25.0 J | 510 | 35.0 | 62.0 | | Thallium · | NS | 2.10 J | 3.00 J | 1.30 J | 2.40 J | | Tin Tin | NS | 27.0 J | 54.0 | 96.0 | 140 | | Vanadium | NS | 14.0 J | 28.0 | 19.0 | 12.0 | | Zinc | ***** | 570 | 870 | 15.0 | 12.0 | | Averaging Area:
Sample ID: | 4E
RAA4-P3 | 4E
RAA4-P6 | 4E
RAA4-P14 | 4E
RAA4-P16 | 4E
RAA4-Q05 | |---|---------------------------|---------------------------|---------------------------|----------------|------------------------------| | Sample Depth(Feet): Parameter Date Collected: | 0-1 | 0-1 | 0-1 | 3-6 | 3-6 | | Parameter Date Collected: Volatile Organics | 07/08/02 | 06/26/02 | 06/26/02 | 06/17/02 | 06/27/02 | | 1,1,1-Trichloroethane | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) | | 1.1-Dichloroethane | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) | | 1.2-Dichloroethane | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) | | 2-Butanone | ND(0.011) | ND(0.011) | ND(0.011) | NS | ND(0.011) | | 2-Chloroethylvinylether | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) | | Acetone | ND(0.022) | ND(0.022) | ND(0.022) | NS | ND(0.022) | | Benzene | ND(0.00550) | ND(0.00550) | ND(0.00560) | NS | ND(0.00550) | | Carbon Disulfide | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) | | Chlorobenzene | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) J | | Ethylbenzene | ND(0.00550) | ND(0.00550) | ND(0.00560) | NS | ND(0.00550) | | Methylene Chloride | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) | | Styrene | ND(0.00550) | ND(0.00550) | ND(0.00560) | NS
No | ND(0.0055) J | | Tetrachloroethene Toluene | ND(0.0055)
ND(0.00550) | ND(0.0055)
ND(0.00550) | ND(0.0056)
ND(0.00560) | NS
NS | ND(0.0055) J
ND(0.0055) J | | Trichloroethene | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS | ND(0.0055) 3 | | Trichlorofluoromethane | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS NS | ND(0.0055) | | Xylenes (total) | ND(0.0055) | ND(0.0055) | ND(0.0056) | NS
NS | ND(0.0055) J | | Semivolatile Organics | | | 1 | | | | 1,2,4,5-Tetrachlorobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 1,2,4-Trichlorobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 1,2-Dichlorobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 1,2-Diphenylhydrazine | ND(0.37) | ND(0.37) | ND(0.38) | NS | ND(0.37) J | | 1,3-Dichlorobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 1,3-Dinitrobenzene | ND(0.740) | ND(0.740) | ND(0.750) | NS | ND(0.740) | | 1,4-Dichlorobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 2,4-Dimethylphenol | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 2-Chloronaphthalene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | 2-Chlorophenol | ND(0.370) | ND(0.370) | ND(0.380) | NS NS | ND(0.370) | | 2-Methylnaphthalene
2-Methylphenol | 0.0800 J
ND(0.370) | 0.120 J | ND(0.380) | NS
NS | ND(0.370) | | 2-Nitroaniline | ND(0.370)
ND(1.90) | 0.230 J
ND(1.90) | ND(0.380)
ND(1.90) | NS
NS | ND(0.370)
ND(1.90) | | 3&4-Methylphenol | ND(0.740) | ND(1.90)
ND(0.740) | ND(0.750) | NS NS | ND(1.90)
ND(0.740) | | -Chloroaniline | ND(0.370) | ND(0.370) | ND(0.380) | NS NS | ND(0.370) | | 4-Chlorobenzilate | ND(0.740) | ND(0.740) | ND(0.750) | NS NS | ND(0.740) | | 1-Phenylenediamine | ND(0.74) J | ND(0.74) J | ND(0,75) J | NS | ND(0.74) J | | Acenaphthene | ND(0.370) | 1.10 | ND(0.380) | NS | ND(0.370) | | Acenaphthylene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | Acetophenone | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | Aniline | ND(0.370) | 21.0 | ND(0.380) | NS | ND(0.370) | | Anthracene | ND(0.370) | 0.890 | ND(0.380) | NS | ND(0.370) | | Benzo(a)anthracene | 0.200 J | 2.70 | ND(0.380) | NS NS | ND(0.370) | | Benzo(a)pyrene Benzo(b)fluoranthene | 0.530
0.840 | 2.30 | ND(0.380) | NS
Ne | ND(0.370) | | Benzo(g,h,i)perylene | 0.760 | 2.20
1.30 | ND(0.380)
ND(0.380) | NS
NS | ND(0.370)
ND(0.370) | | Benzo(k)fluoranthene | 0.620 | 2.50 | ND(0.380) | NS
NS | ND(0.370)
ND(0.370) | | Benzyl Alcohol | ND(0.740) | ND(0.740) | ND(0.750) | NS | ND(0.74) J | | pis(2-Ethylhexyl)phthalate | ND(0.360) | ND(0.360) | ND(0.370) | NS NS | ND(0.360) | | Chrysene | 0.300 J | 2.90 | 0.200 J | NS | ND(0.370) | | Dibenzo(a,h)anthracene | 0.290 J | ND(0.370) | ND(0.380) | NS | ND(0.370) | | Dibenzofuran | ND(0.370) | 0.450 | ND(0.380) | NS | ND(0.370) | | Diethylphthalate | ND(0.370) | ND(0.370) | ND(0,380) | NS | ND(0.370) | | Dimethylphthalate | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | Di-n-Butylphthalate | ND(0.370) | 1.20 | ND(0.380) | NS | ND(0.370) | | Diphenylamine | ND(0.37) | ND(0.37) | ND(0.38) | NS | ND(0.37) | | Fluoranthene | 0.340 J | 4.90 | ND(0.380) | NS
NS | ND(0.370) | | Fluorene
Hexachlorobenzene | ND(0.370)
ND(0.370) | 0.720
ND(0.370) | ND(0.380)
ND(0.380) | NS
NS | ND(0.370)
ND(0.370) | | ndeno(1,2,3-cd)pyrene | 0.740 | 1.20 | ND(0.380) | NS NS | ND(0.370)
ND(0.370) | | Vaphthalene | 0.0900 J | 0.340 J | ND(0.380) | NS | ND(0.370)
ND(0.370) | | Vitrobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | | N-Nitrosodiphenylamine | ND(0.370) | ND(0.370) | ND(0.380) | NS NS | ND(0.370) | | >-Toluidine | ND(0.370) | ND(0.370) | ND(0.380) | NS | ND(0.370) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS | Averaging Area: | 4E | 4E | 4E | 4E | 4E | |-----------------------------------|--|------------------|----------------------------|----------------|---------------------------| | Sample ID: | RAA4-P3 | RAA4-P6 | RAA4-P14 | RAA4-P16 | RAA4-Q05 | | Sample Depth(Feet): | 0-1 | 0-1 | 0-1 | 3-6 | 3-6 | | Parameter Date Collected: | 07/08/02 | 06/26/02 | 06/26/02 | 06/17/02 | 06/27/02 | | Semivolatile Organics (continued) | | | | | | | Pentachlorobenzene | ND(0.370) | ND(0.370) | ND(0.380) | NS NS | ND(0.370) | | Pentachicrophenol | ND(1.90) | ND(1.90) | ND(1.90) | NS | ND(1.90) | | Phenanthrene | 0.110 J | 5.40 | ND(0.380) | NS | ND(0.370) | | Phenol | ND(0.370) | 1.40 | ND(0.380) | NS | ND(0,370) | | Pyrene | 0.320 J | 5.80 | ND(0.380) | NS | ND(0.370) | | Pyridine | ND(0.370) | ND(0.370) | ND(0.380) | NS NS | ND(0.370) | | Furans | ······································ | | <u></u> | | 4 | | 2,3,7,8-TCDF | 0.000029 Y | 0.000020 Y | 0.0000042 Y | 0.00070 YEJ | 0.00000040 J | | TCDFs (total) | 0.00022 | 0.00017 | 0.000035 | 0.0043 QI | 0.0000069 | | 1,2,3,7,8-PeCDF | 0.000012 | 0.0000068 J | 0.0000016 J | 0.00087 Q | 0.00000041 J | | 2,3,4,7,8-PeCDF | 0.000037 | 0.000024 | 0.0000073 | 0.0021 EJ | 0.000000773 J | | PeCDFs (total) | 0.00029 QI | 0.00024 Q | 0.00012 | 0.0098 QI | 0.0000070 | | 1,2,3,4,7,8-HxCDF | 0.000035 | 0,000016 | 0.0000041 | 0.0038 EIJ | 0.0000075 J | | 1,2,3,6,7,8-HxCDF | 0.000017 | 0.000011 J | 0.0000040 | 0.0011 EIJ | 0.00000057 J | | 1,2,3,7,8,9-HxCDF | 0.0000073 | 0.0000034 J | ND(0.0000011) X | 0.0020 EJ | 0.00000037 J | | 2,3,4,6,7,8-HxCDF | 0.000027 | 0.000024 | 0.000012 | 0.0012 EJ | 0.000000283 | | HxCDFs (total) | 0.00034 | 0.00038 | 0.00012 | 0.013 | 0.0000065 | | 1,2,3,4,6,7,8-HpCDF | 0.000040 | 0.000034 | 0.000011 | 0.0014 EJ | 0.0000003 | | 1,2,3,4,7,8,9-HpCDF | 0.0000085 | 0.0000045 J | 0.0000015 J | 0.0014 EJ | 0.0000025
0.00000016 J | | HpCDFs (total) | 0.000092 | 0.000038 | 0.000029 | 0.0012 23 | 0.0000035 | | OCDF | 0.000059 | 0.000028 | 0.000023 | 0.0041 | 0.0000033
0.0000020 J | | Dioxins | 0.000000 | 0.000020 | 0.0000443 | 0.00141 | 0.00000203 | | 2,3,7,8-TCDD | ND(0.00000032) X | ND(0.00000050) | ND(0.00000038) | 0.0000025 | ND(0.00000015) | | TCDDs (total) | 0.0000032 | 0.000010 | ND(0.00000038) | 0.000055 Q | 0.0000013 | | 1.2.3.7.8-PeCDD | ND(0.0000012) X | ND(0.00000082) X | ND(0.00000034) | ND(0.000092) X | 0.0000013
0.00000023 J | | PeCDDs (total) | 0.0000033 | 0.0000054 Q | ND(0.00000034) | 0.000039 Q | 0.000000233 | | 1,2,3,4,7,8-HxCDD | 0.0000003
0.00000074 J | 0.0000027 J | ND(0.00000034) | 0.000009 Q | 0.0000010
0.00000023 J | | 1,2,3,6,7,8-HxCDD | 0.000014 | 0.0000027 S | ND(0.00000035) | 0.0000071 | ND(0.00000233 | | 1,2,3,7,8,9-HxCDD | 0.0000046 | ND(0.0000036) X | ND(0.00000035) | 0.000000 | ND(0.00000029) X | | HxCDDs (total) | 0.00013 | 0.000038 | 0.00000069 | 0.000000 | 0.0000047 | | 1,2,3,4,6,7,8-HpCDD | 0.000043 | 0.000038 | 0.00000003
0.00000020 J | 0.00013 | 0.0000047 | | HpCDDs (total) | 0.000090 | 0.00015 | 0.0000039 | 0.00010 | 0.0000030 | | OCDD | 0.00030 | 0.00073 | 0.0000039 | 0.00010 | 0.000080 | | Total TEQs (WHO TEFs) | 0.00018 | 0.00071 | 0.0000099 | 0.0020 | 0.000080 | | Inorganics | 0.000004 | 0.000023 | 0.000008 | 0.0020 | 0.0000011 | | Antimony | 1.40 B | ND(6.00) J | ND(6.00) J | l NS | 6,40 | | Arsenic | 6.40 | 5.80 | 3.80 | NS
NS | 12.0 | | Barium | 1400 | 53.0 J | 26.0 J | NS
NS | 24.0 | | Beryllium | ND(0.500) | ND(0.500) | ND(0.500) | NS
NS | ND(0.500) | | Cadmium | 0.110 B | ND(0.500) | ND(0.500) | NS NS | 0.980 | | Chromium | 22.0 | 13.0 | 5.40 | NS NS | | | Cobalt | ND(5.00) | ND(5.00) | 6.40 | NS NS | 18.0
8.20 | | Copper | 44.0 | | | | | | Cyanide | 0.140 B | 0.190
0.190 | 11.0 J
ND(0.110) | NS
NS | 17000
0.100 B |
 Lead | 190 | 130 | 6.50 | NS
NS | 160 | | Mercury | 0.100 B | ND(0.110) | ND(0.110) | NS
NS | ND(0.110) | | Nickel | 12.0 | 9.50 | 12.0 | NS NS | 16.0 | | Selenium | ND(1.00) | ND(1.00) J | ND(1.00) J | NS
NS | ND(1.00) J | | Silver | ND(1.00) | ND(1.00) 3 | ND(1.00) 3 | NS
NS | ND(1.00) 3 | | Sulfide | 35.0 | 110 J | 13.0 J | NS
NS | 300 | | Thallium | 2.20 | 1,60 J | 1.00 J | NS NS | | | Tin | ND(10.0) | ND(11.0) | 7.00 J
ND(10.0) | NS NS | 5.90
270 | | Vanadium | 14.0 | 21.0 J | 6.50 J | | | | Zinc | 120 | 170 | | NS
NS | 23.0 | | (LIII) | 12U | 1 / U | 34.0 | NS | 3200 | | Averaging Area:
Sample ID:
Sample Depth(Feet): | 4E
RAA4-Q6
1-3 | 4E
RAA4-Q8 | 4E
RAA4-R4 | 4E
RAA4-R5 | |--|--------------------------|-----------------|---------------------------|---------------| | Parameter Date Collected: | 1-3
06/18/02 | 0-1
06/26/02 | 0-1 | 0-1 | | Volatile Organics | 00/10/02 | 00/20/02 | 06/26/02 | 06/26/02 | | 1,1,1-Trichloroethane | NO COCA | l NEVO ASEON | 15 (0.0000 Minus 2700) | 110/2-25 | | 1.1-Dichloroethane | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0,0058) | | 1,2-Dichloroethane | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | 2-Butanone
2-Chloroethylvinyletner | ND(0.011) | ND(0.010) | ND(0.012) [ND(0.012)] | ND(0.012) | | 2-Onioroethylvinylether
Acetone | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | | ND(0.022) | ND(0.021) | ND(0.024) [ND(0.024)] | ND(0.023) | | Benzene Cartes | ND(0.00540) | ND(0.0052) | ND(0.00600) [ND(0.00600)] | ND(0.00580) | | Carbon Disulfide | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | Chlorobenzene
Ethylbenzene | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | Methylene Chloride | ND(0.00540) | ND(0.0052) | ND(0.00600) [ND(0.00600)] | ND(0.00580) | | Styrene | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | Tetrachloroethene | ND(0.00540) | ND(0.0052) | ND(0.00600) [ND(0.00600)] | ND(0.00580) | | Toluene | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | | ND(0.00540) | ND(0.0052) | ND(0.00600) [ND(0.00600)] | ND(0.00580) | | Frichloroethene Frichlorofluoromethane | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | (ylenes (total) | ND(0.0054)
ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | | ND(0.0054) | ND(0.0052) | ND(0.0060) [ND(0.0060)] | ND(0.0058) | | Semivolatile Organics | | · | | | | ,2,4,5-Tetrachlorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | 1,2,4-Trichlorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [0.250 J] | 0.35 J | | ,2-Dichlorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | ,2-Diphenylhydrazine | ND(0.36) | ND(0.35) | ND(0.40) [ND(0.44)] | ND(0.39) J | | ,3-Dichlorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0,440)] | ND(0.39) J | | ,3-Dinitrobenzene | ND(0.720) | ND(0.700) | ND(0.800) [ND(0.810)] | ND(0.78) J | | ,4-Dichlorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | 2,4-Dimethylphenol | ND(0.360) | R | ND(0.400) [ND(0.440)] | ND(0.390) | | -Chloronaphthalene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | 2-Chlorophenol | ND(0.360) | R | ND(0.400) [ND(0.440)] | ND(0.390) | | 2-Methylnaphthalene | ND(0.360) | ND(0.350) | ND(0.400) [0.120 J] | ND(0.39) J | | ?-Methylphenol | ND(0.360) | R | ND(0.400) [ND(0.440)] | ND(0.390) | | 2-Nitroaniline | ND(1.80) | ND(1.80) | ND(2.00) [ND(2.20)] | ND(2.0) J | | &4-Methylphenol | ND(0.720) | R | ND(0.800) [ND(0.810)] | ND(0.780) | | -Chloroaniline | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | -Chlorobenzilate | ND(0.720) | ND(0.700) | ND(0.800) [ND(0.810)] | ND(0.78) J | | I-Phenylenediamine | ND(0.72) J | ND(0.70) J | ND(0.80) J [ND(0.81) J] | ND(0.78) J | | Acenaphthene | ND(0.360) | ND(0.350) | 0.089 J [0.96 J] | 0.69 J | | Acenaphthylene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | Acetophenone | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | Aniline | ND(0.360) | ND(0.350) | ND(0.400) [0.980] | 4.1 J | | Anthracene | ND(0.360) | ND(0.350) | ND(0.400) [0.760] | 0.69 J | | Benzo(a)anthracene | ND(0.360) | ND(0.350) | 0.27 J [0.87 J] | 2.4 J | | Benzo(a)pyrene | ND(0.36) J | ND(0.350) | 0.49 J [2.0 J] | 4.7 J | | Benzo(b)fluoranthene | ND(0.36) J | ND(0.350) | 0.41 J [1.8 J] | 4.4 J | | Benzo(g,h,i)perylene | ND(0.360) | ND(0.350) | ND(0.400) [1.00] | 3.6 J | | Benzo(k)fluoranthene | ND(0.360) | ND(0.350) | 0.29 J [1,5 J] | 3.8 J | | Benzyl Alcohol | ND(0.720) | R | ND(0.800) [ND(0.890)] | ND(0.780) | | is(2-Ethylhexyl)phthalate | ND(0.360) | ND(0.340) | ND(0.390) [ND(0.400)] | ND(0.38) J | | hrysene | ND(0.360) | ND(0.350) | 0.32 J [0.97 J] | 2.4 J | | Dibenzo(a,h)anthracene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | ibenzofuran | ND(0.360) | ND(0.350) | ND(0.400) [0.270 J] | ND(0.78) J | | hethylphthalate | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | 1.3 J | | imethylphthalate | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | 0.28 J | | ni-n-Butylphthalate | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | iphenylamine | ND(0.36) | ND(0.35) | ND(0.40) [ND(0.44)] | ND(0.39) J | | Juoranthene | ND(0.360) | ND(0.350) | 0.50 J [2.6 J] | 5.1 J | | luorene | ND(0.360) | ND(0.350) | ND(0.400) [0.570] | 0.44 J | | lexachlorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | ndeno(1,2,3-cd)pyrene | ND(0.360) | ND(0.350) | ND(0.400) [0.820] | 3.2 J | | laphthalene | ND(0.360) | ND(0.350) | ND(0.400) [0.440] | 0.30 J | | litrobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | I-Nitrosodiphenylamine | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | Averaging Area: | 4E | 4E | 4E | 4E | |--|---|-----------------------|------------------------------------|------------------| | Sample ID: | RAA4-Q6 | RAA4-Q8 | RAA4-R4 | RAA4-R5 | | Sample Depth(Feet): | 1-3 | 0-1 | 0-1 | 0-1 | | Parameter Date Collected: | 06/18/02 | 06/26/02 | 06/26/02 | 06/26/02 | | Semivolatile Organics (continued) | | | , | | | Pentachiorobenzene | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | Pentachiorophenol | ND(1.80) | R | ND(2.00) [ND(2.20)] | ND(2.00) | | Phenanthrene | ND(0.360) | ND(0.350) | 0.50 J [3.3 J] | 3.6 J | | Phenol | ND(0.360) | ND(0.350) | ND(0.400) [0.0960 J] | 0.370 J | | Pyrene | ND(0.360) | ND(0.350) | 0.84 J [2.8 J] | 3.8 J | | Pyridine | ND(0.360) | ND(0.350) | ND(0.400) [ND(0.440)] | ND(0.39) J | | Furans | | | | | | 2,3,7,8-TCDF | 0.0000020 Y | 0.0000061 Y | 0.00019 YJ [0.00039 YJ] | 0.00021 Y | | TCDFs (total) | 0.000015 | 0.000073 | 0.0020 J [0.0042 J] | 0.0023 | | 1,2,3,7,8-PeCDF | 0.00000047 J | 0.0000035 | 0.00013 I J [0.00026 J] | 0.00029 | | 2,3,4,7,8-PeCDF | 0.0000024 | 0.000012 | 0.00024 J [0.00055 J] | 0.00091 | | PeCDFs (total) | 0.000021 | 0.000085 | 0.0024 QIJ [0.0044 QIJ] | 0.0050 Q | | 1,2,3,4,7,8-HxCDF | 0.00000080 J | 0.0000039 | 0.00040 J [0.00075 J] | 0.0035 | | 1,2,3,6,7,8-HxCDF | 0.00000041 J | 0.0000042 | 0.00022 [0.00034] | 0.0015 | | 1,2,3,7,8,9-HxCDF | ND(0.00000021) | 0.0000012 J | 0.000083 [0.00013] | 0.00098 | | 2,3,4,6,7,8-HxCDF | 0,0000010 J | 0.000016 | 0.00023 J [0.00040 J] | 0.00078 | | HxCDFs (total) | 0.000013 | 0.00024 | 0.0032 I J [0.0057 IJ] | 0.013 Q | | 1,2,3,4,5,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF | 0.00000082 J | 0.000011 | 0.00041 J [0.00071 J] | 0.00089 | | | R | 0.0000015 J | 0.00010 [0.00016] | 0.00076 | | HpCDFs (total) OCDF | 0.0000020 | 0.000033 | 0.00087 J [0.0015 J] | 0.0025 | | Dioxins | 0.00000043 J | 0.0000040 J | 0.00027 J (0.00055 J) | 0.00086 | | | 100000000000000000000000000000000000000 | | , | ., | | 2,3,7,8-TCDD | ND(0.00000011) | ND(0.00000023) | ND(0.0000024) X [0.0000037 J] | 0.0000026 J | | TCDDs (total) | ND(0.00000014) | ND(0.00000023) | 0.000084 J [0.00019 J] | 0.000066 | | 1,2,3,7,8-PeCDD | ND(0.00000021) | ND(0.00000039) | ND(0.000011) X [ND(0.000018) X] | ND(0.000011) X | | PeCDDs (total) | ND(0.00000021) | ND(0.00000039) | 0.000066 QJ [0.00019 QJ] | 0.000011 Q | | 1,2,3,4,7,8-HxCDD | ND(0.00000021) | ND(0.00000036) | 0.0000092 J [0.000021 J] | 0.0000044 J | | 1,2,3,6,7,8-HxCDD | ND(0.00000021) | ND(0.00000032) | 0.000010 J [0.000023 J] | 0.0000070 J | | 1,2,3,7,8,9-HxCDD | ND(0.00000021) | ND(0.00000032) | 0.0000079 J [0.000019 J] | 0.0000048 J | | HxCDDs (total)
1,2,3,4,6,7,8-HpCDD | ND(0.00000026) | 0.0000011 | 0.00016 J [0.00040 J] | 0.000093 | | | ND(0.00000042) X | 0.0000023 | 0.000060 J [0.00011 J] | 0.000040 | | HpCDDs (total) OCDD | 0.00000037 | 0.0000049 | 0.00013 J [0.00023 J] | 0.000080 | | Total TEQs (WHO TEFs) | 0.0000029 J
0.0000019 | 0.000013
0.0000098 | 0.00025 J [0.00042 J] | 0.00023 | | Inorganics | 0.0000019 | 0.0000098 | 0.00025 [0.00052] | 0.0012 | | Antimony | 115 (2.00) | 115.15.25.2 | | | | Arsenic | ND(6.00) | ND(6.00) J | ND(6.00) J [ND(6.00) J] | 0.990 J | | Barium | 2.40 J | 6.20 | 19.0 [18.0] | 9.30 | | Beryllium | 40.0
ND(0.500) | 35.0 J | 120 J [110 J] | 120 J | | Cadmium | ND(0.500) | ND(0.500) | ND(0.500) [ND(0.500)] | ND(0.500) | | Chromium | 3.70 | ND(0.500)
9.80 | ND(0.500) [ND(0.500)] | ND(0.500) | | Cobalt | 6.70 | 9.60 | 12.0 [13.0]
ND(5.00) [ND(5.00)] | 17.0 | | Copper | 13.0 | 24.0 J | 110 J [120 J] | 9.20 | | Cyanide | ND(0.110) | ND(0.100) | 0.330 [0.470] | 210 J | | Lead | 5.10 | 7.80 | 130 [160] | 0.340 | | Mercury | ND(0.110) | ND(0.100) | 0.560 (0.780) | 150
0.200 | | Nickel | 8.40 | 19.0 | 12.0 [12.0] | 21.0 | | Selenium | ND(1.00) | ND(1.00) J | 1.20 J [0.700 J] | 0.560 J | | Silver | ND(1.00) | ND(1.00) | ND(1.00)
[ND(1.00)] | ND(1.00) | | Sulfide | 31.0 | 18.0 J | 61.0 J [41.0 J] | | | Thallium | ND(1.60) | 1.70 J | 3.70 J [2.30 J] | 56.0 J
3.30 J | | Tin | ND(10.0) | ND(10.0) | 16.0 J [18.0 J] | 3.30 J
17.0 J | | Vanadium | ND(5.00) | 14.0 J | 18.0 J [18.0 J] | 18.0 J | | | | | | | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) #### Notes - Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of Appendix IX + 3 constituents. - 2. Only those constituents detected in one or more samples are summarized. - Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002). - 4. ND Analyte was not detected. The number in parentheses is the associated detection limit. - 5. NS Not Sampled Parameter was not requested on sample chain of custody form. - Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998. - 7. Duplicate sample results are presented in brackets. - 8. With the exception of dioxin/furans, only those constituents detected in at least one sample are summarized. #### Data Qualifiers: - Organics (volatiles, PCBs, semivolatiles, pesticides, herbicides, dioxin/furans) - B Analyte was also detected in the associated method blank. - E Analyte exceeded calibration range. - I Polychlorinated Diphenyl Ether (PCDPE) Interference. - J Indicates that the associated numerical value is an estimated concentration. - Q Indicates the presence of quantitative interferences. - X Estimated maximum possible concentration. - Y 2,3,7,8-TCDF results have been confirmed on a DB-225 column. - S The quantity of analyte has saturated the detector. This may cause the ion ratio to be outside of theoretical limits. - R Data was rejected due to a quality assurance/quality control deficiency. #### Inorganics - B Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL). - J Indicates that the associated numerical value is an estimated concentration. | <u></u> | T | | Date | T | | | | | | | ergrener ann ann ann an ann an an an an an an an | |----------------------------|----------------|----------------|------------------------|------------------------|------------------------|----------------------------|------------------------|--------------------------|-----------------------|-----------------------|--| | Sample ID | Location ID | Depth(Feet) | Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | | | - | · | · | | | Averaging Area 4 | | | | | | | 21980102 | 95-19 | 1-2 | 2/13/1996 | ND(0.038) | ND(0.072) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 4.8 | 4.8 | | 219B0204 | 95-19 | 2-4 | 2/13/1996 | ND(0.036) | ND(0.072) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 1.9 | 1.9 | | 21980406 | 95-19 | 4-6 | 2/13/1996 | ND(0.036) | ND(0.074) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.66 P | 0.66 | | 219B0608 | 95-19 | 6-8 | 2/13/1996 | ND(0.037) | ND(0.076) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.22 | 0.22 | | 219B0810 | 95-19
95-19 | 8-10 | 2/13/1996 | ND(0.18) | ND(0.38) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | 0.98 P | 0.98 | | 219B1012
219B1214 | 95-19 | 10-12 | 2/13/1996 | ND(0.038) | ND(0.076) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.21 | 0.21 | | 21981214 | 95-19
95-19 | 12-14 | 2/13/1996 | ND(0.044) | ND(0.089) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.15 | 0.15 | | 21981618 | 95-19 | 14-16
16-18 | 2/13/1996
2/13/1996 | ND(0.044) | ND(0.090) | ND(0.044) | ND(0.044) | ND(0.044) | ND(0.044) | 0.072 | 0.072 | | P2Y110002 | 93-19
Y-11 | 0-2 | 6/12/1991 | ND(0.033)
ND(0.12) | ND(0.067) | ND(0.033) | ND(0.033) | ND(0.033) | ND(0.033) | 0.13 | 0.13 | | P2Y110204 | Y-11 | 2-4 | 6/12/1991 | ND(0.12)
ND(0.40) | NA
ND(0.40) | ND(0.12)
ND(0.40) | ND(0.12) | ND(0.12) | 14 | 6.5 | 20.5 | | P2Y110406 | Y-11 | 4-6 | 6/12/1991 | ND(0.40)
ND(0.25) | ND(0.40)
NA | ND(0.40)
ND(0.25) | ND(0.40)
ND(0.25) | ND(0.40) | 10 | 12 | 22 | | P2Y110608 | Y-11 | 6-8 | 6/12/1991 | ND(0.20) | NA
NA | ND(0.20) | ND(0.25) | ND(0.25) | 22 | 12 | 34 | | P2Y110810 | Y-11 | 8-10 | 6/12/1991 | ND(0.10) | NA
NA | ND(0.20) | ND(0.20) | ND(0.20)
ND(0.10) | 15
7.0 | 6.2 | 21.2 | | P2Y120002 | Y-12 | 0-2 | 6/12/1991 | ND(3.1) | NA NA | ND(3.1) | ND(3.1) | ND(0.10)
ND(3.1) | 95 | 2.5 | 9.5 | | P2Y120204 | Y-12 | 2-4 | 6/12/1991 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 39 | 24 | 119 | | P2Y120406 | Y-12 | 4-6 | 6/12/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.40) | 39
NO(0.050) | | P2Y120608 | Y-12 | 6-8 | 6/12/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.38 | ND(0.050)
ND(0.30) | ND(0.050)
0,38 | | P2Y120810 | Y-12 | 8-10 | 6/12/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.95 | 0.65 | 1.6 | | P2Y160002 | Y-16 | 0-2 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y160204 | Y-16 | 2-4 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.12 | ND(0.050) | 0.12 | | P2Y160406 | Y-16 | 4-6 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.070 | ND(0.050) | 0.12 | | P2Y160608 | Y-16 | 6-8 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y160810 | Y-16 | 8-10 | 6/14/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 0.080 | ND(0.020) | 0.080 | | P2Y170204 | Y-17 | 2-4 | 6/18/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 6.3 | ND(0.020) | 6.3 | | P2Y210002 | Y-21 | 0-2 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.35 | 0.56 | 0.91 | | P2Y210204 | Y-21 | 2-4 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.1 | 1.1 | | P2Y210406 | Y-21 | 4-6 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.26 | 0.26 | | P2Y210608 | Y-21 | 6-8 | 6/24/1991 | ND(0.050) [ND(0.050)] | NA | ND(0.050) [ND(0.050) | ND(0.050) [ND(0.050] |)] ND(0.050) [ND(0.050)] | ND(0.050) [ND(0.050)] | ND(0.050) [ND(0.050) | ND(0.050) [ND(0.050)] | | P2Y210810 | Y-21 | 8-10 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y211012 | Y-21 | 10-12 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y211214 | Y-21 | 12-14 | 6/24/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 0.44 | 0.44 | | P2Y211214(IT) | Y-21 | 12-14 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.21 | 0.21 | | P2Y211416 | Y-21 | 14-16 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y220002 | Y-22
Y-22 | 0-2 | 6/24/1991 | ND(0.020) | P2Y220002(IT)
P2Y220204 | Y-22
Y-22 | 0-2 | 6/24/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y220406 | Y-22
Y-22 | 2-4
4-6 | 6/24/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y220608 | Y-22 | 6-8 | 6/24/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y220810 | Y-22 | 8-10 | 6/24/1991
6/24/1991 | ND(0.050)
ND(0.050) | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | | | 0-10 | 1 5/2-7/1991 | 1 140(0.000) | INA | ND(0.050) Averaging Area 4 | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | 202B000.5 | 95-02 | 0-0.5 | 2/15/1996 | ND(0.062) | ND(0.13 | ND(0.062) | | ND/0.000 | 112/2 222 | · | · | | 202B0204 | 95-02 | 2-4 | 2/15/1996 | ND(0.082) | ND(0.13
ND(0.077) | ND(0.062)
ND(0.038) | ND(0.062) | ND(0.062) | ND(0.062) | 3.5 | 3.5 | | 202B0406 | 95-02 | 4-6 | 2/15/1996 | ND(0.053) | ND(0.077) | ND(0.038)
ND(0.053) | ND(0.038)
ND(0.053) | ND(0.038) | ND(0.038) | 0.81 | 0.81 | | 202B0608 | 95-02 | 6-8 | 2/15/1996 | ND(0.053) | ND(0.11) | ND(0.053)
ND(0.053) | | ND(0.053) | ND(0.053) | 0.14 | 0.14 | | 202B0810 | 95-02 | 8-10 | 2/15/1996 | ND(0.038) | ND(0.11) | | ND(0.053) | ND(0.053) | ND(0.053) | ND(0.053) | ND(0.053) | | 202B1012 | 95-02 | 10-12 | 2/15/1996 | ND(0.038) | ND(0.077)
ND(0.080) | ND(0.038)
ND(0.039) | ND(0.038) | ND(0.038) | ND(0.038) | 0.032 J | 0.032 J | | 20480002 | 95-04 | 0-2 | 3/11/1996 | ND(0.039) | ND(0.76) | ND(0.039)
ND(0.37) | ND(0.039)
ND(0.37) | ND(0.039) | ND(0.039) | 0.012 J | 0.012 J | | 204B0204 | 95-04 | 2-4 | 3/11/1996 | ND(2.0) | ND(0.76)
ND(4.1) | ND(2.0) | ND(0.37)
ND(2.0) | ND(0.37) | ND(0.37) | 3.8 | 3.8 | | 204B0810 | 95-04 | 8-10 | 3/11/1996 | ND(0.36) | ND(0.74) | ND(0.36) | ND(2.0)
ND(0.36) | ND(2.0) | ND(2.0) | 390 | 390 | | 204B1012 | 95-04 | 10-12 | 3/11/1996 | ND(2.1) | ND(4.2) | ND(0.36)
ND(2.1) | | ND(0.36) | ND(0.36) | 150 | 150 | | 205B0204 | 95-05 | 2-4 | 2/12/1996 | ND(0.35) | ND(0.71) | ND(0.35) | ND(2.1)
ND(0.35) | ND(2.1) | ND(2.1) | 4.8 | 4.8 | | 205B0406 | 95-05 | 4-6 | 2/12/1996 | ND(0.74) | ND(0.71)
ND(1.5) | ND(0.33)
ND(0.74) | ND(0.35)
ND(0.74) | ND(0.35) | ND(0.35) | 29 | 29 | | 205B0810 | 95-05 | 8-10 | 2/12/1996 | ND(0.043) | ND(0.087) | ND(0.74)
ND(0.043) | ND(0.74)
ND(0.043) | ND(0.74)
ND(0.043) | ND(0.74) | 140 | 140 | |
205B1012 | 95-05 | 10-12 | 2/12/1996 | ND(1.9) | ND(3.9) | ND(0.043)
ND(1.9) | ND(0.043)
ND(1.9) | | ND(0.043) | 7.5 | 7.5 | | 205B1214 | 95-05 | 12-14 | 2/12/1996 | ND(2.0) | ND(4.0) | ND(1.9)
ND(2.0) | ND(1.9)
ND(2.0) | ND(1.9) | ND(1.9) | 68 | 68 | | 206S0-6 | 206S | 0-0.5 | 9/17/1997 | ND(8.5) | ND(4.0) | ND(2.0)
ND(8.5) | ND(2.0)
ND(8.5) | ND(2.0) | ND(2.0) | 66 | 66 | | Line Total | | 10 J. U | 271111007 | 110(0.0) | 140(11) | 1 IND(0.5) | (כ.ס) ואט(ס.ס) | ND(8.5) | ND(8.5) | 310 B | 310 | RELIA ANAL L DAT. SUBJECT TO VERIFICATION #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Availar 1016 | | | | | | | | |----------------------|---|-------------|---|------------------|--------------|-----------------------|-------------------|-----------------------|------------------------|--------------|------------| | Sample ID | Cocation io | Deputitreet | Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | | 207B0002 | 05.07 | | Lagarraga | 110/0.01 | | veraging Area 4B (cor | | | | | | | 20780204 | 95-07 | 0-2 | 2/23/1996 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 3100 | 3100 | | 207B0204
207B0406 | 95-07
95-07 | 2-4 | 2/23/1996 | ND(0.18) | ND(0.37) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.37) | | 207B0608 | | 4-6 | 2/23/1996 | ND(1.9) | ND(3.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 13 P | 13 | | | 95-07 | 6-8 | 2/23/1996 | ND(0.36) | ND(0.72) | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.72) | | 207B0810 | 95-07 | 8-10 | 2/23/1996 | ND(0.38) | ND(0.77) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 1.1 | 1,1 | | 207B1214 | 95-07 | 12-14 | 2/23/1996 | ND(0.38) | ND(0.78) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0,38) | ND(0,78) | | 207B1416 | 95-07 | 14-16 | 2/23/1996 | ND(2.3) | ND(4.6) | ND(2.3) | ND(2.3) | ND(2.3) | ND(2.3) | ND(2.3) | ND(4.6) | | 207B1820 | 95-07 | 18-20 | 2/23/1996 | ND(1.9) | ND(3.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 2100 | 2100 | | 207S0-6 | 207S | 0-0.5 | 9/17/1997 | ND(1.8) | ND(9.8) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | 1.8 B | 1.8 | | 208B0002 | 95-08 | 0-2 | 2/29/1996 | ND(0.038) | ND(0.076) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.65 | 0,65 | | 208B0204 | 95-08 | 2-4 | 2/29/1996 | ND(0.038) | ND(0.078) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 5.2 | 5.2 | | 208B0406 | 95-08 | 4-6 | 2/29/1996 | ND(0.035) | ND(0.072) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.072) | | 208B0608 | 95-08 | 6-8 | 2/29/1996 | ND(0.036) | ND(0.073) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.032 JP | 0.032 J | | 208B0810 | 95-08 | 8-10 | 2/29/1996 | ND(0.036) | ND(0.073) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.032 JF | | | 208B1012 | 95-08 | 10-12 | 2/29/1996 | ND(0.041) | ND(0.083) | ND(0.041) | ND(0.041) | ND(0.041) | ND(0.030) | ND(0.041) | 0.048 J | | 208B1214 | 95-08 | 12-14 | 2/29/1996 | ND(0.037) | ND(0.076) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.041) | | ND(0.083) | | 208B1416 | 95-08 | 14-16 | 2/29/1996 | ND(0.045) | ND(0.091) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.037)
ND(0.045) | ND(0.037) | ND(0.076) | | 209S0-6 | 209S | 0-0.5 | 9/17/1997 | ND(0.38) | ND(0.76) | ND(0.38) | ND(0.38) | ND(0.38) | | ND(0.045) | ND(0.091) | | 223B0608 | 95-26 | 6-8 | 2/22/1996 | ND(0.035) | ND(0.071) | ND(0.035) | ND(0.035) | ND(0.38)
ND(0.035) | ND(0.38)
ND(0.035) | 3.8 B | 3.8 | | 226B0002 | 95-26 | 0-2 | 2/22/1996 | ND(0.78) | ND(1.6) | ND(0.78) | ND(0.78) | ND(0.78) | | 0.034 J | 0.034 J | | 226800204 | 95-26 | 2-4 | 2/22/1996 | ND(0.040) | ND(0.081) | ND(0.040) | ND(0.040) | | ND(0.78) | 330 P | 330 | | 226B0406 | 95-26 | 4-6 | 2/22/1996 | ND(0.041) | ND(0.084) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 11 P | 11 | | 22680810 | 95-26 | 8-10 | 2/22/1996 | ND(0.042) | ND(0.086) | ND(0.041) | | ND(0.041) | ND(0.041) | 5.4 | 5.4 | | 226B1012 | 95-26 | 10-12 | 2/22/1996 | ND(0.42) | ND(0.86) | | ND(0.042) | ND(0.042) | ND(0.042) | 1.4 P | 1.4 | | E2SC-05-CS01 | E2\$C-05 | 0-1 | 10/25/1998 | ND(0.18) | ND(0.18) | ND(0.42) | ND(0.42) | ND(0.42) | ND(0.42) | 0.44 J | 0.44 J | | E2SC-05-CS0106 | E2SC-05 | 1-6 | 10/25/1998 | ND(0.037) | | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | 1.6 | 1.6 | | E2SC-05-CS0615 | E2SC-05 | 6-15 | 10/25/1998 | | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.29 | 0.29 | | E2SC-06-CS01 | E2SC-06 | 0-13 | | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.13 | 0.13 | | E2SC-06-CS0106 | E2SC-06 | 1-6 | 10/23/1998 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.59 | 0.59 | | E2SC-06-CS0615 | E2SC-06 | 6-15 | | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.072 | 0.072 | | | | | 10/23/1998 | ND(0.21) | E2SC-07-CS01 | E2SC-07
E2SC-07 | 0-1 | 10/28/1998 | ND(0.075) | ND(0.075) | ND(0.075) | ND(0.075) | ND(0.075) | ND(0.075) | 0.79 | 0.79 | | E2SC-07-CS0106 | THE RESERVE OF THE PROPERTY OF THE PARTY | 1-6 | 10/28/1998 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.28 | 0.28 | | E2SC-07-CS0615 | E2SC-07 | 6-15 | 10/28/1998 | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | ND(0.17) | 1,4 | 1.4 | | E2SC-14-CS01 | E2SC-14 | 0-1 | 10/8/1998 | ND(0.077) | ND(0.077) | ND(0.077) | ND(0.077) | ND(0.077) | ND(0.077) | 0.60 | 0.60 | | E2SC-14-CS0106 | E2SC-14 | 1-6 | 10/8/1998 | ND(0.037) | E2SC-14-CS0615 | E2SC-14 | 6-15 | 10/8/1998 | ND(0.036) | E2SC-25-CS01 | E2SC-25 | 0-1 | 8/16/1999 | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.35) | 3.1 | 3.1 | | E2SC-25-CS0106 | E2SC-25 | 1-6 | 8/16/1999 | ND(0.17) | E2SC-25-CS0615 | E2SC-25 | 6-15 | 8/16/1999 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 2.4 | 2.4 | |
E2SC-25-CS0615D | E2SC-25 | 6-15 | 8/16/1999 | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | 2.4 | 2.4 | | P2X040002 | X-4 | 0-2 | 6/25/1991 | NA | NA | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.43 | 0.43 | | P2X040204 | X-4 | 2-4 | 6/25/1991 | NA | NA | NA NA | ND(2.8) | ND(2.8) | ND(4.4) | 100 | 100 | | P2X040406 | X-4 | 4-6 | 6/25/1991 | ND(0.023) | ND(0.023) | ND(0.023) | ND(0.023) | ND(0.023) | ND(0.023) | 0.37 | | | P2X040406(IT) | X-4 | 4-6 | 6/25/1991 | ND(45) | NA NA | ND(45) | ND(45) | ND(45) | ND(51) | 1800 | 0.37 | | P2X040608 | X-4 | 6-8 | 6/25/1991 | ND(7.4) | NA NA | ND(7.4) | ND(7.4) | ND(43)
ND(7.4) | 110 | | 1800 | | P2X040810 | X-4 | 8-10 | 6/25/1991 | ND(2.6) | NA NA | ND(2.6) | ND(2.6) | 2.6 | 29 | 190 | 300 | | P2X041012 | X-4 | 10-12 | 6/25/1991 | ND(74) | NA NA | ND(74) | ND(2.0)
ND(74) | ND(74) | | 73 | 105 | | P2X050002 | X-5 | 0-2 | 6/25/1991 | ND(0.15) | NA NA | ND(0.15) | ND(0.15) | | ND(99) | 3500 | 3500 | | P2X050204 | X-5 | 2-4 | 6/25/1991 | ND(9.4) | NA NA | ND(0.13)
ND(9.4) | | ND(0.15) | ND(0.19) | 7.5 | 7.5 | | P2X050406 | X-5 | 4-6 | 6/25/1991 | ND(20) | NA NA | ND(9.4)
ND(20) | ND(9.4) | ND(9.4) | ND(9.4) | 280 | 280 | | P2X050608 | X-5 | 6-8 | 6/25/1991 | ND(22) | NA
NA | | ND(20) | 20 | 150 | 150 | 320 | | P2X050810 | X-5 | 8-10 | 6/25/1991 | ND(22)
ND(10) | | ND(22) | ND(22) | 22 | 85 | 360 | 467 | | P2X050810(IT) | X-5 | 8-10 | CONTRACTOR | | ND(10) | ND(10) | ND(10) | ND(10) | ND(3800) | ND(730) | ND(3800) | | P2X050810(11) | X-5 | | 6/25/1991 | ND(33) | NA NA | ND(33) | ND(33) | ND(33) | ND(33) | 1100 | 1100 | | P2X051012 | | 10-12 | 6/25/1991 | ND(0.23) | NA NA | ND(0.23) | ND(0.23) | ND(0.23) | 2.8 | 3.8 | 6.6 | | P2X060002 | X-5
X-6 | 12-14 | 6/25/1991 | ND(0.39) | NA | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.42) | 8.8 | 8.8 | | | ************************************ | 0-2 | 6/25/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.090) | 2.2 | 2.2 | | P2X060204 | X-6 | 2-4 | 6/25/1991 | ND(1.2) | NA | ND(1.2) | ND(1.2) | ND(1.2) | 13 | 64 | 77 | RELIN ANAL DAT. SUBJECT TO VERIFICATION #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |--|--------------|--------------|-------------------|--------------|--------------|-----------------------|--------------|--------------|--------------|--------------|------------| | Sample ID | Location is | Deptit(reet) | Conected | MICCIOI-1010 | | veraging Area 4B (cor | | Arocio1-1246 | Arocior-1234 | Arocior-1260 | Iotal PGBs | | P2X060406 | X-6 | 4-6 | 6/25/1991 | ND(0.099) | ND(0.099) | ND(0.099) | ND(0.099) | ND(0.099) | ND(0.099) | 2.6 | 2.2 | | P2X060406(IT) | X-6 | 4-6 | 6/25/1991 | ND(1.6) | NA NA | ND(1.6) | ND(0.039) | ND(1.6) | ND(0.48) | 2.6
75 | 2.6
75 | | P2X060608 | X-6 | 6-8 | 6/25/1991 | ND(0.10) | NA NA | ND(0.10) | ND(0.10) | ND(0.10) | 3.7 | 2.0 | 5.7 | | P2X060810 | X-6 | 8-10 | 6/25/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.070 | 0.070 | | P2X070002 | X-7 | 0-2 | 6/26/1991 | ND(0.13) | NA NA | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.030) | 7.3 | 7.3 | | P2X070204 | X-7 | 2-4 | 6/26/1991 | ND(1.4) | NA NA | ND(1,4) | ND(1.4) | ND(1.4) | ND(0.98) | 27 | 27 | | P2X070406 | X-7 | 4-6 | 6/26/1991 | ND(0.46) | NA NA | ND(0.46) | ND(0.46) | ND(0.46) | ND(0.22) | 9.1 | 9.1 | | P2X070608 | X-7 | 6-8 | 6/26/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 0.80 | 0.80 | | P2X070608(IT) | X-7 | 6-8 | 6/26/1991 | ND(0.54) | NA NA | ND(0.54) | ND(0.54) | ND(0.54) | ND(0.41) | 18 | 18 | | P2X070810 | X-7 | 8-10 | 6/26/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.1 | 1,1 | | P2X071012 | X-7 | 10-12 | 6/26/1991 | ND(0.34) | NA NA | ND(0.34) | ND(0.34) | ND(0.34) | ND(0.45) | ND(15) | ND(15) | | P2X071214 | X-7 | 12-14 | 6/26/1991 | ND(0.27) | NA | ND(0.27) | ND(0.27) | ND(0.27) | ND(0.26) | 8.2 | 8.2 | | P2X071416 | X-7 | 14-16 | 6/26/1991 | ND(1.1) | NA | ND(1.1) | ND(1.1) | ND(1.1) | ND(1.2) | 27 | 27 | | P2X080002 | X-8 | 0-2 | 6/28/1991 | ND(0.35) | NA NA | ND(0.35) | ND(0.35) | ND(0.35) | ND(0.98) | 26 | 26 | | P2X080204 | X-8 | 2-4 | 6/28/1991 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 23 | 23 | | P2X080204(IT) | X-8 , | 2-4 | 6/28/1991 | ND(0.23) | NA | ND(0.23) | ND(0.23) | ND(0.23) | 2.7 | 8.1 | 10.8 | | P2X080406 | X-8 | 4-6 | 6/28/1991 | ND(0.75) | NA | ND(0.75) | ND(0.75) | ND(0.75) | ND(1.1) | 25 | 25 | | P2X080608 | X-8 | 6-8 | 6/28/1991 | ND(0.48) | NA | ND(0.48) | ND(0.48) | ND(0.48) | ND(0.48) | 14 | 14 | | P2X080810 | X-8 | 8-10 | 6/28/1991 | ND(0.89) | NA | ND(0.89) | ND(0.89) | ND(0.89) | ND(1.0) | 25 | 25 | | P2X081012 | X-8 | 10-12 | 6/28/1991 | ND(0.52) | NA | ND(0.52) | ND(0.52) | ND(0.52) | ND(0.99) | 33 | 33 | | P2X081214 | X-8 | 12-14 | 6/28/1991 | ND(1.3) | NA | ND(1.3) | ND(1.3) | · ND(1.3) | ND(1.1) | 39 | 39 | | P2X090002 | X-9 | 0-2 | 7/1/1991 | ND(0.13) | NA | ND(0.13) | ND(0.13) | ND(0.13) | 3.1 | 3.1 | 6.2 | | P2X090204 | X-9 | 2-4 | 7/1/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.080 | 0.43 | 0.51 | | P2X090406 | X-9 | 4-6 | 7/1/1991 | ND(0.25) | NA | ND(0.25) | ND(0.25) | ND(0.25) | 1.1 | 6.4 | 7.5 | | P2X090608 | X-9 | 6-8 | 7/1/1991 | ND(0.33) | NA | ND(0.33) | ND(0.33) | ND(0.33) | 0.91 | 6.3 | 7.21 | | P2X090810 | X-9 | 8-10 | 7/1/1991 | ND(1.5) | NA | ND(1.5) | ND(1.5) | ND(1.5) | ND(0.47) | 10 | 10 | | P2X091012 | X-9 | 10-12 | 7/1/1991 | ND(0.26) | NA | ND(0.26) | ND(0.26) | ND(0.26) | 1.3 | 7.7 | 9.0 | | P2X091214 | X-9 | 12-14 | 7/1/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.060 | 0.060 | | P2X100002 | X-10 | 0-2 | 7/2/1991 | ND(0.81) | NA | ND(0.81) | ND(0.81) | ND(0.81) | ND(1.9) | 50 | 50 | | P2X100204 | X-10 | 2-4 | 7/2/1991 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 41 | 41 | | P2X100204(IT) | X-10 | 2-4 | 7/2/1991 | ND(3.4) | NA | ND(3.4) | ND(3.4) | ND(3.4) | ND(3.8) | 170 | 170 | | P2X100608 | X-10 | 6-8 | 7/2/1991 | ND(3.2) | NA NA | ND(3.2) | ND(3.2) | ND(3.2) | ND(4.1) | 140 | 140 | | P2X100810 | X-10 | 8-10 | 7/2/1991 | ND(3.9) | NA | ND(3.9) | ND(3.9) | ND(3.9) | ND(4.1) | 160 | 160 | | P2X101012 | X-10 | 10-12 | 7/2/1991 | ND(3.1) | NA NA | ND(3.1) | ND(3.1) | ND(3.1) | ND(1.5) | 38 | 38 | | P2X120002 | X-12 | 0-2 | 7/3/1991 | ND(9.1) | NA NA | ND(9.1) | ND(9.1) | 21 | ND(9.1) | 450 | 471 | | P2X120204 | X-12 | 2-4 | 7/3/1991 | ND(1.1) | NA NA | ND(1.1) | ND(1.1) | ND(1.1) | ND(1.9) | 40 | 40 | | P2X120406 | X-12 | 4-6 | 7/3/1991 | ND(0.13) | NA | ND(0.13) | ND(0.13) | ND(0.13) | 0.58 | 5.1 | 5.68 | | P2X120608 | X-12 | 6-8 | 7/3/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.070 | 0.17 | 0.24 | | P2X120810 | X-12 | 8-10 | 7/3/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(5.2) | ND(5.2) | | P2X120810(IT) | X-12 | 8-10 | 7/3/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.2 | 1.2 | | P2X130002 | X-13 | 0-2 | 7/3/1991 | ND(0.098) | ND(0.098) | ND(0.098) | ND(0.098) | ND(0.098) | ND(0.098) | 1.3 | 1.3 | | P2X130002(IT) | X-13 | 0-2 | 7/3/1991 | ND(0.19) | NA | ND(0.19) | ND(0.19) | ND(0.19) | 4.1 | 9.9 | 14 | | P2X130406 | X-13 | 4-6 | 7/3/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.11 | 0.59 | 0.70 | | P2X130810 | X-13 | 8-10 | 7/3/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X131012 | X-13 | 10-12 | 7/3/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.13 | 0.13 | | P2X140002 | X-14 | 0-2 | 7/5/1991 | ND(0.14) | NA NA | ND(0.14) | ND(0.14) | ND(0.14) | ND(0.40) | 9.5 | 9.5 | | P2X140204
P2X140406 | | 2-4 | 7/5/1991 | ND(0.050) | 115/2 | ND(0.050) | ND(0.050) |
ND(0.050) | ND(0.080) | 1.5 | 1.5 | | COMMENCE AND PROPERTY OF THE P | X-14 | 4-6 | 7/5/1991 | ND(0.098) | P2X140406(IT) | X-14 | 4-6 | 7/5/1991 | ND(0.050) | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.99 | 0.99 | | P2X140608
P2X140810 | X-14
X-14 | 6-8 | 7/5/1991 | ND(0.050) | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.050 | 0.050 | | | | 8-10 | 7/5/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X141012 | X-14 | 10-12 | 7/5/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.50 | 0.50 | | P2X141214 | X-14 | 12-14 | 7/5/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.7 | 1.7 | | P2X141416 | X-14 | 14-16 | 7/5/1991 | ND(0,75) | NA NA | ND(0.75) | ND(0.75) | ND(0.75) | ND(0.92) | 35 | 35 | | P2X150002 | X-15 | 0-2 | 7/5/1991 | ND(0.090) | NA NA | ND(0.090) | ND(0.090) | ND(0.090) | 0.37 | 17 | 17.4 | | P2X150204 | X-15 | 2-4 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 1.1 | 2.3 | 3.4 | | P2X150406 | X-15 | 4-6 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.81 | 1.7 | 2.51 | #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |---------------|-------------|-------------|-------------------|--------------------|--------------|----------------------|--------------------|--------------------|--------------------|-----------------|-------------| | | | | | | Į. | veraging Area 4B (co | ntinued) | | | | | | P2X150608 | X-15 | 6-8 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.25 | 0.25 | | P2X150810 | X-15 | 8-10 | 7/5/1991 | ND(0.020) | P2X150810(IT) | X-15 | 8-10 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.2 | 1.2 | | P2X151012 | X-15 | 10-12 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.050 | 0.050 | | P2X151214 | X-15 | 12-14 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X151416 | X-15 | 14-16 | 7/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.0 | 1.0 | | P2X160002 | X-16 | 0-2 | 7/8/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.070 | 0.070 | | P2X160204 | X-16 | 2-4 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.080 | 0.52 | 0.60 | | P2X160406 | X-16 | 4-6 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X160608 | X-16 | 6-8 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.090 | 0.090 | | P2X160810 | X-16 | 8-10 | 7/8/1991 | ND(0.020) | P2X160810(IT) | X-16 | 8-10 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.12 | 0.12 | | P2X161012 | X-16 | 10-12 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X161214 | X-16 | 12-14 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.24 | 0.24 | | P2X180002 | X-18 | 0-2 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X180204 | X-18 | 2-4 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X180406 | X-18 | 4-6 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0,050) | ND(0.050) | 0.060 | 0.060 | | P2X180608 | X-18 | 6-8 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X180810 | X-18 | 8-10 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.050 | 0.050 | | P2X181416 | X-18 | 14-16 | 7/8/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 0.32 | 0.32 | | P2X181416(IT) | X-18 | 14-16 | 7/8/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X190002 | X-19 | 0-2 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.41 | 0.41 | | P2X190204 | X-19 | 2-4 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.27 | 0.19 | 0.46 | | P2X190406 | X-19 | 4-6 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.22 | 0.22 | | P2X190608 | X-19 | 6-8 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.080 | 0.050 | 0.13 | | P2X190810 | X-19 | 8-10 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.31 | 0.76 | 1.07 | | P2X200002 | X-20 | 0-2 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.6 | 1.6 | | P2X200204 | X-20 | 2-4 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X200406 | X-20 | 4-6 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X200608 | X-20 | 6-8 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X200810 | X-20 | 8-10 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X201012 | X-20 | 10-12 | 7/9/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 0.22 | 0.22 | | P2X201012(IT) | X-20 | 10-12 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2X201214 | X-20 | 12-14 | 7/9/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.10 | 0.10 | | P2Y080002 | Y-8 | 0-2 | 6/12/1991 | ND(1.7) | NA NA | ND(1.7) | ND(1.7) | ND(1.7) | 18 | 200 | 218 | | P2Y080204 | Y-8 | 2-4 | 6/12/1991 | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | ND(0.20) | 3.4 | 6.4 | 9.8 | | P2Y080406 | Y-8 | 4-6 | 6/12/1991 | ND(0.090) | NA | ND(0.090) | ND(0.090) | ND(0.090) | 1.3 | 6.7 | 8.0 | | P2Y080608 | Y-8 | 6-8 | 6/12/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y080810 | Y-8 | 8-10 | 6/12/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y090002 | Y-9 | 0-2 | 6/7/1991 | ND(49) | NA NA | ND(49) | ND(49) | ND(49) | 1900 | 520 | 2420 | | P2Y090204 | Y-9 | 2-4 | 6/7/1991 | ND(0.90) | NA | ND(0.90) | ND(0.90) | ND(0.90) | 47 | 7.0 | 54 | | P2Y090406 | Y-9 | 4-6 | 6/7/1991 | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | ND(0.40) | 57 | 30 | 87 | | P2Y090608 | Y-9 | 6-8 | 6/7/1991 | ND(0.050) [ND(10)] | NA | ND(0.050) [ND(10)] | ND(0.050) [ND(10)] | ND(0.050) [ND(10)] | 0.050 [220] | ND(0.040) [200] | 0.050 [420] | | P2Y090810 | Y-9 | 8-10 | 6/7/1991 | ND(5.7) | NA | ND(5.7) | ND(5.7) | ND(5.7) | 120 | 120 | 240 | | P2Y091012 | Y-9 | 10-12 | 6/7/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.68 | 0.67 | 1.35 | | P2Y100002 | Y-10 | 0-2 | 6/20/1991 | ND(2.4) | NA NA | ND(2.4) | ND(2.4) | ND(2.4) | 72 | 43 | 115 | | P2Y100204 | Y-10 | 2-4 | 6/20/1991 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 42 | 42 | | P2Y100204(IT) | Y-10 | 2-4 | 6/20/1991 | ND(0.93) | NA NA | ND(0.93) | ND(0.93) | 4.4 | ND(0.93) | 30 | 34.4 | | P2Y100406 | Y-10 | 4-6 | 6/20/1991 | ND(3.8) | NA | ND(3.8) | ND(3.8) | ND(3.8) | 73 | 74 | 150 | | P2Y100608 | Y-10 | 6-8 | 6/20/1991 | ND(0.74) | NA NA | ND(0,74) | ND(0.74) | ND(0.74) | ND(1.6) | 26 | 26 | | P2Y100810 | Y-10 | 8-10 | 6/20/1991 | ND(2.4) | NA NA | ND(2.4) | ND(2.4) | 2.4 | 4.4 | 14 | 20.8 | | P2Y101012 | Y-10 | 10-12 | 6/20/1991 | ND(0.71) [ND(5.8)] | NA | ND(0.71) [ND(5.8)] | ND(0.71) [ND(5.8)] | 2.1 [15] | ND(0.71) [ND(5.8)] | 24 [170] | 26.1 [185] | | P2Y130002 | Y-13 | 0-2 | 6/14/1991 | ND(0.81) | NA | ND(0.81) | ND(0.81) | ND(0.81) | 24 | 67 | 91 | | P2Y130204 | Y-13 | 2-4 | 6/14/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 1.4 | 1.4 | | P2Y130406 | Y-13 | 4-6 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.23 | 0.23 | | P2Y130608 | Y-13 | 6-8 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.3 | 1.3 | | P2Y130810 | Y-13 | 8-10 | 6/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.14 | 0.14 | #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-12-2 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | | | |----------------------------|--------------|-----------------------|------------------------|-----------------------------------|-----------------|-----------------------|-----------------------|--------------------|-------------------|-----------------------|----------------------| | - Campie io | | wopini, son | Concolou | Alocioi-loto | | Averaging Area 4B (co | | A10Cl01-1246 | Arocior-1254 | Aroclor-1260 | Total PCBs | | P2Y140002 | Y-14 | 0-2 | 6/14/1991 | ND(1.3) | NA NA | ND(1.3) | ND(1,3) | ND(1,3) | 67 | 1127/02/201 | 7 | | P2Y140204 | Y-14 | 2-4 | 6/14/1991 | ND(5.2) | NA NA | ND(5.2) | ND(1.3)
ND(5.2) | ND(1.3)
ND(5.2) | 270 | ND(3.7) | 67 | | P2Y140406 | Y-14 | 4-6 | 6/14/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 15 | ND(13)
7.9 | 270 | | P2Y140608 | Y-14 | 6-8 | 6/14/1991 | ND(0.41) | NA NA | ND(0.41) | ND(0.020) | ND(0.420) | 19 | 7,9
ND(0.82) | 22.9 | | P2Y140810 | Y-14 | 8-10 | 6/14/1991 | ND(0.86) | NA | ND(0.86) | ND(0.86) | ND(0.86) | 24 | 12 | 19
36 | | P2Y141012 | Y-14 | 10-12 | 6/14/1991 | ND(5.9) | NA NA | ND(5.9) | ND(5.9) | ND(5.9) | 260 | ND(11) | 260 | | P2Y141214 | Y-14 | 12-14 | 6/14/1991 | ND(0.57) [ND(1.3)] | NA | ND(0.57) [ND(1.3)] | ND(0.57) [ND(1.3)] | ND(0.57) [ND(1.3)] | ND(0.24) [71] | 8.3 [ND(4.6)] | 8.3 [71] | | P2Y150002 | Y-15 | 0-2 | 6/20/1991 | ND(6.0) | NA | ND(6.0) | ND(6.0) | 12 | ND(6.0) | 140 | 152 | | P2Y150204 | Y-15 | 2-4 | 6/20/1991 |
ND(88) | ND(3.9) | ND(88) | ND(88) | ND(3.9) | ND(88) | ND(34) | ND(88) | | P2Y150204(IT) | Y-15 | 2-4 | 6/20/1991 | ND(0.97) | NA | ND(0.97) | ND(0.97) | 6.3 | ND(0.97) | 25 | 31.3 | | P2Y150406 | Y-15 | 4-6 | 6/20/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.69 | 0.69 | | P2Y150608 | Y-15 | 6-8 | 6/20/1991 | ND(0.39) | NA | ND(0.39) | ND(0.39) | 1.9 | ND(0.39) | 9.0 | 10.9 | | P2Y150810 | Y-15 | 8-10 | 6/20/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y151012 | Y-15 | 10-12 | 6/20/1991 | ND(2.6) | NA | ND(2.6) | ND(2.6) | 5.0 | ND(2.6) | 700 | 705 | | P2Y180204 | Y-18 | 2-4 | 6/18/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 6.7 | 3.4 | 10.1 | | P2Y190002 | Y-19 | 0-2 | 6/19/1991 | ND(3.6) | NA | ND(3.6) | ND(3.6) | ND(3.6) | 120 | ND(10) | 120 | | P2Y190204 | Y-19 | 2-4 | 6/19/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | NĎ(0.050) | 0.38 | 0.48 | 0.86 | | P2Y190406 | Y-19 | 4-6 | 6/19/1991 | ND(2.0) | NA | ND(2.0) | ND(2.0) | ND(2.0) | 120 | ND(6.8) | 120 | | P2Y190608
P2Y190810 | Y-19 | 6-8 | 6/19/1991 | ND(0.15) | NA | ND(0.15) | ND(0.15) | ND(0.15) | 6.2 | ND(0.72) | 6.2 | | P2Y191012 | Y-19
Y-19 | 8-10
10-12 | 6/19/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y191012 | Y-19 | 12-14 | 6/19/1991 | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | 34 | 3.8 | 37.8 | | P2Y200002 | Y-19
Y-20 | 0-2 | 6/19/1991 | ND(0.050) | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.14 | 0.47 | 0.61 | | P2Y200204 | Y-20 | 2-4 | 6/20/1991
6/20/1991 | ND(8.0)
ND(13) | NA
NA | ND(8.0) | ND(8.0) | ND(8.0) | ND(5.1) | 140 | 140 | | P2Y200406 | Y-20 | 4-6 | 6/20/1991 | ND(13)
ND(0.98) | ND(0,98) | ND(13)
ND(0.98) | ND(13) | ND(13) | ND(1.5) | 30 | 30 | | P2Y200406(IT) | Y-20 | 4-6 | 6/20/1991 | ND(8.0) | NA | ND(8.0) | ND(0.98)
ND(8.0) | ND(0.98) | ND(0.98) | 47 | 47 | | P2Y200608 | Y-20 | 6-8 | 6/20/1991 | ND(5.4) | NA
NA | ND(5.4) | ND(5.4) | ND(8.0)
34 | ND(5.5) | 140 | 140 | | P2Y200810 | Y-20 | 8-10 | 6/20/1991 | ND(26) | NA NA | ND(26) | ND(3.4) | ND(26) | ND(5.4) | 190 | 224 | | P2Y201012 | Y-20 | 10-12 | 6/20/1991 | ND(3.7) | NA NA | ND(3.7) | ND(3.7) | ND(3.7) | ND(11) | 340 | 340 | | P2Y201214 | Y-20 | 12-14 | 6/20/1991 | ND(1.1) | NA NA | ND(1.1) | ND(1.1) | 8.8 | ND(13)
ND(1.1) | 410 | 410
52.8 | | P2Y230002 | Y-23 | 0-2 | 6/21/1991 | ND(0,050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.10 | 0.10 | | P2Y230204 | Y-23 | 2-4 | 6/21/1991 | ND(0.020) | ND(0,020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.030) | 0.10 | 0.10 | | P2Y230204(IT) | Y-23 | 2-4 | 6/21/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y230406 | Y-23 | 4-6 | 6/21/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y230608 | Y-23 | 6-8 | 6/21/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y230810 | Y-23 | 8-10 | 6/21/1991 | ND(0.050) [ND(0.050)] | NA | ND(0.050) [ND(0.050)] | ND(0.050) [ND(0.050)] | | | ND(0.050) [ND(0.050)] | ND(0.050) IND(0.050) | | P2Y231012 | Y-23 | 10-12 | 6/21/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y231214 | Y-23 | 12-14 | 6/21/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y240002 | Y-24 | 0-2 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.22 | 0.36 | 0.58 | | P2Y240204 | Y-24 | 2-4 | 6/24/1991 | ND(0.070) | NA | ND(0.070) | ND(0.070) | ND(0.070) | 1.0 | 1.7 | 2.7 | | P2Y240406 | Y-24 | 4-6 | 6/24/1991 | ND(0.21) | NA | ND(0.21) | ND(0.21) | ND(0.21) | 6.2 | 1.8 | 8.0 | | P2Y240608 | Y-24 | 6-8 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y240810 | Y-24 | 8-10 | 6/24/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 2.2 | 0.70 | 2.9 | | P2Y240810(IT) | Y-24 | 8-10 | 6/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y260002 | Y-26 | 0-2 | 6/21/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.36 | 0.36 | | P2Y260204
P2Y260204(IT) | Y-26 | 2-4 | 6/21/1991 | ND(0.020) | P2Y260204(11) | Y-26 | 2-4 | 6/21/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.37 | 0.35 | 0.72 | | P2Y260608 | Y-26
Y-26 | 4-6 | 6/21/1991 | ND(0.050) [ND(0.050)] | NA NA | ND(0.050) [ND(0.050)] | ND(0.050) [ND(0.050)] | | | ND(0.050) [ND(0.050)] | | | P2Y260810 | Y-26
Y-26 | 6-8
8-10 | 6/21/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y270406 | Y-26
Y-27 | | 6/21/1991 | ND(0.050) | NA
ND(0,000) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P205B0002 | ES2-5 | 4-6
0-2 | 6/14/1991 | ND(0.020) | P205B0002
P205B0204 | ES2-5 | 0-2
2-4 | 1/18/1991 | ND(0.45) | NA NA | ND(0.45) | ND(0.45) | 0.45 | 5.4 | 1.1 | 6.95 | | P205B0204
P205B0406 | ES2-5 | 2-4
4-6 | 1/18/1991 | ND(0.050) | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P205B0608 | ES2-5 | 6-8 | 1/18/1991 | ND(0.15) [ND(0.020)]
ND(0.050) | NA NA | NU(0.15) [NU(0.020)] | ND(0.15) [ND(0.020)] | | 0.71 [ND(0.020)] | ND(0.13) [2.8] | 0.71 [2.8] | | P205B0808 | ES2-5 | 8-10 | 1/18/1991 | | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P205B1012 | ES2-5 | 10-12 | 1/18/1991 | ND(0.050)
ND(0.050) | NA
NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.070 | ND(0.050) | 0.070 | | L | | 10-14 | 1/10/1991 | L 14D(0.000) | HYPI | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | RELIN ANAL DAT. SUBJECT TO VERIFICATION | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-12 2 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |----------------|-------------|-------------|-------------------|--------------|--------------|-----------------------|--------------|--------------|--------------|--------------|------------| | | | • | | | A | veraging Area 4B (con | tinued) | *** | | | | | P205B1214 | ES2-5 | 12-14 | 1/18/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0,050) | ND(0.050) | ND(0.050) | ND(0.050) | | P205B1416 | ES2-5 | 14-16 | 1/18/1991 | ND(0.21) | NA | ND(0.21) | ND(0.21) | 0.21 | 1,3 | 0.46 | 1.97 | | RCP-SS-C1 | RCP-C1 | 0-1 | 10/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.21) | 1.8 | 1.8 | | RCP-SS-C2 | RCP-C1 | 1-2 | 10/24/1991 | ND(0.13) | NA | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.40) | 18 | 18 | | | | | | | | Averaging Area 4 | | | | | | | 080598SB14 | SL0005 | 1-1.5 | 8/5/1998 | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | 18 | 18 | | 080698SB26 | SL0036 | 2-2.5 | 8/6/1998 | ND(0.12) | 083198MS25 | SL0345 | 1-1.5 | 8/31/1998 | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | 0.24 | 0.16 | 0.40 | | 090398MS04 | SL0405 | 0~0.5 | 9/3/1998 | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | 43 | 39 | 82 | | 206B0204 | 95-06 | 2-4 | 2/29/1996 | ND(0.036) | ND(0.074) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 1.8 | 1.8 | | 206B0406 | 95-06 | 4-6 | 2/29/1996 | ND(0.036) | ND(0.072) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.041 P | 0.041 | | 206B0810 | 95-06 | 8-10 | 2/29/1996 | ND(0.035) | ND(0.071) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 1.4 | 1.4 | | 206B1012 | 95-06 | 10-12 | 2/29/1996 | ND(0.035) | ND(0.071) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 34 P | 34 | | 206B1214 | 95-06 | 12-14 | 2/29/1996 | ND(0.039) | ND(0.080) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 43 P | 43 | | 206B1416 | 95-06 | 14-16 | 2/29/1996 | ND(0.039) | ND(0.079) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 44 P | 44 | | 211S0-6 | 211S. | 0-0.5 | 9/17/1997 | ND(0.034) | ND(0.069) | ND(0.034) | ND(0.034) | ND(0.034) | ND(0.034) | 2.6 B | 2.6 | | 228B0002 | 95-28 | 0-2 | 3/11/1996 | ND(0.19) | ND(0.39) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 20 | 20 | | 22880204 | 95-28 | 2-4 | 2/13/1996 | ND(0.035) | ND(0.070) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0,11 | 0.11 | | 228B0406 | 95-28 | 4-6 | 3/11/1996 | ND(0.039) | ND(0.080) | ND(0.039) | ND(0.039) | ND(0,039) | ND(0.039) | 0.028 J | 0.028 J | | 228B0608 | 95-28 | 6-8 | 3/11/1996 | ND(0.039) | ND(0.079) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.10 | 0.10 | | 228B0810 | 95-28 | 8-10 | 3/11/1996 | ND(0.039) | ND(0.078) | ND(0.039) | ND(0.039) | · ND(0.039) | ND(0.039) | 0.053 | 0.053 | | 228B1012 | 95-28 | 10-12 | 3/11/1996 | ND(0.040) | ND(0.080) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.015 J | 0.015 J | | E2SC-01-CS01 | E2SC-01 | 0-1 | 10/9/1998 | ND(0.074) | ND(0.074) | ND(0.074) | ND(0.074) | ND(0.074) | ND(0.074) | 0.66 | 0.66 | | E2SC-01-CS0106 | E2SC-01 | 1-6 | 10/9/1998 | ND(0.074) | ND(0.074) | ND(0.074) | ND(0.074) | ND(0.074) | ND(0.074) | 0.71 | 0.71 | | E2SC-01-CS0615 | E2SC-01 | 6-15 | 10/9/1998 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.055 | 0.055 | | E2SC-02-CS01 | E2SC-02 | 0-1 | 10/21/1998 | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | ND(4.3) | 49 | 49 | | E2SC-02-CS0106 | E2SC-02 | 1-6 | 10/21/1998 | ND(4.2) | ND(4.2) | ND(4.2) | ND(4.2) | ND(4.2) | ND(4.2) | 43 | 43 | | E2SC-02-CS0615 | E2SC-02 | 6-15 | 10/21/1998 | ND(1.7) | ND(1.7) | ND(1.7) | ND(1.7) | ND(1.7) | ND(1.7) | 17 | 17 | | E2SC-03-CS01 | E2SC-03 | 0-1 | 10/15/1998 | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | ND(1.9) | 25 | 25 | | E2SC-03-CS0106 | E2SC-03 | 1-6 | 10/15/1998 | ND(3.7) | ND(3.7) | ND(3.7) | ND(3.7) | ND(3.7) | ND(3.7) | 52 | 52 | | E2SC-03-CS0615 | E2SC-03 | 6-15 | 10/15/1998 | ND(1.7) | ND(1.7) | ND(1.7) | ND(1.7) |
ND(1.7) | ND(1.7) | 22 | 22 | | E2SC-04-CS01 | E2SC-04 | 0-1 | 10/13/1998 | ND(0.075) | ND(0.075) | ND(0.075) | ND(0.075) | ND(0.075) | ND(0.075) | 0.99 | 0.99 | | E2SC-04-CS0106 | E2SC-04 | 1-6 | 10/13/1998 | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.17 | 0.19 | 0.36 | | E2SC-04-CS0615 | E2SC-04 | 6-15 | 10/13/1998 | ND(0.037) | E2SC-04-GS01 | E2SC-04 | 0-5 | 10/13/1998 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.12 | 0.12 | | E2SC-04-GS02 | E2SC-04 | 5-15.4 | 10/13/1998 | ND(0.036) | E2SC-08-CS0106 | E2SC-08 | 1-6 | 10/14/1998 | ND(0.49) | ND(0.49) | ND(0.49) | ND(0.49) | ND(0.49) | ND(0.49) | 170 | 170 | | E2SC-08-CS0615 | E2SC-08 | 6-15 | 10/14/1998 | ND(41) | ND(41) | ND(41) | ND(41) | ND(41) | ND(41) | 210 | 210 | | E2SC-09-CS01 | E2SC-09 | 0-1 | 10/21/1998 | ND(1.6) | ND(1.6) | ND(1.6) | ND(1.6) | ND(1.6) | ND(1.6) | 20 | 20 | | E2SC-09-CS0106 | E2SC-09 | 1-6 | 10/21/1998 | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.36) | 3,9 | 3.9 | | E2SC-09-CS0615 | E2SC-09 | 6-15 | 10/21/1998 | ND(15) | ND(15) | ND(15) | ND(15) | ND(15) | ND(15) | 140 | 140 | | E2SC-10-CS01 | E2SC-10 | 0-1 | 10/20/1998 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.19 | 0.19 | | E2SC-10-CS0106 | E2SC-10 | 1-6 | 10/20/1998 | ND(0.045) | ND(0.045) | ND(0.045) | ND(0.045) | ND(0,045) | ND(0.045) | 0.15 | 0.15 | | E2SC-10-CS0615 | E2SC-10 | 6-15 | 10/20/1998 | ND(0.035) | E2SC-11-CS01 | E2SC-11 | 0-1 | 10/9/1998 | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | ND(0.037) | 0.10 | 0.10 | | E2SC-11-CS0106 | E2SC-11 | 1-6 | 10/9/1998 | ND(0.034) | E2SC-11-CS0615 | E2SC-11 | 6-15 | 10/9/1998 | ND(0.036) | E2SC-13-CS01 | E2SC-13 | 0-1 | 10/7/1998 | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | ND(0.035) | 0.21 | 0.21 | | E2SC-13-CS0106 | E2SC-13 | 1-6 | 10/7/1998 | ND(0.036) | E2SC-13-CS0516 | E2SC-13 | 6-15 | 10/7/1998 | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.050 | 0.050 | | E2SC-16-CS01 | E2SC-16 | 0-1 | 10/8/1998 | ND(38) | ND(38) | ND(38) | ND(38) | ND(38) | ND(38) | 120 | 120 | | E2SC-16-CS0106 | E2SC-16 | 1-6 | 10/8/1998 | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | ND(0.19) | 1,5 | 1.5 | | E2SC-16-CS0615 | E2SC-16 | 6-15 | 10/8/1998 | ND(0.078) | ND(0.078) | ND(0.078) | ND(0.078) | ND(0.078) | ND(0,078) | 0.68 | 0.68 | | E2SC-17-CS01 | E2SC-17 | 0-1 | 10/28/1998 | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | 2.4 | 2.4 | | E2SC-17-CS0106 | E2SC-17 | 1-6 | 10/26/1998 | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | 24 | 24 | | E2SC-17-CS0615 | E2SC-17 | 6-15 | 10/26/1998 | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | ND(0.039) | 0.37 | 0.37 | | P2X110002 | X-11 | 0-2 | 7/1/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.060 | 0.060 | | | | | | | | | | 1 | | L | 1 0.000 | RELIN ANAL . DAT. SUBJECT TO VERIFICATION #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-12, 2 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |------------|-------------|-------------|-------------------|---------------------|---------------------|----------------------|---------------------|---------------------|--------------|--------------|-------------| | | | | | | Α | veraging Area 4D (co | ntinued) | | | | | | P2X110204 | X-11 | 2-4 | 7/1/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | 5.3 | 0.71 | 6.01 | | P2X110406 | X-11 | 4-6 | 7/1/1991 | ND(0.36) | NA NA | ND(0.36) | ND(0.36) | ND(0.36) | ND(0.40) | 22 | 22 | | P2X110608 | X-11 | 6-8 | 7/1/1991 | ND(0.28) | NA | ND(0.28) | ND(0.28) | ND(0.28) | ND(0.39) | 14 | 14 | | P2X110810 | X-11 | 8-10 | 7/1/1991 | ND(0.83) | NA | ND(0.83) | ND(0.83) | ND(0.83) | ND(2.3) | 100 | 100 | | P2X111012 | X-11 | 10-12 | 7/1/1991 | ND(1.6) | NA | ND(1.6) | ND(1.6) | ND(1.6) | ND(2.0) | 67 | 67 | | P2X111416 | X-11 | 14-16 | 7/1/1991 | ND(4.0) | NA | ND(4.0) | ND(4.0) | 0.83 E | ND(4.0) | 89 | 89.8 | | P201B0002 | ES2-1 | 0-2 | 1/16/1991 | ND(0.26) | ND(0.26) | ND(0.26) | ND(0.26) | ND(0.26) | ND(1.2) | 54 | 54 | | P201B0406 | ES2-1 | 4-6 | 1/16/1991 | ND(0.11) | ND(0.11) | ND(0.11) | ND(0.11) | ND(0.11) | ND(0.49) | 19 | 19 | | P201B0608 | ES2-1 | 6-8 | 1/16/1991 | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.24) | 6.4 | 6.4 | | P201B1012 | ES2-1 | 10-12 | 1/16/1991 | ND(0.060) | ND(0.060) | ND(0.060) | ND(0.060) | ND(0.060) | ND(1.2) | 24 | 24 | | P201B1214 | ES2-1 | 12-14 | 1/16/1991 | ND(0.93) | ND(0.93) | ND(0.93) | ND(0.93) | ND(0.93) | ND(1.4) | 42 | 42 | | P201B1416 | ES2-1 | 14-16 | 1/16/1991 | ND(1.6) | ND(1.6) | ND(1.6) | ND(1.6) | . ND(1,6) | ND(2.7) | 74 | 74 | | P206B0002 | ES2-6 | 0-2 | 1/10/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 1.5 | 1.5 | | P206B0204 | ES2-6 | 2-4 | 1/10/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.40 | 0.10 | 0.50 | | P206B0406 | ES2-6 | 4-6 | 1/10/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.20 | 0.070 | 0.27 | | P206B0608 | ES2-6 | 6-8 | 1/10/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.080 | 0.080 | | P206B0810 | ES2-6 | 8-10 | 1/10/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.20) | 7.5 | 7.5 | | P206B1012 | ES2-6 | 10-12 | 1/10/1991 | ND(1.1) | NA | ND(1.1) | ND(1.1) | ND(1.1) | ND(3.4) | 140 | 140 | | P206B1214 | ES2-6 | 12-14 | 1/10/1991 | ND(2.4) | NA | ND(2.4) | ND(2.4) | ND(2.4) | ND(6.2) | 160 | 160 | | P206B1416 | ES2-6 | 14-16 | 1/10/1991 | ND(1.0) | NA | ND(1.0) | ND(1.0) | ND(1.0) | ND(1,4) | 81 | 81 | | RCP-SS-C3 | RCP-C2 | 0-1 | 10/24/1991 | ND(0.29) | NA | ND(0.29) | ND(0.29) | ND(0.29) | ND(1.2) | 44 | 44 | | RCP-SS-C4 | RCP-C2 | 1-2 | 10/24/1991 | ND(0.31) | NA | ND(0.31) | ND(0.31) | ND(0.31) | ND(1.2) | 17 | 17 | | RCP-SS-C5 | RCP-C3 | 0-1 | 10/24/1991 | ND(0.52) | NA | ND(0.52) | ND(0.52) | ND(0.52) | ND(2.1) | 38 | 38 | | RCP-SS-C6 | RCP-C3 | 1-2 | 10/24/1991 | ND(0.53) | NA | ND(0.53) | ND(0.53) | ND(0.53) | ND(2.1) | 44 | 44 | | RCP-SS-C7 | RCP-C4 | 0-1 | 10/24/1991 | ND(0.10) | NA | ND(0.10) | ND(0.10) | ND(0.10) | ND(0.42) | 10 | 10 | | RCP-SS-C8 | RCP-C4 | 1-2 | 10/24/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.10) | 1.2 | 1.2 | | | | | | | | Averaging Area 4 | E | | | · | | | 080798CT13 | SL0014 | 0-0.5 | 8/7/1998 | ND(0.22) [ND(0.56)] | 3.1 [3.0] | 2.5 [2.4] | 5.6 [5.4] | | 080798SB17 | SL0025 | 0-0.5 | 8/7/1998 | ND(0.45) | ND(0.45) | ND(0.45) | ND(0.45) | ND(0.45) | 2.5 | 2.1 | 4.6 | | 081798BT29 | SL0163 | 2-2.5 | 8/17/1998 | ND(1.5) | ND(1.5) | ND(1.5) | ND(1.5) | ND(1.5) | 11 | 9.9 | 20.9 | | 081798CT27 | SL0153 | 1-1.5 | 8/17/1998 | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | ND(3.6) | 57 | 57 | | 082598MS18 | SL0267 | 1-1.5 | 8/25/1998 | ND(0.11) | ND(0.11) | ND(0.11) | ND(0.11) | ND(0.11) | 0.25 | 0.34 | 0.59 | | 082598MS27 | SL0270 | 1-1.5 | 8/25/1998 | ND(0.69) | ND(0.69) | ND(0.69) | ND(0.69) | ND(0.69) | 6.8 | 6.3 | 13.1 | | 082798MS14 | SL0314 | 0-0.5 | 8/27/1998 | ND(81) | ND(81) | ND(81) | ND(81) | ND(81) | 520 | 110 | 630 | | 082798MS20 | SL0316 | 0-0.5 | 8/27/1998 | ND(5.0) | ND(5.0) | ND(5.0) | ND(5.0) | ND(5.0) | 31 | 29 | 60 | | 082898MS28 | SL0326 | 0-0.5 | 8/28/1998 | ND(0.96) | ND(0.96) | ND(0.96) | ND(0.96) | ND(0.96) | 5.5 | 5.2 | 10.7 | | 083198MS06 | SL0339 | 2-2.5 | 8/31/1998 | ND(0.34) | ND(0.34) | ND(0.34) | ND(0.34) | ND(0.34) | 1.0 | 0.92 | 1.92 | | 083198MS14 | SL0342 | 0-0.5 | 8/31/1998 | ND(3.3) | ND(3.3) | ND(3.3) | ND(3.3) | ND(3.3) | 44 | 40 | 84 | | 208S0-6 | 208S | 0-0.5 | 9/17/1997 | ND(1.8) | ND(3.7) | ND(1.8) | ND(1.8) | ND(1.8) | ND(1.8) | 22 B | 22 | | 3-6C-EB-22 | EB-22 | 0-0.5 | 11/7/1997 | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) | 260 | 210 | 470 | | | 1 | 0.5-1 | 11/7/1997 | ND(25) | ND(25) | ND(25) | ND(25) | ND(25) | 280 | 240 | 520 | | | 1 | 1-2 | 11/7/1997 | ND(13) | ND(13) | ND(13) | ND(13) | ND(13) | 210 | 200 | 410 | | | | 2-4 | 11/7/1997 | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) | 66 | 21 | 87 | | | | 4-6 | 11/7/1997 | ND(0.61) | ND(0.61) | ND(0.61) | ND(0.61) | ND(0.61) | 9.6 | 4.1 | 13.7 | | | | 6-8 | 11/7/1997 | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | 0.64 | 0.41 | 1.05 | | | | 8-10 | 11/7/1997 | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | 0.94 | 0.87 | 1.81 | | | 1 | 10-12 | 11/7/1997 | ND(0.14) | ND(0.14) | ND(0.14) | ND(0.14) | ND(0.14) | 2.6 | 1.3 | 3.9 | | | 1 | 12-14 | 11/7/1997 | ND(0.54) | ND(0.54) | ND(0.54) | ND(0.54) | ND(0.54) | 11 | 1.9 | 12.9 | | | | 14-16 | 11/7/1997 | ND(0.12) RELIN ANAL . DAT. SUBJECT TO VERIFICATION #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1Σ?? | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |------------|-------------|----------------|-------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------------|--------------|------------| | | | | | | Α | veraging Area 4E (co | ntinued) | | | | | | 3-6C-EB-23 | EB-23 | 0-0.5 | 11/6/1997 | ND(13) | ND(13) | ND(13) | ND(13) | ND(13) | 190 | 220 | 410 | | | | 0.5-1 | 11/6/1997 | ND(18) | ND(18) | ND(18) | ND(18) | ND(18) | 220 | 96 | 316 | | | | 1-2 | 11/6/1997 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | 23 | 17 | 40 | | | | 4-6 | 11/6/1997 | ND(2.9) | ND(2.9) | ND(2.9) | ND(2.9) | ND(2.9) | 48 | 10 | 58 | | | | 6-8 | 11/6/1997 | ND(0.41) | ND(0.41) | ND(0.41) | ND(0,41) | ND(0.41) | 4.4 | 1.4 | 5.8 | | | | 8-10 | 11/6/1997 | ND(0.47) | ND(0.47) | ND(0.47) | ND(0.47) | ND(0.47) | 9.5 | 1.7 | 11.2 | | | | 10-12 | 11/6/1997 | ND(0.49) | ND(0.49) | ND(0.49) | ND(0.49) | ND(0.49) | 10 | 2.8 | 12.8 | | | | 12-14 | 11/6/1997 | ND(2.5) | ND(2.5)
 ND(2.5) | ND(2.5) | ND(2.5) | 47 | 7.0 | 54 | | | | 14-16 | 11/6/1997 | ND(0.16) | ND(0.16) | ND(0.16) | ND(0.16) | ND(0.16) | 0.55 | 0.16 | 0.71 | | 3-6C-EB-24 | EB-24 | 0-0.5 | 11/6/1997 | ND(2.6) | ND(2.6) | ND(2.6) | ND(2.6) | ND(2.6) | 42 | 30 | 72 | | | | 0.5-1 | 11/6/1997 | ND(2.7) | ND(2.7) | ND(2.7) | ND(2.7) | ND(2.7) | 18 | 9.3 | 27.3 | | | | 1-2 | 11/6/1997 | ND(0.66) | ND(0.66) | ND(0.66) | ND(0.66) | ND(0.66) | 7.6 | 2.0 | | | | | 2-4 | 11/6/1997 | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | ND(0.85) | 12 | 8.3 | 9.6 | | | | 4-6 | 11/6/1997 | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | | 20.3 | | | | 6-8 | 11/6/1997 | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | 0.29 | 0.29 | | | | 8-10 | 11/6/1997 | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13)
ND(0.13) | | ND(0.13) | ND(0.13) | | | | 10-12 | 11/6/1997 | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | 0.15 | 0.15 | | | | 12-14 | 11/6/1997 | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | | ND(0.13) | ND(0.13) | ND(0.13) | | | | 14-16 | 11/6/1997 | ND(0.11) | ND(0.11) | ND(0.18)
ND(0.11) | ND(0.18)
ND(0.11) | ND(0.18) | ND(0.18) | ND(0.18) | ND(0.18) | | 3-6C-EB-25 | EB-25 | 0-0.5 | 11/5/1997 | ND(28) | ND(28) | ND(28) | | ND(0.11) | ND(0.11) | ND(0.11) | ND(0.11) | | 0 00 20 20 | 1 20 20 | 0.5-1 | 11/5/1997 | ND(2.7) | ND(2.7) | | ND(28) | ND(28) | ND(28) | 310 | 310 | | | | 1-2 | 11/5/1997 | ND(2.7)
ND(2.6) | ND(2.7)
ND(2.6) | ND(2.7) | ND(2.7) | ND(2.7) | ND(2.7) | 59 | 59 | | | | 2-4 | 11/5/1997 | ND(2.5)
ND(2.5) | | ND(2.6) | ND(2.6) | ND(2.6) | ND(2.6) | 29 | 29 | | | | 4-6 | 11/5/1997 | | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | ND(2.5) | 31 | 31 | | | | | 11/5/1997 | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | ND(0.24) | 1.9 | 1.9 | | | | 6-8 | 1 | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | 0.50 | 0.50 | | | | 8-10 | 11/5/1997 | ND(0.13) | | | 10-12 | 11/5/1997 | ND(0.16) ND(0,16) | | 2.00.50.00 | | 12-14 | 11/5/1997 | ND(0.16) | 3-6C-EB-26 | EB-26 | 0-0.5 | 11/4/1997 | ND(5.2) | ND(5.2) | ND(5.2) | ND(5.2) | ND(5.2) | ND(5.2) | 61 | 61 | | | | 2-4 | 11/4/1997 | ND(0.25) | ND(0.25) | ND(0.25) | ND(0.25) | ND(0.25) | ND(0.25) | 1.7 | 1.7 | | | | 4-6 | 11/4/1997 | ND(2.1) | ND(2.1) | ND(2.1) | ND(2.1) | ND(2.1) | ND(2.1) | 28 | 28 | | | | 6-8 | 11/4/1997 | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | 1.6 | 1.6 | | | | 8-10 | 11/4/1997 | ND(0.17) | | | 10-12 | 11/4/1997 | ND(0.15) | | | 12-14 | 11/4/1997 | ND(0.15) | 3-6C-EB-27 | EB-27 | 0-0.5 | 11/7/1997 | ND(10) | ND(10) | ND(10) | ND(10) | ND(10) | 140 | 110 | 250 | | | | 0.5~1 | 11/7/1997 | ND(10) | ND(10) | ND(10) | ND(10) | ND(10) | 150 | 120 | 270 | | | | 1-2 | 11/7/1997 | ND(20) | ND(20) | ND(20) | ND(20) | ND(20) | 220 | 180 | 400 | | | | 2-4 | 11/7/1997 | ND(14) | ND(14) | ND(14) | ND(14) | ND(14) | 110 | 110 | 220 | | | | 4-6 | 11/7/1997 | ND(1.1) | ND(1.1) | ND(1.1) | 2.8 | ND(1.1) | 14 | 5.9 | 22.7 | | | | 8-10 | 11/7/1997 | ND(0.15) | | | 10-12 | 11/7/1997 | ND(0.13) | | 68-EAST-1 | 68-EAST-1 | 0-0.5 | 3/5/1997 | ND(34) [ND(33)] | 250 [260] | 170 [170] | ND(0.13) | | | | 0.5-1 | 3/5/1997 | ND(81) | ND(81) | ND(81) | ND(81) | ND(81) | 800 | 810 | 420 [430] | | | | 1-1.5 | 3/5/1997 | ND(780) | ND(780) | ND(780) | ND(780) | ND(780) | 5700 | | 1610 | | | | 1.5-2 | 3/5/1997 | ND(390) | ND(390) | ND(390) | ND(390) | ND(780)
ND(390) | 4900 | 5700
630 | 11400 | | 68-EAST-2 | 68-EAST-2 | 0-0.5 | 3/5/1997 | ND(56) | ND(56) | ND(56) | ND(56) | ND(390)
ND(56) | 340 | | 5530 | | | | 0.5-1 | 3/5/1997 | ND(1200) | ND(1200) | ND(1200) | ND(1200) | | | 310 | 650 | | | | 1-1.5 | 3/5/1997 | ND(45) | ND(45) | ND(1200)
ND(45) | ND(1200)
ND(45) | ND(1200) | 10000 | 10000 | 20000 | | 68-EAST-3 | 68-EAST-3 | 0-0.5 | 3/5/1997 | ND(11) | | | | ND(45) | 250 | 140 | 390 | | | | 0.5-1 | 3/5/1997 | ND(11)
ND(56) | ND(11) | ND(11) | ND(11) | ND(11) | 57 | 63 | 120 | | | | 1-1.5 | 3/5/1997 | | ND(56) | ND(56) | ND(56) | ND(56) | 340 | 270 | 610 | | | | 1-1.5
1.5-2 | 3/5/1997 | ND(58) [ND(81)] | 190 [280] | 360 [540] | 550 [820] | | ***** | | 1.5*4 | 2/2/1997 | ND(23) | ND(23) | ND(23) | ND(23) | ND(23) | 190 | 120 | 310 | RELIN ANAL . DAT, SUBJECT TO VERIFICATION #### HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-12°3 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |----------------|---|-------------|------------------------|----------------------|---------------------|-----------------------|-----------------------|--------------------|----------------------|--------------------|--| | | | | | | P | veraging Area 4E (cor | ntinued) | | | | de la companya | | 68S-1 | 68S-1 | 2-4 | 8/7/1996 | ND(15) | ND(15) | ND(15) | ND(15) | ND(15) | 160 | 110 | 270 | | | | 4-6 | 8/7/1996 | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.2) | 7.4 | 4.8 | 12.2 | | | | 6-8 | 8/7/1996 | ND(1.3) | ND(1.3) | ND(1.3) | ND(1.3) | ND(1.3) | 14 | 7.6 | 21.6 | | | | 8-10 | 8/7/1996 | ND(220) | ND(220) | ND(220) | ND(220) | ND(220) | ND(220) | 4200 | 4200 | | | *************************************** | 10-12 | 8/7/1996 | ND(22) | ND(22) | ND(22) | ND(22) | ND(22) | ND(22) | 300 | 300 | | 68S-2 | 68S-2 | 2-4 | 8/7/1996 | ND(2700) | ND(2700) | ND(2700) | ND(2700) | ND(2700) | ND(2700) | 36000 | 36000 | | | | 4-6 | 8/7/1996 | ND(50) | ND(50) | ND(50) | ND(50) | ND(50) | ND(50) | 380 · | 380 | | | | 6-8 | 8/7/1996 | ND(120) | ND(120) | ND(120) | ND(120) | ND(120) | ND(120) | 2400 | 2400 | | | | 10-12 | 8/7/1996 | ND(130) | ND(130) | ND(130) | ND(130) | ND(130) | ND(130) | 1700 | 1700 | | 68S-3 | 68S-3 | 2-4 | 8/7/1996 | ND(6300) [ND(11000)] | ND(6300) [ND(11000) | ND(6300) [ND(11000) | | | ND(6300) [ND(11000)] | 77000 [130000] | 77000 [130000] | | | | 4-6 | 8/7/1996 | ND(480) | ND(480) | ND(480) | ND(480) | ND(480) | ND(480) | 4800 | 4800 | | | | 6-8 | 8/7/1996 | ND(990) | ND(990) | ND(990) | ND(990) | ND(990) | ND(990) | 14000 | 14000 | | 200 | | 8-10 | 8/7/1996 | ND(5.6) | ND(5.6) | ND(5.6) | ND(5.6) | ND(5.6) | ND(5.6) | 42 | 42 | | 68S-4 | 68S-4 | 2-4 | 8/8/1996 | ND(1200) | ND(1200) | ND(1200) | ND(1200) | ND(1200) | ND(1200) | 15000 | 15000 | | | | 4-6 | 8/8/1996 | ND(2400) | ND(2400) | ND(2400) | ND(2400) | ND(2400) | ND(2400) | 32000 | 32000 | | | | 6-8 | 8/8/1996 | ND(11000) | ND(11000) | ND(11000) | ND(11000) | ND(11000) | ND(11000) | 100000 | 100000 | | 203B0002 | 95-03 | 8-10
0-2 | 8/8/1996 | ND(610) | ND(610) | ND(610) | ND(610) | ND(610) | ND(610) | 7200 | 7200 | | 203B00608 | 95-03 | 6-8 | 2/15/1996 | ND(0.037) | ND(0.076) | ND(0.037) | ND(0.037) | ND(0.037) | 5.9 | ND(0.037) | 5.9 | | 203B0204 | 95-03 | | 2/15/1996 | ND(0.036) | ND(0.072) | ND(0.036) | ND(0.036) | ND(0.036) | ND(0.036) | 0.087 | 0.087 | | 203B0406 | 95-03 | 2-4
4-6 | 2/15/1996 | ND(0.20) | ND(0.41) | ND(0.20) | , ND(0.20) | ND(0.20) | ND(0.20) | 230 | 230 | | 203B0810 | 95-03 | 8-10 | 2/15/1996
2/15/1996 | ND(0.038) | ND(0.078) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.080 | 0.080 | | 203B1214 | 95-03 | 12-14 | 3/12/1996 | ND(0.037) | ND(0.076) | ND(0.037) | 0.26 P | ND(0.037) | ND(0.037) | 0.077 | 0.337 | | 227B0810 | 95-27 | 8-10 | 2/29/1996 | ND(0.040) | ND(0.082) | ND(0.040) | ND(0.040) | ND(0.040) | ND(0.040) | 0.27 P | 0.27 | | 22781416 | 95-27 | 14-16 | 2/29/1996 | ND(0.038) | ND(0.076) | ND(0.038) | ND(0.038) | ND(0.038) | ND(0.038) | 0.027 J | 0.027 J | | E2SC-12-CS0106 | E2SC-12 | 1-6 | 10/19/1998 | ND(0.047) | ND(0.096) | ND(0.047) | ND(0.047) | ND(0.047) | ND(0.047) | 0.30 | 0.30 | | E2SC-12-CS0615 | E2SC-12
E2SC-12 | 6-15 | 10/19/1998 | ND(38)
ND(44) | ND(38) | ND(38) | ND(38) | ND(38) | 83 | 91 | 174 | | E2SC-15-CS01 | E2SC-15 | 0-13 | 11/25/1998 | ND(4.2) | ND(44)
ND(4.2) | ND(44) | ND(44) | ND(44) | ND(44) | 65 | 65 | | E2SC-15-CS0106 | E2SC-15 | 1-6 | 10/20/1998 | ND(4.2)
ND(0.38) | ND(4.2)
ND(0.38) | ND(4.2)
ND(0.38) | ND(4.2) | ND(4.2) | ND(4.2) | 18 | 18 | | E2SC-15-CS0615 | E2SC-15 | 6-15 | 10/20/1998 | ND(0.043) | ND(0.38) | ND(0.38)
ND(0.043) | ND(0.38)
ND(0.043) | ND(0.38) | 3.1 | 4.9 | 8.0 | | P2X010002 | X-1 | 0-2 | 7/2/1991 | ND(8.1) | NA NA | ND(8.1) | ND(8,1) | ND(0.043) | 0.26 | 0.39 | 0.65 | | P2X010204 | X-1 | 2-4 | 7/2/1991 | ND(9.9) | ND(9.9) | ND(9.9) | ND(0.1)
ND(9.9) | ND(8.1) | ND(9.3) | 320 | 320 | | P2X010204(IT) | X-1 | 2-4 | 7/2/1991 | ND(2.1) | NA
NA | ND(9.9)
ND(2.1) | ND(9.9)
ND(2.1) | ND(9.9)
ND(2.1) | ND(9.9) | 59 | 59 | | P2X010406 | X-1 | 4-6 | 7/2/1991 | ND(8.9) | NA NA | ND(8.9) | ND(8.9) | ND(8.9) | 5.4
ND(9.6) | 66
410 | 71.4 | | P2X010608 | X-1 | 6-8 | 7/2/1991 | ND(2.3) | NA NA | ND(2.3) | ND(2.3) | 2.3 | 12 | 18 | 410 | | P2X010810 | X-1 | 8-10 | 7/2/1991 | ND(2.6) | NA NA | ND(2.6) | ND(2.6) | ND(2.6) | 26 | 70 | 32.3 | | P2Y010002 | Y-1 | 0-2 | 6/6/1991 | ND(29) | NA NA | ND(29) | ND(29) | ND(2.0)
ND(29) | 630 | | 96 | | P2Y010204 | Y-1 | 2-4 | 6/6/1991 | ND(0.35) [ND(46)] | NA NA | ND(0.35) [ND(46)] | ND(0.35) [ND(46)] | ND(0.35) [ND(46)] | 27 [5100] | 230 | 860 | | P2Y010406 | Y-1 | 4-6 | 6/6/1991 | ND(4.2) | NA NA | ND(4.2) | ND(4.2) | ND(4.2) | 190 | 13 [ND(260)]
52 | 40 [5100]
242 | | P2Y010608 | Y-1 | 6-8 | 6/6/1991 | ND(2.5) | NA NA | ND(2.5) | ND(2.5) | ND(2.5) | 240 | ND(14) | 242 | | P2Y010810 | Y-1 | 8-10 | 6/6/1991 | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | 180 | ND(0.39) | 180 | | P2Y020002 | Y-2 | 0-2 | 6/7/1991 | ND(6.1) | NA | ND(6.1) | ND(6.1) | ND(6.1) | 380 | 140 | 520 | | P2Y020204 | Y-2 | 2-4 | 6/7/1991 | ND(0.47) | NA | ND(0.47) | ND(0.47) | ND(0.47) | 7.0 | 5.3 | 12.3 | | P2Y020406 | Y-2 | 4-6 | 6/7/1991 | ND(20) | NA | ND(20) | ND(20) | ND(20) | 2000 | ND(76) | 2000 | |
P2Y020608 | Y-2 | 6-8 | 6/7/1991 | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | ND(0.39) | 66 | 17 | 83 | | P2Y020810 | Y-2 | 8-10 | 6/7/1991 | ND(2.6) | NA | ND(2.6) | ND(2.6) | ND(2.6) | 99 | 6.4 | 105 | | P2Y030002 | Y-3 | 0-2 | 6/5/1991 | ND(2.0) | NA | ND(2.0) | ND(2.0) | ND(2.0) | 110 | 74 | 184 | | P2Y030204 | Y-3 | 2-4 | 6/5/1991 | ND(2.0) | NA | ND(2.0) | ND(2.0) | ND(2.0) | 29 | 110 | 139 | | P2Y030406 | Y-3 | 4-6 | 6/5/1991 | ND(0.65) | NA | ND(0.65) | ND(0.65) | ND(0.65) | 6.9 | 11 | 17.9 | | P2Y030608 | Y-3 | 6-8 | 6/5/1991 | ND(2.0) | NA | ND(2.0) | ND(2.0) | ND(2.0) | 89 | 76 | 165 | | P2Y030810 | Y-3 | 8-10 | 6/5/1991 | ND(0.43) | ND(0.43) | ND(0.43) | ND(0.43) | ND(0.43) | ND(0.43) | 34 | 34 | | P2Y031012 | Y-3 | 10-12 | 6/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.060 | 0.070 | 0.13 | | P2Y031214 | Y-3 | 12-14 | 6/5/1991 | ND(1.2) | NA | ND(1.2) | ND(1.2) | ND(1.2) | 36 | 43 | 79 | | P2Y031416 | Y-3 | 14-16 | 6/5/1991 | ND(0.72) | NA | ND(0.72) | ND(0.72) | ND(0.72) | 18 | 26 | 44 | | P2Y040002 | Y-4 | 0-2 | 6/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 2.6 | 1.2 | 3.8 | | P2Y040204 | Y-4 | 2-4 | 6/5/1991 | ND(0.23) | NA | ND(0.23) | ND(0.23) | ND(0.23) | 3.9 | 5.7 | 9.6 | | P2Y040406 | Y-4 | 4-6 | 6/5/1991 | ND(0.24) #### BLE 3 HISTORICAL SOIL SAMPLING DATA FOR PCBs | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-12.7 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |-----------|-------------|-------------------------|--|----------------------------------|----------------|----------------------------------|----------------------|-----------------------|----------------------|-----------------------|------------------| | | | | | | ļ | veraging Area 4E (cor | ntinued) | | | 1 | Total CD3 | | P2Y040608 | Y-4 | 6-8 | 6/5/1991 | ND(0.15) | NA | ND(0.15) | ND(0.15) | ND(0.15) | 1.8 | 2.0 | 3.8 | | P2Y040810 | Y-4 | 8-10 | 6/5/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.23 | 0.39 | 0.62 | | P2Y050002 | Y-4 | 0-2 | 6/6/1991 | ND(0.24) | NA | ND(0.24) | ND(0.24) | ND(0.24) | ND(1.1) | 26 | 26 | | P2Y050204 | Y-5 | 2-4 | 6/6/1991 | ND(1.2) | NA | ND(1.2) | ND(1.2) | ND(1.2) | 89 | 36 | 125 | | P2Y050406 | Y-5 | 4-6 | 6/6/1991 | ND(0.97) | ND(0.97) | ND(0.97) | ND(0.97) | ND(0.97) | 200 | ND(0.97) | 200 | | P2Y050608 | Y-5 | 6-8 | 6/6/1991 | ND(0.81) | NA | ND(0.81) | ND(0.81) | ND(0.81) | 19 | 3.2 | 22.2 | | P2Y050810 | Y-5 | 8-10 | 6/6/1991 | ND(0.74) | NA | ND(0.74) | ND(0.74) | ND(0.74) | 75 | 33 | 108 | | P2Y051012 | Y-5 | 10-12 | 6/6/1991 | ND(1.3) | NA | ND(1.3) | ND(1.3) | ND(1.3) | 29 | ND(3.0) | 29 | | P2Y051214 | Y-5 | 12-14 | 6/6/1991 | ND(0.74) | NA | ND(0.74) | ND(0.74) | ND(0.74) | ND(0.61) | ND(0.80) | ND(0.80) | | P2Y060002 | Y-6 | 0-2 | 6/11/1991 | ND(0.35) | NA | ND(0.35) | ND(0.35) | ND(0.35) | 22 | ND(1.3) | 22 | | P2Y060204 | Y-6 | 2-4 | 6/11/1991 | ND(0,070) | NA | ND(0.070) | ND(0.070) | ND(0.070) | 5.9 | 2.0 | 7.9 | | P2Y060406 | Y-6 | 4-6 | 6/11/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 1.6 | 0.54 | 2.14 | | P2Y060608 | Y-6 | 6-8 | 6/11/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y060810 | Y-6 | 8-10 | 6/11/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P2Y070002 | Y-7 | 0-2 | 6/6/1991 | ND(0.58) | NA | ND(0.58) | ND(0.58) | ND(0.58) | 19 | 19 | 38 | | P2Y070204 | Y-7 | 2-4 | 6/6/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.62 | 1.0 | 1.62 | | P2Y070406 | Y-7 | 4-6 | 6/6/1991 | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | 1.3 | 0.71 | 2.01 | | P2Y070608 | Y-7 | 6-8 | 6/6/1991 | ND(0.25) | NA | ND(0.25) | ND(0.25) | ND(0.25) | 7.6 | 7.6 | 15.2 | | P2Y070810 | Y-7 | 8-10 | 6/6/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.19 | 0.21 | 0.40 | | P202B0002 | ES2-2 | 0-2 | 1/14/1991 | ND(18) | NA | ND(18) | ND(18) | 18 | 280 | 150 | 450 | | P202B0204 | ES2-2 | 2-4 | 1/14/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.23 | 0.090 | 0.32 | | P202B0406 | ES2-2 | 4-6 | 1/14/1991 | ND(36) | NA | ND(36) | ND(36) | 36 | 760 | 330 | 1100 | | P202B0608 | ES2-2 | 6-8 | 1/14/1991 | ND(20) | NA | ND(20) | ND(20) | 20 | 160 | 100 | 280 | | P202B0810 | ES2-2 | 8-10 | 1/14/1991 | ND(18) | NA | ND(18) | ND(18) | 18 | 280 | 190 | 490 | | P202B1012 | ES2-2 | 10-12 | 1/14/1991 | ND(0.63) | NA | ND(0.63) | ND(0.63) | 0.63 | 10 | 5.5 | 16 | | P202B1214 | ES2-2 | 12-14 | 1/15/1991 | ND(0.20) | NA | ND(0.20) | ND(0.20) | 0.20 | 3,7 | 2.1 | 6.0 | | P202B1416 | ES2-2 | 14-16 | 1/15/1991 | ND(0.37) | NA | ND(0.37) | ND(0.37) | 0.37 | 6.2 | 3.3 | 9.9 | | P203B0002 | ES2-3 | 0-2 | 1/2/1991 | ND(0.46) | NA | ND(0.46) | ND(0.46) | ND(0.46) | ND(2.7) | 49 | 49 | | P203B0204 | ES2-3 | 2-4 | 1/2/1991 | ND(0.68) | NA NA | ND(0.68) | ND(0.68) | ND(0.68) | 20 | 3.0 | 23 | | P203B0406 | ES2-3 | 4-6 | 1/2/1991 | ND(0.14) | NA | ND(0.14) | ND(0.14) | ND(0.14) | 5.6 | 1.8 | 7.4 | | P203B0608 | ES2-3 | 6-8 | _z 1/2/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | 1.4 | 1.3 | 2.7 | | P203B0810 | ES2-3 | 8-10 | 1/2/1991 | ND(0.51) | NA | ND(0.51) | ND(0.51) | ND(0.51) | 32 | ND(7.8) | 32 | | P203B1012 | ES2-3 | 10-12 | 1/2/1991 | ND(0.050) [ND(0.050)] | NA | ND(0.050) [ND(0.050)] | ND(0.050) [ND(0.050) | ND(0.050) [ND(0.050)] | ND(0.050) [0.51] | ND(0.050) [ND(0.080)] | ND(0.050) [0.51] | | P203B1214 | ES2-3 | 12-14 | 1/2/1991 | ND(0.050) | NA NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.21 | ND(0.050) | 0.21 | | P203B1416 | ES2-3 | 14-16 | 1/2/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 3.2 | 0.87 | 4.07 | | P204B0002 | ES2-4 | 0-2 | 1/11/1991 | ND(1.0) | NA | ND(1.0) | ND(1.0) | ND(1.0) | 140 | ND(10) | 140 | | P204B0204 | ES2-4 | 2-4 | 1/11/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 0.61 | 0.44 | 1.05 | | P204B0608 | ES2-4 | 6-8 | 1/11/1991 | ND(0.060) | NA | ND(0.060) | ND(0.060) | ND(0.060) | 11 | 1,4 | 12,4 | | P204B0810 | ES2-4 | 8-10 | 1/11/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P204B1012 | ES2-4 | 10-12 | 1/11/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | | P204B1416 | ES2-4 | 14-16 | 1/11/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | 1.5 | 0.62 | 2.12 | | P207B0002 | ES2-7 | 0-2 | 1/16/1991 | ND(3.9) | NA | ND(3.9) | ND(3.9) | ND(3.9) | 97 | 110 | 207 | | P207B0204 | ES2-7 | 2-4 | 1/16/1991 | ND(0.080) | NA | ND(0.080) | ND(0.080) | ND(0.080) | 1.5 | 2.6 | 4.1 | | P207B0406 | ES2-7 | 4-6 | 1/16/1991 | ND(3.9) | NA | ND(3.9) | ND(3.9) | 3.9 | 12 | 82 | 97.9 | | P207B0608 | ES2-7 | 6-8 | 1/16/1991 | ND(2.9) | NA | ND(2.9) | ND(2.9) | ND(2.9) | ND(5.1) | 100 | 100 | | P20780810 | ES2-7 | 8-10 | 1/16/1991 | ND(19) | NA | ND(19) | ND(19) | 37 | ND(19) | 440 | 477 | | P207B1012 | ES2-7 | 10-12 | 1/16/1991 | ND(0.12) | NA | ND(0.12) | ND(0.12) | 0.25 | ND(0.12) | 3.8 | 4.05 | | P207B1214 | ES2-7 | 12-14 | 1/16/1991 | ND(0.12) | NA | ND(0.12) | ND(0.12) | 0.25 | ND(0.12) | 3.7 | 3.95 | | P207B1416 | ES2-7 | 14-16 | 1/16/1991 | ND(0.050) | NA | ND(0,050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.20 | 0.20 | | PG01B0002 | RF-1 | 0-2 | 10/23/1991 | ND(5.0) | NA | ND(5.0) | ND(5.0) | ND(5.0) | ND(20) | 290 | 290 | | PG01B0204 | RF-1 | 2-4 | 10/23/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.12) | 1.3 | 1.3 | | PG01B0406 | RF-1 | 4-6 | 10/23/1991 | ND(0.50) | NA | ND(0.50) | ND(0.50) | ND(0.50) | ND(2.0) | 26 | 26 | | | RF-1 | 8-10 | 10/23/1991 | ND(0.050) | NA | ND(0.050) | ND(0.050) | ND(0.050) | ND(0.050) | 0.86 | 0.86 | | PG01B0810 | | | | | | | | | | | | | PG01B1012 | RF-1 | 10-12 | 10/23/1991 | ND(4.6) | NA | ND(4.6) | ND(4.6) | ND(4.6) | ND(2.3) | 31 | 31 | | | | 10-12
12-14
14-16 | 10/23/1991
10/23/1991
10/23/1991 | ND(4.6)
ND(0.050)
ND(0.10) | NA
NA
NA | ND(4.6)
ND(0.050)
ND(0.10) | ND(4.6)
ND(0.050) | ND(4.6)
ND(0.050) | ND(2.3)
ND(0.050) | 31
0.43 | 31
0.43 | RELIN ANAL . DAT SUBJECT TO VERIFICATION #### HISTORICAL SOIL SAMPLING DATA FOR PCBs #### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Sample ID | Location ID | Depth(Feet) | Date
Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1233 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs | |-----------|-------------|-------------|-------------------|--------------|--------------|---------------------|--------------|--------------|--------------|--------------|------------| | | | | | | Ave | eraging Area 4E (co | ntinued) | | | | | | PGS-1 | PGS-1 | 0-0.5 | 3/15/1997 | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | 28 | 13 | 41 | | | | 0.5-1 | 3/15/1997 | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | ND(0.38) | 5.2 | 2.9 | 8.1 | | PGS-2 | PGS-2 | 0-0.5 | 3/15/1997 | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.13) | 1.1 | 0.96 | 2.06 | | | | 0.5~1 | 3/15/1997 | ND(0.66) | ND(0.66) | ND(0.66) | ND(0.66) | ND(0.66) | 6.0 | 5.7 | 11.7 | | | | 1-1.5 | 3/15/1997 | ND(2.3) | ND(2.3) | ND(2.3) | ND(2.3) | ND(2.3) | 14 | 22 | 36 | | | | 1.5-2 | 3/15/1997 | ND(0.46) | ND(0.46) | ND(0.46) | ND(0.46) | ND(0.46) | 2.0 | 4.6 | 6.6 | | PGS-3 | PGS-3 | 0-0.5 | 3/15/1997 | ND(37) | ND(37) | ND(37) | ND(37) | ND(37) | 190 | 290 | 480 | | | | 0.5-1 | 3/15/1997 | ND(7.2) | ND(7.2) | ND(7.2) | ND(7.2) | ND(7.2) | 120 | 28 | 148 | | | | 1-1.5 | 3/15/1997 | ND(4.7) | ND(4.7) | ND(4.7) | ND(4.7) | ND(4.7) | 49 | 42 | 91 | | | | 1.5-2 | 3/15/1997 | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.2) | ND(1,2) | 21 | 8.2 | 29.2 | | PGS-4 | PGS-4 | 0-0.5 | 3/15/1997 | ND(0,66) | ND(0.66) | ND(0.66) | ND(0.66) | ND(0.66) | 9.2 | 1.8 | 11 | |
 | 0.5-1 | 3/15/1997 | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | ND(2.4) | 36 | 7.3 | 43.3 | - Notes: 1. Samples were collected and analyzed by General Electric Company subcontractors for PCBs. - 2. ND Analyte was not detected. The number in parentheses is the associated detection limit. - 3. NA Not Analyzed Laboratory did not report results for this analyte. - 4. Duplicate sample results are presented in brackets. #### Data Qualifiers #### Organics - J Indicates an estimated value less than the practical quantitation limit (PQL). - B Analyte was also detected in the associated method blank. - E Analyte exceeded calibration range. - P Greater than 25% difference between two chromatographic columns indicating potential bias. | Averaging Area:
Location ID:
Sample ID: | 4A
95-19
219B1416 | 4A
95-25
225B0810 | 4A
Y-11
P2Y110204 | 4A
Y-12
P2Y120204 | 4A
Y-16
P2Y160810 | 4A
Y-17
P2Y170204 | 4A
Y-21
P2Y211214 | 4A
Y-22
P2Y220602 | |--|-------------------------|-------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Sample Depth(Feet): Parameter Date Collected: | 14-16
02/13/96 | 8-10
02/27/96 | 2-4
06/12/91 | 2-4
06/12/91 | 8-10
06/14/91 | 2-4
06/18/91 | 12-14
06/24/91 | 0-2
06/24/91 | | Volatile Organics | ND(0.027) | ND(0.028) | ND(0.0060) | ND(0.0050) | ND(0.0066) | ND(0,0060) | ND(0,0060) | ND(0.0060) | | 1.1,2,2-Tetrachloroethane | ND(0.014) | ND(0.013) | ND(0.013) | ND(0.011) | ND(0.013) | ND(0.012) | ND(9.911) | ND(0.912) | | 1,1,2-trichioro-1,2,2-trifluoroethane | NA
NA | NA
NEGO 0403 | MD(0.013) | ND(0.911) | 0.0040 BJ | 0.0030 BJ | ND(0.011)
ND(0.0060) | ND(0.012) | | 1,1-Dichloroethane
1,2-Dibromo-3-chloropropane | ND(0 020)
ND(0 058) | ND(0.019)
ND(0.064) | ND(0.0060)
ND(0.013) | ND(0.0050)
ND(0.011) | ND(0.0060)
ND(0.013) | ND(0.0060)
ND(0.012) | ND(0.000) | ND(0.0060)
ND(0.012) | | 1,2-Dichlorobenzene | ND(0.79) | ND(0.75) | ND(0.4Z) | ND(0.35) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 1,2-Dichloroethane | ND(0.014) | ND(0.913) | ND(0.0060) | ND(0.0050) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0060) | | 1,3-Dichlorobenzene | ND(0.59)
ND(0.70) | ND(0.65)
ND(0.66) | ND(0.42)
ND(0.42) | ND(0.35)
ND(0.36) | ND(0.42)
ND(0.42) | ND(0.38)
ND(0.38) | ND(0.37)
ND(0.37) | ND(0 37)
ND(0 37) | | 1,4-Dickinioberizerie | ND(69) | ND(0.56)
ND(65) | ND(0.42) | ND(0.36)
NA | NA NA | NA | NA NA | NA NA | | 2-Butanone | ND(0.047) | ND(0.045) | ND(0.013) | ND(0.011) | ND(0.013) | ND(0.012) | ND(0.611) | ND(0.012) | | Acetone | ND(0.12) | ND(0.12) | 0.011 BJ | 0.039 B | 0.025 B | ND(0.012) | 0.013 B | 0.024 B | | Acetonitrile Acrylonitrile | 0.0030 J
ND(0.28) | ND(0.26)
ND(0.27) | NA
ND(0.15) | NA
ND(0.13) | NA
ND(0.15) | NA
ND(0.14) | ND(0.14) | NA
ND(0,14) | | Benzene | ND(0.020) | ND(0.019) | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | | Carbon Disulfide | ND(0.014) | ND(0.013) | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0,0050) | ND(0.0060) | | Chlorobenzene | ND(0.020)
NA | ND(0.019)
NA | ND(0.0060) | ND(0.0050) | ND(0.0060)
ND(0.13) | ND(0.0060) | ND(0.0060)
ND(0.11) | ND(0.0060)
ND(0.12) | | Crotonaldehyde
Ethylbenzene | ND(0.020) | ND(0.019) | ND(0.13)
ND(0.0060) | ND(0.11)
ND(0.0050) | ND(0.0060) | ND(0.12)
ND(0.0060) | ND(0.0060) | ND(0.0060) | | Isobutanol | ND(18) | ND(17) | NA | NA | NA NA | NA | NA | NA | | m&p-Xylene | NA NA | NA NA | NA NA | NA | NA . | NA . | NA | NA
0.004 P | | Methylene Chloride Propionitrile | 0,030 B
ND(0,80) | 0.0090 JB
ND(0.76) | 0.032 B
NA | 0.055 B
NA | 0.029 B
NA | 0.029 B
NA | 0.029 B
NA | 0.064 B
NA | | Styrene | ND(0.014) | ND(0.76) | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | | Tetrachloroethene | ND(0.020) | ND(0.019) | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | | Toluene | ND(0.020) | ND(0,019) | ND(0.0060) | 0.015 | 0.0010 J | ND(0.0060) | ND(0.0060) | ND(0.0060) | | Trichloroethene Trichlorofluoromethane | ND(0.027)
ND(0.027) | ND(0.026)
ND(0.026) | ND(0.0060)
ND(0.0060) | ND(0.0050)
0.0040 J | ND(0.0060)
ND(0.0060) | ND(0.0050)
ND(0.0060) | ND(0.0060)
ND(0.0060) | ND(0.0060)
ND(0.0060) | | Vinyl Chloride | ND(0.027) | ND(0.026) | ND(0.013) | ND(0.011) | ND(0.013) | ND(0.012) | ND(0.011) | ND(0.012) | | Xylenes (total) | ND(0.027) | ND(0.026) | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | | Semivolatile Organics | | | 11540 401 | LIE (C. CO.) | 1 115/2 (2) | 11570.003 | 1 11575 673 | NE (5.07) | | 1,2,3,4-Tetrachlorobenzene
1,2,3,5-Tetrachlorobenzene | NA
NA | NA
NA | ND(0.42)
ND(0.42) | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | ND(0.38)
ND(0.38) | ND(0.37)
ND(0.37) | ND(0.37)
ND(0.37) | | 1,2,3-Trichlorobenzene | NA | NA NA | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 1,2,4,5-Tetrachlorobenzene | ND(1.8) | ND(1.6) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 1,2,4-Trichlorobenzene | ND(0.74)
NA | ND(0.70)
NA | ND(0.42) | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | ND(0.38)
ND(0.38) | ND(0.37)
ND(0.37) | ND(0.37)
ND(0.37) | | 1,3,5-Trichloroberizerie | ND(1.2) | ND(1.2) | ND(0.42)
ND(0.84) | ND(0.72) | ND(0.84) | ND(0.36) | ND(0.37)
ND(0.75) | ND(0.75) | | 1-Chloronaphthalene | NA | NA | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 1-Methylnaphthalene | NA
NA | NA
NA | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | 0.080 J | | 2,4-Dimethylphenol
2,4-Dinitrophenol | ND(0.82)
ND(2.3) | ND(0.77)
ND(2.2) | ND(0.42)
ND(1.6) | ND(0.36)
ND(1.4) | ND(0.42)
ND(1.6) | ND(0.38)
ND(1.5) | ND(0.37)
ND(1.5) | ND(0.37)
ND(1.5) | | 2-Acetylaminofluorene | ND(0.96) | ND(0.90) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 2-Chloronaphthalene | ND(1.3) | ND(1.2) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 2-Chlorophenol | ND(0.85)
ND(1.1) | ND(0,80)
ND(1.1) | ND(0.42)
ND(0.42) | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | ND(0.38)
ND(0.38) | ND(0.37)
ND(0.37) | ND(0.37)
0.048 J | | 2-Methylnaphthalene
2-Methylphenol | ND(0.88) | ND(0.83) | ND(0.42)
ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 3&4-Methylphenol | ND(1.8) | ND(1.6) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 3,3'-Dichlorobenzidine | ND(0,67)
NA | ND(0.63)
NA | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37)
ND(0.37) | | 3,3'-Dimethoxybenzidine 3,3'-Dimethylbenzidine | ND(1.3) | ND(1,2) | ND(0.42)
ND(0.84) | ND(0.36)
ND(0.72) | ND(0.42)
ND(0.84) | ND(0.38)
ND(0.77) | ND(0.37)
ND(0.75) | ND(0.37)
ND(0.75) | | 3-Methylcholanthrene | ND(0.82) | ND(0.77) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 3-Phenylenediamine | ND(0.89) | ND(0.84) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | NO(0.37) | ND(0.37) | | 4,6-Dinitro-2-methylphenol
4-Aminobiphenyl | ND(2.4)
ND(0.55) | ND(2.3)
ND(0.52) | ND(1.3)
ND(0.42) | ND(1.1)
ND(0.35) | ND(1.3)
ND(0.42) | ND(1.2)
ND(0.38) | ND(1.1)
ND(0.37) | ND(1.1)
ND(0.37) | | 4-Aminopipneny:
4-Chlorobenzilate | ND(0.96) | ND(0.90) | ND(0.42) | ND(0.35) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 4-Nitrophenol | ND(6.1) | ND(5,7) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | 7,12-Dimethylbenz(a)anthracene | ND(0.55) | ND(0.52) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | Acenaphthene
Acenaphthylene | ND(0.89)
ND(0.90) | ND(0.84)
ND(0.85) | ND(0.42)
ND(0.42) | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | ND(0.38)
0.045 J | ND(0.37)
ND(0.37) | 0.12 J
ND(0.37) | | Acetophenone | ND(0.89) | ND(0.84) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0,37) | | Anitine | ND(0.75) | ND(0.71) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | Anthracene | ND(1.0) | ND(0.94) | 0.11J
NO(0.42) | ND(0.36) | ND(0.42) | 0.18 J | ND(0.37) | 0.50 | | Benzidine Benzo(a)anthracene | ND(2.2)
ND(0.89) | ND(2.0)
ND(0.84) | ND(0.42)
0.60 | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | ND(0.35)
1,9 | ND(0.37)
0.11 J | ND(0.37)
5.2 D | | Benzo(a)pyrene | ND(0.89) | ND(0.84) | 0.59 | ND(0.36) | ND(0.42) | 2.2 | 0.12 J | 5.9 D | | Benzo(b)fluoranthene | ND(1.0) | ND(0.98) | 1.5 Z | ND(0.36) | NO(0.42) | 3.6 | 6.42 Z | 5.2 D | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | ND(0.84)
ND(0.84) | ND(0.79)
ND(0.79) | 0.33 J
1.0 Z | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | 1.5
3.5 | 0.13 J
0.42 Z | 4,3
10 D | | Benzoic Acid | ND(0.84)
NA | NA
NA | 0 066 J | ND(3.6) | ND(4.2) | ND(3.8) | ND(3.7) | ND(3.7) | | bis(2-Chloroethyl)ether | ND(0.79) | ND(0.75) | ND(0.84) | ND(0.72) | ND(0.84) | ND(0.77) | ND(0.75) | ND(0.75) | | bis(2-Ethylhexyl)phthalate | ND(1.0) | 0.16 J | 0.41 BJ | 0.11 BJ | 0.42 | ND(0.38) | 5.13 BJ | 0.23 BJ | | Butyibenzylphthalate | ND(0.92) | ND(0.86) | ND(3.42) | ND(0.36) | ND(0.42) | ND(0.33) | ND(0.37) | ND(0.37) | | Sample ID:
Sample Depth(Feet): | 4A
95-19
219B1416
14-16 | 4A
95-25
225B0810
8-10 | 4A
Y-11
P2Y110204
2-4 | 4A
Y-12
P2Y120204
2-4 | 4A
Y-16
P2Y160810
8-10 | 4A
. Y-17
P2Y170204 | 4A
Y-21
P2Y211214
12-14 | 4A
Y-22
P2Y220002 |
--|---|--|--|--|--|--|--|--| | Parameter Date Collected: | 02/13/96 | 02/27/96 | 06/12/91 | 06/12/91 | 05/14/91 | 2-4
06/18/91 | 06/24/91 | 0-2
06/24/91 | | Semivolatile Organics (continued) | | | | | , | , , | · · · · · · · · · · · · · · · · · · · | · | | Chrysene | ND(0.73) | ND(0 59) | 0.63 | ND(0.36) | ND(0.42) | 2.7 | 0 22 J | 7.5 D | | Cyclophosphamide | NA
NA | NA
NA | ND(2.5) | MD(1.7) | ND(2-0) | ND(19) | ND(1.8) | ND(1.8) | | Dibenzo(a,h)anthracene | ND(0.58)
ND(0.93) | ND(0.58) | 0.16 J | ND(0.36) | ND(0.42) | 0.68 | 0.053 J | 1,7 | | Dibenzofuran Di-n-Butylphthalate | ND(0.93) | ND(0.88)
1.4 | ND(0 42)
0,043 J | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | 0.085 J | | Di-n-Octylphthalate | ND(0.65) | ND(0.61) | 0.943 J
0.12 J | ND(0.38)
ND(0.36) | ND(9.42)
9.084 J | ND(0.38)
ND(0.38) | 0.041 J
ND(0.37) | ND(0.37)
ND(0.37) | | Diphenylamine | ND(1.9) | ND(1.3) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | Fluoranthene | ND(1,2) | ND(1.2) | 0.88 | ND(0.36) | ND(0.42) | 3.2 | 0,24 J | 6.9 D | | Fluorene | ND(0.93) | ND(9.88) | 0.049 J | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | 0.11 J | | Hexachlorobenzene | ND(1.0) | ND(0.98) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | Indeno(1,2,3-cd)pyrene | ND(0.62) | ND(0.58) | 0.30 J | ND(0,36) | ND(0.42) | 1.3 | 0.11 J | 3.3 | | Methapyriiene | ND(1,8) | ND(1.6) | ND(0.84) | ND(0.72) | ND(0.84) | ND(0.77) | ND(0.75) | ND(0.75) | | Naphthalene | ND(0.89) | ND(0.84) | 0.093 J | ND(0.35) | ND(0.42) | ND(0.38) | ND(0.37) | 0.051 J | | Nitrobenzene | ND(0.92) | (68.0) DM | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | N-Nitroso-di-n-propylamine | ND(0.82) | ND(0.77) | ND(0.42) | ND(0,36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | N-Nitrosodiphenylamine | ND(1.9) | ND(1.8) | ND(0.42) | ND(0.35) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | o-Tolvidine | ND(2.7) | ND(2.5) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | p-Dimethylaminoazobenzene | ND(0.90) | ND(0.85) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0,37) | | Pentachlorobenzene | ND(0.89) | ND(0.84) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0,38) | ND(0.37) | ND(0.37) | | Pentachloronitrobenzene Dentachloronitrobenzene | NA
ND(4.0) | NA . | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | Pentachiorophenol Pentachiorophenol | ND(1.9) | ND(1.8) | ND(0.84) | ND(0.72) | ND(0.84) | ND(0.77) | ND(0.75) | ND(0.75) | | Phenacetin Phenanthrene | ND(0.82)
ND(0.84) | ND(0.77)
ND(0.79) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37) | ND(0.37) | | Phenol | ND(0.77) | ND(0.79) | 0.53
ND(0.42) | ND(0.36)
ND(0.36) | ND(0.42)
ND(0.42) | 0.86
ND(0.38) | 0.087 J | 4.6 | | Pronamide | ND(0.88) | ND(0.83) | ND(0.42) | ND(0.36) | ND(0.42) | ND(0.38) | ND(0.37)
ND(0.37) | ND(0.37)
ND(0.37) | | Pyrene | ND(0.98) | ND(0.93) | 1.1 | ND(0.36) | ND(0.42) | 2.1 | 0,17 J | 7.3 D | | Total Phenois | NA NA | NA | ND(0.13) | ND(0.13) | ND(0.13) | ND(0.12) | 0.19 | ND(0.12) | | Organochlorine Pesticides | | | | 7.0/0.707 | 1.030.70 | (ID(0.12) | | 140(0.12) | | 4.4'-DDE | NA . | NA | ND(0.070) | ND(0.070) | ND(0.0034) | ND(0.0035) | ND(0.0035) | ND(0.0035) | | Aldrin | NA | NA | ND(0.020) | ND(0.020) | ND(0.0010) | ND(0.0010) | ND(0.0010) | ND(0.0010) | | Delta-BHC | NA | NA | ND(0.020) | ND(0.020) | ND(0.0010) | ND(0.0010) | ND(0.0010) | ND(0.0010) | | Dieldrin | NA | NA | ND(0.030) | ND(0.030) | ND(0.0015) | ND(0.0015) | ND(0.0015) | 0.0045 | | Endosulfan II | NA | NA | ND(0.070) | ND(0.070) | ND(0,0034) | ND(0.0035) | ND(0.0035) | ND(0.0035) | | Methoxychlor | NA | NA - | ND(0.070) | ND(0.070) | ND(0.0034) | ND(0.0035) | ND(0.0035) | 0.021 | | Toxaphene | NA | NA | NO(0.40) | ND(0.40) | ND(0.020) | ND(0.020) | ND(0.020) | ND(0.020) | | Organophosphate Pesticides | | | | | | | | | | None Detected | NΑ | NA | | 4 | | - | - | | | Herbicides | | | | | | | | | | 2,4,5-T | NA | NA | ND(0.032) | ND(0.27) | ND(0.032) | ND(0.029) | ND(0.028) | ND(0.029) | | 2,4,5-TP | NA | NA | ND(0.032) | ND(0.27) | ND(0.032) | ND(0.029) | ND(0.028) | ND(0.029) | | 2,4-D | NA | NA | ND(0.13) | ND(1.1) | ND(0.13) | ND(0.12) | ND(0.11) | ND(0.12) | | Furans | | | · · · · · · · · · · · · · · · · · · · | | | | | | | 2,3,7,8-TCDF | ND(0.00013) | NΑ | NA | NA | NA | NA | NA I | NA | | TCDFs (total) | ND(0.00013) | NA | NA | | | | | | | | | | | NA | NA NA | NA | NA NA | NA | | 1,2,3,7,8-PeCDF | ND(0.000089) | NA | NΑ | NA NA | NA NA | NA | NA
NA | NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF | ND(0.000089) | NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA
NA | NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total) | ND(0.000089)
ND(0.000089) | NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA
NA | NA
NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF | ND(0.000089)
ND(0.000089)
ND(0.000077) | NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077) | NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077) | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077) | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,89-HxCDF
2,3,4,6,7,8-HxCDF
HxCDFs (total) | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077) | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077) | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA N | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
HxCDFs (total)
1,2,3,4,6,7,8-HpCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077) | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000073)
ND(0.000048)
ND(0.000048) | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | NA N | NA
NA
NA
NA
NA
NA
NA
NA |
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000043)
ND(0.000048)
ND(0.000048) | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFS (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFS (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFS (total) OCDF Dioxins 2,3,7,8-TCDD | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000043)
ND(0.000048)
ND(0.000048) | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF HyCDFs (total) 1,2,3,4,6,7,8-HpCDF HpCDFs (total) OCDF Dioxins | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000043)
ND(0.000048)
ND(0.000048)
ND(0.000048)
ND(0.000048) | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA | NA N | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) 0CDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000048)
ND(0.000048)
ND(0.000048)
ND(0.000048)
ND(0.000013) | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA | NA | NA | NA N | NA | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) | ND(0.000089)
ND(0.000089)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000077)
ND(0.000048)
ND(0.000048)
ND(0.000048)
ND(0.000048)
ND(0.000048)
ND(0.000039) | NA | NA N | NA | NA N | NA | NA N | NA | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFS (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF Dioxins 2,3,7,8-PeCDD TCDDS (total) 1,2,3,7,8-PeCDD PeCDDS (total) 1,2,3,4,7,8-PeCDD PeCDDS (total) 1,2,3,4,7,8-HxCDD | ND(0.000089) ND(0.000089) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000039) ND(0.000039) ND(0.000021) ND(0.00021) ND(0.00021) | NA N | NA N | NA | NA N | NA | NA N | NA | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFS (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-HxCDD 1,2,3,7,8-HxCDD 1,2,3,7,8-HxCDD | ND(0.000089) ND(0.000089) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000078) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000039) ND(0.000039) ND(0.000039) ND(0.000027) ND(0.000027) ND(0.000027) ND(0.000017) | NA | NA N | NA N | NA N | NA | NA N | NA N | | 1.2.3.7.8-PeCDF 2.3.4.7.8-PeCDF PeCDFs (total) 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.7.8.9-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.7.8.9-HyCDF 1.2.3.4.7.8.9-HpCDF 1.2.3.4.7.8.9-HpCDF 1.2.3.4.7.8.9-HpCDF 1.2.3.4.7.8.9-HpCDF 1.2.3.7.8-TCDD 1.2.3.7.8-PeCDD 1.2.3.7.8-PeCDD 1.2.3.7.8-PeCDD 1.2.3.7.8-PeCDD 1.2.3.7.8-HxCDD 1.2.3.7.8-HxCDD 1.2.3.7.8-HxCDD | ND(0.000089) ND(0.000089) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000013) | NA N | NA | | 1.2.3.7.8-PeCDF 2.3.4.7.8-PeCDF PeCDFs (total) 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HpCDF 1.2.3.4.7.8.9-HpCDF 1.2.3.4.7.8.9-HpCDF Dioxins 2.3.7.8-TCDD TCDDs (total) 1.2.3.7.8-PeCDD PeCDDs (total) 1.2.3.4.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD | ND(0.000089) ND(0.000089) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000078) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000039) ND(0.000039) ND(0.000021) ND(0.00027) ND(0.00017) ND(0.00017) ND(0.00017) ND(0.00017) ND(0.00017) | NA | NA N | | 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-PeCDP 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-HxCDD | ND(0.000089) ND(0.000089) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000078) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000039) ND(0.000039) ND(0.000021) ND(0.00027) ND(0.000177) ND(0.000177) ND(0.000177) ND(0.000177) ND(0.0000177) ND(0.0000177) ND(0.0000177) ND(0.0000177) ND(0.0000177) ND(0.0000177) | NA | NA N | | 1.2.3.7.8-PeCDF 2.3.4.7.8-PeCDF PeCDFs (total) 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HpCDF 1.2.3.4.7.8.9-HpCDF 1.2.3.4.7.8.9-HpCDF Dioxins 2.3.7.8-TCDD TCDDs (total) 1.2.3.7.8-PeCDD PeCDDs (total) 1.2.3.4.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD 1.2.3.7.8-PxCDD | ND(0.000089) ND(0.000089) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000077) ND(0.000078) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000048) ND(0.000039) ND(0.000039) ND(0.000021) ND(0.00027) ND(0.00017) ND(0.00017) ND(0.00017) ND(0.00017) ND(0.00017) | NA | NA N | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4A
95-19
219B1416
14-16
02/13/96 | 4A
95-25
225B0810
8-10
02/27/96 | 4A
Y-11
P2Y110204
2-4
06/12/91 | 4A
Y-12
P2Y120204
2-4
06/12/91 | 4A
Y-18
P2Y160810
8-10
06/14/91 | 4A
Y-17
P2Y170204
2-4
06/18/91 | 4A
Y-21
P2Y211214
12-14
06/24/91 | 4A
Y-22
P2Y220002
0-2
06/24/91 | |------------|---|--|---|--|--|---|--|--|--| | Inorganics | • | | | | | | | | | | Aluminum | | NA. | NA. | 9780 | 8260 | 1670 | 8630 | 16100 | 7760 | | Antimony | | ND(0.240) N | 0.260 BN | ND(2.89) * | ND(2.40) * | ND(2.80) * | ND(7.50) N | ND(7.49) | ND(7.50) | | Arsenic | } | 5.40 N° | 1,60 | 5.60 N | 10.5 AN | 7,50 AN | 5 90 A | 11.9 | 13.3 | | Barium | | 55.6 E | 23.4 B | 38.2 N° | 58.4 N* | 10.0 BN* | 32.4 B | 27.5 8 | 36 2 B | | Beryllium | | 0,560 BN | 0.420 B | 0.310 8 | 0.230 B | ND(6.130) | 0 320 8 | ND(0.230) | 9.310 8 | | Cadmium | | ND(0.0300) N | ND(0.0200) | ND(0 510) | 0,560 | ND(0.510) | 1.50 | ND(0.900) | ND(0.910) | | Calcium | | NA | NA | 3890 | 11400 | 14900 | 11100 | 1880 | 5430 | | Chromium | | 14 1 E | 11.8 | 12.0 | 12.2 | 3.20 | 9 90 * | 17.8 | 12.2 | | Coball | | 11.6 EN | 7.70 | 9.70 | 10.0 | 1,90 8 | 5.20 B* | 14.6 | 7.30 B | | Copper | | 1 6.9 | 19.5 | 15.5 | 117 | 193 | 578 * | 208 | 124 | | Cyanide | | ND(0.680) | NA | NA | NΑ | ND/0.630) | ND(0.580) | ND(0.570) | ND(0,580) | | Iron | | NA | NA | 18500 E | 29300 E | 6830 E | 20900 * | 33200 | 34500 | | Lead | | 8.70 | 11.6 * | 40.4 * | 91.8 * | 43.5 ° | 79.6 | 19.8 | 64.7 | | Magnesium | <u> </u> | NA | NA | 4480 | 5920 | 8650 | 6590 | 6580 | 3130 | | Manganese | | NA | NA | 219 | 650 | 90.7 | 357 | 891 | 481 | | Mercury | | ND(0.140) | ND(0.130) | 0.140 * | ND(0.100) * | ND(0,120) * | ND(0.110) * | ND(0,100) | 0.160 | | Nickel | | 14.8 E | 18.0 | 14.3 E | 14.2 E | 4.50 BE | 9.80 * | 27,9 | 9.90 | | Potassium | | NΑ | NA | 694 | 663 | ND(157) | 1040 B | 739 B | 548 B | | Selenium | | 1.00 N | ND(0.320) N | ND(0.380) W | ND(0.330) | ND(0.380) W | ND(0.910) N | ND(0.870) | ND(0.920) | | Silver | | ND(0.0900) | ND(0.0900) | ND(0.630) N | ND(0.550) N | ND(0.630) N | ND(1.10) N | ND(1.10) | 317 B | | Sodium | | NA | NA | 204 B | 180 B | 136 B | 345 B | 223 B | ND(1.10) | | Sulfide | | NA | NA | ND(12.6) | ND(13,2) | 21.3 | ND(11.6) | ND(11.4) | NA | | Thallium | | ND(0.470) | ND(0,430) | ND(0.380) | ND(0.330) W | ND(0.380) W | ND(0,460) W | ND(0.440) | ND(0.460) | | Tin | | 1.40 BN | 4.10 B | NA | NA | NA | NA | NA | NA | | Vanadium | | 13.3 E | 10.3 | 13,8 | 18,0 | 2.40 B | 16.8 * | 14.5 | 18.8 | | Zinc | | 68.2 E | 59,5 N | 79.4 * | 109 * |
75.5 * | 583 | 89.4 | 75.8 | | Averaging Area:
Location ID:
Sample ID: | 95-02
202B0608 | 4B
95-04
204B0810 | 4B
95-05
205B0810 | 4B
95-07
207B0204 | 4B
95-07
207B1820 | 4B
95-26
223B0002 | 4B
95-26
223B1214 | 48
95-26
226B1012 | |--|------------------------|---|-------------------------|---------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | Sample Depth(Feet): Parameter Date Collected: | | 8-10
03/11/96 | 8-10
02/12/96 | 2-4
02/23/96 | 18-20
02/23/96 | 0-2 | 12-14
03/07/96 | 10-12
02/22/96 | | Volatile Organics | | | | | , | | | | | 1,1,1-Trichiorcethane
1,1,2,2-Tetrachiorcethane | ND(0.025)
ND(0.012) | ND(0.022)
ND(0.011) | ND(0.026)
ND(0.013) | ND(0.022)
0.9010 J | ND(1.5)
ND(1.1) | NA NA | NA
NA | 0,0010 J
ND(0,013) | | 1.1.2-mehloro-1.2.2-trifluoroethane | NA NA | NA NA | NA
NA | NA NA | NA NA | NA NA | NA. | NA NA | | 1,1-Dichloroethane | ND(0,019) | ND(0.017) | ND(0.019) | ND(0.017) | ND(1.1) | NA | NA | 0.0070 J | | 1,2-Dibromo-3-chioropropane | ND(0.062) | ND(0.056) | ND(0.065) | ND(0.056) | ND(3.3) | NA NA | NA | 0.0020 JB | | 1,2-Dichlorobenzene
1,2-Dichloroethane | ND(0.72)
ND(0.012) | 0.25 J
ND(0.011) | 0.47 J
ND(0.013) | ND(52)
ND(0 011) | ND(1.4)
ND(1.1) | NA
NA | NA
NA | ND(0.77)
ND(0.013) | | 1,3-Dichloroberizene | ND(0.52) | 0.80 | 3.2 | ND(52) | 0.52 J | NA NA | NA | ND(0.66) | | 1,4-Dichlorobenzene | ND(0.63) | 1.2 | 9.0 D | ND(50) | 1.0 J | NA | NA | ND(0.68) | | 1,4-Dioxane
2-Butanone | ND(63)
ND(0,043) | ND(57)
ND(0.039) | 0.011 J
ND(0.045) | ND(57)
ND(0.039) | ND(120)
ND(1.1) | NA
NA | NA
NA | ND(66)
ND(0.045) | | Acetone | ND(0,043) | 0.019 JB | ND(0.12) | ND(0.10) | ND(1.5) | NA NA | NA
NA | ND(0.12) | | Acetonitrile | 0.0060 J | ND(0.22) | 0.014 J | ND(0.22) | ND(24) | NA NA | NA | ND(0.26) | | Acrylonitrile | 0.26 | ND(0.24) | 0.0040 J | 0.0020 JB | ND(16) | NA NA | NA | ND(0,27) | | Benzene
Carbon Disulfide | ND(0.019)
ND(0.012) | ND(0.017)
ND(0.011) | ND(0.019)
ND(0.013) | 0.11
0.0060 J | ND(1.2)
ND(2.1) | NA
NA | NA
NA | ND(0,019)
ND(0,013) | | Chlorobenzene | ND(0.012) | ND(0.017) | ND(0.019) | ND(0.017) | 17 | NA NA | NA NA | ND(0.019) | | Crotonaidehyde | NA | NA | NA | NA | NA NA | NA | NA | NA | | Ethylbenzene | ND(0.019) | ND(0.017) | ND(0.019) | 0.039 | ND(1.2) | NA
NA | NA | ND(0.019) | | Isobutanol
m&p-Xylene | 16
NA | ND(15)
NA | ND(17)
NA | ND(14) | ND(15) | NA
NA | NA
NA | ND(17)
NA | | Methylene Chloride | 0.036 B | 0.015 JB | 0,013 JB | 0.011 JB | 0.23 JB | NA NA | NA NA | 0.010 JB | | Propionitrile | 0.73 | ND(0.66) | ND(0.77) | ND(0,66) | ND(10) | NA NA | NA | ND(0.77) | | Styrene | ND(0.012) | ND(0.011) | ND(0.013) | ND(0.011) | ND(1.1) | NA NA | NA | ND(0.013) | | Tetrachloroethene
Toluene | ND(0.019)
ND(0.019) | ND(0,017)
ND(0,017) | ND(0,019)
ND(0,019) | ND(0.017)
0.14 | ND(0.94)
ND(1.6) | NA
NA | NA
NA | 0.0040 J
ND(0.019) | | Trichloroethene | ND(0.025) | ND(0.022) | ND(0.026) | ND(0.022) | ND(0.96) | NA. | NA NA | 0.0060 J | | Trichloroffuoromethane | ND(0.025) | ND(0.022) | ND(0.026) | ND(0,022) | ND(2.5) | NA | NA | ND(0.026) | | Vinyl Chloride
Xylenes (total) | ND(0.025)
ND(0.025) | ND(0.022)
ND(0.022) | ND(0.026)
0.0040 J | ND(0.022)
0.22 | ND(3.2)
ND(2.5) | NA
NA | NA
NA | ND(0.026)
ND(0.026) | | Semivolatile Organics | ND(0.025) | ND(0,022) | 0.0040 3 | 1 0.22 |] ND(2.3) | INA | IVA | ND(0.026) | | 1,2,3,4-Tetrachlorobenzene | NA | ND(0.71) | NA | NA | NA | NA NA | NA | NA | | 1,2,3,5-Tetrachlorobenzene | NA NA | ND(1.4) | NA | NA | NA NA | NA NA | NA | NA | | 1,2,3-Trichlorobenzene 1,2,4,5-Tetrachlorobenzene | NA
ND(1.6) | ND(0.67)
ND(1.4) | NA
ND(1.7) | NA
ND(130) | NA
ND(3.0) | NA
NA | NA
NA | NA
ND(1.7) | | 1,2,4-Trichlorobenzene | ND(0.67) | ND(0.61) | 0.42 J | ND(52) | ND(3.0) | NA NA | NA NA | ND(1.7) | | 1,3,5-Trichlorobenzene | NA | 0.23 J | NA | NA | NA | NA NA | NA | NA | | 1,3,5-Trinitrobenzene | ND(1,1) | ND(1.0) | ND(1.2) | ND(160) | ND(2.1) | NA NA | NA NA | ND(1.2) | | 1-Chloronaphthalene
1-Methylnaphthalene | NA
NA | ND(1.3)
1.6 | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | | 2,4-Dimethylphenol | ND(0.74) | ND(0.68) | ND(0.79) | ND(53) | ND(1.4) | NA NA | NA NA | ND(0.79) | | 2,4-Dinitrophenol | ND(2.1) | ND(1.9) | ND(2.2) | ND(170) | ND(4.0) | NA | NA | ND(2.2) | | 2-Acetylaminofluorene
2-Chioronaphthalene | ND(0.86)
ND(1.2) | ND(0.79)
ND(1.1) | ND(0.92)
ND(1.3) | ND(78)
ND(72) | ND(1.7)
ND(2.3) | NA
NA | NA
NA | ND(0.92)
ND(1.3) | | 2-Chlorophenol | ND(1.2)
ND(0.77) | ND(1.1) | ND(0.82) | ND(56) | ND(1.5) | NA NA | NA
NA | ND(1.5)
ND(0.82) | | 2-Methylnaphthalene | ND(1.0) | 0.37 J | 0.48 J | 690 | ND(2.0) | NA . | NA | ND(1.1) | | 2-Methylphenol | ND(0.79) | ND(0.72) | ND(0.84) | ND(67) | ND(1.5) | NA NA | NA | ND(0.84) | | 3&4-Methylphenol
3,3'-Dichlorobenzidine | . ND(1.6)
ND(0.61) | ND(1.4)
ND(0.55) | ND(1.7)
ND(0.65) | ND(140)
ND(89) | ND(3.0)
ND(1.2) | NA
NA | NA
NA | ND(1.7)
ND(0.65) | | 3,3'-Dimethoxybenzidine | NA NA NA
NA | | 3,3'-Dimethylbenzidine | ND(1.2) | ND(1.1) | ND(1.3) | ND(130) | ND(2.3) | NA | NA | ND(1.3) | | 3-Methylcholanthrene 3-Phenylenediamine | ND(0.74)
ND(0.80) | ND(0.68)
NA | ND(0.79)
ND(0.85) | ND(83)
ND(67) | ND(1,4)
ND(1,5) | NA
NA | NA
NA | ND(0.79)
ND(0.86) | | 4,6-Dinitro-2-methylphenol | ND(2.2) | ND(2.0) | ND(2.3) | ND(160) | ND(4.2) | NA NA | NA NA | ND(2.3) | | 4-Aminobiphenyl | ND(0.50) | ND(0.45) | ND(0.53) | 6.8 J | ND(0.96) | NA NA | NA | ND(0.53) | | 4-Chlorobenzilate | ND(0.86) | ND(0.79) | ND(0.92) | ND(89) | ND(1.7) | NA NA | NA | ND(0.92) | | 4-Nitrophenol 7,12-Dimethylbenz(a)anthracene | ND(5.5)
ND(0.50) | ND(5.0)
ND(0.45) | ND(5.8)
ND(0.53) | ND(140)
7.5 J | ND(11)
ND(0.96) | NA
NA | NA
NA | ND(5.8)
ND(0.53) | | Acenaphthene | ND(0.80) | 1.4 | ND(0.85) | 37 J | ND(1.5) | NA NA | NA NA | ND(0.86) | | Acenaphthylene | ND(0.82) | ND(0.74) | ND(0.87) | 110 | ND(1.6) | NA NA | NA | ND(0.87) | | Acetophenone | ND(0.80) | ND(0.73) | ND(0.85) | ND(56) | ND(1.5) | NA NA | NA NA | ND(0.86) | | Anthracene | ND(0.68)
ND(0.90) | ND(0.82)
0.63 J | ND(0.72)
0.48 J | ND(41)
120 | ND(1,3)
ND(1,7) | NA
NA | NA
NA | ND(0.73)
ND(0.96) | | Benzidine | ND(1.9) | ND(1.8) | ND(2.1) | ND(54) | ND(3.7) | NA NA | NA NA | ND(2.1) | | Benzo(a)anthracene | ND(0.80) | 0.38 J | 0.46 J | 160 | ND(1.5) | NA | NA | ND(0.86) | | Benzo(a)pyrene | ND(0.80) | 0.32 J | 0.38 J | 120 | ND(1.5) | NA NA | NA NA | ND(0.86) | | Benzo(b)fluoranthene
Benzo(g,h,i)perylene | ND(0.94)
ND(0.76) | 0.33 JZ
0.22 J | 0.43 Z.)
0.17 J | 150 Z
54 J | ND(1.8)
ND(1.4) | NA NA | NA NA | ND(1.0)
ND(0.81) | | Benzo(k)fluoranthene | ND(0.76) | 0.32 JZ | 0.42 ZJ | 150 Z | ND(1.4) | NA NA | NA NA | ND(0.81) | | Benzoic Acid | ΝA | ND(2.1) | NA NA | NA NA | NA NA | NA . | NA NA | NA | | bis(2-Chloroethyl)ether | ND(0.72) | ND(0.65) | ND(0.76) | ND(51) | ND(1.4) | NA
NA | NA I | ND(9.77) | | bis(2-Ethylhexyl)phthalate Bulylbenzylphthalate | 0.065 J
ND(0.83) | 0.18 J
ND(0.75) | ND(0.97)
ND(0.88) | ND(67)
ND(94) | 0.50 J
0.29 J | NA
NA | NA
NA | ND(0.50)
ND(0.88) | | 1 1 | | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | · · · · · · · · · · · · · · · · · · · | 1 | | | | | Averaging Area:
Location ID;
Sample ID: | 48
95-02
20280608 | 4B
95-04
204B0810 | 4B
95-05
205B0810 | 48
95-07
207B0204 | 4B
95-07
207B1820 | 4B
95-26
22380002 | 4B
95-26
223B1214 | 48
95-26
226B1012 | |---|-----------------------------------|-------------------------|--------------------------------|-------------------------------|-------------------------|--|-------------------------|------------------------------| | Sample Depth(Feet):
Parameter Date Collected: | 6-8
02/15/96 | 8-10
03/11/96 | 8-10
02/12/96 | 2-4
02/23/96 | 18-20
02/23/96 | 0-2
03/07/96 | 12-14
03/07/96 | 10-12
02/22/96 | | Semivolatile Organics (continued) | | | | · * i | | ······································ | | | | Chrysene | ND(0.66) | 0.35 J | 0.41 J | 160 | ND(1.3) | NA NA | NA | ND(0.76) | | Gyclophosphamide Dibenzo(a,h)anthracene | NA
NA | 1 ND(0.70) | NA
0.043 h | NA NA | | Diberizofuran | ND(0.52)
ND(0.84) | ND(0.48)
ND(0.77) | 0.047 J
ND/0.89) | 16 J
30 J | ND(1.0)
ND(1.6) | NA
NA | NA
NA | ND(0.56)
ND(0.90) | | Di-n-Butylphthalate | ND(0.94) | ND(0.85) | ND(1.0) | ND(56) | 1.2 J | NA NA | NA
NA | ND(1.0) | | Di-n-Octylphthalate | ND(0.58) | ND(0.53) | ND(0.62) | ND(67) | ND(1.1) | NA | NA | ND(0.62) | | Diphenylamine | ND(1.7) | ND(1.6) | ND(18) | ND(130) | ND(3,3) | NA NA | NA | ND(1.8) | | Fluoranthene
Fluorene | ND(1.1)
ND(0.84) | 0.57 J | 0.81. | 260 | ND(2.2) | NA NA | NA NA | ND(1.2) | | Hexachlorobenzene | ND(0.94) | ND(0.77)
ND(0.85) | 0 74 J
ND(1.0) | 230
ND(67) | ND(1.5)
ND(1.8) | NA
NA | NA
NA | ND(0.90)
ND(1.0) | | Indeno(1.2,3-cd)pyrane | ND(0.56) | 0.16 J | 0.14 J | 44 J | ND(1.1) | NA NA | NA NA | ND(0.60) | | Methapyrilene | ND(1.6) | ND(1.4) | ND(1.7) | ND(140) | ND(3.0) | NA NA | NA | ND(1.7) | | Naphthalene | ND(0.80) | 0.74 | 2.7 | 590 | 0.65 J | NA | NA | ND(0.86) | | Nitrobenzene | ND(0.83) | ND(0.75) | ND(0.88) | ND(55) | ND(1.6) | NA | NA NA | ND(0,88) | | N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine | ND(0.74)
ND(1.7) | ND(0.68)
ND(1.6) | ND(0.79)
ND(1,8) |
ND(55)
ND(130) | ND(1.4)
ND(3.3) | NA NA | NA
NA | ND(0.79)
ND(1,8) | | o-Toluidine | ND(2.4) | ND(2.2) | ND(2.6) | ND(83) | ND(4.7) | T NA I | NA NA | ND(2.6) | | p-Dimethylaminoazobenzene | ND(0.82) | ND(0,74) | ND(0.87) | ND(83) | ND(1.6) | NA NA | NA. | ND(0.87) | | Pentachlorobenzene | ND(0.80) | ND(0.73) | ND(0.85) | ND(72) | ND(1.5) | NA NA | NA | ND(0.86) | | Pentachloronitrobenzene Pentachlorophenol | NA
ND(1.7) | ND(0.71) | NA
NEWA EX | NA
ND(450) | NA
NA | NA NA | NA | NA | | Phenacetin | ND(1.7)
ND(0.74) | ND(1.6)
ND(0.68) | ND(1.8)
ND(0.79) | ND(150)
ND(83) | ND(3.3)
ND(1.4) | NA
NA | NA
NA | ND(1.8) | | Phenanthrene | ND(0.76) | 2.5 | 1,9 | 580 | 0.61 J | NA NA | NA
NA | ND(0,79)
ND(0,81) | | Phenol | ND(0.69) | ND(0.63) | ND(0,74) | ND(47) | ND(1.3) | NA I | NA NA | ND(0.74) | | Pronamide | ND(0.79) | ND(0.72) | ND(0.84) | ND(55) | ND(1.5) | NA | NA | ND(0.84) | | Pyrene | ND(0.89) | 0.98 | 1.5 | 500 | ND(1.7) | NA I | NA | ND(0.95) | | Total Phenois Organochlorine Pesticides | NA NA | NA | NA NA | NA NA | NA NA | NA | NA | NA NA | | 4.4'-DDE | NA | NA NA | NA | NA NA | | NIA T | *! * | | | Aldrin | NA
NA | NA NA | NA
NA | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | | Delta-BHC | NA | NA. | NA. | NA NA | NA NA | NA I | NA NA | NA NA | | Dieldrin | NA | Endosulfan II | NA NA | | Methoxychlor
Toxaphene | NA
NA | NA
NA | NA
NA | NA NA | NA NA | NA | NA | NA | | Organophosphate Pesticides | NA | IVA | INA | . NA | NA NA | NA NA | NA | NA NA | | None Detected | NA NA | | NA | NA. | NA NA | NA T | NA | NA NA | | Herbicides | | | | | | L | | 1 | | 2.4.5-T | NA | NA | NA | NA NA | NA NA | NA | NA | NA NA | | 2.4,5-TP | NA NA | NA | NA | NA NA | NA NA | NA | NA | NA | | 2,4-D
Furans | NA | NA | NA | NA NA | NA NA | NA | NA | NA | | 2,3,7,8-TCDF | ND(0.00000042) | NA | 0.000011 g | 0.000014 g | NA NA | . N/A 1 | h 1.0 | ND/G GGGGGG | | TCDFs (total) | ND(0.00000042) | NA NA | 0.000011 g | 0.000014 g | NA
NA | NA NA | NA
NA | ND(0.000073)
ND(0.000073) | | 1,2,3,7,8-PeCDF | ND(0.00000019) | NA | 0.0000083 J | ND(0,000016) | NA. | NA NA | NA | ND(0.000027) | | 2.3,4,7,8-PeCDF | ND(0.00000016) | NA | 0.000019 | ND(0.000012) | NA | NA | NA | ND(0.000027) | | PeCDFs (total) | ND(0,00000039) | NA NA | 0.0018 | ND(0.000030) | NA NA | NA | NA | ND(0.000027) | | 1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF | ND(0.00000012)
ND(0.000000082) | NA
NA | 0.000037
0.000065 | ND(0.000021) | NA
NA | NA NA | NA
NA | ND(0.00020) | | 1,2,3,7,8,9-HxCDF | ND(0.00000012) | NA | ND(0.000020) y | ND(0.000013)
ND(0.0000084) | NA
NA | NA
NA | NA
NA | ND(0.00020)
ND(0.00020) | | 2,3,4,6,7,8-HxCDF | ND(0.00000018) | NA | 0.00023 | ND(0.0000097) | NA | NA NA | NA | ND(0.00020) | | HxCDFs (total) | ND(0.00000046) | NA | 0.0019 | ND(0.000021) | NA | NA NA | NA | ND(0.00020) | | 1,2,3,4,6,7,8-HoCDF | ND(0.00000028) | . NA | 0.00021 | ND(0.000019) | NA NA | NA | NA | ND(0.00024) | | 1,2,3,4,7,8,9-HpCDF
HpCDFs (total) | ND(0.00000028)
ND(0.00000028) | NA
NA | 0.000029
0.00064 | ND(0.000011)
ND(0.000019) | NA
NA | NA
NA | NA. | ND(0.00024) | | OCDF | ND(0.00000057) | NA NA | 0.00007 | ND(0.000017) | NA
NA | NA NA | NA
NA | ND(0,00024)
ND(0,00023) | | Dioxins | | | | | | / | . 7.) | 112(0,00020) | | 2,3,7,8-TCDD | ND(0.00000015) | NA | ND(0.00000031) | ND(0.0000058) | NA NA | NA I | NA | ND(0.000012) | | TCDDs (total) | ND(0.00000018) | NA | 0.0000015 | ND(0.0000058) | NA | NA | NA | ND(0.000012) | | 1,2,3,7,8-PeCDD | ND(0.00000011) | NA
NA | ND(0.0000016) | ND(0.0000049) | NA NA | NA | NA | ND(0.000041) | | PeCDDs (total)
1,2,3,4,7,8-HxCDD | ND(0.00000011)
ND(0.00000016) | NA
NA | ND(0.0000034)
ND(0.0000022) | ND(0.000039) | NA
NA | NA
NA | NA
1:4 | ND(0.000041) | | 1,2,3,6,7,8-HXCDD | ND(0.00000018) | NA
NA | ND(0.0000022)
ND(0.0000028) | ND(0.000015)
ND(0.000016) | NA
NA | NA
NA | NA
NA | ND(0.000019)
ND(0.000019) | | 1,2,3,7,8,9-HxCDD | ND(0.00000019) | NA NA | ND(0.0000027) | ND(0.000016) | NA. | NA NA | NA
NA | ND(0.000019) | | HxCDDs (total) | ND(0.00000032) | NA | 0.000027 | ND(0.000016) | NA | NA NA | NA NA | ND(0.000019) | | 1.2,3.4,6,7,8-HpCDD | ND(0.00000072) | NA NA | 0.000027 | ND(0.000011) | NA | NA | ŅΑ | ND(0,000011) | | HpCDDs (total) | ND(0 0000012) | NA NA | 0.000056 | ND(0.000011) | NA NA | NA | NA | ND(0.000011) | | Total TEQs (WHO TEFs) | ND(0 0000074)
0,00000025 | NA
NA | 0.00015
0.000049 | ND(0,000062)
0,000015 | NA
NA | NA
NA | NA NA | ND(0.000055) | | [- Ono- 1 L W3 (FF : 1 D 1 E / 3)] | し、しつしつしひとし | 1371 | U.UUUU48 | G10000 v | NA | NA | NA . | 0.000083 | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4B
95-02
202B0608
6-8
02/15/96 | 4B
95-04
204B0810
8-10
03/11/96 | 4B
95-05
205B0810
8-10
02/12/96 | 4B
95-07
207B0204
2-4
02/23/96 | 48
95-07
207B1820
18-20
02/23/96 | 4B
95-26
223B0002
0-2
03/07/96 | 4B
95-26
223B1214
12-14
03/07/96 | 48
95-26
226B1012
10-12
02/22/96 | |------------|---|--|---|---|--|--|--|--|--| | Inorganics | | | | | | | | | | | Aluminum | | NA | NA | NA | NA NA | NA | NA NA | NA NA | NA. | | Antimony | | ND(0.220) N | NA | 1.10 BN | 0 380 BN | ND(0.210) N | 0.250 8 | ND(0.240) | 0.250 BN | | Arsenic | | 2.00 N | NA | 2.40 N* | 2,60 N° | 0.440 BN* | 6 20 | 9.90 | ND(0,390) N* | | Barium | | 55.8 E | NA | 37.0 E | 9.00 BE | 13.5 BE | 50.8 | 20.68 | 15.7 BE | | Beryllium | | 0.310 BN | NA NA | 0.360 BN | 0.0600 BN | 0,110 BN | 0.2108 | 0.0900 B | 0.200 BN | | Cadmium | | ND(0.0200) N | NA I | 0.200 BN | ND(0 0200) N | ND(0.0200) N | 0.0400 8 | 0.176 B | ND(0.0300) N | | Calcium | | NA | NA I | NA | NA NA | NA | NA | NA. | NA | | Chromium | | 12.8 E | NA. | 19.0 E | 5.20 E | 8.50 E | 11.5 | 10.4 | 8.00 E | | Cobalt | | 4 80 BEN | NA I | 7.50 EN | 1.40 BEN | 3,90 BEN | 9.60 | 15.4 | 5.90 BEN | | Copper | | 5.70 | NA | 69,4 | 26.2 | 5.50 | 55.1 | 950 | 13.4 | | Cyanide | | 0.920 | ND(0.560) | ND(0.650) | 13.3 | ND(0.590) | ND(0,690) | ND(0.680) | ND(0.650) | | lron | | NA | NA | NA | NA NA | NA | NA. | NA. | NA | | Lead | | 7.60 | NA | 204 | 18.7 | 4.20 | 40.6 | 10.8 | 5.60 | | Magnesium | | NA | NA | NA | NA NA | NA NA | NA. | NA. | NA NA | | Manganese | | NA | NA | NA | NA NA | NA. | NA | NA. | NA | | Mercury | | ND(0.100) | NA . | 0.840 | 0.580 | ND(0.120) | ND(0.130) | ND(0.140) | ND(0,110) | | Nickel | | 11.3 E | NA | 14.8 E | 7.60 E | 7.10 E | 15,9 | 72.7 | 11.5 € | | Potassium | <u> </u> | NA | NA NA | NA | NA | NA | NA | NA NA | NA | | Selenium | | 0.540 BN | NA NA | 0,580 BN | 0.490 BN | 0.390 BN | 0.490 B | 9,400 B | ND(0.340) N | | Silver | | ND(0.0900) | NA | 0.100 B | ND(0.0800) | ND(0,0800) | ND(0.100) | ND(0.0900) | ND(0.0900) | | Sodium | | NA | NA | NA | NA | NA NA | NA | NA | NA | | Sulfide | | NA | NA | NA | NA | NA. | NA | NA NA | NA | | Thallium | | 0.620 B | NA | ND(0.450) | ND(0.390) | ND(0.410) | ND(0.480) | ND(0.470) | ND(0.460) | | Tin | | 1.40 BN | NA I | 41,8 N | 1,90 BN | 1.80 BN | 2.10 B | 0.820 B | 1,30 BN | | Vanadium | | 10.8 E | NA | 16.3 E | 6.70 E | 3.80 BE | 9.50 | 7.70 | 6.40 BE | | Zinc | | 60.9 E | NA NA | 166 E | 14.5 E | 27.8 E | 85.5 | 347 | 36.0 E | | | Averaging Area:
Location ID:
Sample ID: | 48
206\$
206 \$ 0-6 | 4B
207S
207S0-6 | 48
209S
209S0-6 | 4B
E2SC-05
E2SC-05-CS0615 | 4B
E2SC-05
E2SC-05-SS07 | 4B
E2SC-06
E2SC-06-CS0615 | 4B
E2SC-06
E2SC-06-SS00 | |----------------------------------|---|----------------------------------|---------------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------| | Parameter | Sample Depth(Feet):
Date Collected: | 0-0.5
09/17/97 | 0-0.5
0 9/17/97 | 0-0.5
09/17/97 | 6-15
10/25/98 | 10-12
10/25/98 | 6-15
10/23/98 | 12-14
10/23/98 | | Volatile Orga | | | | | | | | | | 1.1.1-Trichlor | | ND(0.022) | ND(0.021) | ND(0.023) | NA NA | ND(0,0052) | NA
NA | ND(0.53)
ND(0.53) | | 1,1,2,2-Tetrac | nioroethane
-1.2.2-toduoroethane | ND(0.011)
NA | ND(0.811)
NA | ND(0.011)
NA | NA
NA | ND(0,0052)
NA | NA AN | NA NA | | 1,1,2-trichioroe | | ND(0.017) | ND(0.016) | ND(0.017) | NA NA | ND(0.0052) | NA NA | ND(0.53) | | | 3-chloropropane | ND(0.056) | ND(0.053) | ND(0.057) | NA NA | ND(0 010) | NA. | ND(1.1) | | 1,2-Dichlorob | | NA | ND(0.62) | ND(0.67) | ND(0.39) | NΑ | ND(110) | NA | | 1,2-Dichloroe | | ND(0 011) | ND(0.011) | ND(0.011) | NA NA | ND(0.0052) | NA. | ND(0.53) | | 1,3-Dichlorob | | NA NA | ND(0.54) | ND(0.58) | ND(0.39) | NA NA | ND(110) | NA NA | | 1,4-Dichlorob | enzene | NA NA | ND(0.55) | ND(0.59) | ND(0.39) | NA
NDVO 603 | ND(110) | NA
ND(53) | | 1,4-Dioxane
2-Butanone | | ND(57)
0.0030 JB | ND(54)
0.0050 JB | ND(58)
0.0020 JB | NA
NA | ND(0.52)
ND(0.021) | NA
NA | ND(2.1) | | Acetone | | 0.031 JB | 0.037 JB | 0.027 JB | NA NA | 0.021 | NA NA | ND(2.1) | | Acetonitrile | | ND(0.22) | ND(0.21) | ND(0.23) | NA NA | ND(0.10) | NA | ND(11) | | Acrylonitrile | | ND(0,23) | ND(0.22) | ND(0.24) | NA NA | ND(0.10) | AA | ND(11) | | Benzene | | ND(0.017) | ND(0.015) | ND(0.017) | NA NA | ND(0.0052) | NA | 2.1 | | Carbon Disulf | |
ND(0.011) | ND(0.011) | ND(0.011) | NA | ND(0.0052) | NA | ND(0.53) | | Chlorobenzen | | ND(0,017) | ND(0.016) | 0.0020 J | NA NA | ND(0.9052) | NA
NA | ND(0.53) | | Crotonaldehy | de | NA
o popo I | NA
0.0040 L | NA
0.0000 I | NA
NA | NA
ND(0.0053) | NA
NA | NA NA | | Ethylberizene | | 0.0020 J
ND(14) | 0.0010 J
ND(14) | 0.0020 J
ND(15) | NA
NA | ND(0.0052)
ND(0.21) | NA
NA | ND(0.53)
ND(21) | | lsobutanol
m&p-Xvlene | | ND(14)
NA | ND(14)
NA | ND(15)
NA | NA
NA | ND(0.21)
NA | NA
NA | NA
NA | | Methylene Ch | loride | 0.072 B | 0.014 JB | 0.047 B | T NA | ND(0,0052) | NA NA | ND(0.53) | | Propionitrile | | ND(0.66) | ND(0.63) | ND(0.67) | NA NA | ND(0.021) | NA NA | ND(2.1) | | Styrene | | ND(0.011) | ND(0.011) | ND(0.011) | NA | ND(0.0052) | NA | 2.1 | | Tetrachloroeti | nene | ND(0.017) | ND(0.016) | ND(0.017) | NA | ND(0.0052) | NA NA | ND(0.53) | | Toluene | | ND(0.017) | ND(0.016) | ND(0.017) | NA NA | ND(0.0052) | NA NA | 2.3 | | Trichloroether | | ND(0.022) | ND(0.021) | ND(0,023) | NA NA | ND(0,0052) | NA
NA | ND(0.53) | | Trichlorofluoro | | ND(0.022)
ND(0.022) | ND(0.021)
ND(0.021) | ND(0.023) | NA
NA | ND(0.010)
ND(0.010) | NA
NA | ND(1.1)
ND(1.1) | | Vinyl Chloride
Xylenes (total | · · · · · · · · · · · · · · · · · · · | 0.0050 J | 0.0040 J | ND(0.023)
0.0040 J | NA
NA | ND(0.010) | NA
NA | 1.6 | | Semivolatile | · · · · · · · · · · · · · · · · · · · | 0.0000 0 | 0.0040 0 | 0.00404 | I NA | 110(0.0002) | 1973 | | | | hlorobenzene | NA | NA | NA NA | NA | NA | NA | NA | | | hlorobenzene | NA | NA | NA NA | NA NA | NA. | NA | NA | | 1,2,3-Trichlor | | NA | 1,2,4,5-Tetrac | hlorobenzene | 110 J | ND(1.4) | ND(1.5) | ND(0.39) | NA NA | ND(110) | NA | | 1,2,4-Trichlore | | 600 | ND(0.58) | ND(0.63) | ND(0.39) | NA NA | ND(110) | NA | | 1,3,5-Trichlor | | NA | NA NA | NA NA | NA NA | NA NA | NA
NA | NA. | | 1,3,5-Trinitrob | | ND(950) | ND(0.96) | ND(1.0) | ND(1.9) | NA
NA | ND(540)
NA | NA
NA | | 1-Chloronaph
1-Methylnaph | | NA
NA | NA
NA | AN
AN | NA
NA | NA NA | NA NA | NA
NA | | 2,4-Dimethylp | | ND(630) | ND(0.64) | ND(0.70) | ND(0.39) | NA NA | 11 J | NA. | | 2,4-Dinitrophe | | ND(1800) | ND(1.8) | ND(1.9) | ND(1.9) | NA NA | ND(540) | NA | | 2-Acetylamino | | ND(740) | ND(0.75) | ND(0,81) | ND(0.78) | NA | ND(220) | NA | | 2-Chloronaph | thalene | 60 J | ND(1,0) | ND(1.1) | ND(0.39) | NA NA | ND(110) | NA | | 2-Chlorophen | | ND(650) | ND(0,67) | ND(0.72) | ND(0.39) | NA | ND(110) | NA | | 2-Methylnaph | | 48 J | ND(0.89) | 0.078 J | 0.64 | NA NA | 4400 | NA NA | | 2-Methylphen | | 95 J | ND(0.69) | ND(0.74) | ND(0.39) | NA
NA | ND(110) | NA
NA | | 3&4-Methylph
3,3'-Dichlorob | | . 110 J
ND(520) | ND(1,4)
ND(0,53) | ND(1.5)
ND(0.57) | ND(0.39)
ND(1.9) | NA
NA | 19 J
ND(540) | NA
NA | | 3,3-Dimethox
3,3'-Dimethox | | NA
NA | ND(0.53) | ND(0.57) | ND(1.9) | NA NA | NA NA | NA
NA | | 3.3'-Dimethyll | | ND(1000) | ND(1.0) | ND(1.1) | ND(1.9) | NA NA | ND(540) | NA NA | | 3-Methylchola | | ND(630) B | ND(0.54) B | ND(0.70) B | ND(0.78) | NA | ND(220) | NA | | 3-Phenylened | | ND(690) | ND(0.70) | ND(0.75) | NA | NA | NΑ | NA | | | methylpheno! | ND(1900) | ND(1.9) | ND(2.1) | ND(1.9) | NA | ND(540) | ŅĄ | | 4-Aminobiphe | | ND(430) | ND(0.43) | ND(0,47) | ND(1.9) | NA
NA | ND(540) | NA | | 4-Chlorobenz | ilate | ND(740) | ND(0.75) | ND(0.81) | ND(0.39) | NA
NA | ND(110) | NA
NA | | 1-Nitrophenol | lh e a m/a) a a thera a can | ND(4700)
ND(430) | ND(4.8)
ND(0.43) | ND(5.1)
ND(9.47) | ND(1.9)
ND(0.78) | NA
NA | ND(540)
ND(220) | NA
NA | | Acenaphthens | ibenz(a)anthracene | ND(690) | ND(0.70) | ND(0.75) | 0.10 J | NA
NA | 340 | NA
NA | | Acenaphthyle | · · · · · · · · · · · · · · · · · · · | 37 J | ND(0.71) | 0,46 J | 0.84 | NA NA | 4400 | NA NA | | Acetophenon | | 200 J | ND(0.70) | 0.11J | 0.021 J | NA | ND(110) | NA. | | Aniline | | 930 | 0.056 J | ND(0.64) | ND(0.39) | NA | ND(110) | NA | | Anthracene | | 65 J | ND(0.78) | 0.16J | 2.0 | NA | 8100 | NA | | Benzidine | | ND(1700) B | ND(1.7) B | ND(1.8) B | ND(3.9) | NA NA | ND(1100) | NA | | Benzo(a)anth | | 360 J | 0.038 ± | 1.5 | 0.49 | NA
NA | 1100 J | NA NA | | Benzo(a)pyre | | 440 JB | 0.036 J | 20B | 0.45 | NA
NA | 590
720 | NA
NA | | Benzo(b)fluor | | 740 J
420 J | 0.054 J | 2.3 | 0.33 J
0.12 J | NA
NA | 730
249 | NA
NA | | Benzo(g.h.i)p | | 420 J
250 JB | ND(0.65)
ND(0.65) B | 1.2
0,74 B | 0.12 J
0.16 J | NA
NA | 249
300 | NA
NA | | Benzo(k)fluor
Benzoic Acid | ark()erie | NA NA | NA (0.00) B | 0.74 B | NA | NA
NA | NA
NA | NA
NA | | bis(2-Chloroe | thylether | 610 | ND(0.62) | ND(0.67) | ND(0.39) | NA NA | ND(110) | NA NA | | bis(2-Ethylhe | | 250 J | 0.075 J | 0.087 J | 0.17 J | NA. | ND(110) | NA | | | nthalate | ND(719) | ND(0.72) | ND(0.73) | ND(0.39) | NA | ND(110) | NA | | Averaging Area:
Location ID:
Sample ID: | 4B
206S
206S0-6 | 4B
207S
207S0-6 | 4B
209S
209S0-6 | 4B
E2SC-05
E2SC-05-CS0615 | 4B
E2SC-05
E2SC-05-SS07 | 4B
E2SC-06
E2SC-06-CS0615 | 48
E2SC-06
E2SC-06-S508 | |---|-----------------------|-----------------------|-----------------------|---------------------------------|-------------------------------|----------------------------------|-------------------------------| | Sample Depth(Feet): Parameter Date Collected: | 0-0.5
09/17/97 | 0-0.5
09/17/97 | 0-0.5
09/17/97 | 6-15
10/25/98 | 10-12
10/25/98 | 6-15
10/23/98 | 12-14
10/23/98 | | Semivolatile Organics (continued) | | | | | | | | | Chrysene | 340 JB | 6.049 JB | 1.8 B | 0.53 | NA | 1200 J | NA | | Cyclophosphamide | NA | NA. | NA | NA | NA | NA NA | NA. | | Dibenzo(a,h)anthracene | 71 J | ND(0.45) | 0.33 J | ND(0.39) | NA | 65 J | NA . | | Dibenzofuran | ND(720) | ND(0.73) | ND(0.79) | 0.055 J | NA NA | 200 | NA NA | | Di-n-Butylphthalate | 1160 | ND(0.81) | ND(0.88) | ND(0.39) | NA | ND(110) | NA
NA | | Di-n-Octylphthalate | ND(500) B | ND(0.51) B | ND(0.55) B | ND(0.39) | NA
NA | ND(110) | NA
NA | | Diphenylamine | 60 J | NO(1.5) | ND(1.6)
1.7 | ND(0.39) | NA
NA | ND(110)
2500 | NA
NA | | Fluoranthene | 780 J | 0.086 J
ND(0.73) | 0,071 J | 1,0
0,73 | NA
NA | 2708 | NA NA | | Fluorene Hexachlorobenzene | ND(720)
72 J | ND(0.73)
ND(0.81) | ND(0.88) | ND(0.39) | NA
NA | ND(110) | NA
NA | | Indeno(1,2,3-cd)pyrene | 310 J | ND(0.49) | 1.1 | 0.10 J | NA NA | 230 | NA NA | | Methapyrilene | ND(1400) | ND(1.4) | ND(1.5) | ND(1.9) | NA | ND(540) | NA. | | Naphthalene | 78 J | ND(0.70) | 0.10 J | 0.97 | NA | 12000 | NA | | Nitrobenzene | ND(710) | ND(0.72) | ND(0.78) | ND(0.39) | NA | ND(110) | NA | | N-Nitroso-di-n-propylamine | ND(630) | ND(0.64) | ND(0,70) | ND(0,39) | NA | ND(110) | NA. | | N-Nitrosodiphenylamine | 60 J | ND(1.5) | ND(1.6) | ND(0.39) | NA | ND(110) | NA | | 5-Toluidine | ND(2100) | ND(2.1) | ND(2.3) | ND(0.78) | NA | ND(220) | NA | | p-Dimethylaminoazobenzene | ND(700) | ND(0.71) | ND(0.77) | ND(0.78) | NA | ND(220) | NA | | Pentachlorobenzene | 270 J | ND(0.70) | ND(0.75) | ND(0.39) | NA | ND(110) | NA | | Pentachloronitrobenzene | NA | NA NA | NA | ND(1.9) | NA | ND(540) | NA | | Pentachlorophenoi | ND(1500) | ND(1.5) | ND(1.6) | ND(1,9) | NA | ND(540) | NA | | Phenacetin | ND(630) | ND(0.64) | ND(0,70) | ND(0.78) | NA | ND(220) | NA | | Phenanthrene | 360 J | ND(0.65) | 0.49 J | 2.8 | NA NA | 8200 | NA NA | | Phenol | 730 | ND(0.60) | ND(0.65) | ND(0.39) | NA NA | 7.9 J | NA NA | | Pronamide | ND(680) | ND(0.69) | ND(0.74) | ND(0.78) | NA NA | ND(220) | NA
NA | | Pyrene
Total Phenois | 910
NA | 0.075 J
NA | 2.7
NA | 1.5
NA | NA
NA | 4300
NA | NA
NA | | Organochlorine Pesticides | 144 | IVA | IVA. | 1974 | NA. | 1477 | 14/ | | | NA | 4,4'-DDE
Aldrin | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | | Delta-BHC | NA NA | NA
NA | NA
NA | NA NA | NA NA | NA NA | NA NA | | Dieldrin | NA
NA | NA NA | NA NA | NA
NA | NA. | NA NA | NA NA | | Endosulfan II | NA NA | NA NA | NA
NA | NA NA | NA NA | NA NA | NA. | | Methoxychlor | NA NA | | Toxaphene | NA | Organophosphate Pesticides | ····· | | | | | | | | None Detected | NA | Herbicides | | | | | | | | | 2,4,5-T | NA | 2,4,5-TP | NA | NA | NA | NA NA | NA | NA | NA | | 2,4-D | NA | NA | NA | NA | NA | NA . | NA | | Furans | | | <u> </u> | | | | | | 2,3,7,8-TCDF | 0.0013 g | 0.000044 g | 0.000029 g | 0.0000033 g | NA | ND(0.00000045) | NA | | TCDFs (total) | 0.012 | 0.00052 | 0.00019 | 0.000016 | NA | ND(0.00000045) | NA | | 1,2,3,7,8-PeCDF | 0.00062 | 0.000017 | 0.000011 | ND(0.00000078) | NA | ND(0.00000051) | NA | | 2,3,4,7,8-PeCDF | 0.00097 | 0.000038 | 0.000014 | ND(0.00000085) | NA | ND(0.00000053) | NA | | PeCDFs (total) | 0.023 | 0,0010 | 0.00023 | 0.000014 | NA NA | ND(0.00000092) | NA NA | | 1,2,3,4,7,8-HxCDF | 0.0013 | 0.000032 | 0.000021 | ND(0.00000098) | NA NA | ND(0.00000018) | NA NA | | 1,2,3,6,7,8-HxCDF | 0.0011 | 0.000037 | ND(0.000011) v | ND(0.00000058) | NA
NA | ND(0.00000018) | NA | | 1,2,3,7,8,9-HxCDF | 0.000017 | ND(0.00000054) | ND(0.00000060) | ND(0.00000048) | NA
NA | ND(0.00000024) | NA
NA | | 2,3,4,6,7,8-HxCDF | 0.00098 | 0.000049 | 0.0000087 | ND(0.00000051) | NA
NA | ND(0.00000021) | NA
NA | | HxCDFs (total) | 0.030 | 0.00095 | 0.00022 | 0.0000045 | NA
NA | ND(0.00000080)
ND(0.00000097) | NA
NA | | 1,2,3,4,6,7,8-HpCDF | 0.0027 | 0.000082
0.0000075 | 0.00013
0.000083 | ND(0.0000017)
ND(0.00000031) | NA
NA | ND(0.00000097)
ND(0.00000954) | NA
NA | | 1,2,3,4,7,8,9-HpCDF | 0.00058
0.0074 | 0.000075 | 0.000083 | ND(0.00000031) | NA
NA | ND(0.00000954) | NA NA | | HpCDFs (total) OCDF | 0.0074 | 0.00097 | 0.00028 | ND(0.0000013) | NA NA | ND(0.0000011) | NA NA
| | Dioxins | 4.4.4. | 0.00000 | 3.500005 | 1.5(0.00000) | . 47.5 | (U.UUUUUL) | - 57 4 | | 2,3,7,8-TCDD | 0.000011 | ND(0.00000028) | ND(0 00000038) | ND(0.00000031) | NA | ND(0.00000068) | NA NA | | TCDDs (total) | 0.000071 | ND(0.00000028) | 0.0000037 | ND(0.00000031) | NA NA | ND(0.00000068) | NA NA | | 1,2,3,7,8-PeCDD | ND(0.000062) v | ND(0.00000038) | ND(0.00000082) | ND(0.00000030) | NA NA | ND(0 00000043) | NA NA | | PeCDDs (total) | ND(0.00016) | ND(0.0000012) | ND(0.0000031) | ND(0.0000010) | NA | ND(0.00000043) | NA
NA | | 1,2,3,4,7,8-HxCDD | 0.000097 | ND(0,00000045) | ND(0.00000096) | ND(0.00000095) | NA | ND(0.00000075) | NA. | | 1,2,3,6,7,8-HxCDD | 0.00012 | ND(0.00000068) | 0.0000029 J | ND(0.00000086) | NA | ND(0.00000068) | NA NA | | 1,2,3,7,8,9-HxCDD | 0.00010 | ND(0.00000073) | ND(0.0000023) | ND(0.00000092) | NA | ND(0.00000070) | NA | | HxCDDs (total) | 0.0011 | 0.0000028 | 0.000016 | ND(0,00000095) | NA | ND(0.00000075) | NA | | 1.2,3,4,6,7,8-HpCDD | 0.00093 | 0.0000074 | 0.000036 | ND(0.00000079) | NA | ND(0.00000060) | NA | | HpCDDs (total) | 0.0019 | 0.000015 | 0.000067 | ND(0.00000079) | NA | ND(0.0000010) | NA | | | | | | | 4 1 4 | | 4.1.4 | | OCDD
Total TEQs (WHO TEFs) | 0.0037
0.0011 | 0.000050
0.000037 | 0.00026
0.000017 | ND(0.0000047)
0.0000011 | NA
NA | 0.0000088
0.0000088 | NA
NA | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 48
2065
20650-6
0-0.5
09/17/97 | 4B
207S
207S0-6
0-0.5
09/17/97 | 4B
209S
209S0-6
0-0.5
09/17/97 | 4B
E2SC-05
E2SC-05-CS0615
6-15
10/25/98 | 48
E2SC-05
E2SC-05-SS07
10-12
10/25/98 | 48
E2SC-06
E2SC-06-CS0615
6-15
10/23/98 | 4B
E2SC-06
E2SC-06-SS08
12-14
10/23/98 | |------------|---|--|--|--|---|--|---|--| | Inorganics | | | | | | | | | | Aluminum | į | N.A | NA | NA NA | NA AN | NA NA | NA | NA | | Aráimony | | 4.40 BN | ND(0.610) N | ND(0,660) N | 0.290 B | NΑ | 0.530 B | NA | | Arsenic | [| 23.9 | 4.00 | 7.50 | 7.50 | NA | 5.30 | NA | | Barium | | 82.8 | 36.2 B | 49.7 | 35.3 | NA NA | 42 1 | NA | | Beryllium | | 0.290 B | 0.250 B | 0.410 B | 9 370 B | NA | 0.330 B | NA | | Cadmium | 1 | 1,00 | ND(0.0600) | 0,600 B | 0.290 B | NΑ | 0 490 B | NA | | Calcium | | NΑ | NA | NA NA | i NA | NA I | NA | NA | | Chromium | | 108 | 8.60 | 17.8 | 10.9 | NA | 12,4 | NA | | Cobalt | | NA | NA | NA NA | 12.8 | NA | 8.80 | NA | | Copper | | 236 E | 17,4 E | 56,9 E | 17.3 | NA NA | 23.5 | NA | | Cyanide | i | 1.40 | ND(0.530) | ND(0.570) | ND(3.00) | NA | 53.0 | NA | | Iron | **** | NA | NA | NA NA | NA | NA | NA | NA | | Lead | į | 405 | 10.9 * | 105 * | 10.7 | NA | 47.1 | NA | | Magnesium | | NA | NA | NA | NA NA | NA NA | AM | NA | | Manganese | | NA | NA | NA NA | NA NA | NA | NA I | NA | | Mercury | | 0.660 | ND(0.0500) | 0.190 | 0.0370 8 | NA | 0.0640 B | NA | | Nickel | | 34.4 | 11.9 | 25.0 | 19.2 | NA | 16.2 | NA | | Potassium | | NA | NA | NA. | NA NA | NΑ | NA | NA | | Selenium | | 1.00 | 0.970 B | 2.20 | ND(0.590) | NA | 1,30 | NA | | Silver | | 3.00 | ND(0.170) | ND(0.180) | ND(1.20) | NA NA | ND(1.30) | NA | | Sodium | | NA | NA | NA | ŅA | NA | NA NA | NA | | Sulfide | | NA | NA | NA | ND(237) | NA | 444 | NA | | Thallium | | ND(1.00) | ND(1.10) | ND(1.10) | ND(1.20) | NA | 2,10 | NA | | Tin | | 27.4 | ND(2.00) | 9.30 B | ND(11.9) | NA | ND(13.4) | NA | | Vanadium | | 83.9 | 8.40 B | 19.5 | 12.1 | NA | 10,0 | NA | | Zinc | | 273 | 75.6 | 127 | 68.5 | NA | 122 | NA | | Averaging Area:
Location ID:
Sample ID: | 4B
E2SC-07
E2SC-07-CS0615
6-15 | 4B
E2SC-07
E2SC-07-SS09
14-15 | 4B
E2SC-14
E2SC-14-CS0615
6-15 | 4B
E2SC-25
E2SC-25-CS0615
6-15 | 48
E2SC-25
E2SC-25-SS09
14-15 | 4B
ESA2-TW
ESA2-TW-SB-1
8-10 | 4B
X-4
P2X040406
4-6 | |--|---|--|---|---|--|---------------------------------------|-------------------------------| | Sample Depth(Feet): Parameter Date Collected: | 6-15
10/27/98 | 10/27/98 | 10/08/98 | 08/16/99 | 08/16/99 | 05/27/99 | 06/25/91 | | Volatile Organics | | | 1,50,0,000 | | MD/0.053 | HOW (E) | ND(2.5) | | 1,1 1-Trichloroethane
1,1.2,2-Tetrachloroethane | NA
NA | ND(0,0045)
ND(0,0045) | ND(0.0056)
ND(0.0056) | NA
NA | ND(9.25)
ND(0.25) | ND(0,15)
ND(0,15) | ND(4.8) | | 1,1,2-trichloro-1,2,2-trifluoroethane | NA
NA | NA NA | NA
NA | NA NA | NA NA | NA. | ND(4.8) | | 1,1-Dichloroethane | NA. | ND(0.0045) | ND(0.0056) | NA. | ND(0.25) | ND(0.15) | ND(2.5) | | 1,2-Dibromo-3-chloropropane | NA | ND(0.0090) | ND(0.911) | NA | ND(0.50) | ND(0.15) | ND(4.8) | | 1,2-Dichlorobenzene | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | 0.54 J | | 1,2-Dichioroethane | NA. | ND(0.0045) | ND(0.0056) | NA NA | ND(0.25) | ND(0.15) | ND(2.5) | | 1,3-Dichlorobenzene | ND(0.34)
ND(0.34) | NA
NA | ND(0.37)
ND(0.37) | ND(9.49)
ND(9.40) | NA
NA | ND(12)
ND(12) | 5.2
14 | | .4-Dichlorobenzene
.4-Dioxane | NE(0.34)
NA | ND(0.45) | ND(0.55) | ND(0.40) | ND(25) | ND(6.0) | NA NA | | 2-Butanone | NA. | ND(0.018) | ND(0.022) | NA | ND(1.0) | ND(3.0) | ND(4.8) | | Acetone | NA | 0.018 | ND(0.022) | NA | ND(1.0) | ND(3.0) | ND(4.8) | | Acetonitrile | NA | ND(0.090) | ND(0.11) | NA NA | ND(5.0) | ND(3.0) | NA | | Acrylonitrile | NA NA | ND(0 090) | ND(0.11) | NA NA | ND(5.0) | ND(0.30) | ND(59) | | Benzene | NA
NA | 0.0020 J | ND(0.0056) | NA
NA | ND(0.25)
ND(0.25) | 13
ND(0.30) | ND(2.5)
ND(2.5) | | Darbon Disulfide Chlorobenzene | NA
NA | ND(0,0045)
0.035 | ND(0,0056)
ND(0,0056) | NA
NA | 1.6 | ND(0.15) | ND(92) | | Crotonaldehyde | NA NA | NA
NA | NA NA | NA
NA | NA NA | NA
NA | ND(48) | | thylbenzene | NA NA | 0.023 | ND(0.0056) | NA NA | 2.5 | 23 | ND(5.9) | | sobutanol | NA | ND(0.18) | ND(0.22) | NA | ND(10) | ND(6.0) | NA | | n&p-Xylene | NA NA | NA NA | NA NA | NA | NA NA | 37 | NA . | | Methylene Chloride | NA NA | ND(0.0045) | ND(0.0056) | NA
NA | ND(0.25) | ND(0.15) | 0.61 J
NA | | Propionitrile
Styrene | NA
NA | ND(0.018)
ND(0.0045) | ND(0.022)
ND(0.0056) | NA
NA | ND(1.0)
ND(0.25) | ND(0.15)
ND(0.15) | NA
ND(2.5) | | otyrene
Fetrachloroethene | NA NA | 0.0015 J | ND(0.0056) | NA
NA | ND(0.25) | ND(0.15) | ND(2.5) | | Foluene | NA NA | ND(0.0045) | ND(0,0056) | NA NA | ND(0.25) | 31 | ND(2.5) | | Frichloroethene | NA | ND(0.0045) | ND(0.0056) | NA | ND(0.25) | ND(0.15) | ND(2.5) | | Frichlorofluoromethane | NA | ND(0.0090) | ND(0.011) | NA | ND(0.50) | ND(0.15) | ND(2.5) | | /inyl Chtoride | NA NA | ND(0.0090) | ND(0.011) | NA NA | ND(0.50) | ND(0.30) | ND(4.8) | | (ylenes (total) | NA | 0.071 | ND(0.0056) | NA NA | 0.89 | NA NA | ND(32) | | Semivolatile Organics | NA NA | NA | NA NA | NA NA | NA NA | NA | 9.8 | | I.2,3,4-Tetrachlorobenzene
I.2,3,5-Tetrachlorobenzene | NA NA | 1.1 JZ | | 1,2,3-Trichlorobenzene | NA | NA | ND(1.8) | | 1,2,4,5-Tetrachlorobenzene | ND(0.34) | NA | ND(0.37) | ND(0.40) | NA | ND(12) | 1.1 JZ | | ,2,4-Trichlorobenzene | ND(0.34) | NA | ND(0.37) | ND(0.40) | NA | ND(12) | 9.4 | | 1,3,5-Trichlorobenzene | NA | NA | NA NA | NA | NA NA | NA
NA | 1.1 J | | .3,5-Trinitrobenzene | ND(1.7) | NA
NA | ND(1.8)
NA | ND(1.9)
NA | NA
NA | ND(12)
NA | ND(3.6)
ND(1.8) | | i-Chloronaphthalene
i-Methylnaphthalene | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | NA NA | 0.65 J | | 2,4-Dimethylphenol | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | 1.1 J | | 2,4-Dinitrophenol | ND(1.7) | NA NA | ND(1.8) | ND(1.9) | NA | ND(60) | ND(7.1) | | 2-Acetylaminofluorene | ND(0.69) | NA NA | ND(0.74) | ND(0.79) | NA | ND(24) | ND(1.8) | | 2-Chloronaphthalene | ND(0.34) | NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | ND(1.8) | | 2-Chlorophenol | ND(0.34) | NA
NA | ND(0.37) | ND(0.40) | NA
NA | ND(12)
1800 | ND(1.8)
0.47 J | | 2-Methylnaphthalene
2-Methylphenol | 0.12 J
ND(0.34) | NA
NA | ND(0.37)
ND(0.37) | 4.1
ND(0.40) | NA
NA | ND(12) | 0.52 J | | 3&4-Methylphenol | ND(0.34) | NA
NA | ND(0.37) | ND(0.40) | NA NA | ND(24) | 1.9 | | 3,3'-Dichtorobenzidine | ND(1.7) | NA NA | ND(1.8) | ND(1.9) | NA. | ND(60) | ND(1.8) | | 3,3'-Dimethoxybenzidine | NA | NA | ND(1.8) | | 3,3'-Dimethy/benzidine | ND(1.7) | NA NA | ND(1.8) | ND(1.9) | NA
NA | ND(60) | ND(3.5) | | 3-Methylcholanthrene | ND(0.69) | NA
NA | ND(0.74)
NA | ND(0.79)
NA | NA
NA | ND(24)
NA | ND(1.8)
ND(1.8) | | 3-Phenylenediamine
1,6-Dinitro-2-methylphenol | NA
ND(1.7) | NA
NA | ND(1,8) | ND(1.9) | NA
NA | ND(12) | ND(5.4) | | 4-Aminobiphenyl | ND(1.7) | NA NA | ND(1.8) | 0.17 J | NA NA | ND(24) | ND(1.8) | | -Chlorobenzilate | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(60) | ND(1.8) | | L-Nitrophenol | ND(1.7) | NA | ND(1.8) | ND(1.9) | NA NA | ND(60) | ND(1.8) | | ,12-Dimethylbenz(a)anthracene | ND(0.69) | NA NA | ND(0.74) | ND(0.79) | NA NA | ND(24) | ND(1.8) | | Acenaphthene | 0.50
0.40 | NA
NA | ND(0.37)
ND(0.37) | 0.64
1.2 | NA
NA | 680
220 | 0.81 J
0.36 J | | Acenaphthylene
Acetophenone | ND(0.34) | NA NA | ND(0.37)
ND(0.37) | ND(0.40) | NA
NA | ND(12) | ND(1.8) | | Antline | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | 17 | |
Inthracene | 9.52 | NA NA | ND(0.37) | 1.4 | NA | 340 | 1.5 J | | Benzidine | ND(3.4) | NA | ND(3.7) | ND(4.0) | NA | ND(24) | ND(1.8) | | Benzo(a)anthracene | 0.25 J | NA NA | ND(0.37) | 2.0 | NA NA | 190 | 4.5 | | Benzo(a)pyrene | 0.22 J | NA
NA | ND(0.37) | 16 | NA
NA | 140 | 4.0 | | Senzo(b)fluoranthene
Benzo(g,h,i)perylene | 0,16 J
0,059 J | NA
NA | ND(0.37)
ND(0.37) | 0.91
0.49 | NA
NA | 100
55 | 8.7 Z
1.5 J | | denzo(g,h,i)peryiene
Benzo(k)fluoranthene | 0.067J | NA
NA | ND(0.37)
ND(0.37) | 0.93 | NA
NA | 38
38 | 87Z | | Senzo(K)nuoranineille
Senzoic Acid | NA NA | ND(18) | | ois(2-Chloroethyl)ether | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | ND(3.6) | | pis(2-Ethylhexyl)phthalate | 0.23 J | NA NA | 0.28 J | 0 29 J | NA | ND(12) | 0.73.BJ | | Butylbenzylphthalate | ND(0.34) | N.A. | ND(0.37) | ND(0.40) | NA. | ND(180) | ND(1.8) | | Averaging Area:
Location ID:
Sample ID: | 4B
E2SC-07
E2SC-07-CS0615 | 48
E2SC-07
E2SC-07-SS09 | 48
E2SC-14
E2SC-14-CS0615 | 48
E2SC-25
E2SC-25-CS0615 | 4B
E2SC-25
E2SC-25-SS09 | 4B
ESA2-TW
ESA2-TW-SB-1 | 4B
X-4
P2X040406 | |---|----------------------------------|-------------------------------|----------------------------------|------------------------------------|-------------------------------|-------------------------------|--------------------------| | Sample Depth(Feet): Parameter Date Collected: | 6-15
10/27/ 9 8 | 14-15
10/27/98 | 6-15
10/08/98 | 6-15
08/16/99 | 14-15
08/16/99 | 8-10
05/27/99 | 4-6
06/25/91 | | Semivolatile Organics (continued) | | | · | | | | | | Chrysene | 0.24 J | NA NA | ND(0.37) | 1.9 | NA NA | ND(12) | 4.5 | | Cyclophosphamide | NA | NA NA | NA
VD10-0-1 | NA NA | NA | NA NA | ND(8.8) | | Dibenzo(a,h)anthracene
Dibenzofuran | ND/9.34;
9.953 J | NA
NA | ND(0.37)
ND(0.37) | 0.19 J
0.47 | NA
NA | ND(24)
59 | 0.88 J
0.78 J | | Di-n-Butylohthalate | ND(0.34) | NA
NA | 9 16 J | ND(0.40) | NA. | ND(12) | 4.1 | | Di-n-Octylphthalate | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | ND(1.8) | | Diphenylamine ! | ND(0.34) | NA NA | ND(0.37) | ND(0 40) | NA | ND(12) | ND(1.8) | | Fluoranthone | 0.56 | NA NA | ND(0.37) | 3.6 | NA | 130 | 8.6 | | Fluorene | 0.45 | NA | ND(0.15) | 2.6 | NA | 420 | 1.5 J | | Hexachlorobenzene | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | ND(12) | ND(1.8) | | ndeno(1,2,3-cd)pyrene | 0.053 J
ND(1.7) | NA
NA | ND(0.37) | 0.45 | NA
NA | 59
ND(60) | 1.6 J | | Methapyrilene
Naphthalene | 0.67 | NA NA | ND(1.8)
ND(0.37) | ND(1.9)
2.9 | NA NA | 1700 | ND(3.6)
2.2 | | Vitrobenzene | ND(0.34) | NA NA | ND(0.37) | ND(0.40) | NA NA | NO(12) | ND(1.8) | | N-Nitroso-di-n-propylamine | ND(0.34) | NA. | ND(0.37) | ND(0.40) | NA | ND(24) | ND(1.8) | | N-Nitrosodiphenylamine | ND(0.34) | NA | ND(0.37) | ND(0.40) | NA | ND(12) | ND(1.8) | | o-Toluidine | ND(0.69) | NA NA | ND(0.74) | ND(0.79) | NA | ND(12) | ND(1.8) | | o-Dimethylaminoazobenzene | ND(0.69) | NA NA | ND(0.74) | ND(0.79) | NA | ND(60) | ND(1.8) | | Pentachlorobenzene | ND(0.34) | NA. | ND(0.37) | ND(0.40) | NA | ND(12) | 2.6 | | Pentachloronitrobenzene Pentachloropheno! | ND(1.7)
ND(1.7) | NA
NA | ND(1.8)
ND(1.8) | ND(1.9)
ND(1.9) | NA
NA | ND(60)
ND(60) | ND(1.8)
ND(3.6) | | Pentachioropherio: | ND(1.7)
ND(0.69) | NA NA | ND(1.8)
ND(0.74) | ND(1.9)
ND(0.79) | NA
NA | ND(60) | ND(3.6) | | Phenanthrene | 1.2 | NA NA | ND(0.37) | 9,4 | NA NA | 1200 | 5.5 | | Phenol | ND(0.34) | NA | ND(0.37) | ND(0.40) | NA | ND(12) | 5.8 | | Pronamide | ND(0.69) | NA | ND(0.74) | ND(0.79) | NA | ND(12) | ND(1.8) | | Pyrene | 0.49 | NA NA | ND(0.37) | 6.1 | NA | 780 | 6,6 | | Total Phenois | NA | NA | NA . | NA I | NA | NA | NA | | Organochlorine Pesticides | , | | | | | | | | 1,4'-DDE | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.0641) | | Delta-BHC | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.0012)
ND(0.0012) | | Dieldrin | NA NA | ND(0.0017) | | Endosulfan II | NA NA | NA | NA NA | NA NA | NA NA | NA NA | ND(0.0041) | | Methoxychlor | NA | NA | NA | NA NA | NA NA | NA NA | ND(0.0041) | | Toxaphene | NA | NA | NA | NA NA | NA NA | NA NA | ND(0.023) | | Organophosphate Pesticides | | | | | | | | | Vone Detected | NA | NA | NA | NA NA | NA | NA NA | | | Herbicides | | | | | | | | | 2,4,5-T | NA
NA | NA
MA | NA
NA | NA NA | NA NA | NA NA | ND(0,060) | | 2,4,5-TP
2,4-D | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.060)
ND(0.24) | | Furans | 1475 | 14/4 | 14/4 | I NA | NA . | ina i | NLA0.24) | | 2,3,7,8-TCDF | ND(0.00000042) | NA | ND(0.00000042) | 0.0000011 Jg | NA | 0.000057 | NA | | CDFs (total) | ND(0.00000087) | NA NA | ND(0.00000042) | 0,0000062 | NA | 0.00012 | NA | | 1,2,3,7,8-PeCDF | ND(0.00000045) | NA | ND(0.00000025) | ND(0.00000028) | NA | ND(0.000020) | NA | | 2,3,4,7,8-PeCDF | ND(0.00000045) | NA | ND(0.00000025) | ND(0.00000057) | NA | 0.000018 | NA | | PeCDFs (total) | ND(0.00000072) | NA NA | ND(0.00000054) | ND(0.0000097) | NA NA | 0.00017 | NA | | 1,2,3,4,7,8-HxCDF | ND(0.00000024) | NA
NA | ND(0.00000019) | 0.0000036 J | NA
NA | 0.000020 J | NA
NA | | 1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF | ND(0.00000024)
ND(0.00000031) | NA
NA | ND(0.00000014)
ND(0.00000023) | ND(0.0000015)
ND(0.00000057) | NA
NA | ND(0.000030)
ND(0.000030) | NA
NA | | 2,3,4,6,7,8-HxCDF | ND(0.00000031)
ND(0.00000027) | NA
NA | ND(0.00000023) | ND(0,00000037) | NA NA | 0.000015 J | NA
NA | | HxCDFs (total) | ND(0.00000085) | NA NA | ND(0.00000023) | 0.0000036 | NA NA | 0.000035 | NA NA | | 1,2,3,4,6,7,8-HpCDF | ND(0.00000054) | NA | ND(0.00000031) | ND(0.0000029) | NA NA | 0,000040 | NA | | 1,2,3,4,7,8,9-HpCDF | ND(0,0000010) | NA | ND(0.00000043) | ND(0.0000019) | NA NA | 0.0000054 J | NA | | HpCDFs (total) | ND(0.0000010) | NA | ND(0.00000043) | 0.0000042 | NA NA | 0.000046 | NA | | OCDF | ND(0.0000013) | NA NA | ND(0.00000072) | 0.0000092 J | NA NA | ND(0.000071) | NA | | Dioxins | NOVO COOCCOO | 815 | NIDIO GOOGGOOG | NO O COCCCCC | 417 | ND/A AAAA | | | 2,3,7,8-TCDD | ND(0.00000038)
ND(0.0000038) | NA
NA | ND(0.00000029)
ND(0.00000030) | ND(0.00000059)
ND(0.00000059) | NA
NA | ND(0.000012) | NA
NA | | CDDs (total)
.2.3,7,8-PeCDD | ND(0.00000038) | NA
NA | ND(0.00000030) | ND(0.00000059)
ND(0.00000083) | NA
NA | 0.000041
ND(0.000012) | NA
NA | | PeCDDs (total) | ND(0.00000048) | NA NA | ND(0.00000047) | ND(0.00000083) | NA
NA | 0.0000086 | NA
NA | | .2.3,4,7,8-HxCDD | ND(0.00000028) | NA NA | ND(0.00000086) | ND(0.00000096) | NA NA | ND(0.000030) | NA
NA | | 1.2,3.6,7,8-HxCDD | ND(0.00000024) | NA | ND(0.00000060) | ND(0.00000090) | NA | ND(0.000030) | NA NA | | .2,3,7,8,9-HxCDD | ND(0.00000026) | NA | ND(0.00000058) | ND(0.00000084) | NA | ND(0.000030) | NΑ | | fxCDDs (total) | ND(0.00000028) | N.A. | ND(0.00000086) | ND(0.00000095) | NA | 0.000030 | NA | | .2.3,4,6,7,8-HpCDO | ND/0 00000038) | NA | ND(0.00000052) | ND(0.0000024) | NA | 0 000093 | NA | | IpCDDs (total) | ND(0.00000044) | NA NA | ND(0.00000052) | ND(0.0000024) | NA NA | 0.000093 | NA | | OCDD | ND(0.0000023) | NA NA | ND(0.0000011) | 0 0000086 JB | NA . | 0.00039 | NA | | Total TEQs (WHO TEFs) | 0.00000068 | NA. | 0.00000062 | 0.0000016 | NA NA | 0.000040 | NA NA | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4B
E2SC-07
E2SC-07-CS0615
6-15
10/27/98 | 4B
E2SC-07
E2SC-07-SS09
14-15
10/27/98 | 4B
E2SC-14
E2SC-14-CS0615
6-15
10/08/98 | 4B
E2SC-25
E2SC-25-CS0615
6-15
08/16/99 | 4B
E2SC-25
E2SC-25-SS09
14-15
08/16/99 | 4B
ESA2-TW
ESA2-TW-SB-1
8-10
05/27/99 | 48
X-4
P2X040406
4-8
06/25/91 | |------------|---|---|--|---|---|--|---|---| | Inorganics | | | | | | | | | | Aluminum | | NA | NA | NA | ΝA | NA | NA | 6090 | | Antimony | | 0 160 B | NΑ | 0.130 B | 0.450 B | NA | ND(0.890) | ND(7,10) N | | Arsenic | | 4 20 | NA | 7.40 | 7.60 | NA. | 5.90 | 5.30 | | Barium | | 11.7B | NA | 24 6 | 11,68 | NA NA | 32.8 | 359 | | Seryllium | | 0.279 8 | NA | 0 280 B | 0.170 B | NA | 0.229 | ND(0.229) | | Cadmium | ļ | ND(0 520) | NA | 0.0990 B | 0,100 B | NA | D 530 | ND(0.850) | | Calcium | | NA NA | NA | NA | NA | NA. | NA | 25800 | | Chromium | | 5.40 | NA | 11.8 | 20.5 | NA | 9.40 | 31.7 * | | Cobalt | | 9.10 | NA | 13.4 | 16,4 | NA | 5.90 | 8.50 B* | | Copper | | 14.5 | NA . | 19.2 | 40.2 | NA NA | 43.5 | 469 * | | Cyanide | | ND(2.60) | NA | ND(2.80) | 7.90 | NA | 2.60 | NA. | | Iron | | NA | NA | NA | NA | NA | NA | 20500 * | | Lead | | 6.80 | NA | 6.40 | 10.1 | NA | 42.4 | 206 | | Magnesium | | NA | NA NA | NA | NA | NA | NA | 5660 | | Manganese | | NA | NA | NA | NA | NA NA | NA | 1680 | | Mercury | | 0.130 | NA | 0.0120 B | ND(0.120) | NA I | 0.280 | 94.8 * | | Nickel | | 12.8 | NA | 21,0 | 24.5 | NA | 15.1 | 17.2 * | | Potassium | | NA | NA | NA | NA. | NA Ì | NA | 426 B | | Selenium | | ND(0.520) | NA. | ND(0.560) | 0.620 | NA | ND(0,890) | ND(0.870) WN | | Silver | | ND(1.00) | NA | ND(1.10) | 0.150 B | NA | ND(0.890) | ND(1.10) N | | Sodium | | NA | NA . | NA | NA | NA NA | NA | 242 B | | Sulfide | | ND(209) | NA | ND(56.0) | ND(60.2) | NA | 166 | NA | | Thallium | | 9.840 B | NA NA | 2.70 | 1.20 | NA NA | ND(0.890) | ND(0,440) W
| | Tin | | ND(10.4) | NA | ND(11.2) | ND(12,0) | NA 1 | ND(53.5) | NA NA | | Vanadium | | 6.60 | NA | 10.9 | 8.70 | NA I | 9.00 | 16.9 * | | Zinc | | 37.2 | NA | 64.9 | 68,5 | NA . | 77.5 | 294 | | | Averaging Area:
Location ID:
Sample ID: | 4B
X-5
P2X050810 | 4B
X-6
P2X060406 | 4B
X-7
P2X070608 | 4B
X-8
P2X080204 | 4B
X-9
P2X090810 | 48
X-10
P2X100204 | 4B
X-12
P2X120810 | |--|---|------------------------------|------------------------------|----------------------------|------------------------------|-------------------------------|-----------------------------|------------------------------| | Parameter | Sample Depth(Feet):
Date Collected: | 8-10
06/25/91 | 4-6
06/25/91 | 6-8
06/26/91 | 2-4
06/28/91 | 8-10
07/01/91 | 2-4
07/02/91 | 8-10
07/03/91 | | Volatile Orga | | V0/23/51 | 00:23/91 | 00120/91 | 06/20/51 | 1 01/01/51 | 0770251 | 01103491 | | 1,1,1-Trichlor | | ND(1.5) | ND(0,0060) | ND(0.029) | ND(0.0050) | NO(0.0070) | NO(0,0050) | ND(0.9070) | | 1,1.2.2-Tetrac | | ND(2.9) | ND(0.012) | ND(0.058) | ND(0.012) | ND(0.014) | ND(0.010) | ND(0.015) | | | o-1,2,2-trifluoroethane | ND(2.9) | ND(0.012) | 2 019 BJ | 0 0050 BJ | 0 0050 BJ | ND(0.010) | ND(0.015) | | 1,1-Dichloroe | thane 3-chloropropane | ND(1.5)
ND(2.9) | ND(0.0060)
ND(0.012) | ND(0.029)
ND(0.058) | ND(0.0060)
ND(0.012) | ND(0.0070)
ND(0.014) | ND(0.0050) | NO(0.0070) | | 1,2-Dishlereb | | 3.0 J | ND(2.0) | ND(5.5) | ND(0.012) | ND(0.014) | ND(0.010)
ND(3.3) | ND(0.015)
ND(4.8) | | 1,2-Dichloroe | | 0.31 J | ND(0,0060) | ND(0.029) | ND(0.0060) | ND(0.0070) | ND(0.0050) | ND(0.0070) | | 1,3-Dichlorob | | 9.8 | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 1,4-Dichiorob | enzene | 54 | ND(2.0) | 1.8 J | ND(3.7) | ND(0.45) | MD(3.3) | 1,4 J | | 1.4-Dioxane
2-Butanone | | NA
ND(2.9) | NA
ND(0.012) | NA
ND(0 058) | NA
ND(0.012) | NA
ND(0.014) | NA
ND(9.010) | NA
ND(0,015) | | Acetone | | ND(2.9) | 0.020 | 0.16 | 0.018 B | 0.023 B | 0.010 BJ | 0.23 | | Acetonitrile | | NA | NA | | Acrylonitrile | | ND(36) | ND(0.14) | ND(0.70) | ND(0.15) | ND(0.16) | ND(0.12) | ND(0.18) | | Benzene | | ND(1.5) | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0070) | ND(0.0050) | ND(0.0070) | | Carbon Disulf
Chlorobenzen | | ND(1.5)
ND(1.5) | ND(0.0060) | ND(0,029)
0.73 | ND(0.0060) | ND(0.0070) | ND(0.0050) | ND(0.0070) | | Crotonaldehy | | ND(1.5)
ND(29) | ND(0.0060)
ND(0.12) | 0.73
ND(0.58) | ND(0.0060)
ND(0.12) | 0.0040 J
ND(0.14) | 0.68 DE
ND(0.10) | ND(0,0070)
ND(0,15) | | Ethylpenzene | | ND(1.5) | ND(0.0060) | 0,14 | 0,019 | 0.0020 J | 0.0070 | ND(0.0070) | | sobutanol | | NA | NA | NA | NA | NA NA | NA | NA | | m&p-Xylene | 1 | NA . | NA
0.005.0 | NA NA | NA NA | NA NA | NA . | NA | | Methylene Ch
Propionitrite | nonge | 1.5 J
NA | 0.035 B
NA | 0.10 | 0.016 B | 0.020 B | 0.020 B | 0.090 B | | Propionitriie
Styrene | | ND(1.5) | ND(0.0060) | NA
ND(0.029) | 0.0020 J | NA
ND(0.0070) | NA
ND(0.0050) | NA
ND(0.0070) | | Tetrachloroeti | hene | ND(1.5) | ND(0.0050) | ND(0.029) | ND(0.0060) | ND(0.0070) | ND(0.0050) | ND(0.0070) | | Toluene | | 0.34 J | ND(0.0060) | 0.0090 J | 0.0010 J | ND(0.0070) | ND(0,0050) | ND(0.0070) | | Inchloroether | | 0.48 J | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0070) | ND(0.0050) | ND(0.0070) | | Trichlorofluore
Vinyl Chloride | | ND(1.5)
ND(2.9) | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0070) | ND(0.0050) | ND(0.0070) | | Xylenes (total | | 1.0 J | ND(0.012)
ND(0.0060) | ND(0.058)
0.28 | ND(0.012)
0.0080 | ND(0.014)
ND(0.0070) | ND(0.010)
0.015 | ND(0.015)
ND(0.0070) | | Semivolatile | | | 1.0(0.0000) | 0.20 | 0.0000 | 1 110(0:50:0) | 0.510 | 140(0.0070) | | | chlorobenzene | 2.6 J | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | | :hlorobenzene | 1.1 JZ | ND(2.0) | ND(5.5) | ND(3,7) | ND(0.45) | ND(3.3) | ND(4.8) | | 1,2,3-Trichlor | | 1.6 J | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 1,2,4,5-Tetrac
1,2,4-Trichlor | chiorobenzene | 1.1 JZ
8.7 | ND(2.0)
ND(2.0) | ND(5 5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 1,3,5-Trichlore | | 3.0 J | ND(2.0) | 0.91 J
ND(5.5) | ND(3.7)
ND(3.7) | ND(0.45)
ND(0.45) | ND(3.3)
ND(3.3) | ND(4.8)
ND(4.8) | | 1,3,5-Trinitrob | | ND(7.8) | ND(3.9) | ND(11) | ND(7.4) | ND(0.89) | ND(6.7) | ND(9.6) | | 1-Chloronaph | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 1-Methylnaphi | | 0.48 J | 1.2 J | 73 D | 2.7 J | 0.58 | ND(3.3) | ND(4.8) | | 2,4-Dimethylp
2,4-Dinitrophe | | 1.4 J
ND(15) | ND(2.0)
ND(7.7) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 2-Acetylamino | | ND(3.9) | ND(7.7)
ND(2.0) | ND(22)
ND(5.5) | ND(15)
ND(3.7) | ND(1.8)
ND(0.45) | ND(3.3)
ND(3.3) | ND(4.8)
ND(4.8) | | 2-Chloronaph | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 2-Chlorophen | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 2-Methylnaph | | ND(3.9) | 0.61 J | 71 | 1.4 J | 0.28 J | ND(3.3) | ND(4.8) | | 2-Methylphen
3&4-Methylph | | ND(3.9)
1.5 J | ND(2.0)
ND(2.0) | ND(5.5)
ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 3,3'-Dichlorob | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7)
ND(3.7) | ND(0.45)
ND(0.45) | ND(3.3)
ND(3.3) | ND(4.8)
ND(4.8) | | 3,3'-Dimethox | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 3,3'-Dimethylt | | ND(7.8) | ND(3.9) | ND(11) | ND(7.4) | ND(0.89) | ND(6.7) | ND(9.6) | | 3-Methylchola | | ND(3,9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | 3-Phenylened
4,6-Dinitro-2-r | | ND(3.9)
ND(12) | ND(2.0)
ND(5.9) | ND(5.5)
ND(17) | ND(3,7)
ND(11) | ND(0.45)
ND(1.3) | ND(3.3)
ND(10) | ND(4.8)
ND(14) | | 4-Aminobiphe | | ND(3.9) | ND(3.9) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | i-Chlorobenz | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | -Nitrophenol | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | | benz(a)anthracene | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | Acenaphthene
Acenaphthyle | | 0.49 J
ND(3.9) | 0.33 J
1.6 J | 50
15 | 1.5 J
3.9 | 0.11 J
0.14 J | ND(3.3)
0.93 J | ND(4.8)
ND(4.8) | | Acetophenene | | ND(3.9) | ND(2.0) | ND(5.5) | 0.38 J | ND(0.45) | ND(3.3) | ND(4.8) | | Aniline | | 6.7 | ND(2.0) | ND(5.5) | ND(3 7) | ND(0.45) | ND(3.3) | ND(4.8) | | Anthracene | | 0.67 J | 0.84 J | 32 | 5.5 | 0.42 J | ND(3.3) | ND(4.8) | | Benzidine | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | Benzo(a)anthi | | 2.23 | 3.2 | 24 | 13 | 0.73 | 2.2 J | ND(4.8) | | Berizo(a)pyre:
Berizo(b)fiuori | | 2.1 J
5.3 Z | 4.5
7.1 | 22
32 Z | 11
23 Z | 0.64
1.1 Z | 25J [
2.1 J | ND(4.8)
ND(4.8) | | | ······································ | 1.0 J | 23 | 7.1 | 52 | 0.29 J | 1.3 J | ND(4.8) | | Benzola hilini | | 5.3 Z | 7 1 | 32 Z | 23 Z | 1.1 Z | 3.1 3 | ND(4.8) | | | Q+711-0710 | | | | | | | | | Benzo(g.h.i)pi
Benzo(k)fluori
Benzoic Acid | | ND(39) | NO(20) | ND(55) | ND(37) | ND(4.5) | ND(33) | ND(48) | | Benzo(k)fluora | thyliether | ND(39)
ND(7.8)
ND(3.9) | ND(20)
ND(3.9)
0.32 BJ | ND(55)
ND(11)
2.2 BJ | ND(37)
ND(7.4)
0.51 BJ | ND(4.5)
ND(0.89)
0.22 J | ND(33)
ND(6 7)
0,49 J | ND(48)
ND(9.6)
ND(4.8) | | San | Averaging Area:
Location ID:
Sample ID:
nple Depth(Feet): | 4B
X-5
P2X050810
8-10 | 4B
X-6
P2X068406
4-6 | 48
X-7
P2X070608
6-8 | 4B
X-8
P2X080204
2-4 | 48
X-9
P2X090810
8-10 | 4B
X-10
P2X100204
2-4 | 4B
X-12
P2X120810
8-10 | |--|--|--------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------------| | Parameter | Date Collected: | 06/25/91 | 06/25/91 | 06/26/91 | 06/28/91 | 07/01/91 | 07/02/91 | 07/03/91 | | Semivolatile Orga | nics (continued) | | | | | | | | | Chrysene | | 2.6 J | 3.8 | 25 | | 0.65 | 2.6 J | ND(4.8) | | Cyclophosphamide | | ND(19) | ND(9.5) | ND(27) | ND(18) | ND(2.2) | ND(16) | NO(23) | | Dibenzo(a,h)anthra
Dibenzofuran | 5686 | ND(3.9)
0.41 J | 0.92 J
ND(2.0) | 3.5 J
NO(5.5) | 1.4 J
2.5 J | 0.083 J
0.054 J | ND(3.3)
ND(3.3) | ND(4.8)
ND(4.8) | | Di-n-Butyiphthalate | ì | ND(3.9) | ND(2.9) | ND(5,5) | 1.2 J | ND(0.45) | ND(3.3) | ND(4.8) | | Di-n-Octylphthalate | i | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | Diphenylamine | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | Fluoranthene | | 2.6 J | 3.8 | 47 | 20 | 1.3 | 4.2 | ND(4.8) | | Fluorene | | 0.80 J | 0.76 J | 45 | 3.4 J | 0.35 J | ND(3.3)
ND(3.3) | ND(4.8) | | Hexachlorobenzene
Indeno(1,2,3-cd)pyr | | ND(3.9)
0.98 J | ND(2.0)
1.8 J | ND(5.5)
6.3 | ND(3.7)
4.3 | ND(0.45)
0.25 J | 0.95 J | ND(4.8)
ND(4.8) | | Methapyrilene | C: /C | ND(7.8) | ND(3.9) | ND(11) | ND(7.4) | ND(0.89) | ND(6.7) | ND(9.5) | | Naphthalene | - | 0.53 J | 0.84 J | 81 D | 2.2 J | 0.97 | ND(3.3) | 1.1 J | | Nitrobenzene | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | N-Nitroso-di-n-prop | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | N-Nitrosodiphenyla | mine) | ND(3,9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | o-Toluidine
p-Dimethylaminoaz | chenzene | ND(3.9)
ND(3.9) | ND(2.0)
ND(2.0) | ND(5.5)
ND(5.5) | ND(3.7)
ND(3.7) |
ND(0.45)
ND(0.45) | ND(3.3)
ND(3.3) | ND(4.8)
ND(4.8) | | Pentachlorobenzen | | 0.52 J | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8)
ND(4.8) | | Pentachloronitrober | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | Pentachlorophenol | | ND(7.8) | ND(3.9) | ND(11) | ND(7.4) | ND(0.89) | ND(6.7) | ND(9.6) | | Phenacetin | | ND(3.9) | ND(2.0) | ND(5.5) | ND(3.7) | ND(0.45) | ND(3.3) | ND(4.8) | | Phenanthrene | | 2.8 J | 2.1 | 88 | 26 | 1.9 | 2.7 J | ND(4.8) | | Phenol | | 4.0 | ND(2.0) | ND(5.5) | 0.69 J | ND(0.45) | ND(3.3) | 0.64 J | | Pronamide
Pyrene | | ND(3.9)
3.5 J | ND(2.0)
4.6 | ND(5.5)
58 | ND(3.7)
20 | ND(0.45)
1.6 | ND(3.3)
6.2 | ND(4.8)
ND(4.8) | | Total Phenois | | 7.7 | 3.0 | 0.64 | 0.67 | 0.13 | 0.98 | 9.1 | | Organochlorine Pe | esticides | | | | | 1 | 1 0.00 | 1 | | 4,4'-DDE | | ND(1.8) | ND(0.017) | ND(0.0035) | ND(0.069) | NA. | ND(0.070) | ND(0.0035) | | Aldrin | | ND(0.50) | ND(0.0049) | ND(0.0010) | ND(0.020) | NA. | ND(0,020) | ND(0.0010) | | Delta-BHC | | ND(0.50) | ND(0.0049) | ND(0.0010) | ND(0.020) | NA | ND(0.020) | ND(0.0010) | | Dieldrin | | ND(0.75) | ND(0.0074) | ND(0.0015) | ND(0.030) | NA. | ND(0.030) | ND(0.0015) | | Endosulfan II
Methoxychlor | | ND(1.8)
ND(1.8) | ND(0,017)
ND(0,017) | ND(0.0035)
ND(0.0035) | ND(0.069)
ND(0.069) | NA
NA | ND(0.070) | ND(0.0035) | | Toxaphene | | ND(10) | ND(0.099) | ND(0.020) | ND(0.009) | NA NA | ND(0.070)
ND(0.40) | ND(0.0035)
ND(0.020) | | Organophosphate | Pesticides | ,,,,,, | 1,510,000, | 1 115(0.020) | 115(0.10) | 1 | 1 125(0.40) | 1 (10(0.020) | | None Detected | | | | | | _ | _ | _ | | Herbicides | | | <u> </u> | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | 2,4,5-T | | ND(0.060) | ND(0.030) | 0.069 | ND(0.031) | ND(0.033) | ND(0.025) | ND(0.037) | | 2,4,5-TP | | ND(0.060) | ND(0.030) | ND(0.029) | ND(0.031) | ND(0.033) | ND(0.025) | ND(0.037) | | 2,4-D | | ND(0.24) | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.13) | ND(0.10) | ND(0.15) | | Furans
2.3.7.8-TCDF | | NA | NA. | NA NA | NA NA | NA NA | l NA | NA NA | | TCDFs (total) | | .NA | NA
NA | NA
NA | NA NA | NA NA | NA NA | NA NA | | 1,2,3,7,8-PeCDF | | NA | NA NA | | 2,3,4,7,8-PeCDF | | NA | PeCDFs (total) | | NA | NA | NA | NA | NA NA | NA NA | NA | | 1,2,3,4,7,8-HxCDF | | NA
NA | 1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF | | NA
NA | 2.3,4,6,7,8-HxCDF | | NA NA | NA
NA | NA NA | NA NA | NA NA | NA NA | NA
NA | | HxCDFs (total) | | NA NA | NA | NA NA | NA NA | NA | NA NA | NA NA | | 1,2,3,4,6,7,8-HpCD | | NA | NA | NA NA | NA | NA NA | NA | NA | | 1,2,3,4,7,8,9-HpCD | F | NA | NA NA | NA NA | NA | NA NA | NA NA | NA NA | | HpCDFs (total) | | NA NA | NA
NA | NA NA | | OCDF
Dioxins | 1 | NA NA | NA NA | NA. | NA NA | NA | NA NA | NA NA | | Dioxins
2,3,7,8-TCDD | | NA | NA NA | NA NA | NA NA | NA NA | . NA | NA | | TCDDs (total) | | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | | 1.2.3.7.8-PeCDD | | NA
NA | NA NA | | PeCDDs (total) | | NA | NA | NA NA | NA | NA | NA | NA | | 1,2,3,4,7,8-HxCDD | | NA | NA. | NA | NA NA | NA NA | NA NA | NA | | 1,2,3,6,7,8-HxCDD | | NA | NA NA | NA NA | NA NA | NA | NA NA | NA NA | | 1.2.3,7,8,9-HxCDD | | NA
NA | NA
NA | NA
NA | NA
NA | I NA | NA
NA | NA
NA | | HxCDDs (total)
1,2,3,4,6,7,8-HpCD | | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | | HpCDDs (total) | | NA NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | | OCDD | | NA NA | NA NA | NA | NA | NA | NA NA | NA NA | | Total TEQs (WHO | TEFs) | NA | NA | N.A. | NA | NA NA | NA NA | NA | | Parameter | Averaging Area: Location ID: Sample ID: Sample Depth(Feet): Date Collected: | 48
X-5
P2X050810
8-10
06/25/91 | 4B
X-6
P2X060406
4-6
06/25/91 | 4B
X-7
P2X070608
6-8
06/26/91 | 4B
X-8
P2X080204
2-4
06/28/91 | 4B
X-9
P2X090810
8-10
07/01/91 | 48
X-10
P2X100204
2-4
07/02/91 | 4B
X-12
P2X120810
8-10
07/03/91 | |------------|---|--|---|---|---|--|--|---| | Inorganics | | | | | ******* | | | | | Aluminum | | 8790 | 9590 | 3860 | 7410 | 5330 | 7190 | 10300 | | Antimony | | 128 N | ND(7.80) N | ND(3.80) N | ND(3 90) N | ND(4.30) N | ND(3,30) N | ND(4.90) N | | Arsenic | ······································ | 16.0 | 6,40 A | 270 | 0 770 BN | 3 70 AN | 5.50 N | 10.3 N | | Barium | | 423 | 47.5 | 14.5 B | 53.9 | 19.3 8 | 33 6 | 73.1 | | Beryllium | | 0.300 5 | 0.330 B | ND(0.110) | 0.220 B | 0.150 B | 0.210 B | 0.380 B | | Cadmium | | 19.3 | ND(0.940) | ND(0.460) | 0.630 | ND(0.520) | 0.630 | ND(0.590) | | Calcium | | 20400 | 11600 | 2500 | 28300 E* | 18300 E* | 18100 E* | 11700 E* | | Chromium | | 286 * | 23.3 * | 5.30 | 13.8 | 6.90 | 8.90 | 20.7 | | Cobalt | | 22.3 * | 9.10 B* | 3.40 B* | 7.70 | 6.20 B | 7.30 | 10.9 | | Copper | | 4930 * | 120 * | 23.3 | 67.1 T | 13.9 | 32.2 | 115 | | Cyanide | | ND(0.600) | ND(0.600) | 1,30 | 11.0 | 1.00 | 1.10 | 7 80 | | ron | | 71400 * | 22500 * | 8880 * | 28600 E | 13500 E | 24200 E | 41700 E | | Lead | ì | 4410 | 161 | 19.0 | 176 | 2.80 | 66.2 | 191 | | Magnesium | | 11700 | 9120 | 2620 | 8560 * | 10700 * | 8460 * | 8250 * | | Manganese | | 1480 * | 393 * | 148 ' | 419 | 270 | 540 | 634 | | Mercury | | 4.10 * | 0.460 * | 0.370 * | 0.700 N* | ND(0.120) N* | 0.610 N* | 2.40 N* | | Nickel | | 165 * | 26.0 ° | 7.80 | 19.2 | 11.5 | 16.0 | 24.6 | | Potassium | | 652 B | 480 B | 229 B | 393 B | 285 B | 453 B | 755 | | Selenium | | ND(0.940) N | ND(0.940) N | ND(0.460) N | ND(0.470) QN | ND(0.520) N | ND(2.00) N | ND(2.90) WN | | Silver | | 131 N | ND(1.20) N | ND(0.570) N | ND(0.600) N | ND(0.560) N | ND(0.510) N | ND(0.740) N | | Sodium | | 512 B | 594 B | 69.4 B | 129 B | 129 B | 115 B | 164 B | | Sulfide | | 24.1 | 53.6 | ND(11.2) | ND(11.2) | NA | ND(10.2) | ND(14.7) | | Thallium | | ND(0.470) W | ND(0.470) W | ND(0.230) W | ND(0.240) WN | ND(0.260) WN | ND(0.200) WN | ND(0.290) WN | | Tin | | NA | NA | NA NA | NA | NA | NA | NA | | Vanadium | | 19.6 * | 44.1 | 6.00 * | 16.1 | 6.80 | 14.0 | 25.6 | | Zinc | | 4190 | 261 | 32.9 | 141 E | 50.7 E | 98.8 E | 199 E | | Averaging Area:
Location ID:
Sample ID: | 4B
X-13
P2X130002 | 4B
X-14
P2X140406 | 4B
X-15
P2X150810 | 4B
X-16
P2X160810 | 4B
X-18
P2X181416 | 4B
X-19
P2X190810 | 4B
X-20
P2X201012 | |--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------| | Sample Depth(Feet): Parameter Date Collected: | 0-2
07/03/91 | 4-6
07/05/91 | 8-10
07/05/91 | 8-10
07/08/91 | 14-16
07/08/91 | 8-10
07/09/91 | 10-12
07/09/91 | | Volatile Organics | ND(0,0070) | 1/2/2 (272) | 1 Nova pacas | . NOIO 00701 | LIBYS SOCT | NA | ND(0.78) | | 1,1,1-Trichioroethane
1,1,2,2-Tetrachioroethane | ND(0.0070) | ND(0,0070)
ND(0,013) | ND(0.0060)
ND(0.012) | ND(0.0070)
ND(0.014) | ND(9.0060)
ND(9.012) | NA
NA | ND(1.5) | | 1,1,2-trichloro-1,2,2-triftuoroethane | ND(0.013) | ND(0 013) | ND(0.012) | N5(0,014) | ND(0.012) | NA NA | ND(1.5) | | 1,1-Dichloroethane | ND(0.0070) | ND(0.0070) | ND(0.0060) | ND(0,0070) | ND(9,0960) | NA. | ND(0.78) | | 1,2-Dioromo-3-chloropropane | ND(0.013) | ND(0.013) | ND(0.012) | ND(0.014) | ND(0.012) | NA
NA | ND(1.5) | | 1,2-Dichlorobenzene 1,2-Dichloroethane | ND(0.43)
ND(0.0070) | ND(4.3)
ND(0.0070) | ND(0.41)
ND(0.0060) | ND(0.38)
ND(0.0070) | ND(0.76)
ND(0.0060) | ND(570)
NA | NA
ND(0,78) | | 1,3-Dichlorobenzene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA. | | 1,4-Dichiorobenzene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | 0.62 J | ND(670) | NA | | 1.4-Dioxane | NA NA | NA NA | NA | NA NA | NA NA | NA NA | NA NA | | 2-Butanone
Acetone | ND(0.013)
ND(0.013) | ND(0.013)
0,0090 BJ | ND(0.012)
0.0090 BJ | ND(0.014)
0.010 J | ND(0.012)
0.029 | NA
NA | ND(1.5)
ND(1.5) | | Acetonitrile | NA NA | T NA | NA NA | | Acrylonitrile | ND(0.16) | ND(0.16) | ND(0.15) | ND(0.16) | ND(0.14) | NA NA | ND(19) | | Benzene | ND(0.0070) | ND(0.0070) | ND(0.0060) | ND(0.0070) | ND(0.0060) | NA NA | ND(0.78) | | Carbon Disulfide Chlorobenzene | ND(0,0070)
ND(0,0070) | ND(0.0070)
ND(0.0070) | ND(0.0060)
ND(0.0060) | ND(0.0070)
ND(0.0070) | ND(0.0060)
ND(0.0060) | NA
NA | ND(0.78)
ND(0.78) | | Crotonaldehyde | ND(0.00707 | ND(0.13) | ND(0.12) | ND(0.14) | ND(0,12) | NA NA | ND(15) | | Ethylbenzene | ND(0.0070) | ND(0.0070) | ND(0.0060) | ND(0.0070) | ND(0.0060) | NA NA | 0.64 J | | Isobutanol | NA | NA | NA | NA NA | NA | NA | NA | | m&p-Xytene | NA
0.0000 P.I | NA
0.046.P | NA
0.012.B.L | NA
0.044 B I | NA
0.014 B | NA
NA | NA
0.80 B.I | | Methylene Chloride Propionitrile | 0.0090 BJ
NA | 0.016 B
NA | 0.012 BJ
NA | 0.011 BJ
NA | 0,014 B
NA | NA
NA | 0.80 BJ
NA | | Styrene | ND(0,0070) | ND(0.0070) | ND(0.0060) | ND(0.0070) | ND(0.0060) | NA NA | 1.9 | | Tetrachloroethene | ND(0.0070) | ND(0.0070) | ND(0.0060) | ND(0.0070) | ND(0.0060) | NA. | ND(0.78) | | Toluene | ND(0.0070) | ND(0.0070) | ND(0,0060) | ND(0.0070) | ND(0.0060) | NA NA | ND(0.78) | | Trichloroethene Trichlorofluoromethane | ND(0.0070)
ND(0.0070) | ND(0.0070)
ND(0.0070) | ND(0.0060)
ND(0.0060) |
ND(0.0070)
ND(0.0070) | ND(0.0060)
ND(0.0060) | NA
NA | ND(0.78)
ND(0.78) | | Vinyl Chloride | ND(0.0070) | ND(0.0070) | ND(0.0050) | ND(0.0070) | ND(0.000) | NA
NA | ND(1.5) | | Xylenes (total) | ND(0.0070) | ND(0.0070) | ND(0.0060) | ND(0.0070) | ND(0.0060) | NA NA | 4.2 | | Semivolatile Organics | | | | | | | | | 1,2,3,4-Tetrachlorobenzene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | 1,2,3,5-Tetrachlorobenzene 1,2,3-Trichlorobenzene | ND(0.43)
ND(0.43) | ND(4.3)
ND(4.3) | ND(0.41)
ND(0.41) | ND(0.38)
ND(0.38) | ND(0.76)
ND(0.76) | ND(670)
ND(670) | NA
NA | | 1,2,4,5-Tetrachlorobenzene | ND(0.43) | ND(4.3) | ND(0.41)
ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA
NA | | 1,2,4-Trichlorobenzene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | 0.11 J | ND(670) | NA | | 1,3,5-Trichlorobenzene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | 1,3,5-Trinitrobenzene | ND(0.87) | ND(8.7) | ND(0.81) | ND(0.76) | ND(1.5) | ND(1300) | NA
NA | | 1-Chloronaphthalene
1-Methylnaphthalene | ND(0.43)
ND(0.43) | ND(4.3)
ND(4.3) | ND(0.41)
0,13 J | ND(0.38)
ND(0.38) | ND(0.76)
26 E | ND(670)
57000 D | NA
NA | | 2,4-Dimethylphenol | ND(0.43) | ND(4,3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | 2,4-Dinitrophenol | ND(1.7) | ND(17) | ND(1.6) | ND(1.5) | ND(3.0) | ND(2700) | NA | | 2-Acetylaminofluorene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA
NA | | 2-Chloronaphthalene 2-Chlorophenol | ND(0.43)
ND(0.43) | ND(4.3)
ND(4.3) | ND(0.41)
ND(0.41) | ND(0.38)
ND(0.38) | ND(0.76)
ND(0.76) | ND(670)
ND(670) | NA
NA | | 2-Methylnaphthalene | ND(0.43) | 350 E | 0.049 J | ND(0.38) | 12 | 39000 D | NA NA | | 2-Methylphenol | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | 3&4-Methylphenol | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | 3,3'-Dichlorobenzidine 3,3'-Dirnethoxybenzidine | ND(0.43)
ND(0.43) | ND(4.3)
ND(4.3) | ND(0.41)
ND(0.41) | ND(0.38)
ND(0.053) | ND(0,76)
ND(0.76) | ND(670)
ND(670) | NA
NA | | 3,3'-Dimethylbenzidine | ND(0.87) | ND(5.7) | ND(0.81) | ND(0.76) | ND(1.5) | ND(1300) | NA
NA | | 3-Methylcholanthrene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | 3-Phenylenediamine | ND(0.43) | 350 E | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA
NA | | 4,6-Dinitro-2-methylphenol
4-Aminobiphenyl | ND(1.3)
ND(0.43) | ND(13)
ND(4.3) | ND(1.2)
ND(0.41) | ND(1.1)
ND(0.38) | ND(2.3)
ND(0.76) | ND(2000)
ND(670) | NA
NA | | 4-Chlorobenzilate | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | 4-Nitrophenol | ND(0.43) | ND(4.3) | ND(0.41) | ND(0,38) | ND(0,76) | ND(670) | NA | | 7,12-Dimethylbenz(a)anthracene | ND(0 43) | ND(0.43) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | Acenaphthene Acenaphthylene | ND(0.43)
0.045 J | 9.7
23 | ND(0.41)
0.35 J | ND(0.38)
ND(0.38) | 9.8
4.9 | 1600 D | NA
NA | | Acetophenone | ND(0.43) | 21 | 0.059 J | ND(0.38) | ND(0.76) | NO(670) | NA
NA | | Aniine | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | Anthracene | ND(0.43) | 12 | 0.24 J | ND(0.38) | 4.4 | ND(6200) | NA | | Senzidine | ND(0.43) | ND(4,3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA
NA | | Benzo(a)anthracene Benzo(a)pyrene | 0.18 J
0.23 J | 66
21 | 0.91
0.66 | 0.38 J
0.048 J | 5.2
4.8 | 4100
3300 | NA
NA | | Benzo(b)fluoranthene | 0.43 Z | 120 EZ | 1.2 Z | 0.045 JZ | 5.2 Z | 3600 | NA
NA | | Benzo(g.h.i)perylene | 0.16 J | 45 | 0.47 | ND(0.38) | 2.4 | 1100 | NA | | Benzo(kiffuoranthene | 0.50 Z | 120 EZ | 1 2 Z | 0.045 JZ | 5.2 Z | 3600 | NA NA | | Benzoic Acid
bis(2-Chloroethyl)ether | 0.084 BJ
ND(0.87) | 6 9 BJ
ND(8.7) | ND(4.1)
ND(0.81) | ND(3.8)
ND(0.76) | ND(7.6)
ND(1.5) | ND(6600)
ND(1300) | NA
NA | | bis(2-Ethylhexyl)phtha(ate | 0.15 J | ND(4.3) | 0,20 J | 0 15 BJ | 0 28 BJ | ND(670) | NA NA | | | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | As | veraging Area:
Location ID:
Sample ID: | 4B
X-13
P2X130002 | 4B
X-14
P2X140406 | 4B
X-15
P2X150810 | 4B
X-16
P2X160810 | 4B
X-18
P2X181416 | 4B
X-19
P2X190810 | 48
X-20
P2X201012 | |-------------------------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------------------|-------------------------| | | e Depth(Feet):
ate Collected: | 0-2
07/03/91 | 4-6
07/05/91 | 8-10
07/05/91 | 8-10
- 07/08/91 | 14-16
07/08/91 | 8-10
07/09/91 | 10-12
07/09/91 | | Semivolatile Organic | s (continued) | | | | | | ···· | | | Chrysene | | 9.23 J | 86 E | 0.77 | 0.063 J | 5.0 | 2800 | NA | | Cyclophosphamide | | ND(2.1) | ND(21) | ND(2.0) | ND(1.3) | ND(3.7) | ND(3400) | NA NA | | Dibenzo(a,h)anthracen | e i | ND(0.43) | 11 | 0.11 J | ND(0.38) | 0.70 J | 350 J | NA NA | | Dibenzofuran
Di-n-Butylphthalate | | ND(0.43)
ND(0.43) | 14
ND(4.3) | ND(0.41) | ND(0.38) | 0.79 | 1500 | NA NA | | Di-n-Octylphthalate | | 0.060 J | ND(4.3) | ND(0.41)
ND(0.41) | ND(0.38)
ND(0.38) | ND(0.76)
ND(0.75) | ND(670)
ND(670) | NA NA | | Diphenylamine | | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | 190 JZ | NA NA | | Fluoranthene | | 0.32 J | 180 E | 0.95 | 9.091 J | 10 | 5800 | NA NA | | Fluorene | | ND(0.43) | 57 | 0,14 J | ND(0.36) | 5.6 | 9900 | NA | | Hexachiorobenzene | j | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | Indeno(1,2,3-cd)pyrene | <u> </u> | 0.12 J | 29 | 0.34 J | ND(0.38) | 1.5 | 810 | NA NA | | Methapyrilene
Naphthalene | | ND(0.87) | ND(8.7) | ND(0.81) | ND(0.76) | ND(1.5) | ND(1300) | NA NA | | Nitrobenzene | | ND(0,43)
ND(0,43) | 1100 E
ND(4.3) | 0.093 J
ND(0.41) | ND(0.38) | 29 E | 79000 D | NA
NA | | N-Nitroso-di-n-propylar | mine | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38)
ND(0.38) | ND(0.76)
ND(0.76) | ND(670)
ND(670) | NA
NA | | N-Nitrosodiphenylamin | | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | 190 JZ | NA NA | | o-Toluidine | · | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | p-Dimethylaminoazobe | nzene | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | 1 NA | | Pentachlorobenzene | | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | Pentachloronitrobenzer | ne | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA | | Pentachlorophenol | | ND(0.87) | ND(8.7) | ND(0.81) | ND(0.76) | ND(1.5) | ND(1300) | NA NA | | Phenacetin | | ND(0.43) | ND(4.3) | ND(0.41) | ND(0.38) | ND(0.76) | ND(670) | NA NA | | Phenanthrene
Phenol | | 0.21 J | 290 E | 0.56 | 0.052 J | 20 E | 33000 D | NA NA | | Pronamide | | ND(0.43)
ND(0.43) | ND(4.3)
ND(4.3) | ND(0,41)
ND(0,41) | ND(0.38) | ND(0.76) | ND(670) | NA
NA | | Pyrene | | 0.32 J | 260 E | 1.8 | ND(0.38)
0.18 J | ND(0.76) | ND(670)
16000 D | NA
NA | | Total Phenois | - | 0.61 | 0.87 | ND(0.12) | ND(0.13) | ND(0,12) | 22 | 1.4 | | Organochlorine Pesti | cides | | <u> </u> | 1 1,5(0.15) | 1 | 1.0.0 | | 1.7 | | 4,4'-DDE | | ND(0,017) | ND(0.017) | 0.0042 | ND(0.0035) | ND(0.0035) | NA NA | ND(0.0035) | | Aldrin | | ND(0.0049) | ND(0.0049) | ND(0.0010) | ND(0.0010) | ND(0.0010) | NA NA | 0,0016 | | Delta-BHC | | ND(0.0049) | ND(0.0049) | ND(0.0010) | ND(0.0010) | ND(0,0010) | NA NA | ND(0.0010) | | Dieldrin | | ND(0.0073) | ND(0.0074) | ND(0.0015) | ND(0.0015) | ND(0.0015) | NA | ND(0.0015) | | Endosulfan II | | ND(0.017) | ND(0.017) | ND(0.0035) | ND(0.0035) | ND(0.0035) | NA | ND(0.0035) | | Methoxychlor
Toxaphene | | ND(0.017) | ND(0.017) | ND(0.0035) | ND(0.0035) | ND(0.0035) | NA NA | ND(0.0035) | | Organophosphate Per | sticidos | ND(0.098) | ND(0.098) | ND(0.020) | ND(0.020) | ND(0.020) | NA NA | ND(0.020) | | None Detected | sticides | | _ | | | | I – | | | Herbicides | | | | L | | <u> </u> | | | | 2,4,5-T | T | ND(0.033) | ND(0.033) | ND(0.047) | 0.070 | ND(0.029) | ND(0.042) | ND(0.031) | | 2,4,5-TP | | ND(0.033) | ND(0.033) | ND(0,038) | 0.072 | ND(0.029) | ND(0.042) | ND(0.031) | | 2,4-D | | ND(0.13) | ND(0.13) | ND(0.16) | 0.28 | ND(0.12) | ND(0.17) | ND(0.13) | | Furans | | | | | * | · | · · · · · · · · · · · · · · · · · · · | <u> </u> | | 2,3,7,8-TCDF | | NA | NA | NA. | NA | NA NA | NA | NA | | TCDFs (total) | | NA | NA | NA NA | NA | NA. | NA NA | NA NA | | 1,2,3,7,8-PeCDF | | NA NA | NA | NA NA | NA | NA NA | NA | NA NA | | 2,3,4,7,8-PeCDF
PeCDFs (total) | | NA
NA | 1,2,3,4,7,8-HxCDF | | NA
NA | 1,2,3,6,7,8-HxCDF | | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | | 1,2,3,7,8,9-HxCDF | | NA | NA | NA NA | | 2,3,4,6,7,8-HxCDF | | NA | HxCDFs (total) | | NA | NA NA | NA | NA | NA | NA | NA | | 1,2,3,4,6,7,8-HpCDF | | NA . | NA | NA NA | NA NA | NA NA | NA | NA | | 1,2,3,4,7,8,9-HpCDF | | NA | NA NA | NA NA | NA NA | NA | NA NA | NA | | HpCDFs (total)
OCDF | | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | | Dioxins | ! | NA. | NA | NA | NA | NA NA | NA | NA | | 2,3,7,8-TCDD | | NA | NA | NA | N/A | NA | . DA | A) 2 | | TCDDs (total) | | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | 1.2.3,7,8-PeCDD | *************************************** | NA NA | NA NA | NA
NA | NA NA | NA NA | NA
NA | NA
NA | | PeCDDs (total) | | NA | NA. | NA NA | | 1,2,3,4,7,8-HxCDD | | NA | NA | NA | NA. | NA | NA | NA NA | | 1,2,3,6,7,8-HxCDD | | NA | NA | NA NA | NA | NA NA | NA | NA | | 1,2,3,7,8,9-HxCDD | | NA | NA NA | NA | NA | NA | NA | NA | | HxCDDs (total) | | NA | 1,2.3,4,6,7,8-HpCDD | | NA
U. | NA I | NA | NA | NA | NA NA | NA | | HpCDDs (total)
OCDD | | NA
NA | NA I |
NA
NA | NA
NA | NA
NA | NA
NA | NA NA | | Total TEQs (WHO TEF | e1 | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | | TORN TERS (MAUCH FEE | 2/ | 1,454 |) YA | INA | NA. | : NA | NA I | NA NA | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 48
X-13
P2X130002
0-2
07/03/91 | 4B
X-14
P2X140406
4-6
07/05/91 | 4B
X-15
P2X150810
8-10
07/05/91 | 4B
X-16
P2X160810
8-10
07/08/91 | 48
X-18
P2X181416
14-16
07/08/91 | 4B
X-19
P2X190810
8-10
07/09/91 | 4B
X-20
P2X201012
10-12
07/09/91 | |------------|---|--|--|---|---|--|---|--| | Inorganics | | | | | | | | | | Aluminum | | 10600 | 3460 | 11500 | 17300 | 6040 | 1250 | 13200 | | Antimony | | NO(4.30) N | ND(4.20) N | ND(4.00) N | ND(4.10) N | ND(3.70) N | ND(5.50) N | ND(4.10) N | | Arsenic | | 35.7 AN | 32 2 N | 11.5 N | 9 30 N | 3.60 QN | 17.6 N | 5 20 AN | | Barium | | 59.0 | 43.6 | 22.8 5 | 91.2 | 26.5 | 29.9 B | 10.6 B | | Beryllium | | 0 290 B | ND(0.130) | 0.220 B | 0.680 | 0.230 B | 0.220 B | 0.150 B | | Cadmium | | ND(0.520) | ND(0.510) | ND(0.480) | ND(0.500) | ND(0.450) | 1.00 | ND(0.500) | | Caicium | | 7410 E* | 13700 E. | 42500 E* | 6730 E* | 5910 E* | 6830 E | 27890 E* | | Chromium | | 19.3 | 8.60 | 17.7 | 18 1 | 8 10 | 8.60 | 12.3 | | Cobait | | 10.0 | 2,00 B | 12.2 | 16.2 | 5.00 | 3,00 B | 13.0 | | Copper | | 87.3 * | 14.5 | 45.4 | 22.9 | 9.10 | 153 * | 25.5 | | Cyanide | | 28.0 | 4.80 | 1,70 | ND(0.620) | 2.20 | 8.20 | ND(0.630) | | Iron | | 33300 E | 40300 E | 35200 E | 39400 E | 13800 E | 10700 E | 28900 E | | Lead | | 105 | 95.3 | 4.00 | 1.80 | 1.80 | 363 | 2.20 | | Magnesium | | 7320 * | 4510 | 25600 ° | 7220 • | 5190 * | 1840 * | 18700 * | | Manganese | | 540 | 282 | 711 | 2040 | 199 | 113 | 694 | | Mercury | 1 | 0.380 N° | 1.40 N* | ND(9,120) N* | ND(0.110) N* | ND(0.110) N* | 2.00 N* | ND(0.120) N* | | Nickel | | 23.7 | 1.90 B | 28.4 | 24,3 | 10.7 | 16.4 | 29.8 | | Potassium | "" | 536 B | 502 B | 406 B | 612.8 | 289 B | 279 B | 313 B | | Selenium | | ND(5.20) N | ND(5,30) N | ND(2.40) N | ND(2.50) WN | ND(0.450) WN | ND(6.50) WN | ND(0,500) WN | | Silver | | ND(0.650) N | ND(0.640) N | ND(0.610) N | ND(0.620) N | ND(0.560) N | ND(0.830) N | ND(0,620) N | | Sodium | | 163 B | 257 B | 108 B | 113 B | 110 8 | 200 B | 94.0 B | | Sulfide | | ND(13.2) | 82.1 | ND(12.3) | ND(12.5) | ND(11.6) | 31.9 | 17.7 | | Thallium | | ND(0.260) WN | ND(0.260) WN | ND(0,240) WN | ND(0,250) WN | ND(0.230) WN | 4.80 N | ND(0,250) WN | | Tin | | NA | NA | NA | NA NA | NA | NA | NA NA | | Vanadium | | 25.4 | 14,7 | 10.0 | 22.0 | 8.10 | 8.20 B | 9.90 | | Zinc | | 133 E | 111 E | 76.6 E | 80.2 E | 43.2 E | 348 E | 77.6 E | | | Averaging Area:
Location ID: | 48
Y-8 | 48
Y-9 | 4B
Y-10 | 4B
Y-13 | 4B
Y-14 | 48
. Y-15 | 4B
Y-18 | 48
Y-19 | |-----------------------------------|---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|--------------------------|--------------------------| | | Sample ID: | P2Y080204 | P2Y090406 | P2Y100204 | P2Y130204 | P2Y140406 | P2Y150204 | P2Y180204 | P2Y191012 | | Parameter | Sample Depth(Feet):
Date Collected: | 2-4
-06/12/91 | 4-6
06/07/91 | 2-4
06/20/91 | 2-4
06/14/91 | 4-6
06/14/91 | 2-4
06/20/91 | 2-4
06/18/91 | 10-12
06/19/91 | | Volatile Orga | | -00/12/51 | 06/9//91 | 1 00(20/9) | 001491 | (0011403) | 00/20/91 | 06/16/91 | 00/1919.1 | | 1,1,1-Trichlors | *************************************** | ND(0.0060) | ND(0.0060) | ND(0 0060) | ND(0 0050) | ND(0.0060) | ND(0 029) | ND(0.0060) | ND(0.0060) | | 1,1,2,2-Tetrac | | ND(0.611) | ND(0.012) | ND(0.011) | ND(0.012) | ND(0.013) | ND(0.057) | ND(0.011) | NO(0.012) | | | -1,2,2-trifluoroethane | ND(0.011) | 0.0030 BJ | 0.0050 BJ | 0.0040 BJ | 0.0040 BJ | ND(0.057) | ND(0.011) | ND(0.012) | | 1,1-Dichloroet | nane
I-chloropropane | ND(0.0060)
ND(0.011) | ND(0.0060)
ND(0.012) | ND(0.0050)
ND(0.011) | ND(0.0060)
ND(0.012) | ND(0.0060)
ND(0.013) | ND(0.029)
ND(0.057) | ND(0.0060)
ND(0.011) | ND(0.0060)
ND(0.012) | | 1,2-Dichlarabe | | 0.058 J | 0 097 J | 0.15 J | ND(0.40) | ND(0.82) | NO(5.7) | ND(0,38) | ND(0.40) | | 1,2-Dichloroet | | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0050) | | 1,3-Dichlorobe | | ND(0.37) | 0 30 J | 1.3 | ND(0.40) | NO(0.82) | 1.7 J | ND(0.38) | ND(0.40) | | 1,4-Dichlorobe | enzene | ND(0.37)
NA | 0 76
NA | 2.6
NA | ND(0.40)
NA | ND(0.82)
NA | 5.4 J
NA | ND(0.33)
NA | ND(0,40)
NA | | 2-Butanone | | ND(0.011) | ND(0.012) | ND(0.011) | ND(0.012) | ND(0.013) | ND(0.057) | ND(0.011) | ND(0.012) | | Acetone | | 0.015 B | 0.032 B | 0.017 B | 0.0090 BJ | 0,015 B | 0.083 | ND(0.011) | 0.0080 J | | Acetonitrile | | NA NA | Acrylonitrile
Benzene | | ND(0.14)
ND(0.0060) | ND(0.15)
ND(0.0060) | ND(0.14)
ND(0.0060) | ND(0.15)
ND(0.0060) | ND(0.15)
ND(0.0060) | ND(0.69)
ND(0.029) | ND(0.14)
ND(0.0060) | ND(0.15)
ND(0.0060) | | Carbon Disulfi | de | ND(0,0060) | 0.0030 J | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0060) | | Chlorobenzen | e | ND(0.0060) | 0.013 | 0.013 | ND(0.0060) | ND(0.0060) | 0.27 | ND(0.0060) | ND(0.0060) | | Crotonaldehyo | le | ND(0.11) | ND(0.12) | ND(0.11) | ND(0.12) | ND(0.13) | ND(0.57) | ND(0,11) | ND(0.12) | | Ethylbenzene
Isobutanol | | ND(0.0060)
NA | ND(0.0060)
NA | ND(0.0050)
NA | ND(0.0060)
NA | ND(0.0060)
NA | 0.22
NA | ND(0.0060)
NA | ND(0,0060)
NA | | m&p-Xylene | | NA
NA | NA
NA | NA NA | NA
NA | NA. | NA
NA | NA
NA | NA NA | | Methylene Chi | oride | 0.027 B | 0.033 B | 0.016 B | 0.028 B | 0,019 B | 0.094 B | 0.040 B | 0,040 | | Propionitrile | | NA
NA | NA
NA | NA NA | NA NA | NA | NA | NA | NA | | Styrene
Tetrachloroeth | vana | ND(0.0060)
ND(0.0060) | ND(0.0060)
ND(0.0060) | ND(0.0060)
ND(0.0060) | ND(0,0060)
ND(0,0060) | ND(0.0060)
ND(0.0060) | ND(0.029)
ND(0.029) | ND(0.0060)
ND(0.0060) | ND(0.0060)
ND(0.0060) | | Toluene | iene | 0.0080 | 0.0020 J | ND(0.0080) | 0.0060 J | 0.0020 J | ND(0.029) | ND(0.0060) | ND(0.0060) | | Trichloroether | е | ND(0.0060) | ND(0.0960) | ND(0.0060) | ND(0,0060) | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0060) | | Trichlorofluoro | methane | 0.0040 J | ND(0.0060) | ND(0,0060) | ND(0.0060) | ND(0.0060) | ND(0.029) | ND(0.0060) | ND(0.0060) | | Vinyl Chloride
Xylenes (total) | | ND(0.011)
ND(0.0060) | 0.010 J
ND(0.0060) | ND(0.011)
0.0020 J | ND(0.012)
ND(0.0060) | ND(0.013)
ND(0.0060) | ND(0.057)
1.2 E | ND(0.011)
ND(0.0060) | ND(0.012)
ND(0.0060) | | Semivolatile | | 142(0.000) | ND(0.0000) | 0.00203 | 140(0.0000) | ND(0.0000) 1 | 1.2 C | [ND(0.0000) | ND(0,0000) | | 1,2,3,4-Tetrac | | ND(0.37) | 0.18 J | 0.30 J | ND(0.40) | 1.2 | 1.5 J | ND(0.38) | ND(0.40) | | 1,2,3,5-Tetrac | | ND(0.37) | 0.097 JZ | ND(0.38) | ND(0.40) | 0.15 J | ND(5.7) | ND(0.38) | ND(0.40) | | 1,2,3-Trichlord | | ND(0,37) | 0.25 J | 0.063 J | ND(0.40) | 0.31 J | 0.82 J | ND(0.38) | ND(0.40) | | 1,2,4,5-Tetrac
1,2,4-Trichlord | | ND(0.37)
ND(0.37) | 0.097 JZ
0.35 J | ND(0.38)
0.29 J | ND(0.40)
ND(0.40) | 0.15 J
0.46 J | ND(5.7)
2.9 J | ND(0.38)
ND(0.38) | ND(0.40)
0.15 J | | 1,3,5-Trichlord | | ND(0.37) | ND(0.38) | 0.12 J | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | 1,3,5-Trinitrob | enzene | ND(0.74) | 0.10 J | ND(0.76) | ND(0.81) | ND(1.6) | ND(5.7) | ND(0.76) | ND(0.81) | | 1-Chloronapht | | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.40) | ND(0.82) | 1.6 J | ND(0.38) | ND(0.40) | | 1-Methylnapht
2,4-Dimethylp | | 0.081 J
0.053 J | 1.0
ND(0.38) | 0.12 J
0.095 J | 0.10 J
ND(0.40) | 0.68 J
ND(0.82) | 1,4 J
ND(5.7) | ND(0.38)
ND(0.38) | 0.32 J
0.055 J | | 2,4-Dinitrophe | | ND(1.5) | ND(1.5) | ND(1.5) | ND(1.6) | 0.18 J | ND(5.7) | ND(1.5) | ND(1.6) | | 2-Acetylamino | | ND(0.37) | 0.16 J | ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | 2-Chloronapht | | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | 2-Chloropheno
2-Methylnapht | | ND(0.37)
0.049 J | ND(0.38)
0.60 | ND(0.38)
0.086 J | ND(0.40)
0.068 J | ND(0.82)
0.25 J | ND(5,7)
0,78 J | ND(0.38)
ND(0.38) | ND(0,40)
0.19 J | | 2-Methylphene | ol lo | ND(0.37) | 0.042 J | ND(0,38) | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | 3&4-Methylph | | 0.046 J | 0.051 J | 0.36 JZ | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | 0.088 J | | 3,3'-Dichlorob | | ND(0.37)
ND(0.37) | 0.40 | ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | 3,3'-Dimethox | | ND(0.37)
ND(0.74) | 0.21 J
0.10 J | ND(0.38)
ND(0.76) | ND(0.40)
ND(0.81) | ND(0.82)
ND(1.6) | ND(5.7)
ND(11) | ND(0.38)
ND(0.76) | ND(0.40)
ND(0.81) | | 3-Methylchola | | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | 3-Phenylened | | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.40) | ND(0.82) | ND(5,7) | ND(0.38) | ND(0.40) | | 4,6-Dinitro-2-r
4-Aminobiphe | | ND(1.1)
ND(0.37) | 0.081 J
0.34 J | ND(1.1)
ND(0.38) | ND(1,2)
ND(0,40) | ND(2.5)
ND(0.82) | ND(5.7)
ND(5.7) | ND(1.1)
ND(0.38) | ND(1.2) | | 4-Aminobipne
4-Chlorobenzi | | ND(0.37)
ND(0.37) | 0.34 J |
ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7)
ND(5.7) | ND(0.38)
ND(0.38) | ND(0.40)
ND(0.40) | | 4-Nitrophenol | | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.40) | 0.82 J | ND(5.7) | ND(0.38) | ND(0.40) | | | benz(a)anthracene | ND(0.37) | 0.065 J | ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7) | ND(0.38) | ND(0.40) | | Acenaphthene
Acenaphthylei | | ND(0.37)
ND(0.37) | 0.25 J
0.21 J | 0.85
ND(0.38) | 0.068 J
ND(0.40) | 4.9
0.24 J | 1.3 J
ND(5.7) | 0.16 J
0.050 J | 0.059 J
ND(0.40) | | Acetophenone | | ND(0.37) | 0.11 J | ND(0.38) | ND(0.40) | ND(0.82) | ND(5.7) | 0.050 J
ND(0.38) | ND(0.40) | | Aniline | | ND(0.37) | 0.042 J | 0.10 J | ND(0.40) | ND(0.82) | 2.5 J | 0.14 J | 0.19 J | | Anthracene | | 0,13 J | 2.1 | 1,4 | 0.21 J | 11 | 14 J | 0.14 J | 0.083 J | | Benzidine | 2000 | ND(0.37) | 2.3
0.71 | ND(0.38) | ND(0.40) | ND(0.82) | ND(5,7) | ND(0.38) | ND(0.40) | | Benzo(a)anthr
Benzo(a)pyres | | 2,1
1.6 | 0.71 | 2.2 | 2.5
2.3 | 12 | 1.7 J
1.0 J | 2.5
2.9 | 0.25 J
0.21 J | | Benzo(b)fluor: | inthene | 5.3 Z | 1.1 | 3.9 Z | 7.5 Z | 28 D | 2.3 JZ | 5.8 Z | 0.59 Z | | Benzo(g,h,i)pe | rylene | 1.3 | 0.44 | 0.62 | 2.1 | 4.1 | ND(5.7) | 1.6 | 9,17 J | | Benzo(k)fluora | inthene | 5.3 Z | ND(0.38) | 39Z | 7.5 Z | 28 D | 2 3 JZ | 5.8 Z | 0.59 Z | | Benzoic Acid
bis(2-Chloroet | hvi)ether | ND(3.7)
ND(0.74) | ND(3.8)
ND(0.77) | ND(3.8)
ND(0.76) | ND(4.9)
ND(0.81) | ND(8.2)
ND(1.6) | ND(57)
ND(11) | ND(3.8)
ND(0.76) | ND(4.0)
ND(0.81) | | | yliphthalate | 0.45 B | 0.36 BJ | ND(0.38) | 0.15 J | 0.27 3 | ND(5.7) | ND(0.38) | 0.066 J | | Dis(2-Einvinex | | | | | | | | | | | Location Dis 74 | Averaging Area: | 4B | 48 | 4B | 48 | 48 | 4B | 48 | 48 | |--|---------------------------------------|---|-----------|-------------|--------------|---|--|---------------|--| | | | | 1 | | | | £ | Y-18 | Y-19 | | Parameter Data Collection 06/1291 06/1 | Sample ID: | P2Y080204 | P2Y090406 | P2Y100204 | P2Y130204 | P2Y140406 | P2Y150204 | P2Y180204 | P2Y191012 | | Service Processor 2 | Sample Depth(Feet): | 2-4 | 4-6 | 2-4 | 2-4 | 4-6 | 2-4 | 2-4 | 10-12 | | Cirgones | Parameter Date Collected: | 06/12/91 | 06/07/91 | 06/20/91 | 06/14/91 | 06/14/91 | 06/20/91 | 06/18/91 | 06/19/91 | | Cyclestopsymbols | Semivolatile Organics (continued) | | | | | | | | | | Diseased parter server 0.05 | Chrysene | ****** | | | | 1 ··· · · · · · · · · · · · · · · · · · | | · | | | Dispersional Disp | | | | | | | | | | | Distribution Color | | | | | | | | | | | Demotypheridanse | | <u> </u> | <u> </u> | <u> </u> | | | THE PARTY OF P | | | | | | | | | | | | | | | Fujorentering | | | | | | | | | | | Figurene NS_0237 0.54 1.1 0.949.1 2.4 2.2 0.042.1 0.097.1 Figurene NS_0237 NS_0232 NS_0233 NS_0240 | | | ******* | | 4 | ·········· | | | | | Inspection processors | | | | | | | | | | | Intelled (1.2.2-bod pytheries 1.1 9.38 9.7° 18 4.5 ND(5.7) 1.4 0.14 Weightprilled ND(0.74) 0.64 0.050.75 ND(0.75) N | | | | | | | | | | | Membagnimes | | | | | | | | <u></u> | | | Nighthalane 9,086 9,46 9,096 0,096
0,096 | | | | | | | | | | | Nicobardene | | | ****** | | | | | | | | NAMISSOS-disprogramme (NDC) 37) NOD(0.38) NOD(0.38) NOD(0.40) NOD(0.22) NOD(0.7) NDC 0.38) NDD(0.40) NOD(0.22) NDD(0.7) NDC 0.38) NDD(0.40) NDD(0.22) NDD(0.7) NDC 0.38) NDD(0.40) NDC 0.21) NDC 0.37) NDC 0.38) NDC 0.40) 0.37) NDC 0.38) NDC 0.40) NDC 0.37) 0.3 | Nitrobenzene | | | | | | | | | | Description | N-Nitroso-di-n-propylamine | ND(0.37) | ND(0.38) | ND(0.38) | ND(0.49) | | | ND(0.38) | | | Demethylaminopazobenzene ND(0,37) D.33 ND(0,38) ND(0,40) ND(0,40) ND(0,40) ND(0,40) Peritachlorobenzene ND(0,37) ND(0,38) ND(0,40) | N-Nitrosodiphenylamine | | 1,1 | | ND(0.40) | | | ND(0.38) | | | Perstachtionoberagen | o-Toluidine | | | | | | | | | | Perstackhorphirbentzene | p-Dimethylaminoazobenzene | | | | | | | | | | Personal Component NDIO 74 0.30 J NDIO 76 NDIO 81 NDIO 15 NDIO 17 NDIO 32 NDIO 40 | Pentachlorobenzene | | | | | | ND(11) | | | | Phenantein | Pentachloronitrobenzene | | | | | | | | | | Phenshirere | | | | | | | | | | | Phenol | | | | ********** | | | | + | | | Pronsmide | | | | | | | | | | | Pyrene | | | | | | | | | | | Total Phenois | | | | | | | | | | | Organochlorine Pesticides ND(0.035) ND(0.020) ND(0.035) ND(0.020) ND(0.036) ND(0.035) ND(0.020) ND(0.038) ND(0.036) ND(0.030) ND(0.035) | | | | | | | | | | | A-PODE | | 1.1 | 0.23 | 1.3 | 0.21 | 0.73 | 10 | 1 140(0.12) | 140(0.12) | | Aldrin | | NID/A ASEN | NO(0 DED) | ND(0.24) | ND(0.0035) | NEVO 0025) | 1 N/C/C CO) | I AID/O DOSES | ND/O OCO | | Delis-BHC | | | | | | | | | | | Deletrin ND(0.016) ND(0.036) ND(0.036) ND(0.036) ND(0.016) ND(0.029) ND(0.036) ND(0.029) ND(0.035) ND(0. | | | | | | | | | | | Endosulfan | | | | | | | | | | | Methoxychlor ND(0.035) ND(0.089) ND(0.035) ND(0.035) ND(0.08) ND(0.035) ND(0.039) ND(0.039) ND(0.020) ND(0.020) ND(0.020) ND(0.020) ND(0.020) ND(0.039) ND(0.039) ND(0.039) ND(0.031) ND | | | | | | | | | | | Toxaphene | | | | | | | | | | | Organophosphate Pesticides None Detected — DRA NA NA <td>Toxaphene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Toxaphene | | | | | | | | | | | Organophosphate Pesticides | | | <u> </u> | | h | ······································ | | ······································ | | 2.4.5-T | None Detected | | - | | | - | - | _ | | | 2.4.5-TP ND(0.028) ND(0.025) ND(0.29) ND(0.021) ND(0.031) ND(0.032) ND(0.11) ND(0.029) ND(0.031) 2.4-D ND(0.11) ND(0.11) ND(0.10) ND(1.2) ND(0.12) ND(0.13) ND(0.13) ND(0.45) ND(0.11) ND(0.11) ND(0.12) Purans 2.3.7.6-TCDF NA | Herbicides | ······································ | ····· | <u> </u> | <u> </u> | | | · | | | Page | 2,4,5-T | ND(0.028) | ND(0.025) | ND(0.29) | ND(0.031) | ND(0.032) | ND(0.11) | ND(0.029) | ND(0.031) | | Futans 2.3,7,8-TCDF | 2,4,5-TP | ND(0.028) | ND(0.025) | ND(0.29) | ND(0.031) | ND(0.032) | ND(0.11) | ND(0.029) | ND(0.031) | | 2,3,7,8-TCOF NA | 2,4-D | ND(0.11) | ND(0.10) | ND(1.2) | ND(0.12) | ND(0.13) | ND(0.46) | ND(0.11) | ND(0.12) | | TCDFs (total) | Furans | | | | | | | | | | 1,2,3,7,8-PeCDF | 2,3,7,8-TCOF | NA NA | NΑ | | 2,3,4,7,8-PeCDF NA | TCDFs (total) | | | | | | | | | | PeCDFs (total) NA NA NA NA NA NA NA NA NA N | | | | | <u> </u> | | | | | | 1.2.3,4,7,8-HxCDF | | | | | | | | | | | 1.2.3,6,7,8-HxCDF | | | | | | | | | | | 1.2.3.7,8,9-HxCDF | | | | | | , | | | | | 2.3.4.6,7,8-HxCDF | | | | | | | | | | | HXCDFs (total) | | | | | | | | | | | 1,2,3,4,6,7,8-HpCDF NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | 1.2.3.4,7,8,9-HpCDF | | ~~~~ | | | | | | | | | HPCDFs (total) | <u> </u> | | | | | | | | | | OCDF NA N | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | Dioxins 2,3,7,8-TCDD NA | OCDF | | | | | | | | | | 2.3,7,8-TCDD NA | | | | | | | | <u> </u> | | | TCDDs (total) NA | | NA | NA NA | NA NA | NA | NA | NΑ | NA J | NA | | 1,2,3,7,8-PeCDD NA | TCDDs (total) | | | | | | | | | | PeCDDs (total) NA | 1.2.3.7.8-PeCDD | | <u> </u> | | | | | | | | 1,2,3,4,7,8-HxCDD NA | PeCDDs (total) | | | | | | | | | | 1,2,3,6,7,8-HxCDD NA | 1,2,3,4,7,8-HxCDD | | | | | | | | | | 1.2.3,7,8,9-HxCDD NA | 1,2,3,6,7,8-HxCDD | | | | | | | | ······································ | | HxCDDs (total) NA | 1.2.3,7,8,9-HxCDD | | | | | · | | | | | 1,2,3,4,6,7,8-HpCDD NA | HxCDDs (total) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <u> </u> | | | | | <u> </u> | | | HpCDDs (total) NA | 1.2.3,4,6,7,8-HpCDD | | | | | | | | | | | HpCDDs (total) | NA | NA NA | NA | | NA | ****** | | | | Total TEQs (WHO TEFs) NA NA NA NA NA NA NA NA | OCOD | | | | | | | | | | | Total TEQs (WHO TEFs) | NA | NA | NA | NA NA | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4B
Y-8
P2Y080204
2-4
06/12/91 | 48
Y-9
P2Y090406
4-6
06/07/91 | 4B
Y-10
P2Y100204
2-4
06/20/91 | 48
Y-13
P2Y130204
2-4
06/14/91 | 4B
Y-14
P2Y140406
4-6
06/14/91 | 48
Y-15
P2Y150204
2-4
06/20/91 | 4B
Y-18
P2Y180204
2-4
06/18/91 | 4B
Y-19
P2Y191012
10-12
06/19/91 | |------------|---|---|---|--|--|--|--|--|--| | Inorganics | | | | | | | | | | | Aluminum | | 9670 | 8310 | 2980 | 13800 | 12400 | 5160 | 7890 | 5150 | | Antimony | | ND(2.50) * | ND(2.50) | 13.0 BN | ND(2.70) * | 40.3 | ND(7,50) N | ND(7.60) N | ND(4,00) N | | Arsenic | | 10,1 N | 22.0 AN | 76.5 | 4.90 N | 12.5 N | 14.4 | 13.1 | 4.30 8 | | Sarium | | 51.5 N° | 225 N* | 66.4 | 49.6 N° | 48.3 N* | 106 | 39.9 B | 38.1 | | Beryllium | | 0.260 5 | 0.130 B | ND/0.230) | 0.370 B | 0.180 B | ND(0.230) | 0 350 8 | 0.150 B | | Cadmium | | 5 40 | 2.50 | 2.50 | 0.930 | 1.10 | 1.90 | ND(0.920) | NO(0.480) | | Calcium | | 4460 | 33900 | 12700 | 17500 | 27900 | 10900 | 14300 | 2930 | | Chromium | | 13.5 | 29.6 | 365 | 19.4 | 33.6 | 212 | 17.3 | * 00.8 | | Cobalt | | 10.9 | 29.4 | 33.9 | 8.00 | 34,8 | 11.9 | 7.60 B* | 10.2 | | Copper | | 86.2 | 1500 | 1370 * | 206 | 288 | 348 * | 236 * | 86.3 * | | Cyanide | | NA | NA | 0.700 | ND(0,610) | ND(0,640) | 1.10 | ND(0.580) | ND(0,610) | | Iron | | 24600 E | 66700 E | 273000 · | 22906 E | 34400 E | 81700 * | 24100 * | 14300 | | Lead | | 56.6 * | 654 ° | 522 | 67.6 * | 208 * | 989 | 63.0 A | 70.7 | | Magnesium | | 3760 | 18300 | 1630 | 11000 | 16000 | 3170 | 8490 | 2580 | | Manganese | | 364 | 728 | 7490 * | 454 | 982 | 968 * | 749 * | 607 * | | Mercury | | ND(0.110) * | 0.210 | 1.70 * | ND(0.110) * | 2.00 | 2.20 | 5.30 * | 0.290 | | Nickel | | 12.2 E | 53.6 E | 346 * | 18.5 E | 37.0 E | 102 * | 12.8 * | 11.8 | | Potassium | | 928 | 911 | 383 B | 1100 | 583 B | 250 B | 731 B | 342 B | | Selenium | | ND(0.340) W | ND(0,340) Q | ND(0.920) N | ND(0.370) W | 0.440 BQ | ND(0.910) N | ND(0.920) N | ND(0.480) WN | | Silver | | ND(0.570) N | ND(0.560) N | ND(1.10) N | ND(0.520) N | ND(0.640) N | ND(1.10) N | ND(1.10) N | ND(0.610) N | | Sodium | | 141 B | 201 B | 807 B | 168 B | 162 B | 323 B | 454 B | 238 B | | Sulfide | | ND(11.4) | 57.2 | 16. 1 | ND(12.3) | ND(12.8) | 113 | ND(11.5) | ND(12.3) | | Thallium | | ND(0.340) W | ND(0.340) W | ND(0.460) W | ND(0.370) W | ND(0.380) W | ND(0.460) W | ND(0.460) W | ND(0.240) W | | Tin | | NA | NA | NA | NA. | NA | NA NA | NA | NA | | Vanadium | | 21.6 | 22.8 | 21.1 * | 23.7 | 18.7 | 13.9 | 15.9 | 6.20 * | | Zinc | | 232 * | 1240 ° | 434 | 209 * | 282 • | 617 | 212 | 83.3 | | Averaging Area:
Location ID:
Sample ID: | 4B
Y-20
P2Y200406 | 4B
Y-23
P2Y230204 | 4B
Y-24
P2Y240810 | 4B
Y-28
P2Y260204 | 4B
Y-27
P2Y270406 | 4D
95-06
20681416 | 4D
211S
211S0-6 | 4D
E2SC-01
E2SC-01-CS0615 | |--|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---------------------------------| | Sample Depth(Feet): Parameter Date Collected: | 4-6
06/20/91 | 2-4
06/21/91 | 8-10
06/24/91 | 2-4
06/21/91 | 4-6
06/14/91 | 14-16
02/29/96 | 0-0.5
09/17/97 | 6-15
10/09/98 | | Volatile Organics | | , | | , | | | | | | 11,1,1-Trichtoroethane | ND(0.0060)
ND(0.011) | ND(0.0060)
ND(0.012) | ND(0.0060)
ND(0.012) | ND(0.0060)
ND(0.013) | ND(0.0060)
ND(0.011) | ND(2.1)
ND(1.5) | ND(0.021)
ND(0.010) | NA
NA | | 1,1,2-trichloro-1,2,2-trifluoroethane | ND(0.011) | ND(0.012) | ND(0.012) | ND(0.013) | ND(0.011) | NA NA | NA NA | NA NA | | 1,1-Dichloroethane | ND(0.5060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | ND(0.0050) | ND(1.5) | ND(0.015) | NA NA | |
1,2-Dibromo-3-chloropropane | ND(0.011) | ND(0.012) | ND(0,012) | ND(0.013) | ND(0.011) | ND(4.5) | ND(0.052) | NA NA | | 1,2-Dichlorobenzene
1,2-Dichloroethane | ND(3.8)
ND(0,0060) | ND(0.41)
ND(0.0060) | ND(0.40)
ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(10)
ND(1.5) | ND(610)
ND(0.010) | ND(0.38)
NA | | 1,3-Dichlorobenzene | 0,60 J | ND(0,41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(9,0) | ND(530) | ND(0.38) | | 1,4-Dichlorobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(9.2) | ND(540) | ND(0.38) | | 1,4-Dioxane | NA NA | NA | NA | NA | ÑΑ | 33 J | ND(53) | NA NA | | 2-Butanone | ND(0.011) | ND(0.012) | ND(0.012) | ND(0.013) | ND(0.011) | ND(1.5) | 0.0050 JB | NA NA | | Acetone
Acetonitrile | 0.056
NA | 0.018
NA | 0.015 B
NA | 0.020 B
NA | 0.021 B
NA | ND(2.1)
ND(32) | 0.031 JB
0.0040 J | NA
NA | | Acrylonitrile | ND(0.14) | ND(0.15) | ND(0.15) | ND(0.15) | ND(0.14) | ND(23) | ND(0.22) | T NA | | Benzene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(1.6) | ND(0.015) | NA | | Carbon Disulfide | 9.0020 J | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(2.9) | ND(0.010) | NA NA | | Chlorobenzene | 0.0060 | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(1.8) | ND(0.015) | NA NA | | Crotonaldehyde
Ethylbenzene | ND(0.11)
0.0030 J | ND(0.12)
ND(0.0060) | ND(0.12)
ND(0.0060) | ND(0.13)
ND(0.0060) | ND(0.11)
ND(0.0060) | NA
1.9 | NA
ND(0.015) | NA
NA | | Isobutanol | NA | NA
NA | NA
NA | NA NA | NA NA | ND(21) | ND(13) | NA NA | | m&p-Xylene | NA | NA | NA | NA | NA | NA | NA. | NA NA | | Methylene Chloride | 0.018 B | 0.043 | 0.028 B | 0.078 B | 0.025 B | 0.47 J | 0.013 JB | NA NA | | Propionitrile
Styrene | NA
ND(0.0060) | NA
ND(0.0060) | NA
ND(0,0060) | ND(0,0060) | NA
ND(0.0060) | ND(14)
ND(1.5) | ND(0.61)
ND(0.010) | NA
NA | | Tetrachloroethene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(1.3) | ND(0.015) | NA NA | | Toluene | 0.0030 J | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | ND(2.3) | ND(0.015) | NA NA | | Trichloroethene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0,0060) | ND(3.2) | ND(0.021) | NA | | Trichlorofluoromethane | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(3.4) | ND(0.021) | NA NA | | Vinyl Chloride
Xylenes (total) | ND(0.011)
0.012 | ND(0.012)
ND(0.0060) | ND(0.012)
ND(0.0060) | ND(0.013)
ND(0.0060) | ND(0.011)
ND(0.0060) | ND(4.4)
1.7 J | ND(0.021)
0.0040 J | NA
NA | | Semivolatile Organics | 0.012 | [ND(0.0000) | 1412(0.0000) | ND(0.0000) | 140(0.0000) | 1.7 3 | 0.0040 3 | I IVA | | 1,2,3,4-Tetrachlorobenzene | 0,70 J | ND(0.41) | ND(0.40) | ND(0.41) | ND(0,37) | NA | ND(670) | l NA | | 1,2,3,5-Tetrachlorobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | NA | ND(1400) | NA NA | | 1.2,3-Trichlorobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | NA | ND(620) | NA NA | | 1,2,4,5-Tetrachlorobenzene
1,2,4-Trichlorobenzene | ND(3.8)
1.4 J | ND(0.41)
ND(0.41) | ND(0.40)
ND(0.40) | ND(0.41)
ND(0.41) | ND(0.37)
ND(0.37) | ND(23)
ND(9.8) | ND(1400)
ND(570) | ND(0.38)
ND(0.38) | | 1,3,5-Trichlorobenzene | 0.62 J | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | NA NA | ND(630) | NA NA | | 1,3,5-Trinitrobenzene | ND(7.6) | ND(0.82) | ND(0.81) | ND(0.82) | ND(0.75) | ND(16) | ND(950) | ND(1.8) | | 1-Chloronaphthalene | 1.8 J | ND(0,41) | ND(0.40) | ND(0.41) | ND(0.37) | NA | ND(1200) | NA NA | | 1-Methylnaphthalene | 7.3 | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | NA NA | ND(1100) | NA
NA | | 2,4-Dimethylphenol
2,4-Dinitrophenol | ND(3.8)
ND(15) | ND(0.41)
ND(1.6) | ND(0.40)
ND(1.6) | ND(0.41)
ND(1.6) | ND(0.37)
ND(1.5) | ND(11)
ND(30) | ND(530)
ND(1800) | ND(0.38)
ND(1.8) | | 2-Acetylaminofluorene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(13) | ND(740) | ND(0.76) | | 2-Chloronaphthalene | ND(3.8) | ND(0.41) | ND(0,40) | ND(0.41) | ND(0,37) | ND(17) | ND(1000) | ND(0.38) | | 2-Chloropheno! | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(11) | ND(660) | ND(0.38) | | 2-Methylnaphthalene
2-Methylphenol | 5.2
ND(3.8) | ND(0.41)
ND(0.41) | ND(0.40)
ND(0.40) | ND(0.41)
ND(0.41) | ND(0.37)
ND(0.37) | ND(15)
ND(12) | ND(870)
ND(680) | ND(0.38)
ND(0.38) | | 3&4-Methylphenol | 0.58 J | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(23) | ND(1400) | ND(0.38) | | 3,3'-Dichlorobenzidine | ND(3.8) | ND(0.41) | ND(0.40) | ND(0,41) | ND(0.37) | ND(8.9) | ND(520) | ND(1.8) | | 3,3'-Dimethoxybenzidine | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | NA | NA NA | NA | | 3,3'-Dimethylbenzidine 3-Methylcholanthrene | ND(7.6)
ND(3.8) | ND(0.82)
ND(0.41) | ND(0.81)
ND(0.40) | ND(0.82)
ND(0.41) | ND(0,75)
ND(0,37) | ND(17) | ND(1000) | ND(1.8)
ND(0.76) | | 3-Phenylenediamine | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41)
ND(0.41) | ND(0.37) | ND(11)
ND(12) | ND(630) B
ND(690) | ND(0.76)
NA | | 4,6-Dinitro-2-methylphenol | ND(11) | ND(1.2) | ND(1.2) | ND(1.2) | ND(1.1) | ND(32) | ND(1900) | ND(1.8) | | 4-Aminobiphenyl | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(7.3) | ND(430) | ND(1.8) | | 4-Chlorobenzilate 4-Nitrophenol | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(13) | ND(740) | ND(0.38) | | 7,12-Dimethylbenz(a)anthracene | ND(3.8)
ND(3.8) | ND(0.41)
ND(0.41) | ND(0.40)
ND(0.40) | ND(0.41)
ND(0.41) | ND(0.37)
ND(0.37) | ND(80)
ND(7.3) | ND(4700)
ND(430) | ND(1.8)
ND(0.76) | | Acenaphthene | 7.7 | ND(0.41) | 0.052 J | ND(0.41) | ND(0.37) | 1.8 J | ND(690) | ND(0.76)
ND(0.38) | | Acenaphthylene | 0.82 J | ND(0.41) | ND(0,40) | ND(0.41) | ND(0.37) | ND(12) | ND(700) | ND(0.38) | | Acetophenone | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(12) | ND(690) | ND(0.38) | | Aniline
Anthracene | 9.0
12 | ND(0.41)
ND(0.41) | ND(0.40)
0.078 J | ND(0.41) | ND(0.37)
ND(0.37) | ND(9.9)
ND(13) | ND(580)
39 J | ND(0.38) | | Benzidine | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41)
ND(0.41) | ND(0.37) | ND(13)
ND(28) | ND(1700) B | ND(0.38)
ND(3.8) | | Eenzo(a)anthracene | 14 | 0.064 J | 0.28 J | ND(0.41) | ND(0.37) | ND(12) | 120 J | ND(0.38) | | Benzo(a)pyrene | 11 | 0.065 J | 0. 32 J | ND(0.41) | ND(0.37) | ND(12) | 100 JB | ND(0.38) | | Benzo(b)fluoranthene | 26 Z | 0.16 2 | 0.67 Z | ND(0.41) | ND(0,37) | ND(14) | 120 J | ND(0.38) | | Benzo(g.h,i)perylene
Benzo(k)fluoranthene | 3 7 J
26 Z | 0.050 J
0.16 Z | 0.24 J
0.67 Z | ND(0.41)
ND(0.41) | ND(0.37)
ND(0.37) | ND(11)
ND(11) | 79 J
50 JB | ND(0.38) | | Benzoic Acid | 25 <u>2</u>
ND(38) | ND(4.1) | ND(4,0) | 0.94 J | ND(0.37)
ND(3.7) | ND(71)
NA | ND(2000) | ND(0.38)
NA | | bis(2-Chloroethyl)ether | ND(7.6) | ND(0.82) | ND(0.81) | ND(0.82) | ND(0.75) | ND(10) | ND(510) | ND(0.38) | | bis(2-Ethylhexyl)phthalate | 18 B | 0.15 BJ | 0.35 BJ | 0.15 BJ | 0.13 BJ | ND(13) | ND(780) | 0 062 J | | Butylbenzylphthalate | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(12) | ND(710) | ND(0.38) | | Averaging Area:
Location ID: | 48
Y-20 | 4B
Y-23 | 4B
Y-24 | 4B
Y-26 | 4B
Y-27 | 4D
95-06 | 4D
211S | 4D
E2SC-01 | |---|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|---------------------------------| | Sample ID:
Sample Depth(Feet): | P2Y200406
4-6 | P2Y230204
2-4 | P2Y240810
8-10 | P2Y260204
2-4 | P2Y270406
4-6 | 206B1416
14-16 | 211S0-6
0-0.5 | E2SC-01-CS0615
6-15 | | Parameter Date Collected: | 06/20/91 | 06/21/91 | 06/24/91 | 06/21/91 | 06/14/91 | 02/29/96 | 09/17/97 | 10/09/98 | | Semivolatile Organics (continued) | | | · | ·/· | | | | | | Chrysene | 16 | 0.078 J | 0.42 | ND(0.41) | ND(0,37) | ND(9.6) | 120 JB | ND(0.38) | | Cyclophosphamide Dipenzo(a,h)anthracene | ND(18)
2.1 J | ND(2.0)
ND(0.41) | ND(2.0)
0.097 J | ND(2.0)
ND(0.41) | ND(1.8)
ND(0.37) | NA
NDG(S) | ND(660) | NA
NB/0.003 | | Dibenzofuran | 85 | ND(0.41) | 0.097 J
0.043 J | ND(0.41) | ND(0.37) | ND(7.6)
ND(12) | ND(450)
ND(720) | ND(0.38)
ND(0.38) | | Di-n-Butylphthalate | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | 0.72 J | 50 J | ND(0.38) | | Di-n-Octylphthalate | ND(3.8) | ND(0.41) | ND(0.40) | ND(0,41) | ND(0.37) | NO(8.5) | ND(500) B | ND(0.38) | | Diphenylamine | 4.8 | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(25) | ND(1500) | ND(0.38) | | Fluoranthene | 44 | 0.083 J | 0.85 | ND(0.41) | ND(0.37) | ND(16) | 250 J | 0.049 J | | F)uorene | 13 | ND(0.41) | 0.052 J | ND(0.41) | ND(0.37) | ND(0.84) | ND(720) | ND(0.15) | | Hexachlorobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(14) | ND(800) | ND(0.38) | | Indeno(1,2,3-cd)pyrene Methapyrilene | 3.9
ND(7.6) | 0,045 J
ND(0,82) | 0.21 J
ND(0.81) | ND(0.41)
0.15 J | ND(0.37)
ND(0.75) | ND(8.2) | 56 J | ND(0.38) | | Naphthalene | 8.5 | ND(0.82) | ND(0.40) | ND(0.41) | ND(0.75)
ND(0.37) | ND(23)
ND(12) | ND(1400)
ND(690) | ND(1.8)
ND(0.38) | | Nitrobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(12) | ND(710) | ND(0.38) | | N-Nitroso-di-n-propylamine | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(11) | ND(630) | ND(0.38) | | N-Nitrosodiphenylamine | 4.8 | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(25) | ND(1500) | ND(0.38) | | o-Toluidine | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(35) | ND(2100) | ND(0.76) | | p-Dimethylaminoazobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(12) | ND(700) | ND(0.76) | | Pentachiorobenzene | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(12) | ND(690) | ND(0.38) | |
Pentachloronitrobenzene Pentachlorophenol | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | NA
NA | ND(670) | ND(1.8) | | Phenacetin | ND(7.6)
ND(3.8) | ND(0.82)
ND(0.41) | ND(0.81)
ND(0.40) | ND(0.82)
ND(0.41) | ND(0.75)
ND(0.37) | ND(25)
ND(11) | ND(1500)
ND(630) | ND(1.8)
ND(0.76) | | Phenanthrene | 47 | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | 0.71 J | 190 J | 0.042 J | | Phenol | 13 | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(10) | ND(590) | ND(0.38) | | Pronamide | ND(3.8) | ND(0.41) | ND(0.40) | ND(0.41) | ND(0.37) | ND(12) | ND(680) | ND(0.76) | | Pyrene | 27 | 0.082 J | 0.63 | ND(0.41) | ND(0.37) | 0.69 J | 250 J | 0.043 J | | Total Phenois | 10 | ND(0.13) | ND(0.12) | ND(0.13) | ND(0.11) | NA | NA NA | NA NA | | Organochlorine Pesticides | | | | | | | | | | 4,4'-DDE | ND(0.17) | ND(0.0035) | ND(0.0035) | ND(0.0035) | ND(0.0035) | NA | NA NA | NA NA | | Aldrin | ND(0.049) | ND(0.0010) | ND(0.0010) | ND(0.0010) | ND(0.0010) | NA | NA NA | NA NA | | Delta-BHC
Dieldrin | 0.14
ND(0.074) | ND(0.0010) | ND(0.0010) | ND(0.0010) | ND(0.0010) | NA
NA | NA
NA | NA NA | | Endosulfan II | ND(0.074) | ND(0.0015)
ND(0.0035) | ND(0.0015)
ND(0.0035) | ND(0.0015)
ND(0.0035) | ND(0.0015)
ND(0.0035) | NA
NA | NA
NA | NA
NA | | Methoxychlor | ND(0.17) | ND(0.0035) | ND(0.0035) | ND(0.0035) | ND(0.0035) | NA
NA | NA NA | NA
NA | | Toxaphene | ND(0.98) | 0.55 | ND(0.020) | ND(0.020) | ND(0.020) | NA NA | NA NA | NA NA | | Organophosphate Pesticides | | | | 1 | | 1 | <u> </u> | | | None Detected | _ | | | | - | NA | T | NA NA | | Herbicides | | | ····· | · | ' | | | <u> </u> | | 2,4,5-T | ND(0.12) | ND(0.031) | ND(0.030) | ND(0.032) | ND(0.029) | NA | NA NA | NA | | 2.4,5-TP | ND(0.12) | ND(0.031) | ND(0.030) | ND(0.032) | ND(0.029) | NA | NA NA | NA | | 2,4-0 | ND(0.46) | ND(0.13) | ND(0.12) | ND(0.13) | ND(0,11) | NA | NA NA | NA | | Furans | | , | | | | | | | | 2,3,7,8-TCDF | NA NA | NA NA | NA. | NA | NA . | ND(0.000035) | 0.000011 g | ND(0.00000055) | | TCDFs (total)
1,2,3,7,8-PeCDF | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | ND(0.0013) X | 0.000057 | 0.00000061 | | 2,3,4,7,8-PeCDF | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.000063)
ND(0.000063) | 0.0000050 J
0.0000082 | ND(0.00000057) | | PeCDFs (total) | NA NA | NA
NA | NA NA | NA NA | NA
NA | ND(0.00063)
ND(0.0016) X | 0.000082 | ND(0.00000059)
ND(0.0000026) | | 1,2,3,4,7,8-HxCDF | NA | NA NA | NA NA | NA NA | NA
NA | ND(0.00022) X | 0.0000097 | ND(0.00000042) | | 1,2,3,6,7,8-HxCDF | NA | NA | NA | NA | NA NA | ND(0.00022) X | 0.0000052 J | ND(0.00000042) | | 1,2,3,7,8,9-HxCDF | NA | NA NA | NA | NA NA | NA | ND(0.000067) | ND(0.00000028) | ND(0.00000053) | | 2,3,4.6,7,8-HxCDF | NA | NA | NA | NA | NA | ND(0.000067) | 0.0000042 J | ND(0.00000045) | | HxCDFs (total) | NA NA | NA | NA | NA | NA | ND(0.00097) X | 0.000082 | ND(0.0000017) | | 1,2,3,4,6,7,8-HpCDF | NA NA | NA
NA | NA | NA
NA | NA NA | ND(0.00020) w | 0.000014 | ND(0.00000073) | | 1,2,3.4,7,8,9-HpCDF
HpCDFs (total) | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.00012) w | 0.0000031 J | ND(0.0000019) | | OCDF (total) | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | 9.00026 J
9.00083 J | 0.000032
0.000016 | ND(0.0000028)
ND(0.0000039) | | Dioxins | 1 17 1 | | 1323 | 1375 | 110 | 1 | , 5.0000 PO | (AD(0,0000033) | | 2,3,7,8-TCDD | NA. | NΑ | NA | NA | NA | ND(0.00070) | ND(0.00000015) | ND(0.00000055) | | TCDDs (total) | NA NA | ND(0.00070) | ND(0.00000025) | ND(0.00000055) | | 1,2,3,7,8-PeCDD | NA | NA | NA | NA NA | NA | ND(0.000015) | ND(0.00000032) | ND(0.00000037) | | PeCDDs (total) | NA | NA NA | NA | NA | NA | ND(0.050) w | ND(0.00000079) | ND(0.00000077) | | 1,2,3,4,7,8-HxCDD | NA | NA NA | NA | NA NA | NA | ND(0.000081) | ND(0.00000024) | ND(0.00000079) | | 1.2,3,6,7,8-HxCDD | NA | NA | NA | NA | NA | ND(0.000081) | ND(0.00000021) | ND(0.00000071) | | 1,2,3,7,8,9-HxCDD | NA NA | NA NA | NA | NA NA | NA | ND(0.000681) | ND(0.00000021) | ND(0.00000071) | | HxCDDs (total) | NA NA | NA NA | NA NA | NA NA | NA | ND(0.0010) w | ND(0.0000014) | ND(0.00000079) | | 1.2.3,4,6,7,8-HpCDD | NA NA | NA. | NA NA | NA I | NA NA | ND(0 000053) w | 0.0000064 | 0.0000055 j | | HpCDDs (total) | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | ND(0.00010) w | 0.000015 | 0.0000097 | | OCDD Total TEQs (WHO TEFs) | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.00017) w | 9.000062 | 0.000091 | | : Via: +CQ5 (W/TQ +EFS) | MM | I IVM | NA NA | INA | NA NA | 0.00042 | 0.0000079 | 0.00000093 | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4B
Y-20
P2Y200406
4-6
06/20/91 | 4B
Y-23
P2Y230204
2-4
06/21/91 | 4B
Y-24
P2Y240810
8-10
06/24/91 | 4B
Y-26
P2Y260204
2-4
06/21/91 | 45
Y-27
P2Y270406
4-6
06/14/91 | 4D
95-06
206B1416
14-16
02/29/96 | 4D
211S
211S0-6
0-0.5
09/17/97 | 4D
E2SC-01
E2SC-01-CS0615
6-15
10/09/98 | |------------|---|--|--|---|--|--|--|--|---| | Inorganics | | | · · · · · · · · · · · · · · · · · · · | | | | | | ***** | | Aluminum | | 11500 | 7 630 | 12200 | 15100 | 11400 | NA | NA | NA NA | | Antimony | | ND(7.50) N | ND(8.20) | ND(7.90) | ND(8.10) | ND(7.30) | 0.410 BN | ND(0,600) N | 0.246 8 | | Arsenic | | 13.5 | 9.80 8 | 5.10 | 5.70 | 8.50 | 7.50 | 5.20 | 2.70 | | Barium | i | 71.7 | 87.0 | 35 7 B | 44.2 B | 23.3 B | 18.2 B | 22.0 B | 28 6 | | Beryllium | | 9,530 B | 0.420 B | 0.320 B | 0.340 8 | ND(0,220) | 0.180 පි | 0.240 B | 0.290 B | | Cadmium | | 1.40 | ND(1,00) | ND(0.960) | ND(0.980) | ND(0.880) | ND(0.0200) | 0.320 B | 0.0830 B | | Calcium | 1 | 49200 | 2600 | 3560 | 2470 | 785 3 | NA | l NA | NA NA | | Chromium | | 8810 · | 82.9 | 13,7 | 15.4 | 11.3 | 120 | 9,40 | 10.0 | | Cobalt | | 14.8 " | 12.8 | 14,5 | 12.7 | 11.8 | 13.1 | NA NA | 8.80 | | Copper | | 1710 * | 188 | 32.4 | 36.9 | 24.6 | 30.5 | 17.4 E | 11.1 | | Cyanide | | 2.10 | ND(0.620) | ND(0.610) | ND(0.630) | ND(0.570) | NA | ND(0.510) | ND(2.90) | | ron | | 50800 * | 34200 | 28500 | 28700 | 25800 | NA | NA NA | NA NA | | Lead | | 34400 | 181 | 32.5 | 36.9 | 17.1 | 7.80 * | 15.3 * | 6,90 | | Magnesium | 1 | 11400 | 2490 | 5720 | 5360 | 5280 | NA | NA NA | NA NA | | Manganese | | 1760 * | 696 | 693 | 913 | 670 | NA | NA NA | NA | | Mercury | | 2.60 * | 0.620 | ND(0.100) | ND(0.130) | ND(0.100) | ND(0.120) | ND(0.0500) | 0.0260 B | | Nickel | | 153 * | 183 | 23.3 | 24.0 | 21.0 | 23.2 | 16.3 | 12.9 | | Potassium | | 1000 B | 703 B | 621 B | 802 B | 495 B | NA | NA NA | NA NA | | Selenium | | ND(0.900) N | ND(0.980) | ND(0.950) | ND(1.00) | ND(0.890) | 0.500 BN | 1.10 | ND(0,570) | | Silver | | ND(1.10) N | ND(1,20) | ND(1.20) | ND(1.20) | ND(1,10) | ND(0.0800) | ND(0.160) | ND(1,10) | | Sodium | | 430 B | 425 B | 313 B | 319 B | 316 B | NA | NA | NA NA | | Sulfide | | 20.7 | NA | ND(12.2) | NA | ND(11.4) | NA | NA NA | 20.2 8 | | Thallium | | ND(0.450) W | ND(0.490) | ND(0.470) | ND(0.500) | ND(0.450) | ND(0.420) | ND(1.00) | 1.90 | | Tin | | NA | NA | NA | NA | NA | ND(0.500) | ND(1.90) | ND(11.5) | | Vanadium | | 27.8 * | 13.4 | 12.3 | 15.0 | 9.90 B | 6.90 | 11.8 | 11.0 | | Zinc | | 4800 | 217 | 88.0 | 107 | 59.4 | 78,6 N | 59.4 | 55.0 | | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet): | 4D
E2SC-02
E2SC-02-CS0615
6-15 | 4D
E2SC-02
E2SC-02-SS09
14-15 | 4D
E2SC-04
E2SC-04-CS0615
6-15 | 4D
E2SC-04
E2SC-04-SS09
14-15 | 4D
E2SC-09
E2SC-09-CS0615
6-15 | 4D
E2SC-09
E2SC-09-SS06
8-10 | |--|---|--|---|--|---|---------------------------------------| | Parameter Date Collected: | 10/21/98 | 10/21/98 | 10/13/98 | 10/13/98 | 10/21/98 | 10/21/98 | | Volatile Organics | | | | , | | | | 1,1,1-Trichloroethane
1,1,2,2-Tetrachioroethane | NA
NA | ND(0.30)
ND(0.30) | NA
NA | ND(0.0059)
ND(0.0059) | NA
NA | ND(0.33)
ND(0.33) | | 1,1,2-trichioro-1.2,2-trifluorpethane | NA NA | NA | NA. | NA NA | AV. | NA NA | | 1,1-Dichloroethane | NA | ND(0.30) | NA NA | ND(0.0059) | NA NA | ND(0.33) | | 1,2-Dibromo-3-chloropropane | NΑ | ND(0.59) | NA NA | ND(0,012) | NA. | ND(0.66) | | 1,2-Dichlorobenzene | ND(2.2) | NA NA | ND(0.37) | NA
NA | ND(1.9) | NA. | | 1,3-Dichlorobenzene | NA
ND(2.2) | ND(0.30)
NA | NA
ND(9.37) | ND(0.0059)
NA | NA
ND(1.9) | ND(0.33)
NA | | 1,4-Dichlorobenzene | ND(2.2) | NA NA | ND(0.37) | NA NA | 1.0 J | NA NA | | 1,4-Dioxane | NA NA | ND(30) | NA | ND(0.59) | NA | ND(33) | | 2-Butanone | NA | ND(1.2) | NA. | ND(0.024) | NA | ND(1.3) | | Acetone Acetonitrile | NA
NA | 0.42 J | NA NA | 0.026 | NA
NA | 0.63 J | | Acrylonitrile | NA
NA | ND(5.9)
ND(5.9) | NA
NA | ND(0.12)
ND(0.12) | NA
NA | ND(6.6)
ND(6.6) | | Benzene | NA NA | ND(0.30) | NA NA | ND(0.0059) | NA NA | 0.13 J | | Carbon Disulfide | NA | ND(0.30) | NA | ND(0.0059) | NA | ND(0.33) | | Chlorobenzene | NA | 0.21 J | NA NA | ND(0.0059) | NA | 8.5 | | Crotonaldehyde | NA
NA | NA NA | NA
NA | NA
NOTO BOSOS | NA
NA | NA
NO.003 | | Ethylbenzene | NA
NA | 1,3
ND(12) | NA
NA | ND(0.0059)
ND(0.24) |
NA
NA | ND(0.33)
ND(13) | | m&p-Xylene | NA NA | NA NA | NA
NA | NDIU.24) | NA I | NA
NA | | Methylene Chloride | NA | ND(0.30) | NA | 0.0035 J | NA NA | ND(0,33) | | Propionitrile | NA | ND(1.2) | NA | ND(0.024) | NA | ND(1.3) | | Styrene | NA | ND(0.30) | NA NA | ND(0.0059) | NA NA | ND(0.33) | | Tetrachloroethene
Toluene | NA
NA | ND(0.30)
ND(0.30) | NA
NA | ND(0.0059)
ND(0.0059) | NA
NA | ND(0.33) | | Trichloroethene | NA NA | ND(0.30) | NA
NA | ND(0.0059) | AN | ND(0.33)
ND(0.33) | | Trichlorofluoromethane | NA NA | ND(0.59) | NA NA | ND(0.012) | NA NA | ND(0.66) | | Vinyl Chloride | NA | ND(0.59) | NA | ND(0.012) | NA | ND(0.66) | | Xylenes (total) | NA | 1.6 | NA | ND(0.0059) | NA [| 0.37 | | Semivolatile Organics | A.A. | N | | | | | | 1,2,3,4-Tetrachlorobenzene
1,2,3,5-Tetrachlorobenzene | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | 1.2.3-Trichlorobenzene | NA NA | | 1,2,4,5-Tetrachlorobenzene | ND(2.2) | NA NA | ND(0.37) | NA | ND(1.9) | NA NA | | 1,2,4-Trichlorobenzene | ND(2.2) | NA I | ND(0.37) | NA | ND(1.9) | NA NA | | 1,3,5-Trichlorobenzene | NA NA | | 1,3,5-Trinitrobenzene
1-Chloronaphthalene | ND(11)
NA | NA
NA | ND(1.8)
NA | NA
NA | ND(9.3)
NA | NA
NA | | 1-Methylnaphthalene | NA NA | NA
NA | | 2,4-Dimethylphenol | ND(2.2) | NA | ND(0.37) | NA | 0.26 J | NA | | 2,4-Dinitrophenol | ND(11) | NA | ND(1.8) | NA | ND(9.3) | NA | | 2-Acetylaminofluorene
2-Chloronaphthalene | ND(4.4)
ND(2.2) | NA
NA | ND(0.73) | NA
NA | ND(3.9) | NA NA | | 2-Chlorophenol | ND(2.2) | NA NA | ND(0.37)
ND(0.37) | NA
NA | ND(1.9)
ND(1.9) | NA
NA | | 2-Methylnaphthalene | 5.5 | NA NA | ND(0.37) | NA NA | 0.37 J | NA NA | | 2-Methylphenol | ND(2.2) | NA | ND(0.37) | NA | ND(1.9) | NA | | 3&4-Methylphenol | ND(2.2) | NA NA | ND(0.37) | NA | ND(1.9) | NA | | 3,3'-Dichlorobenzidine 3,3'-Dimethoxybenzidine | ND(11)
· NA | NA
NA | ND(1.8)
NA | NA
NA | ND(9.3)
NA | NA
NA | | 3,3'-Dimethoxybenzidine | ND(11) | NA NA | ND(1.8) | NA NA | ND(9.3) | NA
NA | | 3-Methylcholanthrene | ND(4.4) | NA | ND(0.73) | NA NA | ND(3.9) | NA | | 3-Phenylenediamine | NA NA | NA . | NA | NA | NA | NA | | 4,6-Dinitro-2-methylphenol | ND(11) | NA NA | ND(1.8) | NA NA | ND(9.3) | NA | | 4-Aminobiphenyl 4-Chlorobenzilate | ND(11)
ND(2.2) | NA NA | ND(1.8)
ND(0.37) | NA
NA | ND(9.3) | NA NA | | 4-Nitrophenol | ND(11) | NA NA | ND(1.8) | NA
NA | ND(1.9)
ND(9.3) | NA
NA | | 7,12-Dimethylbenz(a)anthracene | ND(4.4) | NA NA | ND(0.73) | NA
NA | ND(3.9) | NA NA | | Acenaphthene | 6.1 | NA | ND(0.37) | NA | 2.3 | NA | | Acenaphthylene | 0.49 J | NA NA | ND(0.37) | NA S | ND(1.9) | NA | | Acetopherione
Aniline | ND(2.2)
ND(2.2) | NA
NA | ND(0.37) | NA
NA | ND(19) | NA
NA | | Anthracene Anthracene | 3.3 | NA NA | ND(0.37)
ND(0.37) | NA
NA | ND(1.9)
ND(1.9) | NA
NA | | Benzidine | ND(22) | NA NA | ND(3.7) | NA NA | ND(19) | NA NA | | Benzo(a)anthracene | 1.7 J | ŊA | ND(0.37) | NA | 0.56 J | NA | | Benzo(a)pyrene | 1.4 J | NA NA | ND(0.37) | NA | 0.76 J | NA NA | | Benzo(b)fluoranthene | 0.94 J | NA I | ND(0.37) | NA
NA | 0.84 J | NA
NA | | Benzo(g,h,i)perylene Benzo(k)fluoranthene | 0.73 J
0.50 J | NA I | ND(0.37)
ND(0.37) | NA
NA | ND(1.9)
0.40 J | NA
NA | | Benzoic Acid | NA NA | NA
NA | | bis(2-Chloroethyl)ether | ND(2.2) | NA NA | ND(0.37) | NA | ND(1.9) | NA NA | | bis(2-Ethylhexyl)phthalate | ND(2.2) | NA I | 0.14 J | NA | 0.20 J | NA | | Butylbenzylphthalate | ND(2.2) | NA į | ND(0.37) | NΑ | ND(1.9) | NA | | | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet): | 4D
E2SC-02
E2SC-02-CS0615
6-15 | 4D
E2SC-02
E2SC-02-SS09
14-15 | 4D
E2SC-04
E2SC-04-CS0615
6-15 | 4D
E2SC-04
E2SC-04-SS09
14-15 | 4D
E2SC-09
E2SC-09-CS0615
6-15 | 4D
E2SC-09
E2SC-09-SS06
8-10 | |----------------------------------|--|---|--|---|--|---|---------------------------------------| | Parameter | Date Collected: | 10/21/98 | 10/21/98 | 10/13/98 | 10/13/98 | 10/21/98 | 10/21/98 | | | Organics (continued) | | | · | | | | | Chrysene
Cyclophospha | mida | 1.4 J
NA | NA
NA | ND(0.37)
NA | NA
NA | 1,0 J
NA | NA
Nå | | Dibenzo(a,h)a | | ND(2.2) | NA
NA | 1 ND(0.37) | NA NA | ND(1.9) | NA NA | | Dibenzofuran | 11(110) | 0.31 J | NA NA | ND(0.37) | NA NA | ND(1.9) | NA NA | | Di-n-Butylphth | alate | ND(2.2) | NA | ND(0.37) | NA. | ND(1.9) | NA NA | | Di-n-Octy/phth | | ND(2.2) | NA | ND(0 37) | NA | ND(1.9) | NA NA | | Diphenylamin | e i | ND(2.2) | NA NA | ND(0.37) | NA NA | ND(1.9) | NA NA | | Fluoranthene
Fluorene | | 4 4
3.7 | NA
NA | ND(0.37)
ND(0.14) | NA
NA | 1.9
ND(0.76) | NA
NA | | Hexachlorobe | n7606 | ND(2.2) | NA
NA | ND(0.14) | NA
NA | ND(1.9) | NA NA | | indeno(1,2,3-c | | 0.54 J | NA | ND(0.37) | NA. | 0.18 J | NA. | | Methapyrilene | | ND(11) | NA | ND(1.8) | NΑ | ND(9.3) | NA | | Naphthalene | | 14 | NA | ND(0.37) | NA | 2.4 | NA NA | | Nitrobenzene | | ND(2.2) | NA | ND(0.37) | NA NA | ND(1.9) | NA NA | | N-Nitroso-di-n | | ND(2.2) | NA
NA | ND(0.37) | NA
NA | ND(1.9) | NA
NA | | N-Nitrosodiphi
o-Toluidine | енуванняе | ND(2.2)
ND(4.4) | NA
NA | ND(0.37)
ND(0.73) | NA
NA | ND(1.9)
ND(3.9) | NA
NA | | | inoazobenzene | ND(4.4) | NA NA | ND(0.73)
ND(0.73) | NA
NA | ND(3.9)
ND(3.9) | NA
NA | | Pentachiorobe | | ND(2.2) | NA NA | ND(0.37) | NA NA | ND(1.9) | NA NA | | Pentachloronit | robenzene | ND(11) | NA | ND(1.8) | NA | ND(9.3) | NA NA | | Pentachloroph | enol | ND(11) | NA | ND(1.8) | NA | ND(9,3) | NA NA | | Phenacetin | | ND(4.4) | NA NA | ND(0.73) | NA NA | ND(3.9) | NA | | Phenanthrene
Phenol | | 11
ND(2.2) | NA
NA | ND(0.37) | NA
NA | ND(1.9) | NA
NA | | Pronamide | | ND(2.2)
ND(4.4) | NA NA | ND(0.37)
ND(0.73) | NA
NA | ND(1.9)
ND(3.9) | NA
NA | | Pyrene | | 5.2 | NA NA | ND(0.37) | NA NA | 1.5 J | NA
NA | | Total Phenois | | NA | NA | NA | NA | NA | NA NA | | Organochlori | ne Pesticides | *** | | | | | | | 4.4'-DDE | | NA NA | ` NA | NA NA | NA | NA | NA | | Aldrin | | NA | NA | NA . | NA | N.A | NA | | Delta-BHC | | NA NA | NA NA | NA NA | NA NA | NA | NA
NA | | Dieldrin
Endosulfan II | | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | Methoxychlor | | NA NA | NA
NA | | Toxaphene | | NA NA | NA. | NA NA | NA NA | NA NA | NA
NA | | Organophosp | hate Pesticides | ****** | | · | | | | | None Detected | | NA NA | NA NA | NA NA | NA | NA | NA | | Herbicides | " | | | | | | | | 2,4,5-T | | NA | NA | NA NA | NA | NA | NA | | 2,4,5-TP
2,4-D | | NA
NA | NA
NA | NA NA | NA NA | NA NA | NA
NA | | Furans | | NA . | NA | NA NA | NA | NA | NA. | | 2,3,7,8-TCDF | | 0.0000017 g | NA | ND(0.00000020) | NA | 0.000043 g | NA | | TCDFs (total) | | 0.0000052 | NA. | ND(0.00000020) | NA NA | 0.00096 | NA NA | | 1,2,3,7,8-PeCl | | ND(0.00000078) | NA | ND(0.00000019) | NA | ND(0.000049) v | NA | | 2,3,4,7,8-PeCl | | ND(0.0000017) | NA | ND(0.00000020) | NA | 0,000053 | NA | | PeCDFs (total | | 0.000014 | NA NA | ND(0.00000021) | NA. | 0.0023 | NA | | 1,2,3,4,7,8-Hx | | 0.000016
ND(0.0000084) | NA
NA | ND(0.00000015) | NA
NA | 0.00033 | NA
NA | | 1,2,3,6,7,8-Hx
1,2,3,7,8,9-Hx | | ND(0.0000064) | NA
NA | ND(0.00000015)
ND(0.00000020) | NA
NA | 0.000084
0.000066 j | NA
NA | | 2,3,4,6,7,8-Hx | | ND(0.0000010) | NA NA | ND(0.00000016) | NA NA | 0.000096 | NA NA | | HxCDFs (total |) | 0.000031 | NA | 0.0000012 | NA | 0.0045 | NA | | 1,2,3,4,6,7,8-1 | | 0.000014 | NA | ND(0.0000011) | N.A | 0.0042 E | NA | | 1.2.3.4.7.8.9-1 | | 0.000012 | NA
NA | ND(0.00000011) | NA NA | 0.00034 | NA NA | | HpCDFs (total
OCDF | 4 | 0.000046
0.000047 | NA
NA | 0.0000041
ND(0.0000022) | NA
NA | 0.0082
0.0027 | NA NA | | Dioxins | | 0.000047 | 344 | ND(0.0000022) | IN/A | 0.0027 | F¥/-\ | | 2.3.7.8-TCDD | 1 | ND(0.00000015) | NA | ND(0.0000014) | NA { | 0.000021 | NA | | TCDDs (total) | | 0.0000012 | NA NA | ND(0.00000021) | NA NA | 0.0010 | NA NA | | 1.2.3,7,8-PeCl | | ND(0.00000068) | NA | ND(0.00000032) | NA | 0.000048 | NA | | PeCDDs (total | · | ND(0.0000025) | NA | ND(0.00000032) | NA | 0.00058 | NA | | 1,2,3,4,7,8-Hx | | ND(0.00000070) | NA NA | ND(0.00000036) | NA NA | 0.000068 | NA NA | | 1,2,3,6,7,8-Hx | | ND(0.0000012) | NA
Na | ND(0.00000033)
ND(0.00000033) | NA
NA | 0.00011 | NA
NA | | 1,2,3,7,8,9-Hx
HxCDDs (total | | ND(0.00000088)
0.0000053 | NA
NA | ND(0.00000033)
ND(0.00000092) | NA
NA | 0.00012
0.0024 | NA
NA | | 1,2,3,4,6,7,8-H | | 0.0000053 | NA
NA | 0.0000032 | NA NA | 0.0024 | NA NA | | HpCDDs (total | | 0.0000091 | NA NA | 0.0000070 | NA NA | 0.0025 | NA NA | | OCDD | | 0.000017 | NA | 0.000032 | NA | 0.0075 E | NA | | Tatal TEMA (14 | (HO TEFs) | 0.0000036 | NA | 0.00000042 | NA | 0.00024 | NA | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4D
E2SC-02
E2SC-02-CS0615
6-15
10/21/98 | 4D
E2SC-02
E2SC-02-SS09
14-15
10/21/98 | 4D
E2SC-04
E2SC-04-CS0615
6-15
10/13/98 | 4D
E2SC-04
E2SC-04-SS09
14-15
10/13/98 | 4D
E2SC-09
E2SC-09-CS0615
6-15
10/21/98 | 4D
E2SC-09
E2SC-09-SS06
8-10
10/21/98 | |------------|---|---|--|---
--|---|---| | inorganics | | | | | | | | | Aluminum | | NA | NA | NA | NA | NA | NA | | Antimony | | 0.290 6 | NA | 0 290 8 | NA NA | 0.630 B | NA | | Arsenic | | 3.50 | NA | 1.70 | ħΑ | 8.00 | NA | | Barium | j | 31.0 | NA | 20.78 | NA | 40,5 | NA | | Beryllium | | 0.330 B | NA NA | 0,300 B | NA | 0.270 B | NA | | Cadmium | | MD(0.660) | NA | 0,0790 8 | NA | 0.650 | NΑ | | Caldium | | NA | NA | NA | NA | NA | NΑ | | Chromium | 1 | 12.8 | NA | e 50 | NA | 22.4 | NA | | Cobalt | | 11.1 | NA. | 8.40 | NA | 9.50 | NA | | Copper | | 13.4 | NA | 7.10 | NA | 34.7 | NA | | Cyanide | | ND(3 30) | NA | ND(2.80) | NA NA | ND(2,90) | NA NA | | iron | | NA | NA | NA NA | NA | NA | NA | | Lead | | 6.00 | NA | 2.90 | NA | 54.4 | NA | | Magnesium | | NA | NA | NA | NA | NA NA | NA NA | | Manganese | | NA | NA | NA NA | NA | NA | NA | | Mercury | | 0.0420 B | NA | 0.0130 B | NA | 0.0810 B | NA | | Nickel | | 16.7 | NA | 11.5 | NA | 16.1 | NA | | Potassium | | NA | NA | NA | NA | NA NA | NA NA | | Selenium | | 0.890 | NA | 0.490 B | NA | 0.850 | NA | | Silver | | ND(1.30) | NA | ND(1.10) | NA | ND(1.20) | NA | | Sodium | | NA | NA | NA | NA | ŇΑ | NA | | Sulfide | | ND(264) | NA | ND(55.4) | NA | ND(234) | NA | | Thallium | | 2.00 | NA | 1.10 | NA | 2.10 | NA | | Tin | | ND(13.2) | NA | ND(11.1) | NA | 20.6 | NA | | Vanadium | | 11.1 | NA | 8.60 | NA I | 11.0 | NA | | Zinc | | 58.5 | NA | 44.7 | NA | 88.2 | NA | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | | Averaging Area:
Location ID:
Sample ID:
pie Depth(Feet): | 4D
E2SC10
E2SC10-CS0106
1-8 | 4D
E2SC-19
E2SC-10-CS0106
1-6 | 4D
E2SC-10
E2SC-10-SS03
3-5 | 4D
E2SC-11
E2SC-11-CS0615
6-15 | 4D
E2SC-11
E2SC-11-SS05
6-8 | 4D
E2SC-13
E2SC-13-CS0516
6-15 | |--|---|--------------------------------------|--|--------------------------------------|---|--------------------------------------|---| | Parameter | Date Collected: | 10/20/98 | 10/20/98 | 10/20/98 | 10/09/98 | 10/09/98 | 10/07/98 | | Volatile Organics | ۵ . | NA NA | NA | ND(0,0054) | NA NA | ND(0.0052) | ND(0.0055) | | 1,1,2,2-Tetrachiorpe | | NA NA | NA NA | ND(0.0054) | NA NA | ND(0.0052) | ND(0.0055) | | 1,1,2-trichloro-1,2,2- | trifluoroethane | NA | NA | | 1.1-Dichloroethane | | NA | NA. | ND(0.0054) | NA. | ND(0 0052) | ND(0.0055) | | 1,2-Dibromo-3-chlor
1,2-Dichlorobenzene | | NA
ND(0,36) | NA
ND(0,36) | ND(0.011)
NA | NA
NO(0.36) | ND(0.010)
NA | ND(0.011)
ND(0.36) | | 1,2-Dichloroethane | · | NA NA | NA
NA | ND(0.0054) | NA
NA | ND(0,0052) | ND(0,0055) | | 1,3-Dichlorobenzene | : | ND(0.36) | NO(0,36) | NA | ND(0.36) | NA NA | ND(0.36) | | 1,4-Dichlorobenzeno | ; | ND(0.36) | ND(0.35) | NA | ND(0.36) | NA NA | ND(0.36) | | 1,4-Dioxane
2-Butanone | | NA NA | NA NA | ND(0.54) | NA NA | ND(0.52) | ND(0.55) | | Acetone | | NA
NA | NA
NA | ND(0,022)
ND(0,022) | NA
NA | ND(0.021)
ND(0.021) | ND(0.022)
0.052 | | Acetonitrile | | NA NA | NA NA | ND(0.11) | NA NA | ND(0.10) | ND(0,11) | | Acrylonitrile | | NA | NA | ND(0.11) | NA NA | ND(0.10) | ND(0.11) | | Benzene | | NA | NA | ND(0,0054) | NA NA | ND(0.0052) | ND(0.0055) | | Carbon Disulfide | | NA NA | NA NA | ND(0.0054) | NA NA | ND(0.0052) | ND(0.0055) | | Chlorobenzene
Crotonaldehyde | | NA
NA | NA
NA | ND(0.0054)
NA | NA
NA | ND(0.0052)
NA | ND(0.0055)
NA | | Ethylbenzene | | NA
NA | NA
NA | ND(0,0054) | NA
NA | ND(0.0052) | ND(0.0055) | | isobutanol | | NA NA | NA NA | ND(0.22) | NA
NA | ND(0.21) | ND(0.22) | | m&p-Xylene | | NA | NA | NA | NA | NA | NA | | Methylene Chloride | | NA. | NA NA | ND(0.0054) | NA NA | ND(0.0052) | ND(0.0055) | | Propionitrile
Styrene | | NA
NA | NA
NA | ND(0.022)
ND(0.0054) | NA
NA | ND(0.021) | ND(0.022)
ND(0.0055) | | Tetrachioroethene | | NA
NA | NA NA | ND(0.0054) | NA NA | ND(0.0052)
ND(0.0052) | ND(0.0055) | | Toluene | | NA | NA NA | ND(0.0054) | NA NA | ND(0.0052) | ND(0.0055) | | Trichloroethene | | NA | NA | ND(0,0054) | NA | ND(0.0052) | ND(0.0055) | | Trichlorofluorometha | ne | NA | NA NA | ND(0.011) | NA | ND(0.010) | ND(0.011) | | Vinyl Chloride | | NA
NA | NA
NA | ND(0.011) | NA | ND(0.010) | ND(0.011) | | Xylenes (total) Semivolatile Organ | ice | IVA I | NA 1 | ND(0.0054) | NA | ND(0.0052) | ND(0.0055) | | 1,2,3,4-Tetrachiorob | | NA I | NA I | NA | NA | NA | NA | | 1,2,3,5-Tetrachlorob | | NA | NA | NA NA | NA NA | NA . | NA | | 1,2,3-Trichlorabenze | | NA | NA NA | NA | NA NA | NA | NA | | 1,2,4,5-Tetrachlorob | ***** | ND(0.36) | ND(0.36) | NA NA | ND(0.36) | NA | ND(0.36) | | 1,2,4-Trichlorobenze
1,3,5-Trichlorobenze | | ND(0.36)
NA | ND(0.36)
NA | NA
NA | ND(0.36) | NA
NA | ND(0.36) | | 1,3,5-Trinitrobenzen | | ND(1.8) | ND(1.8) | NA
NA | NA
ND(1.7) | NA
NA | NA
ND(1.8) | | 1-Chloronaphthalene | | NA | NA NA | NA. | NA NA | NA. | NA NA | | 1-Methylnaphthalene | | NA | NA | NA . | NA NA | NA | NA | | 2,4-Dimethylphenol | | NA NA | ND(0.36) | NA NA | ND(0.36) | NA NA | ND(0.36) | | 2,4-Dinitrophenol
2-Acetylaminofluorer | 30 | NA
ND(0.73) | ND(1,8)
ND(0,73) | NA
NA | ND(1.7)
ND(0.71) | NA
NA | ND(1.8)
ND(0.73) | | 2-Chloronaphthalene | | ND(0.75) | ND(0.36) | NA NA | ND(0.36) | NA NA | ND(0.75) | | 2-Chlorophenol | | NA . | ND(0.36) | NA | ND(0.36) | NA | ND(0,36) | | 2-Methylnaphthalene | | 0.19 J | 0.19 J | NΑ | ND(0.36) | NA | ND(0.36) | | 2-Methylphenol | | NA
NA | ND(0,36) | NA NA | ND(0.36) | NA | ND(0.36) | | 3&4-Methylphenol
3.3'-Dichlorobenzidir | \c | ND(0.36)
ND(1.8) | ND(0,36)
ND(1.8) | NA
NA | ND(0.36)
ND(1.7) | NA
NA | ND(0.36)
ND(1.8) | | 3,3'-Dimethoxybenzi | | NA NA | | 3,3'-Dîmethylbenzidi | | ND(1.8) | ND(1.8) | NA | ND(1.7) | NA | ND(1.8) | | 3-Methylcholanthren | | ND(0.73) | ND(0.73) | NA | ND(0.71) | NA | ND(0.73) | | 3-Phenylenediamine | | NA NA | NA NA | NA | NA | NA NA | NA NA | | 4,6-Dinitro-2-methylp
4-Aminobiphenyl | nenor | NA
ND(1.6) | ND(1.8)
ND(1.8) | NA
NA | ND(1.7)
ND(1.7) | NA NA | ND(1.8)
ND(1.8) | | 4-Chlorobenzilate | | ND(0.35) | ND(0.36) | NA NA | ND(0.36) | NA NA | ND(0.36) | | 4-Nitrophenol | | NA | ND(1.8) | NA | ND(1.7) | NA I | ND(1.8) | | 7,12-Dimethylbenz(a |)anthracene | ND(0.73) | ND(0.73) | NA | ND(0.71) | NA | ND(0.73) | | Acenaphthene | | 0.11 J | 0.11 J | NA NA | ND(0.36) | NA NA | ND(0.36) | | Acenaphthylene
Acetaphenone | | 0.25 J
ND(0 36) | 0.25 J
ND(0.36) | NA
NA | ND(0.36)
ND(0.36) | NA
NA | ND(0.36) | | Aniline | | ND(0.36) | ND(0.36) | NA NA | ND(0.36) | NA I | ND(0.36)
ND(0.36) | | Anthracene | | 0.17 J | 0 17 J | NA. | ND(0.36) | NA NA | 0.035 J | | Benzidine | | ND(3.6) | ND(3.6) | NA | ND(3.6) | NA NA | ND(3.6) | | Benzo(a)anthracene | | 0.15 J | 0.15 J | NA
NA | ND(0.36) | NA I | 0.089 J | | Benzo(a)pyrene | | 0.12 J
0.14 J | 0.12 J | NA NA | ND(0.36) | NA
NA | 0.078 J | | Benzo(b)fluoranthene
Benzo(g,h,i)perylene | | ND(0.36) | 0.14 J
ND(0.36) | NA
NA | ND(0.36)
ND(0.36) | NA
NA | ND(0.36)
ND(0.36) | | Benzo(k)fluoranthene | | 0.059 J | 0.059 J | NA NA | ND(0.36) | NA NA | 0.19 J | | Benzoic Acid | | NA . | NA | NA | NA | NA NA | NA NA | | bis(2-Chloroethyl)eth | | ND(0.35) | ND(0.35) | NA NA | ND(0.36) | NA I | ND(0.35) | | bis/2-Ethylhexyl)phth | | 0.21 J | 0.21 J | NA
NA | 0.13 J | NA I | 0.62 | | Butylbenzylphthalate | 1 | ND(0.36) | ND(0.36) | NA Ì | ND(0.36) | NA | ND(0.36) | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | | Averaging Area:
Location ID:
Sample ID: | 4D
E2SC10
E2SC10-CS0106 | 4D
E2SC-10
E2SC-10-CS0106 | 4D
E2SC-10
E2SC-10-SS03 | 4D
E2SC-11
E2SC-11-C50615 | 4D
E2SC-11
E2SC-11-SS05 | 40
E2SC-13
E2SC-13-CS0516 | |--|---|--|---|--
---|--|--| | Parameter S | iample Depth(Feet):
Date Collected: | 1-6
10/20/98 | 1-6
10/20/98 | 3-5
10/20/98 | 6-15
10/09/98 | 6-8
10/09/98 | 6-15
10/07/98 | | Semivolatile Or | ganics (continued) | | | | | | | | Chrysene | | 0,14 J | 9.14 J | NA. | ND(0.36) | NA | 0.091 J | | Cyclophosphami | | NA NA | NA | NA NA | NA NA | NA | NA NA | | Dibenzo(a,h)antr | racene | ND(0.36) | ND(0.36) | NA | ND(0.36) | NA. | ND(0.36) | | Dibenzofuran | i | ND(0.36) | ND(9.36) | NA | ND(0.36) | N4 | ND(6.36) | | Di-n-Butylphthala
Di-n-Octylphthala | | ND(0.36)
ND(0.36) | ND(0.36) | NA NA | ND(0.35) | NA | ND(0.35) | | Diphenylamine | ates] | ND(0.36) | ND(0.36)
ND(0,36) | NA
NA | ND(0.36) | NA
NA | ND(0.36) | | Fluoranthene | ··· | 0.43 | 0.43 | NA
NA | ND(0.36)
ND(0.35) | NA NA | ND(0.36)
0.22 J | | Fluorene | | 9.22 | 0.22 | AN AN | ND(0.14) | NA
NA | ND(0.14) | | Hexachiorobenze | ene | ND(0.36) | ND(0.36) | NA
NA | ND(0.36) | NA NA | ND(0.36) | | Indeno(1,2,3-cd); | | ND(0.36) | ND(0.36) | NA NA | ND(0.36) | NA. | ND(0.36) | | Methapyrilene | | ND(1.8) | ND(1.8) | NA | ND(1,7) | NA | ND(1.8) | | Naphthalene | | 0.31 J | 0.31 J | NA | ND(0.36) | NA NA | ND(0.36) | | Nitrobenzene | | ND(0.35) | ND(0.36) | NA | ND(0.35) | NA | ND(0.36) | | N-Nitroso-di-n-pr | | ND(0.36) | ND(0.36) | NA | NO(0.36) | NA | ND(0.36) | | N-Nitrosodipheny | /lamine | ND(0.36) | ND(0.36) | NA | ND(0.36) | NΑ | ND(0.36) | | o-Toluidine | | ND(0.73) | ND(0,73) | NA | ND(0.71) | NA | ND(0.73) | | p-Dimethylamino | *************************************** | ND(0.73) | ND(0.73) | NA | ND(0.71) | NA | ND(0.73) | | Pentachlorobenz | | ND(0.36) | ND(0.36) | NA . | ND(0.36) | NA | ND(0.36) | | Pentachlorophen | | ND(1.8) | ND(1.8) | NA | ND(1,7) | NA | ND(1.8) | | Phenacetin | 01 | NA
ND(0.73) | ND(1.8) | NA
NA | ND(1.7) | NA | ND(1.8) | | Phenanthrene | | 0.79 | ND(0.73)
0.79 | NA
NA | ND(0.71) | NA | ND(0.73) | | Phenol | | NA NA | ND(0.36) | NA
NA | ND(0.36) | NA
NA | 0.13 J | | Pronamide | | ND(0.73) | ND(0.73) | NA
NA | ND(0.36)
ND(0.71) | NA
NA | ND(0.36)
ND(0.73) | | Pyrene | | 0.32 J | 0.32 J | NA NA | ND(0.71)
ND(0.36) | NA NA | 0.15 J | | Total Phenois | | NA NA | | Organochlorine | Pesticides | | | | 177 | 147 | 1177 | | 4.4'-DDE | | NA | `NA | NA | NA I | NA | NA | | Aldrin | | NA NA | NA NA | NA | NA NA | NA NA | NA NA | | Delta-BHC | | NA | NA | NA | NA NA | NA | NA NA | | Dieldrin | | NA | NA | NA | NA | NA NA | NA NA | | Endosulfan II | | NA | NA | NA | NA . | NA . | NA | | Methoxychlor | | NA . | NA NA | NA | NA NA | NA | NA | | Toxaphene | | NA | NA | NA | NA NA | NA | NA | | Organophospha | te Pesticides | | | | | | | | None Detected | | | NA NA | NA | NA | NA ! | NA | | Herbicides | | | | | | | | | 2,4,5-T | | NA | NA NA | NA | NA | NA | NA | | 2,4,5-TP | | NA NA | NA | NA | NA NA | NA | NA | | 2,4-D | | NA | NA | NA | NA ! | | | | Furans | | | | | | NA | NA | | 2,3,7,8-TCDF
TCDFs (total) | | | | | | | | | | | NA | 0.0000033 g | NA J | ND(0.00000027) | NA (| ND(0.00000056) g | | | | NA NA | 0.000030 | NA | ND(0.00000027) | NA
NA | ND(0.00000056) g
0.0000016 | | 1,2,3,7,8-PeCDF | | NA
NA | 0.000030
ND(0.0000010) | NA
NA | ND(0.00000027)
ND(0.00000039) | NA NA NA | ND(0.00000056) g
0.0000016
ND(0.0000012) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF | | NA
NA
NA | 0.00030
ND(0.0000010)
ND(0.0000014) | NA
NA
NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040) | NA
NA
NA
NA | ND(0.00000056) g
0.0000016
ND(0.0000012)
ND(0.0000036) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total) | F | NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000914)
0.000011 | NA
NA
NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040) | NA
NA
NA
NA
NA | ND(0.0000056) g
0.000018
ND(0.000012)
ND(0.0000036)
ND(0.000040) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCD | /v | NA
NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027) | NA
NA
NA
NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040)
ND(0.00000049) | NA
NA
NA
NA
NA
NA | ND(0.0000056) g
0.000016
ND(0.000012)
ND(0.0000036)
ND(0.0000040)
ND(0.00000052) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCD
1,2,3,6,7,8-HxCD | F | NA
NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090) | NA
NA
NA
NA
NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040)
ND(0.00000049)
ND(0.00000050) | NA
NA
NA
NA
NA
NA | ND(0.0000056) g
0.000018
ND(0.000012)
ND(0.0000036)
ND(0.000040)
ND(0.0000052)
ND(0.00000027) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCD | F F | NA
NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027) | NA
NA
NA
NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040)
ND(0.00000049) | NA
NA
NA
NA
NA
NA
NA | ND(0.00000056) g
0.0000018
ND(0.0000012)
ND(0.0000036)
ND(0.0000040)
ND(0.00000052)
ND(0.00000027)
ND(0.00000040) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCD
1,2,3,6,7,8-HxCD
1,2,3,7,8,9-HxCD | F F | NA
NA
NA
NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000018) | NA
NA
NA
NA
NA
NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040)
ND(0.00000049)
ND(0.00000050)
ND(0.00000062) | NA
NA
NA
NA
NA
NA
NA | ND(0.00000056) g
0.0000018
ND(0.0000012)
ND(0.00000136)
ND(0.00000040)
ND(0.00000052)
ND(0.00000027)
ND(0.00000040)
ND(0.00000040)
ND(0.00000034) | | 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total)
1,2,3,4,7,8-HxCD
1,2,3,6,7,8-HxCD
1,2,3,7,8,9-HxCD
2,3,4,6,7,8-HxCD | F
F | NA
NA
NA
NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000018)
ND(0.00000075) | NA
NA
NA
NA
NA
NA | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000049) ND(0.00000050) ND(0.00000062) ND(0.00000054) | NA N | ND(0.0000056) g
0.000018
ND(0.000012)
ND(0.0000012)
ND(0.0000040)
ND(0.0000052)
ND(0.00000027)
ND(0.0000040)
ND(0.0000040)
ND(0.0000040)
ND(0.0000034) | | 1.2.3.7,8-PeCDF
2.3.4,7.8-PeCDF
PeCDFs (total)
1.2.3.4,7.8-HxCD
1.2.3,7.8-HxCD
2.3.4,6.7,8-HxCD
HxCDFs (total)
1.2.3,4.6,7.8-HpC
1.2.3,4.6,7.8-HpC | F
F
CDF | NA
NA
NA
NA
NA
NA
NA
NA | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.0000090)
ND(0.00000918)
ND(0.00000075)
0.0000043 | NA | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040)
ND(0.00000049)
ND(0.00000050)
ND(0.00000062)
ND(0.00000062)
ND(0.00000064)
ND(0.00000064) | NA
NA
NA
NA
NA
NA
NA | ND(0.00000056) g
0.0000018
ND(0.0000012)
ND(0.00000136)
ND(0.00000040)
ND(0.00000052)
ND(0.00000027)
ND(0.00000040)
ND(0.00000034) | | 1.2.3.7,8-PeCDF
2.3.4.7,8-PeCDF
PeCDFs (total)
1.2.3.4.7,8-HxCD
1.2.3.6,7,8-HxCD
1.2.3,7,8-9-HxCD
1.2.3,4.6.7,8-HxCD
HxCDFs (total)
1.2.3,4.6.7,8-HpC
1.2.3,4.7,8,9-HpC | F
F
CDF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000018)
ND(0.00000075)
0.0000043
0.0000043
0.0000043 | NA N | ND(0.00000027)
ND(0.00000039)
ND(0.00000040)
ND(0.00000040)
ND(0.00000049)
ND(0.00000062)
ND(0.00000062)
ND(0.00000064)
ND(0.00000062)
ND(0.00000062) | NA
NA
NA
NA
NA
NA
NA
NA
NA | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.0000036)
ND(0.0000036)
ND(0.00000052)
ND(0.00000027)
ND(0.00000040)
ND(0.00000034)
ND(0.0000034)
ND(0.0000034) | | 1.2.3.7,8-PeCDF
2.3.4.7.8-PeCDF
PeCDFs (total)
1,2,3.4.7.8-HxCD
1,2.3,6.7.8-HxCD
1,2.3,6.7.8-HxCD
HxCDFs (total)
1,2.3,4.6.7.8-HpC
1,2.3,4.6.7.8-HpC
1,2.3,4.6.7.8-HpC
1,2.3,4.6.7.8-HpC
HyCDFs (total)
CCDF | F
F
CDF | NA N | 0.000030
ND(0.0000010)
ND(0.000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000018)
ND(0.00000075)
0.0000043
0.00000043
ND(0.00000049) | NA
NA
NA
NA
NA
NA
NA
NA
NA | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000050)
ND(0.00000050) ND(0.00000052) ND(0.00000052) ND(0.00000052) ND(0.00000052) ND(0.00000053) ND(0.00000053) ND(0.00000053) | NA N | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.0000036)
ND(0.0000036)
ND(0.00000052)
ND(0.00000027)
ND(0.00000040)
ND(0.00000034)
ND(0.0000034)
ND(0.0000034)
ND(0.0000039) | | 1.2.3.7,8-PeCDF
2.3.4.7,8-PeCDF
PeCDFs (total)
1.2.3.4.7,8-HxCD
1.2.3.6.7,8-HxCD
1.2.3.7,8.9-HxCD
HxCDFs (total)
1.2.3.4.6.7,8-HpC
1.2.3.4.6.7,8-HpC
1.2.3.4.7,8.9-HpC
HxCDFs (total)
0.00000000000000000000000000000000000 | F
F
CDF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000090)
ND(0.00000075)
0.0000043
0.0000043 j
ND(0.00000049)
0.0000043
ND(0.0000049) | NA | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000049) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000054) ND(0.00000054) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000068) | NA | ND(0.00000056) g
0.0000018
ND(0.0000012)
ND(0.00000136)
ND(0.00000052)
ND(0.00000052)
ND(0.00000027)
ND(0.00000034)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039) | | 1.2.3.7,8-PeCDF
2.3.4,7.8-PeCDF
PeCDFs (total)
1.2.3.4,7.8-HxCD
1.2.3.6,7.8-HxCD
1.2.3.4,6.7.8-HxCD
1.2.3.4,6.7.8-HxCD
1.2.3.4,6.7.8-HpC
1.2.3.4,6.7.8-HpC
1.2.3.4,6.7.8-HpC
1.2.3.4,7.8.9-HpC
Decomposition of total)
0.00000000000000000000000000000000000 | F
F
CDF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000090)
ND(0.00000075)
0.0000043
0.0000043
ND(0.00000043)
ND(0.00000033) | NA N | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000052) ND(0.00000052) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000068) | NA | ND(0.00000056) g
0.0000018
ND(0.0000012)
ND(0.00000136)
ND(0.00000052)
ND(0.00000052)
ND(0.00000027)
ND(0.00000034)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039) | | 1.2.3.7,8-PeCDF
2.3.4,7.8-PeCDF
PeCDFs (total)
1.2.3.4.7.8-HxCD
1.2.3.6.7.8-HxCD
1.2.3.6.7.8-HxCD
1.2.3.4.6.7.8-HxCD
HxCDFs (total)
1.2.3.4.7.8.9-HpC
HpCDFs (total)
CODF
Dioxins
2.3.7.8-TCDD
TCDDs (total) | F
F
F
DF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000018)
ND(0.00000075)
0.0000043
0.0000043
ND(0.0000043)
ND(0.0000033)
ND(0.0000042)
ND(0.0000042) | NA N | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000050) ND(0.00000052) ND(0.00000052) ND(0.00000052) ND(0.00000053) ND(0.00000043) ND(0.00000043) ND(0.00000068) ND(0.00000068) ND(0.00000034) ND(0.00000034) ND(0.00000034) ND(0.00000034) | NA N | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.0000036)
ND(0.0000036)
ND(0.00000052)
ND(0.00000027)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039) | | 1.2.3.7,8-PeCDF
2.3.4,7.8-PeCDF
PeCDFs (total)
1.2.3.4,7.8-HxCD
1.2.3.6,7.8-HxCD
1.2.3,6.7.8-HxCD
HxCDFs (total)
1.2.3.4,6.7.8-HxCD
1.2.3.4,7.8.9-HpC
HpCDFs (total)
CCDF
Dioxins
2.3.7,8-TCDD
TCDDs (total)
1.2.3,7.8-PeCDD | F
F
F
DF | NA N | 0.000030
ND(0.0000010)
ND(0.000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000075)
0.0000043
ND(0.00000043)
ND(0.00000043)
ND(0.00000043)
ND(0.00000043)
ND(0.00000043) | NA N | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000053) ND(0.00000053) ND(0.00000063) ND(0.00000063) ND(0.00000068) ND(0.00000068) | NA N | ND(0.00000056) g
0.0000018
ND(0.0000012)
ND(0.00000036)
ND(0.00000052)
ND(0.00000052)
ND(0.00000052)
ND(0.00000034)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.0000039)
ND(0.0000039)
ND(0.0000039)
ND(0.0000039)
ND(0.0000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032) | | 1.2.3.7,8-PeCDF
2.3.4.7.8-PeCDF
PeCDFs (total)
1.2.3.4.7.8-HxCD
1.2.3.6.7.8-HxCD
1.2.3.7.8.9-HxCD
1.2.3.4.6.7.8-HxCD
HxCDFs (total)
1.2.3.4.6.7.8-HpC
1.2.3.4.7.8.9-HpC
1.2.3.4.7.8.9-HpC
Dioxins
2.3.7.8-TCDD
TCDDs (total)
1.2.3.4.7.8-PeCDD
PeCDDs (total) | F
F
DDF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.0000090)
ND(0.0000090)
ND(0.0000075)
0.000043
0.000043
ND(0.0000043)
ND(0.0000043)
ND(0.0000043)
ND(0.0000044)
ND(0.0000044)
ND(0.0000042)
ND(0.00000042)
ND(0.00000043)
ND(0.00000042)
ND(0.00000043) | NA N | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000049) ND(0.00000050) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000054) ND(0.00000053) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000044) ND(0.00000034) ND(0.00000034) ND(0.00000034) ND(0.00000034) ND(0.00000084) | NA N | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.00000136)
ND(0.00000036)
ND(0.00000052)
ND(0.00000052)
ND(0.00000040)
ND(0.00000044)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.0000039)
ND(0.0000039)
ND(0.0000036)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032) | | 1.2.3.7,8-PeCDF
2.3.4,7.8-PeCDF
PeCDFs (total)
1.2.3.4,7.8-HxCD
1.2.3.6,7.8-HxCD
2.3.4.6,7.8-HxCD
1.2.3,7.8,9-HxCD
1.2.3,4.6,7.8-HpC
1.2.3,4.7.8.9-HpC
1.2.3,4.7.8.9-HpC
DES (total)
0CCDF
Dioxins
2.3.7,8-TCDD
TCDDS (total)
1.2.3,7.8-PeCDD
PeCCDS (total)
1.2.3,7.8-PeCDD | F
F
F
DF
DF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.0000090)
ND(0.0000090)
ND(0.00000043)
0.0000043 j
ND(0.00000043)
0.0000043
ND(0.0000043)
ND(0.00000042)
ND(0.00000042)
ND(0.00000042)
ND(0.00000042)
ND(0.00000043)
ND(0.00000042)
ND(0.00000042)
ND(0.00000043) | NA N | ND(0.0000027) ND(0.0000039) ND(0.00000040) ND(0.00000049) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000054) ND(0.00000054) ND(0.00000053) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000068) ND(0.00000034) | NA N | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.0000012)
ND(0.0000040)
ND(0.00000052)
ND(0.00000027)
ND(0.00000040)
ND(0.00000040)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000056)
ND(0.00000056) | | 1.2.3.7,8-PeCDF
2.3.4,7.8-PeCDF
PeCDFs (total)
1.2.3.4.7.8-HxCD
1.2.3.7.8-HxCD
1.2.3.7.8.9-HxCD
1.2.3.4.6.7.8-HxCD
1.2.3.4.6.7.8-HpC
1.2.3.4.7.8.9-HpC
1.2.3.4.7.8.9-HpC
Dioxins
2.3.7,8-TCDD
TCDDs (total)
1.2.3.7.8-PeCDD
PeCDDs (total)
1.2.3.7.8-PeCDD
1.2.3.7.8-PeCDD
1.2.3.7.8-HxCD
1.2.3.4.7.8-HxCD | F F DF DF DF DF | NA N | 0.000030
ND(0.0000010)
ND(0.0000014)
0.000011
ND(0.0000027)
ND(0.00000090)
ND(0.00000090)
ND(0.00000043)
0.0000043
0.0000043
ND(0.00000043)
ND(0.00000043)
ND(0.00000043)
ND(0.00000044)
ND(0.00000042)
ND(0.00000042)
ND(0.00000042)
ND(0.00000044)
ND(0.00000044)
ND(0.00000044)
ND(0.00000044)
ND(0.00000044)
ND(0.00000044)
ND(0.00000044)
ND(0.00000044) | NA | ND(0.0000027) ND(0.0000039) ND(0.0000040) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000062) ND(0.0000062) ND(0.0000062) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000044) ND(0.00000084) | NA N | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.0000012)
ND(0.0000040)
ND(0.00000052)
ND(0.00000027)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039)
ND(0.0000039)
ND(0.0000039)
ND(0.0000039)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032)
ND(0.0000032) | | 1.2.3.7,8-PeCDF 2.3.4,7.8-PeCDF PeCDFs (total) 1.2.3.4,7.8-HxCD 1.2.3.7,8-HxCD 1.2.3.4,7.8-HxCD 1.2.3.4,6.7,8-HxCD 1.2.3.4,7.8-HyCD 1.2.3.4,7.8-HyCD 1.2.3.4,7.8-HyCD 1.2.3.4,7.8-HyCD 1.2.3.4,7.8-HyCD 1.2.3.4,7.8-HyCD 1.2.3.7,8-TCDD 1.2.3.7,8-PeCDD 1.2.3.7,8-PeCDD 1.2.3.4,7.8-HxCD 1.2.3.6,7.8-HxCD 1.2.3.6,7.8-HxCD 1.2.3.7,8-HxCD | F F DF DF DF DF | NA N | 0.000030 ND(0.0000010) ND(0.0000014) 0.000011 ND(0.0000027) ND(0.00000090) ND(0.00000090) ND(0.00000018) ND(0.00000043 0.0000043 ND(0.0000043) ND(0.0000043) ND(0.00000442) ND(0.0000042) ND(0.00000042) ND(0.00000044) | NA N | ND(0.0000027) ND(0.0000039) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000052) ND(0.00000052) ND(0.00000052) ND(0.00000053) ND(0.00000062) ND(0.00000063) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000044) ND(0.00000084) | NA N | ND(0.00000056)
g
0.0000018
ND(0.0000012)
ND(0.00000036)
ND(0.00000052)
ND(0.00000052)
ND(0.00000052)
ND(0.00000034)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032) | | 1.2.3.7,8-PeCDF 2.3.4,7.8-PeCDF PeCDFs (total) 1.2.3.4,7.8-HxCD 1.2.3.4,7.8-HxCD 1.2.3.7,8.9-HxCD 1.2.3.4,6.7,8-HxCD HxCDFs (total) 1.2.3.4,6.7,8-HyC 1.2.3.4,7.8,9-HyC HpCDFs (total) 0CDF Dioxins 2.3.7,8-PeCDD TCDDs (total) 1.2.3.4,7.8-PeCDD PeCDAS (total) 1.2.3.4,7.8-HxCD 1.2.3.6,7.8-HxCD 1.2.3.7,8-PHxCD HxCDDs (total) 1.2.3.6,7.8-HxCD 1.2.3.7,8-PHxCD HxCDDs (total) | F
F
F
DF
DF
DF | NA N | 0.000030 ND(0.0000010) ND(0.0000011) ND(0.0000014) 0.000011 ND(0.0000027) ND(0.0000090) ND(0.0000090) ND(0.0000093) ND(0.0000043 0.000043 ND(0.0000043) ND(0.0000043) ND(0.0000043) ND(0.0000043) ND(0.0000044) ND(0.00000042) ND(0.00000042) ND(0.00000043) ND(0.00000041) | NA N | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000054) ND(0.00000053) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000044) ND(0.00000084) | NA N | ND(0.0000056) g 0.000018 ND(0.0000012) ND(0.0000012) ND(0.0000036) ND(0.0000052) ND(0.0000052) ND(0.0000034) ND(0.0000034) ND(0.0000034) ND(0.0000034) ND(0.0000039) ND(0.0000039) ND(0.0000039) ND(0.0000039) ND(0.0000032) | | 1.2.3.7,8-PeCDF
2.3.4.7.8-PeCDF
PeCDFs (total)
1.2.3.4.7.8-HxCD
1.2.3.4.7.8-HxCD
1.2.3.4.6.7.8-HxCD
HxCDFs (total)
1.2.3.4.6.7.8-HpC
1.2.3.4.6.7.8-HpC
1.2.3.4.7.8-HpC
Dioxins
2.3.7.8-TCDD
TCDDs (total)
1.2.3.4.7.8-PeCDD
PeCDDs (total)
1.2.3.4.7.8-HxCD
1.2.3.4.7.8-HxCD
1.2.3.4.7.8-HxCD
HxCDBs (total)
1.2.3.4.7.8-HxCD
1.2.3.7.8-HxCD
HxCDBs (total)
1.2.3.7.8-HxCD
HxCDBs (total)
1.2.3.7.8-HxCD
HxCDBs (total) | F
F
F
DF
DF
DF | NA N | 0.000030 ND(0.0000010) ND(0.0000011) ND(0.0000014) 0.000011 ND(0.0000027) ND(0.0000090) ND(0.0000090) ND(0.0000093) ND(0.0000043 0.0000043 ND(0.00000043) ND(0.00000049) ND(0.00000042) ND(0.00000042) ND(0.00000042) ND(0.00000042) ND(0.00000042) ND(0.00000042) ND(0.00000042) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000044) ND(0.000000044) ND(0.00000044) | NA N | ND(0.0000027) ND(0.0000039) ND(0.0000039) ND(0.00000040) ND(0.00000049) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000054) ND(0.00000054) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000034) | NA N | ND(0.0000056) g 0.000018 ND(0.0000012) ND(0.0000012) ND(0.0000040) ND(0.0000052) ND(0.00000052) ND(0.00000034) ND(0.00000034) ND(0.00000039) ND(0.0000039) ND(0.0000031) | | 1.2.3.7,8-PeCDF 2.3.4,7.8-PeCDF PeCDFs (total) 1.2.3.4,7.8-HxCD 1.2.3.4,7.8-HxCD 1.2.3.7,8.9-HxCD 1.2.3.4,6.7,8-HxCD HxCDFs (total) 1.2.3.4,6.7,8-HyC 1.2.3.4,7.8,9-HyC HpCDFs (total) 0CDF Dioxins 2.3.7,8-PeCDD TCDDs (total) 1.2.3.4,7.8-PeCDD PeCDAS (total) 1.2.3.4,7.8-HxCD 1.2.3.6,7.8-HxCD 1.2.3.7,8-PHxCD HxCDDs (total) 1.2.3.6,7.8-HxCD 1.2.3.7,8-PHxCD HxCDDs (total) | F
F
F
DF
DF
DF | NA N | 0.000030 ND(0.0000010) ND(0.0000011) ND(0.0000014) 0.000011 ND(0.0000027) ND(0.0000090) ND(0.0000090) ND(0.0000093) ND(0.0000043 0.000043 ND(0.0000043) ND(0.0000043) ND(0.0000043) ND(0.0000043) ND(0.0000044) ND(0.00000042) ND(0.00000042) ND(0.00000043) ND(0.00000041) | NA N | ND(0.00000027) ND(0.00000039) ND(0.00000040) ND(0.00000040) ND(0.00000040) ND(0.00000050) ND(0.00000050) ND(0.00000052) ND(0.00000054) ND(0.00000054) ND(0.00000053) ND(0.00000033) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000043) ND(0.00000044) ND(0.00000084) | NA N | ND(0.0000056) g
0.000018
ND(0.0000012)
ND(0.0000012)
ND(0.0000036)
ND(0.00000052)
ND(0.00000052)
ND(0.00000034)
ND(0.00000034)
ND(0.00000034)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032)
ND(0.00000032) | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4D
E2SC10
E2SC10-CS0106
1-6
10/20/98 | 4D
E2SC-10
E2SC-10-CS0106
1-6
10/20/98 | 4D
E2SC-10
E2SC-10-SS03
3-5
10/20/98 | 4D
E2SC-11
E2SC-11-CS0615
6-15
10/09/98 | 4D
E2SC-11
E2SC-11-SS05
6-8
10/09/98 | 4D
E2SC-13
E2SC-13-CS0516
6-15
10/07/98 | |------------------|---|--|--|--|---|--|---| | Inorganics | | | | | | | | | Aluminum | | NA | NA | ŅΑ | NA | NA. | NA | | Antimony | | NA | 0.150 B | NA | ND(1.10) | NA | 0.300 B | | Arsenic | | NA | 5 80 | NA | 5.10 | NA. | 1.70 | | Banum | | NA | 15 2 B | NΑ | 13.18 | NA I | 23.3 | | Beryllium | | NA | 0.140 B | NA | 0.150 B | NA NA | 0.240 B | | Cadmium | | NA | ND(0.550) | NA | 0 250 B | NA NA | 0.130 B | | Calcium | | NA | NA | NA NA | NA NA | NA NA | 0.750 5
NA | | Chromium | <u> </u> | NA I | 8.30 | NΑ | 7.50 | NA 1 | 8.90 | | Cobalt | | NA | 10.4 | NA | 9.50 | NA NA | 7.70 | | Copper | | NA | 20.3 | NA NA | 15.2 | NA NA | 7.80 | | Cyanide | | NA | ND(2.80) | NA NA | ND(2.70) | NA NA | 7.60
ND(2.80) | | Iron | | NA . | NA | NA I | NA NA | NA I | NA NA | | Lead | | NA | 9.50 | NA. | 5.30 | NA NA | 5.00 | | Magnesium | | NA NA | NA | NA NA | NA | NA NA | 5.00
NA | | Manganese | | NA | NA | NA NA | NA NA | NA I | NA NA | | Mercury | | NA | 0.0130 B | NA I | ND(0,110) | NA NA | 0.0230 8 | | Nickel | | NA | 15.2 | NA NA | 13.8 | NA T | 13.5 | | Potassium | | NA | NA | NA I | NA NA | NA NA | NA NA | | Selenium | | NA | ND(0.550) | NA NA | ND(1.10) | NA T | ND(0.550) | | Silver | | NA | ND(1.10) | NA NA | ND(1.10) | NA NA | ND(1.10) | | Sodium | | NA | NA NA | NA NA | NA NA | NA I | ND(1.10) | | Sulfide | | NA | ND(221) | NA NA | ND(53.9) | NA NA | ND(55.2) | | Thallium | | NA | 1.30 | NA I | 1.60 | NA NA | 2.10 | | T i n | | NA | ND(11.0) | NA NA | ND(10.8) | NA NA | ND(11.0) | | /anadium | *************************************** | NA | 7.00 | NA NA | 7.10 | NA NA | 8.40 | | Žinc | *************************************** | NA | 52.7 | NA NA | 51.4 | - NA | 53.1 | #### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Averaging Area: | 4D |---|----------------------------------|---|------------------------------------|----------------------------|---|--|--------------------------------------| | Location ID: | E2SC-13 | E2SC-16 | E2SC-17 | E2SC-17 | ES2-1 | E\$2-6 | SL0005 | | Sample ID: | | E2SC-16-CS0615 | E2SC-17-CS0815 | E2SC-17-SS05 | P201B1416 | P206B1416 | 080598SB14 | | Sample Depth(Feet): Parameter Date Collected: | 14-15
10/07/98 | 6-15
10/08/98 | 6-15
10/26/98 | 6-8 | 14-16 | 14-16
01/10/91 | 1-1.5 | | Volatile Organics | 10101/80 | 10/06/98 | 10/20/98 | 10/26/98 | 01/16/91 | 01/30/91 | 08/05/98 | | 1,1,1-Trichloroethane | ND(0,0056) | ND(0.0058) | NA. | ND(0.0046) | ND(0.6060) | NA | ND/0.0055) | | 1,1,2,2-Tetrachloroethane | ND(0 0056) | ND(0.0058) | NA | ND(0.0045) | ND(0.012) | NA. | ND(0.0055) | | 1,1,2-trichloro-1,2,2-trifluoroethane | NA | NA NA | NA | NA NA | 0 0010 J | NA | NA | | 1,1-Dichlorcethane | ND(0.0056) | ND(0.0058) | NA NA | ND(0.0046) | ND(0.0060) | NA. | ND(0 0055) | | 1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene | ND(0.011) | ND(0.012)
ND(0.38) | NA
ND(0.39) | ND(0 0093) | ND(0.012) | NA | ND(0.011) | | 1,2-Dichloroethane | NA
ND(0.0056) | NO(0.0058) | NL4(0.39)
NA | NA
ND(0.0046) | ND(0.41)
ND(0.6050) | ND(1.5)
NA | NA
ND(0.0055) | | 1,3-Dichlorobenzene | NA | ND(0.38) | ND(0.39) | NA NA | 0.21 J | 0.65 J | NA
NA | | 1,4-Dichlorobenzene | NA | ND(0.38) | ND(0.39) | NA | 0.19 J | 0.83 J | NA | | 1,4-Dioxane | ND(0.56) | ND(0,58) | NA | ND(0.46) | NA | NA | ND(0.55) | | 2-Butanone | ND(0.022) | ND(0.023) | NΑ | ND(0.019) | ND(0.012) | NA | ND(0 022) | | Acetone
Acetonitrile | ND(0,022)
ND(0,11) | ND(0.023)
ND(0.12) | NA
NA | 0.0053 J
ND(0.093) | 0.065 B
NA | NA
NA | ND(0.011)
ND(0.11) | | Acrylonitrile | ND(0.11) | ND(0.12) | NA
NA | ND(0.093) | ND(0.15) | NA
NA | ND(0.11)
ND(0.11) | | Benzene | ND(0.0055) | ND(0.0058) | NA NA | ND(0.0046) | ND(0.0060) | NA NA | ND(0.0055) | | Carbon Disulfide | ND(0.0056) | ND(0.0058) | NA. | ND(0.0046) | ND(0.0060) | NA NA | ND(0.0055) | | Chlorobenzene | ND(0.0056) | ND(0.0058) | NA NA | ND(0.0046) | 0.058 | NA | ND(0.0055) | | Crotonaldehyde | NA
ND(D 0056) | NA
ND(0.0058) | NA
NA | NA
NEG 2010 | ND(0.12) | NA | NA
NA | | Ethylbenzene
Isobutanol | ND(0.0056)
ND(0.22) | ND(0.0058)
ND(0.23) | NA
NA | ND(0.9046)
ND(0.19) |
0.014
NA | NA
NA | ND(0.0055)
ND(0.22) | | m&p-Xylene | NA NA | NA NA | NA NA | NA
NA | NA NA | NA
NA | NA | | Methylene Chloride | ND(0.0056) | ND(0.0058) | NA | ND(0.0046) | 0.047 B | NA | ND(0.0055) | | Propionitrile | ND(0.022) | ND(0.023) | NA NA | ND(0.019) | NA NA | NA | ND(0.022) | | Styrene | ND(0.0056) | ND(0.0058)
ND(0.0058) | NA NA | ND(0.0046) | ND(0.0060) | NA | ND(0.0055) | | Tetrachloroethene
Toluene | ND(0.0056)
ND(0.0056) | ND(0.0058) | NA
NA | ND(0.0046)
ND(0.0046) | ND(0.0060)
ND(0.0060) | NA
NA | ND(0.0055)
ND(0.0055) | | Trichloroethene | ND(0.0056) | ND(0.0058) | NA NA | ND(0.0046) | ND(0.0060) | NA NA | ND(0.0055) | | Trichlorofluoromethane | ND(0.011) | ND(0.012) | NA | ND(0.0093) | ND(0.0060) | NA | ND(0.011) | | Vinyl Chloride | ND(0.011) | ND(0.012) | NA | ND(0.0093) | ND(0.012) | NA | ND(0.011) | | Xylenes (total) | ND(0.0056) | ND(0.0058) | NA | ND(0.0046) | 0.010 | NA | ND(0.0055) | | Semivolatile Organics 1,2,3,4-Tetrachiorobenzene | NA | NIA . | | | i Neva in l | NO (12 PX | | | 1,2,3,4-Tetrachioropenzene | NA NA | NA
NA | NA
NA | NA
NA | ND(0.41)
ND(0.41) | ND(1.5)
ND(1.5) | NA
NA | | 1,2,3-Trichlorobenzene | NA NA | NA NA | NA NA | NA NA | ND(0.41) | ND(1.5) | NA
NA | | 1,2,4,5-Tetrachlorobenzene | NA | ND(0.38) | ND(0.39) | NA | ND(0.41) | ND(1.5) | ND(0.36) | | 1,2,4-Trichlorobenzene | NA | ND(0.38) | ND(0.39) | NA | ND(0.41) | ND(1.5) | 0.042 J | | 1,3,5-Trichlorobenzene | NA NA | NA NA | NA | NA NA | 0.066 J | ND(1.5) | NA | | 1,3,5-Trinitrobenzene
1-Chloronaphthalene | NA
NA | ND(1.9)
NA | ND(1.9)
NA | NA
NA | ND(0.81)
ND(0.41) | ND(3.0)
ND(1.5) | ND(1.7) | | 1-Methylnaphthalene | NA NA | NA NA | NA NA | NA
NA | 1.5 | ND(1.5) | NA
NA | | 2,4-Dimethylphenol | NA | 0.22 J | ND(0.39) | NA NA | ND(0.41) | ND(1.5) | ND(0.36) | | 2,4-Dinitrophenol | NA | ND(1.9) | ND(1.9) | NA | ND(1.6) | ND(5.9) | ND(1.7) | | 2-Acetylaminofluorene | NA | ND(0.77) | ND(0.77) | NA | ND(0.41) | ND(1.5) | ND(0.72) | | 2-Chloronaphthalene
2-Chlorophenol | NA
NA | ND(0.38)
ND(0.38) | ND(0.39) | NA
NA | ND(0.41) | ND(1.5) | ND(0.36) | | 2-Methylnaphthalene | NA NA | 0.84 | ND(0.39)
0.20 J | NA
NA | ND(0.41)
0.045 J | ND(1.5)
6.3 | ND(0.36)
0.085 J | | 2-Methylphenol | NA NA | 0.067 J | ND(0.39) | NA NA | ND(0.41) | ND(1.5) | ND(0.36) | | 3&4-Methylphenol | NA | 0.26 J | ND(0.39) | NA | ND(0.41) | ND(1.5) | ND(0.36) | | 3,3'-Dichlorobenzidine | NA NA | ND(1.9) | ND(1.9) | NA NA | ND(0.41) | ND(1,5) | ND(1.7) | | 3,3'-Dimethoxybenzidine 3,3'-Dimethylbenzidine | NA
NA | NA
NO(4.9) | NA
ND(4.0) | NA
NA | ND(0.41) | ND(1.5) | NA NA | | 3,3 -Dimetriyisenzidine 3-Methylcholanthrene | NA
NA | ND(1.9)
ND(0.77) | ND(1.9)
ND(0.77) | NA
NA | ND(0.81)
ND(0.41) | ND(3.0)
ND(1.5) | ND(1.7)
ND(0.72) | | 3-Phenylenediamine | NA NA | NA NA | NA NA | NA NA | ND(0.41) | ND(1.5) | NA
NA | | 4,6-Dinitro-2-methylphenol | NA | ND(1.9) | ND(1.9) | NA | ND(1.2) | ND(4.5) | ND(1.7) | | 4-Aminobiphenyl | NA : | ND(1,9) | NO(1.9) | NA | ND(0.41) | ND(1.5) | ND(1.7) | | 4-Chlorobenzilate | NA
NA | ND(0.38) | ND(0.39) | NA
NA | ND(0.41) | ND(1.5) | ND(0,36) | | 4-Nitrophenol 7.12-Dimethy/benz(a)anthracene | NA
NA | ND(1.9)
ND(0.77) | ND(1.9)
ND(0.77) | NA
NA | ND(0.41)
ND(0.41) | ND(1.5)
ND(1.5) | ND(1.7)
ND(0.72) | | Acenaphthene | NA NA | 0.38 | 0.47 | NA
NA | 1.0 | 8.3 | 0.061 J | | Acenaphthylene | NA | 2.4 | 0.14 J | NA NA | 0.10 J | 0.54 J | 0.072 J | | Acetophenone | NA NA | ND(0.38) | 0.048 J | NA | ND(0,41) | ND(1.5) | ND(0.35) | | Aniline | NA
NA | ND(0.38) | ND(0.39) | NA NA | ND(0.41) | ND(1.5) | ND(0.36) | | Anthracene | NA NA | 4.5
ND(3.8) | 0.65
ND/3.9\ | NA
NA | 0.29 J | 2.7 | 0.18 J | | | NA 1 | | ND(3.9) | | ND(0.41) | ND(1.5) | ND(3.6) | | Benzidine
Benzo(a)anthracene | NA
NA | | 1 1 | NA I | 0.27 1 1 | 2.0 | | | Benzidine Benzo(a)anthracene Benzo(a)pyrene | NA
NA
NA | 5.8 | 1.1
1.1 | NA
NA | 0.27 J
0.19 J | 2.0
1.3 J | 0.50
0.57 | | Benzo(a)anthracene | NA
NA
NA | | | NA
NA
NA | 0.27 J
0.19 J
0.17 J | 1.3 J
1.5 Z | 0.57
0.74 | | Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylane | NA
NA
NA
NA | 5.8
2.2
ND(0.38)
0.26 J | 1.1
1.5
0.32 J | NA
NA
NA | 0.19 J
0.17 J
0.088 J | 1.3 J
1.5 Z
5.7 J | 0.57
0.74
0.16 J | | Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g.h.i)perylane Benzo(k)fluoranthene | NA
NA
NA
NA | 5.8
2.2
ND(0.38)
0.26 J
3.1 J | 1.1
1.5
0.32 U
0.56 | NA
NA
NA
NA | 0.19 J
0.17 J
0.088 J
0.088 J | 1.3 J
1.5 Z
5.7 J
1.5 Z | 0.57
0.74
0.16 J
0.47 | | Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h.i)perylane Benzo(k)fluoranthene Benzo(k)fluoranthene | NA
NA
NA
NA
NA
NA | 5.8
2.2
ND(0.38)
0.26 J
3.1 J
NA | 1,1
1.5
0.32 J
0.56
NA | NA
NA
NA
NA
NA | 0.19 J
0.17 J
0.088 J
0.088 J
ND(4.1) | 1.3 J
1.5 Z
5.7 J
1.5 Z
ND(15) | 0.57
0.74
0.16 J
0.47
NA | | Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g.h.i)perylane Benzo(k)fluoranthene | NA
NA
NA
NA | 5.8
2.2
ND(0.38)
0.26 J
3.1 J | 1.1
1.5
0.32 U
0.56 | NA
NA
NA
NA | 0.19 J
0.17 J
0.088 J
0.088 J | 1.3 J
1.5 Z
5.7 J
1.5 Z | 0.57
0.74
0.16 J
0.47 | 1/31/2003 | and the same of th | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet): | 4D
E2SC-13
E2SC-13-SS06
14-15 | 4D
E2SC-16
E2SC-16-CS0815
6-15 | 4D
E2SC-17
E2SC-17-CS0615
6-15 | 4D
E2SC-17
E2SC-17-SS05 | 4D
ES2-1
P201B1416 | 4D
ES2-6
P206B1416 | 4D
SL0005
080598SB14 | |--|--|--|--|---|--|--|--|--| | Parameter | Date Collected: | 10/07/98 | 10/08/98 | 10/26/98 | 6-8
10/26/98 | 14-16
01/16/91 | 14-16
01/10/91 | 1-1.5
08/05/98 | | | Organics (continued) | | | | | | | | | Chrysene | | NA | 5.1 | 12 | NA | 0.23 J | 1.8 | 0,61 | | Cyclophospha | | NA NA | NA. | NA NA | NA | ND(2.0) | ND(7.3) | NA | | Dibenzo(a,h)a
Dibenzofuran | Intracene | NA
NA | ND(0.38) | 7.12 J | NA | ND(0.41) | 0 19 J | 0.065 J | | Di-n-Butylphth | alate | NA NA | 2.5
0.098 J | 0.19 J
ND(0.39) | NA
NA | ND(0.41) | 0.70 J | 0.055 J | | Di-n-Octylphth | | NA NA | ND(0.38) | ND(0.39) | NA
NA | ND(0.41)
ND(0.41) | ND(1.5)
ND(1.5) | 0.033 J | | Diphenylamine | | NA | ND(0.38) | ND(0.39) | NA NA | ND(0.41) | ND(1.5) | ND(0.36)
ND(0.35) | | Fluoranthene | | NA | 14 | 1.9 | NA |
0.53 | 3.7 | 1.3 | | Fluorene | | NA | 2.0 | 0.67 | NA | 0.58 | 47 | 0.076 J | | Hexachlorober | | NA | ND(0.38) | ND(0.39) | NA | ND(0.41) | ND(1.5) | ND(0.36) | | Indeno(1,2,3-c
Methapyrilene | | NA
NA | 0.44 | 0.35 J | NA | 0.076 J | 0.55 J | 0.20 J | | Naphthalene | | NA NA | ND(1.9)
0,95 | ND(1.9)
1,9 | NA NA | ND(0.81) | ND(3.0) | ND(1.7) | | Nitrobenzene | | NA NA | ND(0.38) | ND(0.39) | NA
NA | 0.53 | 3.4 | ND(0.36) | | N-Nitroso-di-n- | -propylamine | NA NA | ND(0.38) | ND(0.39) | NA NA | ND(0.41)
ND(0.41) | ND(1.5)
ND(1.5) | ND(0.36)
ND(0.36) | | N-Nitrosodiphe | enylamine | NA | ND(0.38) | ND(0.39) | NA NA | ND(0.41) | ND(1.5) | ND(0.36) | | o-Taluidine | | NA | ND(0.77) | ND(0.77) | NA NA | ND(0.41) | ND(1.5) | ND(0.36)
ND(0.72) | | | noazobenzene | NA | ND(0.77) | ND(0.77) | NA | ND(0.41) | ND(1.5) | ND(0.36) | | Pentachlorobe | | NA NA | ND(0.38) | ND(0.39) | NA | ND(0.41) | ND(1.5) | ND(0.36) | | Pentachloronit | | NA NA | ND(1.9) | ND(1.9) | NA | ND(0.41) | ND(1.5) | ND(1.7) | | Pentachloroph
Phenacetin | EIN | NA
NA | ND(1.9) | ND(1.9) | NA NA | ND(0.81) | ND(3.0) | ND(1.7) | | Phenacetin
Phenanthrene | | NA
NA | ND(0.77) | ND(0.77) | NA NA | ND(0.41) | ND(1.5) | ND(0.72) | | Phenol | | NA NA | ND(0.38) | 2.1
ND(0.39) | NA
NA | 0.93 | 8.3 | 0.78 | | Pronamide | | NA. | ND(0.77) | ND(0.77) | NA NA | ND(0.41)
ND(0.41) | ND(1.5) | ND(0.36) | | ⊃yrene | *************************************** | NA | 11 | 1.6 | NA I | 0.57 | ND(1.5)
5.2 | ND(0.72)
0.74 | | Total Phenols | | NA . | NA | NA | NA I | ND(0.13) | ND(0.13) | NA NA | | Organochlorir | ne Pesticides | | | | | | 115(0:10) | 1400 | | 4,4'-DDE | **** | NA | NÄ | NA | NA] | NA | NA | NA | | Aldrin | | NA NA | | Delta-BHC | | NA NA | NA NA | NA | NA | NA | NA | NA | | Dieldrin
Endosulfan II | | NA NA | NA NA | NA NA | NA | NA | NA NA | NA NA | | Methoxychlor | | NA
NA | NA
NA | NA NA | NA NA | NA I | NA | NA | | Foxaphene | | NA NA | NA NA | NA
NA | NA
NA | NA NA | NA NA | NA NA | | | hate Pesticides | | | IVA | IVA I | NA | NA | NA | | None Detected | | NA I | NA | NA | NA I | | | · · · · · · · · · · · · · · · · · · · | | derbicides | | 1 | | | | | | | | 2,4,5-T | | NA | NA I | NA | NA | NA I | NA I | NA NA | | 2,4,5-TP | | NA | NA NA | NA | NA | NA | NA | NA NA | | 2,4-D | | NA . | NA | NA | NA NA | NA | NA | NA | | urans | | | | | | | | | | 2,3,7,8-TCDF | | NA NA | 0.0000039 g | 0.00000089 g.j | NA NA | NA | NA [| 0.00011 g | | CDFs (total) | | NA | 0.000033 | 0.0000012 | NA NA | NA | NA | 0.00077 | | ייי אנו פל דיכו | \E | NIA I | | | | NA | NA | 0.000034 | | | | NA
NA | ND(0.0000019) | ND(0.00000069) | NA
NA | | | | | 3,4,7,8-PeCD | | NA | ND(0.0000021) | ND(0.00000074) | NA | NA NA | NA | 0.000033 | | 2,3,4,7,8-PeCD
PeCDFs (total) |)F | | | ND(0.00000074)
ND(0.0000022) | NA
NA | NA
NA | NA
NA | 0.000033
0.00061 | | 2,3,4,7,8-PeCD
PeCDFs (total)
,2,3,4,7,8-HxC
,2,3,6,7,8-HxC | OF
CDF
CDF | NA
NA | ND(0.0000021)
0.000021
ND(0.0000029)
ND(0.0000010) | ND(0.00000074) | NA | NA
NA
NA | NA
NA
NA | 0.000033
0.00061
0.000066 | | 2,3,4,7,8-PeCD
PeCDFs (total)
,2,3,4,7,8-HxC
,2,3,6,7,8-HxC
,2,3,7,8,9-HxC | DF
CDF
CDF
CDF | NA
NA
NA
NA
NA | ND(0.0000021)
0.000021
ND(0.0000029)
ND(0.0000010)
ND(0.00000056) | ND(0.00000074)
ND(0.0000022)
ND(0.00000074) | NA
NA
NA | NA
NA | NA
NA | 0.000033
0.00061
0.000066
0.000018 F | | 23.4,7,8-PeCD
PeCDFs (total)
,2,3,4,7,8-HxC
,2,3,6,7,8-HxC
,2,3,7,8,9-HxC
,3,4,6,7,8-HxC | DF
CDF
CDF
CDF | NA
NA
NA
NA
NA
NA | ND(0.000021)
0.000021
ND(0.0000029)
ND(0.0000010)
ND(0.00000056)
ND(0.0000012) | ND(0.00000074)
ND(0.00000022)
ND(0.00000074)
ND(0.00000054)
ND(0.00000034)
ND(0.00000027) | NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA | 0.000033
0.00061
0.000066 | | 2.3.4.7.8-PeCD
PeCDFs (total)
,2,3,4,7,8-HxC
,2,3,6,7,8-HxC
,2,3,7,8-9-HxC
2.3,4,6,7,8-HxC
ixCDFs (total) | DF
CDF
CDF
CDF | NA
NA
NA
NA
NA
NA
NA | ND(0.000021)
0.000021
ND(0.0000029)
ND(0.0000010)
ND(0.0000015)
ND(0.0000012)
0.000014 | ND(0.0000074)
ND(0.0000022)
ND(0.00000074)
ND(0.00000054)
ND(0.00000034)
ND(0.00000027)
ND(0.0000015) | NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084) | | .3.4,7,8-PeCD
PeCDFs (total)
.2,3,4,7,8-HxQ
.2,3,6,7,8-HxQ
.2,3,7,8,9-HxQ
.3,4,6,7,8-HxQ
IxCDFs (total)
.2,3,4,6,7,8-H | DF DDF DDF DDF DDF DDF DDF DDF | NA | ND(0.000021)
0.000021
ND(0.0000029)
ND(0.0000010)
ND(0.0000015)
ND(0.0000012)
0.000014
0.000010 | ND(0.0000074)
ND(0.0000022)
ND(0.00000074)
ND(0.00000054)
ND(0.00000034)
ND(0.00000027)
ND(0.0000015)
ND(0.0000011) | NA | NA | NA | 0.000033
0.00061
0.00066
0.000018 F
ND(0.0000084)
0.00014
0.00042
0.00016 | | 3.4,7,8-PeCD
PeCDFs (total)
,2,3,4,7,8-HxQ
,2,3,6,7,8-HxQ
,2,3,7,8,9-HxQ
,3,4,6,7,8-HxQ
,2,3,4,6,7,8-HxQ
,2,3,4,6,7,8-H,2,3,4,7,8,9-HyQ | DF DF DF DF DF DF DF DF | NA | ND(0.000021)
0.000021
ND(0.0000029)
ND(0.0000029)
ND(0.0000010)
ND(0.0000012)
0.000014
0.000010
ND(0.0000011) | ND(0.0000074)
ND(0.0000022)
ND(0.0000022)
ND(0.00000054)
ND(0.00000034)
ND(0.00000027)
ND(0.0000015)
ND(0.0000011)
ND(0.00000025) | NA N | NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.00014
0.00042
0.00016
0.000032 | | 1.2,3.7.8-PeCD
2.3.4.7.8-PeCDFs (total)
1.2,3.4.7.8-HxC
1.2,3.6.7.8-HxC
1.2,3.7.8.9-HxC
1.2,3.4.6.7.8-HxC
1.2,3.4.6.7.8-HxC
1.2,3.4.6.7.8-HyCDFs (total)
1.2,3.4.6.7.8-HyCDFs (total)
1.2,3.4.6.7.8-HyCDFs (total) | DF DF DF DF DF DF DF DF | NA N | ND(0.0000021)
0.000021
ND(0.0000029)
ND(0.0000010)
ND(0.0000016)
ND(0.0000012)
0.000014
0.000010
ND(0.0000011)
0.000044 | ND(0.0000074)
ND(0.0000022)
ND(0.0000074)
ND(0.00000054)
ND(0.00000034)
ND(0.00000027)
ND(0.0000015)
ND(0.0000011)
ND(0.00000025)
ND(0.0000011) | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.000033
0.00061
0.000066
0.000018 F
ND(0.0000084)
0.000014
0.00042
0.00016
0.000032
0.00034 | | 3.4.7.8-PeCD
eCDFs (total)
2.3.4.7.8-HxC
2.3.6.7.8-HxC
2.3.7.8.9-HxC
xCDFs (total)
2.3.4.6.7.8-Hx
2.3.4.6.7.8-Hy
pCDFs (total) | DF DF DF DF DF DF DF DF | NA | ND(0.000021)
0.000021
ND(0.0000029)
ND(0.0000029)
ND(0.0000010)
ND(0.0000012)
0.000014
0.000010
ND(0.0000011) | ND(0.0000074)
ND(0.0000022)
ND(0.0000022)
ND(0.00000054)
ND(0.00000034)
ND(0.00000027)
ND(0.0000015)
ND(0.0000011)
ND(0.00000025) | NA N | NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.00014
0.00042
0.00016
0.000032 | | 3.4,7,8-PeCD
PeCDFs (total)
2,3,4,7,8-HxC
2,3,6,7,8-HxC
2,3,7,8-9-HxC
3,4,6,7,8-HxC
4xCDFs (total)
2,3,4,5,7,8-Hj
4yCDFs (total)
1900DFs (total)
100DF
100xins | DF DF DF DF DF DF DF DF | NA N | ND(0.000021)
0.00021
ND(0.000029)
ND(0.0000210)
ND(0.0000010)
ND(0.0000012)
0.000014
0.000010
ND(0.0000011)
0.000011
0.000021 | ND(0.0000074) ND(0.0000072) ND(0.0000074) ND(0.00000074) ND(0.00000034) ND(0.00000034) ND(0.00000015) ND(0.0000015) ND(0.0000011) ND(0.0000015) ND(0.0000011) ND(0.0000011) ND(0.0000011) ND(0.0000011) | NA N | NA N | NA N | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.000014
0.00016
0.00016
0.00032
0.00034
0.00034 | | 3.4.7.8-PeCD
PeCDFs (total)
2.3.4.7.8-HxC
2.3.6.7.8-HxC
3.3.4.6.7.8-HxC
4xCDFs (total)
2.3.4.6.7.8-Hi
2.3.4.7.8,9-Hi
pcDFs (total)
2.5CDF
Dioxins
3.7.8-TCDD | DF DF DF DF DF DF DF DF | NA N | ND(0.0000021)
0.000021
ND(0.0000029)
ND(0.0000010)
ND(0.0000016)
ND(0.0000012)
0.000014
0.000010
ND(0.0000011)
0.000044 | ND(0.0000074) ND(0.0000022) ND(0.00000074) ND(0.00000074) ND(0.00000034) ND(0.00000027) ND(0.00000015) ND(0.0000011) ND(0.0000011) ND(0.0000011) ND(0.0000011) ND(0.0000013) ND(0.0000013) | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | 0.000033
0.00061
0.000066
0.000018 F
ND(0.0000084)
0.00014
0.00042
0.00016
0.000032
0.00034
0.00034
0.00018 | | 3.4.7.8-PeCD PeCDFs (total) 2.3.4.7.8-HxC 2.3.6.7.8-HxC 2.3.7.8-HxC 3.4.6.7.8-HxC 3.3.4.6.7.8-HxC DCDFs (total) | DEF DDF DDF DDF DDF DDF DDF DDF DDF DDF | NA N | ND(0.000021) 0.000021 ND(0.0000029) ND(0.0000010) ND(0.0000015) ND(0.0000012) 0.000014 0.000010 ND(0.0000011) 0.000044 0.000021 | ND(0.0000074) ND(0.0000022) ND(0.0000022) ND(0.00000054) ND(0.00000054) ND(0.00000034) ND(0.00000015) ND(0.0000015) ND(0.0000015) ND(0.0000011) ND(0.0000013) ND(0.0000013) ND(0.0000013) | NA N | NA N | NA N | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.00014
0.00016
0.000032
0.00034
0.00018
0.000015
0.000044 | | 3.4,7.8-PeCD PeCDFs (total) 2.3.4,7.8-HxC 2.3.4,7.8-HxC 2.3.4,8.7.8-HxC 3.4.6,7.8-HxC 3.4.6,7.8-HxC 3.4.6,7.8-HxC 4xCDFs (total) 2.3.4.6,7.8-Hy 4pCDFs (total) DCDF Plioxins 3.7.8-TCDD CCDDs (total) 2.3.4,7.8-PeCD PeCDDs (total) | DF DDF DDF DDF DDF DDF DDF DDF DDF | NA N | ND(0.000021) 0.000021 ND(0.0000029) ND(0.0000021) ND(0.0000010) ND(0.0000015) ND(0.0000012) 0.000014 0.000010 ND(0.0000011) 0.000021 ND(0.000021) ND(0.000011) 0.000021 | ND(0.0000074) ND(0.0000022) ND(0.00000074)
ND(0.00000074) ND(0.00000034) ND(0.00000027) ND(0.00000015) ND(0.0000011) ND(0.0000011) ND(0.0000011) ND(0.0000011) ND(0.0000013) ND(0.0000013) | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.00014
0.00016
0.000032
0.00034
0.00018
0.0000015
0.0000015
0.0000044
0.0000063 | | 3.4,7.8-PeCD PeCDFs (total) 2.3.4,7.8-HxC 2.3.4,7.8-HxC 2.3.4,6.7.8-HxC 4xCDFs (total) 2.3.4,6.7.8-Hx 2.3.4,6.7.8-Hx DDFs (total) 2.3.4,6.7.8-H DODFs (total) CDF Dioxins 3.7,8-TCDD CDDs (total) 2.3.4,7.8-PeCD PeCDDs (total) 2.3.4,7.8-PeCD PeCDDs (total) 2.3.4,7.8-HxC | DF DDF DDF DDF DDF DDF DDF DDDF DDD | NA N | ND(0.0000021) 0.000021 ND(0.0000029) ND(0.0000010) ND(0.0000010) ND(0.0000012) 0.000014 0.000011 ND(0.0000011) 0.000021 ND(0.0000011) 0.000021 ND(0.0000011) 0.000021 ND(0.0000011) 0.000021 ND(0.0000011) 0.0000021 ND(0.0000011) 0.0000011 | ND(0.0000074) ND(0.0000022) ND(0.0000022) ND(0.00000054) ND(0.00000054) ND(0.00000027) ND(0.0000015) ND(0.0000015) ND(0.0000011) ND(0.0000011) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) | NA N | NA N | NA | 0.000033
0.00061
0.000068
0.000018 F
ND(0.0000084)
0.00014
0.00042
0.00016
0.000032
0.00034
0.00018
0.000015
0.000044
0.000063
0.000063 | | 3.4,7.8-PeCD
PeCDFs (total)
2,3,4.7.8-HxC
2,3,7.8-HxC
2,3,7.8-9-HxC
4xCDFs (total)
2,3,4.6.7.8-H;
2,3,4.5.7.8-H;
Dioxins
3,7.8-TCDD
CDDs (total)
2,3,7.8-PeCD
PeCDDs (total)
2,3,7.8-PeCD
2,3,4,7.8-HxC
2,3,4,7.8-HxC
2,3,4,7.8-HxC | DF DDF DDF DDF DDF DDF DDF DDD DDD DDD | NA N | ND(0.0000021) 0.000021 ND(0.0000029) ND(0.0000029) ND(0.0000010) ND(0.0000015) ND(0.0000012) 0.000014 0.000010 ND(0.0000011) 0.000044 0.000021 ND(0.0000011) 0.000032 ND(0.0000011) 0.000032 ND(0.0000084) ND(0.0000084) ND(0.0000085) ND(0.0000015) ND(0.0000015) ND(0.00000022) | ND(0.0000074) ND(0.0000072) ND(0.0000072) ND(0.0000074) ND(0.00000054) ND(0.00000054) ND(0.00000057) ND(0.0000015) ND(0.0000015) ND(0.0000015) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.00000013) ND(0.00000013) ND(0.00000013) ND(0.00000013) ND(0.00000013) ND(0.00000013) ND(0.00000013) | NA N | NA | NA N | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.00014
0.00016
0.000032
0.00034
0.00018
0.0000015
0.0000015
0.0000044
0.0000063 | | 3.4.7.8-PeCD PeCDFs (total) 2.3.4.7.8-HxC 2.3.7.8-HxC 2.3.7.8-HxC 3.4.6.7.8-HxC 1xCDFs (total) 2.3.4.7.9-Hx 1yCDFs (total) 1xCDFs 1xC | DEF DDF DDF DDF DDF DDF DDF DDD DDD DDD | NA N | ND(0.000021) 0.000021 ND(0.0000029) ND(0.0000026) ND(0.0000056) ND(0.0000012) 0.00014 0.000011 NO(0.0000011) 0.000021 ND(0.0000011) 0.000022 ND(0.0000011) 0.000032 ND(0.0000084) ND(0.0000084) ND(0.0000015) ND(0.0000015) ND(0.0000012) ND(0.0000012) | ND(0.0000074) ND(0.0000072) ND(0.0000022) ND(0.00000074) ND(0.00000034) ND(0.00000034) ND(0.00000015) ND(0.0000015) ND(0.0000015) ND(0.0000011) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.00000027 ND(0.00000027 ND(0.00000025) ND(0.00000025) ND(0.00000025) ND(0.000000025) ND(0.000000025) ND(0.000000035) ND(0.000000035) ND(0.000000037) | NA N | NA | NA N | 0.000033
0.00061
0.000066
0.000018 F
ND(0.0000084)
0.00014
0.00042
0.00016
0.000032
0.00034
0.00034
0.000018
0.0000015
0.0000044
0.000063
0.000063
0.000063
0.0000074 | | 3.4,7.8-PeCD PeCDFs (total) 2.3.4,7.8-HxC 2.3.4.7.8-HxC 2.3.4.6,7.8-HxC 2.3.4.6,7.8-HxC 2.3.4.5,7.8-HxC 2.3.4.5,7.8-HxC 2.3.4.7.8-PxG PeCDFs (total) 2.3.4.7.8-PxG Pocomos 2.3.4.7.8-PxG PeCDDs (total) 2.3.7.8-PeCD PeCDDs (total) 2.3.7.8-PsC PeCDDs (total) 2.3.7.8-PsC PeCDDs (total) 2.3.7.8-PsC PeCDDs (total) 2.3.7.8-PsC 2.3.7.8-P | DEF DDF DDF DDF DDF DDF DDF DDF DDF DDF | NA N | ND(0.0000021) 0.000021 ND(0.0000029) ND(0.0000010) ND(0.0000056) ND(0.0000012) 0.000014 0.000010 ND(0.0000011) 0.000014 0.000021 ND(0.0000011) 0.0000021 ND(0.0000011) ND(0.0000012) ND(0.0000012) ND(0.0000015) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) | ND(0.0000074) ND(0.0000022) ND(0.0000022) ND(0.00000034) ND(0.00000034) ND(0.00000034) ND(0.00000015) ND(0.0000015) ND(0.0000011) ND(0.0000011) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.00000027 ND(0.00000027 ND(0.00000025) ND(0.00000025) ND(0.00000027 ND(0.00000032) ND(0.00000032) ND(0.00000032) ND(0.00000031) ND(0.00000037) ND(0.00000037) ND(0.00000037) | NA N | NA | NA | 0.000033
0.00061
0.000066
0.000018 F
ND(0.00000084)
0.00014
0.00014
0.00016
0.000032
0.00034
0.00018
0.000015
0.000063
0.000063
0.000063
0.000074
0.000074 | | 3.4,7.8-PeCD PeCDFs (total) 2,3.4,7.8-HxC 2,3.4,7.8-HxC 2,3.4,6.7.8-HxC 3,4.6,7.8-HxC 4xCDFs (total) 2,3.4,6.7.8-HxC 4xCDFs (total) CDF Piloxins 3,7.8-TCDD PeCDDs (total) 2,3.4,7.8-HxC 2,3.4,7.8-HxC 2,3.6,7.8-HxC 2,3.6,7.8-HxC 2,3.6,7.8-HxC 2,3.4,7.8-HxC | DEF DDF DDF DDF DDD DDD DDD DDD DDD DDD | NA N | ND(0.000021) 0.000021 ND(0.000029) ND(0.000009) ND(0.0000056) ND(0.0000012) 0.000014 0.000014 0.000011) 0.000014 0.000021 ND(0.0000011) 0.000032 ND(0.0000084) ND(0.0000084) ND(0.0000015) ND(0.0000015) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000092 | ND(0.0000074) ND(0.0000074) ND(0.0000022) ND(0.0000074) ND(0.00000054) ND(0.00000034) ND(0.00000034) ND(0.0000015) ND(0.0000015) ND(0.0000015) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.00000027 ND(0.00000027 ND(0.00000025) ND(0.00000025) ND(0.00000027 ND(0.000000035) ND(0.000000035) ND(0.00000035) ND(0.00000035) ND(0.00000037) ND(0.00000035) ND(0.00000035) ND(0.00000035) ND(0.00000035) ND(0.00000035) ND(0.00000035) | NA N | NA | NA | 0.000033 0.00061 0.000068 0.000018 F ND(0.0000084) 0.000014 0.00014 0.00032 0.00034 0.00038 0.00034 0.000083 0.000063 0.000063 0.000063 0.000074 0.000011 0.000012 0.000014 | | 3.4.7.8-PeCD PeCDFs (total) 2.3.4.7.8-HxC 2.3.4.7.8-HxC 2.3.4.6.7.8-HxC 2.3.4.6.7.8-HxC 2.3.4.6.7.8-HxC 2.3.4.6.7.8-HxC DFs (total) 2.3.4.6.7.8-Hx DCDFs (total) DCDF Dioxins 3.7.8-TCDD CCDDs (total) 2.3.4.7.8-PeCD PeCDDs (total) | DEF DDF DDF DDF DDD DDD DDD DDD DDD DDD | NA N | ND(0.0000021) 0.000021 ND(0.0000029) ND(0.0000010) ND(0.0000056) ND(0.0000012) 0.000014 0.000010 ND(0.0000011) 0.000014 0.000021 ND(0.0000011) 0.0000021 ND(0.0000011) ND(0.0000012) ND(0.0000012) ND(0.0000015) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) ND(0.0000012) | ND(0.0000074) ND(0.0000022) ND(0.0000022) ND(0.00000034) ND(0.00000034) ND(0.00000034) ND(0.00000015) ND(0.0000015) ND(0.0000011) ND(0.0000011) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.0000013) ND(0.00000027 ND(0.00000027 ND(0.00000025) ND(0.00000025) ND(0.00000027 ND(0.00000032) ND(0.00000032) ND(0.00000032) ND(0.00000031) ND(0.00000037) ND(0.00000037) ND(0.00000037) | NA N | NA | NA | 0.000033
0.00061
0.000068
0.000018 F
ND(0.0000084)
0.00014
0.00016
0.000032
0.00034
0.00008
0.0000015
0.000044
0.000063
0.000063
0.000063
0.000063
0.000063
0.000063 | | Parameter | Averaging Area:
Location iD:
Sample iD:
- Sample Depth(Feet):
Date Collected: | 4D
E2SC-13
E2SC-13-SS08
14-15
10/07/98 | 4D
E2SC-16
E2SC-16-CS0615
6-15
10/08/98 | 4D
E2SC-17
E2SC-17-CS0615
6-15
10/26/98 | 4D
E2SC-17
E2SC-17-S505
6-8
10/26/98 | 4D
ES2-1
P201B1416
14-16
01/16/91 | 4D
ES2-8
P206B1416
14-16
01/10/91 | 4D
SL0005
080598SB14
1-1.5
08/05/98 | |------------|---|--|---|---|--|---|---|---| | Inorganics | | | | | | | | | | Aluminum | | NA | NA NA | NA | NA NA | 5400 | 3500 | NA | | Antimony | | NA | 3.40 | 3,30 | NA | ND(1.00) | ND(1.00) | 8.90 | | Arsenia | | NA | 133 | 6.50 | NA | 170 | 6.70 | 9.10 | | Barium | | NA. | 168 | 91,5 | NA NA | 23.0 | 23 0 | 11G | | Beryllium | | NA | 0.350 B | C 510 B | NA | ND(0,500) | ND(0.500) | 0.440 B | | Cadmium | | NA | 0.260 B | 0.150 B | NA | 1.39 | 0.760 | 0 250 B | | Calcium | | NA NA | NA | NA | NA | 52000 | 3200 | NA | | Chromium | | NA | 46.2 | 25 2 | NA | ND(1.00) | ND(1.00) | 52.5 | | Cobalt | | NA | 15.8 | 10.1 | NA | 8.40 | ND(5.00) | 11.9 | | Copper | V | NA | 175 | 74,5 | NA | 56.0 | 27.0 | 876 | | Cyanide | | NA | 5.10 | ND(2.90) | NA | NA | ND(0.630) | ND(2.70) | | Iron | | NA | NA | NA | NΑ | 26000 | 17000 | NA | | Lead | | NA | 181 | 83.5 | NA | 16.0 | 16.0 | 502 | | Magnesium | | NA | NA . | NA NA | NA | 2800 | 2700 | NA | | Manganese | | NA | NA . | NA | NA | 990 | 220 | NA | | Mercury | | NA . | 0.120 | 0.0530 B | NA | ND(0,100) | ND(0.100) | 1.90 | | Nickel | | NA | 55.6 | 21.4 | NA | 14 0 | 8.60 | 44.3 | | Potassium | | NA | NA | NA . | NA | ND(500) | ND(500) | NA | | Selenium | | NA | ND(1.20) | 0.330 B | NA | ND(0.500) | ND(0.500) | 1.30 | | Silver | | NA | ND(1.20) | ND(1.20) | NA | 1.90 | 1.90 | 0.210 B | | Sodium | | NA | NA NA | NA | NA | ND(500) | ND(500) | NA | | Sulfide | | NA | 180 | ND(235) | NA | NA | NA | ND(218) | | Thallium | | NA | 7.10 | ND(2.30) | NA | ND(1.00) | ND(1.00) | 1,30 | | Tin | | NA | ND(11,6) | ND(11,7) | NA | NA | NA | 50.9 | | Vanadium | | NA | 41.8 | 33.5 | NA | 11.0 | 7.10 | 31.6 | | Zinc | | NA | 256 | 108 | NA | 52.0 | 36.0 | 263 | ### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million,
ppm) Averaging Area: 4D 4E 4E 4E 4E 4E Location ID: X-11 685-1 68S-3 68S-3 685-4 95-01 95-03 95-27 Sample ID: P2X110406 685-1 685-3 685-3 685-4 201B1214 203B1214 227B1416 Sample Depth(Feet): 4-6 10-12 2-4 8-10 0-2 12-14 12-14 14-16 Date Collected: 07/01/91 08/07/96 08/07/96 08/08/96 02/27/96 Parameter 08/07/9 03/12/96 02/29/96 Volatile Organics ND(2.1) 1.1.1-Trichloroethane ND(0.0050 ND(0.026) NA NA NA ND(0.024) ND(0 029) ND(0.011) 1.1,2,2-Tetrachioroethane ND(0.013) NA NA NΑ ND(1.5) NO(0.012) ND(0.014) NA NA 1,1,2-trichloro-1,2,2-trifluoroethane 0.0040 BJ MA NΑ NA NΑ NA 1,1-Dichloroethane ND(0.0050) ND(0.019) NΑ NΑ NΑ ND(1.5 ND(0.018) ND(0.022 ND(0.011) ND(0.064) NΑ NΑ 1,2-Dibromo-3-chloropropane NA ND(4.5) ND(0.061) ND(0.072) 1,2-Dichlorobenzene ND(0.36) MA NΑ NΑ MA ND(4.8) ND(0.71) ND(0.85) 1,2-Dichlorgethane ND(0.0050) ND(0.013 NΑ NΑ NA ND(1.5) NO(0.012) ND(0.014) 3-Dichlorobenzene ND(0.36) NΑ NA NA NA ND(4.1) ND(0.61) ND(0.74) 1,4-Dichlorobenzen ND(0.35) ND(4.2) ND(0.63) NA NA NA ND(0.75 1,4-Dioxane ND(65) NA NA NA 33 J ND(1.5) ND(62) NA ND(74) ND(0.011) 2-Butanone ND(0.045) NA NA NA ND(0.043) ND(0.051) Acetone 0.028 B NA ND(2.1) 0.0060 JB NA NA 0.025 38 0.035 J Acetonitrile NA ND(0.26) NA NA NA ND(32) ND(0.24) ND(0.29 Acrylonitrile ND(0.13) ND(0.0050 ND(0.27) NA NA NA ND(23) ND(0.26) ND(0.30) Benzene ND(0.019) NA NA NA ND(1.6) ND(0.018) ND(0.022) Carbon Disulfide ND(0.005 ND(0.013) NA NA NA ND(2.9) ND(0.012) ND(0.014) Chlorobenzene ND(0.0050) 0.029 NA NA NΔ ND(1.8) ND(0.018) ND(0.022) Crotonaldehyde NA ND(0.11) NA NA NA NΔ NA NΑ Ethylbenzene ND(0.018) ND(0.0050) ND(0.019) NΑ NΑ NA 1.9 ND(0.022) Isobutanoi NA ND(17) NA NA NA ND(21) ND(16) ND(19) m&p-Xylene NΑ NA NA NA NA NA NA NA 0.0060 JB Methylene Chlonde 0.024 B NA ΝA NΑ 0.47 J 0.016 JB 0.019 JB Propionitrile NA ND(0.76) NA NΑ NΑ ND(14) ND(0.72) ND(0.85) ND(0.0050) Styrene ND(0.013) ΝA NA NΑ ND(1.5) ND(0.012) ND(0.014) Tetrachloroethene ND(0.0050) ND(0.019) NA NA NA ND(1.3) ND(0.018) ND(0.022) Toluene ND(0.0050) ND(0.019) NΑ ΝA NΑ ND(2.3) ND(0.018) ND(0.022) Trichloroethene ND(0.0050) ND(0.026) NΑ N,A NΑ ND(1.3) ND(0.024) ND(0.029) Trichlorofluoromethane ND(0.0050) ND(0.026) NA NA ÑΑ ND(3.4) ND(0.024) ND(0.029) Vinyl Chloride ND(0.011) ND(0.026) N.A NA NA ND(4.4) ND(0.024) ND(0.029) ND(0.0050) ND(0.026) NA Xylenes (total) NA NA 1.7 J ND(0.024) ND(0.029) Semivolatile Organics ND(0.36) NΑ 1.2.3.4-Tetrachlorobenzene NΑ NA NΑ ΝΔ NΔ NA 1,2,3,5-Tetrachlorobenzene ND(0.36) NA NA NA NA NΔ NA NA 1,2,3-Trichlorobenzene ND(0.36) NΑ NΑ NΑ NA NA NA NΑ 1,2,4,5-Tetrachlorobenzene ND(0.36) NA NA NA NΑ ND(10) ND(1.6) ND(1.9) 1,2,4-Trichlorobenzene ND(0.36) NA ΝA ÑA NA ND(4.4) ND(0.66 ND(0.79) 1.3.5-Trichlorobenzene ND(0.36) NA NA NΑ NΑ NA NA 1,3,5-Trinitrobenzene ND(0.72) NΑ NA NΑ NΑ ND(7.3) ND(1.1 ND(1.3) 1-Chloronaphthalene ND(0.36) NΑ ÑΑ NΑ NA NA ÑΑ 1-Methylnaphthalene ND(0.36) NΑ NΑ NA NA NA NA NΑ 2,4-Dimethylphenol ND(0.36) NA NΑ NA NA ND(4.9 ND(0,73) ND(0.88) 2,4-Dinitrophenol NΑ NΑ NΑ ND(14) ND(1.4) NA ND(2.0) ND(2.5) 2-Acetylaminofluorene ND(0.36) NΑ NA NA ÑĀ ND(5.7) ND(0.85) ND(1.0) 2-Chloronaphthalene ND(0.36) NΑ NA NA NA ND(7.8) ND(1.2) ND(1,4) 2-Chlorophenol ND(0.36) NΑ NΑ NA NA ND(5.1) ND(0.76) ND(0.91) ND(0.36) NΑ 2-Methylnaphthalene NΑ NΑ NA ND(1.0) NO(1.2) 2-Methylphenol ND(0.36) NΑ NΑ NA NA ND(5.2) ND(0.78) ND(0.94) 3&4-Methylphenol ND(0.36) NΑ NΑ NA NA ND(10) ND(1.9) ND(0.72) ND(1,6) ND(0.60) 3,3'-Dichlorobenzidine ND(0.36) NΑ NΑ NΑ NΑ ND(4.0) 3,3'-Dimethoxybenzidine ND(0.36) NA NA NA NA NA NA NA ND(1,2) ND(1.4) 3,3'-Dimethylbenzidine ND(0.72) NΑ NΑ NΑ NA ND(7.8) ND(0.73) 3-Methylcholanthrene ND(0.36) ÑĀ ÑΑ NΑ ÑÁ ND(4.9) ND(0.88) ND(5.3) 3-Phenylenediamine ND(0.36) NA NA NΑ NΑ ND(0.79) ND(0.95) 4.6-Dinitro-2-methylphenol ND(1.1) NΑ NΑ NA NΑ ND(2.2) ND(15) ND(2.6) ND(0.36) NA NΑ NA NΑ ND(3.3) 4-Aminobiphenyl ND(0.59) ND(0.49) 4-Chlorobenzilate ND(0.36) NA NΑ ÑΑ NA ND(5.7) ND(0.85) ND(1.0) 4-Nitrophenol ND(0.36) NΑ NA NA NA ND(36) ND(5.4) ND(6.5) 7,12-Dimethylbenz(a)anthracene ND(0.36) NA NA ÑA NΑ 0.78.1 ND(0.49) ND(0.59) Acenaphthene ND(0.36) NΑ NΑ NA NA 77 D ND(0.79) 0.46 J Acenaphthylene ND(0.36) NΑ NA NA NA 333 ND(0.81) ND(0.97) ND(0.36) NΑ NA Acetophenone NA NA ND(5.3 ND(0.79) ND(0.95) Aniline ND(0,36) NA NΑ NΑ NΑ ND(4.5 ND(0.67) ND(0.81) NΑ Anthracene ND(0.36) NA NΑ NΔ ND(0.89) 0.082 J NΑ Benzidine ND(0.35) NA NA NΔ ND(13) ND(1.9) ND(2.3) Benzo(a)anthracene 0.054.1 NΑ NA NA NA 0.11 J 0.066 J Benzo(a)pyrene 0.046.3 NA NA NΑ NA 17 0 11 J 0.062 J Benzo(b)fluoranthene 0 099 JZ МΔ NΔ NΑ NA 20 Z 0.22 JZ 1.0 JZ Benzo(g.h,i)perylene ND(0.36) NΑ NΔ NΑ NΑ 5.8 0 063 J ND(0.90) Benzo(k)fluoranthene 0.099 JZ NA NΑ NΑ NΑ 0.21 JZ 0.10 JZ Benzoic Acid ND(3.6) NΑ NΑ NΑ NΑ NA NA NΑ ND(4.8) bis(2-Chloroethyl)ether ND(0.72) NΑ NΑ NΑ NA ND(0.71) ND(0.85) bis(2-Ethylhexyl)phthalate 0.11 J NΑ NΑ ÑΑ NΑ ND(6.0) Q.69 J 0.19 J ND(0.36) NΑ Butylbenzylphthalate NΑ NΑ ND/0.98 ND(0.82) | Averaging Area:
Location ID:
Sample ID: | 4D
X-11
P2X110406 | 4E
68S-1
68S-1 | 4E
68S-3
68S-3 | 4E
68S-3
68S-3 | 4E
68S-4
68S-4 | 4E
95-01
201B1214 | 4E
95-03
203B1214 | 4E
95-27
227B1416 | |---|-------------------------|--|--|----------------------|----------------------|-------------------------|--|------------------------------| | Sample Depth(Feet): Parameter Date Collected: | 4-6
07/01/91 | 10-12
08/07/96 | 2-4
08/07/96 | 8-10
08/07/96 | 0-2
08/08/96 | 12-14
02/27/96 | 12-14
03/12/96 | 14-16
02/29/96 | | Semivolatile Organics (continued) | | ************************************** | ······································ | | | | | | | Chrysene | ND(0.36) | NA | NA | NA | NA NA | 23 | 0.13 J | 0.062J | | Cyclophosphamide | ND(1.7) | NA NA | NA | NA | NA NA | NA NA | NA NA | NA NA | | Dibenzo(a,h)anthracene | ND(0.36) | NA NA | NA NA | NA NA | NA. | 1.5 J | ND(0.52) | ND(0.62) | | Dibenzofuran | MD(0.36) | NA
NA | NA
NA | NA
NA | NA
NA | 9.2
ND(6.2) | ND(0.83)
ND(0.93) | ND(1.0) | | Di-n-Butylphthalate Di-n-Octylphthalate | ND(0.36)
ND(0.36) | NA
NA | NA. | NA
NA | NA
NA | ND(3.9) | ND(0.58) | ND(0.69) | | Dishenylamine | ND(0,36) | NA NA | NA NA | NA NA | NA NA | ND(11) | ND(1.7) | ND(2.0) | | Fluoranthene | 0.058 J | NA | NA. | NA. | NA. | 76 D | 0.30 J | 0.15 J | | Fluorene | ND(0.36) | NA . | NA | NA | NA. | 36 | ND(0.83) | 0.19 J | | Hexachiorobenzena | ND(0.36) | NA | NA | NA | NA | ND(6.2) | ND(0.93) | ND(1.1) | | Indeno(1,2,3-cd)pyrene | ND(0.35) | NA . | NA | NA NA | NA | 5.0 | Q.063 J | ND(0.66) | | Methapyrilene | ND(0.72) | NA NA | NA | NA NA | NA NA | ND(10) | ND(1.6) | ND(1.9) | | Naphthalene | ND(0.36) | NA | NA NA | NA | NA NA | 76 D | ND(0.79) | ND(0.95) | | Nitrobenzene | ND(0.36) | NA
NA | NA NA | NA NA | NA NA | ND(5.5) | NO(0.82) | ND(0.98)
ND(0.88) | | N-Nitroso-di-n-propylamine | ND(0.36) | NA
NA | NA
NA | NA
NA | NA
NA | ND(4.9)
ND(11) | ND(0.73)
ND(1.7) | ND(2.0) | | N-Nitrosodiphenylamine O-Toluidine | ND(0,36)
ND(0,36) | NA
NA | NA
NA | NA
NA | NA
NA | ND(11) | ND(1.7) | ND(2.0)
ND(2.9) | | p-Dimethylaminoazobenzene | ND(0.36) | NA
NA | NA
NA | NA
NA | NA
NA | ND(5,4) | ND(0.81) | ND(0,97) | | Pentachlorobenzene | ND(0.36) | NA
NA | NA NA | NA NA | NA NA | ND(5.3) | ND(0.79) | ND(0.95) | | Pentachloronitrobenzene | ND(0.36) | NA | NA NA | NA NA | NA. | NA NA | NA | NA | | Pentachlorophenol | ND(0.72) | NA . | NA | NA | NA | ND(11) | ND(1.7) | ND(2.0) | | Phenacetin | ND(0,36) | NA . | NA | NA | NA NA | ND(4.9) | ND(0.73) | ND(0.88) | | Phenanthrene | ND(0,36) | NA | NA | NA | NA. | 140 D | 0.13 J | 0.61 J | | Phenal | ND(0.36) | NA | NA | NA | NA. | ND(4.6) | ND(0.59) | ND(0.82) | | Pronamide | ND(0.36) | NA | NA | NA | NA NA | ND(5.2) | ND(0.78) | ND(0.94) | | Pyrene | 0.052 J | NA | NA | NA. | NA NA | 81 D | 0.23 J | 0.12 J | | Total Phenois | ND(0.11) | NΑ | NA | NΑ | NA NA | NA NA | NA NA | l NA | | Organochlorine Pesticides 4.4'-DDE | NA | NA I | 61.6 | NA | NA NA | NA | l NA | NA NA | | Aldrin | NA
NA | Delta-BHC | NA NA | NA
NA | NA NA | NA NA | NA NA | NA NA | | NA
NA | | Dieldrin | NA NA | Endosulfan II | NA | NA NA | NA. | NA. | NA NA | NA. | NA NA | NA NA | | Methoxychior | NA | NA NA | NA | NA | NA | NA NA | NA NA | NA | | Toxaphene | NA | NA | NA | NA | NA. | NA | NA NA | NΑ | | Organophosphate Pesticides | | | | | | | | | | None Detected | Vor | NA | Herbicides | | | | | | | | | | 2,4,5-T | ND(0.027) | NA | NA | NA | NA | NA | NA NA | NA NA | | 2,4,5-TP | ND(0.027) | NA | NA | NA | NA NA | NA | NA NA | NA . | | 2,4-D | ND(0.11) | NA . | NA | NA | NA NA | NA | NA NA | NA NA | | Furans | | | | | | | T 3/2/0 2000E3 | ND(0.000047) | | 2,3,7,8-TCDF
TCDFs (total) | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0,000050)
ND(0,000050) | ND(0.000047)
ND(0.000047) | | 1,2,3,7,8-PeCDF | NA NA | NA
NA | NA
NA | NA NA | NA NA | NA NA | ND(0.000030) | ND(0.000047) | | 2,3,4,7,8-PeCDF | NA NA | ND(0.000021) | ND(0.000019) | | PeCDFs (total) | NA. | NA NA | NA | NA NA | NA NA | NA. | ND(0.000021) | ND(0.000019) | | 1.2,3,4,7,8-HxCDF | NA | NA | NA | NA | NA NA | NA | ND(0.000031) | ND(0.000024) | | 1,2,3,6,7,8-HxCDF | NΑ | NA NA | NA | NA | NA | NA | ND(0.000031) | ND(0.000024) | | 1,2,3,7,8,9-HxCDF | NA | NA . | NA | NA | NA . | NA | ND(0.000031) | ND(0.000024) | | 2,3,4,6,7,8-HxCDF | NA NA | NA NA | NA | NA | NA NA | NA | ND(0.000031) | ND(0.000024) | | HxCDFs (total) | NA NA | NA I | NA | NA | NA | NA NA | ND(0.000031) | ND(0.000024) | | 1,2,3,4,6,7,8-HpCDF | NA | NA I | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.000047)
ND(0.000047) | ND(0.000052)
ND(0.000052) | | 1,2,3,4,7,8,9-HpCDF
HpCDFs (total) | NA
NA | NA
NA | NA
NA | NA
NA |
NA
NA | NA
NA | ND(0.000047) | ND(0.000052) | | IOCDF | NA NA | NA NA | NA NA | NA | NA NA | NA NA | ND(0.00013) | ND(0.000055) | | Dioxins | | i | ************************************** | | 1 | <u> </u> | | | | 2,3,7,8-TCDD | NA | NA | NA | NA | NA | NA | ND(0.000041) | ND(0.00017) | | TCDDs (total) | NA | NA | NA | NA | NA | NA | ND(0.000041) | ND(0.00017) | | 1.2,3.7,8-PeCDD | NA | NA | NA | NA | NA NA | NA | ND(0.000083) | ND(0.000092) | | PeCDDs (total) | NA | NA . | NA | NA | NA | NA | ND(0.000083) | ND(0.000092) | | 1,2,3,4,7,8-HxCDD | NA | NA · | NA | NA | NA | NA | ND(0.000052) | ND(0.000041) | | 1,2,3.6,7,8-HxCDD | NA | ŊA | NA | NA NA | NA NA | NA | ND(0.000052) | ND(0.000041) | | 1.2,3,7,8,9-HxCDD | NA NA | NA NA | NA
NA | NA NA | NA NA | NA. | ND(0.000052) | ND(0.000041) | | HxCDDs (total) | NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.000052) | ND(0.000041) | | 1.2,3.4,6.7,8-HpCDD | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.000041)
ND(0.000041) | ND(0.000022) | | HpCDDs (total) OCDD | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | ND(0.000541) | ND(0.000022)
ND(0.000084) | | Total TEQs (WHO TEFs) | NA
NA | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | 0.000085 | 0.00015 | | LIOWI ICHO (ALIO (CLS) | . 177 | · · · · · · · · · · · · · · · · · · · | , 4/7 | 4. 110 | | 110 | 1 0.000000 | | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4D
X-11
P2X110406
4-6
07/01/91 | 4E
68S-1
68S-1
10-12
08/07/96 | 4E
68S-3
68S-3
2-4
08/07/96 | 4E
58S-3
68S-3
8-10
08/07/96 | 4E
68S-4
68S-4
0-2
08/08/96 | 4E
95-01
20181214
12-14
02/27/96 | 4E
95-03
203B1214
12-14
03/12/96 | 4E
95-27
227B1416
14-16
02/29/96 | |------------|---|--|---|---|--|---|--|--|--| | Inorganics | | | | | | | | | | | Aluminum | | 11200 | NA | NA | NA. | NA | NA NA | NA. | NA NA | | Antimony | | ND(7 10) N | NA | 0 390 BN | NA. | 7.20 N | 3.10 BN | NA | ND(0.260) N | | Arservo | | 11.9 | NΑ | 5.10 | NA | 12.0 | 16.1 | NΑ | 0.870 B | | Barism | | 43.5 | NA | 35.4 | NA NA | 169 | 174 | NA | 23.8 B | | Seryllium | | ND(0.229) | NΑ | 0.340 B | NA | 0.390 B | 0.910 | NA | 0.230 B | | Cadmium | | ND(0.860) | NA | 0.180 B | NA | 2.70 | 0.580 B | NA. | ND(0.0300) | | Calcium | | 10100 | NΑ | NΑ | I NA | NA | NA | NA | NA NA | | Chromium | | 24.8 | NΑ | 11.2 | . NA | 47.7 | 119 | NA | 8.20 | | Cobatt | | 14.2 * | NΑ | 6,90 | NA | 7.80 | 8 30 | NA | 5.60 B | | Copper | | 222 * | NA | 218 * | NA | 1400 * | 258 | NA | 13.4 | | Cyanide | | 0.140 | NA | NA | ND(0.660) | ND(0.550) | NA NA | ND(0.610) | NA | | iron | | 38900 * | NA | NA. | NA | NA | NA. | NA | NA. | | Lead | | 177 | NA | 193 N* | NA | 1010 N* | 2620 * | NA | 8.60 | | Magnesium | | 5530 | NA | NA. | NA | NA | NA NA | NA | NA NA | | Manganese | | 766 * | NA | NA. | NA | NA. | NA | NA | NA. | | Mercury | | 1 80 * | NA | 0.260 N | NA | 6.10 N | 0.220 | NA | ND(0,140) | | Nickel | | 38.7 * | NA | 14.4 | NA | 69.4 | 51,3 | NA | 10.0 | | Potassium | | 472 B | NΑ | NA | NA | NA | NA | NA | NA NA | | Selenium | | ND(0.860) N | NA | ND(0.380) N | NA. | ND(0.330) N | ND(0.420) N | NΑ | 0.590 BN | | Silver | | ND(1.10) N | NA | ND(0.0800) | NA NA | 3.80 | 0.230 B | NA | ND(0,100) | | Sodium | | 335 B | NA | NA NA | NA NA | NA | NA | NA | NA | | Sulfide | | ND(10.9) | NA | NA | NA. | NA. | NA | NA | NA | | Thallium | | ND(0.430) | NA | 0,470 B | NA | 0.450 B | ND(0.560) | NA | ND(0.510) | | Tin | | NA | NA | 7.20 | NA | 132 | 146 | NA | 1.60 B | | Vanadium | | 14.6 * | NA | 11.6 | NA | 16.3 | 89.1 | NA | 6.50 B | | Zinc | | 142 | NA | 93.6 | NA | 1190 | 350 N | NA | 46.0 N | | Averaging Area:
Location ID:
Sample ID: | 4E
208S
208S0-6 | 4E
E2SC-12
E2SC-12-CS0615 | 4E
E2SC-12
E2SC-12-SS05 | 4E
E2SC-15
E2SC-15-CS0615 | 4E
E2SC-15
E2SC-15-SS08 | 4E
EB-22
3-6C-EB-22 | 4E
EB-22
3-6C-EB-22 | |--|------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|---------------------------|---------------------------| | Sample Depth(Feet): Parameter Date Collected: | 0-0.5
09/17/97 | 6-15
10/19/98 | 0-1
10/19/98 | 6-15
10/20/98 | 12-14
10/20/98 | 12-14
11/07/97 | 14-16
11/07/97 | | Volatile Organics | | | | | | | | | 1,1,1-Trichloroethane | ND(0.022) | NA NA | ND(0.0068) | NA | ND(0.0073) | ND(0.026) | NO(0.022) | | 1,1.2,2-Tetrachloroethane | ND(0.011) | NA NA | ND(0.0068) | NA NA | ND(0.0073) | ND(9,913) | ND(0.011) | | 1,1,2-tricnloro-1,2,2-trifluoroethane | NA
ND(0.017) | NA
NA | NA
ND(0.0068) | NA
NA | NA
ND(0.0073) | NA
ND(0.019) | NA
ND(0.017) | | 1,2-Dibromo-3-chloropropane | ND(0.017) | NA NA | ND(0.008) | NA
NA | ND(0.0073) | ND(0.064) | ND(0.056) | | 1,2-Dichlorobenzene | ND(610) | ND(0.46) | NA | ND(0.42) | NA NA | ND(0.75) | ND(0.65) | | 1,2-Dichloroethane | ND(0.011) | NA NA | ND(0.0068) | NA NA | ND(0.0073) | ND(0.013) | ND(0.011) | | 1,3-Dichlorobenzene | ND(530) | 0.13 J | NA | ND(0.42) | NA NA | ND(0.65) | ND(0.57) | | 1,4-Dichiorobenzene
1,4-Dioxane | ND(540) | 0.56 | NA NA | ND(0.42) | NA NA | ND(0.66) | ND(0.58) | | 2-Butanone | ND(57)
ND(0.039) | NA NA | ND(0.68)
ND(0.027) | NA
NA | ND(0.73)
ND(0.029) | ND(65)
0.0080 J | ND(57)
ND(0.039) | | Acetone | 0.033 JB | NA NA | 0.024 J | NA NA | 0.024 J | 0.03803 | 0.014 J | | Acetonitrile | ND(0.22) | NA NA | ND(0.14) | NA | ND(0.15) | ND(0.25) | ND(0.22) | | Acrylonitrile | ND(0.23) | NA NA | ND(0.14) | NA | ND(0.15) | 0.27 | ND(0.24) | | Benzene | ND(0.017) | NA NA | ND(0.0068) | NA NA | ND(0.0073) | ND(0.019) | ND(0.017) | | Carbon Disulfide
Chlorobenzene | ND(0.011)
ND(0.017) | NA
NA | ND(0.0088)
ND(0.008) | NA
NA | ND(0.0073) | ND(0.013)
ND(0.019) | ND(0.011) | | Crotonaldehyde | NA
NA | NA
NA | NA (0.0088) | NA
NA | ND(0.0073)
NA | ND(0.019) | ND(0.017)
NA | | Ethylbenzene | 0.0020 J | NA NA | ND(0.0068) | NA NA | ND(0.0073) | 0.0010 J | ND(0.017) | | Isobutanol | ND(14) | NA : | ND(0.27) | NA | ND(0.29) | ND(17) | ND(15) | | m&p-Xylene | NA NA | NA NA | NA NA | NA | NA | NA | NA | | Methylene Chloride | 0.071 B | NA NA | ND(0.0068) | NA NA | ND(0.0073) | 0.0010 JB | 0.0020 JB | | Propionitrile
Styrene | ND(0.66)
ND(0.011) | NA
NA | ND(0.027)
ND(0.0068) | NA
NA | ND(0.029)
ND(0.0073) | ND(0.76)
ND(0.013) | ND(0.66)
ND(0.011) | | Tetrachloroethene | ND(0.017) | NA NA | ND(0.0068) | NA. | ND(0.0073) | ND(0.019) | ND(0.017) | | Toluene | ND(0.017) | NA | ND(0.0068) | NA NA | ND(0,0073) | ND(0.019) | ND(0.017) | | Trichloroethene | ND(0.022) | NA NA | ND(0.0068) | NA | ND(0.0073) | ND(0.026) | ND(0.022) | | Trichlorofluoromethane | ND(0.022) | NA NA | ND(0.014) | NA | ND(0.015) | ND(0.026) | ND(0.022) | | Vinyl Chloride
Xylenes (total) | ND(0.022)
0.0060 J | NA
NA | ND(0.014) | NA
NA | ND(0.015) | ND(0.026) | ND(0.022) | | Semivolatile Organics | 0.0000 3 | I IVA | ND(0.0068) | INA I | ND(0.0073) | ND(0.026) | ND(0.022) | | 1,2,3,4-Tetrachlorobenzene | NA NA | l NA | NA | NA . | NA | NA NA | NA NA | | 1,2.3,5-Tetrachlorobenzene | NA | NA | NA NA | NA NA | NA | NA | NA NA | | 1,2,3-Trichlorobertzene | NA NA | NA NA | NA | NA NA | NA | NA | NA | | 1,2,4,5-Tetrachlorobenzene | ND(15) | ND(0.46) | NA | ND(0.42) | NA | ND(1.7) | ND(1.4) | | 1,2,4-Trichlorobenzene
1,3,5-Trichlorobenzene | ND(6.2)
NA | ND(0.46)
NA | NA
NA | ND(0.42)
NA | NA
NA | ND(0.70)
NA | ND(0.73)
NA | | 1,3,5-Trinitrobenzene | ND(10) | ND(2.2) | NA NA | ND(2.0) | NA
NA | ND(1.2) | ND(1.0) | | 1-Chloronaphthalene | NA NA | 1-Methylnaphthalene | NA NA | NA NA | NA | NA | NA | NA | NA | | 2,4-Dimethylphenol | 1,4 J | ND(0.46) | NA | ND(0.42) | NA | 0.081 J | ND(0.68) | | 2,4-Dinitrophenol
2-Acetylaminofluorene | ND(19)
ND(8.0) | ND(2.2) | NA
NA | ND(2.0) | NA
NA | ND(2.2) | ND(1.9) | | 2-Acetylaminonuorene
2-Chloronaphthalene | ND(8.0)
ND(11) | ND(0.93)
ND(0.46) | NA
NA | ND(0.84)
ND(0.42) | NA
NA | ND(0.91)
ND(1.2) | ND(0.79)
ND(1.1) | | 2-Chlorophenol | ND(7.1) | ND(0.46) | NA NA | ND(0.42) | NA NA | ND(0.80) | ND(0.70) | | 2-Methylnaphthalene | ND(9.4) | 0.28 J | NA | ND(0.42) | NA. | 0.68 J | ND(0.93) | | 2-Methylphenol | 3.1 J | ND(0.46) | NA | ND(0.42) · | NA | ND(0.83) | ND(0.72) | | 3&4-Methylphenol | 2.1 J | ND(0.46) | NA NA | ND(0.42) | NA | 0.083 J | ND(1.4) | | 3,3'-Dichlorobenzidine 3,3'-Dimethoxybenzidine | ND(5.6)
NA | ND(2.2)
NA | NA
NA | ND(2.0)
NA | NA
NA | ND(0.64)
NA | ND(0.55)
NA | | 3,3'-Dimethylbenzidine | ND(11) | ND(2.2) | NA NA | ND(2.0) | NA NA | ND(1.2) | ND(1.1) | | 3-Methylcholanthrene | ND(6,8) B | ND(0.93) | NA | ND(0.84) | NA | ND(0.78) | ND(0.68) | | 3-Phenylenediamine | ND(7.4) | NA NA | NA | NA | NA | ND(0.84) | ND(0.73) | | 4.6-Dinitro-2-methylphenol | ND(20) | ND(2.2) | NA | ND(2.0) | NA NA | ND(2.3) | ND(2.0) | | 4-Aminobiphenyl
4-Chlorobenzilate | ND(4.6)
ND(8.0) | ND(2.2)
ND(0.46) | NA
NA | ND(2.0) | NA
NA | ND(0.52) | ND(0.45) | | 4-Nitrophenol | ND(50) | ND(0.46) | NA
NA | ND(0.42)
ND(2.0) | NA
NA | ND(0,91)
ND(5,8) | ND(0.79)
ND(5.0) | | 7,12-Dimethylbenz(a)anthracene | ND(4.6) | ND(0.93) | NA NA | ND(0.84) | NA NA | ND(0.52) | ND(0.45) | | Acenaphtherie | ND(7.4) |
0.38 J | NA | ND(0 42) | NA | 2.3 | ND(0.73) | | Acenaphthylene | ND(7.5) | 0.15 J | NA | 0,031 J | NA | 0.35 J | ND(0.74) | | Acetophenone | ND(7.4) | ND(0.46) | NA
NA | ND(0.42) | NA
NA | ND(0.84) | ND(0.73) | | Aniline
Anthracene | 150 D
ND(8.3) | ND(0.46)
0.42 J | NA
NA | ND(0.42)
ND(0.42) | NA
NA | 0.22 J
1.2 | ND(0.62)
ND(0.82) | | Benzidine | ND(18) B | ND(4.6) | NA NA | ND(4.2) | NA
NA | ND(2.0) | ND(0.82)
ND(1.8) | | Benzo(a)anthracene | 0.68 J | 0.54 | NA | 0.043 J | NA NA | 2.6 | ND(0.73) | | Benzo(a)pyrene | 0.73 JB | 0.46 | NA | Q.058 J | NA | 1.8 | ND(0.73) | | Benzo(b)fluoranthene | 1.1 J | 0.55 | NA | 0.091 J | NA | 1.6 | ND(0.85) | | Benzo(g.h.i)perylene | 0.56 J | 0.084 J | NA NA | ND(0.42) | NA
NA | 0.54 .) | ND(0.69) | | Benzo(k)fluoranthene
Benzoic Acid | 0.43 JB
NA | 0 24 J
NA | NA NA | ND(0.42)
NA | NA
NA | 0.73 J
NA | ND(0.69)
NA | | bis(2-Chioroethyl)ether | ND(6.6) | ND(0,46) | NA NA | ND(0.42) | NA
NA | NA
ND(0.75) | ND(0.65) | | bis(2-Ethylhexyl)phthalate | 1.3 J | 0.066 J | NA | 0.032 J | NA NA | ND(0,96) | ND(0.83) | | Butylberzylphthalate | ND(7.6) | NO(0.45) | NA | ND(0.42) | NA | ND(0.87) | ND(0.75) | | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet): | 208S
208S0-6 | 4E
E2SC-12
E2SC-12-CS0615
6-15 | 4E
E2SC-12
E2SC-12-SS05
0-1 | 4E
E2SC-15
E2SC-15-CS0615
6-15 | 4E
E2SC-15
E2SC-15-SS08
12-14 | 4E
EB-22
3-6C-EB-22
12-14 | 4E
EB-22
3-6C-EB-22
14-16 | |--|--|---|--|--|--|--|--| | Parameter Date Collected: | 1 | 10/19/98 | 10/19/98 | 10/20/98 | 10/20/98 | 11/07/97 | 11/07/97 | | Semivolatile Organics (continued) | | | | | | | | | Chrysene | 0.97 JB
NA | 0.66 | NA NA | 0.058 J | NA NA | 2.5 | ND(0.60) | | Cyclophosphamide Dibenzo(a,h)anthracese | ND(4.8) | NA
ND(0.46) | NA
NA | NA
ND(0.42) | NA
NA | NA
0.15 J | NA
ND(0.48) | | Dibenzoturan | ND(7.7) | ND(0.46) | NA | ND(0.42) | NA NA | 0.093J | NO(0.43)
NO(0.77) | | Di-n-Butylphthalate | NA NA | 0.089 J | NA NA | ND(0.42) | NA NA | ND(0.98) | ND(0.85) | | Di-n-Octylphthalate | NA. | ND(0.46) | NA | ND(0.42) | NA | ND(0.61) | ND(0.53) | | Diphenylamine | ND(16) | ND(0.46) | NA NA | ND(0.42) | NA | ND(1.8) | ND(1.6) | | Fluoranthene | 1.6 J | 1.2 | NA NA | U 080.0 | NA | 5.4 | ND(1.0) | | Fluorene
Hexachiorobenzene | ND(7.7)
ND(8.6) | 0.31
ND(0,46) | NA
NA | ND(0.17) | NA
NA | 1.3 | ND(0.77) | | Indeno(1,2,3-cd)pyrene | 0.52 J | 0 089 J | NA
NA | ND(0.42)
ND(0.42) | NA
NA | ND(0.98)
0.50 J | ND(0.85)
ND(0.51) | | Methapyrilene | ND(15) | ND(2.2) | NA NA | ND(2.0) | NA NA | ND(1.7) | ND(1.4) | | Naphthalene | ND(7.4) | 0.18 J | NA | ND(0.42) | NA NA | 0.95 | ND(0.73) | | Nitrobenzene | ND(7.6) | ND(0.46) | NA. | ND(0.42) | NA NA | ND(0.87) | ND(0.75) | | N-Nitroso-di-n-propylamine | ND(6.8) | ND(0.46) | NA NA | ND(0.42) | NA | ND(0.78) | ND(0.68) | | N-Nitrosodiphenylamine | ND(16) | ND(0.46) | NA NA | ND(0.42) | NA NA | ND(1.8) | ND(1.5) | | o-Toluidine
p-Dimethylaminoazobenzene | 4.0 J
ND(7.5) | ND(0.93)
ND(0.93) | NA
NA | ND(0.84) | NA
NA | ND(2.6) | ND(2.2) | | Pentachlorobenzene | ND(7.4) | ND(0.93)
ND(0.46) | NA
NA | ND(0,84)
ND(0,42) | NA
NA | ND(0.85)
ND(0.84) | ND(0.74)
ND(0.73) | | Pentachloronitrobenzene | ND(7.2) | ND(2.2) | NA NA | ND(2.0) | NA
NA | ND(0.84) | NA
NA | | Peritachlorophenol | ND(16) | ND(2.2) | NA NA | ND(2.0) | NA NA | ND(1.8) | ND(1.6) | | Phenacetin | ND(6.8) | ND(0.93) | NA NA | ND(0.84) | NA | ND(0.78) | ND(0,68) | | Phenanthrene | 0.84 J | 1.5 | NA NA | 0.042 J | NA | 2.3 | ND(0,69) | | Phenol | 23 | ND(0.46) | NA NA | ND(0.42) | NA | ND(0,73) | ND(0.63) | | Pronamide
Pyrene | ND(7.3) | ND(0.93) | NA
NA | ND(0.84) | NA
NA | ND(0.83) | ND(0.72) | | Total Phenois | NA NA | NA NA | NA
NA | 0.055 J
NA | NA
NA | 6.1
NA | ND(0.81)
NA | | Organochlorine Pesticides | | ···· | 101 | 117 | | 730 | 13/4 | | 4,4'-DDE | NA | NA | NA | NA T | NA NA | NA | NA | | Aldrin | NA | NA | NA | NA NA | NA | NA NA | NA | | Delta-BHC | NA | NA | NA . | NA | NA | NA | NA | | Dieldrin | NA | NA NA | NA NA | NA NA | NA | NA | NA | | Endosulfan II
Methoxychlor | NA
NA | NA NA | NΑ | | Toxaphene | NA
NA | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | Organophosphate Pesticides | 110 | 11/3 | 110 | 11/4 1 | 19/4 | INA I | INA | | None Detected | NA | NA I | NA | NA I | NA | NA | NA | | Herbicides | | | | | | | | | 2, 4 ,5-T | NA | NA | NA | NA NA | NA | NA | NA | | 2,4,5-TP | NA | NA | NA | NA. | NA | NA | NA | | 2,4-D | NA | NA J | NA | NA | NA | NA | ŅΑ | | Furans
2.3.7.8-TCDF | 0.00047 | 0.00004 | | | | | | | TCDFs (total) | 0.00017 g
0.0016 | 0.00031 g
0.0043 | NA
NA | 0.0000028 g
0.000024 | NA
NA | NA
NA | NA NA | | 1,2,3,7,8-PeCDF | 0.000057 | 0.00013 | NA NA | ND(0.0000011) | NA NA | NA
NA | NA
NA | | 2,3,4,7,8-PeCDF | 0.00013 | 0.00015 | NA NA | ND(0.0000017) | NA NA | NA NA | NA NA | | PeCDFs (total) | 0.0036 | 0.0048 | NΑ | 0.000043 | NA NA | NA | NA | | 1,2,3,4,7,8-HxCDF | 0.00011 | 0.00049 | NA NA | ND(0.0000015) | NA NA | NA | NA | | 1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF | ND(0.000091) v
ND(0.0000021) | ND(0.00054) v
0.0000099 | NA NA | ND(0.0000013) | NA NA | NA NA | NA NA | | 1,2,3,7,8,9-HXCDF
2,3,4,6,7,8-HxCDF | 0.00010 | 0.0000099 | NA
NA | ND(0.00000029) | NA NA | NA I | NA NA | | mim, to, t, D'I I AUDI | 0.00010 1 | | | ND(0.0000012)
0.000022 | NA
NA | NA
NA | NA
NA | | HxCDFs (total) | 0.0026 | 0.0076 | | | | : ** | | | HxCDFs (total)
1,2,3,4,6,7,8-HpCDF | 0.0026
0.00037 | 0.0076
0.0051 E | NA
NA | 0.000022
0.0000035 i | | NA | NA | | | | | | | NA
NA | NA
NA | NA
NA | | 1.2,3.4.6,7,8-HpCDF
1.2,3.4,7,8,9-HpCDF
HpCDFs (total) | 0.00037
0.000044
0.00084 | 0.0051 E
0.00043
0.011 | NA
NA
NA | 0.0000035 j
ND(0.00000050)
0.0000075 | NA
NA
NA | NA
NA | NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
HpCDFs (total)
OCDF | 0.00037
0.000044 | 0.0051 E
0.00043 | NA
NA | 0.0000035 j
ND(0.00000050) | NA
NA | NA | NA | | 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
HpCDFs (total)
OCDF
Dioxins | 0.00037
0.000044
0.00084
0.00033 | 0.0051 E
0.00043
0.011
0.0036 | NA
NA
NA
NA | 0.0000035 j
ND(0.000000050)
0.0000075
ND(0.0000022) | NA
NA
NA
NA | NA
NA
NA | NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
HpCDFs (total)
OCCDF
Dioxins
2,3,7,8-TCDD | 0.00037
0.000044
0.00084
0.00033 | 0.0051 E
0.00043
0.011
0.0036 | NA
NA
NA
NA | 0.0000035 j
ND(0.00000050)
0.0000075
ND(0.0000022)
ND(0.00000039) | NA
NA
NA
NA | NA
NA
NA | NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.000031 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.000050 | NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000060)
0.0000075
ND(0.00000022)
ND(0.00000039)
ND(0.00000039) | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.000031
0.0000065 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.00095
0.00095 | NA
NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000050)
0.0000075
ND(0.0000022)
ND(0.00000039)
ND(0.000000347) | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.000031 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.000050 | NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000060)
0.0000075
ND(0.00000022)
ND(0.00000039)
ND(0.00000039) | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.0000015
0.0000065
0.0000065 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.00095
0.00085
0.00048 | NA
NA
NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000050)
0.0000075
ND(0.0000022)
ND(0.00000039)
ND(0.000000347)
ND(0.00000047)
ND(0.0000026) | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | |
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-HxCDD 1,2,3,7,8,9-HxCDD | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.0000031
0.0000065
0.0000065
0.0000065
0.000016
0.000016 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.00095
0.00095
0.00085
0.00012
0.00012
0.00018
0.00012 | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000060)
0.000075
ND(0.0000039)
ND(0.00000039)
ND(0.00000047)
ND(0.00000047)
ND(0.0000066)
ND(0.0000066)
ND(0.0000068) | NA N | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | | 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD HxCDDs (total) | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.000031
0.0000065
0.0000065
0.0000065
0.000016
0.000014 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.00095
0.00085
0.00048
0.00012
0.00018
0.00021 | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000060)
0.0000075
ND(0.0000022)
ND(0.00000039)
ND(0.00000047)
ND(0.00000047)
ND(0.00000066)
ND(0.0000066)
ND(0.0000068)
ND(0.0000068)
ND(0.0000068) | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | 1.2.3.4.6,7,8-HpCDF 1.2.3.4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2.3.7,8-TCDD TCDDs (total) 1.2.3,7,8-PeCDD PeCDDs (total) 1.2.3,4,7,8-HxCDD 1.2.3,6,7,8-HxCDD 1.2.3,6,7,8-HxCDD HxCDDs (total) 1.2.3,7,8,9-HxCDD HxCDDs (total) | 0.00037
0.000044
0.00084
0.000033
0.0000015
0.0000031
0.0000065
0.0000065
0.000016
0.000014
0.00014
0.00019 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.00095
0.000985
0.00048
0.00012
0.00018
0.00012
0.00018
0.00021
0.0025
0.0025 | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000059)
0.0000075
ND(0.00000039)
ND(0.00000039)
ND(0.00000039)
ND(0.00000047)
ND(0.00000066)
ND(0.00000068)
ND(0.00000068)
ND(0.00000068)
ND(0.00000068)
ND(0.00000068)
ND(0.00000068)
ND(0.00000068) | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD HxCDDs (total) | 0.00037
0.000044
0.00084
0.00033
0.0000015
0.000031
0.0000065
0.0000065
0.0000065
0.000016
0.000014 | 0.0051 E
0.00043
0.011
0.0036
0.000050
0.00095
0.00085
0.00048
0.00012
0.00018
0.00021 | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | 0.0000035 j
ND(0.00000060)
0.0000075
ND(0.0000022)
ND(0.00000039)
ND(0.00000047)
ND(0.00000047)
ND(0.00000066)
ND(0.0000066)
ND(0.0000068)
ND(0.0000068)
ND(0.0000068) | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | Averaging Area
Location ID
Sample ID
Sample Depth(Feet)
Parameter Date Collected | 2085
20850-6
0-0.5 | 4E
E2SC-12
E2SC-12-CS0615
6-15
10/19/98 | 4E
E2SC-12
E2SC-12-SS05
0-1
10/19/98 | 4E
E2SC-15
E2SC-15-CS0615
6-15
10/20/98 | 4E
E2SC-15
E2SC-15-SS08
12-14
10/20/98 | 4E
EB-22
3-6C-EB-22
12-14
11/07/97 | 4E
EB-22
3-6C-EB-22
14-16
11/07/97 | |--|--------------------------|---|--|---|--|--|--| | Inorganics | / | | | | | | | | Aluminum | NA. | NA NA | NA | NA | NA | NA | NA. | | Antimony | 4 60 BN | 2.40 | NA | 0. 2 90 B | NA | NA | NA. | | Arsenic | 7.30 | 3.50 | NA | 2.10 | NA | NA | NA | | Barium | 36.6B | 34.3 | NA NA | 28,3 | NA | NA | NA | | Beryllium | 0.250 B | 0.270 B | NA NA | 0.280 B | NA | NA | NA | | Cadmium | 0 930 8 | 0.719 | NΑ | ND(0,640) | NA | NA NA | NA | | Calcium | NA. | NA NA | NA NA | NA. | NA | NA. | NA | | Chromium | 23 7 | 24.3 | NΑ | 9.10 | NΑ | NA | NA. | | Cobalt | NA | 9.70 | NA | 7.30 | NΑ | NA | NA | | Copper | 97.8 E | 33.2 | NΑ | 19.7 | NA | NA | NA | | Cyanide | ND(0.550) | ND(3.50) | NA | ND(3.20) | NA | NA | NA | | Iron | NA NA | | Lead | 90.8* | 71.9 | NA NA | 7.50 | NA | NΑ | ŅΑ | | Magnesium | NA | NA NA | NA | NΑ | NA | NA | NΑ | | Manganese | NA NA | NA NA | NA | NA | NA | NA | NΑ | | Mercury | 0.300 | 0.250 | NA | 0.0320 B | NA | NA NA | NA | | Nickel | 36.0 | 15.9 | NA | 12.0 | NA | NA | NA | | Potassium | NA | NA NA | NA. | NA | NA | NA | NA | | Selenium | 1.70 | 0.540 B | NA | 0.560 B | NA | NA | NA | | Silver | 0.210 B | ND(1.40) | NA | ND(1.30) | NA | NA | NA | | Sodium | NA | Sulfide | NA | 106 | NA | ND(255) | NA | NA | NA | | Thallium | ND(1.10) | 2.00 | NA | 1.70 | NA | NA | NA | | Tin | 3.70 B | ND(14.0) | NA | ND(12.8) | NA | NA | NA | | Vanadium | 25.0 | 10.5 | NA | 10.2 | NA | NA | NA | | Zinc | 492 | 105 | NA | 57.4 | NA | NA | NA | | Parameter Data Collected 190807 | Averaging Area:
Location ID:
Sample ID: | 4E
EB-23
3-6C-EB-23 | 4E
EB-24
3-6C-EB-24 | 4E
EB-25
3-6C-EB-25 | 4E
EB-26
3-6C-EB-26 | 4E
EB-27
3-6C-EB-27 | 4E
ES2-2
P202B0608 | 4E
ES2-3
P203B1416 | 4E
ES2-4
P204B0810 | 4E
ES2-7
P207B0608 | |--|---|---------------------------|---------------------------|---------------------------|---------------------------|--|--------------------------|--------------------------|--------------------------|--------------------------| | 1,1-1 Frontementarian NOP 2019, | Sample Depth(Feet): Parameter Date Collected: | 12-14
11/06/97 | 12-14
11/06/97 |
0-0.5
11/05/97 | 12-14
11/04/97 | 10-12
11/07/97 | 6-8
01/14/91 | 14-16
01/02/91 | 8-10
01/11/91 | 6-8
01/16/91 | | 1.1.2.2.Finanswareshere 1.020 (1.5) 1.0.2.2.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | Volatile Organics | | | | | | | | | | | 1, Johnsteiner 2 Ambrogeriane NA | 1,1,1-Trichloroethane | | | | | | | | | | | 1.50 Enterentemente NDIC 2271 NODI 2231 NODI 2270 NODI 2270 NODI SI NODI 2270 NODI SI NODI 2270 | | | | | | | <u> </u> | | | | | 12.00mms-schempregame | | | | | | ¥ | | | | | | 1.3 Gertondomisses ND1.51 NOs 281 174 ND12-87 PA ND2-87 ND2-92 ND | | | | | | | | | | | | 3,00mmontpersonne MOD 221 MOD 275 NA MOD 771 NA 2.2 MOD 241 MOD 441 7.7 | 1,2-Dichlorobenzene | | | | | NA NA | | | ND(0.44) | | | 1.4.Controlentemens | 1,2-Dichloroethane | | | | | | | | | | | 1.4.0 Crossome | | | | | | | ····· | | | | | 2 Subarpene 9 0.014 / 0.0060 / NDIO 0.29 | | | | | | NA
NEVZET | | | | | | Acestoner 9 0202 J 9,022 J 9,022 J 10,024 J 10,023 10,0 | | | | | | | | | | | | NGC | Acetone | | | | | | | | | | | Berearen | Acetonitriis | | | | | ND(0.30) | | | | | | Cardoon Disastine Niglo 0.18 Niglo 0.19 Niglo 0.19 Niglo 0.19 Niglo 0.070 Niglo 0.070 Niglo Corrosporations Niglo 0.19 Niglo 0.070 Niglo Corrosporations Niglo 0.19 Niglo 0.070 Niglo 0.070 Niglo Corrosporations Niglo 0.19 Niglo 0.070 | Acrylonitrile | | | | | | | | | | | Chrosnessene | | | | | | | | | | | | Contentidaryles | | | | | | | | | | | | Ellybenergee | Crotonaldehyde | | | | | | | | | | | Sobutanol ND(24) ND(19) ND(14) ND(19) ND ND ND ND ND ND ND N | Ethylbenzene | | | | | | | | | | | Methylene Chonder 0.029 JB 0.0293 JF 0.0718 0.0718 0.0718 0.0218 0.028 NA | Isobutanol | ND(24) | ND(19) | ND(14) | ND(20) | ND(19) | NA | | NA. | NA | | Propositifie ND(1-1) ND(0.68) ND(0.65) ND(0.85) ND(0.85) NA NA NA NA NA NA NA N | m&p-Xyiene | | | | | | | | | | | Styrene | Methylene Chloride | | | | | | | | | | | Telegetherene NDIO 0271 NDIO 0272 NDIO 019 NDIO 0273 NDIO 0279 N | | | | | | | | | | | | Toluene | | | | | | | | | | | | TripMoreInternetheme | | | | | | | | | | | | \text{Virigit Chloride} \text{NID(0.036)} \text{ND(0.029)} \text{ND(0.029)} \text{ND(0.030)} \text{ND(0.040)} ND(0.040) | Trichloroethene | | | | | | | | | | | ND(0.039) ND(0.039) ND(0.029) ND(0.039) ND(0.039) S9 ND(0.0070) ND(0.070) NA | Trichlorofluoromethane | | | | | ND(0.030) | ND(1.5) | ND(0.0070) | ND(0.0070) | | | Semivolatile Organics | Vinyl Chloride | | | | | | | | | | | 12.3.4 Fetrachrorbenzene | | ND(0.036) | ND(0.029) | ND(0.022) | ND(0.030) | ND(0.030) | 59 | ND(0.0070) | ND(0.0070) | NA | | 12.3 5 Fried Conference | | NIA | k1 A | b1 A | N. 2 | | 15/17 | 1 15/0 (0) | NEW AT | 115/2 61 | | 12.3-Trichkorobenzene | | | | | | | | | | | | 12.4.3 Fetrachrorobenzene | | | | | | | | | | | | 12,4-1-findrobenzene | 1,2,4,5-Tetrachlorobenzene | | | | | | | ······ | | | | 13.5-Finitrobenzene ND(1.5) ND(1.5) ND(1.5) ND(0.6) ND | 1,2,4-Trichtorobenzene | | ND(0.79) | NA | | NA | | | ND(0.44) | | | 1-Chlorongethtalene | 1,3,5-Trichlorobenzene | | | | | | | | | | | 1-Methyriapthilalene | | | | | | | | | | | | 2.4-Dimitrophenol ND(1.1) ND(0.88) NA ND(0.92) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) NA ND(1.7) ND(0.48) ND(1.7) ND(0.7) ND(0.7) ND(0.7) ND(1.7) ND(1.7) ND(0.7) ND(0.7 | | | | | | | | | | | | 2.4-Dinitophenol ND(3.1) ND(2.4) NA ND(2.5) NA ND(1.9) ND(1.7) ND(1.7) ND(2.5) | | | | | | | | | | | | 2-Acetylarinnofluorene ND(1.3) ND(1.0) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 2-Chlorosphthalene ND(1.7) ND(1.4) NA ND(1.5) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 2-Chloropherol ND(1.1) ND(0.90) NA ND(1.5) NA ND(0.41) ND(0.48) ND(0.44) ND(5.2) 2-Methylphenol ND(1.5) ND(1.2) NA ND(1.3) NA 29 ND(0.48) ND(0.44) ND(5.2) 3.84-Methylphenol ND(1.2) NA ND(2.0) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3.84-Dinterbosteridine ND(0.90) ND(0.91) NA ND(2.0) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3.3-Dimetrosperatidine ND(0.90) ND(0.90) NA ND(2.0) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3.3-Dimetrosperatidine ND(1.1) ND(0.30) NA ND(1.5) NA< | | | | | | | | | | | | 2-Chloropherol ND(1.1) ND(0.90) NA ND(0.95) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 2-Methylnaphthalene ND(1.5) ND(1.2) NA ND(1.3) NA 29 ND(0.44) ND(0.44) T7 2-Methylpherol ND(1.2) ND(0.93) NA ND(0.98) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 384-Methylpherol ND(2.3) ND(0.99) NA ND(2.0) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 384-Methylpherol ND(0.90) ND(0.72) NA ND(0.75) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3.3-Dimethoxybenzidine ND(0.90) ND(0.72) NA ND(0.75) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3.3-Dimethoxybenzidine ND(0.90) ND(0.72) NA ND(0.75) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) ND(0.91) ND(0.75) NA ND(0.71) ND(0.48) ND(0.44) ND(5.2) ND(0.91) ND(0.75) NA ND(0.71) ND(0.48) ND(0.44) ND(5.2) ND(0.91) ND | 2-Acetylaminofluorene | | | | | | | | | | | 2-Methylnaphthalene | 2-Chloronaphthalene | | | | | | | | | | | 2-Methylphenol ND(1.2) ND(0.93) NA ND(0.96) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) | | | | | | | | | | | | ND(2.3) ND(1.9) NA ND(2.0) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) | | | | | | | | | | | | 3,3*-Dichlorobenzidine ND(0.90) ND(0.72) NA ND(0.75) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3,3*-Dimethoxybenzidine NA NA NA NA NA NA NA NA NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) ND(0.91) ND(0.98) ND(0.91) | | | | | | | | | | | | 3.3*-Dimethoxybenzidine NA NA NA NA NA NA NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3.3*-Dimethylbenzidine NO(1.7) ND(1.4) ND(1.4) NA ND(1.5) NA ND(9.5) ND(0.96) ND(0.88) ND(1.0) 3.3*-Dimethylbenzidine ND(1.1) ND(0.88) NA ND(0.92) NA ND(9.5) ND(0.44) ND(5.2) 3-Phenylenediamine ND(1.1) ND(0.88) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 3-Phenylenediamine ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.6-Dinitro-2-methylphenol ND(3.2) ND(2.8) NA ND(2.7) NA ND(1.4) ND(1.4) ND(1.3) ND(1.5) 4.4-Arninoblphenyl ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Chlorobenzilate ND(1.3) ND(1.0) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(6.2) NA ND(4.7) ND(0.48) ND(6.44) ND(5.2) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.9) NA ND(6.2) NA ND(6.2) NA ND(6.4) ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.4) ND(6.5) NA ND(6.9) NA ND(6.2) NA ND(6.4) ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.4) ND(6.5) NA ND(6.9) NA ND(6.2) NA ND(6.4) ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.4) ND(6.5) NA ND(6.2) NA ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.4) ND(6.5) ND(6.4) ND(6.5) ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.9) NA ND(6.2) ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.9) NA ND(6.2) ND(6.4) ND(6.5) 4.4-Nitrophenol ND(8.1) ND(6.5) ND(6.8) ND(6.4) ND(6.5) | 3,3'-Dichlorobenzidine | | | | | | | | | | | 3-Methylcholanthrene ND(1,1) ND(0,88) NA ND(0,92) NA ND(4,7) ND(0,48) ND(0,44) ND(5,2) 3-Phenylanediamine ND(1,2) ND(0,95) NA ND(0,99) NA ND(4,7) ND(0,48) ND(0,44) ND(5,2) 4,6-Dinitro-2-methylphenol ND(3,2) ND(2,8) NA ND(2,7) NA ND(1,4) ND(1,4) ND(1,3) ND(1,6) ND(0,22) ND(0,42) ND(0,44) ND(0,44) ND(5,2) ND(0,44) ND(0 | 3,3'-Dimethoxybenzidine | NA | ÑΑ | NA | NA | NA | ND(4.7) | ND(0.48) | ND(0.44) | | | 3-Phenylenediamine ND(1,2) ND(0,95) NA ND(0,99) NA ND(4,7) ND(0,48) ND(0,44) ND(5,2) A,6-Dinitro-2-methylphenol ND(3,2) ND(2,6) NA ND(2,7) NA ND(14) ND(1,3) ND(16) ND(1,4) ND(1,3) ND(16) ND(0,74) ND(0,74) ND(0,59) NA ND(0,62) NA ND(4,7) ND(0,48) ND(0,44) ND(5,2) ND(0,44) ND(5,2) ND(0,44) ND(5,2) ND(0,44) ND(5,2) ND(0,44) ND(5,2) ND(0,44) ND(5,2) ND(0,44) ND(6,2) ND(0,44) ND(6,2) ND(0,44) ND(6,2) ND(0,44) | 3,3'-Dimethylbenzidine | | | | | | | | | | | 4.6-Dinitro-2-methylphenol ND(3.2) ND(2.6) NA ND(2.7) NA ND(14) ND(1.4) ND(1.3) ND(16) 4-Arminobiphenyl ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Chlorobenziate ND(1.3) ND(1.0) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritrophenol ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Recaphthene ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Recaphthylpene ND(1.2) ND(0.95) NA ND(0.95) NA ND(0.95) NA ND(0.44) ND(4.7) ND(0.44) ND(5.2) 4-Recaphthylpene ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) 3.7 J 4-Recaphthylpene ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) 3.7 J 4-Recaphthylpene ND(1.2) ND(0.80) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritine ND(1.3) ND(1.1) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritine ND(1.3) ND(1.1) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritineche ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritineche ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritineche ND(2.9) ND(2.9) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.95) NA ND(0.99) NA ND(0.47) ND(0.48) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.95) NA ND(0.99) NA ND(0.47) ND(0.48) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.95) NA ND(0.99) NA ND(0.41) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.95) NA ND(0.99) NA ND(0.44) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.95) NA ND(0.99) NA ND(0.44) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.95) NA ND(0.99) NA ND(0.44) ND(0.44) ND(5.2) 4-Ritineche ND(1.3) ND(0.44) ND(0.99) NA ND(0.44) ND(| 3-Methylcholanthrene | | | | | | | | | | | 4-Aminobiphenyi ND(0.74)
ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Chlorobenzilate ND(1.3) ND(1.0) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Chlorobenzilate ND(3.3) ND(1.0) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 7-12-Dimethylbenz(a)anthracene ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Acenaphthene ND(1.2) ND(0.95) NA ND(0.99) NA 25 0.14 J ND(0.44) ND(5.2) Acenaphthylene ND(1.2) ND(0.96) NA ND(1.0) NA 2.9 J ND(0.48) ND(0.44) 3.7 J Acetaphenone ND(1.2) ND(0.96) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Antifracene ND(1.3) ND(0.11) NA ND(0.84) NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Antifracene ND(1.3) ND(1.1) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Benzo(a)anthracene ND(2.9) ND(2.9) ND(2.3) NA ND(2.4) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene D, ND(2.9) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene D, ND(2.9) ND(2.3) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene D, ND(2.9) ND(2.3) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene D, ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene D, ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(b)fluoranthene D, ND(0.95) NA ND(0.99) NA ND(0.99) NA ND(0.44) ND(0.44) ND(0.99) Benzo(b)fluoranthene D, ND(0.89) NA ND(0.99) NA ND(0.99) NA ND(0.44) ND(0.44) ND(0.99) Benzo(b)fluoranthene D, ND(0.89) NA ND(0.99) NA ND(0.99) NA ND(0.48) ND(0.44) ND(0.44) ND(0.99) Benzo(b)fluoranthene D, ND(0.89) NA ND(0.99) NA ND(0.99) NA ND(0.99) NA ND(0.44) ND(0.44) ND(0.99) Benzo(b)fluoranthene D, ND(0.89) NA ND(0.99) ND(0.44) ND(0.99) ND(0.44) ND(0.99) ND(0 | | | | | | | | | | | | 4-Chlorobenzilate ND(1.3) ND(1.0) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 7.12-Dimethylbenz(a)anthracene ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 7.12-Dimethylbenz(a)anthracene ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Acenaphthene ND(1.2) ND(0.95) NA ND(0.99) NA 25 0.14 J ND(0.44) 24 Acenaphthylene ND(1.2) ND(0.96) NA ND(1.0) NA 2.9 J ND(0.48) ND(0.44) 3.7 J Acetophenone ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Aniline 0.50 J ND(0.80) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Aniline ND(1.3) ND(1.1) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Aniline ND(2.9) ND(2.3) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Benzola)anthracene ND(1.3) ND(0.95) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzola)apyrene 0.14 J ND(0.95) NA ND(0.99) NA 11 ND(0.48) ND(0.44) ND(0.42) Benzola)pyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzola)pyrene 0.18 J ND(0.89) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 14 Z Benzola)pyrene 0.068 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA 0.047 ND(0.48) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA ND(0.94) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA ND(0.94) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA ND(0.94) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA ND(0.94) ND(0.44) 14 Z Benzola)pyrene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA ND(0.94) ND(0.44) ND(0.94) | | | | | | | | | | | | 4-Nitrophenol ND(8.1) ND(6.5) NA ND(6.8) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) 7.12-Dimethylbenz(a)anthracene ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Acenaphthene ND(1.2) ND(0.95) NA ND(0.99) NA Z5 0.14 J ND(0.44) 24 Acenaphthylene ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) 3.7 J Acetophenone ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Antine 0.50 J ND(0.80) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Antinacene ND(1.3) ND(1.1) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Antinacene ND(1.3) ND(1.1) NA ND(1.1) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene 0.13 J ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene 0.14 J ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)pyrene 0.14 J ND(0.95) NA ND(0.99) NA NA ND(4.7) ND(0.48) ND(0.44) 12 Benzo(a)pyrene 0.18 J ND(1.1) NA ND(1.2) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzo(b)fluoranthene 0.18 J ND(1.1) NA ND(1.2) NA ND(0.93) NA S.3 ND(0.48) ND(0.44) 14 Z Benzo(a)hi)perytene 0.068 J ND(0.89) NA ND(0.93) NA D(0.93) NA D(0.93) NA ND(0.48) ND(0.44) 14 Z Benzo(a)hi)perytene 0.065 J ND(0.89) NA ND(0.93) NA ND(0.93) NA ND(0.93) NA ND(0.48) ND(0.44) ND(6.2) Benzo(a) NA NA NA NA NA NA NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Benzo(a)hi)perytene ND(1.1) ND(0.85) NA ND(0.93) NA ND(0.93) NA ND(0.93) NA ND(0.94) ND(0.44) ND(6.2) Benzo(a) ND(1.4) ND(0.85) NA ND(0.93) NA ND(0.93) NA ND(0.95) ND(0.96) ND | 4-Chlorobenzilate | | | | | | | | | | | 7.12-Dimethylbenz(a)anthracene ND(0.74) ND(0.59) NA ND(0.62) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Acenaphthene ND(1.2) ND(0.95) NA ND(0.99) NA 26 0.14 J ND(0.44) 24 Acenaphthylene ND(1.2) ND(0.95) NA ND(0.99) NA 25 0.14 J ND(0.44) 24 Acenaphthylene ND(1.2) ND(0.95) NA ND(0.99) NA ND(0.99) NA ND(0.49) ND(0.48) ND(0.44) 3.7 J ND(0.48) ND(0.44) ND(0.29) ND(0.41) ND(0.29) ND(0.48) ND(0.44) ND(0.29) ND(0.48) ND(0.44) ND(0.29) ND(0.48) ND(0.44) ND(0.29) ND(0.48) ND(0.44) ND(5.2) ND(0.48) ND(0.44) ND(5.2) ND(0.48) ND(0.44) ND(5.2) ND(0.48) ND(0.44) ND(0.48) ND(0.44) ND(0.48) ND(0.44) ND(0.48) ND(0 | 4-Nitrophenol | | | NA | | | | | | | | Acenaphthylene ND(1.2) ND(0.96) NA ND(1.0) NA 2.9 J ND(0.48) ND(0.44) 3.7 J Acetophenone ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Aniline 0.50 J ND(0.80) NA ND(0.84) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Anthracene ND(1.3) ND(1.1) NA ND(1.1) NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Benzidine ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene 0.13 J ND(0.95) NA ND(0.99) NA 11 ND(0.48) ND(0.44) ND(0.41) Benzo(a)pyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzo(g)pilipergiene 0.18 J ND(1.1) NA ND(1.2) NA 10 Z <t< td=""><td>7.12-Dimethylbenz(a)anthracene</td><td>ND(0.74)</td><td></td><td></td><td>ND(0.62)</td><td></td><td>ND(4.7)</td><td>ND(0.48)</td><td>ND(0.44)</td><td>ND(5.2)</td></t<> | 7.12-Dimethylbenz(a)anthracene | ND(0.74) | | | ND(0.62) | | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Acetophenone ND(1.2) ND(0.95) NA ND(0.99) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Aniline 0.50 J ND(0.80) NA ND(0.84) NA ND(4.7) ND(0.48) ND(0.44) ND(6.2) Anthracene ND(1.3) ND(1.1) NA ND(1.1) NA 13 ND(0.48) ND(0.44) ND(5.2) Benzidine ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(3.8) ND(0.44) ND(5.2) Benzo(a)anthracene 0.13 J ND(0.95) NA ND(0.99) NA 11 ND(0.48) ND(0.44) ND(0.41) ND(0.41) ND(0.41) ND(0.42) ND(0.43) ND(0.44) | Acenaphthene | | | | | | | | | | | Aniline 0.50 J ND(0.80) NA ND(0.84) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Anthracene ND(1.3) ND(1.1) NA ND(1.1) NA 13 ND(0.48) ND(0.44) 13 Benzolaine ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzolajanttracene 0.13 J ND(0.95) NA ND(0.99) NA 11 ND(0.48) ND(0.44) 13 Benzolajpyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzolajpyrene 0.18 J ND(1.1) NA ND(1.2) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzolgi, hijperylene 0.068 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 5.5 Benzolcki, fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48 | <u> </u> | | | | | | | | | | | Anthracene ND(1.3) ND(1.1) NA ND(1.1) NA 13 ND(0.48) ND(0.44) 13 Benzidine ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene 0.13 J ND(0.95) NA ND(0.99) NA 11 ND(0.48) ND(0.44) 13 Benzo(a)pyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzo(b)fluoranthene 0.18 J ND(1.1) NA ND(1.2) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(g,h.l)perylene 0.068 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 5.5 Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 5.5 Benzo(c)(h)uoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | Benzidine ND(2.9) ND(2.3) NA ND(2.4) NA ND(4.7) ND(0.48) ND(0.44) ND(5.2) Benzo(a)anthracene 0.13 J ND(0.95) NA ND(0.99) NA 11 ND(0.48) ND(0.44) 13 Benzo(a)pyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzo(b)fluoranthene 0.18 J ND(1.1) NA ND(1.2) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(g,h.i)perylene 0.068 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 1.4 Z Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 1.4 Z Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 1.4 Z Benzo(a Acid NA NA NA NA NA NA ND(1.9 | | | | | | | | | | | | Benzo(a)anthracene 0.13 J ND(0.95) NA ND(0.99) NA 11 ND(0.45) ND(0.44) 13 Benzo(a)pyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzo(b)fluoranthene 0.18 J ND(1.1) NA ND(1.2) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(g,h,i)perylene 0.068 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 5.5 Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(k)fluoranthene 0.065 J NA NA NA NA ND(4.7) <td>Benzidine</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Benzidine | | | | | | | | | | | Benzo(a)pyrene 0.14 J ND(0.95) NA ND(0.99) NA 8.3 ND(0.48) ND(0.44) 12 Benzo(b)fluoranthene 0.18 J ND(1.1) NA ND(1.2) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(g,h.i)perylene 0.068 J ND(0.89) NA
ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 5.5 Senzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzoic Acid NA NA NA NA NA NA ND(4.7) ND(4.8) ND(4.4) ND(52) bisig2-Chioroethyl)ether ND(1.1) ND(0.85) NA ND(9.89) NA ND(9.5) ND(0.48) ND(0.44) 14 J | Benzo(a)anthracene | 0.13 J | ND(0.95) | NA | ND(0.99) | NA NA | 11 | | | | | Benzo(g,h.i)perylene 0.088 J ND(0.89) NA ND(0.93) NA 2.1 J ND(0.48) ND(0.44) 5.5 Benzo(k)fluoranthene 0.065 J ND(0.89) NA ND(0.93) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzo(c) Acid NA NA NA NA NA ND(4.7) ND(4.8) ND(4.4) ND(52) bis(2-Eiby/hexyl)phthalate ND(1.1) ND(0.85) NA ND(9.8) NA ND(9.5) ND(0.48) ND(0.44) 1.4 J | Benzo(a)pyrene | | | | | | | ND(0.48) | | | | Benzo(k)fluoranthene 0 065 J ND(0 99) NA ND(0 93) NA 10 Z ND(0.48) ND(0.44) 14 Z Benzoic Acid NA NA NA NA NA ND(4.7) ND(4.8) ND(4.4) ND(52) bis(2-Chloroethyl)ether ND(1.1) ND(0.85) NA ND(9.89) NA ND(9.5) ND(0.96) ND(0.88) ND(10) bis(2-Ethylhexyl)phthalate ND(1.4) ND(1.1) NA 0.095 J NA ND(4.7) ND(0.48) ND(0.44) 1.4 J | Benzo(b)fluoranthene | | | | | | | | | | | Benzoic Acid NA NA NA NA NA NA ND(4.4) ND(4.4) ND(4.4) ND(52) bis(2-Chloroethyl)ether ND(1.1) ND(0.85) NA ND(9.96) ND(9.96) ND(0.88) ND(10) bis(2-Ethylhexyl)phthalate ND(1.4) ND(1.1) NA 0.095 J NA ND(4.7) ND(0.48) ND(0.44) 1.4 J | | | | | | | | | | | | bis(2-Chloroethyl)ether ND(1.1) ND(0.85) NA ND(0.89) NA ND(9.5) ND(0.96) ND(0.88) ND(10) bis(2-Ethylhexyl)phthalate ND(1.4) ND(1.1) NA 0.095 J NA ND(4.7) ND(0.48) ND(0.44) 1.4 J | | | | | | | | | | | | bis(2-Ethylhexyl)phthalate ND(1.4) ND(1.1) NA 0.095 J NA ND(4.7) ND(0.48) ND(0.44) 1.4 J | | | | | | ······································ | | | | | | | bis(2-Ethylhexyl)phthalate | | | | | | | | | | | | Butylbenzylphthalate | | | | | | | | | | | Averaging Are
Location II
Sample II
Sample Depth(Feel | D: EB-23
D: 3-6C-EB-23 | 4E
EB-24
3-6C-EB-24
12-14 | 4E
EB-25
3-6C-EB-25
0-0.5 | 4E
EB-26
3-6C-EB-26
12-14 | 4E
EB-27
3-6C-EB-27
10-12 | 4E
ES2-2
P202B0608
6-8 | 4E
ES2-3
P203B1416
14-16 | 4E
ES2-4
P204B0810
8-10 | 4E
ES2-7
P207B0608
6-8 | |--|--|--|--|--|--|--|--|--|--| | Parameter Date Collecter | | 11/06/97 | 11/05/97 | 11/04/97 | 11/07/97 | 01/14/91 | 01/02/91 | 01/11/91 | 01/16/91 | | Semivolatile Organics (continued | | | | | | | | + | | | Chrysene
Cyclophosphamide | 0 24 J
NA | ND(0.77)
NA | NA
NA | ND(0.81)
NA | NA
NA | 9.7 | ND(0.48) | ND(0.44) | 14 | | Dibenzo(a,h)anthracene | ND(0.77) | ND(0.62) | NA
NA | ND(0.85) | NA
NA | ND(23)
0.76 ∫ | ND(2.3)
ND(0.48) | ND(2.1)
ND(0.44) | ND(25)
1.9 J | | Dibenzofuran | 3.0 | ND(0.99) | NA | ND(1 0) | NA NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Di-n-Butylphthalate | ND(1.4) | ND(1.1) | NA | ND(1.2) | NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Di-n-Octylphthalate | ND(0.86) | ND(0.59) | NA | ND(0.72) | NA. | ND(4.7) | NO(0.48) | ND(0.44) | ND(5.2) | | Diphenylamine | ND(2.5) | ND(2.0) | NA NA | ND(2.1) | NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Fluoranthene
Fluorene | 0.30 J
0.10 J | ND(1.3) | NA NA | ND(1,4) | NA NA | 21 | ND(0.48) | ND(0.44) | 25 | | Hexachlorobenzene | ND(1,4) | ND(0.99)
ND(1.1) | NA
NA | ND(1.0)
ND(1.2) | NA
NA | 18
ND(4.7) | ND(0.48) | ND(0.44)
ND(0.44) | 16 | | Indeno(1,2,3-cd)pyrene | 0.065 J | ND(0.66) | NA I | ND(0.69) | NA I | 1.8 J | ND(0.48)
ND(0.48) | ND(0.44) | ND(5.2)
4.2 J | | Methapyrilene | ND(2.3) | ND(1.9) | NA NA | ND(2.0) | NA NA | ND(9.5) | ND(0.96) | ND(0.88) | ND(10) | | Naphthalene | ND(1.2) | ND(0.95) | NA | ND(0.99) | NA | 42 | ND(0.48) | ND(0.44) | 31 | | Nitrobenzene | ND(1.2) | ND(0.98) | NA | ND(1,0) | NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | N-Nitroso-di-n-propylamine | ND(1.1) | ND(0.88) | NA NA | ND(0.92) | NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | N-Nitrosodiphenylamine
o-Toluidine | ND(2.5)
ND(3.6) | ND(2.0)
ND(2.9) | NA
NA | ND(2.1) | NA
NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | p-Dimethylaminoazobenzene | ND(3.6)
ND(1.2) | ND(2.9)
ND(0.96) | NA
NA | ND(3.0)
ND(1.0) | NA
NA | ND(4.7)
ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Pentachlorobenzene | ND(1.2) | ND(0.95) | NA NA | ND(0.99) | NA
NA | ND(4.7)
ND(4.7) | ND(0.48)
ND(0.48) | ND(0.44)
ND(0.44) | ND(5.2)
ND(5.2) | | Pentachloronitrobenzene | NA NA | NA | NA I | NA NA | NA NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2)
ND(5.2) | | Pentachlorophenol | ND(2.5) | ND(2.0) | NA . | ND(2,1) | NA NA | ND(9.5) | ND(0.96) | ND(0.88) | ND(10) | | Phenacetin | ND(1.1) | ND(0.88) | NA NA | ND(0.92) | NA | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Phenanthrene | 0.25 J | ND(0.89) | NA | ND(0.93) | NA NA | 55 | ND(0.48) | ND(0.44) | 45 | | Phenol
Pronamide | 0 13 J
ND(1,2) | ND(0.82) | NA NA | ND(0.86) | NA . | ND(4.7) | ND(0.48) | ND(0.44) | ND(5.2) | | Pyrene | 0.22 J | ND(0.93)
ND(1.0) | NA NA | ND(0.98)
ND(1.1) | NA
NA | ND(4.7) | ND(0.48)
ND(0.48) | ND(0.44) | ND(5.2) | | Total Phenois | NA NA | 18
3.3 | ND(0.48) | ND(0.44)
0.93 | 32
2.9 | | Organochlorine Pesticides | | | | | | 9.0 | 142(0.15) | 0.53 | 2.9 | | 4.4'-DDE | NA NA | NA | NA I | NA | NA | NA | NA | NA | NA | | Aldrin | NA NA | NA I | NA | NA . | NA | NA | NA | NA | NA | | Delta-BHC | NA NA | NA NA | NA | NA . | NA NA | NA | NA | NA NA | NA | | Dieldrin | NA NA | NA NA | NA | NA | NA I | NA | NA NA | NA NA | NA | | Endosulfan II
Methoxychlor | NA
NA | NA
NA | NA NA | Toxaphene | NA
NA | NA
NA | NA NA | NA
NA | NA
NA | NA
NA | NA
NA | NA NA | NA
NA | | Organophosphate Pesticides | | | | 110 1 | - NA | NA . | NA | NA NA | NA | | None Detected | NA NA | NA | NA | NA I | NA [| NA | | <u> </u> | | | Herbicides | | | | | | | | i | · · · · · · · · · · · · · · · · · · · | | 2,4,5-T | NA NA | NA | NA | NA (| NA | NA | NA | NA | NA | | 2,4,5-TP | NA NA | NA | NA | NA | NA | NA | NΑ | NA | NA | | 2,4-D | NA NA | NA | NA | NA NA | NA | NA | NA | | NA | | Furans | | | | | | | | NA NA | 147.3 | | | 1 116 | | | | | | | | | | 2,3,7,8-TCDF
TCDEs (total) | NA
NA | NA I | NA NA | NA I | NA NA | NA NA | NA NA | NA [| NA | | TCDFs (total) | NA NA | NA | NA | NA | NA NA | NA | NA | NA
NA | NA
NA | | | | | | | | NA
NA | NA
NA | NA NA NA | NA
NA
NA | | TCDFs (total)
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
PeCDFs (total) | NA
NA
NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA | NA | NA
NA | NA
NA | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF | NA
NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA
NA | NA
NA
NA | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PECDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA |
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA | NA
NA
NA
NA
NA
NA
NA | NA | NA | NA
NA
NA
NA
NA
NA
NA
NA | NA | NA
NA
NA
NA
NA
NA
NA
NA | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,5,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 4xCDFs (total) | NA | NA N | NA N | NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA | NA
NA
NA
NA
NA
NA
NA | NA N | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,8,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 4xCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | NA N | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 4xCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,5,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9 | NA N | NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA | NA N | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8 | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2eCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,8,7,8-HpCDF 1,2,3,4 | NA NA NA NA NA NA NA NA | NA N | NA | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-PeCDF 1,2,3,7,8-TCDD 1,2,3,7,8-PeCDD | NA N | NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-TCDD 1,2,3,7,8-TCDD 1,2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD | NA NA NA NA NA NA NA NA | NA N | NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8-PeCDF 1,2,3,7,8-TCDD 1,2,3,7,8-PeCDD | NA N | NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HpCDD 1,2,3,7,8-HpCDD 1,2,3,4,7,8-HpCDD | NA NA NA NA NA NA NA NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,8,7,8-HxCDF 1,2,3,4,8,7,8-HxCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8-HxCDD 1,2,3,7,8-HxCD 1,2,3,7,8-Hx | NA | NA N | NA | NA | NA N | NA | NA N | NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,8,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,7,8-TCDD 1,2,3,7,8-TCDD 1,2,3,7,8-TCDD 1,2,3,7,8-HxCDD 1,2,3,7,8,9-HxCDD | NA | NA | NA N | NA | NA | NA | NA N | NA | NA N | | TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,8,7,8-HxCDF 1,2,3,4,8,7,8-HxCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,4,8,7,8-HyCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8-HxCDD 1,2,3,7,8-HxCD 1,2,3,7,8-Hx | NA | NA | NA | NA | NA N | NA | NA N | NA | NA N | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4E
EB-23
3-6C-EB-23
12-14
11/06/97 | 4E
EB-24
3-6C-EB-24
12-14
11/08/97 | 4E
EB-25
3-6C-EB-25
0-0.5
11/05/97 | 4E
EB-26
3-6C-EB-26
12-14
11/04/97 | 4E
EB-27
3-6C-EB-27
10-12
11/07/97 | 4E
ES2-2
P202B0608
6-8
01/14/91 | 4E
ES2-3
P203B1416
14-16
01/02/91 | 4E
ES2-4
P204B0810
8-10
01/11/91 | 4E
ES2-7
P207B0608
6-8
01/16/91 | |------------|---|--|--|--|--|--|---|---|--|---| | Inorganics | | | | | | | | ····· | | 1 | | Aluminum | | NA | NA | NA | NA | NA | 11000 | 5700 | 10000 | 13000 | | Antimony | | NA | NA | NA | NA | NA | ND(1.40) | ND(1,50) | NO(1.20) | ND(1,60) | | Arserác | | NA | NA | NA | NA | NA | 26.0 | 5.20 | 12.0 | 22.0 | | Barium | | ΝA | NA | NA | NA | NA | 79.0 | ND(31 0) | 56.0 | 46.0 | | Beryllium | | NA . | NA | NA | NA. | NA NA | 1.00 | ND(0.770) | MD(0.610) | ND(0.790) | | Cadmium | | NA | NA 1 | NA NA | NA I | NA | 17.0 | ND(0.770) | ND(0.610) | 1.30 | | Calcium | - | NA | NA | NA | NA | NA NA | 11000 | 7100 | 11000 | 5200 | | Chromium | | NA | NA. | NA | NA NA | NA NA | 830 | 7.50 | 18.0 | | | Cobalt | | NA | NA | NA | NA NA | NA NA | 16.0 | ND/7.701 | 8.50 | 40.0 | | Copper | i | NA I | NA | NA | NA I | NA NA | 270 | 12.0 | 25 0 | 14.0 | | Cyanide | | NA | NA | NA | NA NA | NA NA | 1.30 | NA NA | ND(0,610) | 49.0
6.70 | | ron | | NA | NA | NA | NA NA | NA NA | 30000 | 11000 | 22000 | | | Lead | | NA | NA | NA | NA I | NA NA | 8200 | ND(15,6) | 38.0 | 17000 | | Magnesium | | NA . | NA | NA | NA | NA NA | 4200 | 7200 | 11000 | 150 | | Manganese | | NA | NA | NA | NA NA | NA NA | 660 | 170 | 490 | 11000 | | Mercury | | NA | NA | NA NA | NA NA | NA NA | 1.70 | ND(0.150) | | 570 | | Nickel | | NA | NA | NA | NA NA | NA I | 27.0 | 15.0 | ND(0.120) | ND(0.160) | | Potassium | | NA | NA | NA | NA I | NA I | ND(720) | ND(770) | 15.0
670 | 24.0 | | Selenium | · · · · · · · · · · · · · · · · · · · | NA | NA | NA | NA NA | NA NA | 5.20 | ND(0.770) | | 1100 | | Silver | | NA | NA | NA. | NA NA | NA NA | 5.60 | ND(0.770)
ND(1.59) | ND(0.610) | ND(0.790) | | Sodium | | NA | NA | NA. | NA NA | NA I | ND(720) | ND(770) | ND(1.20) | 1.70 | | Sulfide | | NA | NA | NA NA | NA NA | NA NA | ND(720) | | ND(610) | ND(790) | | Thallium | | NA | NA I | NA NA | NA. | NA NA | ND(1.40) | NA
ND(1.50) | NA NA | NA NA | | Tin | | NA ! | NA NA | ND(1.50)
NA | ND(1.20) | ND(1.60) | | Vanadium | | NA NA | NA NA | NA I | NA NA | NA NA | 22.0 | ****** | NA | NA | | Zinc | | NA NA | 4000 | 8.80
5.50 | 15.0
68.0 | 150
65.0 | | Averaging Area:
Location ID:
Sample ID: | 4E
SL0025
080798SB17 | 4E
SL0153
081798CT27 | 4E
\$L0314
082798M\$14 | 4E
SL0342
083198MS14 | 4E
X-1
P2X010204 | 4E
Y-1
P2Y010810 | 4E
Y-2
P2Y020608 | 4E
Y-3
P2Y030810 | |--|----------------------------|----------------------------|------------------------------|----------------------------|------------------------|------------------------|------------------------|------------------------| | Sample Depth(Feet):
Parameter Date Collected: | 0-0.5
08/07/98 | 1-1.5
08/17/98 | 0-0.5
08/27/98 | 0-0.5
08/31/98 | 2-4
07/02/91 | 8-10
06/06/91 | 6-8
06/07/91 | 8-10
06/05/91 | | Volatile Organics | 00/0/100 | , 00,17700 | , Juni 27700 | , 00,01,00 | , D7702.51 | 00/00/01 | 00.01701 | 00/02/31 | | 1,1,1-Trichloroethane | ND(0 0054) | ND(0.3076) | ND(0,0053) | ND(0.0052) | ND(0.0060; | ND(0.0060) | ND(0.0060) | ND(0.0050) | | 1,1,2,2-Tetrachicroethane | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | ND(0.012) | ND(0.012) | ND(0.012) | ND(0.011) | | 1.1,2-trichlero-1,2,2-trifluoroethane | NA | NA NA | NA NA | NA NA | ND(0 012) | 6.0030 BJ | ND(0.012) | 0 0036 BJ | | 1,1-Dichloroethane | ND(0.0054) | ND(0,0076) | ND(0 0053) | ND(0,0052) | ND(0,0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | 1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene |
ND(6.911)
NA | ND(0.015) | ND(0.011) | ND(0.010) | ND(0.012) | ND(0.012)
ND(0.80) | ND(0.012) | ND(0.011) | | 1,2-Dichloroethane | ND(0.0054) | NA ND(0.9075) | NA
ND(0.0053) | NA
ND/0.0052) | 1.6 J
ND(0,0060) | ND(0.0050) | ND(0.80)
ND(0.0060) | ND(0.71)
ND(0.0050) | | 1.3-Dichlorobenzene | NA
NA | NA NA | NA NA | NA NA | 2.4 J | ND(0.80) | ND(0.80) | ND(0.71) | | 1.4-Dichlorobenzene | NA | NA NA | NA | NA | 6.2 | 0.83 | ND(0.80) | ND(0.71) | | 1.4-Dioxane | ND(0.54) | ND(0.75) | ND(0.53) | ND(0.52) | NA | NA . | NA . | ÑΑ | | 2-Butanone | ND(0.021) | ND(0.030) | ND(0.021) | ND(0.021) | ND(0.012) | ND(0.012) | ND(0.012) | ND(0.011) | | Acetone | ND(0.011) | 0.0099 J | ND(0.011) | ND(0,010) | 0.010 J | 0.0090 BJ | 0.047 B | 0.0090 BJ | | Acetonitrile Acrylonitrile | ND(0.11)
ND(0.11) | ND(0.15)
ND(0.15) | ND(0.11) | ND(0.10) | NA
NA | NA
NA | NA
NO(0.14) | NA
NA | | Benzene | ND(0.0054) | ND(0.0076) | ND(0.11)
ND(0.0053) | ND(0.10)
ND(0.0052) | ND(0.15)
ND(0.0060) | ND(0.15)
ND(0.0060) | ND(0.14)
ND(0.0060) | ND(0.13)
ND(0.0050) | | Carbon Disulfide | ND(0.0054) | ND(0.0075) | ND(0.0053) | ND(0.0052) | ND(0.0000) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | Chlorobenzene | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | 0.12 | ND(0.0060) | ND(0.0060) | ND(0.0050) | | Crotonaldehyde | NA | NA | NA | NA | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.11) | | Ethylbenzene | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | Isobutanol | ND(0.21) | ND(0.30) | ND(0,21) | ND(0.21) | NΑ | NA NA | NA I | NA | | m&p-Xylene | NA
ND(0.0054) | NA
ND/0.00701 | NA
NA | NA NA | NA . | NA
C 200 D | NA NA | NA . | | Methylene Chloride Propionitrile | ND(0.0054)
ND(0.021) | ND(0.0076)
ND(0.030) | ND(0.0053)
ND(0.021) | ND(0.0052)
ND(0.021) | 0.011 BJ
NA | 0.030 B
NA | 0.039 B
NA | 0.018 B
NA | | Styrene | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | Tetrachloroethene | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | Toluene | ND(0.0054) | ND(0.0075) | ND(0.0053) | ND(0.0052) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | Trich!oroethene | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | ND(0.0060) | ND(0.0060) | ND(0.0050) | ND(0.0050) | | Trichlorofluoromethane | ND(0.011) | ND(0.015) | ND(0.011) | ND(0.010) | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0,0950) | | Vinyl Chloride | ND(0.011) | ND(0.015) | ND(0.011) | ND(0.010) | ND(0.012) | ND(0.012) | ND(0.012) | ND(0.011) | | Xylenes (total) Semivolatile Organics | ND(0.0054) | ND(0.0076) | ND(0.0053) | ND(0.0052) | 0.0040 J | ND(0.0060) | ND(0.0060) | ND(0.0050) | | 1,2,3,4-Tetrachlorobenzene | NA NA | NA NA | NA I | NA | 5.8 J | 0.88 | 0.18 J | 0.20 J | | 1,2,3,5-Tetrachlorobenzene | NA NA | NA NA | NA NA | NA NA | ND(6.1) | 0.96 Z | ND(0.80) | 0.20 J
0.18 JZ | | 1,2,3-Trichlorobenzene | NA | NA. | NA . | NA NA | 0,88 J | 0.92 | 0.12 J | ND(0.71) | | 1,2,4,5-Tetrachlorobenzene | ND(0.35) | ND(1.0) | 0.17 J | ND(0.35) | ND(6.1) | 0.96 Z | ND(0.80) | 0.18 JZ | | 1,2,4-Trichlorobenzene | ND(0.35) | ND(1.0) | 0.80 J | ND(0.35) | 2.4 J | 3.7 | 0.42 J | 0.12 J | | 1,3.5-Trichlorobenzene | NA NA | NA NA | NA NA | NA NA | 0.99 J | ND(0.80) | ND(0.80) | ND(0.71) | | 1,3,5-Trinitrobenzene
1-Chloronaphthalene | ND(1.7)
NA | ND(4.9)
NA | ND(8.5)
NA | ND(1.7)
NA | ND(12) | ND(1.6)
ND(0.80) | ND(1.6) | ND(1,4) | | 1-Methylnaphthalene | NA NA | NA NA | NA NA | NA NA | ND(6.1)
0.88 J | ND(0.80) | ND(0.80)
0.54 J | ND(0.71)
0.10 J | | 2,4-Dimethylphenol | ND(0.35) | 0.14 J | 0.24 J | ND(0.35) | ND(6,1) | 1.1 | ND(0.80) | ND(0.71) | | 2,4-Dinitrophenol | ND(1.7) | ND(4.9) | ND(8.5) | ND(1,7) | ND(24) | ND(3.2) | ND(3.1) | ND(2.8) | | 2-Acetylaminofluorene | ND(0.71) | ND(2.0) | ND(3.5) | ND(0.69) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | 2-Chloronaphthalene | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | 2-Chlorophenol 2-Methylnaphthalene | ND(0.35)
ND(0.35) | ND(1.0)
ND(1.0) | ND(1.7) | ND(0.35) | 0.95 J | ND(0.80) | ND(0.80) | ND(0.71) | | 2-Methylphenol | ND(0.35) | 0.22 J | ND(1.7)
ND(1.7) | ND(0.35)
ND(0.35) | ND(6.1)
ND(6.1) | ND(0.80)
ND(0.80) | 0.35 J
ND(0.80) | ND(0.71)
ND(0.71) | | 3&4-Methylphenol | ND(0.35) | 0.26 J | 0.61 J | ND(0.35) | ND(6.1) | 1.0 | ND(0.80) | ND(0.71) | | 3,3'-Dichlorobenzidine | ND(1.7) | ND(4.9) | ND(8.5) | ND(1.7) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | 3,3'-Dimethoxybenzidine | NA | NA | NA | NA | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | 3,3'-Dimethy/benzidine | ND(1.7) | ND(4.9) | ND(8.5) | ND(1.7) | ND(12) | ND(1.6) | ND(1.6) | ND(1.4) | | 3-Methylcholanthrene | ND(0.71) | ND(2.0) | ND(3.5) | ND(0.69) | ND(6.1) | ND(0.80) | ND(0,80) | ND(0.71) | | 3-Phenylenediamine
4,6-Dinitro-2-methylphenol | NA
ND(1,7) | NA
ND(4.9) | NA ND(8.5) | NA ND(1.7) | ND(6.1)
ND(18) | ND(0.80)
ND(2.4) | ND(0.80)
ND(2.4) | ND(0.71) | | 4-Aminobiphenvl | ND(1.7) | ND(4.9) | ND(8.5) | ND(1.7) | ND(6.1) | ND(0.80) | ND(0.30) | ND(2.1)
ND(0.71) | | 4-Chlorobenzilate | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | 4-Nitrophenoi | ND(1.7) | ND(4.9) | ND(8.5) | ND(1.7) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | 7.12-Dimethylbenz(a)anthracene | ND(0.71) | ND(2.0) | ND(3.5) | ND(0.69) | ND(6.1) | ND(0.80) | ND(0.80) | NO(0.71) | | Acenaphthene | ND(0.35) | ND(1.0) | 0,19 J | 0.040 J | 1.8 J | 1.2 | 1.8 | 0.20 J | | Acenaphthylene Acetophenone | ND(0.35)
ND(0.35) | 0.10 J
ND(1 0) | 0.55 J | 0.071 J | ND(6.1) | 4.2 | 2.5 | 0.14 J | | Antine Action Antine | 0 21 J | 6.4 | ND(17)
9,8 | ND(0.35)
ND(0.35) | ND(6.1)
0.94 J | ND(0.80)
4.8 | ND(0.80)
ND(0.80) | ND(0.71)
0.28 J | | Anthracene | ND(0.35) | 0.12 J | 0.53 J | 9.11 J | 2.8 J | 39 | 8.8 | 0.283 | | Benzidine | ND(3.5) | ND(10) | ND(17) | ND(3.5) | 6.1 | ND(0.80) | ND(0.80) | ND(0.71) | | Benzo(a)anthracene | 0.12 J | 0.58 J | 1.6 J | 0.41 | 2,6 J | 14 | 24 E | 3.7 | | Benzo(a)pyrene | 0.15 J | 0.73 J | 2.1 | 0.54 | ND(6.1) | 23 | 13 E | 3.7 | | Benzo(b)fluoranthene | 0.15 J | 1.2 | 19 | 0.53 | 4.4 JZ | 16 | 28 EZ | 7.6 Z | | | 0.000 | | | 0.22 J | ND(6.1) | 15 | 6.3 | 1.3 | | Benzo(g,h,i)perylene | 0.080 J | 0.35 J | 0,85 J | | | | | | | Benzo(g,h,i)perylene
Benzo(k)fluoranthene | 017J | ND(1.0) | 2.2 | 0.57 | 4 4 JŽ | 25 | 28 EZ | 7.6 Z | | Benzo(g.h.i)perylene
Benzo(k)fluoranthene
Benzolc Acid | 0 17 J
NA | ND(1.0)
NA | 2.2
NA | 0.57
NA | 4 4 JZ
ND(61) | 25
ND(8.0) | 28 EZ
ND(8.0) | 7.6 Z
ND(7.1) | | Benzo(g,h,i)perylene
Benzo(k)fluoranthene | 017J | ND(1.0) | 2.2 | 0.57 | 4 4 JŽ | 25 | 28 EZ | 7.6 Z | | Averaging Area
Location ID: | | 4E
SL0153 | 4E
SL0314 | 4E
SL0342 | 4E
X-1 | 4E
Y-1 | 4E
Y-2 | 4E
Y-3 | |--|---|---|--|--|----------------------|------------------------------------|---|---------------------------------------| | Sample ID: | 080798SB17 | 081798CT27 | 082798MS14 | 083198MS14 | P2X010204 | P2Y010810 | P2Y020608 | P2Y030810 | | Sample Depth(Feet): Parameter Date Collected: | | 1-1.5
08/17/98 | 0-0.5
08/27/98 | 0-0.5
08/31/98 | 2-4
07/02/91 | 8-10
06/06/91 | 6-8
06/07/91 | 8-10
06/05/91 | | Semivolatile Organics (continued) | | | 1 | | i onedat | 1 0000031 | [05/0//5] | 1 00/03/91 | | Chrysene | 0.16 J | 0.77 J | 19 | 0.55 | 2.5 J | 16 | 20 E | 3.7 | | Cyclophosphamide Dibenzo(a,h)anthracene | NA NA | NA STATE | NA | NA NA | ND(30) | ND(3.9) | ND(3.9) | ND(3.4) | | Dibenzofuran Dibenzofuran | ND(0.35)
ND(0.35) | 0.12 J
ND(1.0) | 0.25 J | 0.064 J | ND(6.1) | 5.0 | 3.2 | 0.83 | | Di-n-Butyiphthalate | 0.039 ↓ | 1.8 | ND(1.7)
0.62 J | ND(0.35)
0.11 J | 0.72 J
ND(6.1) | ND(9.80) | 1.4 | ND(0.71) | | Di-n-Octylphthalate | ND(0.35) | ND(1.0) | ND(1.7) | ND/0.35) | ND(6,1) | 2.3
ND(0.80) | ND(0.80)
ND(0.80) | ND(0.71)
ND(0.71) | | Diphenylamine | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | ND(6.1) | ND(0.80) | ND(0.89) | ND(0.71) | | Fluoranthene | 0.28 J | 1.0 | 2.4 | 0.79 | 5.3 J | 13 | 22 E | 6.5 | | Fluorene | ND(0.35) | ND(1.0) | 9.18 J | 0.039 J | 1,2 J | 1.3 | 3.1 | ND(0.71) | | Hexachiorobenzene | ND(0.35) | ND(10) | ND(1.7) | 0 085 J | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | Indeno(1,2,3-cd)pyrene
Methapyrilene | 0.086 J | 0.37 J | 0.86 J | 0.21 J | ND(6.1) | 11 | 5.4 | 1.5 | | Naphthalene | ND(1,7)
ND(0.35) | ND(4.9)
ND(1.0) | ND(8.5) | ND(1.7) | ND(12) | ND(1.5) | ND(1.6) | ND(1.4) | | Nitrobenzene | ND(0.35) | ND(1.0) | ND(1.7)
ND(1.7) | ND(0.35)
ND(0.35) | 0.74 J
ND(6.1) | 1.5
ND(0.80) | 1.5
ND(0.80) | 0.14 J | | N-Nitroso-di-n-propylamine | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | 0.96 J | ND(0.80) | ND(0.80) | ND(0.71)
ND(0.71) | | N-Nitrosodiphenylamine | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | o-Toluidine | ND(0.71) | 0.18 J | 0.19 J | ND(0,69) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0.71) | | p-Dimethylaminoazobenzene | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0 71) | | Pentachlorobenzene | ND(0.35) | ND(1.0) | ND(1.7) | ND(0.35) | 2.6 J | ND(0.80) | ND(0.80) | ND(0.71) | | Pentachtoronitrobenzene Pentachtorophenol | ND(1.7)
ND(1.7) | ND(4.9) | ND(8.5) | ND(1.7) | ND(6.1) | ND(0.80) | ND(0,80) | ND(0,71) | |
Phenacetin | ND(1.7)
ND(0.71) | ND(4.9)
ND(2.0) | ND(8.5)
ND(3.5) | ND(1.7) | ND(12) | ND(1.6) | ND(1.6) | ND(1.4) | | Phenanthrene | 0.10 J | 0.65 J | 1.6 J | ND(0.69)
0.50 | ND(6,1)
2.0 J | ND(0.80) | ND(0.80) | ND(0.71) | | Phenol | ND(0.35) | 1.4 | 2.2 | 0.15 J | 2.0 J | 8.1 | 25 E
ND(0.80) | 4.5
ND(0,71) | | Pronamide | ND(0.71) | ND(2.0) | ND(3.5) | ND(0.69) | ND(6.1) | ND(0.80) | ND(0.80) | ND(0,71)
ND(0,71) | | Pyrene | 0.21 J | 0.83 J | 1.8 | 0.68 | ND(6.9) | 21 | 38 E | 4.4 | | Total Phenols | NA | NA | NA | NA | 4.8 | 0.95 | 0.27 | 0.27 | | Organochlorine Pesticides | | | | | | | *************************************** | ······· | | 4,4'-DDE | NA NA | NA NA | NA | ND(0.36) | ND(1.7) | ND(0.069) | ND(0.069) | ND(0.075) | | Aldrin
Delta-BHC | NA
NA | NA NA | NA | ND(0.36) | 6.9 | ND(0.020) | ND(0.020) | ND(0.021) | | Dieldrin | NA
NA | NA
NA | NA NA | ND(0.36) | ND(0.49) | ND(0.020) | ND(0.020) | ND(0.021) | | Endosulfan II | NA
NA | NA
NA | NA
NA | ND(0.36) | ND(0.74) | ND(0.029) | ND(0.029) | ND(0.032) | | Methoxychlor | NA NA | NA NA | NA NA | 0,91
ND(3,6) | ND(1.7)
ND(1.7) | ND(0.069)
ND(0.069) | ND(0.069)
ND(0.069) | ND(0.075) | | Toxaphene | NA | NA NA | NA NA | ND(14) | ND(9.9) | ND(0.069) | ND(0.39) | ND(0.075)
22 | | Organophosphate Pesticides | | · · · · · · · · · · · · · · · · · · · | | | 1 12 13.37 | 1 140(0.00) | 140(0.09) | £4. | | None Detected | NA | NA NA | NA | NA | | | _ | *- | | Herbicides | | | | | | | | | | 2.4,5-T | NA | NA NA | NA | NA | ND(0.031) | ND(0.25) | ND(0.025) | NA | | 2,4,5-TP | NA | NA NA | NA NA | NA | ND(0.031) | ND(0.25) | ND(0.025) | NA | | 2,4-D | NA | NA | NA | NA | ND(0.12) | ND(1.0) | ND(0.10) | NA | | Furans
2,3,7,8-TCDF | 0.000000 | | | | · | | | | | TCDFs (total) | 0.000039 g
0.00018 | 0.0011 gE
0.0030 | 0.0013 gEB
0.0087 | 0.00025 gB | NA NA | 0.015 | NA NA | 0.0010 | | 1,2,3,7,8-PeCDF | 0.00016 | 0.00069 | 0.0087 | 0.0012
0.00015 | NA
NA | 0.076
NA | NA
NA | 0.0052 | | 2,3,4,7,8-PeCDF | 0.000020 | 0.00041 | 0.0017 | 0.00019 | NA
NA | NA
NA | NA
NA | NA
NA | | PeCDFs (total) | 0.00044 | 0.0032 | 0.018 | 0.0019 | NA | 0.12 | NA NA | 0.0080 | | 1,2,3,4,7,8-HxCDF | 0.000021 | 0.00064 | 0.0045 | 0.00018 | NA | NA | NA | NA NA | | 1,2,3,6,7,8-HxCDF | 0.000014 F | 0.00018 | 0.0023 | 0.000077 | NA | NA | NA | NA | | 1,2,3,7,8,9-HxCDF | ND(0.00000039) | 0.0000089 | 0.00014 | 0,0000070 | NA NA | NA NA | NA | NA | | 2,3,4,6,7,8-HxCDF
HxCDFs (total) | 0.000016 | 0.000056 | 0.00057 | 0.000051 | NA | NA NA | NA ! | NA | | 1,2,3,4,6,7,8-HpCDF | 0.00037
0.000052 | 0.0019
0.00045 | 0.018 | 0.00094 | NA NA | 0.087 | NA NA | 0.0062 | | 7.2.3.4.7.8.9-HpCDF | 0.000059 | 0.00045 | 0.0039
0.0021 | 0.00027
0.000061 | NA
NA | NA NA | NA NA | NA | | HpCDFs (total) | 0.00011 | 0.00018 | 0.0021 | 0.00060 | NA
NA | NA
0.029 | NA
NA | NA
5 0005 | | CCDF | 0.000027 | 0.00091 | 0.0046 | 0.00031 | NA NA | 0.029 | NA NA | 0.0025
0.0016 | | Dioxins | | ··· | | | | 1 0.020 | 1073 | 0 00 10 | | 2,3,7,8-TCDD | ND(0.00000041) | 0.0000056 | 86000000 | 0.0000032 | NA | ND(0.0010) | NA I | ND(0.00012) | | CDDs (total) | 0.0000019 | 0.000031 | 0.00012 | 0.000042 | NA | ND(0.0011) | NA NA | ND(0.00012) | | | ND(0.0000013) | 0.0000069 | 0.000021 | 0.0000045 | NA | NA | NA NA | NA NA | | ,2.3,7,8-PeCDD | | | | | NA | 10000000000 | | | | ,2,3,7,8-PeCDD
PeCDDs (total) | ND(0.0000033) | 0.0000069 | 0.00023 | 0.000032 | | ND(0.00078) | NA I | ND(0.00019) | | 1,2,3,7,8-PeCDD
PeCDDs (total)
1,2,3,4,7,8-HxCDD | ND(0.0000033)
ND(0.0000010) | 0.0000069
0.0000077 | 0.000027 | 0.0000044 | NA | NA | NA | NA NA | | ,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD | ND(0.0000033)
ND(0.0000010)
ND(0.0000012) | 0.0000069
0.0000077
0.000011 | 0.000027
0.000051 | 0.0000044j
0.000011 | NA
NA | NA
NA | NA
NA | NA
NA | | .2.3,7,8-PeCDD PeCDDs (total) .2.3,4,7,8-HxCDD .2.3,6,7,8-HxCDD .2.3,7,8,9-HxCDD | ND(0.0000033)
ND(0.0000010)
ND(0.0000012)
ND(0.0000014) | 0.0000069
0.0000077
0.600011
0.000020 | 0.000027
0.000051
0.000067 | 0.0000044 j
0.000011
0.0000073 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | .2.3,7,8-PeCDD PeCDDs (total) 2.3,4,7,8-HxCDD 2.3,6,7,8-HxCDD 2.3,7,8-HxCDD 4xCODs (total) | ND(0.0000033)
ND(0.0000010)
ND(0.0000012)
ND(0.0000014)
0.0000073 | 0.0000069
0.0000077
0.000011
0.000020
0.00011 | 0.000027
0.000051
0.000067
0.00056 | 0.0000044 j
0.000011
0.0000073
0.00011 | NA
NA
NA
NA | NA
NA
NA
NO(0.0018) | NA
NA
NA
NA | NA
NA
NA
ND(0.00022) * | | ,2,3,7,8-PeCDD
PeCDDs (total)
,2,3,4,7,8-HxCDD | ND(0.0000033)
ND(0.0000010)
ND(0.0000012)
ND(0.0000014)
0.0000073
0.000014 | 0.0000069
0.0000077
0.000011
0.000020
0.00011
0.000092 | 0.000027
0.000051
0.000067
0.00066
0.90028 | 0.0000044 j
0.000011
0.0000073
0.00011
0.00018 | NA
NA
NA
NA | NA
NA
NA
ND(0.0018)
NA | NA
NA
NA
NA
NA | NA
NA
NA
ND(0.00022) *
NA | | .2.3,7,8-PeCDD PeCDDs (total) .2.3,4,7,8-HxCDD .2.3,6,7,8-HxCDD .3.3,7,8,9-HxCDD 4xCDDs (total) .2.3,4,6,7,8-HpCDD | ND(0.0000033)
ND(0.0000010)
ND(0.0000012)
ND(0.0000014)
0.0000073 | 0.0000069
0.0000077
0.000011
0.000020
0.00011 | 0.000027
0.000051
0.000067
0.00056 | 0.0000044 j
0.000011
0.0000073
0.00011 | NA
NA
NA
NA | NA
NA
NA
NO(0.0018) | NA
NA
NA
NA | NA
NA
NA
ND(0.00022) * | | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4E
SL0025
080798SB17
0-0.5
08/07/98 | 4E
SL0153
081798CT27
1-1.5
08/17/98 | 4E
SL0314
082798MS14
0-0.5
08/27/98 | 4E
SL0342
083198MS14
0-0.5
08/31/98 | 4E
X-1
P2X010204
2-4
07/02/91 | 4E
Y-1
P2Y010810
8-10
06/96/91 | 4E
Y-2
P2Y020608
6-8
06/07/91 | 4E
Y-3
P2Y030810
8-10
06/05/91 | |------------|---|---|---|---|---|---|--|---|--| | inorganics | | | | | | , | | | | | Afaminum | | NA | NA | NA | NA | 11100 | 8350 | 8090 | 7830 | | Antimony | | 0 790 B | 21.4 | 630 | 0.800 B | ND(4.00) N | 19.5 | 170 * | ND(2.50) * | | Arsenic | | 5 20 | 11.1 | 10.9 | 3.30 | 14.5 N | 9.10 N | 0 AN | 5.90 QN | | Barium | | 27.5 | 57.9 | 78.1 | 34.4 | 46.9 | 505 N* | 271 N* | 115 N* | | Beryllium | | 0.310 B | 0.380 8 | 0.410 B | 0.270 B | 0.200 B | 0.250 B | 0.270 B | 0.290 B | | Cadmium | | 0.150 B | 29.0 | 2.30 | 0,0990 8 | 7.09 | 2.20 | 4,40 | 1.30 | | Calcium | | NA | NA | NA | NA | 16800 E* | 14600 | 11500 | 14500 | | Chromium | | 9.50 | 159 | 52.3 | 14.2 | 54.2 | 75.4 | 66.7 | 41.8 | | Cobalt | | 9 80 | 13,7 | 16.7 | 7.60 | 15.8 | 12.5 | 11.2 | 8.10 | | Copper | | 18.4 | 25400 | 420 | 26.4 | 289 * | 939 | 860 | 331 | | Cyanide | | ND(2.70) | ND(3.80) | ND(2.70) | ND(2.60) | ND(0.520) | NA. | NA NA | NA | | ron | | NA | NA NA | NA | NA | 39800 E | 34200 E | 27900 E | 21900 E | | Lead | | 10.6 | 20400 | 473 | 38.9 | 142 | 1420 * | 1490 | 610 ° | | Magnesium | | NA | NA NA | NA | NA | 18500 | 7460 | 8760 | 10000 | | Manganese | | NA | NA , | NA | NA | 1940 | 574 | 574 | 373 | | Mercury | | 0.0290 B | 0,990 | 1,60 | 0.120 | 5.50 N* | 0.670 | 9.350 ° | 0.620 * | | Nickel | | 17.4 | 126 | 37.8 | 14.2 | 72.4 | 49.4 E | 47.1 E | 30.7 E | | Potassium | | NA | NA | NA | NA | 1050 | 643 | 487 B | 580 | | Selenium | | ND(0.540) | 1.10 | 1.00 | 0.630 | ND(2.50) N | ND(0.350) W | ND(0) W | ND(0,340) W | | Silver | | ND(1.10) | 12.4 | 5.60 | 0,380 B | ND(0.610) N | 2.00 N | 2.70 N | ND(0.560) N | | Sodium | | NA | NA. | NA | NA | 185 B | 179 B | 180 B | 115 8 | | Sulfide | | ND(214) | ND(304) | ND(212) | 148 B | ND(12.3) | 166 | 16.0 | ND(11.2) | | Thallium | | 0.790 B | 1.70 | 1.10 | 0.770 B | ND(0.250) WN | ND(0.350) W | ND(0) W | ND(0.340) W | | Tin | | ND(10.7) | 6350 | 26.0 | ND(10.5) | NA NA | NA NA | NA NA | NA NA | | Vanadium | | 12.8 | 19.1 | 20.9 | 16.4 | 29.4 | 16.2 | 14.8 | 12.4 | | Zinc | | 77.2 | 9750 | 742 | 112 | 257 E | 2070 * | 1870 * | 548 * | | Averaging Area:
Location ID:
Sample ID: | Y-4
P2Y040406 | 4E
Y-5
P2Y050406 | 4E
Y-6
P2Y060406 | 4E
Y-7
P2Y07040 | |--|------------------------------------|--|--|------------------------------| | Sample Depth(Feet): | 4-6 | 4-6 | 4-6 | 4-6 | | Parameter Date Collected: | 06/05/91 | 06/06/91 | 06/11/91 | 06/06/91 | | Volatile Organics | | | | | | 1,1,1-Trichloroethane | ND(0.0060) | ND(0.0050) | ND(0,0000) | ND(0.0060 | | 1,1,2,2-Tetrachloroethane | NO(0.012) | ND(0.012) | NO(0.012) | ND(0.012) | | 1,1,2-trichioro-1,2,2-trifluoroethane | 0.0030 BJ | 0 0040 BJ | 0.0030 BJ | 0.0040 BJ | | 1,1-Dichloroethane | ND(0.0060) | (0000,0)CM | ND(0 0060) | ND(0.0060 | | 1.2-Dibromo-3-chioropropane | ND(0.012) | ND(0.012) | NO(0,012) | ND(0.012) | | 1.2-Dichlorobenzene | NO(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | 1,2-Dichloroethane | ND(0.0060) | ND(0.0060) | ND(0.0050) | ND(0.0050 | | 1,3-Dichlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | 1,4-Dichlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | | | 1,4-Dioxane | NA
NA | NA NA |
1 | ND(0.81) | | 2-Butanone | ND(0.012) | | NA
NA | NA | | Acetone | 0.021 B | ND(0.012) | ND(0.012) | ND(0.012) | | Acetonitrise | | ND(0.022) | 0.051 B | 0.017 B | | | NA NA | NA NA | NA NA | NA NA | | Acrylonitrile | ND(0.15) | ND(0.14) | ND(0.15) | ND(0.15) | | Benzene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060 | | Darbon Disulfide | ND(0.0050) | ND(0,0060) | ND(0.0060) | ND(0.0060 | | Chlorobenzene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060 | | Crotonaldehyde | ND(0.12) | ND(0.12) | ND(0.12) | ND(0.12) | | thylbenzene | ND(0.0060) | 0.00 3 0 J | ND(0.0060) | ND(0.0060 | | sobutanol | NA | NA | NA | NA | | n&p-Xylene | NA . | NA | NA | NA | | Methylene Chloride | 0.029 B | ND(0.047) | 0.045 B | 0.031 B | | Propionitrile | NA NA | NA NA | NA | NA. | | Styrene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0,0060) | | etrachloroethene | ND(0.0060) | ND(0.0060) | ND(0.0060) | ND(0.0060) | | foluene | ND(0.0060) | | | | | richloroethene | | ND(0.0060) | ND(0.0060) | ND(0.0060) | | | ND(0,0060) | ND(0.0060) | ND(0.0060) | ND(0.0050) | | richlorofluoromethane | ND(0.0060) | ND(0.0050) | ND(0.0060) | ND(0.0060) | | /inyl Chloride | ND(0.012) | ND(0.012) | ND(0.012) | ND(0.012) | | (ylenes (total) | ND(0.0060) | 0.0030 J | ND(0.0060) | ND(0.0060) | | Semivolatile Organics | | | | | | ,2,3,4-Tetrachlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | ,2,3,5-Tetrachlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0,81) | | ,2,3-Trichlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | ,2,4,5-Tetrachlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | .2,4-Trichlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | 3,5-Trichlorobenzene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | ,3,5-Trinitrobenzene | ND(12) | ND(12) | ND(0.82) | ND(1.6) | | -Chloronaphthalene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | -Methylnaphthalene | 2.1 J | 29 | ND(0.41) | | | .4-Dimethylphenol | ND(6.0) | | | 0.083 J | | .4-Dinitrophenol | | 1.4 J | ND(0.41) | ND(0.81) | | -Acetylaminofluorene | ND(24) | ND(23) | ND(1.6) | ND(3.2) | | | ND(6.0) | ND(5.0) | ND(0,41) | ND(0.81) | | -Chloronaphthalene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | -Chlorophenol | ND(6.0) | ND(6.0) | ND(0.41) | ND(0,81) | | -Methylnaphthalene | 1.1 J | 18 | ND(0.41) | ND(0,81) | | -Methylphenol | ND(6.0) | 0,63 J | ND(0.41) | ND(0.81) | | &4-Methylphenol | ND(6.0) | 1.5 ป | ND(0.41) | ND(0.81) | | ,3'-Dichlorobenzidine | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | ,3'-Dimethoxybenzidine | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | ,3'-Dimethylbenzidine | ND(12) | ND(12) | ND(0.82) | ND(1.6) | | -Methylcholanthrene | ND(6.0) | ND(6.0) | ND(0.41) | 0.098 J | | -Phenylenediamine | ND(6,0) | ND(6.0) | ND(9.41) | ND(0.81) | | 6-Dinitro-2-methylphenol | ND(18) | ND(18) | ND(1.2) | ND(2.4) | | -Aminobiphenyl | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | -Chlorobenzilate | ND(6.0) | ND(6.0) | ND(0.41) | | | -Nitrophenol | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | ,12-Dimethylbenz(a)anthracene | ND(6.0) | | | ND(0.81) | | cenaphthene | | ND(6.0) | ND(0.41) | ND(0.81) | | cenaphthylene | 3.1 J | 61 | ND(0.41) | 0.12 J | | | ND(6.0) | 1.3 J | ND(0.41) | 0.16 J | | cetophenone | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | orline | ND(5.0) | ND(6.0) | ND(0.41) | ND(0.81) | | nthracene | 11 | 98 E | ND(0.41) | 0.68 J | | | ND(6.0) | ND(5.0) | ND(0.41) | ND(0.81) | | | | 120 E | 0.15 J | 2.5 | | enzidine | 33 | | | | | enzidine
enzo(a)anthracene | | | 0.18./ | 2.8 | | enzidine
enzo(a)anthracene
enzo(a)pyrene | 24 | 99 E | 0.18 J
0.30 JZ | 2.8 | | enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene | 24
48 Z | 99 E
180 E | 0.30 JZ | 2.0 | | enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene | 24
48 Z
14 | 99 E
180 E
40 | 0.30 JZ
0.073 J | 2.0
1.1 | | enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(b,h.i)perylene enzo(b)fluoranthene | 24
48 Z
14
48 Z | 99 E
180 E
40
180 E | 0.30 JZ
0.073 J
0.30 JZ | 2.0
1.1
4.6 | | enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(b,h.i)perylene enzo(k)fluoranthene enzo(k)diuoranthene enzo(k)diuoranthene | 24
48 Z
14
48 Z
ND(60) | 99 E
180 E
40
180 E
ND(60) | 0.30 JZ
0.073 J
0.30 JZ
ND(4.1) | 2.0
1.1
4.6
ND(8.1) | | enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(b,h.i)perylene enzo(b)fluoranthene | 24
48 Z
14
48 Z | 99 E
180 E
40
180 E | 0.30 JZ
0.073 J
0.30 JZ | 2.0
1.1
4.6 | | * | eraging Area:
Location ID:
Sample ID:
Depth(Feet): | 4E
Y-4
P2Y040406
4-6 | 4E
Y-5
P2Y050406
4-6 | 4E
Y-6
P2Y060406 | 4E
Y-7
P2Y070406 | |---|---|---|-------------------------------|--------------------------|--------------------------| | | te Collected: | 06/05/91 | 06/06/91 | 4-6
06/11/91 | 4-6
06/06/91 | | Semivolatile Organics | | 90.00701 | T CONDOCUTE | ; 00111101 | 00,00051 | | Chrysene | 1 | 31 | 120 E | 0.18 J | 2.3 | | Cyclophosphamide | | ND(29) | ND(29) | ND(2.0) | ND(4.0) | | Dibenzo(a,h)anthracene | 2 | 6.2 | 20 | ND(0.41) | 0473 | | Dibenzoturan | | ND(6.0) | 47 | ND(0.41) | 0.13 J | | Oi-n-Butylphthalate | | ND(6.0) | ND(6.0) | ND(0.41) | 0.11 J | | Di-n-Octylphthalate | | ND(6.0) | NE(6.0) | ND(0.41) | ND(0.81) | | Diphenylamine | | ND(6.0) | ND(6.0) | ND(9.41) | ND(0.81) | | Fluoranthene | | 55 | 260 E | 0.18 J | 4.2 | | Fluorene | | 5.9 √ | 67 | ND(0,41) | 0 19 J | | Hexachioroberzene | | ND(6.0) | ND(6.0) | ND(0,41) | ND(0.81) | | Indeno(1,2,3-cd)pyrene | | 13 | 39 | 0.062 J | 1,1 | | Methapyniene | | ND(12) | ND(12) | ND(0.82) | ND(1.6) | | Naphthalene | | 2,4 J | 66 | ND(0.41) | 0.123 | | Nitrobenzene | | ND(6.0) | ND(6.0) | 0.10 J | ND(0.81) | | N-Nitroso-di-n-prepylan | | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | N-Nitrosodiphenylamine | | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | o-Toluidine | | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | p-Dimethylaminoazober
Pentachlorobenzene | vene | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | | | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | Pentachloronitrobenzen
Pentachlorophenol | e | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | Pentachlorophenol
Phenacetin | | ND(12) | ND(12) | ND(0,82) | ND(1.6) | | Phenaceun
Phenanthrene | | ND(6.0)
64 | ND(6.0) | ND(0.41) | ND(0.81) | | Phenol | | ND(6,0) | 270 E
ND(6.0) | 0.080 J | 2.6 | | Pronamide | | ND(6.0) | ND(6.0) | ND(0.41) | ND(0.81) | | Pyrene | | ND(0.0)
54 | 180 E | ND(0.41)
0.21 J | ND(0.81) | | Total Phenois | | 0.20 | 14 | ND(0.13) | 4.4
ND(0.11) | | Organochlorine Pestic | idae | 0.20 | 14 | ND(0.13) | 140(0.11) | | 4,4'-DDE | ildes | NO(0.040) | MB/D 471 | NEGO COCA | NEVO CORE | | 4,4 -DDE
Aldrin | | ND(0.043)
ND(0.012) | ND(0.17) | ND(0.0034) | ND(0.0035) | | Delta-BHC | | ND(0.012) | ND(0.048)
ND(0.048) | ND(0,0010) | ND(0.0010) | | Dieldrin | | ND(0.012) | ND(0.048) | ND(0.0010)
ND(0.0015) | ND(0.0010) | | Endosulfan II | | ND(0.043) | ND(0.073) | ND(0.0013) | ND(0.0015)
ND(0.0035) | | Methoxychlor | | ND(0.043) | ND(0.17) | ND(0.0034) | ND(0.0035) | | Toxaphene | | ND(0.24) | ND(0.97) | ND(0.0034) | ND(0.020) | | Organophosphate Pes | ticides | .10(0.21) | 11010.01 | 1412(0.020) | (10/0.020) | | None Detected | T | | | | | | Herbicides | | | | | | | 2, 4 ,5-T | | NA] | ND(0.025) | ND(0.031) | ND(0.031) | | 2,4,5-TP | | NA NA | ND(0.025) | ND(0.031) | ND(0.031) | | 2.4-D | ——— — | NA NA | ND(0.023) | ND(0.031) | ND(0.031) | | urans | <u>-</u> | | 110(0.10) | 145(0.10) | ND(0,12) | | 2,3,7,8-TCDF | | ND(0.0013) | NA | NA | NA | | CDFs (total) | | ND(0.0013) | NA
NA | NA NA | NA
NA | | 1.2,3,7,8-PeCDF | | NA NA | NA NA | NA NA | NA
NA | | 2,3,4,7,8-PeCDF | | NA NA | NA NA | NA NA | NA NA | | PeCDFs (total) | | ND(0.0010) | NA NA | NA NA | NA
NA | | 1,2,3,4,7,8-HxCDF | | NA NA | NA NA | NA NA | NA NA | | 1,2,3.6,7,8-HxCDF | | NA | NA | NA NA | NA | | 1,2,3,7,8,9-HxCDF | 1 | NA | NA NA | NA NA | NA | | 2,3,4,6,7,8-HxCDF | | NA | NA | NA | NA | | HxCDFs (total) | | ND(0.00097) | NA | NA | NA | | 1,2,3,4,6,7,8-HpCDF | | NA NA | NA | NA | NA | | ,2,3,4,7,8,9-HpCDF | | NA NA | NA | NA | NA | | tpCDFs (total) | | ND(0.0018) | NA | NA | NA | | DCDF | T | ND(0.0015) | NA | NA | NA | | Dioxins | | | | | | | ,3,7,8-TCDD | | ND(0.0010) | NA NA | NA | NA | | CDDs (total) | | ND(0.0012) | NA | NA | NA | | ,2,3,7,8-PeCDD | | NA . | NA | NA | NA | | PeCDDs (total) | | ND(0.0019) | NA | NA | NA | | ,2,3,4,7,8-HxCDD | | NA | NA | NA İ | NA | | ,2,3,6,7,8-HxCDD | | NA | NA | NA . | NA | | .2.3.7.8.9-HxCDD | | NA | NA | NA | NA | | (xCDDs (total) | | ND(0.0017) | NA | NA | NA | | ,2,3,4,6,7,8-HpCDD | | NA | NA | NA NA | NA | | HpCDDs (total) | | ND(0.0016) | NA NA | NA I | NA | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | DCDD (total) | | ND(0.0016) | NA | NA | NA | #### PRE-DESIGN INVESTIGATION REPORT FOR THE EAST STREET AREA 2-SOUTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm) | Parameter | Averaging Area:
Location ID:
Sample ID:
Sample Depth(Feet):
Date Collected: | 4E
Y-4
P2Y040406
4-6
06/05/91 | 4E
Y-5
P2Y050406
4-6
06/06/91 | 4E
Y-8
P2Y050406
4-6
06/11/91 | 4E
Y-7
P2Y070406
4-6
06/06/91 | |------------|---|---|---|---|---| | Inorganics | | | | | | | Aiuminum | | 8340 | 6030 | 8350 | 19300 | | Antimony | | ND(2.50) *
 ND(2.80) * | ND(2.80)* | ND(2.50) * | | Arsenic | | 22.3 | 19,1 N | 3 60 QN | 6.30 N | | Barium | | 8720 N° | 135 N* | 61.7 N° | 94.2 N* | | Beryllium | | 0,600 | 0.240 B | 0.270 B | 0,500 B | | Cadmium | | 2.00 | 3.10 | 0,590 B | 1.29 | | Calcium | | 40500 | 18100 | 8560 | 44700 | | Chromium | 1 | 17.2 | 30.8 | 16.2 | 14 2 | | Cobalt | | 7.20 | 5.90 B | 9.10 | 8.10 | | Copper | | 237 | 527 | 126 | 191 | | Cyanide | | NA | NA | NA | NA NA | | Iron | | 17700 E | 18700 E | 26800 E | 23000 E | | Lead | | 140 * | 769 | 695 * | 90.2 * | | Magnesium | | 7560 | 4520 | 6170 | 24800 | | Manganese | | 291 | 250 | 303 | 1530 | | Mercury | | ND(0.110) * | 0.140 * | ND(0.110) * | ND(0.110) * | | Nicke! | | 19.0 E | 20.6 E | 18.0 E | 12.0 E | | Potassium | | 715 | 408 B | 634 | 2240 | | Selenium | | ND(0.350) W | ND(0.380) W | ND(0.380) W | ND(0.340) W | | Silver | | ND(0.580) N | ND(0.630) N | ND(0.620) N | ND(0.560) N | | Sodium | | 195 B | 157 B | 194 B | 664 | | Sulfide | | 180 | 189 | ND(12.5) | 274 | | Thallium | | ND(0.350) | ND(0.380) W | ND(0.380) W | ND(0.340) W | | Tin | | NA | NA | NA | NA | | Vanadium | | 20.5 | 18.3 | 14.9 | 25.0 | | Zinc | | 2090 * | 656 * | 178 * | 140 * | #### Notes: - 1. Samples were collected and analyzed by General Electric Company subcontractors for Appendix IX + 3 constituents. - 2. ND Analyte was not detected. The number in parentheses is the associated detection limit. - 3. NA Not Analyzed Laboratory did not report results for this analyte. - 4. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998 - 5. NC Not Calculated. Insufficient data to calculate TEQs. - 6. With the exception of dioxin/furans, only those constituents detected in at least one sample are summarized. #### Data Qualifiers: - Organics (volatiles, PCBs, semivolatiles, dioxin/furans) B Analyte was also detected in the associated method blank. - E Analyte exceeded calibration range. - J Indicates that the associated numerical value is an estimated concentration. - X Estimated Maximum Possible Concentration - Y ~ 2,3,7,8-TCDF results have been confirmed on a DB-225 column. - Z Coeluting indistinguishable isomers could not be chromatographically resolved in the sample. - g 2,3,7,8-TCDF results have been confirmed on a DB-225 column. - v Indicates an elevated detection limit due to chemical interference. #### Inorganics - B Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL). - N Indicates sample matrix spike analysis was outside control limits. - E Serial dilution results not within 10%. Applicable only if analyte concentration is at least 50X the IDL in original sample - Q Indicates furnace matrix spike analysis was outside control limits. - W GFAA Analytical spike recovery outside of range of 85% to 115% in a sample which exhibits a low concentration of analyte. Unspiked response must be < 50% of spiked sample response. - Indicates laboratory duplicate analysis was outside control limits.