

Transmitted Via Federal Express

November 18, 1998

Bryan Olson Dean Tagliaferro Site Evaluation and Response Section (HBR) U.S. Environmental Protection Agency One Congress Street Boston, MA 02203-2211 Copulare Environmental Programs General Electric Campany 100 Woodlown Avenue: Platsfield: MA 01201

Alan Weinberg Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: Source Control Investigations and Preliminary Containment Barrier Design for East Street Area 2, General Electric Company, Pittsfield, Massachusetts DEP Site No. 1-0146, USEPA Area 4

Dear Mr. Olson, Mr. Tagliaferro, Mr. Weinberg:

I. INTRODUCTION

The General Electric Company (GE) has recently completed field work related to non-aqueous phase liquids (NAPLs) previously detected and addressed at USEPA Area 4/MCP East Street Area 2 in Pittsfield, Massachusetts (the Site). More specifically, the field work provided further information concerning subsurface conditions in the vicinity of existing 64V oil recovery system and near the adjacent riverbank area (the area). This letter summarizes the results of the field investigations conducted thus far in this area, and presents preliminary design information concerning the activities identified by GE to supplement the NAPL containment/recovery measures that are currently in place in this area.

The work described in this letter satisfies certain requirements of the United States Environmental Protection Agency (USEPA), as presented in its letter dated August 14, 1998 and as subsequently addressed by GE in a document entitled *Source Control Work Plan - Upper Reach of Housatonic River (First ½ Mile)*, dated September 1998 (Work Plan). As previously indicated in the Work Plan, GE believes that its current containment/recovery measures control any significant migration of NAPLs in the riverbank area. Although the results of the recent field work (summarized herein) do not alter GE's position regarding this matter, pursuant to its commitment presented in the Work Plan, GE will proceed with the design and installation of an additional NAPL containment barrier in this area.

In addition to summarizing the results of the field work conducted thus far, this letter provides preliminary information concerning the design of a proposed containment barrier. This containment barrier will be installed to supplement existing containment/recovery measures that are currently in place to address light NAPLs (i.e., LNAPLs). Additionally, this letter includes a proposal to further evaluate the detection of coal-tar derived dense NAPLs (DNAPLs) in this area, and propose certain recovery measures if warranted.

With concurrence from the USEPA and the Massachusetts Department of Environmental Protection (the Agencies) regarding the contents of this letter (specifically the preliminary containment barrier design information), GE will coordinate purchase and delivery of the necessary materials (i.e., steel sheetpiling) to allow the start of sheetpile installation this year. Prior to the implementation of the LNAPL containment barrier, GE will prepare a detailed Investigation Summary and Design Report for this area that will provide more detailed information concerning the results of the pre-design investigations, the final design for the LNAPL containment barrier, and additional evaluations regarding potential recovery of DNAPLs.

II. INVESTIGATION SUMMARY

A. Field Investigations

The scope of field investigations just conducted in the subject area were identified in response to the USEPA's August 14, 1998 letter (requiring such activities). The Work Plan was conditionally approved in a letter from the USEPA dated October 6, 1998. Subsequently, between October 7 and November 10, 1998, HSI/GeoTrans, Inc. advanced a total of 19 soil borings at 17 locations (E2SC-1 through E2SC-17). The majority of these soil borings were installed in the area of the existing 64V oil recovery system, the existing slurry wall, and the adjacent riverbank area (see Figure 1). Borings E2SC-12 and E2SC-15 are located to the southwest in the Building 60 and 61 areas, respectively. During the performance of these field investigations, oversight of GE's activities was performed by the USEPA, through use of an oversight contractor.

For each soil boring, representative soil samples were collected and analyzed for polychlorinated biphenyls and other hazardous constituents listed in Appendix IX of 40 CFR 264 [excluding herbicides/pesticides and including benzidene, 2-chloroethylvinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3)]. Attachment A to this letter provides the soil boring logs that were prepared for each location, indicating the visual classification of the materials encountered; the presence of saturated soil conditions (indicating the general presence of groundwater); visual evidence of discoloration, staining, sheens, or non-aqueous liquids; and results of standard penetration testing. Table 1 lists the soil samples that were collected from each boring and the associated laboratory analyses. Table 2 presents the preliminary results of PCB analyses, while Attachment B provides the results of Appendix IX+3 analyses available to date.

Following drilling, a number of the soil borings were converted into monitoring wells to monitor the subsurface soils for the presence of NAPLs. A total of 13 wells were installed based on the locations and selection criteria proposed in the Work Plan and comments included in the USEPA's approval letter. Table 3 summarizes the boring and well construction details. Once installed, the wells were gauged periodically for water level elevation and the presence of NAPLs. Table 4 presents the results of the periodic well gauging effort.

Of the 13 recently installed monitoring wells, a measurable thickness of LNAPL was detected in only one well, ES2SC-6. However, the NAPL in this well is very viscous and appears (based on field observations) to be a mixture of LNAPL and DNAPL. A sheen was also noted on the oil/water interface probe on one occasion in shallow well E2SC-16S. Measurable accumulations of DNAPL have been detected in two wells (E2SC-3I and E2SC-17). In well E2SC-16I, a trace of DNAPL was noted on the oil/water interface probe. Sheens have also been detected sporadically on the probe when measuring deep wells E2SC-1, E2SC-2, E2SC-4, and E2SC-9. In addition to periodic well gauging, a sample of the accumulated DNAPL from well E2SC-3I was submitted for analysis of PCBs and Appendix IX+3 constituents. The preliminary analytical results are summarized on Table 5.

B. Preliminary Findings

The data collected from the recent soil borings and monitoring wells -- combined with data available from prior investigations in this portion of East Street Area 2 -- have been used to further delineate the type(s) of subsurface deposits present in this area and to assess the depth to the basal till layer. Using the data, a preliminary till elevation contour map has been developed for the subsurface area in the vicinity of the riverbank (Figure 2). In addition, a preliminary geologic cross section

generally parallel to the river has been prepared and is included as Figure 3 (the location of the cross section is shown on Figure 2). This information illustrates that the depth to till is approximately 30 to 45 feet below ground surface in the riverbank area, which is generally consistent with previous estimates. Overlying the till layer are stratified sand, gravel, and silt deposits, which are described in the attached boring logs and shown on the cross section (information concerning the grain size distribution of the overlying materials is presented in Attachment C).

With respect to the presence of NAPLs, information from the soil boring logs (Attachment A) and well gauging activities (Table 4) indicate that certain areas of soil staining, sheens, and separatephase light and dense NAPLs are present within the subsurface soils. The information related to soil staining/discoloration and presence of sheens in the area associated with LNAPL is generally consistent with prior investigation results. With respect to DNAPLs, they occur within the general area of boring locations E2SC-3I and E2SC-17. This corresponds to a depression in the basal till layer located approximately 40 to 45 feet below ground surface -- or approximately 25 to 30 feet below the river bed. Visual and chemical information (Table 5) associated with this DNAPL indicates that the material is similar to typical coal tar residuals. Numerous semi-volatile organic compounds were detected with individual constituent concentrations up to 110,000 parts per million (naphthalene). PCBs were not detected in the DNAPL sample. The identification of coal tars is consistent with the results of previous investigations within East Street Area 2, where coal tar DNAPLs have been detected in wells located north and west of the newly installed wells (this general area is downgradient of a former manufactured gas facility). Prior monitoring has detected DNAPL in wells 28, 64V, and ES2-6 although no DNAPL has been detected in ES2-6 during monthly monitoring which was initiated in May 1996. Periodic gauging of the newly installed wells indicates a measured DNAPL thickness of approximately 5 feet in well E2SC-3I (Table 4).

III. PRELIMINARY CONTAINMENT BARRIER DESIGN

Based on the field work described in this letter, GE has identified future LNAPL and DNAPL containment/recovery measures to meet the requirements of the Work Plan as approved by the USEPA. As described below, GE proposes to continue the ongoing LNAPL recovery operations, and to expand those operations to include the installation of a sheetpile-based containment barrier along the riverbank. With respect to DNAPLs, GE will evaluate the need for, scope of, and potential effectiveness of an active recovery system. Additional information concerning these activities is provided below.

The proposed location of the LNAPL containment barrier is shown on Figure 4. Information concerning visual evidence of soil staining, sheens, depth to groundwater, and laboratory analytical results have been considered in selecting this location. In addition, the objectives of the source control activities as they relate to the future Housatonic River bank soil and sediment removal project in this stretch of the river were also considered (i.e., the possible removal of bank soils and sediments from this area and the structural support needed to brace the remaining riverbank during such activities). The horizontal extent of the proposed containment barrier has been selected to include those recent and prior soil borings and monitoring wells where separate-phase LNAPL has been detected in the vicinity of the riverbank. At many of these locations, the LNAPL appears to be present at residual saturation levels.

The western end of the proposed containment barrier will include existing well PZ-1S, where separatephase LNAPL has been detected. In that area, the containment barrier will conservatively extend to include soil boring SB-1 and recent soil boring E2SC-10 (even though no evidence of LNAPLs or soil staining has been observed). The eastern end of the proposed containment barrier will include well PZ-4S, where separate-phase LNAPLs have been detected. The proposed containment barrier will also extend to include existing wells 54 and E2SC-16, where some evidence of soil staining has been identified. However, it should be noted that separate-phase LNAPL has not been measured in either of these wells (well 54 has been monitored on a semi-annual basis since 1988). As presented above, the length of the containment barrier along the riverbank is approximately 350 feet. With the addition of wing walls (to aid in directing the flow of groundwater and the capture of any LNAPLs), the overall length of the proposed containment barrier is approximately 450 feet.

With respect to the vertical extent of the proposed containment barrier, a minimum elevation of approximately 960 feet has been selected for the bottom elevation of the sheetpile wall. This elevation is based on a number of considerations, including the results of the subsurface soil investigations, i.e., visual evidence concerning the vertical extent of LNAPL soil staining, sheens, etc., and information concerning the typical (i.e., seasonal) and historic fluctuations in groundwater elevations along the riverbank. Based on these considerations, the proposed containment barrier will be adequate to effectively capture any LNAPLs that may potentially migrate toward the river. The proposed containment barrier supplements (as a conservative measure) the existing LNAPL controls already in place, i.e., an approximate 400-foot soil-bentonite slurry wall, four active LNAPL pumping wells, and the riverbank boom/containment system.

Regarding the installation of the containment barrier relative to the riverbank, GE has selected a location within the lower portion of the bank adjacent to the typical edge of water. This location has been selected based on several considerations, including the performance of future sediment and bank soil removal actions within this river reach and the ability to contain any LNAPLs that may be present within the riverbank. A conceptual cross section of the proposed containment barrier is provided on Figure 5. Based on a minimum bottom elevation of 960 feet, and a ground surface elevation corresponding to the proposed installation location (ranging from approximately 975 to 978 feet), the necessary vertical length of sheetpiling for the containment barrier is approximately 15 to 18 feet. However, considering preliminary information and calculations regarding the possible removal of bank soils and river sediments, a 20-foot installation depth is anticipated to provide the necessary structural support (including an appropriate factor-of-safety) during excavation activities. Therefore, it is likely that in certain areas, the depth of the sheetpiling will extend to an elevation below 960 feet.

The type of sheetpile to be used for the proposed containment barrier will be consistent with that currently being installed near GE's Building 68 area (i.e., Waterloo-type sheetpile). Waterloo sheetpiling is used to create a low-permeability sheetpile wall that utilizes specially designed sheetpile joints and clay/cement grout, to minimize any potential for water leakage through the sheetpile sections. Attachment D provides additional vendor information concerning the Waterloo sheetpile.

Based on the preliminary results of the groundwater modeling conducted for this area, as well as the inclusion of wing walls at each end of the sheetpile wall, it appears that no significant additional hydraulic controls will be necessary. However, further assessment of the hydraulics is ongoing. Additional details regarding the design of the proposed sheetpile installation, including the results of hydraulic modeling and structural design calculations, will be provided in a forthcoming submittal to the Agencies, as discussed in Part IV of this letter.

With respect to DNAPL recovery, GE will further evaluate the need for and technical feasibility of an active recovery system involving the use of DNAPL recovery pumps. An active pumping system to recover subsurface DNAPLs will initially be evaluated in lieu of other potential options, including the installation of a sheetpile containment barrier extending into the underlying till layer, for the following reasons:

- The location and nature of the detected DNAPLs (at a depth of 40 to 45 feet below ground surface -- approximately 25 to 30 feet below the river bottom) indicate that these materials are not migrating into or toward the river.
- If sheetpiling were installed to the underlying till layer, several additional design concerns would result. Among these are the potential changes in groundwater flow directions, which could adversely affect existing LNAPL containment/recovery measures, the need for additional hydraulic controls, and possible difficulties in recovering any DNAPL that may potentially be located south of the proposed installed sheetpile location.
- Sheetpile installation to a depth of approximately 45 to 50 feet below ground surface would require an increased sheetpile wall thickness. Such material, although available, would require special ordering and would result in an increased delivery time and likely not be available until 1999.

For the reasons summarized above, a supplemental containment barrier to address LNAPLs, along with the existing measures, should provide sufficient LNAPL control in this area of the GE facility. As a follow-up to the current source control investigations, GE will collect additional information to assess the need for a DNAPL recovery system, including additional testing and possibly a pilot test to evaluate the feasibility of removal. GE will also evaluate the results of the geophysical testing conducted in this vicinity and assess the need for further boring/well installation.

IV. NEAR-TERM ACTIVITIES

Following Agency review and comment concerning the contents of this letter, GE will coordinate the purchase and delivery of the necessary sheetpiling to facilitate the start of the containment barrier installation this year. Also, over the next few weeks, GE will continue to perform detailed design-related activities toward the submittal of a final Investigation Report and Design Summary. Included in that report will be updated information (i.e., final boring logs, cross sections, laboratory results, etc.), as well as detailed design calculations, including final sheetpile layout and structural calculations, the results of the hydraulic modeling, and other implementation related issues. That report will also further address the need for and scope of DNAPL containment/recovery measures.

V. SUMMARY AND SCHEDULE

This letter presents the results of recent field work and preliminary design activities performed pursuant to the *Source Control Work Plan - Upper Reach of Housatonic River (First ½ Mile)*, pertinent to a portion of the East Street Area 2 site. The recent field work supplements the information available from prior investigations conducted in this area, and furthers GE's understanding of the subsurface conditions in this area. Based on these results and in accordance with the Work Plan, GE has identified additional NAPL containment/recovery measures. For LNAPLs, approximately 450 linear feet of steel sheetpiling will be installed along the base of the riverbank. This barrier wall will extend approximately 20 feet below the base of the riverbank and will supplement the existing LNAPL control measures already in place. With respect to the detection of DNAPLs at certain locations in this area, the proposed follow-up activities will include further evaluation of the potential extent of DNAPL and the feasibility of its recovery.

As previously indicated, the primary intent of this letter is to identify, for Agency review and comment, the preliminary location, depth, type, and quantity of the proposed sheetpile wall. With Agency concurrence, GE will proceed with the purchase and delivery of the sheetpile materials. Subsequent to this letter, GE will also provide a more complete and detailed Investigation Summary and Design Report that will include additional information related to various aspects of the source control investigations and

design. That report should be available for USEPA in the first week of December 1998. Additional information concerning the anticipated implementation schedule is presented in Figure 6.

We look forward to receiving your comments regarding this letter, and specifically any comments related to the proposed LNAPL containment barrier.

Yours truly,

cc:

Endrew Selfer Her Andrew T. Silfer, P.E.

Andrew 1. Silter, P.E. Remediation Project Manager

John D Ciampa Jolu

John D. Ciampa Remediation Project Manager

S. Acre, EPA* D.J. Luckerman, EPA M. Nalipinski, EPA* R. Bell, DEP* R. Child, DEP* J.L. Cutler, DEP* M. Holland, DEP J. Ziegler, DEP* J.R. Bieke, Shea & Gardner* State Representative D. Bosley Mayor G.S. Doyle State Representative C.J. Hodgkins State Representative S.P. Kelly State Representative P.J. Larkin State Senator A.F. Nuciforo A.J. Thomas, GE* J. Gardner, GE J. Magee, GE J.M. Nuss, P.E., LSP* Pittsfield Health Department* S. Ramsey, GE Housatonic River Initiative Public Information Repositories ECL I-P-IV(A)(1)* & (2)

(* with enclosures)

U/\PLH98\B1381543.WPD

Tables

BLASLAND, BOUCK & LEE, INC. engineers & scientists

BORING	SAMPLE ID	DATE	TIME	DEPTH	ANALYSES
E2SC-01	CS01	10/9/98	14:56	0-1	PCBs
E2SC-01	CS0106	10/9/98	14:56	1-6	PCBs
E2SC-01	CS0615	10/9/98	14:56	6-15	PCBs & App 9 + 3
E2SC-01	CS3840	10/12/98	13:50	38-40	PCBs & App 9 + 3
E2SC-01	SS09	10/9/98	14:44	14-15	App 9 Volitile Organics
E2SC-01	SS22	10/12/98	13:50	38-40	App 9 Volitile Organics
E2SC-01	SS25	10/12/98	14:45	44-46	PCBs
E2SC-02	CS01	10/21/98	8:34	0-1	PCBs
E2SC-02	CS0106	10/21/98	10:25	1-6	PCBs
E2SC-02	CS0615	10/21/98	10:25	6-15	PCBs & App 9 + 3
E2SC-02	CS0615D	10/23/98	16:40	6-15	Duplicate PCBs & App 9 + 3 Base Neutral Acid
		10.000	10.00		Extractable, Metals, & Cyanide
E2SC-02	CS4042	10/23/98	10:03	40-42	PCBs & App 9 + 3
E2SC-02	CS4042D	10/23/98	10:03	40-42	Duplicate App 9 + 3 Sulfide & Dioxide App 9 Volatile Organics
E2SC-02	SS09	10/21/98	9:32	14-15	App 9 Volatile Organics
E2SC-02	SS22	10/23/98	10:03	38-40	App 9 Volatile Organics
E2SC-03	CS01	10/15/98	9:39	0-1	PCBs
E2SC-03	CS0106	10/15/98	9:39	1-6	PCBs
E2SC-03	CS0615	10/15/98	9:39	6-15	PCBs & App 9 + 3
E2SC-03	CS4448	10/15/98	14:00	44-48	PCBs & App 9 + 3
E2SC-03	SS08	10/15/98	9:18	12-14	App 9 Volatile Organics
E2SC-03	SS25	10/15/98	13:45	44-46	App 9 Volatile Organics
E2SC-04	CS01	10/13/98	12:03	0-1	PCBs
E2SC-04	CS0106	10/13/98	13:00	1-6	PCBs
E2SC-04	CS0615	10/13/98	14:00	6-15	PCBs & App 9 + 3
E2SC-04	SS09	10/13/98	13:15	14-15	App 9 Volatile Organics
E2SC-04	GS01	10/14/98	9:40	0-5	PCB, Grain Size
E2SC-04	GS02	10/15/98	9:40	5-15.4	PCB, Grain Size
E2SC-04	GS03	10/16/98	9:40	15.4-24	PCB, Grain Size
E2SC-04	GS04	10/17/98	9:40	24-39	PCB, Grain Size
E2SC-04	GS05	10/18/98	9:40	39-43	PCB, Grain Size, Atterburg limit
E2SC-04	GS06	10/19/98	9:40	43-	PCB, Grain Size, Atterburg limit
E28C 05	<u>CS01</u>	10/25/98	10:35	0-1	PCBs
E2SC-05	CS01	10/25/98	10:35	1-6	PCBs
E2SC-05	CS0106		10:35	6-15	PCBs & Appendix IX + 3
E2SC-05	CS0615	10/25/98	10:35	38-40	PCBs & Appendix IX + 3
E2SC-05	CS3840	10/26/98	10:33	40-42	PCBs & Appendix IX > 5
E2SC-05	CS4042	10/26/98	10:23	10-12	Appendix IX Volatile Organics
E2SC-05 E2SC-05	<u>SS07</u> SS22	10/25/98 10/26/98	10:05	38-40	Appendix IX Volatile Organics

Table 1.General Electric Co., Pittsfield, Massachusetts, East Street Area 2 source controlinvestigations samples collected

MIWP_DOCSPHEAT998:1116E308 wpd

-

Table 1. (Continued)

BORING	SAMPLE ID	DATE	TIME	DEPTH	ANALYSES
E2SC-06	CS0106	10/23/98	16:35	1-6	PCBs
E2SC-06	CS0615	10/23/98	16:40	6-15	PCBs & Appendix IX + 3
E2SC-06	SS08	10/23/98	16:08	12-14	Appendix IX Volatile Organics
E2SC-07	CS01	10/27/98	8:58	0-1	PCBs
E2SC-07	CS0106	10/27/98	8:58	1-6	PCBs
E2SC-07	CS0615	10/27/98	8:58	6-15	PCBs & Appendix IX + 3
E2SC-07	CS3840	10/27/98	13:40	38-40	PCBs
E2SC-07	SS09	10/27/98	8:48	14-15	Appendix IX Volatile Organics
E2SC-08	CS0106	10/14/98	17:15	1-6	PCBs
E2SC-08	CS0615	10/14/98	17:15	6-15	PCBs
E2SC-08	CS4244	10/19/98	13:30	42-44	PCBs
E2SC-09	CS01	10/21/98	8:25	0-1	PCBs
E2SC-09	CS0106	10/21/98	9:30	1-6	PCBs
E2SC-09	CS0615	10/21/98	9:30	6-15	PCBs & Appendix IX + 3
E2SC-09	CS4042	10/21/98	12:55	40-42	PCBs
E2SC-09	SS06	10/21/98	9:00	8-10	Appendix IX Volatile Organics
E2SC-10	CS01	10/20/98	9:00	0-1	PCBs
E2SC-10	CS0106	10/20/98	10:30	1-6	PCBs & Appendix IX + 3
E2SC-10	CS0615	10/20/98	10:30	6-15	PCBs
E2SC-10	CS2830	10/20/98	11:51	28-30	PCBs
E2SC-10	SS03	10/20/98	9:48	3-5	Appendix IX Volatile Organics
E2SC-11	CS01	10/9/98	11:02	0-1	PCBs
E2SC-11	CS0106	10/9/98	11:02	1-6	PCBs
E2SC-11	CS0615	10/9/98	11:02	6-15	PCBs & Appendix IX + 3
E2SC-11	SS05	10/9/98	9:45	6-8	Appendix IX Volatile Organics
E2SC-12	CS0106	10/19/98	11:06	1-6	PCBs
E2SC-12	CS0615	10/19/98	11:06	6-15	PCBs & Appendix IX + 3
E2SC-12	C\$3032	10/19/98	13:55	30-32	PCBs
E2SC-12	SS05	10/19/98	10:35	6-8	Appendix IX Volatile Organics
FORG 13	0001	10/0/09	14.20		DCD -
E2SC-13	CS01	10/9/98	14:30	0-1	PCBs
E2SC-13	CS0106	10/9/98	14:30	1-6	PCBs
E2SC-13 E2SC-13	CS0516 SS08	10/7/98	14:38 14:30	8-1 5	PCBs & Appendix IX + 3 Appendix IX Volatile Organics
6230-13	3308	10/1/70	14.50	1 14-13	Appendix IX Volatile Organics
E2SC-14	CS01	10/8/98	10:30	0-1	PCBs
E2SC-14	CS0106	10/8/98	10:30	1-6	PCBs
E2SC-14	CS0615	10/8/98	10:30	6-15	PCBs & Appendix IX + 3

MIWP_DOCS@009/19981137/1998.wpd

BORING SAMPLE ID DATE TIME DEPTH ANALYSES E2SC-14 SS06 9:32 Appendix IX Volatile Organics 10/8/98 8-10 9:59 PCBs & Appendix IX + 3 CS0615 E2SC-15 10/20/98 6-15 E2SC-15 CS3436 10/20/98 13:42 34-36 **PCBs** E2SC-15 9:39 **SS08** 10/20/98 12-14 Appendix IX Volatile Organics E2SC-16 CS01 10/8/98 15:18 0-1 **PCBs** E2SC-16 CS0106 10/8/98 15:18 **PCBs** 1-6 E2SC-16 CS0615 10/8/98 15:18 6-15 PCBs & Appendix IX + 3 SS10 10/8/98 15:18 15-17 Appendix IX Volatile Organics E2SC-16 E2SC-161 CS4042 11/10/98 11:14 40-42 PCBs & Appendix IX + 3 E2SC-16I CS4850 1:10 48-50 11/10/98 **PCBs** E2SC-16I SS23 11/10/98 11:14 40-42 Appendix IX Volatile Organics E2SC-17 CS01 10/27/98 15:40 0-1 **PCBs** E2SC-17 9:34 **PCBs** CS0106 10/26/98 1-6 E2SC-17 CS0615 10/26/98 9:34 6-15 PCBs & Appendix IX + 3 CS4244 16:00 42-44 PCBs & Appendix IX + 3 E2SC-17 10/26/98 E2SC-17 CS4749 10/27/98 9:40 47-49 **PCBs** E2SC-17 Appendix IX Volatile Organics SS05 10/26/98 8:50 6-8 Appendix IX Volatile Organics. E2SC-17 SS24 10/26/98 15:18 42-44

Table 1. (Continued)

		DEPTH	AROCLOR CONCENTRATION (MG/KG)									
BORING	SAMPLE NUMBER	(FT.)	1016	1221	1232	1242	1248	1254	1260	TOTAL		
E2SC-01	E2SC-01-CS01	0-1	ND	ND	ND	ND	ND	ND	0.66	0.66		
E2SC-01	E2SC-01-CS0106	1-6	ND	ND	ND	ND	ND	ND	0.71	0.71		
E2SC-01	E2SC-01-CS0615	6-15	ND	ND	ND	ND	ND	ND	0.06	0.06		
E2SC-01	E2SC-01-CS3840	38-40	ND	ND	ND	ND	ND	ND	ND	ND		
E2SC-01	E2SC-01-SS25	44-46	ND	ND	ND	ND	ND	ND	ND	ND		
E2SC-02	E2SC-02-CS01	0-1	ND	ND	ND	ND	ND	ND	49.00	49.00		
E2SC-02	E2SC-02-CS0106	1-6	ND	ND	ND	ND	ND	ND	43.00	43.00		
E2SC-02	E2SC-02-CS0615	6-15	ND	ND	ND	ND	ND	ND	17.00	17.00		
E2SC-02	E2SC-02-CS4042	40-42	ND	ND	ND	ND	ND	ND	ND	ND		
12262.02	E2SC-03-CS01	0-1	ND	ND	ND	ND	ND	ND	25.00	25.00		
E2SC-03	E2SC-03-CS0106	1-6	ND ND	ND	ND	ND ND	ND	ND	52.00	52.00		
E2SC-03 E2SC-03	E2SC-03-CS0615	6-15	ND ND	ND ND	ND	ND	ND ND	ND	22.00	22.00		
	E2SC-03-CS0615	44-48		ND	ND	ND	ND	ND	22.00 ND	ND		
E2SC-03	E25C-03-C54448	44-48	ND	NU				ND	(NI)			
E2SC-04	E2SC-04-CS01	0-1	ND	ND	ND	ND	ND	ND	0.99	0.99		
E2SC-04	E2SC-04-CS0106	1-6	ND	ND	ND	ND	ND	0.17	0.19	0.28		
E2SC-04	E2SC-04-CS0615	6-15	ND	ND	ND	ND	ND	ND	ND	ND		
E2SC-04	E2SC-04-CS4244	42-44	ND	ND	ND	ND	ND	ND	ND	ND		
E2SC-05	E2SC-05-CS01	0-1	ND	ND	ND	ND	ND	ND	1.60	1.60		
E2SC-05	E2SC-05-CS0106	1-6	ND	ND	ND	ND	ND	ND	0.29	0.29		
E2SC-05	E2SC-05-CS0615	6-15	ND	ND	ND	ND	ND	ND	0.13	0.13		
E2SC-05	E2SC-05-CS3840	38-40	ND	ND	ND	ND	ND	ND	ND	ND		
E2SC-05	E2SC-05-CS4042	40-42	ND	ND	ND	ND	ND	ND	ND	ND		
F26(2.0%		0.1		NID	ND	ND	ND	ND	0.59	0.59		
E2SC-06 E2SC-06	E2SC-06-CS01 E2SC-06-CS0106	0-1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.39	0.07		

Table 2.General Electric Co., Pittsfield, Massachusetts, East Street Area 2 source control investigations, preliminary PCB
soil concentration data

M WP DOCS POPE 1998 TERET4SEwpd

Table 2. (Continued)

		Бертн	AROCLOR CONCENTRATION (MG/KG) H										
BORING	SAMPLE NUMBER	(FT.)	1016	1221	1232	1242	1248	1254	1260	TOTAL			
						NUS.	NITS	200	1.10				
E2SC-07	E2SC-07-CS0615	6-15	ND	ND	ND	ND NO	ND	ND	1.40	1.40			
E2SC-07	E2SC-07-CS3840	38-40	ND	ND	ND	ND	ND	ND	ND	ND			
E2SC-08	EW2SC-08-CS0106	1-6	ND	ND	ND	ND	ND ND	ND	170.00	170.00			
E2SC-08	EW2SC-08-CS0615	6 - 15	ND	ND	ND	ND	ND	ND	210.00	210.00			
E2SC-08	E2SC-08 CS4244	42-44	ND	ND	ND	ND	ND	ND	0.13	0.13			
E2SC-09	E2SC-09-CS01	0-1	ND	ND	ND	ND	ND	ND	20.00	20.00			
E2SC-09	E2SC-09-CS0106	1-6	ND	ND	ND	ND	ND	ND	3.90	3.90			
E2SC-09	E2SC-09-CS0615	6-15	ND	ND	ND	ND	ND	ND	140,00	140.00			
E2SC-09	E2SC-09-CS4042	40-42	ND	ND	ND	ND	ND	ND	0,11	0.11			
	22221222201						ND	ND	0.19	0.19			
E2SC10	E2SC-10-CS01	0-1	ND	ND	ND	ND	ND ND	ND	0.19	0.19			
E2SC10	E2SC-10-CS0106	1-6	ND	ND	ND	ND							
E2SC10	E2SC-10-CS0615	6-15	ND	ND	ND	ND	ND	ND	ND ND	ND ND			
E2SC10	E2SC-10-CS2830	28-30	ND	ND	ND	ND	ND	ND	NU				
E2SC-11	E2SC-11-CS01	0-1	ND	ND	ND	ND	ND	ND	0.10	0.10			
E2SC-11	E2SC-11-CS0106	1-6	ND	ND	ND	ND	ND	ND	ND	ND			
E2SC-11	E2SC-11-CS0615	6-15	ND	ND	ND	ND	ND	ND	ND	NÐ			
E2SC-12	E2SC-12-CS01	0-1	ND	ND	ND	ND	ND	ND	0.19	0.19			
E2SC-12	E2SC-12-CS0106	1-6	ND	ND	NÐ	ND	ND	83.00	91.00	91.00			
E2SC-12	E2SC-12-CS0615	6-15	ND	ND	ND	ND	ND	ND	65.00	65.00			
E2SC-12	E2SC-12-CS3032	30-32	ND	ND	ND	ND	ND	0,11	0.15	0.26			
E2SC-13	ES2C-13-CS0106	0-1	ND	ND	ND	ND	ND	ND	0.21	0.21			
E2SC-13	ES2C-13-CS0106	1-6	ND	ND	ND	ND	ND	ND	ND	ND			
			1										

. .

Table 2. (Continued)

Sec. Sec. Sec. Sec. 4

A second second

		Бертн	AROCLOR CONCENTRATION (MG/KG)								
BORING	SAMPLE NUMBER	(FT.)	1016	1221	1232	1242	1248	1254	1260	TOTAL.	
E2SC-14	E2SC-14-CS0615	6-15	ND	ND	ND	ND	ND	ND	ND	ND	
E2SC-15	E2SC-15-CS0106	1-6	ND	ND	ND	ND	ND	31.00	49.00	80,00	
E2SC-15	E2SC-15-CS0615	6-15	ND	ND	ND	ND	ND	0.26	0.39	0.65	
E2SC-15	E2SC-15-CS3436	34-36	ND	ND	ND	ND	ND	ND	ND	ND	
E2SC-16	E2SC-16-CS01	0-1	ND	ND	ND	ND	ND	ND	120.00	120.00	
E2SC-16	E2SC-16-CS0106	1-6	ND	ND	ND	ND	ND	ND	1.50	1.50	
E2SC-16	E2SC-16-CS0615	6-15	ND	ND	ND	ND	ND	ND	0.68	0.68	
E2SC-17	E2SC-17-CS01	0-1	ND	ND	ND	ND	ND	ND	2.40	2.40	
E2SC-17	E2SC-17-CS0106	1-6	ND	ND	ND	ND	ND	ND	24.00	24,00	
E2SC-17	E2SC-17-CS0615	6-15	ND	ND	ND	ND	ND	ND	0.37	0.37	
E2SC-17	E2SC-17-CS4244	42-44	ND	ND	ND	ND	ND	ND	ND	ND	
F2SC-17	E2SC-17-CS4749	47-49	ND	ND_	ND	ND	ND	ND	ND	ND.	

WELL OR		BORING	GROUND			SCREEN			
BORIND	DATE	DEPTH FT	SURFACE	MEASURING	MEASURING	INTERVAL	CASING		
NUMBER	DRILLED	(BGS)	ELEVATION	POINT ELEV.	POINT	DEPTH (FT.)	Түре	SCREEN TYPE	COMMENTS
E2SC-01	10/14/98	46	986.42	988.36	TOC PVC	31.0 ' - 41.0'	2" PVC	.010 Slot 2" PVC	
E2SC-02	10/23/98	42	985.93	987.57	TOC PVC	31.0' - 41.0'	2" PVC	.010 Slot 2" PVC	
E2SC-031	10/15/98	47	980.43	982.12	TOC PVC	34.5'- 44.5'	2" PVC	.010 Slot 2" PVC	
E2SC-03S	10/16/98	20	980.57	982.15	TOC PVC	10.0' - 20.0'	2" PVC	.010 Slot 2" PVC	
E2SC-04	10/13/98	46	987.29	989.11	TOC PVC	34.0' -44.0'	2" PVC	.010 Slot 2" PVC	
E2SC-05	10/26/98	42	991.42	993.24	TOC PVC	30.0' -40.0'	2" PVC	.010 Slot 2" PVC	
E2SC-06	10/24/98	19.5	990.46	992.49	TOC PVC	8.7' - 18.7'	2" PVC	.010 Slot 2" PVC	
E2SC-07	10/27/98	40	989.13						Well Not Installed
E2SC-08	10/19/98	44	986.07						Well Not Installed
E2SC-09	10/21/98	42	983.48	984.78	TOC PVC	30' - 40'	2" PVC	.010 Slot 2" PVC	· · · · · · · · · · · · · · · · · · ·
E2SC-10	10/20/98	30	989,19						Well Not Installed
E2SC-11	10/9/98	17	990.06			1			Well Not Installed
E2SC-12	10/19/98	32	978.87						Well Not Installed
E2SC-13	10/7/98	18	988.09	989.89	TOC PVC	8.0' - 18.0'	2" PVC	.010 Slot 2" PVC	
E2SC-14	10/8/98	20	990.19	992.25	TOC PVC	10.0' -20.0'	2" PVC	.010 Slot 2" PVC	
E2SC-15	10/20/98	36	984.34						Well Not Installed
E2SC-161	11/10/98	50	N/A	N/A	TOC PVC	38.5' - 48.5'	2" PVC	.010 Slot 2" PVC	
E2SC-16S	10/8/98	17	985.78	987.69	TOC PVC	7.0' -17.0'	2" PVC	.010 Slot 2" PVC	
E2SC-17	10/27/98	49	983.76	985.38	TOC PVC	36.7' - 46.7'	2" PVC	.010 Slot 2" PVC	<u> </u>

Table 3.	General Electric Co., Pittsfield, Massachusetts, East Street Area 2 source control investigations boring and well	
	constructions details	

sus an in the office

		MEASURING POINT	Дертн то	ДЕРТН ТО	WATER LEVEL	LNAPL	Дертн то	DNAPL	Comments
WELL	DATE	ELEVATION	LNAPL	WATER	ELEVATION	THICKNESS	DNAPL	ELEVATION	X VAMANDAY EN
E2SC-01	10/20/98	988.36	-	17.30	971.06				
E2SC-01	10/22/98	988.36	-	17.30	971.06		-		
E2SC-01	10/26/98	988.36	-	17.69	970.67		-		
E2SC-01	10/28/98	988.36	-	16.50	971.86		-		
E2SC-01	11/4/98	988.36	-	16.63	971.73		~		Sheen on Probe
E2SC-01	11/6/98	988.36	-	16.65	971.71		-	1	
E2SC-01	11/9/98	988.36	-	16.67	971.69		-		Sheen on Probe
E2SC-01	11/13/98	988.36	-	16.46	971.90		-	1	
	[1				
E2SC-02	10/26/98	987.57	-	22.74	964.83		-		
E2SC-02	10/28/98	987.57	-	16.26	971.31		-		······································
E2SC-02	11/2/98	987.57	-	16.10	971.47		-	1 1	
E2SC-02	11/4/98	987.57	-	16.11	971.46		-	1	Sheen on Probe
E2SC-02	1176798	987.57	-	16.11	971.46		-	1	Sheen on Probe
E2SC-02	11/9/98	987.57	-	16.14	971.43		-	T	Sheen on Probe
E2SC-02	11/13/98	987.57	-	15.93	971.64		-	1 1	Sheen on Probe
E2SC-03I	10/22/98	982.12	+	10.29	971.83		40.68	941.44	
E2SC-031	10/26/98	982.12	-	10.45	971.67		40.35	941.77	<u> </u>
E2SC-031	10/28/98	982.12	-	10.49	971.63		38.96	943.16	
E2SC-031	11/6/98	982.12	-	10.59	971.53		38.54	943.58	
E2SC-031	11/10/98	982.12	+	10.55	971.57		38.72	943.40	
E2SC-031	11/13/98	982.12	÷	10.41	971.71		38.83	943.29	
E2SC-03S	10/26/98	982.15	-	10.95	971.20		-	1	
E2SC-03S	10/28/98	982.15	-	11.03	971.12		-		
E2SC-03S	11/6/98	982.15	-	11.05	971.10		-		
E2SC-03S	11/10/98	982.15	-	10.98	971.17		~		
E2SC-03S	11/13/98	982.15		10.87	971.28		-		

Table 4. General Electric Co., Pittsfield, Massachusetts, East Street Area 2 source control investigations water level and NAPL measurements

1: 19 198 82981513 WPD

Table 4. (Continued)

		Measuring Point	ДЕРТН ТО	DEPTH ТО	WATER LEVEL	LNAPL	Дертн то	DNAPL	COMMENTS
WELL	DATE	ELEVATION	LNAPL	WATER	ELEVATION	THICKNESS	DNAPL	ELEVATION	
E2SC-04	10/20/98	989.11		16.54	972.57				******
		989.11	-	10.34	972.37		-		
E2SC-04	10/22/98	ſ	-	17.40	972.20		-		
E2SC-04	10/26/98	989.11	-	16.71	972.40		-		
E2SC-04	10/28/98	989.11	-	17.28	972.40		<u>~</u>		<u> </u>
E2SC-04	11/4/98	989.11	*	17.28	971.83		-		Sheen on Probe
E2SC-04	11/6/98	989.11	-	1					
E2SC-04	11/9/98	989.11	-	17.28	971.83		*		
E2SC-04	11/13/98	989.11	-	17.08	972.03		~		
- F302 AF		993.24		21.23	972.01				
E2SC-05	10/28/98	993.24		21.23	972.01		~		· · · · · · · · · · · · · · · · · · ·
E2SC-05	11/2/98	<u>993.24</u> 993.24	•	21.03	971.39		-		
E2SC-05	11/4/98	<u>993.24</u> 993.24	-	21.41	971.85		-		
E2SC-05	11/6/98	993.24	-	21.44	971.80		-		
E2SC-05	11/9/98		-	21.49	971.73		-		
E2SC-05	11/13/98	993.24	-	21.30	9/1.00		546		
E2SC-06	10/26/98	992.49		20.25	972.24 ²	1	-		Sheen on Probe
E2SC-06	10/28/98	992.49	15.4	20.25	971.982	5.11			oneen on Trove
E2SC-06	11/2/98	992.49	21.5	21.90	970.592	0.40			
E2SC-06	11/4/98	992.49	16.9	18.01	974.482	1.11			
E2SC-00	11/6/98	992.49	10.5	20.42	972.07 ²		-		NAPL on Probe
E2SC-06	11/9/98	992.49	17.72	NM	1				
E2SC-00	11/13/98	992.49	17.73	NM		1			
1.490.400	11/15/90	772.47	17.55	* 1 171		1			
E2SC-09	10/22/98	984.78	-	18.05	966.73	1	~		
E2SC-09	10/26/98	984.78		13.65	971.13	1	-	1	
E2SC-09	10/28/98	984.78		13.54	971.24	1	~		Sheen on Probe
E2SC-09	11/6/98	984.78	<u>† </u>	13.6	971.18		-	1	
E2SC-09	11/13/98	984,78	÷	13.32	971.46		-		Sheen on Probe

C. 50 How (12.98) \$43 W PD

Table 4. (Continued)

WELL	DATE	MEASURING POINT ELEVATION	DEPTH TO LNAPL	DEPTH TO WATER	WATER LEVEL ELEVATION	UNAPL Thickness	DEPTH TO DNAPL	DNAPL ELEVATION	Comments
E2SC-13	10/20/98	989.89		19.82	970.07				
E2SC-13	10/22/98	989.89		17.76	972.13		**	[
E2SC-13	10/26/98	989.89	-	19.82	970.07		-	<u> </u>	
E2SC-13	10/28/98	989.89		19.81	970.08		-		
E2SC-13	10/26/98	989.89		18.00	971.89		-	<u> </u>	
E2SC-13	11/4/98	989.89		18.00	971.88		-	<u> </u>	
E2SC-13	11/6/98	989.89	_	18.01	971.88		-		
E2SC-13	11/9/98	989.89		18.06	971.83			┨──────	
E2SC-13	11/13/98	989.89		17.84	972.05			<u> </u>	
6230-15	11/10/20	262.02		17.04	//2.05		-	<u> </u>	
E2SC-14	10/20/98	992.25		19.90	972.35		_	 	
E2SC-14	10/22/98	992.25	•	19.95	972.30			<u> </u>	·····
E2SC-14	10/26/98	992.25		20.04	972.21		-		
E2SC-14	10/28/98	992.25		19.99	972.26		-	<u> </u>	
E2SC-14	11/2/98	992.25	-	20.15	972.10			}	
E2SC-14	11/4/98	992.25	-	20.15	972.10		~		
E2SC-14	11/6/98	992.25		20.15	972.07			<u>+</u>	
E2SC-14	11/9/98	992.25	-	20.10	972.02			╂┠	
E2SC-14	11/13/98	992.25		20.01	972.24		-		
CALCOLOGICA	31715770	772.20	1	20.01	716.61			╉─────┤	
E2SC-16S	10/20/98	987.69		15.81	971.88		-	╂─────╂	
E2SC-16S	10/22/98	987.69	1 .	15.92	971.77			╂─────╂	
E2SC-16S	10/26/98	987.69		16.37	971.32			 	
E2SC-16S	10/28/98	987.69	<u> </u>	16.04	971.65			╂	
E2SC-16S	11/4/98	987.69		16.19	971.50		-	[{	Sheen on Probe
E2SC-16S	11/6/98	987.69		16.13	971.56		~	 	
E2SC-16S	11/9/98	987.69		16.15	971.54			 }	
E2SC-16S	11/13/98	987.69	<u> </u>	15.90	971.79			<u> </u>	

د. قابل و دمی درستان ب

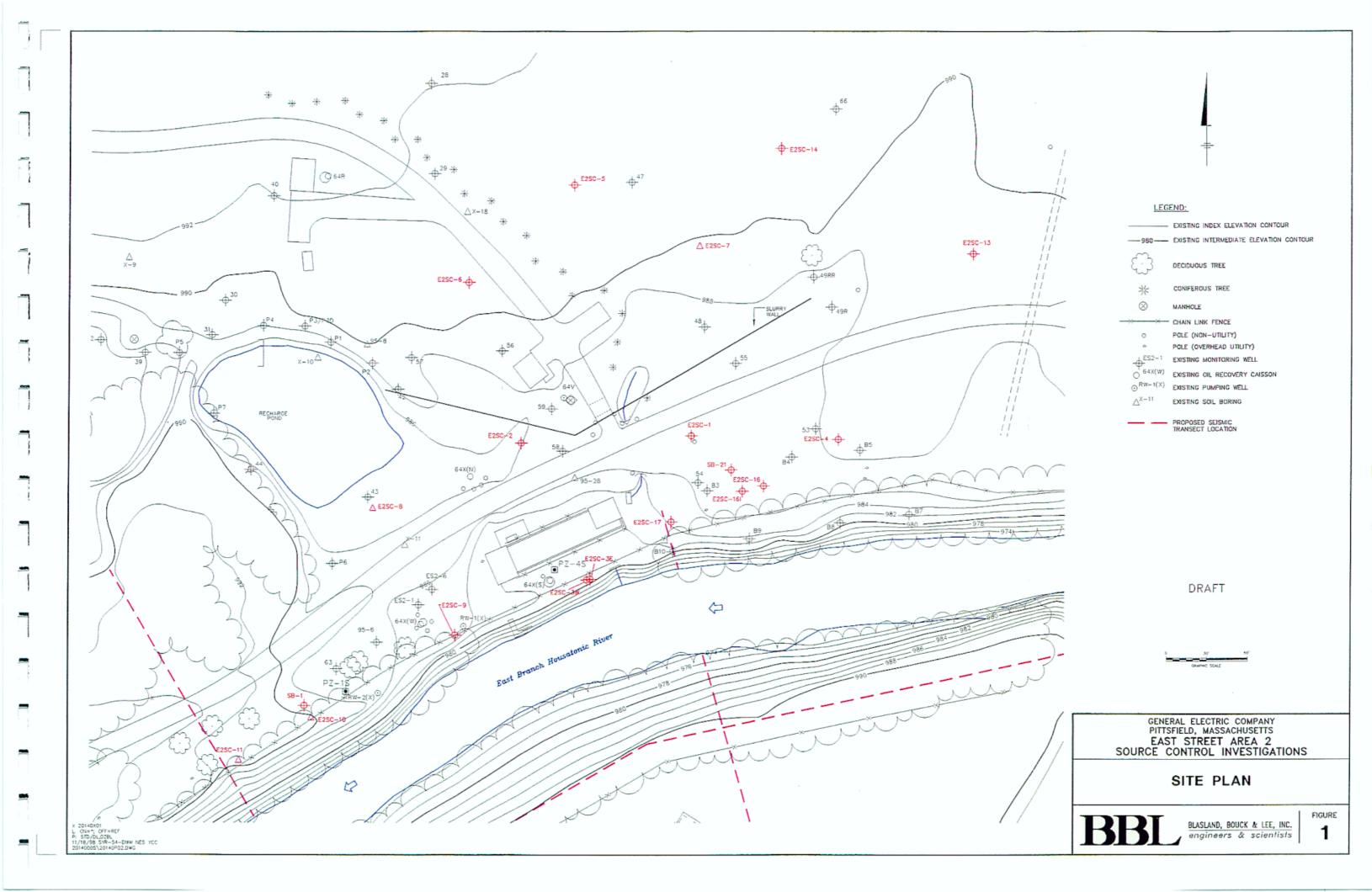
Table 4. (Continued)

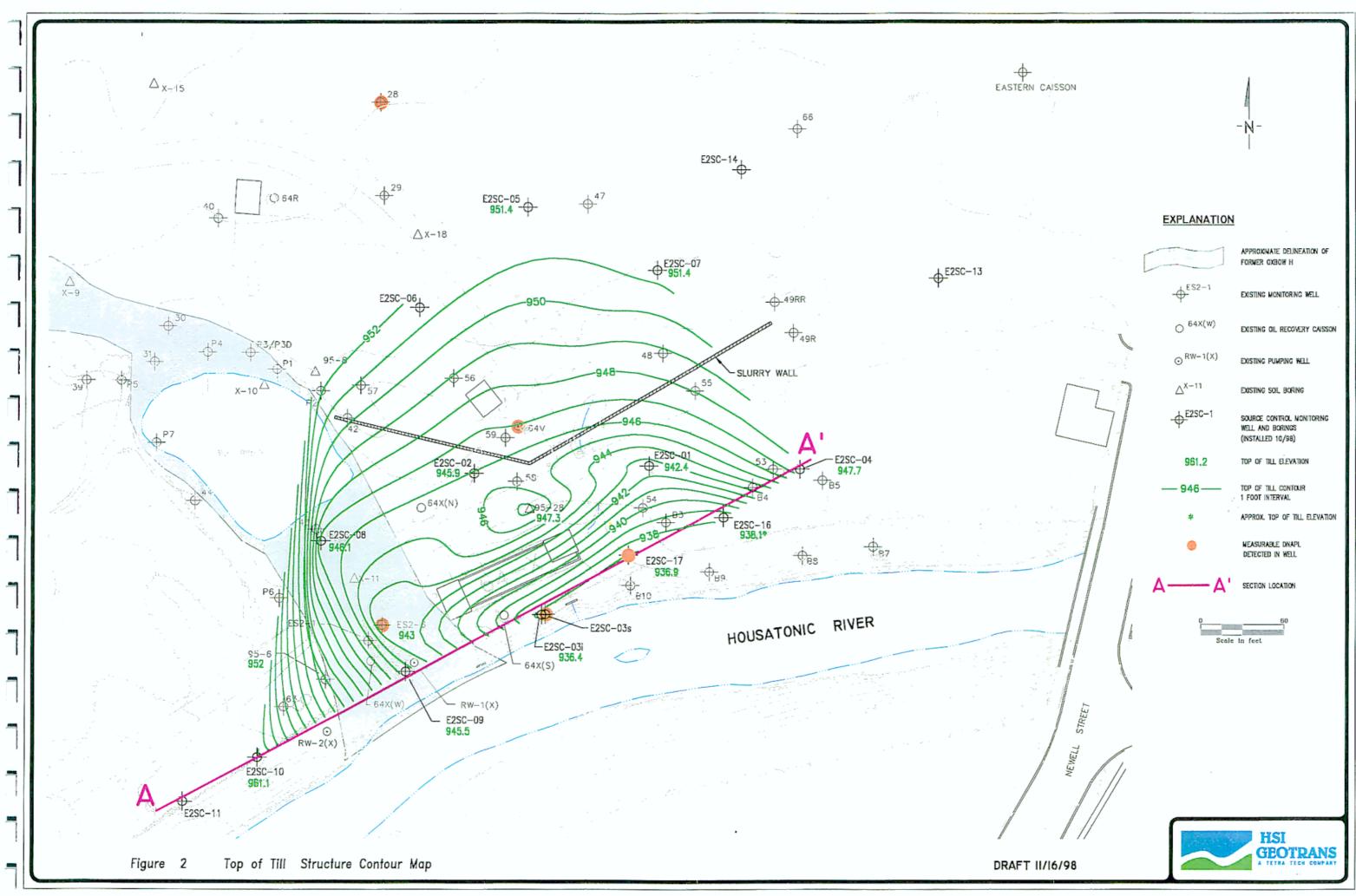
10.00				11	DNAPL	ELEVATION	
/98	-	13.99			-		Sheen on Probe
/98 985.38	-	13.59	971.79				
98 985.38	+	13.66	971.72		47.90	937.48	
98 985.38	-	13.65	971.73		47.75	937.63	
98 985.38	-	13.66	971.72		47.70	937.68	
/98 985.38	1 -	13.46	971.92		47.57	937.81	
	/98 985.38 98 985.38 98 985.38 98 985.38 98 985.38 98 985.38 98 985.38	/98 985.38 - 98 985.38 - 98 985.38 - 98 985.38 - 98 985.38 - 98 985.38 - 98 985.38 -	/98 985.38 - 13.59 98 985.38 - 13.66 98 985.38 - 13.65 98 985.38 - 13.66 798 985.38 - 13.66 798 985.38 - 13.46	/98 985.38 - 13.59 971.79 98 985.38 - 13.66 971.72 98 985.38 - 13.65 971.73 98 985.38 - 13.66 971.72 98 985.38 - 13.66 971.72 98 985.38 - 13.66 971.72 98 985.38 - 13.46 971.92	/98 985.38 - 13.59 971.79 98 985.38 - 13.66 971.72 98 985.38 - 13.65 971.73 98 985.38 - 13.66 971.72 98 985.38 - 13.66 971.72 98 985.38 - 13.46 971.92	/98 985.38 - 13.59 971.79 - 98 985.38 - 13.66 971.72 47.90 98 985.38 - 13.65 971.73 47.75 98 985.38 - 13.66 971.72 47.70 98 985.38 - 13.66 971.72 47.70 798 985.38 - 13.46 971.92 47.57	/98 985.38 - 13.59 971.79 - 98 985.38 - 13.66 971.72 47.90 937.48 98 985.38 - 13.65 971.73 47.75 937.63 98 985.38 - 13.66 971.72 47.70 937.68

i. Marina marina

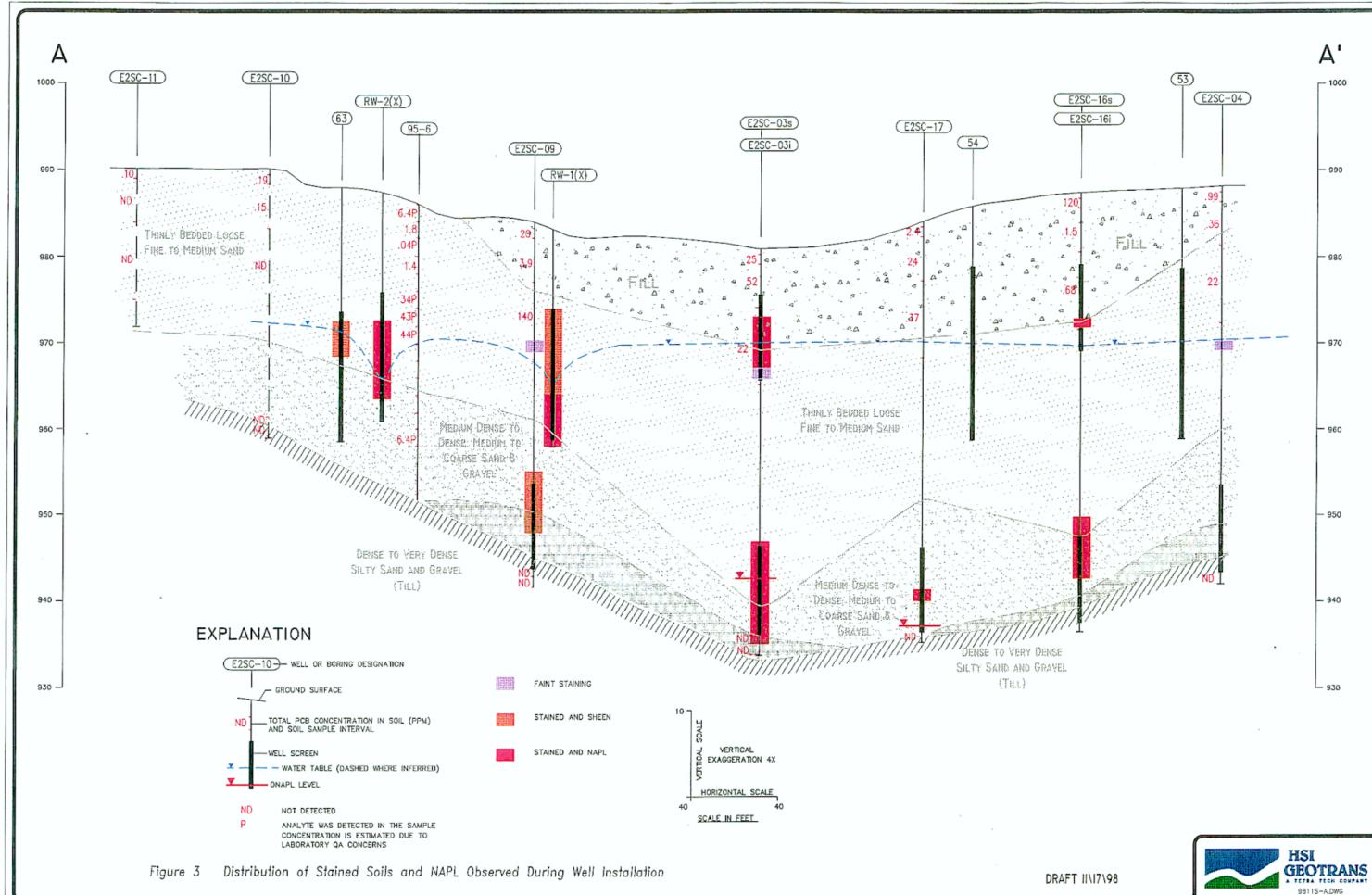
Table 5. General Electric Co., Pittsfield, Massachusetts, East Street Area 2 source central investigations summary of preliminary Appendix IX results for DNAPL from monitoring well E2SC-03I (detected compounds only)

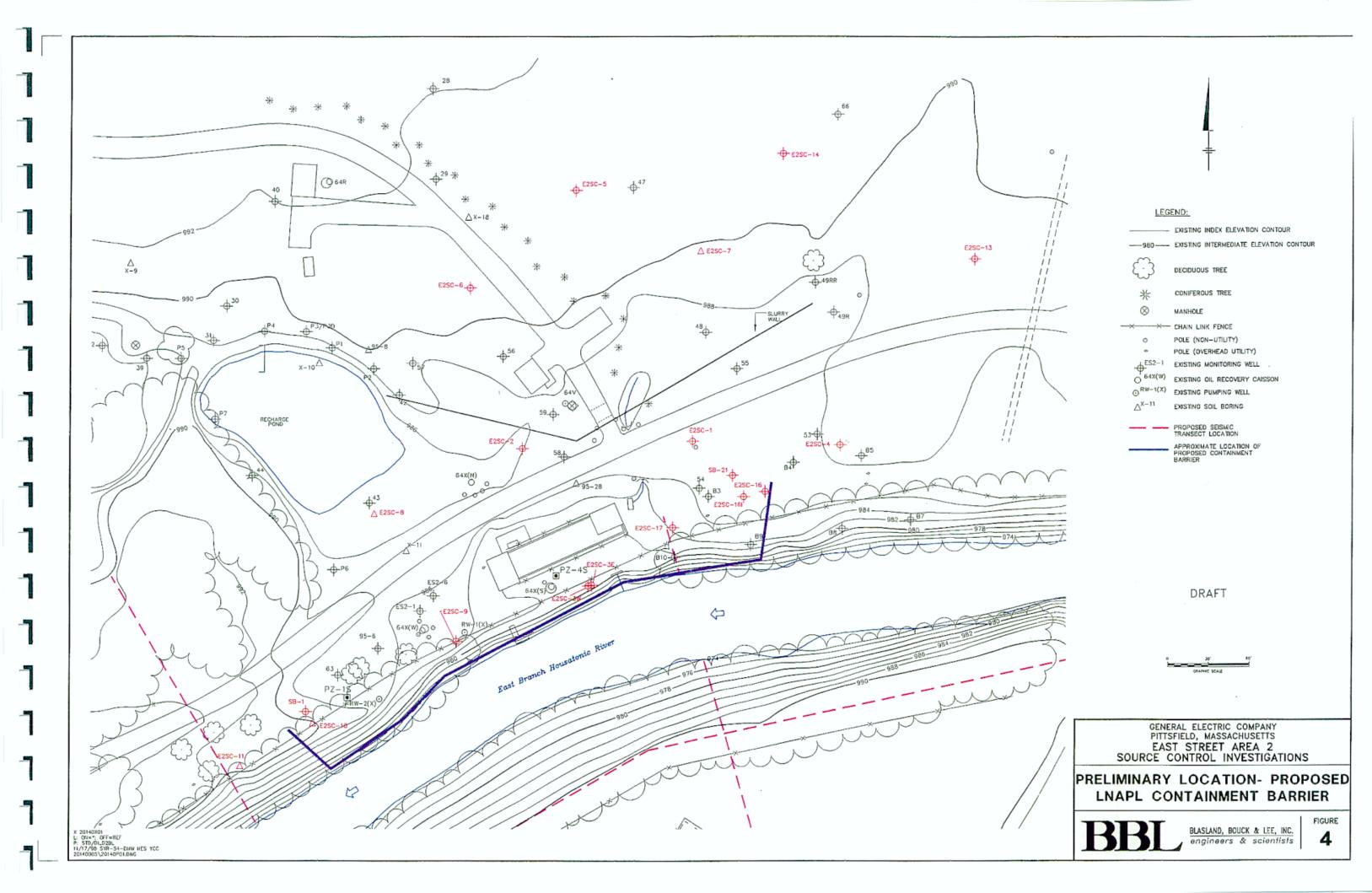
Compound	RESULT	QUALIFIER	UNITS	REPORTING LIMIT	Modifier
Metals				<u> </u>	
Antimony	0.13	В	mg/kg	1	Р
Arsenic	3		mg/kg	1	Р
Barium	0.22	В	mg/kg	20	Р
Chromium	0.079	В	mg/kg	1	Р
Copper	8.7		mg/kg	2.5	Р
Lead	1.3		mg/kg	0.3	Р
Mercury	0.051		mg/kg	0.1	DUP
Mercury	0.061	В	mg/kg	0.1	P
Nickel	0.66	В	mg/kg	4	Р
Selenium	0.92		mg/kg	0.5	Р
Tin	2.2	В	mg/kg	10	Р
Zinc	2.2		mg/kg	2	Р
SVOC		<u></u>	<u></u>	. <u> </u>	
2-Methylnaphthalene	34000		mg/kg	2000	Р
Acenaphthene	3800		mg/kg	2000	Р
Acenaphthylene	19000		mg/kg	2000	Р
Acetophenone	160	J	mg/kg	2000	Р
Anthracene	8500		mg/kg	2000	Р
Benzo(a)anthracene	5500	-	mg/kg	2000	Р
Benzo(a)pyrene	4500		mg/kg	2000	Р
Benzo(b)fluoranthene	2800		mg/kg	2000	Р
Benzo(ghi)perylene	1100	J	mg/kg	2000	Р
Benzo(k)fluoranthene	1300	J	mg/kg	2000	Р
Chrysene	4800		mg/kg	2000	р

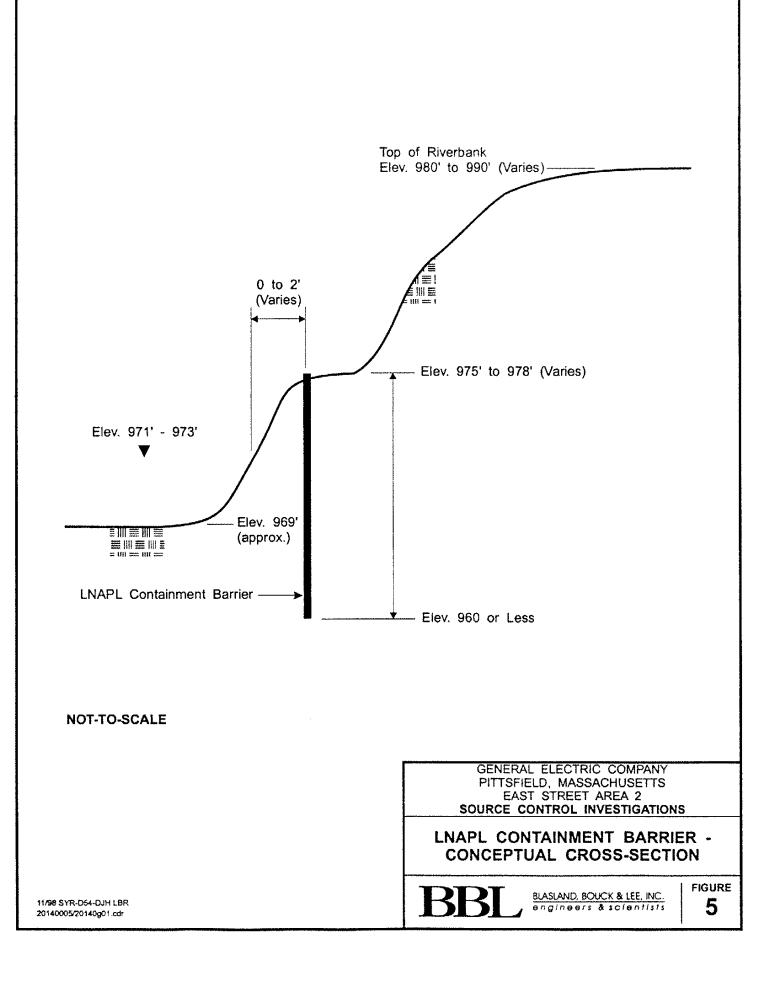

Compound	RESULT	QUALIFIER	UNITS	REPORTING LIMIT	MODIFIER			
Dibenz(a,h)authracene	320	J	mg/kg	2000	Р			
Dibenzofuran 770 J mg/kg 2000 P								
Fluoranthene	11000		mg/kg	2000	Р			
Fluorene	11000		mg/kg	2000	Р			
Indeno(1,2,3-cd)pyrene	98 0	J	mg/kg	2000	Р			
N-Nitrosodiphenylamine	110	J	mg/kg	2000	Р			
Naphthalene	110000		mg/kg	2000	Р			
Phenanthrene	32000		mg/kg	2000	Р			
Pyrene 15000 mg/kg 2000 P								
VOC								
Benzene	13	J	mg/kg	2.5	Р			
Ethylbenzene	53		mg/kg	2.5	Р			
Toluene	19		mg/kg	2.5	Р			
Xylenes (total)43mg/kg2.5P								
PCBs								
No PCBs were detected at a reporting limit of 10 mg/kg								
Notes: B For organics, compound found in method blank. For metals, result is between MDL and RL J For organics, result is between MDL and RL.								


For organics, result is between MDL and RL. J

DUP Duplicate sample. P Preliminary result.


Figures


BLASLAND, BOUCK & LEE, INC. engineers & scientists



è

Sec. 1

November December January October Work Activities WK3 WK4 WK1 WK2 WK3 WK4 WK1 WK2 WK3 WK4 WK1 WK2 WK3 WK4 WK1 WK2 1. Agency Approval of Preliminary LNAPL Design 2. Sheetpile Purchase and Delivery 3. Contractor Selection Process Submit Final LNAPL Design to Agencies¹ 4. 5. Permits and Agency Approvals²-----6. Mobilization/Site Preparation 7. Initiate Sheetpile Installation 8. DNAPL Recovery System Evaluation/Design

> GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS EAST STREET AREA 2 SOURCE CONTROL INVESTIGATIONS 2. The above schedule assumes an Emergency Certification will be obtained from **IMPLEMENTATION SCHEDULE** the Pittsfield Conservation Commission or MDEP. **EAST STREET AREA 2** NAPL CONTAINMENT/RECOVERY ACTIVITIES FIGURE BLASLAND, BOUCK & LEE, INC. 6 engineers & scientists

Notes:

- 1. This submittal will also address the need for DNAPL recovery measures.

Attachment A

BLASLAND, BOUCK & LEE, INC.

engineers & scientists

Boring/Well Construction Log

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-01
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/14/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER _ 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 986.42	GROUT TYPE/QUANTITY Portland/Voiclay
TOP OF CASING 988.36	DEPTH TO WATER
LOGGED BY MJJ	GROUND WATER ELEVATION
REMARKS	

FID (ppm)	BLOW COUNTS	SAMPLE (D	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	- LITHOLOGIC DESCRIPTION	CONTACT	WE	LL DIAGRAM
1.2	6 12	SS01					Medium dense, Moderate Brown, SAND w/ little organics,	1.0	19 1	
0.1	6 6 8 7	SS02	-				trace gravel, moist, well graded (SW-Pt) (soil horizon). Medium dense, Moderate Brown, fine SAND w/ little gravel, moist, well graded, (SW) (poor recovery).	3.0		
1.2	6 5 7	SS03	 	- 4			Medium dense, Moderate olive Brown, SAND w/ little gravel, few fines, moist, well graded, (SW).			
1	8 4	SS04	~	- 5			Same as above.	5.0		생
1	7 2 1 3	SS05					Loose, Light to Moderate yellowish Brown, fine SAND w/ little silt, moist, poorly graded, orange mottling, (SP).	6.0		
o	3 4 3	SS06					Same as above	8.0		
o	6 6 7 5 7	SS07		- 10-			Top 1.2, Same as above, Bottom 0.5', Medium dense, Light olive Brown, fine to medium SAND w/ little silt, moist	10.0		
0.6	5 5 8 7	SS08	h - h				, poorly graded, laminated (SP). Medium dense, Light Grey to Medium Brown, Interbeded fine SAND and organic peat w/ little silt, moist (SP-Pt).	12.0		Portland /
12	8 25	SS09		- 4			Same as above	14.0		Voiclay Grout
11	7 3 3 3	SS10		- 15		`	Loose, Light to Moderate Grey, interbeded fine SAND w/organics, wet, well graded, (SP-Pt) (soil horizon).	15.0		
25	5 3 4 5	SS11				· · · ·	Same as above	17.0		
	8 2	0010	-					19.0		
3	3	SS12		-20-			Same as above	20.0		
2	4 6 9	\$S13	-				Same as above	22.0		
1	6 9 11	SS14		• •		-	Same as above			
2.5	12 19 11 12	SS15		-25			Medium dence, Brownish Black, medium SAND, wet, well graded, SW, stained.	24.0		
2	10 4 6	SS16			NO / HOUSE IN THE REAL PROPERTY AND A REAL PRO		Similar too above except, little fines, few gravel	26.0		
3.1	11 9 12 12	SS17					Similar too above except, trace gravel	28.0		 Bentonite Sea
0.6	11 10 19 12 11	SS18		- 30			Top 1.0, Same as above. Bottom .4, Medium dense, Light to Moderate olive Brown, GRAVEL w/ little sand, few silt,	30.0		
2	11 14 14	SS19					wet, well graded, sub-angular (GW). Medium dense, Light olive, sandy GRAVEL w/ few fines, wet, well graded, sub-round, (GW).	32.0		
				- 4			Continued Next Page	34.0		14440-144

PROJECT NUMBER _____ P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

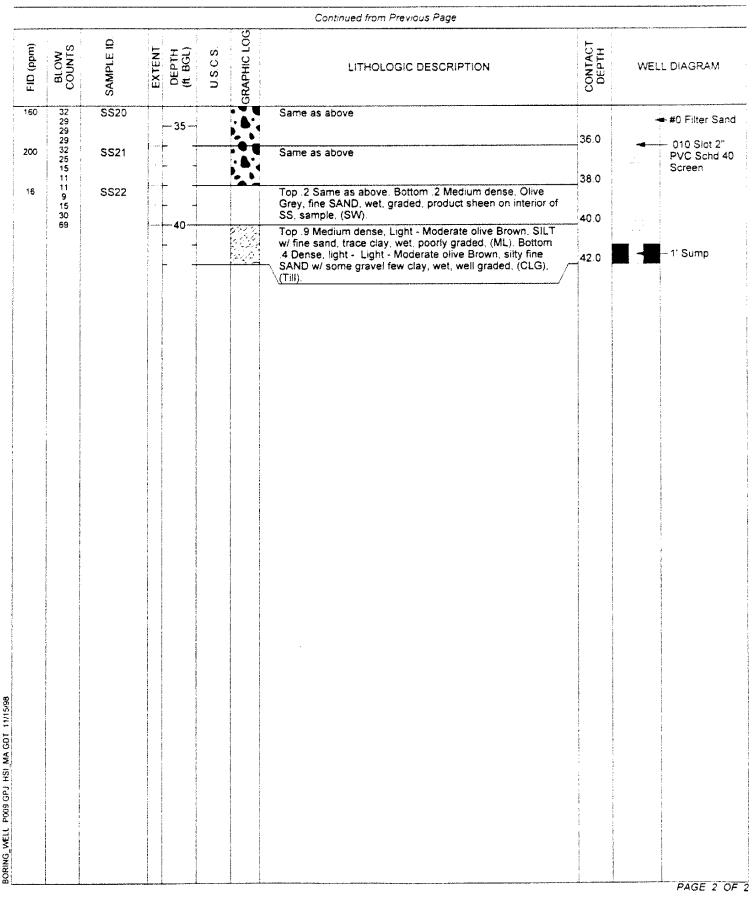
BORING/WELL NUMBER _ E2SC-01

DATE DRILLED 10/14/98

N/A 10 SS20 9 10 10 15 16 SS21 17 17 17 17 17 38.0	FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WE	LL DIAGRAM
1 SS21 No recovery/ no sample (sluff in spoon has sheen headspace 5.6). 38.0 33.2 SS22 Medium dense, Biack, gravelity SAND, wet, well graded, heavily stands, sheen, laminated fine sand at tip has faint staning, (SW-GW). 38.0 0 1 SS23 40 40 Medium dense, Moderate yellowish Brown, fine SAND wilittle sit, wet, poorly graded, (SP-SM). 40.0 1 1 SS24 Similar to above except, trace clay, laminated 1-3mm, tip has angular gravel. 6 8 5 SS25 -45 Medium dense, Light olive Brown, SAND w/ some silt, little gravet, trace clay, wet, well graded, (SW-SM), (Till).	N/A	9 10	\$S20		35			Medium dense, Grayish Olive, gravelly SAND w/trace silt, wet, well graded, sub round, Quartz cobbles, (SW-GW).	36.0		
53.2 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24		16 10 17 17	SS21								PVC Schd 4
0 17 11 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	63.2	22 24 11	SS22	-				heavilly stained, sheen, laminated fine sand at tip has faint			
1 SS24 Similar to above except, trace clay, laminated 1-3mm, tip has angular gravel. 44.0 6 SS25 Medium dense. Light olive Brown, SAND w/ some silt, little gravel, trace clay, wet, well graded, (SW-SM), (Till). 46.0	0	17 4 11	S S23	-	- 40			Medium dense, Moderate yellowish Brown, fine SAND		••••	— 1' Sumo
6 8 SS25	1	4 4 6	SS24		- 1			Similar to above except, trace clay, laminated 1-3mm, tip has angular gravel.			
	6	6 8 13 12	SS25					Medium dense, Light olive Brown, SAND w/ some silt, little gravel, trace clay, wet, well graded, (SW-SM), (Till).			 Bentonite Se

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-02
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/23/98
LOCATION Pittsfield. Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 985.93	GROUT TYPE/QUANTITY Portiand/Volciay
TOP OF CASING 987.57	DEPTH TO WATER
LOGGED BY	GROUND WATER ELEVATION
REMARKS	

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
o	4 6 8 14	SS02	and the second se				Medium dense, Moderate olive Brown, fine SAND w/ some subangular gravel, few fines, dry, weil graded, (SW).	3.0	
0.2	6 14 24 8	SS03					Dense, Light - Moderate olive Brown, SAND w/ little subangular gravel, few fines, dry, well graded, (SW).	5.0	
2.2	9	SS04		- 5 -			Same as above	6.0	
0.2	4 2 5 7 14	SS05					Top 1.0 Medium dense, Light olive Brown, clayey SILT w/ wood fragments, dry, poorly graded, (CL- ML). Bottom .3 Medium dense, Moderate olive Brown, medium SAND, moist, poorly graded, SP.	8.0	
0	4 4 4 11	\$S06					Loose, Olive Grey, medium - fine SAND w/ few fines, trace organics, dry, graded, laminated, (SP), (native).	10.0	
0,4	2 2 2 5	SS07					Loose, Olive Grey, organic fine SAND w/ trace fines, moist, graded, wood fragments, faint organic odor (SW-SM).	12.0	
32	2 4 4 9	SS08					Top 1.4 Similar to above except, Interbedded. Bottom .3 Similar too above except, Loose, wet, petroleum odor, free product, (light yellow).	14.0	Portland / Voiclay Grout
56	4	SS09	X				Loose, Olive Grey, fine SAND w/ little gravel, few organic	15.0	
80	4	SS10		-15-			 (wood fragments), wet, faint odor, black staining in finer zones, (SW). 	16.0	
62	53455	SS11					Loose, Moderate olive Brown, SAND w/ little gravel, few fines, wet, well graded, product observed, strong petroleum odor, (SW). Loose, Moderate olive Brown, gravelly SAND w/ trace	18.0	
50	3 5 11	SS12	-				fines, wet, well graded, subrounded, oil sheen on spoon, (SW-GW). Medium Dense, Moderate olive Brown, sandy subrounded	20.0	
26	12 14 7 7	SS13	 t	-20-			GRAVEL w/ few fines, wet, well graded, sheen and odor present, (GW). Medium Dense, Olive Grey, medium - coarse SAND and	22.0	
46	7 4 1 4	SS14					- subrounded GRAVEL w/ few fines, wet, well graded, (SW-GW). No Recovery.		
32	6 10 10 11	SS15					Loose, Olive Grey, medium - coarse SAND, w/ some subround gravel little fines, wet, well graded, (SW).	24.0	
58	10 13 12 15	SS16					Medium Dense, Olive Grey, gravelly SAND, wet, well graded, subround, (SW-GW).	26.0	Bentonite Sea
62	9	SS17	1				Similar to above except, visible NAPL.	28 0	
210	18 22 25	SS18		- 30-+			Medium Dense, Moderate olive Brown - Grey, fine - medium SAND interbedded w/ gravel, wet, poorly sorted, NAPL present in coarser zones (SW-GW).	30.0	
180	19 11 24 24	SS19					Dense, Moderate olive Brown - Olive Grey, sandy GRAVEL w/ few fines, wet, well graded, subangular, (GW).	32.0	
	A-111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						Continued Next Page	34.0	PAGE 1 OF



PROJECT NUMBER ______ P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

BORING/WELL NUMBER E2SC-02

DATE DRILLED 10/23/98

I	I	5	51					
G	1	E	C)T	'R	A	N	IS
		_	÷ د					а. ч. т

PROJECT NAME Source Control Upper Reach Housatonic River

PROJECT NUMBER P009-001

DRILLING METHOD HSA SAMPLING METHOD SS GROUND ELEVATION 980 43 TOP OF CASING 982.12 LOGGED BY MJJ

REMARKS

LOCATION ____Pittsfield_Massachusetts

BORING/WELL CONSTRUCTION LOG

BO	RING/WELL NUMBER E2SC-03
DA	TE DRILLED 10/15/98
CA	SING TYPE/DIAMETER 2" PVC
sc	REEN TYPE/SLOT010 Slot 2" PVC
GR	AVEL PACK TYPE #0 Silica Sand
GR	OUT TYPE/QUANTITY Portland/Voiclay
DE	PTH TO WATER
GR	OUND WATER ELEVATION

GRAPHIC LOG 0 CONTACT (mqq) BLOW DEPTH (ft. BGL) EXTENT U.S.C.S. SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM Ō 0.2 SS01 3 Very loose, Moderate dark Brown, organic SAND, (SW) 1.0 (topsoil). 0.2 2 2 SS02 Very loose, Moderate Brown, SAND w/ little gravel, few organics, moist, well graded, faint order, (SW). 3 3.0 32 5 5 Loose, Light-Moderate olive Brown, SAND w/ few gravel. SS03 trace fines, moist, well graded, (SW), (Fill) (poor recovery) 5 4 5.0 N/A 3 **SS04** No Recovery. 3 6.0 6.8 5 Top .3 Loose, Moderate olive Brown, SAND w/ few gravel, SS05 trace fines, dry, well graded, (SW). Bottom .4 Medium 3 25 dense, Black, Coal Ash and slag, dry, well graded, 35 8.0 fractured from drive, (Fill). Medium dense, Black, SAND w/ little gravel, trace fines, few wood fragments, moist to wet, well graded, heavily 28 11 SS06 16 9 13 10.0 stained sheen present on soil (w/ NAPL), (SW). 32 2 **SS07** Loose, Black, SAND w/ NAPL, sheen on spoon (poor recovery), (FILL). 3 5 12.0 38 Black, medium - fine SAND, wet, poorly graded, heavily 6 5 SS08 stained sheen on spoon and sample, (SP), 14.0 5 10 SS09 Top .4 Same as above. Bottom .3 Very loose, Olive gray, 15.0 Portland / 2 medium SAND, moist, faint staining, (SW). N/A SS10 2 Volclay Grout No Recovery. 3 17.0 Loose, Light olive Brown, fine SAND, wet, poorly graded, 13.2 3 SS11 finely laminated. (SP). з 19.0 N/A 3 SS12 Same as above 20.0 3 20 N/A SS13 Loose, Light olive Brown, fine SAND w/ few silt, wet, poorly graded, finely laminated 1-4 mm, (SM). 22.0 3 N/A 5 **SS14** Same as above. 24.0 4 N/A SS15 Same as above (loose). 3 25 26.0 N/A SS16 Same as above (poor recovery due to loose material). 28.0 N/A SS17 Same as above. Trace organics in units. 2 3 4 30.0 4 30 N/A Loose, Light olive Brown to Light olive Grey, fine SAND w/ 23 SS18 Bentonite Seal trace fines, poorly graded, laminated 1-3mm, (SM). 32.0 5 N/A 3 SS19 Same as above. 4 4

Continued Next Page

34.0

5/98

H

MA GDT

ŝ

P009 GPJ

WELL

BORING

PROJECT NUMBER _____ P009-001__

BORING/WELL NUMBER _____E2SC-031

PROJECT NAME Source Control Upper Reach Housatonic River DATE DRILLED 10/15/98

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WE	LL DIAGRAM
N/A	6 3 4	SS20		35			Loose, Light olive Brown, fine SAND w/ few silt, wet, poorly graded, loose laminated 1-3 mm, (SP).			:
N/A	6 7 10 4	SS21					Same as above.	36.0	· · · · ·	
N/A	5 6 5 2	SS22					Loose, Moderate olive Brown, medium - coarse SAND w/ few fines, wet, well graded, subrounded, heavily stained	38.0	· · · · ·	+#0 Filter Sand
N/A	2 7 14 9 9	SS23	-				(DNAPL sheen), (SW). Medium dense, Moderate olive Brown, SAND w/ few gravel, trace fines, wet, well graded, heavily stained. NAPL observed in soil, (SW).	40.0		PVC Schd 40 Screen
N/A	16 20 21 28	SS24					Dense, Moderate - Dark Brown, sandy GRAVEL w/ little fines, wet, well graded, subrounded gravel, heavily stained, (GW-SW).	42.0		
6	54 32 98 73	SS25		 45			Very dense, Moderate Brown to Moderate olive Brown, gravelly SAND w/ few silt trace clay, moist, well graded, heavily stained (prdt in preferential pathways), (SW-GW).	44.0		— 1' Sump
0	103 18 17 15	SS26				- , , , , , , , , , , , , , , , , , , ,	Dense, Light Olive, fine SAND w/ little silt, rafted clasts, well graded, (SM).	46.0 47.0		

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBERE2SC-03S
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/16/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 980.57	GROUT TYPE/QUANTITY Portland/Volclay
TOP OF CASING 982.15	DEPTH TO WATER
LOGGED BY	GROUND WATER ELEVATION
REMARKS	

See Boring Log "E2SC-031" Portland // Volcary Grout Bentonte Seal +0 Filer Sand 010 Stot 2" POS Stot 2" POS Stot 2" Cave in 20.0	and the second sec	FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
- 10- - 10- 	A construction of the second s				+ k k k-				See Boring Log " E2SC-031"		Portland / Voiclay Grout
	BURNIG WELL POOD GPJ HSI MA GDI 11/15/98					- 5				20.0	+#0 Filter Sand .010 Slot 2" PVC Schd 40 Screen

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-04
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/13/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 987.29	GROUT TYPE/QUANTITY Portland/Voiclay
TOP OF CASING 989.11	DEPTH TO WATER
LOGGED BY MJJ	GROUND WATER ELEVATION
REMARKS	

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S. GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
N/A	4	SS01				Loose, Moderate - Dark Brown, organic SAND w/ little	1.0	4.74
0	4 54	SS02]			 fines. moist, well graded, brick fragments. (SW) (FILL). Dense, Light - Moderate olive Brown, SAND w/ little fines, little gravel, moist, well graded, SW, angular, brick and coal fragmients. (FILL). 	3.0	
0	5 5 5 4	SS03	 			Loose, Moderate olive Brown, SAND w/ little silt, few gravel, trace coal fragments, moist, well graded,subrounded, (SW) (FILL).	5.0	
o	2	SS04	×	- 5 -		Very loose, Light - Moderate Brown, fine SAND w/ trace	6.0	
2	4 4 4	SS05	,	- +		fines, moist, poorly graded, subangular, (SM). Loose, Light Brown, fine SAND, moist, poorly graded, subangular, (SM).	8.0	
2.9	5 4 4 6	SS06				Loose, Light yellowish Brown, fine SAND, dry, poorly graded, trace bedding, (SM).		
3.2	6 4 6 5 6	SS07		- 10		Top .8 Same as above. Bottom .7 Loose, Light olive Grey, fine SAND w/ trace silt, dry, poorly graded, subangular, laminated 3-6 mm, (SM).	10.0	
3.1	5 4 5	SS08				Loose, Light olive Grey to Moderate yellowish Brown, interbedded fine SAND w/ trace fines, moist, poorly graded, some fine bedded lamination. (SM).	14.0	
3.6	5	SS09	$\overline{\mathbf{X}}$			Loose, Moderate yellowish Brown, moderate - fine SAND	15.0	
2.8	3 3 4 4 5	SS10		- 15		 w/ trace fines, moist, poorly graded, (SM). Top .2 loose, Moderate yellowish Brown, medium SAND, Bottom .7 Loose, Moderate Grey, medium - coarse SAND, wet, graded, visible staining at WT, (SW). 	17.0	Portland / Volclay Grout
1	4 3 5 6	SS11				Loose, Olive Grey, medium SAND w/ coarse interval at top, wet, graded, faint odor present, staining, (SW).	19.0	
N/A	23			- 1		No Recovery.	20.0	
0.9	3 4 7	SS12	2	- 20		Loose, Light - Moderate olive Grey, fine - medium SAND w/course gravel, wet, graded, (SW).	22.0	
0	6 2 2 7	SS13	2			Same as above	24.0	
0 0	6 7 9 10	SS14	2			Medium dense, Moderate olive Brown, gravelly SAND w/ little silt, wet, well graded, angular, (SW).	_	
01 11/15	13 7 8 11	SS15	,			Similar to above except, few - trace fines.	26.0	
P009 GPJ HSI MA GDT 11	11 10 9 11	SS16				Medium dense, Light olive Grey, sandy GRAVEL w/ trace silt, wet, well graded, sub rounded, (GW-SW).	28.0	
000 Cb1	13 9 10	SS17		-30-		Same as above.	30.0	Bentonite Seal
BORING WELL P	11 12 5 8 10	SS18				Similar to above except, trace silt few cobbles, color being lost w/ fines.	32 0	
BORI						Continued Next Page	34.0	PAGE 1 OF 2

PROJECT NUMBER _____ P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

BORING/WELL NUMBER E2SC-04

DATE DRILLED 10/13/98

Continued from Previous Page GRAPHIC LOG CONTACT DEPTH SAMPLE ID FID (ppm) BLOW DEPTH (ft. BGL) U.S.C.S EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION SS19 N/A 9 20 Same as above ŀ. 35 . 11 10 9 6 5 5 7 13 7 , ÷. 35.0 SS20 Same as above . 38.0 Top 5 Same as above. Bottom .4 medium dense, Light olive Brown, SILT w/ little fine sand, wet, poorly graded. 0 SS21 +#0 Filter Sand PVC Schd 40 (ML). 6 6 16 40.0 40 Screen No Recovery. N/A 16 14 13 2 2 4 3 42.0 Loose, Light olive Brown, SILT w/ some gravel, few clay, **SS22** 1 1 wet, well graded, (ML) (TILL). 44.0 23 30 53 42 Similar too above except, very dense (TILL). 0 SS23 1' Sump 45 2 46.0 BORING WELL PO09 GPJ HSI MA GDT 11/15/96 PAGE 2 OF 2

F	-15	51			
G	iΕ	Ο	TR	ANS	5
÷	121	2 A	150⊣	COMPAN	7

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBERE2SC-05
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/26/98
LOCATION Pittsfield. Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE#0 Silica Sand
GROUND ELEVATION 991 42	GROUT TYPE/QUANTITY Portland/Volciay
TOP OF CASING 993.24	DEPTH TO WATER
LOGGED BY	GROUND WATER ELEVATION

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
0.8	2	SS01					Loose, Light olive - Moderate Brown, silty SAND w/ some organics, dry, well graded, subround, (SM).	1.0	
12	20 18 50/.4	SS02					Medium dense. Light - Moderate olive Brown, SAND w/ some gravel, few fines, dry, well graded, subangular. (SW).	3.0	
0.6	8 15 8 5	SS03					Medium dense, Moderate olive Brown, fine SAND w/ little gravel trace fines, dry, well graded, subangular, (SW), (FILL).	5.0	
10.2	5	SS04		- 5			Same as above.		
4.5	6 8 4 8	SS05					Similar to above w/ limestone cobbles.	8.0	
0	10 7 6 5	SS06	1				Medium dense, Light olive Brown, fine SAND w/ some gravel, some fines, dry, well graded, (SW), (FILL).	10.0	
7	4 5 5 4	SS07		- 10			Top .1 Same as above, Bottom 1.3 Medium dense, Olive Grey, silty SAND w/ few organics (roots) trace gravel, moist, graded. (SM), (native).	12.0	
8	4 12 10 12	SS08) Þ	- +			Medium dense, Olive Grey, sandy SILT w/ few clay, trace gravel, moist, well graded, (SM).	14.0	Portland / Voiclay Grout
1.5	4	SS09					Medium Dense, Olive Grey, sandy GRAVEL w/ few fines,	15.0	
17	9 9 11	SS10		- 15			moist, well graded, faint odor (GM). Medium dense, Olive Grey, sandy GRAVEL w/ trace fines, moist, well graded, subangular, faint odor (GW-SW).	17.0	
13	10 9 9	SS11					Top .3 Same as above. Bottom 1.0 Olive Grey, gravelly coarse SAND w/ trace fines, moist, well graded, faint odor (SW-GW).	19.0	
18	11 15	SS12		- +			Medium dense, Olive Grey, gravelly coarse SAND, wet,	20.0	
15	8 9 9 7	SS13		-20-+			well graded, (SW-GW). Medium dense, Olive Grey, gravelly coarse SAND, wet, well graded, visable NAPL (SW-GW).	22.0	
5.3	9 10 10 10	SS14		- -			Similar too above except, no NAPL	24.0	
5.2	11 16 17	SS15		-25-			Dense, Light olive Grey, sandy GRAVEL, wet, well graded, (GW-SW).		
4.8	20 13 15 16	SS16					Dense. Olive Grey, medium - fine SAND w/ trace fines, wet, well graded, (SW).	26.0	 Bentonite Sea
32	19 8 15 20 30	SS17					Dense, Olive Grey, gravelly medium SAND, wet, well graded, (SW-GW).	30.0	
4.6	7 10 14	SS18		- 30			Medium dense. Olive Grey, medium - fine SAND some gravel, wet, well graded, subangular (SW-GW).		
2.8	24 26 20 19	SS19					Dense, Moderate dark Grey, medium - fine SAND some gravel, trace fines, wet, well graded, subangular (SW-GW).	32.0	
	1		1			<u>+ ·</u>	\~~~~****/^	34.0	

Continued Next Page

BORING WELL POOP GPJ HSI MA GOT 11/15/98

PAGE 1 OF 2

PROJECT NUMBER ______ P009-001____

į

BORING/WELL NUMBER E2SC-05

PROJECT NAME Source Control Upper Reach Housatonic River DATE DRILLED 10/26/98

Ê	_s	<u>O</u>				ro C	Continued from Previous Page	5-	<u> </u>	
FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft BGL)	U.S.C.S	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEL	L DIAGRAM
3	13 11 12 15	SS20		35			Medium dense, Dark Brown - Dark Grey, medium SAND w/ few gravel, wet, well graded, slight odor (SW).	36.0		#0 Filter San 010 Slot 2" PVC Schd 40
N/A	10	SS21					Medium dense, Olive Grey, SAND w/ some gravel few fines, wet, well graded, visible NAPL (SW-GW).	38.0		Screen
1	17 11 20 18	SS22	-				Top 0.2 Same as above. Bottom 0.3 Dense, Light olive Brown, sandy SILT, wet, poorly graded, (ML).	40.0		
1.2	25 21 33 51	SS23					Very dense, Light olive Brown, fine sandy SILT w/ little gravel, wet, well graded, angular, (ML) (Till).	42.0		– 1' Sump
	a table b siyada a sama an ak s							and the second		
								n Andre I and a second se		
			1997-1997 - 1997					trig type of the state		
								And the state of the state		
								A can vinden i and		
								and		
				annan an a				100 W		
			an positi de la companya de la compa					and the second second second		
			and and a second se	000 AND 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000				an a the second s		
								- A. 1 107-04-04 - 1 - A		
				1						

HSI		
GEO	TR	ANS
4	1804	COMPASE

PROJECT NAME Source Control Upper Reach Housatonic River

PROJECT NUMBER P009-001

DRILLING METHOD HSA SAMPLING METHOD SS GROUND ELEVATION 990.46 TOP OF CASING 992.49 LOGGED BY MJJ

REMARKS

LOCATION Pittsfield_Massachusetts

BORING/WELL CONSTRUCTION LOG

BORING/WELL NUMBER E2SC-06
DATE DRILLED 10/24/98
CASING TYPE/DIAMETER 2" PVC
SCREEN TYPE/SLOT010 Slot 2" PVC
GRAVEL PACK TYPE
GROUT TYPE/QUANTITY Portland/Voiclay
DEPTH TO WATER
GROUND WATER ELEVATION

L0G ₫ FID (ppm) CONTACT EXTENT DEPTH (ft. BGL) Ś BLOW SAMPLE **GRAPHIC** U.S.C.S WELL DIAGRAM LITHOLOGIC DESCRIPTION 0.2 6 SS01 Loose, Moderate olive Brown, SAND w/ some organics, 4 1.0 8 dry, well graded, (SW). 04 8 15 10 5 SS02 Medium dense, Moderate olive Brown, SAND w/ little Portland / organics, few slag, few fines, dry, well graded, (SW), (Fill). Volclay Grout 3.0 17 12 SS03 Medium dense, Moderate olive Brown, SAND w/ few 6 gravel, trace organics, dry, well graded, (SW), (Fill). 4 3 5.0 Bentonite Seal 15 5 10 SS04 Medium dense, Light - Moderate olive Brown, SAND w/ 6.0 little gravel, few fines, moist, well graded, organic odor 8 18 0 SS05 (SW). Medium dense, Moderate olive Brown, SAND w/ some 6 5 gravel, trace fines, dry, well graded, (SW), (Fill). 8.0 33 18 SS06 Medium dense, Light olive Brown, silty SAND w/ little gravel, wet, well graded, perched water (SW). _____ 7 5 10.0 5 20 SS07 Medium dense, Light Brown, silty SAND w/ some gravel, 9 wet, graded, sheen (SW). 4 12.0 1 750 3 SS08 Top 0.2 Same as above. Middle 0.4 loose, Black, sandy +#0 Filter Sand 4 GRAVEL, wet, saturated w/ NAPL (GW-SW). Bottom 0.5 22 Black, organic peat, saturated w/NAPL, odor. 14.0 .010 Slot 2" PVC Schd 40 580 4 3 SS09 Same as above (Bottom). 15.0 Screen Top 0.6 Medium dense, Black - Dark Brown, peat organics 410 14 15 SS10 (roots), wet, saturated w/ NAPL (PT). Bottom 0.4 sandy 10 GRAVEL, moist, well graded, (GW-SW). 4 17.0 180 8 SS11 Top 0.3 Black, peat, saturated with NAPL. Middle 0.3 Loose, Olive Grey, clay, moist, poor grading, laminated (CL). Next 0.3 loose, Black - Dark Brown, gravelly SAND, 19.0 q wet, well graded, (SW-GW). Bottom 0.3 loose, Light olive 1' Sump Grey, medium SAND, moist, poorly graded, (SP). 11/15/98 BORING WELL POOS GPJ HSI MA GDT

PAGE 1 OF 1

ŀ	ISI		
G	iEO	TR	ANS
4	11174	тарн	DOMPANY

1.94

GROUND ELEVATION 989 13 TOP OF CASING None LOGGED BY MJJ REMARKS

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER	BORING/WELL NUMBER _ E2SC-07
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/27/98
LOCATIONPittsfield, Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 989 13	GROUT TYPE/QUANTITY Portland/Volclay
TOP OF CASING None	DEPTH TO WATER
LOGGED BY MJJ	GROUND WATER ELEVATION

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	USCS	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
0.6	3 9	SS01					Loose, Moderate Brown, silty fine SAND w/ some organics	1.0	
0.2	11 13 13	SS02					trace gravel. dry. well graded, (SW-SM), (soil horizon). Medium dense, Light to Moderate olive Brown, fine SAND w/ some silt, little gravel, trace coal fragments. dry. well graded, (SW-SM), (Fill).	3.0	
1.6	11 5 7 5	SS03					Same as above.		
o	2	SS04		- 5			Loose, Light Brown, fine SAND, dry, poorly graded, (SP).	5.0	
o	3 4 4	SS05					Loose, Moderate yellowish Brown, fine SAND w/ trace silt. dry, poorly graded, sub-angular (SP).	6.0	
3.8	5 6 3 6	SS06				* * * * *	Medium dense. Dusky Yellow - Moderate Brown,	8.0	
2	5 6 5	SS07		- 10-			interbedded fine SAND w/ trace gravel, dry, well graded, (SW). Loose, Moderate yellowish Brown, gravelly SAND w/ trace	10.0	
-	3 3 3	0007	1				fines, dry, well graded, sub-angular (SW).	12.0	
3	5 4 4	SS08		* 4			Similar to above except poor recovery.	14.0	
6	4	SS09				· · · · ·	Loose, Light olive Grey, medium - coarse SAND, moist, graded, faint odor (SP).	15.0	
	3 3 4 4	SS10					Loose, Greyish Olive, medium SAND, moist, poorly graded, sub-angular (SP).	17.0	
30	5 5 6	SS11					Medium dense, Greyish Olive, medium SAND, wet, poorly graded, sub-angular, strong odor, visible NAPL (SP).		
28	6 3	SS12	<u> </u>				Top 0.3 loose, Medium - Dark Grey, medium - coarse	19.0	
15	5 3 5	SS13	1	-20-			SAND, wet, poorly graded, sub-angular, visible NAPL (SP). Bottom 0:3 loose, Moderate olive Brown, medium - coarse SAND, wet, poorly graded,, sub-angular, no NAPL	20.0	Portland / Volclay Grou
4	6 6 4 5	SS14					(SP). Top 0.2 Same as above (Bottom). Bottom 0.5 medium dense, Light olive Brown, fine SAND w/ some silt, wet,	22.0	
0.7	8 8 14	SS15					Same as above (Bottom). Medium dense, Light olive Brown, interbedded SILT -	24.0	
	7 10 15			-25-			SAND - GRAVEL, wet, wellgraded, sub-angular (GM).	26.0	
6.2	5 5 13 16	SS16					Medium dense, Light - Moderate olive Brown, interbedded SILTS - GRAVELS, wet, well graded, sub-angular (GW-GM).	28.0	
36	12 19 20	SS17		- 4	······		Same as above.		
0	15 22 22	SS18		-30-		2	No Recovery.	30.0	
2.8	19 21 10 12	SS19					Medium dense, Moderate olive Brown, medium - fine SAND w/ few silts, wet, poorly graded, sub-angular	32.0	
	11						(SP-ML). Continued Next Page	34.0	PAGE 1 C

PROJECT NUMBER P009-001

BORING/WELL NUMBER E2SC-07

PROJECT NAME Source Control Upper Reach Housatonic River DATE DRILLED 10/27/98

FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft. BGL)	US.CS.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
2	23 7 18 13	SS20		35			Dense, Moderate olive Brown, SAND w/ some gravel, trace fines, wet, well graded, angular, faint staining (SW-GW),	36.0	
1.2	14 19 13 14	SS21					Top 0.5 Same as above. Bottom 0.3 medium dense, Light olive Brown, silty fine SAND, wet, poorly graded, (SP-SM).	38.0	
).2	21 12 16 30 35	SS22		40			Dense, Light olive Brown, silty SAND w/ little gravel, few clay, wet, well graded, angular, (SP_SM) (Till).	40.0	
			ale areas			and a second			
:									
			-						
								n e e n a Managara (n a general ne esp	
	an sin sin gir Marandiga Shara ayor da saya s		tan di an an di Banda ana bias mingana anda						
			se and a substance of the second second					na mang	
			and a second second second						

REMARKS _____

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-08
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/19/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER None
DRILLING METHOD HSA	SCREEN TYPE/SLOT None
SAMPLING METHOD SS	GRAVEL PACK TYPE None
GROUND ELEVATION 986.07	GROUT TYPE/QUANTITY Portland/Voiciay
TOP OF CASING None	DEPTH TO WATER
LOGGED BY MJJ & BB	GROUND WATER ELEVATION

FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WEL	L DIAGRAM
0	8 9	CS01					Loose, Moderate olive Brown, sandy GRAVEL trace fines.	1.0		2
190	14	SS02	1			1.1	moist, well graded, (GW-SW). Similar to above except wood fragments.			5. 4. 1. 1.
	20 17					\mathbb{R}^{2}	•			2
70	9 5	SS03	ļ				Loose, Moderate olive Brown, SAND w/ some wood	3.0		•
, 0	50 1	0000				N/S	fragments, little fines, well graded, (SW).	1011		99
	1			_ 5 _				5.0		ब द
190	6	SS04		v			Similar to above (sample recovery poor).	6.0	1.1	i A
62	4	SS05				kssi	Loose, Moderate to Dark olive Brown, SAND w/ some			
	4					1883	gravel, organic fragments (wood), poor recovery, (SW-GW).			1
3.7	5	SS06				<u>k</u>	Loose, Dark Brown, SAND w/ some organics, moist, well	8.0		
	3					1888	graded, (SW).		KIZ-	1
	3			-10-		\mathbb{K}		10.0	SAN A	
22	2	SS07		,0		883	Top 0.01 very loose, Moderate - Dark Brown, organics and SAND (SW). Middle 0.01 - 0.9 very loose, Moderate - Dark		6.89	1
	3						Brown, fine SAND w/ little silt, moist, heavily stained,	12.0		1
30	7	SS08		- +			petroleum odor (SW). Bottom 0.1 very loose, Moderate -			1
	9 34						Dark Brown, SILT w/ little sand, moist, heavily stained.	i		4 4 4
20	12 5		-				Dense, Black, SAND w/ little fines, wet (NAPL), well	14.0		
30	4	SS09		- 15	MATTIC			15.0		
4.5	3	SS10		.0			\graded, strong odor, sluf is full of NAPL (SP).			
	8 6						Medium dense, Moderate olive Brown, fine SAND few fines, wet, laminations 1-3mm (SP).	17.0		
N/A	7	SS11		- †		1	Same as above.	_		
	7								No. C	1. An 19
N/A	8						No Recovery	19.0	N N C	1
	3			_20 ↓		ļ	•	20.0		
3	4 3	SS13					Loose, Olive gray, fine SAND fines, wet, laminated (SP).	1		1
	6							22.0		Deplered (
2.6	10	SS14	-	- +		 	Medium dense, Olive Grey, fine SAND trace gravel and		No.	 Portland / Volclay Grout
	6 5						fines, sub-angular (SW).			
N/A	4	SS15					Medium dense, dark olive Gray, subrounded to subangular	24.0		
	4	0010		-25-		10-1	GRAVEL trace fines, wet, (GM).		K. X.	
	7			_				26.0		
2.5	6 8	SS16					Medium dense, Olive Grey, GRAVEL few fines, wet, sub-angular to sub-rounded (GM).			to the second
	8						sub-angular to sub-rounded (GM).	28.0		
N/A	6			- +		++	No Recovery.	20.0		
	8 9		11					an a		
	9			-30-				30.0		
N/A	2			_			No Recovery.			1. (Automatica)
	4 8							32.0		1
1	9	SS19					Mediun dense, Greyish Olive w/ Greyish Yellow mottling,			***
	6 8						fine - medium SAND w/ gravel, sub-rounded to sub-angular (SW-GW),	24.0		
				- 4			Continued Next Page	34.0	KN MARKE	

PROJECT NUMBER _____ P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

BORING/WELL NUMBER E2SC-08

DATE DRILLED 10/19/98

							Continued from Previous Page		
FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft BGL)	U S C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
N/A	6	\$S20		-35-			Loose, Greyish Olive, fine - medium SAND and GRAVEL, wet. (SW-GW).		
D	5 4 5	SS21					Top 0.5 loose, Dark veliowish Orange, SAND and	36.0	
0.4	5 4 8	S S22					GRAVEL trace clays, sub-angular (SW-GW). Bottom 0 25 loose. Brownish Black, GRAVEL trace sand. sub-angular to sub-rounded (GP). Medium dense, Light olive Grey, fine SAND some gravel.	38.0	
•.••	8 10 15 16						some fines, sub-angular (SW-GW).	40.0	
0.4	12 14	SS23					Dense, Light olive Grey, silty SAND w/ little clay and gravel, sub-angular to angular (SW-ML).	42.0	
N/A	23 24 28 37 37 39						Same as above.	42.0	
	37 39							44.0	
				d romannor 's and 'n ar sendo					
				Ar annan Afrika a daar a 2					
				4 MARTIN (* 1900)					
	and the second second second					And Products in some			
				,					
						and an over the state			
				ar an i sa di s					
								and a local sector of the	
<u> </u>	<u> </u>			ł		<u>د</u>	цилиция	<u>.</u>	PAGE 2 OF

REMARKS

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-09
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/21/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 983 48	GROUT TYPE/QUANTITY Portland/Voiclay
TOP OF CASING 984.78	DEPTH TO WATER
LOGGED BY BB	GROUND WATER ELEVATION

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM	I
N/A	3 3	CS01			l.	X.	Very loose, Dark yellowish Brown, clayey SILT, dry, OL.	1.0		
10	5533	SS02					Loose, Greyish Brown, clayey SILT trace pebbels, dry, (OL).	3.0		
0	3 3 4 6	SS03	·				Loose, Greyish Brown, clayey SILT some gravel, trace sand , dry, (ML-GM).	5.0		
0.2	4	SS04	1	- 5 -	- F	$\overline{\mathbf{x}}$	Loose, Brownish Black, sandy clayey SILT trace gravel,	6.0		
6	6 7 3 4	SS05					 coal ash and brick fragments, (ML-SM). Loose, Pale Olive, SILT and very fine SAND trace clay, trace gravel root fragments, (ML-SM). 	8.0		
36	5 3 4	SS06				×	Loose, Light olive Grey, fine SAND some silt, trace clay root fragments, slight odor (SM).			
28	4 2 1 5	SS07		- 10		<u>, x, x x</u>	Top 1.0 Same as above. Middle 0.5 loose, Olive Grey, SILT some sand, (SM) Bottom 0.5 loose, Black, SAND, wet, LNAPL (SW).	10.0	Portland /	
26	5 10 14 9 3	SS08	ц.,				Medium dense. Black, SAND and GRAVEL, wet, odor (SW-GW).	14.0	Voiclay Gr	
6.5	3	SS09					Loose, Black, medium - coarse SAND and GRAVEL, wet,	15.0		
6	10 24 11	SS10					 sheen, odor (SW-GW). Dense, Light olive Grey, SAND and GRAVEL, wet, sub-angular to sub-rounded (SW-GW). 	17.0		
16.5	10 3 10 9	SS11					Medium dense, Pale Olive, SAND some gravel, wet to moist, (SW-GW).	19.0		
6	8 9	SS12) ·		<u></u>		No Recovery.	20.0		
8	5 10 5 6	SS13		- 20	*		Medium Dense, Olive Grey, medium - coarse SAND some gravel, wet, (SW-GW).	22.0		
11	6 11 13 13	SS14					Top 0.5 medium dense, Olive Grey, silty SAND trace gravel, (SM). Bottom 0.5 medium dense, GRAVEL and SAND some silt and clay, (SW-GW).	24.0		
6	11 8 8 10	SS15		- 25-	•		Medium dense, Light Olive, SAND and GRAVEL some clay, (SW-GW).	26.0	- Bentonite	Sea
2	4 28 13 12	SS16					Top 0.5 Same as above. Bottom 1.5 Medium dense. Dark yellowish Orange, GRAVEL and SAND trace silt and clay, (SW-GW).	28.0		
25	11 21 18 22	SS17	-				Dense, Pale Olive w/ Dark Grey staining, GRAVEL w/ silt. (GM)			
12	9 8 22 24	\$\$18	and a second state and the second	- 30			Dense, Olive Grey w/ layered dark staining, fine SAND and SILT some gravel, (SM).	30.0		
6	16 27 21 18	SS19					Dense, Greyish Yellow w/ black staining, SILT and GRAVEL, slight sheen (GM).	32.0		
						<u>.</u>	Continued Next Page	34.0	PAGE 1	

PROJECT NUMBER _____ P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

BORING/WELL NUMBER _ E2SC-09

DATE DRILLED 10/21/98

							Continued from Previous Page			
FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WEL	L DIAGRAM
7	22 8	SS20		25		Ŭ	Dense, Grayish Yellow w/ Black staining, SILT and fine SAND gravel, (SM).			#0 Filter Sand
	16 25 28 26)		- 35		2		36.0		– .010 Slot 2° PVC Schơ 40 Screen
4	28 26 36	SS21					Same as above.	A shareshare A		Screen
8	36 18 9 19	SS22	.	· +		2.25	Medium dense, Pale Olive, clayey SILT some gravel, Till	38.0	- <u></u> .	:
v	13	3322	· •				(ML).	a di Pana a Mala Andrea		
1	9 6 29 49	SS23	 -	-40			Very dense, Olive Gray, SILT some clay and gravel, Till	40.0		- 1' Sump
	49 52 50						(ML).	42.0		-Cave in
	50							42.0	టి.పి.సి.సి	Ouro
	The Address									
			· · · · · · · · · · · · · · · · · · ·							
										1
				-						
								ľ		
										l I
										4
				1. M. M.						
				-						
				Annalas are en Andre						
	4 MARINA (1.) 1.									
										PAGE 2 OF 2
										- PAGE 2 OF 2

BORING WELL P009 GPJ HSI MA GDT 11/15/98

HSI	
GEOTRANS	,
A TETRA TECH COMPANY	r

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-10
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/20/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER None
DRILLING METHOD HSA	SCREEN TYPE/SLOT None
SAMPLING METHOD SS	GRAVEL PACK TYPE None
GROUND ELEVATION 989 19	GROUT TYPE/QUANTITY Portland/Voiciay
TOP OF CASING None	DEPTH TO WATER
LOGGED BY BB	GROUND WATER ELEVATION
REMARKS	

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL	. DIAGRAM
1	3 5	CS01					Loose, Moderate olive Grey, silty CLAY some clay root	1.0		:
1	5	SS02			····	1	fragments, (CH), (top soil). Loose, Olive Grey, silty SAND trace clay, (SM).			
	5							3.0		
36	4 6 5 5	SS03	-				Top 0.25 loose, Dark Grey to Black, organic granular material, no odor. Bottom 2.5 loose, Olive Grey, fine SAND trace clays, laminated (SM).	5.0		
0.3	3	SS04		- 5			Same as above (Bottom).	6.0	- × 2	
1	4 4 7	SS05	1			<pre> </pre>	Top 0.5 Same as above. Bottom 1.5 loose, Light olive Grey (salt and pepper), medium SAND trace fines, dry, (SW).	8.0		
3.8	7 6 6 7	SS06					Medium dense, Light olive Grey, fine - medium SAND and GRAVEL, dry, sub-rounded (SW-GW).			
1	6 5	SS07		—10—			Same as above.	10.0		
	7	000								
٥	5 5 6	SS08	,				Medium dense, Light olive Grey (salt and pepper), medium SAND trace gravel, dry, sub-rounded, some Fe stained laminations, (SW).	12.0		
N/A	7	SS09					Same as above.	15.0	\mathbb{N}^{1}	
1	8	SS10		15			Medium dense, Light olive Grey (salt and pepper),	15.0		 Portland / Volciay Grout
	8 8 8 6		к 				medium - coarse SAND trace gravel and qtz cobbles, (SP).	17.0		voiciaj circut
0	6 6 3	SS11	L				Loose, Light olive Grey, fine - medium SAND some silt, trace clay, wet, laminations (SM).	19.0		
0.5	3	SS12				· · · · ·	Top 0.5 Same as above. Bottom 0.5 loose, Light olive	20.0		
0.2	3 6 3 2	\$\$13	1			2 2 2 2 4 	Grey (salt and pepper), medium SAND, wet, (SW) Top 0.5 Same as above (Bottom). Bottom 1.5 loose, Dark yellowish Orange, medium - coarse SAND some gravel,			
0.2	2 7 8 11 15	SS14					sub-rounded to sub-angular (SW-GW). Top 0.25 Same as above (Bottom). Bottom 1.5 loose, Pale Olive, GRAVEL trace cobbles, sub-rounded to sub-angular (GW).	22.0		
0.5	18 10	SS15					Same as above (Bottorn).			
8	5 18		2	-25-				26.0		
01 1/12	14 12 26 28 46	SS16				•	Top 1 Dense, Olive Grey, GRAVEL some sand and fines, well graded, (GW-SW). Bottom 1 Same but clay inc. trace sand	26.0		
× o	50	SS17					Dense, Greyish Olive, SILT and CLAY w/ some gravel and	20.V		
12 I	29 26		;			1274	cobbles, well graded, (ML), (Till).			
66	28 34			-30-		-		30.0		
BURING WELL POOB GPJ HSI MA GDT 11/1508										PAGE 1 OF

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBERE2SC-11
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/9/98
LOCATION Pittsfield, Massachusetts	CASING TYPE/DIAMETER None
DRILLING METHOD HSA	SCREEN TYPE/SLOT None
SAMPLING METHOD SS	GRAVEL PACK TYPE None
GROUND ELEVATION 990.06	GROUT TYPE/QUANTITY Portland/Volciay
TOP OF CASING None	DEPTH TO WATER
LOGGED BY MJJ	GROUND WATER ELEVATION

REMARKS _____

02 2 SS01 Very loose. Moderate to Dark Brown, medium to file 10 0 SS02 Medium loose. Moderate to Dark Brown, medium to file 10 0 SS03 SS03 Similar too above except no medium sand lenses. finely 30 0 SS04 -5 Same as above. 60 0 SS05 -5 Same as above. 60 0 SS05 -5 Same as above. 60 0 SS06 -5 Same as above. 80 0 SS06 -60 So 80 0 SS07 -10 Similar too above except, few sill lenses 100 0 SS08 -5 Same as above. 100 0 SS07 -10 Similar too above except, moist. 12.0 0 SS08 -15 Same as above. 12.0 0 SS08 -15 Same as above. 17.0	FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WEL	L DIAGRAM
0 6 SS02 Medium loose. Moderate yellowish Brown, fine SAND, w/ few interbeded medium sand lenses, (SP). 3.0 0 SS03 Similar too above except no medium sand lenses, finely laminated, dry. 5.0 0 SS04 5 Same as above. 6.0 0.4 SS05 Same as above. 6.0 0.2 SS06 Same as above. 8.0 0.2 SS07 10 Similar too above except, few silt lenses. 10.0 0 SS08 Similar too above except, moist. 12.0 0 SS08 Similar too above except, wet. 15.0 0.2 SS10 15 Same as above. 12.0	02	2	SS01					Very loose, Moderate to Dark Brown, medium to fine	1.0		
0 6 SS03 Similar too above except no medium sand lenses, finely laminated, dry. 0 4 SS04 5 Same as above. 6.0 0.4 SS05 Same as above. 8.0 Portland / Volciay Grot 0.2 SS06 Same as above. 10.0 Portland / Volciay Grot 0 2 SS07 10 Similar too above except, few silt lenses. 12.0 0 4 SS08 Similar too above except, moist. 14.0 0.2 18 SS09 Similar too above except, wet. 15.0 0.2 7 SS10 15 Same as above. 14.0	0	6 6	SS02	р. на 1				 SAND, w/ some organics, moist, poorly graded, (SP). Medium loose, Moderate yellowish Brown, fine SAND, w/ few interbeded medium sand lenses, (SP). 			
0 4 SS04 5 Same as above. 6.0 0.4 4 SS05 Same as above. 6.0 0.2 4 SS06 Same as above. 8.0 0.2 4 SS06 Same as above. 10.0 0 2 SS07 10 Similar too above except, few silt lenses. 10.0 0 4 SS08 Similar too above except, moist. 12.0 14.0 0.2 18 SS09 Similar too above except, wet. 15.0 15.0 0.2 7 SS10 15 Same as above. 17.0	0	6 6	SS03	 -				Similar too above except no medium sand lenses, finely laminated, dry.			
0.4 3 SS05 Same as above. 8.0 0.2 4 SS06 Same as above. 10.0 0 2 SS07 10 Similar too above except, few silt lenses. 10.0 0 4 SS08 Similar too above except, moist. 12.0 0 4 SS09 15 Same as above. 14.0 0.2 7 SS10 15 Same as above. 15.0	o	5	SS04		- 5 -			Same as above	resourced		
0.2 3 SS06 Same as above. 8.0 0 2 SS07 10 Similar too above except, few silt lenses. 10.0 0 2 SS08 10 Similar too above except, few silt lenses. 12.0 0 4 SS08 14.0 0.2 7 SS10 15 Same as above. 0.2 7 SS10 15 Same as above.		4			-				6.0		
0.2 4 SS06 Portland / Volciay Gross 0 2 SS07 10 Similar too above except, few silt lenses. 0 4 SS08 10 10.0 0 4 SS08 12.0 0 4 SS08 14.0 0.2 18 SS09 15 0.2 7 SS10 15.0		4							8.0		
0 2 SS07 10 Similar too above except, few silt lenses. 10.0 0 4 SS08 12.0 0 4 SS08 14.0 0.2 18 SS09 15 0.2 7 SS10 15 0.2 7 SS10 15	0.2	4	SS06					Same as above.		10 - C	- Portland / Volclay Gro
0 2 SS07 1 12.0 0 4 SS08 Similar too above except, rew slit lenses. 12.0 0.2 18 SS09 15 14.0 0.2 7 SS10 15 Same as above.					- 10-				10.0		VOICIAY GIU
0 4 SS08 12.0 0.2 18 SS09 14.0 0.2 7 SS10 15.0 9 15 Same as above. 17.0	0	4	SS07					Similar too above except, few silt lenses.			
0.2 18 SS09 14.0 0.2 7 SS10 15 0.2 7 SS10 15	~	6	6609				+	Similar too above except molet	12.0		
0.2 18 SS09 6 SS10 15 Same as above. 9 Same as above. 15.0 17 SS10 17 Same as above.	U	4	3306	:							
0.2 7 SS10 15 Same as above.	0.2	18	SS09	$\overline{\mathbf{v}}$				Similar too above except, wet.	~~~~		
9	0.2	7	SS10	<u></u>	- 15-			Same as above.	10.0		
		9							17.0		

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER	BORING/WELL NUMBER E2SC-12
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/19/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER None
DRILLING METHOD HSA	SCREEN TYPE/SLOT None
SAMPLING METHOD SS	GRAVEL PACK TYPE None
GROUND ELEVATION 978.87	GROUT TYPE/QUANTITY Portland/Volclay
TOP OF CASING None	DEPTH TO WATER
LOGGED BY	GROUND WATER ELEVATION
REMARKS	

FID (ppm) BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DI	AGRAM
N/A 6 6	CS01			1		No Recovery (Pavement).	1.0		
N/A 5	SS02	 ,		1		No Recovery.			
0.2 3	SS03	¢			0 0 2 0	Loose, Moderate olive Brown, SAND w/ little_gravel trace	3.0		
- 4 - 5 - 4						fines, dry, well graded, sub-rounded (SW).	5.0		
N/A 1 3	SS04		- 5 -			No Recovery.	6.0		
42 1 3	SS05	-			· · · · · · · · · · · · · · · · · · ·	Loose, Moderate - Dark Brown, SAND w/ few organic peat and fines, tip of spoon wet, visabily discolored (SW).	0.0		
13 28 1 2	SS06		-			Top 0.6 Same as above. Bottom similar except coarse	8.0		
7 8 14 2	SS07					SAND w/ few gravel trace fines, wet, (SW). Top 0.4 loose, coarse SAND w/ gravel, (SW). Bottom	10.0		
4	3307	1				loose, Moderate to Dark olive Brown, fine SAND w/ trace fines, wet, poorly graded, (SM).	12.0		
10 4 8 4	SS08					Medium dense, Moderate olive Brown, clayey SILT, wet, poorly graded, laminate 1-4mm (ML).			
8 6 11	SS09					Medium dense, Moderate olive grey Brown, silty SAND w/ trace gravel, wet, well graded, interbedded (SM).	14.0 15.0		
4.2 7 7 8 9 1.8 6	SS10					Medium dense, Moderate olive Brown, SAND w/ some gravel trace fines, wet, well graded, sub-rounded (SW-GW).	18.0		rtland / Iclay Gro
6 8 12	SS11					Top 0.3 Medium dense, Moderate olive Brown, SAND w/ little gravel trace fines, wet, well graded, (SW). Bottom 0.5 Medium dense, Moderate olive Brown, SAND, wet, poorly	20.0		
0.2 6 7 8 9	SS12					 graded, SW. Medium dense, Light olive Brown, coarse - medium SAND w/ some gravel trace fines, wet, well graded, (SW-GW). 	22.0		
N/A 2 4 12	SS13		+			No Recovery.	22.0		
0,4 4 7 7	SS14					Medium dense, Greyish Olive, medium - coarse SAND w/ few gravel trace fines, wet, graded, (SW).	24.0		
0.4 4 4	SS15		- +			Medium dense. Moderate olive Brown, silty SAND w/ trace gravel, wet, poorly graded, laminated 1-3mm (SP).	26.0		
7 3 0 8 58	SS16		• •			Very dense, Moderate olive Brown, SAND w/ some silt few gravel, wet, well graded, (SM).	28.0		
13 17 06 16 24	SS17		-30			Very Dense, Light olive Brown, SAND w/ little gravel few	30.0		
76 70			- +	****		fines, moist, well graded, (SW), (Till).	32.0		

PAGE 1 OF 1

DRILLING METHOD HSA SAMPLING METHOD SS GROUND ELEVATION 988.09 TOP OF CASING 989.89 LOGGED BY MJJ REMARKS

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBERP009-001	BORING/WELL NUMBER _ E2SC-13
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/7/98
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 988.09	GROUT TYPE/QUANTITY Portland/Voiciay
TOP OF CASING 989.89	DEPTH TO WATER
LOGGED BY	GROUND WATER ELEVATION

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
0 0 0 N/A N/A N/A N/A	MOTE 6 10 113 14 20 7 7 4 3 6 4 7 5 4 3 3 2 2 3 10 12 14 4 6 6 5 3 2 2 1 3 2 2 2 2	ET ALL SECONDANCE SECONDOS SECO	• • • • • • • • • • • • • • • • • • •			GRAPHIC I	LITHOLOGIC DESCRIPTION Loose, Moderate yellowish Brown, SAND w/ little fines and gravel, sub-rounded (SW). Medium dense, Moderate Brown, SAND w/ some gravel trace fines, dry, (SW-GW). Same as above. Loose, Moderate Brown, SAND w/ some gravel little fines, dry, sub-rounded (SW-GW). Loose, Moderate Brown, fine - medium SAND w/ trace fines, moist, poorly graded, (SP). No Recovery (Drove cobble). Medium dense, Light olive Grey and Light olive Brown, SAND w/ some gravel, moist, laminated fine sand zone, (SW-GW). Loose, Light olive Grey, medium SAND, wet, poorly graded, laminated (salt and pepper) (SW).	1.0 1.0 3.0 5.0 6.0 10.0 12.0 14.0 16.0 18.0	WELL DIAGRAM
BORING WELL POOS GPJ HSI MA GDT 11/15/98								na fun a constante en la const	PAGE 1 OF

PROJECT NUMBER	BORING/WELL NUM
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10
LOCATION Pittsfield Massachusetts	CASING TYPE/DIAME
DRILLING METHOD HSA	SCREEN TYPE/SLOT
SAMPLING METHOD SS	GRAVEL PACK TYPE
GROUND ELEVATION 990 19	GROUT TYPE/QUAN
TOP OF CASING 992.25	DEPTH TO WATER
LOGGED BY MJJ	GROUND WATER EL

BORING/WELL NUMBER E2SC-14
DATE DRILLED 10/8/98
CASING TYPE/DIAMETER
SCREEN TYPE/SLOT 010 Slot 2" PVC
SRAVEL PACK TYPE #0 Silica Sand
SROUT TYPE/QUANTITY Portland/Volciay
GROUND WATER ELEVATION

LOGGED BY REMARKS

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
an mana da man ang kada sa na kang na sa manana an an ang kang na kang na kang na			ran Provinciana (Barbara - Eric Martina, a caracteris) (Barbara - Caracteris) (Constantina - Caracteris) 19 (21 Martina (Barbara) - Caracteris) (Constantina - Caracteris) (Constantina - Caracteris) (Constantina - Car				Loose. Medium to Dark Brown, organic SAND w/ few gravel, moist, (SW), (Top soil/ Fill). Medium dense, Moderate Brown, SAND w/ little gravel, few fines, moist, (SW). Loose, Light to Pale olive Brown, SAND w/ trace fines, moist, poorly graded, (SP).	1.0 3.0 5.0	Portland / Volclay Grou Bentonite Se
ang dangé tingka di	a an analas ar an						Loose, Light olive Brown, fine SAND, moist, poorly graded (SP). Similar too above except, silty SAND.	6.0 8.0	
a na ann a na annach an ann ann ann ann ann ann ann ann ann				- 10			Similar to above except fine to medium SAND. Similar too above except, medium SAND.	10.0	#0 Filter San
							Loose. Light olive Grey, medium to fine SAND w/ trace fines, moist, poorly graded, brown staining from bottom 0.6 (SP).	12.0	#0 Filter San .010 Slot 2" PVC Schd 4 Screen
				- 15			Similar too above except, medium SAND, interbeded silt lens .4 to .6 Similar too above except, no silt lens, wet.	16.0	
				20			Medium dense, Light olive Grey, clayey SILT, wet, poorly graded, (MH).	18.0	Cave in
								ngga 	
	an angala 'n an a b an' a annan an Matta					and a second			
				a yana shi a shi ka ya ka shi ka s		senseti se a segur se segur se segur segur segur segur			
			an a serie and provide series and the series of the series	en treve route e a de treve mais anna act, anna act		and the second sec			
	ter (Ali - Marine) e strenge e		yn yny dan yw orae ar	والمتعاول فراب بالم المتعادية المتعادية المتعادية والمعادية					PAGE 1 0

PR	Ó	JE	CT	NUMB:	ER	P009-001

PROJECT NAME So	urce Control Upper Reach Housatonic River
LOCATION Pittsfield	Massachusetts
DRILLING METHOD	ISA
SAMPLING METHOD	SS
GROUND ELEVATION	N/A
TOP OF CASING N/A	
LOGGED BY MJJ	
REMARKS	

BORING/WELL NUMBER	E2SC-15
DATE DRILLED 10/20/98	
CASING TYPE/DIAMETER	None
SCREEN TYPE/SLOT No	ne
GRAVEL PACK TYPE No	ne
GROUT TYPE/QUANTITY	Portland/Volciay
DEPTH TO WATER	
GROUND WATER ELEVATI	ON

FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM								
٥	3452	SS02					Loose, Moderate olive Brown. SAND w/ little gravel, few fines(organics), dry, well graded, (SW).	3.0									
	5 4 3	SS03	1				Loose, Moderate olive Brown to Dusk yellow Brown, SAND w/ little gravel, few fines, dry, coal slag fragments (SW), (Fill).	5.0									
1.8	4	SS04		- 5 -	6	$\overline{\mathbb{N}}$	Same as above.	6.0									
0	3 6 18	SS05	2				Medium dense, Dark yellowish Brown, fine SAND w/ trace fines and gravel, dry, graded, (SW), (Fill).	8.0									
1.4	4 5 7	SS06	:			×	Similar to above except wood fragments.										
0	6 3 4 8	SS07	2	10		<u>5233</u>	Medium dense, Light olive Grey to Moderate olive Brown, fine SAND w/ few fines, trace organics, poorly graded, Iron staining (SP).	10.0									
5	9 3 2 5	2	5			· · · · · · · · · · · · · · · · · · ·	Loose, Light olive Grey, SAND w/ trace fines interbedded w/ fine - medium sand and trace organics, wet, graded, (SW).	14.0									
0.2	4	SS09			•	.	Loose, Light olive Grey to Moderate olive Brown, sandy	15.0									
0.4	6	SS10		- 15-	•		GRAVEL w/ trace organics, wet, well graded, sub-angular (GW-SW).	16.0	- ASSA								
0.2	10 4 8 10 13	SS11	-	 - 20-+ 	 - 20-+-				Same as above Medium dense, Moderate olive Brown, sandy GRAVEL few fines, wet, well graded, sub-angular (GW-SW).	18.0							
8.2	10 5 3	SS12						 20			 20			Top 0.6 Same as above. Bottom 0.5 loose, Light olive Grey, silty SAND, wet, poorly graded, (SP-SM).	20.0	Voiclay Gro	
O	4 4 4	SS13											- 20			Loose, Greyish Olive, silty fine SAND w/ trace clay, wet, poorly graded, laminated 1-3mm (SP-SM).	22.0
0	6 3 5 9	SS14			* • • • •		Top 0.6 Same as above. Bottom 0.7 Medium dense. Greyish Brown to Moderate olive Brown, medium SAND, wet, poorly graded, top of sand has grayish interval (SW)	24.0									
0.4	4 6 9	SS15	44 4 4	- 25		 25	· _ 25			Same as above (Bottom).							
0	11 5 13 28	SS16	,				· · · · · ·	Top 0.9 Same as above. Bottom 0.2 Dense, Olive Grey, SAND and GRAVEL w/ trace fines, wet, well graded, sub-rounded (SW-GW).	26.0								
0	60 6 12 26	S S17													Dense, Olive Grey to Moderate olive Brown, sandy GRAVEL w/ few fines, wet, well graded, sub-rounded	30.0	
N/A	45 10 28 33	SS18	-						No Recovery.	32.0							
o	34 8 16 24	SS19	-				Dense, Light olive Brown, SAND w/ some silt, few gravel, wet, well graded, sub-angular, glacial outwash (SM).										
-							Continued Next Page	34.0	PAGE 1 C								

PROJECT NUMBER _____ P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

BORING/WELL NUMBER _____E2SC-15_____

DATE DRILLED 10/20/98

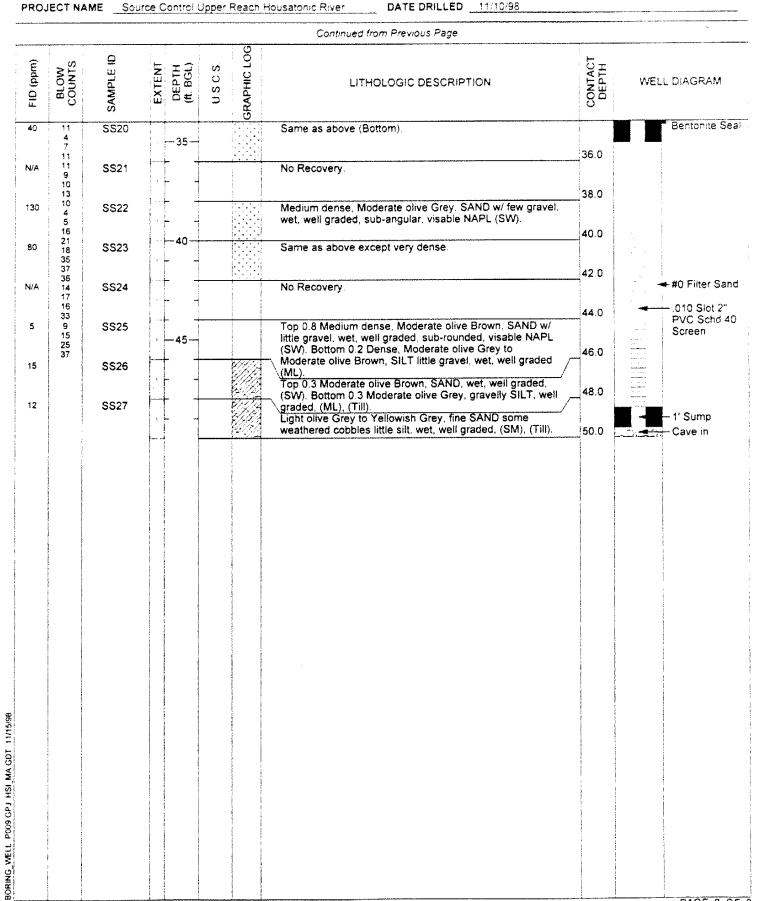
	Continued from Previous Page									
FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fr. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM	
	17 17 33 66 71	5\$20		35		e	Very dense. Light olive Brown. silty SAND w/ some gravel few clay, moist, well graded, sub-angular (SM), (Till).		PAGE 2 OF 2	

BORING WELL POOS GPJ HSI MA GDT 11/15/96

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-16
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 11/10/98
LOCATION Pittsfield, Massachusetts	CASING TYPE/DIAMETER _ 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOTO10 Sidt 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION N/A	GROUT TYPE/QUANTITY Portland/Volciay
TOP OF CASING N/A	DEPTH TO WATER
LOGGED BY NSB	GROUND WATER ELEVATION
REMARKS	

GRAPHIC LOG SAMPLE ID. FID (ppm) BLOW CONTACT DEPTH EXTENT DEPTH (ft. BGL) U.S.C.S. WELL DIAGRAM LITHOLOGIC DESCRIPTION See Soil Boring "E2SC-16S" 5 10 Portland / Volclay Grout 18.0 0.4 3 SS12 Medium dense, Dark Grey, coarse SAND trace fines, wet, 6 well graded, (SW). 8 20.0 9 20 2 357 **SS13** Similar to above except middle 0.8 light olive gray. 22.0 7 6 6 15 Top 0.8 Medium dense, Dark Grey to Moderate olive Grey, **SS14** SAND, wet, poor grading, coarsening downward (SP). 10 11 Bottom 0.4 Medium dense, Moderate olive Grey, fine 24.0 SAND, trace silt, wet, well graded, (SW). Top 0.2 Medium dense, Dark Grey, fine SAND, wet, well 24 5 8 SS15 25 graded, (SW). Bottom 1.0 Light to Moderate olive Grey, fine SAND little silt, wet, well graded, (Sw). Medium dense, Moderate olive Grey, fine to medium 10 15 26.0 16 9 SS16 8 SAND trace silt, wet, well graded, chunk of metal slag on 10 side of sample (SW) 28.0 10 15 Medium dense, Moderate olive Grey, SAND trace silt and 34 **SS17** gravel, wet, well graded, (SW). 7 30.0 12 Top 0.3 medium dense, Light Grey, fine SAND trace fines, 20 **SS18** 5 6 wet, well graded, laminations (SW). Bottom 0.3 Moderate 9 Grey, medium SAND, wet, well graded, (SW). 32.0 11 Top 0.3 Same as above (Top). Bottom 0.7 Moderate olive 8 10 42 **SS19** Grey, coarse to medium SAND, wet, well graded, (SW). 12 34.0 Continued Next Page


PAGE 1 OF 2

PROJECT NUMBER P009-001

BORING/WELL NUMBER E2SC-16

DATE DRILLED 11/10/98

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBER E2SC-16S
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED 10/8/98
LOCATION Pittsfield. Massachusetts	CASING TYPE/DIAMETER 2" PVC
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 985 78	GROUT TYPE/QUANTITY Portland/Volclay
TOP OF CASING 987.69	DEPTH TO WATER
LOGGED BY	GROUND WATER ELEVATION
REMARKS	

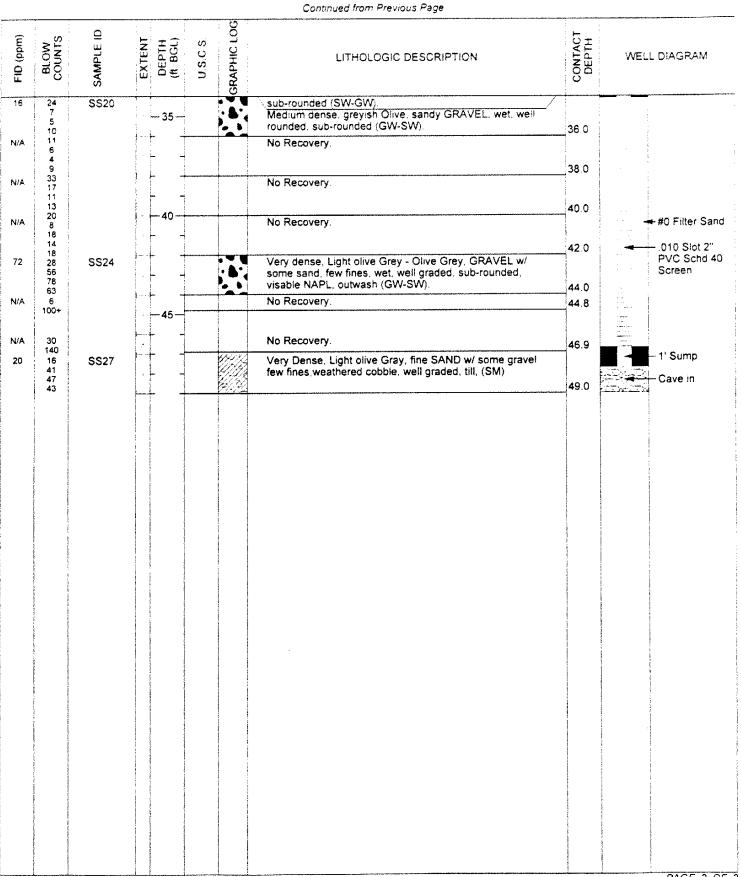
FID (ppm)	BLOW COUNTS	SAMPLE ID.	EXTENT	DEPTH (ft BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
0	7 13 7 5 7	CS01 SS02					Medium dense, Medium Brown, organic SAND w/ few gravel, moist. (CL), (Top soil/ Fill). Medium dense, Dark Brown to Black, medium SAND w/ few gravel, trace fines, moist, well graded, (SW), (Fill).	1.0	Portland / Volclay Grout
	7 6 7 8	SS03	1				Dark Brown to Black, medium SAND w/ some cinders and coal ash, moist, (SW), (Fill).	5.0	- Bentonite Seal
	6 3	SS04		5			Same as above.	6.0	
0.B	2 1 2 1	SS05	÷				Top Same as above. Bottom 0.4, loose, Olive Brown, medium to course SAND, moist, well graded, (SW).	8.0	
5.5	3 3 4 3	SS06					Loose, Interbeded cinders and sand units, (Fill).	10.0	#0 Filter Sand
6	6 5 7 9	SS07	,	—10— 			Medium dense, Black, coal ash and slag, (Fill).	12.0	#0 Filter Sand
5.4	11 5 8 8	SS08	·				Same as above.		PVC Schd 40 Screen
71.4		SS09				RXXI	Loose, Black, gravelly SAND, moist, well graded, SW.	15.0	· · · · · · · · · · · ·
0.4	7 4 4 2 2	SS10		- 15			heavily stained, (Fill). Loose, Light olive Grey, medium to course SAND, wet, stained, (SW), (native).	17.0	
a waa compo wa wampeo kum co nog o			ana akan da kata sa ka						
an per la anna supraacada rurooganta an								an ha a sharen - sharenn A roman y ago	
1/15/98			ng sin kongeler allem Ager Magendale Leatane in						
+									
W ISH fd	a se denne como como como como como como como com		ta i data kanangang dang data sang sa						
FL P009 G			Another and an address of the second			na v v na se			
BCRING WELL POOS GPJ HSI MA GDT									
ă	1		l	<u>į </u>		1 1			PAGE 1 OF 1

REMARKS

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBER P009-001	BORING/WELL NUMBERE2SC-17
PROJECT NAME Source Control Upper Reach Housatonic River	DATE DRILLED10/27/98
LOCATION Pittsfield, Massachusetts	CASING TYPE/DIAMETER
DRILLING METHOD HSA	SCREEN TYPE/SLOT 010 Slot 2" PVC
SAMPLING METHOD SS	GRAVEL PACK TYPE #0 Silica Sand
GROUND ELEVATION 983.76	GROUT TYPE/QUANTITYPortland/Voiclay
TOP OF CASING 985.38	DEPTH TO WATER
LOGGED BY NSB	GROUND WATER ELEVATION

FID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL	. DIAGRAM
0	4 5	CS01					Loose, Black - olive Brown, silty SAND few gravel, dry,	1.0	14 14	
1	3 5 4	SS02					well graded, sub-angular. (SW). (soil horizon). Loose, Moderate yellowish Brown, fine - medium SAND few fines, trace gravel, dry, well graded, (SW).			
50	2 1 6 3	SS03					Loose, Olive Black, fine SAND few fines coal fragments, dry, well graded, (SW), (Fill).	3.0		
12	4	SS04	-	- 5 -		<u>>>>></u> X\\	Similar to above w/ few coal slag cobbles.	5.0		
30	2 6 12 12	SS05	· · ·				Medium dense, Olive Black, medium to fine SAND trace fines, some coal fragments, dry, well graded. Fe staining,	6.0		
17	6 5 3 15	SS06					(SM), (Fill). Medium dense, Olive Black - Black, coarse SAND some coal fragments, dry, well graded, Fe staining, (SW), (Fill).	8.0		
5	16 10 12 9	\$\$07		- 10- 			Top and bottom 0.3 Similar to above w/ same coal fragments, moist, Middle 0.1 Loose, Pale greenish Yellow,	10.0		
7	5 2 3 5	SS08		~ +			coarse SAND, dry, well graded, (SW) Loose, Black, gravelly coarse SAND, wet well graded, sub-angular (SW-GW).	12.0		
6	4 1 1 1 1	S509	1	- 15			Top 0.8 Very Loose, Olive Brown, coarse SAND, wet, well graded, (SW). Bottom 0.2 Similar to above except fine	14.0		
25	2 7 9 12	S S11		- 4			SAND trace fines Very loose, Black, silty SAND, wet, well graded, (SW). Medium dense, Light olive Grey, medium SAND trace fines, wet, well graded, laminations 1 - 3mm, (SW).	16.0 16.0		- Portland / Volclay Gro
6	22 5 11 14	S S12					Same as above.	18.0		
8	17 4 7 9	\$S13	-	-20			Medium dense, Light olive Grey, fine SAND few fines, wet, well graded, laminated (SW).	20.0		
13	10 6 8 15	SS14		- +		· · · · · ·	Same as above	22.0		
18	13 6 9 6	SS15		-25-			Medium dense, Light olive Grey, fine SAND some fines, wet, well graded, laminated (SW).	24.0		
15	5 10 13	S S16					Medium dense, Light olive Grey - Greyish Olive, fine SAND some fines, wet, well graded, laminated (SW).	26.0		
N/A	20 6 10			- +			No Recovery	28.0		
N/A	24 19 2 4			-30			No Recovery.	30.0		
30	5 5 11 10 26	S S19					Top 0.4 dense, Greyish Olive, sandy GRAVEL, wet, well graded, sub-rounded, (GW-SW). Bottom 0.4 dense, Greyish Olive, gravely SAND, wet, well graded,	32.0		Bentonite S



PROJECT NUMBER P009-001

PROJECT NAME Source Control Upper Reach Housatonic River

BORING/WELL NUMBER E2SC-17

DATE DRILLED 10/27/98

BORING_WELL P009 GPJ HSI_MA GDT 11/15/98

Attachment B

BLASLAND. BOUCK & LEE, INC. engineers & scientists

> Summary of Preliminary Appendix IX Results (detected compounds only)

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
E2SC-01	CS01	0-1							
			Misc.						
				Percent Solids	88.6		%		Р
E2SC-01	CS0106	1-6							
			Misc.						
				Percent Solids	89.7		%		Р
E2SC-01	CS0615	6-15							
			Metals						
				Antimony	0.24	В	mg/kg	1.1	Р
				Arsenic	2.7		mg/kg	1.1	Р
	-			Barium	28.6		mg/kg	22.9	Р
				Beryllium	0.29	В	mg/kg	0.57	Р
				Cadmium	0.083	В	mg/kg	0.57	Р
				Chromium	10		mg/kg	1.1	Р
				Cobalt	8.8		mg/kg	5.7	Р
				Copper	11.1		mg/kg	2.9	Р
				Lead	6.9		mg/kg	0.34	P
				Mercury	0.026	В	mg/kg	0.11	Р
				Nickel	12.9		mg/kg	4.6	Р
				Thallium	1.9		mg/kg	1.1	Р
				Vanadium	11		mg/kg	5.7	Р
				Zinc	55		mg/kg	2.3	Р
			Misc.						
				Acid-insoluble Sulfide	20.2	В	mg/kg	57.4	Р
				Percent Solids	87.2		%		Р
			SVOC						
				bis(2-Ethylhexyl) phthalate	0.062	J	mg/kg	0.38	Р
				Fluoranthene	0.049	J	mg/kg	0.38	Р
				Phenanthrene	0.042	J	mg/kg	0.38	Р
				Pyrene	0.043	J	mg/kg	0.38	Р
E2SC-01	CS3840	38-40							
			Metals						
				Antimony	0.26	В	mg/kg	1.1	Р
project/ge/pittsfld/databas	se/n869db.mdb_rpt_data			Page 1 of 33				Tue	sday, November 17, 1

Approprie

Attachment B: Summary of preliminary Appendix IX results (detected compounds only)

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifie
	Name	Depth (ft)						Limit	
				Arsenic	5.7		mg/kg	1.1	Р
				Barium	13.8	В	mg/kg	22.9	Р
				Beryllium	0.14	В	mg/kg	0.57	P
				Cadmium	0.27	В	mg/kg	0.57	Р
				Chromium	10		mg/kg	1.1	Р
				Cobalt	12.1		mg/kg	5.7	Р
				Copper	22.8		mg/kg	2.9	Р
				Lead	6.8		mg/kg	0.34	Р
				Nickel	18.1		mg/kg	4.6	Р
				Selenium	0.26	В	mg/kg	0.57	Р
				Thallium	1.6		mg/kg	1.1	Р
				Vanadium	7.6		mg/kg	5.7	Р
	н. 1			Zinc	61.8		mg/kg	2.3	Р
			Misc.				•		
				Acid-insoluble Sulfide	77.1		mg/kg	57.2	Р
				Percent Solids	87.5		%		Р
			SVOC						
				2-Methylnaphthalene	61		mg/kg	30	Р
				Acenaphthene	42		mg/kg	30	Р
				Acenaphthylene	26	1	mg/kg	30	P
				Anthracene	46		mg/kg	30	Р
				Benzo(a)anthracene	23	j	mg/kg	30	P
				Benzo(a)pyrene	21	J	mg/kg	30	Р
				Benzo(b)fluoranthene	14	J	mg/kg	30	Р
				Benzo(ghi)perylene	7.4	J	mg/kg	30	Р
				Benzo(k)fluoranthene	6.2	J	mg/kg	30	р
				Chrysene	21	J	mg/kg	30	р
				Dibenzofuran	3.3	J	mg/kg	30	Р
				Fluoranthene	51		mg/kg	30	Р
				Fluorene	44		mg/kg	12	P
				Indeno(1,2,3-cd)pyrene	6.3	J	mg/kg	30	Р
				Naphthalene	95		mg/kg	30	Р
				Phenanthrene	140		mg/kg	30	Р
				Pyrene	67		mg/kg	30	Р
ect/ge/pinsfld/databa	se/n869db mdb_rpt_data			Page 2 of 33				Fues	day, November 15

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
E2SC-01	SS09	14-15			· · · ·				
			Misc.						
				Percent Solids	76.6		%		Р
E2SC-01	SS22	38-40							
			Misc.						
				Percent Solids	89.5		%		Р
			VOC						
				Acetone	0.45	J	mg/kg	1.1	Р
				Ethylbenzene	0.21	J	mg/kg	0.28	Р
e e a statute e tata est				Xylenes (total)	0.3		mg/kg	0.28	Р
E2SC-01	SS25	44-46							
			Misc.						
				Percent Solids	89.3		%		Р
E2SC-02	CS0615	6-15							
			Metals	A	0.41				*** * * ***
				Antimony	0.61	В	mg/kg	1.3	DUP
				Arsenic	7.3		mg/kg	1.3	DUP
				Barium	30	n	mg/kg	25.7	DUP
				Beryllium	0.25	B	mg/kg	0.64	DUP
				Cadmium	0.48	В	mg/kg	0.64	DUP
				Chromium	8.1		mg/kg	1.3	DUP
				Cobalt	6.4		mg/kg	6.4	DUP
				Copper	25.4		mg/kg	3.2	DUP
				Lead	92.5		mg/kg	0.38	DUP
				Mercury	0.13		mg/kg	0.13	DUP
				Nickel	10.1		mg/kg	5.1	DUP
				Selenium	2.6		mg/kg	0.64	DUP
				Thallium	2.6		mg/kg	1.3	DUP
				Vanadium	7.5		mg/kg	6.4	DUP
				Zinc	78.5		mg/kg	2.6	DUP
			Misc.	Dames (0.111	70		07		5105
				Percent Solids	78		%		DUP
				Percent Solids	75.9		%	3.3	DUP
				Total Cyanide	24.5		mg/kg	3.2	DUP
oject/ge/pittsfld/datab	ase/n869db mdb_rpt_data			Page 3 of 33				Tues	day, November I

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
Ŭ	Name	Depth (ft)		•				Limit	
			SVOC						
				2-Methylnaphthalene	1300		mg/kg	420	ÐUP
				Acenaphthene	140		mg/kg	42	DUP
				Acenaphthylene	1500		mg/kg	420	DUP
				Anthracene	1700		mg/kg	420	DUP
				Benzo(a)anthracene	390	J	mg/kg	420	DUP
				Benzo(a)pyrene	240		mg/kg	42	DUP
				Benzo(b)fluoranthene	300		mg/kg	42	DUP
				Benzo(ghi)perylene	84		mg/kg	42	DUP
				Benzo(k)fluoranthene	130		mg/kg	42	DUP
				Chrysene	390	J	mg/kg	420	DUP
				Dibenz(a,h)anthracene	26	J	mg/kg	42	DUP
	•			Dibenzofuran	70		mg/kg	42	DUP
				Fluoranthene	970		mg/kg	420	DUP
				Fluorene	850		mg/kg	170	DUP
				Indeno(1,2,3-cd)pyrene	82		mg/kg	42	DUP
				Naphthalene	3700		mg/kg	420	DUP
				Phenanthrene	2800		mg/kg	420	DUP
				Phenol	3.2	J	mg/kg	42	DUP
				Pyrene	1600		mg/kg	420	DUP
E2SC-02	CS4042	40-42							
			Metals						
				Arsenic	4.3		mg/kg	1.3	Р
				Barium	15.3	В	mg/kg	25.9	Р
				Beryllium	0.16	В	mg/kg	0.65	P
				Cadmium	0.4	В	mg/kg	0.65	P
				Chromium	6.2		mg/kg	1.3	Р
				Cobalt	7.4		mg/kg	6.5	Р
				Copper	11.5		mg/kg	3.2	P
				Lead	5.5		mg/kg	0.39	P
				Mercury	0.015	В	mg/kg	0.13	Р
				Nickel	12.3		mg/kg	5.2	Р
				Thallium	1.6		mg/kg	1.3	P
				Vanadium	6.7		mg/kg	6.5	р

րեն է հերությունները։ Դերությունը Ավերությունը հերությունը հերությունը հերությունը հերությունը հերությունը հերությունը հերությունը հերությունը հե

a a la construcción de la

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				Zinc	59.8	L			
			Misc.	Zinc	39.8		mg/kg	2.6	Р
			wiise.	Percent Solids	78.1		%		n
				Percent Solids	78.1		% %		P P
			SVOC	Fercent Solids	11.5		70		ľ
			5.00	Acenaphthene	0.24	J	mg/kg	0.43	Р
				Acenaphthylene	0.11	J	mg/kg	0.43	р
				Anthracene	0.34	J	mg/kg	0.43	Р
				Benzo(a)anthracene	0.31	J	mg/kg	0.43	P
				Benzo(a)pyrene	0.28	J	mg/kg	0.43	P
				Benzo(b)fluoranthene	0.17	J	mg/kg	0.43	Р
				Benzo(ghi)perylene	0.097	J	mg/kg	0.43	Р
				Benzo(k)fluoranthene	0.081	J	mg/kg	0.43	Р
				bis(2-Ethylhexyl) phthalate	0.081	J	mg/kg	0.43	Р.
				Chrysene	0.26	J	mg/kg	0.43	Р
				Fluoranthene	0.55		mg/kg	0.43	Р
				Fluorene	0.26		mg/kg	0.17	Р
				Indeno(1,2,3-cd)pyrene	0.08	J	mg/kg	0.43	Р
				Phenanthrene	1.5		mg/kg	0.43	Р
				Pyrene	0.99		mg/kg	0.43	P
E2SC-02	CS4042	40-42							
			Misc.						
				Percent Solids	83.9		%		DUP
E2SC-03	CS01	0-1							
			Misc.	.	00.5		<u> </u>		-
· · · · · · · · · · · · · · · · · · ·				Percent Solids	88.3		%		Р
E2SC-03	CS0106	1-6							
			Misc.		00.0		0.4		
BAGG 66	000//			Percent Solids	88.8		%		р
E2SC-03	CS0615	6-15							
			Metals	A	5 A			2.4	n
				Antimony	5.4		mg/kg	2.4	P
				Arsenic	12.3		mg/kg	1.2	P
				Barium	34.1		mg/kg	24.5	Р

•

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Beryllium	0.29	В	mg/kg	0.61	p
				Chromium	32.6		mg/kg	1.2	P
				Cobalt	16.8		mg/kg	6.1	Р
				Соррег	201		mg/kg	6.1	Р
				Lead	477		mg/kg	0.73	P
				Mercury	0.033	В	mg/kg	0.12	P
				Nickel	42		mg/kg	4.9	P
				Selenium	2		mg/kg	1.2	Р
				Thallium	4.7		mg/kg	2.4	р
				Vanadium	26		mg/kg	6.1	Р
				Zinc	106		mg/kg	4.9	P
			Misc.						
				Acid-insoluble Sulfide	1120		mg/kg	61.2	Р
				Percent Solids	79.7		%		Р
				Percent Solids	81.7		%		P
			SVOC						
				2,4-Dimethylphenol	0.058	J	mg/kg	0.4	Р
				2-Methylnaphthalene	0.33	J	mg/kg	0.4	Р
				Acenaphthene	2.2		mg/kg	0.4	P
				Acenaphthylene	0.21	J	mg/kg	0.4	Р
				Anthracene	0.3	J	mg/kg	0.4	Р
				Benzo(a)anthracene	0.31	J	mg/kg	0.4	Р
				Benzo(b)fluoranthene	0.29	j	mg/kg	0.4	Р
				Benzo(k)fluoranthene	0.11	J	mg/kg	0.4	Р
				bis(2-Ethylhexyl) phthalate	0.24	J	mg/kg	0.4	P
				Chrysene	0.34	J	mg/kg	0.4	P
				Dibenzofuran	0.11	J	mg/kg	0.4	Р
				Fluoranthene	0.8		mg/kg	0.4	P
				Fluorene	1		mg/kg	0.16	Р
				Naphthalene	5		mg/kg	0.81	Р
				Phenanthrene	2.2		mg/kg	0.4	Р
				Pyrene	0.76		mg/kg	0.4	Р
2SC-03	CS4448	44-48							

Production from the second second

) Si saarata waxaali Salah Seria ang Salah

and the second sec

.

P project/ge/pittsfid/database/n869db mdb rpt_data

ین میرون میروسی میرون می

Page 6 of 33

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Arsenic	9.8		mg/kg	1.1	Р
				Barium	21.2	В	mg/kg	22.1	Р
				Beryllium	0.091	В	mg/kg	0.55	Р
				Chromium	17.7		mg/kg	1.1	Р
				Cobalt	11.5		mg/kg	5.5	Р
				Copper	19.1		mg/kg	2.8	Р
				Lead	8		mg/kg	0.33	þ
				Nickel	21.7		mg/kg	4.4	Р
				Selenium	0.24	В	mg/kg	0.55	Р
				Thallium	2.4		mg/kg	1.1	р
				Vanadium	7.2		mg/kg	5.5	Р
				Zinc	50.4		mg/kg	2.2	Р
			Misc.						
				Acid-insoluble Sulfide	529		mg/kg	55.2	Р
				Percent Solids	90.6		%		Р
				Percent Solids	93.6		%		р
			SVOC						
				2-Methylnaphthalene	1800		mg/kg	730	р
				Acenaphthene	130		mg/kg	73	Р
				Acenaphthylene	1300		mg/kg	730	Р
				Anthracene	530		mg/kg	73	Р
				Benzo(a)anthracene	370		mg/kg	73	Р
				Benzo(a)pyrene	320		mg/kg	73	P
				Benzo(b)fluoranthene	210		mg/kg	73	P
				Benzo(ghi)perylene	160		mg/kg	73	Р
				Benzo(k)fluoranthene	100		mg/kg	73	Р
				Chrysene	320		mg/kg	73	P
				Dibenz(a,h)anthracene	41	J	mg/kg	73	p
				Dibenzofuran	67	J	mg/kg	73	P
				Fluoranthene	830	-	mg/kg	730	p
				Fluorene	780		mg/kg	290	P
				Indeno(1,2,3-cd)pyrene	130		mg/kg	73	p
				Naphthalene	4600		mg/kg	730	Р
				Phenanthrene	2400		mg/kg	730	, p

Tuesday, November 17, 1998

- Service - Land

ws =	ي بر مربع ميروم ميروم بر مربع ميروم ميروم	anna an Aonair an Aonaichtean	14. 14 14.	ور مرد مرد ا		anna ga maini aga	 5. 		•	

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
	GGAQ			Pyrene	1200		mg/kg	730	Р
E2SC-03	SS08	12-14	Misc.						
				Percent Solids	83		%		Р
			VOC	A	0.040			0.024	
E2SC-03	SS25	44-46		Acetone	0.045		mg/kg	0.024	Þ
			Misc.						
			VOC	Percent Solids	78		%		Р
			VUC	Benzene	15		mg/kg	6.4	Р
				Ethylbenzene	67		mg/kg	6.4	P
				Methylene chloride	3.8	J	mg/kg	6.4	p
				Styrene	140		mg/kg	6.4	P
				Toluene	150		mg/kg	6.4	Р
				Xylenes (total)	240		mg/kg	6.4	Р
E2SC-04	CS4244	42-44	Misc.	Percent Solids	88.9		%		Р
E2SC-04	CS4244	42-44	Misc.	Percent Solids	89.2		%		DUP
E2SC-04	GS01	0-5							
			Misc.	Percent Solids	84.4		%		р
E2SC-04	GS02	5-15.4			·				
		a se na serae	Misc.	Percent Solids	92.4		%		P
E2SC-04	GS03	15.4-24	N#:						
			Misc.	Percent Solids	79.8		%		Р
E2SC-04	GS04	24-39							
			Misc.	Percent Solids	92.4		°⁄0		Р
P project/ge/pittsfld/databa	se/n869db mdb rpt data			Page 8 of 33				Tue	iday, November 17, 199
	•••			1 age 0 01 35					

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
			L		<u> </u>		1	*JIIIII	
E2SC-04	GS05	39-43	N /!						
			Misc.	Duran (C. 1) 1	77.3		<u>.</u>		
E2SC-04	GS06	43-		Percent Solids	77.3		%		Р
E23C-04	G300	43-	Misc.						
			wiise.	Descent Calida	00.0		0/		-
E2SC-06	CS01	0-1	· · · · · · · · · · · · · · · · · · ·	Percent Solids	88.9		%		Р
E23C-00	C301	0-1	Misc.						
			lviise.	Percent Solids	80.2		07		
E2SC-06	CS0106	1-6		Percent Solids	89.2		%		Р
2230-00	C30100	1-0	Misc.						
			WHISE.	Percent Solids	90.3		%		D
E2SC-06	CS0615	6-15		i ciccin Sonds	30.5		70		Р
Die vo	00015	015	Metals						
				Antimony	0.53	В	mg/kg	1.3	Р
				Arsenic	6.3	b	mg/kg	1.3	P
				Barium	42.1		mg/kg	26.9	P
				Beryllium	0.33	В	mg/kg	0.67	P
				Cadmium	0.45	B	mg/kg		Р
				Chromium	12.4		mg/kg	1.3	P
				Cobalt	8.8		mg/kg	6.7	P
				Copper	23.6		mg/kg	3.4	Р
				Lead	47.1		mg/kg	0.4	Р
				Mercury	0.064	В	mg/kg	0.13	Р
				Nickel	16.2		mg/kg	5.4	р
				Selenium	1.3		mg/kg	0.67	Р
				Thallium	2.1		mg/kg	1.3	Р
				Vanadium	10		mg/kg	6.7	Р
				Zinc	122		mg/kg	2.7	Р
			Misc.						
				Acid-insoluble Sulfide	444		mg/kg	269	Р
				Percent Solids	74.5		%		P
				Percent Solids	78		%		Р
				Total Cyanide	53		mg/kg	3.4	P
P project/ge/pittsfld/databa	ise/n869db mdb rpt_data			Page 9 of 33				fues	lay, November 17, 1998

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
	Name	Depth (ft)						Limit	
			SVOC						
				2,4-Dimethylphenol	11	J	mg/kg	110	P
				2-Methylnaphthalene	4400		mg/kg	2200	Р
				-Methylphenol & 4-Methylphen	19	J	mg/kg	110	Р
				-Methylphenol & 4-Methylphen	19	J	mg/kg	110	Р
				Acenaphthene	340		mg/kg	110	Р
				Acenaphthylene	4400		mg/kg	2200	Р
				Anthracene	8100		mg/kg	2200	Р
				Benzo(a)anthracene	1100	J	mg/kg	2200	Р
				Benzo(a)pyrene	590		mg/kg	110	Р
				Benzo(b)fluoranthene	730		mg/kg	110	Р
				Benzo(ghi)perylene	240		mg/kg	110	P
				Benzo(k)fluoranthene	300		mg/kg	110	Р
				Chrysene	1200	J	mg/kg	2200	P
				Dibenz(a,h)anthracene	66	J	mg/kg	110	P
				Dibenzofuran	200		mg/kg	110	Р
				Fluoranthene	2500		mg/kg	2200	P
				Fluorene	2700		mg/kg	870	Р
				Indeno(1,2,3-cd)pyrene	230		mg/kg	110	P
				Naphthalene	12000		mg/kg	2200	Р
				Phenanthrene	8200		mg/kg	2200	P
				Phenol	7.9	J	mg/kg	110	Р
				Pyrene	4300		mg/kg	2200	Р
E2SC-06	SS08	12-14		n anna ann 🦉 Ann - K					
			VOC						
				Benzene	2.1		mg/kg	0.53	Р
				Styrene	2.1		mg/kg	0.53	Р
				Toluene	2.3		mg/kg	0.53	Р
				Xylenes (total)	1.6		mg/kg	0.53	P
E2SC-07	CS01	0-1		and the second			0.0		
			Misc.						
				Percent Solids	88		%		Р
E2SC-07	CS01	0-1							-
			Misc.						
project/ge/pittsfld/database	/a869db mdb not data			Page 10 of 33				fues	lay, November 17-15

1 and the second second second

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Percent Solids	88.8		%		DUP
E2SC-07	CS0106	1-6							
			Misc.						
	- 10 - 1000-000 - 1000 - 10 - 10 - 1000-000 - 1000-000-			Percent Solids	90.5		%		Р
E2SC-07	CS0615	6-15							
			Metals						
				Antimony	0.16	В	mg/kg	1	Р
				Arsenic	4.2		mg/kg	1	Р
				Barium	11.7	В	mg/kg	20.9	Р
				Beryllium	0.27	В	mg/kg	0.52	Р
				Chromium	6.4		mg/kg	1	P
				Cobalt	9.1		mg/kg	5.2	P
				Copper	14.5		mg/kg	2.6	P
				Lead	6.8		mg/kg	0.31	Р
				Mercury	0.13		mg/kg	0.1	P
				Nickel	12.8		mg/kg	4.2	Р
				Thallium	0.84	В	mg/kg	1	Р
				Vanadium	6.6		mg/kg	5.2	Р
				Zinc	37.2		mg/kg	2.1	Р
			Misc.						
				Percent Solids	95.4		%		P
				Percent Solids	95.8		%		Р
			SVOC						
				2-Methylnaphthalene	0.12	J	mg/kg	0.34	P
				Acenaphthene	0.5		mg/kg	0.34	Р
				Acenaphthylene	0.4		mg/kg	0.34	Р
				Anthracene	0.52		mg/kg	0.34	P
				Benzo(a)anthracene	0.25	J	mg/kg	0.34	Р
				Benzo(a)pyrene	0.22	J	mg/kg	0.34	Р
				Benzo(b)fluoranthene	0.16	J	mg/kg	0.34	P
				Benzo(ghi)perylene	0.059	J	mg/kg	0.34	P
				Benzo(k)fluoranthene	0.067	J	mg/kg	0.34	Р
				bis(2-Ethylhexyl) phthalate	0.23	J	mg/kg	0.34	P
				Chrysene	0.24	J	mg/kg	0.34	р

and the second second

reported.

P project/ge/pittsfld/database/n869db mdb: rpt_data

Tuesday, November 17, 1998

10millar-

 Φ^{\dagger}

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units Reporting Mod		Modifier
								Limit	
				Dibenzofuran	0.053	J	mg/kg	0.34	Р
				Fluoranthene	0.56		mg/kg	0.34	Р
				Fluorene	0.45		mg/kg	0.14	Р
				Indeno(1,2,3-cd)pyrene	0.053	J	mg/kg	0.34	Р
				Naphthalene	0.67		mg/kg	0.34	P
				Phenanthrene	1.2		mg/kg	0.34	Р
				Pyrene	0.49		mg/kg	0.34	Р
E2SC-07	CS3840	38-40							
			Mise.						
				Percent Solids	83.1		%		Р
E2SC-07	SS09	14-15							
			VOC						
				Acetone	0.018		mg/kg	0.018	Р
				Benzene	0.002	J	mg/kg	0.0045	P
				Chlorobenzene	0.035		mg/kg	0.0045	P
				Ethylbenzene	0.023		mg/kg	0.0045	P
				Tetrachloroethene	0.0015	J	mg/kg	0.0045	P
				Xylenes (total)	0.071		mg/kg	0.0045	P
E2SC-08	CS4244	42-44							
			Misc.						
				Percent Solids	89		%		р
E2SC-08	GS06								
			Misc.						
				Percent Solids	73		%		Р
			VOC						
				Acetone	0.037		mg/kg	0.027	P
				Methylene chloride	0.0018	J	mg/kg	0.0068	Р
E2SC-11	CS01	0-1							
			Misc.						
				Percent Solids	89.9		%		Р
E2SC-11	CS0106	1-6							
			Misc.						
				Percent Solids	96.7		%		P
E2SC-11	CS0615	6-15							
aines (na bairte 11 di data ba	se/n869db mdb_rpt_data			D 12 (23				Ť	day, November 17,
oleco.Rechusure darges	ar noo and moo the data			Page 12 of 33				1005	omry, 14115140161 13,

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
	Name	Depth (ft)						Limit	
			Metals			-			
				Arsenic	5.1		mg/kg	1.1	Р
				Barium	13.1	В	mg/kg	21.6	Р
				Beryllium	0.15	В	mg/kg	0.54	Р
				Cadmium	0.25	В	mg/kg	0.54	Р
				Chromium	7.5		mg/kg	1.1	Р
				Cobalt	9.5		mg/kg	5.4	Р
				Copper	15.2		mg/kg	2.7	Р
				Lead	5.3		mg/kg	0.32	Р
				Nickel	13.8		mg/kg	4.3	Р
				Thallium	1.6		mg/kg	1.1	Р
				Vanadium	7.1		mg/kg	5.4	Р
				Zinc	51.4		mg/kg	2.2	Р
			Misc.						
				Percent Solids	92.7		%		Р
			SVOC						
			ar bee	bis(2-Ethylhexyl) phthalate	0.13	J	mg/kg	0.36	Р
E2SC-11	SS05	6-8							
			Misc.						
	· · · · · · · · · · · · · · · · · · ·			Percent Solids	96.9		%		Р
E2SC-12	CS0106	1-6							
			Misc.						
	· · · · · · · · · · · · · · · · · · ·	and a complete and contract of the	• • • • • • • • • • • • • • • • • • •	Percent Solids	87.2		%		Р
E2SC-12	CS05	0-5							
			Misc.						
				Percent Solids	73.6	•	%		P
			VOC			_			
		······································		Acetone	0.024	J	mg/kg	0.027	Р
E2SC-12	CS0615	6-15							
			Metals						
				Antimony	2.4		mg/kg	1.4	P
				Arsenic	3.6		mg/kg	1.4	P
				Barium	34.3	n	mg/kg	28.1	P
				Beryllium	0.27	В	mg/kg	0.7	Р
project/ge/pittsfld/databi	ise/n869db mdb: rpt_data			Page 13 of 33				Tues	day, November 17, 1

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Cadmium	0.71		mg/kg	0.7	Р
				Chromium	24.3		mg/kg	1.4	Р
				Cobalt	9.7		mg/kg	7	P
				Copper	33.2		nıg/kg	3.5	Р
				Lead	71		mg/kg	0.42	Р
				Mercury	0.25		mg/kg	0.14	Р
				Nickel	15.9		mg/kg	5.6	Р
				Selenium	0.54	В	mg/kg	0.7	Р
				Thallium	2		mg/kg	1.4	Р
				Vanadium	10.5		mg/kg	7	Р
				Zinc	105		mg/kg	2.8	р
			Misc.				<i>v</i> 0		
				Acid-insoluble Sulfide	106		mg/kg	70.2	P
				Percent Solids	75.5		%		P
				Percent Solids	71.2		%		Р
			SVOC						
				1,3-Dichlorobenzene	0.13	J	mg/kg	0.46	Р
				1,4-Dichlorobenzene	0.66		mg/kg	0.46	Р
				2-Methylnaphthalene	0.28	J	mg/kg	0.46	Р
				Acenaphthene	0.38	J	mg/kg	0.46	P
				Acenaphthylene	0.15	J	mg/kg	0.46	Р
				Anthracene	0.42	J	mg/kg	0.46	Р
				Benzo(a)anthracene	0.54		mg/kg	0.46	Р
				Benzo(a)pyrene	0.46		mg/kg	0.46	P
				Benzo(b)fluoranthene	0.55		mg/kg	0.46	Р
				Benzo(ghi)perylene	0.084	J	mg/kg	0.46	P
				Benzo(k)fluoranthene	0.24	J	mg/kg	0.46	P
				bis(2-Ethylhexyl) phthalate	0.066	J	mg/kg	0.46	P
				Chrysene	0.66		mg/kg	0.46	Р
				Di-n-butyl phthalate	0.089	J	mg/kg	0.46	P
				Fluoranthene	1.2		mg/kg	0.46	Р
				Fluorene	0.31		mg/kg	0.18	P
				Indeno(1,2,3-cd)pyrene	0.089	J	mg/kg	0.46	P
				Naphthalene	0.18	J	mg/kg	0.46	p

. س ن د سه شواند سه ه

P project/ge/pittsfld/database/n869db mdb rpt_data

Page 14 of 33

Eucsday, November 17, 1998

.

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				Phenanthrene	1.5		mg/kg	0.46	P
	110 1	have and to be also a		Pyrene	1.1		mg/kg	0.46	Р
E2SC-12	CS3032	30-32							
			Misc.						
			Ph. 25 at an annual state	Percent Solids	88.9		%		Р
E2SC-13	CS01	0-1							
			Misc.	Demonst Guli I	04.5		0/		
E2SC-13	CS0106	1-6		Percent Solids	94.5		%		P
E25C-15	C30100	1-0	Misc.						
			Iviise.	Percent Solids	92.7		%		Р
E2SC-13	CS0516	5-16		T CICCIN Solids	92.1		/0		1 ²
1200 10	000010		Metals						
				Antimony	0.3	В	mg/kg	1.1	P
				Arsenic	1.7		mg/kg	1.1	P
				Barium	23.3		mg/kg	22.1	Р
				Beryllium	0.24	В	mg/kg	0.55	Р
				Cadmium	0.13	В	mg/kg	0.55	P
				Chromium	8.9		mg/kg	1.1	Р
				Cobalt	7.7		mg/kg	5.5	Р
				Copper	7.8		mg/kg	2.8	P
				Lead	5		mg/kg	0.33	P
				Mercury	0.023	В	mg/kg	0.11	P
				Nickel	13.5		mg/kg	4.4	P
				Thallium	2.1		mg/kg	1.1	P
				Vanadium	8.4		mg/kg	5.5	Р
				Zinc	53.1		mg/kg	2.2	Р
			Misc.		00.5		<u>.</u>		
			evoo	Percent Solids	90.5		%		P
			SVOC	A	0.025	1	malle	0.26	n
				Anthracene	0.035	J	mg/kg	0.36 0.36	P
				Benzo(a)anthracene Benzo(a)pyrene	0.089 0.078	J	mg/kg mg/kg	0.36	Р р
				Benzo(k)fluoranthene	0.078	j j	mg/kg	0.36	P P
					0.17	3	ing/ Kg		
oject/ge/pittsfld/databa	ase/n869db mdb_rpt_data			Page 15 of 33				Tues	day, November 17.

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				bis(2-Ethylhexyl) phthalate	0.62		mg/kg	0.36	Р
				Chrysene	0.091	J	mg/kg	0.36	Р
				Fluoranthene	0.22	J	mg/kg	0.36	Р
				Phenanthrene	0.13	J	mg/kg	0.36	Р
				Pyrene	0.15	J	mg/kg	0.36	Р
			VOC						
				Acetone	0.052		mg/kg	0.022	Р
E2SC-13	SS08	14-15							
			Misc.						
1.000 C		an a		Percent Solids	89.6		%		Р
E2SC-13	SS08	14-15							
			Misc.						
				Percent Solids	89.1		%		DUP
E2SC-14	CS01	0-1							
			Misc.		07		0/		
D000 14	0001			Percent Solids	86		%		Р
E2SC-14	CS01	0-1	Mine						
			Misc.	Percent Solids	87.2		%		DUP
E2SC-14	CS0106	1-6		Fercent Solids	01.2		70		DOP
E25C-14	C30100	1-0	Misc.						
			Iviist.	Percent Solids	89.5		%		Р
E2SC-14	CS0615	6-15			09.5		70		•
120C 14	000010	010	Metals						
				Antimony	0.13	В	mg/kg	1.1	Р
				Arsenic	7.4		mg/kg	1.1	Р
				Barium	24.6		mg/kg	22.4	Р
				Beryllium	0.28	В	mg/kg	0.56	Р
				Cadmium	0.099	В	mg/kg	0.56	Р
				Chromium	11.8		mg/kg	1.1	P .
				Cobalt	13.4		mg/kg	5.6	Р
				Copper	19.2		mg/kg	2.8	Р
				Lead	6.4		mg/kg	0.34	Р
				Mercury	0.012	В	mg/kg	0.11	Р
oject/ge/pittsfld/databa	ase/n869db mdb. rpt_data			Page 16 of 33				Tues	day, November 17, 19

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
	Name	Depth (ft)						Limit	
				Nickel	21		mg/kg	4.5	р
				Thallium	2.7		mg/kg	1.1	Р
				Vanadium	10.9		mg/kg	5.6	Р
				Zinc	64.9		mg/kg	2.2	P
			Misc.						
				Percent Solids	91.1		%		Р
				Percent Solids	89.3		%		Р
			SVOC						
				bis(2-Ethylhexyl) phthalate	0.28	J	mg/kg	0.37	Р
		·		Di-n-butyl phthalate	0.16	J	mg/kg	0.37	Р
E2SC-16	CS01	0-1							
			Misc.						
		1000 × 10 × 10 × 11		Percent Solids	86.6		%		Р
E2SC-16	CS0106	1-6							
			Misc.						
		· · · · · · · · · · · · · · · · · · ·		Percent Solids	87.8		%		Р
E2SC-16	CS0615	6-15							
			Metals						
				Antimony	3.4		mg/kg	2.3	Р
				Arsenic	13.3		mg/kg	1.2	P
				Barium	168		mg/kg	23.3	Р
				Beryllium	0.35	В	mg/kg	0.58	Р
				Cadmium	0.26	В	mg/kg	1.2	Р
				Chromium	46.2		mg/kg	1.2	Р
				Cobalt	15.8		mg/kg	5.8	Р
				Copper	175		mg/kg	5.8	Р
				Lead	181		mg/kg	0.7	Р
				Mercury	0.12		mg/kg	0.12	Р
				Nickel	55.6		mg/kg	4.7	Р
				Thallium	7.1		mg/kg	2.3	Р
				Vanadium	41.8		mg/kg	5.8	Р
				Zinc	256		mg/kg	4.7	Р
			Misc.						
				Acid-insoluble Sulfide	180		mg/kg	58.1	Р
project/ge/pittsfld/databa	se/n869db mdb_rpt_data			Page 17 of 33				Tuesa	lay, November 17, 19

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
	Name	Depth (ft)						Limit	
				Percent Solids	86		%		Р
				Percent Solids	85.1		%		Р
				Total Cyanide	5.1		mg/kg	2.9	Р
			SVOC	-					
				2,4-Dimethylphenol	0.22	J	mg/kg	0.38	Р
				2-Methylnaphthalene	0.84		mg/kg	0.38	Р
				2-Methylphenol	0.067	J	mg/kg	0.38	Р
				-Methylphenol & 4-Methylphen	0.26	J	mg/kg	0.38	Р
				-Methylphenol & 4-Methylphen	0.26	J	mg/kg	0.38	Р
				Acenaphthene	0.38		mg/kg	0.38	Р
				Acenaphthylene	2.4		mg/kg	0.38	Р
				Anthracene	4.5		mg/kg	3.8	Р
				Benzo(a)anthracene	5.8		mg/kg	3.8	Р
				Benzo(a)pyrene	2.2		mg/kg	0.38	Р
				Benzo(ghi)perylene	0.26	J	mg/kg	0.38	Р
				Benzo(k)fluoranthene	3.1	J	mg/kg	3.8	Р
				bis(2-Ethylhexyl) phthalate	0.22	J	mg/kg	0.38	Р
				Chrysene	5.1		mg/kg	3.8	Р
				Di-n-butyl phthalate	0.098	J	mg/kg	0.38	Р
				Dibenzofuran	2.5		mg/kg	0.38	P
				Fluoranthene	14		mg/kg	3.8	Р
				Fluorene	2		mg/kg	0.15	Р
				Indeno(1,2,3-cd)pyrene	0.44		mg/kg	0.38	P
				Naphthalene	0.96		mg/kg	0.38	Р
				Phenanthrene	17		mg/kg	3.8	P
				Pyrene	11		mg/kg	3.8	P
E2SC-16	SS10	15-17							
			Misc.						
				Percent Solids	85.1		%		Р
E2SC-17	CS01	0-1							
			Misc.						
				Percent Solids	89.7		%		Р
E2SC-17	CS4749	47-49							
			Misc.						

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Percent Solids	88.4		%		р
E2SC-02	CS01	0-1							
			Misc.						
				Percent Solids	77.5		%		Р
E2SC-02	CS0106	1-6							
			Misc.						
	000448	· · · · · · · · · · ·		Percent Solids	79.1		%		Р
E2SC-02	CS0615	6-15							
			Metals	A	0.20	n			
				Antimony	0.29	В	mg/kg	1.3	P
				Arsenic Barium	3.6		mg/kg	1.3	Р
				Barium Beryllium	31 0.33	D	mg/kg	26.4	P
				Chromium	12.8	В	mg/kg	0.66	P
				Cobalt	12.8		mg/kg	1.3	P
					13.4		mg/kg	6.6	P
				Copper Lead	13.4 6		mg/kg	3.3	P
				Mercury	0.042	В	mg/kg	0.4 0.13	P
				Nickel	16.7	Б	mg/kg	5.3	P
				Selenium	0.89		mg/kg mg/kg	0.66	P P
				Thallium	2		mg/kg	1.3	P P
				Vanadium	11.1		mg/kg	6.6	P P
				Zinc	58.5		mg/kg	2.6	r P
			Misc.	Zinc	50.5		mg/kg	2.0	I.
				Percent Solids	75.8		%		Р
				Percent Solids	77.4		%		P
			SVOC				/ 4		•
				2-Methylnaphthalene	5.5		mg/kg	2.2	Р
				Acenaphthene	6.1		mg/kg	2.2	P
				Acenaphthylene	0.49	J	mg/kg	2.2	Р
				Anthracene	3.3		mg/kg	2.2	P
				Benzo(a)anthracene	1.7	J	mg/kg	2.2	P
				Benzo(a)pyrene	1.4	J	mg/kg	2.2	Р
				Benzo(b)fluoranthene	0.94	J	mg/kg	2.2	Р
oject/ge/pittsfld/databa	se/n869db.mdb_rpt_data			Page 19 of 33				Tueso	day, November 15

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
Ŭ	Name	Depth (ft)		-				Limit	
				Benzo(ghi)perylene	0.73	J	mg/kg	2.2	Р
				Benzo(k)fluoranthene	0.5	J	mg/kg	2.2	Р
				Chrysene	1.4	J	mg/kg	2.2	Р
				Dibenzofuran	0.31	J	mg/kg	2.2	Р
				Fluoranthene	4.4		mg/kg	2.2	Р
				Fluorene	3.7		mg/kg	0.86	Р
				Indeno(1,2,3-cd)pyrene	0.54	J	mg/kg	2.2	Р
				Naphthalene	14		mg/kg	2.2	Р
				Phenanthrene	11		mg/kg	2.2	Р
			n an agus ann an stàir ant tha thacha	Pyrene	5.2		mg/kg	2.2	Р
E2SC-02	SS09	14-15	N <i>G</i> 1						
			Misc.		04.5				* >
		, ,	NOG	Percent Solids	84.5		%		Р
			VOC	A (0.42	•	0		•
				Acetone	0.42	J	mg/kg	1.2	P
				Chlorobenzene	0.21	J	mg/kg	0.3	P
				Ethylbenzene	1.3		mg/kg	0.3	P
P200 04	0001			Xylenes (total)	1.6		mg/kg	0.3	Р
E2SC-04	CS01	0-1	N /:						
			Misc.	Demonst Calida	00 7		07		
P200 04	00010/	• 7		Percent Solids	88.3		%		Р
E2SC-04	CS0106	1-6							
			Misc.	Percent Solids	95.0		%		р
EACC AA	CS0615	6 1 E		Percent Solids	85.9		70		Р
E2SC-04	C50015	6-15	Metals						
			wictars	Antimony	0.29	В	mg/kg	1.1	Р
				Arsenic	1.7	D	mg/kg	1.1	г Р
				Barium	20.7	В	mg/kg	22.2	r P
				Beryllium	0.3	B	mg/kg	0.55	r P
				Cadmium	0.3	B	mg/kg	0.55	r P
				Chromium	8.5	D	mg/kg	1.1	r P
				Cobalt	8.3 8.4			5.5	P P
					8.4 7.1		mg/kg	5.5 2.8	P P
				Copper	/.1		mg/kg	2.8	1'
	n869db.mdb rpt data			Page 20 of 33					day, November 17, 1

.

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Lead	2.9		mg/kg	0.33	Р
				Mercury	0.013	В	mg/kg	0.11	Р
				Nickel	11.5		mg/kg	4.4	Р
				Selenium	0.49	В	mg/kg	0.55	Р
				Thallium	1.1		mg/kg	1.1	Р
				Vanadium	8.6		mg/kg	5.5	Р
				Zinc	44.7		mg/kg	2.2	Р
			Misc.						
				Percent Solids	88.1		%		Р
				Percent Solids	90.3		%		Р
			SVOC						
alan alamatik dari a sara sa sa sa mana da	· · · · · · · · · · · · · · · · · · ·			bis(2-Ethylhexyl) phthalate	0.14	J	mg/kg	0.37	Р
E2SC-04	SS09	14-15							
			Misc.						
				Percent Solids	84.2		%		P
			VOC						
				Acetone	0.026		mg/kg	0.024	Р
	deserves an option of these of	administrative frame and administrative state		Methylene chloride	0.0035	J	mg/kg	0.0059	Р
E2SC-05	CS01	0-1							
			Misc.						
				Percent Solids	89.3		%		Р
E2SC-05	CS0106	1-6							
			Misc.						
				Percent Solids	90.3	a sa tao ana	%		Р
E2SC-05	CS0615	6-15							
			Metals			_			
				Antimony	0.29	В	mg/kg	1.2	Р
				Arsenic	7.5		mg/kg	1.2	Р
				Barium	35.3	-	mg/kg	23.7	Р
				Beryllium	0.37	В	mg/kg	0.59	Р
				Cadmium	0.29	В	mg/kg	0.59	P
				Chromium	10.9		mg/kg	1.2	Р
				Cobalt	12.8		mg/kg	5.9	Р
				Copper	17.3		mg/kg	3	Р
roject/ge/pittsfld/databi	ise/n869db.mdb_rpt_data			Page 21 of 33				Tues	day, November 3

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				Lead	10.7		mg/kg	0.36	P
				Mercury	0.037	в	mg/kg	0.12	р
				Nickel	19.2		mg/kg	4.7	Р
				Vanadium	12.1		mg/kg	5.9	Р
				Zinc	68.5		mg/kg	2.4	Р
			Misc.						
				Percent Solids	84.3		%		P
				Percent Solids	86.2		%		P
			SVOC						
				2-Methylnaphthalene	0.64		mg/kg	0.39	Р
				Acenaphthene	0.1	J	mg/kg	0.39	Р
				Acenaphthylene	0.84		mg/kg	0.39	P
				Acetophenone	0.021	J	mg/kg	0.39	Р
				Anthracene	2		mg/kg	0.39	Р
				Benzo(a)anthracene	0.49		mg/kg	0.39	р
				Benzo(a)pyrene	0.45		mg/kg	0.39	Р
				Benzo(b)fluoranthene	0.33	J	mg/kg	0.39	р
				Benzo(ghi)perylene	0.12	J	mg/kg	0.39	Р
				Benzo(k)fluoranthene	0.16	J	mg/kg	0.39	Р
				bis(2-Ethylhexyl) phthalate	0.17	j	mg/kg	0.39	P
				Chrysene	0.53		mg/kg	0.39	P
				Dibenzofuran	0.055	J	mg/kg	0.39	P
				Fluoranthene	1		mg/kg	0.39	Р
				Fluorene	0.73		mg/kg	0.15	Р
				Indeno(1,2,3-cd)pyrene	0.1	J	mg/kg	0.39	Р
				Naphthalene	0.97		mg/kg	0.39	Р
				Phenanthrene	2.8		mg/kg	0.39	Р
				Pyrene	1.5		mg/kg	0.39	P
E2SC-05	CS3840	38-40		*			00		
			Metals						
				Arsenic	3		mg/kg	1.1	Р
				Barium	8.3	В	mg/kg	21.9	P
				Beryllium	0.065	В	mg/kg	0.55	P
				Cadmium	0.18	B	mg/kg	0.55	Р
ojeci ge/pittsfid/databa	ise/n869db mdb_rpt_data			Page 22 of 33				Tues	lay, November 17,

د مُسيده سيمون سوير

.

and space and

եր Դոր է ընչերքներ է հետևոր, որել հատերությունը հետևոր հետևոր հետևոր հետևոր հետևոր հետևոր հետևոր հետևոր հետևոր հետ Դոր է հետևոր հ

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Chromium	3.8		mg/kg	1.1	Р
				Cobalt	4.2	В	mg/kg	5.5	Р
				Copper	8.6		mg/kg	2.7	Р
				Lead	4.2		mg/kg	0.33	Р
				Mercury	0.012	В	mg/kg	0.11	Р
				Nickel	4.4		mg/kg	4.4	Р
				Vanadium	3	В	mg/kg	5.5	P
				Zinc	19.6		mg/kg	2.2	Р
			Misc.				00		
				Percent Solids	89.7		%		Р
				Percent Solids	91.3		%		P
			SVOC						-
		×		2-Methylnaphthalene	3.1		mg/kg	1.8	Р
				Acenaphthene	3.5		mg/kg	1.8	Р
				Acenaphthylene	1.6		mg/kg	0.36	Р
				Anthracene	2.4		mg/kg	0.36	Р
				Benzo(a)anthracene	1.4		mg/kg	0.36	Р
				Benzo(a)pyrene	1.2		mg/kg	0.36	Р
				Benzo(b)fluoranthene	0.87		mg/kg	0.36	Р
				Benzo(ghi)perylene	0.22	J	mg/kg	0.36	P
				Benzo(k)fluoranthene	0.38		mg/kg	0.36	Р
				bis(2-Ethylhexyl) phthalate	0.14	J	mg/kg	0.36	р
				Chrysene	1.2		mg/kg	0.36	Р
				Dibenz(a,h)anthracene	0.06	J	mg/kg	0.36	Р
				Dibenzofuran	0.28	J	mg/kg	0.36	Р
				Fluoranthene	2.6		mg/kg	1.8	Р
				Fluorene	2.8		mg/kg	0.71	Р
				Indeno(1,2,3-cd)pyrene	0.21	J	mg/kg	0.36	P
				Naphthalene	4.3	-	mg/kg	1.8	p
				Phenanthrene	9.1		mg/kg	1.8	P
				Pyrene	4.5		mg/kg	1.8	P
E2SC-05	CS4042	40.42	angi un					• • •	-
			Misc.	Percent Solids	86.6		%		Р
ject/ge/pittsfld/databas	c/n869db mdb rpt data			Page 23 of 33				Tuesi	day, November 1

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
	Name	Depth (ft)	y	-			•	Limit	mount
	L	1	L			1		A.71111114	
E2SC-05	SS07	10-12							
			VOC						
				Acetone	0.021		mg/kg	0.021	Р
E2SC-05	SS22	38-40	NOO						
			VOC		0.0040	-		0.010	
				Acetone	0.0049	J	mg/kg	0.018	Р
				Ethylbenzene	0.024		mg/kg	0.0044	P
				Tetrachloroethene	0.0012	J	mg/kg	0.0044	P
				Toluene	0.004	J	mg/kg	0.0044	P
E2SC-09	CS01	0-1		Xylenes (total)	0.033		mg/kg	0.0044	Р
E23C-09	0.001	0-1	Misc.						
			IVHSC.	Percent Solids	80.8		%		р
E2SC-09	CS01	0-1		r creent sonds	00.0		70		1-
DIGC-07	0.001	0.1	Misc.						
				Percent Solids	80.2		%		DUP
E2SC-09	CS0106	1-6			00.2				1000
	~~~~	* *	Misc.						
				Percent Solids	92.1		%		Р
E2SC-09	CS0615	6-15		· · · · · · · · · · · · · · · · · · ·					-
			Metals						
				Antimony	0.63	В	mg/kg	1.2	Р
				Arsenic	8		mg/kg	1.2	Р
				Barium	40.5		mg/kg	23.4	Р
				Beryllium	0.27	В	mg/kg	0.58	P
				Cadmium	0.65		mg/kg	0.58	P
				Chromium	22.4		mg/kg	1.2	Р
				Cobalt	9.5		mg/kg	5.8	Р
				Copper	34.7		mg/kg	2.9	P
				Lead	54.4		mg/kg	0.35	P
				Mercury	0.081	В	mg/kg	0.12	ч
				Nickel	16.1		mg/kg	4.7	P
				Selenium	0.85		mg/kg	0.58	Р
				Thallium	2.1		mg/kg	1.2	P
P project/ge/pittsfld/databa	ise/n869dh mdb: rpt_data			Page 24 of 33				lues	day, November 17, 1998

•

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				Tin	20.6		mg/kg	11.7	Р
				Vanadium	11		mg/kg	5.8	Р
				Zinc	88.2		mg/kg	2.3	Р
			Misc.						
				Percent Solids	85.6		%		Р
				Percent Solids	85.6		%		Р
			SVOC						
				1,4-Dichlorobenzene	1	J	mg/kg	1.9	Р
				2,4-Dimethylphenol	0.26	J	mg/kg	1.9	Р
				2-Methylnaphthalene	0.37	J	mg/kg	1.9	Р
				Acenaphthene	2.3		mg/kg	1.9	Р
				Benzo(a)anthracene	0.86	J	mg/kg	1.9	Р
		r		Benzo(a)pyrene	0.76	J	mg/kg	1.9	Р
				Benzo(b)fluoranthene	0.84	J	mg/kg	1.9	Р
				Benzo(k)fluoranthene	0.4	J	mg/kg	1.9	Р
				bis(2-Ethylhexyl) phthalate	0.2	J	mg/kg	1.9	Р
				Chrysene	1	J	mg/kg	1.9	Р
				Fluoranthene	1.9		mg/kg	1.9	Р
				Indeno(1,2,3-cd)pyrene	0.18	J	mg/kg	1.9	P
				Naphthalene	2.4		mg/kg	1.9	P
				Pyrene	1.5	J	mg/kg	1.9	Р
E2SC-09	CS4042	40-42							
			Misc.						
				Percent Solids	83.5		%		Р
E2SC-10	CS01	0-1							
			Misc.						
				Percent Solids	89.5		%		Р
E2SC-10	CS0106	1-6							
			Metals						
				Antimony	0.15	В	mg/kg	1.1	Р
				Arsenic	5.8		mg/kg	1.1	P
				Barium	15.2	В	mg/kg	22.1	P
				Beryllium	0.14	В	mg/kg	0.55	P
				Chromium	8.3		mg/kg	1.1	Р
roject/ge/pittsfld/databa	se/n869db.mdb.rpt_data			Page 25 of 33				Tues	day, November 17.

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Cobalt	10.4		mg/kg	5.5	Р
				Copper	20.3		mg/kg	2.8	Р
				Lead	9.5		mg/kg	0.33	Р
				Mercury	0.013	В	mg/kg	0.11	Р
				Nickel	16.2		mg/kg	4.4	Р
				Thallium	1.3		mg/kg	1.1	Р
				Vanadium	7		mg/kg	5.5	Р
				Zinc	52.7		mg/kg	2.2	Р
			Misc.						
				Percent Solids	90.7		%		Р
				Percent Solids	72.6		%		Р
			SVOC						
				2-Methylnaphthalene	0.19	J	mg/kg	0.36	Р
				Acenaphthene	0.11	J	mg/kg	0.36	Р
				Acenaphthylene	0.25	J	mg/kg	0.36	Р
				Anthracene	0.17	J	mg/kg	0.36	P
				Benzo(a)anthracene	0.15	J	mg/kg	0.36	Р
				Benzo(a)pyrene	0.12	J	mg/kg	0.36	Р
				Benzo(b)fluoranthene	0.14	J	mg/kg	0.36	Р
				Benzo(k)fluoranthene	0.059	J	mg/kg	0.36	P
				bis(2-Ethylhexyl) phthalate	0.21	J	mg/kg	0.36	Р
				Chrysene	0.14	J	mg/kg	0.36	Р
				Fluoranthene	0.43		mg/kg	0.36	Р
				Fluorene	0.22		mg/kg	0.14	р
				Naphthalene	0.31	J	mg/kg	0.36	Р
				Phenanthrene	0.79		mg/kg	0.36	Р
				Pyrene	0.32	J	mg/kg	0.36	P
E2SC-10	CS0615	6-15		· · · · · · · · · · · · · · · · · · ·					
			Misc.						
				Percent Solids	93.9		%		Р
E2SC-10	CS2830	28-30	· · · · ·						
			Misc.						
				Percent Solids	90.3		%		Р
E2SC-10	SS03	3-5							-

Antes

P project/ge/pittsfld/database/n869db mdb: rpt_data

Page 26 of 33

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
			Misc.						
				Percent Solids	92.9		%		Р
E2SC-15	CS0106	1-6							
			Misc.						
			····	Percent Solids	86.4		%		Р
E2SC-15	CS0615	6-15							
			Metals						
				Antimony	0.29	В	mg/kg	1.3	Р
				Arsenic	2.1		mg/kg	1.3	Р
				Barium	28.3		mg/kg	25.5	Р
				Beryllium	0.28	В	mg/kg	0.64	P
				Chromium	9.1		mg/kg	1.3	Р
				Cobalt	7.3		mg/kg	6.4	Р
				Copper	19.7		mg/kg	3.2	Р
				Lead	7.5		mg/kg	0.38	Р
				Mercury	0.032	В	mg/kg	0.13	Р
				Nickel	12		mg/kg	5.1	Р
				Selenium	0.56	В	mg/kg	0.64	Р
				Thallium	1.7		mg/kg	1.3	Р
				Vanadium	10.2		mg/kg	6.4	Р
				Zinc	57.4		mg/kg	2.6	Р
			Misc.						
				Percent Solids	78.3		%		Р
				Percent Solids	77.6		%		Р
			SVOC		0.001	_	-		
				Acenaphthylene	0.031	J	mg/kg	0.42	Р
				Benzo(a)anthracene	0.043	J	mg/kg	0.42	Р
				Benzo(a)pyrene	0.068	J	mg/kg	0.42	Р
				Benzo(b)fluoranthene	0.091	J	mg/kg	0.42	Р
				bis(2-Ethylhexyl) phthalate	0.032	J	mg/kg	0.42	Р
				Chrysene	0.058	J	mg/kg	0.42	P
				Fluoranthene	0.08	J	mg/kg	0.42	Р
				Phenanthrene	0.042	J	mg/kg	0.42	Р
				Pyrene	0.055	J	mg/kg	0.42	Р
roject/ge/pittsfld/databa	se/n869db mdb rpt_data			Page 27 of 33				Tues	day, November 1

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
E2SC-15	CS3436	34-36							
			Misc.						
				Percent Solids	87.2		%		Р
E2SC-15	SS08	12-14		· · · · · · · · · · · · · · · · · · ·					•
			Misc.						
				Percent Solids	68.3		%		р
			VOC						
				Acetone	0.024	J	mg/kg	0.029	Р
E2SC-17	CS0106	1-6					•••		
			Misc.						
				Percent Solids	91.9		%		Р
E2SC-17	CS0106	1-6							
			Misc.						
		11100-1150-		Percent Solids	89.7		%		DUP
E2SC-17	E2SC-17 CS0615	6-15							
			Metals						
				Antimony	3.3		mg/kg	1.2	Р
				Arsenic	6.5		mg/kg	1.2	Р
				Barium	91.5		mg/kg	23.5	Р
				Beryllium	0.51	В	mg/kg	0.59	Р
				Cadmium	0.15	В	mg/kg	0.59	Р
				Chromium	25.2		mg/kg	1.2	Р
				Cobalt	10.1		mg/kg	5.9	Р
				Copper	74.5		mg/kg	5.9	P
				Lead	83.5	D	mg/kg	0.35	Р
				Mercury	0.053	В	mg/kg	0.12	Р
				Nickel	21.4	D	mg/kg	4.7	P
				Selenium	0.33	В	mg/kg	1.2	P
				Vanadium	33.5		mg/kg	5.9	P
			N/:	Zinc	108		mg/kg	4.7	P
			Misc.	Dong and Calida	05.7		07		n
				Percent Solids	85.2		%		P
			SVOC	Percent Solids	83.9	÷	%		Р

-1253

Tuesday, November 17, 1998

Boring	Sample	Sample	Analysis	Compound	Result	Qualifier	Units	Reporting	Modifier
	Name	Depth (ft)						Limit	
				2-Methylnaphthalene	0.2	J	mg/kg	0.39	Р
				Acenaphthene	0.47		mg/kg	0.39	Р
				Acenaphthylene	0.14	J	mg/kg	0.39	Р
				Acetophenone	0.048	J	mg/kg	0.39	Р
				Anthracene	0.65		mg/kg	0.39	Р
				Benzo(a)anthracene	1.1		mg/kg	0.39	Р
				Benzo(a)pyrene	1.1		mg/kg	0.39	Р
				Benzo(b)fluoranthene	1.5		mg/kg	0.39	Р
				Benzo(ghi)perylene	0.32	J	mg/kg	0.39	Р
				Benzo(k)fluoranthene	0.56		mg/kg	0.39	P
				bis(2-Ethylhexyl) phthalate	0.036	J	mg/kg	0.39	Р
				Chrysene	1.2		mg/kg	0.39	P
		1 		Dibenz(a,h)anthracene	0.12	J	mg/kg	0.39	Р
				Dibenzofuran	0.19	J	mg/kg	0.39	Р
				Fluoranthene	1.9		mg/kg	0.39	Р
				Fluorene	0.67		mg/kg	0.15	Р
				Indeno(1,2,3-cd)pyrene	0.35	J	mg/kg	0.39	Р
				Naphthalene	1.9		mg/kg	0.39	Р
				Phenanthrene	2.1		mg/kg	0.39	Р
				Pyrene	1.6		mg/kg	0.39	Р
E2SC-17	CS0615	6-15							
			Metals				-		
				Antimony	3.9		mg/kg	1.2	DUP
				Arsenic	6.7		mg/kg	1.2	DUP
				Barium	74.4		mg/kg	23.5	DUP
				Beryllium	0.51		mg/kg	0.59	DUP
				Cadmium	0.19		mg/kg	0.59	DUP
				Chromium	23.3		mg/kg	1.2	DUP
				Cobalt	10.9		mg/kg	5.9	DUP
				Copper	59.9		mg/kg	5.9	DUP
				Lead	49.8		mg/kg	0.35	DUP
				Nickel	22.3		mg/kg	4.7	DUP
				Thallium	0.74		mg/kg	2.3	DUP
				Vanadium	31.1		mg/kg	5.9	DUP
project/ge/pittsfld/databa	se/n869db mdb_rpt_data			Page 29 of 33				Tues	day, November 17, 19

,

Boring Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
	mate state for the state		Zinc	157		mg/kg	4.7	DUP
E2SC-17 CS4244	42-44							
		Metals						
			Arsenic	7		mg/kg	1.1	Р
			Barium	20.6	В	mg/kg	22.1	Р
			Beryllium	0.15	В	mg/kg	0.55	Р
			Cadmium	0.29	В	mg/kg	0.55	P
			Chromium	7.2		mg/kg	1.1	Р
			Cobalt	14.8		mg/kg	5.5	Р
			Copper	20.3		mg/kg	2.8	Р
			Lead	7.3		mg/kg	0.33	Р
			Mercury	0.02	В	mg/kg	0.11	Р
,			Nickel	15.5		mg/kg	4.4	Р
			Vanadium	6		mg/kg	5.5	Р
			Zinc	52.5		mg/kg	2.2	Р
		Misc.						
			Acid-insoluble Sulfide	636		mg/kg	221	P
			Percent Solids	90.5		%		Р
			Percent Solids	91.5		%		Р
		SVOC						
			2-Methylnaphthalene	990		mg/kg	180	P
			Acenaphthene	62	J	mg/kg	180	Р
			Acenaphthylene	730		mg/kg	180	Р
			Anthracene	300		mg/kg	180	Р
			Benzo(a)anthracene	200		mg/kg	180	Р
			Benzo(a)pyrene	170	J	mg/kg	180	Р
			Benzo(b)fluoranthene	120	J	mg/kg	180	Р
			Benzo(ghi)perylene	36	J	mg/kg	180	P
			Benzo(k)fluoranthene	52	J	mg/kg	180	Р
			Chrysene	170	J	mg/kg	180	Р
			Dibenzofuran	33	J	mg/kg	180	Р
			Fluoranthene	440		mg/kg		Р
			Fluorene	420		mg/kg		Р
			Indeno(1,2,3-cd)pyrene	34	J	mg/kg		Р
nings/na/nitteffd(databaca/n860dh mdb mt data			Den 20 - 622				Tues	fav November f

A A ROLLAND

63339

P project/ge/pittsfld/database/n869db mdb: rpt_data

Page 30 of 33

Tuesday, November 17, 1998

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifie
				Naphthalene	1700		mg/kg	360	Р
				Phenanthrene	1200		mg/kg	180	Р
				Pyrene	540		mg/kg	180	P
E2SC-17	SS05	6-8							
			VOC						
				Acetone	0.0053	J	mg/kg	0.019	Р
E2SC-17	SS24	42-44							
			VOC						
				Ethylbenzene	1		mg/kg	0.19	Р
				Styrene	1.1		mg/kg	0.19	Р
				Toluene	0.7		mg/kg	0.19	Р
				Xylenes (total)	3.6		mg/kg	0.19	Р
E2SC-08	CS0106	1-6		• ••• • • • • • • • • • • • • • • • •					
			Misc.						
				Percent Solids	68		%		Р
E2SC-08	CS0615	6-15							
			Metals						
				Antimony	1.5		mg/kg	1.4	Р
				Arsenic	11.3		mg/kg	1.4	Р
				Barium	73.2		mg/kg	28.6	Р
				Beryllium	0.37	В	mg/kg	0.72	Р
				Cadmium	0.86		mg/kg	0.72	Р
				Chromium	48.6		mg/kg	1.4	Р
				Cobalt	11.2		mg/kg	7.2	Р
				Copper	180		mg/kg	3.6	Р
				Lead	180		mg/kg	0.43	Р
				Mercury	0.69		mg/kg	0.14	Р
				Nickel	28		mg/kg	5.7	P
				Selenium	1.4		mg/kg	0.72	Р
				Thallium	2.9		mg/kg	1.4	Р
				Tin	29.2		mg/kg	14.3	Р
				Vanadium	13.5		mg/kg	7.2	Р
				Zinc	212		mg/kg	2.9	Р
			Misc.				_		

(and sample)

P project/ge/pittsfld/database/n869db mdb_rpt_data

	1.11	$\sim 10^{-10}$	

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				Acid-insoluble Sulfide	85.3		mg/kg	71.5	P
				Percent Solids	79.6		%		Р
				Percent Solids	69.9		%		P
			SVOC						
				1,4-Dichlorobenzene	2.4		mg/kg	12	Р
				2-Methylnaphthalene	4.6	J	mg/kg	12	Р
				Acenaphthene	17		mg/kg	12	Р
				Acenaphthylene	3	J	mg/kg	12	P
				Anthracene	19		mg/kg	12	Р
				Benzo(a)anthracene	19		mg/kg	12	P
				Benzo(a)pyrene	15		mg/kg	12	Р
				Benzo(b)fluoranthene	17		mg/kg	12	Р
				Benzo(ghi)perylene	6.2	J	mg/kg	12	P
				Benzo(k)fluoranthene	7.5	J	mg/kg	12	P
				bis(2-Ethylhexyl) phthalate	1.4	J	mg/kg	12	P
				Chrysene Die buttel abthalate	20		mg/kg	12	P
				Di-n-butyl phthalate Dibenz(a,h)anthracene	0.96 2.1	J	mg/kg	12	P
				Dibenzofuran	2.1 7.7	J	mg/kg	12	P
				Fluoranthene	56	L	mg/kg	12 12	P P
				Fluorene			mg/kg	4.6	r P
				Indeno(1,2,3-cd)pyrene	6.5	J	mg/kg mg/kg	12	r P
				Naphthalene	5.3	j	mg/kg	12	i P
				Phenanthrene	79	3	mg/kg	12	P
				Pyrene	38		mg/kg	12	P
E2SC-08	CS0615	6-15		A yrene	50		mg/ xg	12	ł
DEDC 00	00010	010	Metals						
				Antimony	2		mg/kg	1.4	DUP
				Arsenic	9.6		mg/kg	1.4	DUP
				Barium	78.6		mg/kg	28.6	DUP
				Beryllium	0.35		mg/kg	0.72	DUP
				Cadmium	1		mg/kg	0.72	DUP
				Chromium	47.6		mg/kg	1.4	DUP
				Cobalt	12		mg/kg	7.2	DUP
oject/ge/piitsfid/databa	se'n869db mdb rpt_data			Page 32 of 33				Lucs	lay, Navcoder 13, 19

Boring	Sample Name	Sample Depth (ft)	Analysis	Compound	Result	Qualifier	Units	Reporting Limit	Modifier
				Copper	175		mg/kg	3.6	DUP
				Lead	197		mg/kg	0.43	DUP
				Mercury	0.43		mg/kg	0.14	DUP
				Nickel	29.4		mg/kg	5.7	DUP
				Selenium	1.3		mg/kg	0.72	DUP
				Thallium	2.9		mg/kg	1.4	DUP
				Tin	6.7		mg/kg	14.3	DUP
				Vanadium	15.2		mg/kg	7.2	DUP
				Zinc	200		mg/kg	2.9	DUP

B For organics, compound found in method blank. For metals, result is between MDL and RL.

J For organics, result is between MDL and RL.

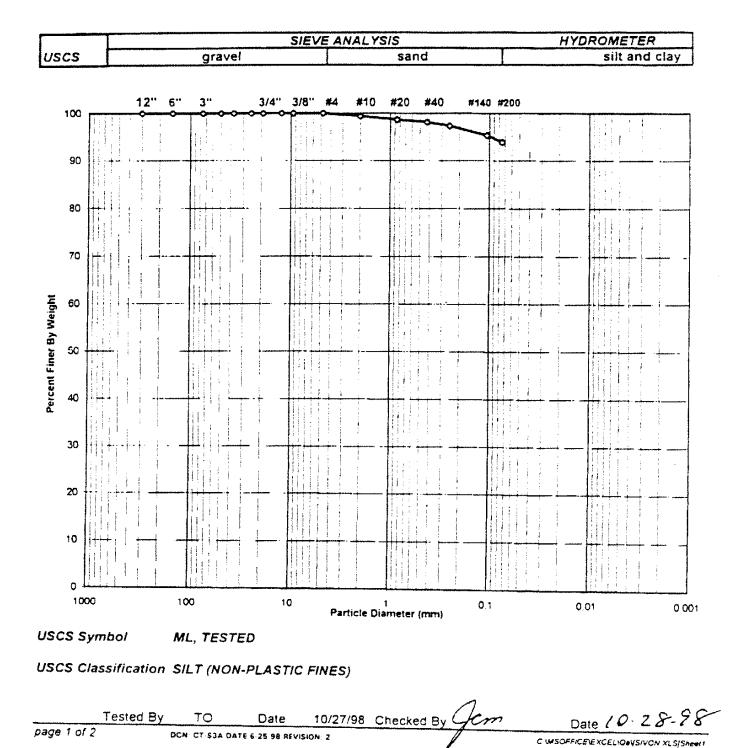
DUP Duplicate sample.

WW Results reported on wet weight.

P Preliminary result.

# Attachment C

BLASLAND, BOUCK & LEE, INC.


engineers & scientists

Grain-Size Analyses



#### SIEVE ANALYSIS ASTM D 422-63 (SOP-S3)

Client Client Reference Project No.	QUANTERRA QUANTERRA C8J150154 98275-01 02275-01	Boring No. Depth (ft) Sample No. Soit Color	NA NA E2SC-04-GS05
Lab ID	98275-01 005	Sait Color	BROWN



Total Dry Weight Sample (gm)



#### WASH SIEVE ANALYSIS

ASTM D 422-63 (SOP-S3)

Moisture Content o	f Passing 3/4" Material	Water Content of Retained	3/4" Material
Lab ID	98275-01.005	Soil Color	BROWN
Project No.	98275-01	Sample No.	E2SC-04-GS05
Client Reference	QUANTERRA C8J150154	Depth (ft)	NA
Client	QUANTERRA	Boring No.	NA

Tare No.	1681	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	232.08	Wgt.Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm)	214.99	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	103.91	Weight of Tare (gm)	NA
Weight of Water (gm)	17.09	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	111.08	Weight of Dry Soil (gm)	NA
Moisture Content (%)	15.4	Moisture Content (%)	NA
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	111.08
Dry Weight - 3/4" Sample (gm)	6.8	Weight of minus #200 material (gm)	104.28
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	6.80
Dry Weight + 3/4" Sample (gm)	0.00		

NA

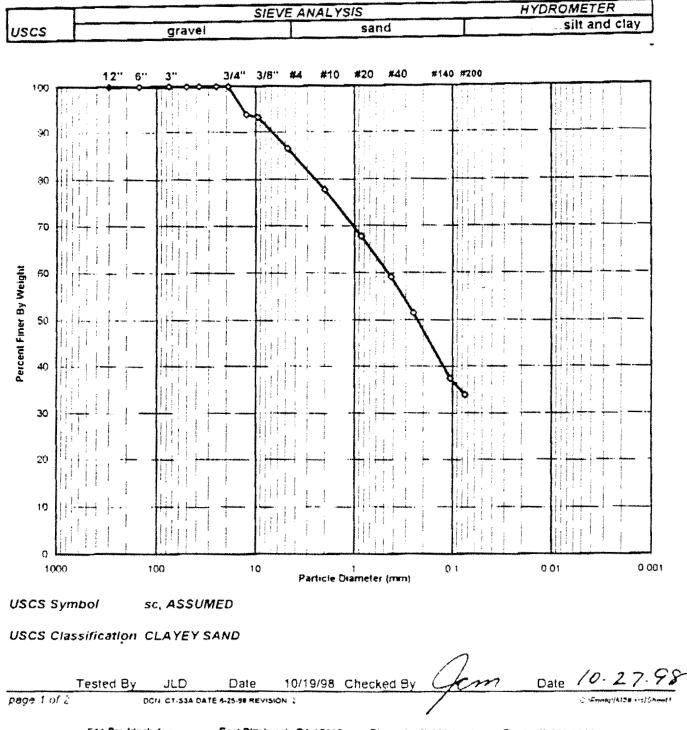
Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12 50	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	0.00	0.00	0.00	100.00	100.00
#10	2.00	0.69	0.62	0.62	99.38	99.38
#20	0.850	0.79	0.71	1.33	98.67	98.67
#40	0.425	0.57	0.51	1.85	98.15	98.15
#60	0.250	0.88	0.79	2.64	97.36	97.36
#140	0.106	2.26	2.03	4.67	95.33	95.33
#200	0.075	1.61	1.45	6.12	93.88	93.88
Pan	-	104.28	93.88	100.00	-	+

Tested By page 2 of 2

By TO Date 10/ DCN: CT-S3A DATE 6-25-28 REVISION: 2

Date 10/27/98 Checked By - Cm

Date 10.28.99


CIMSOFFICEVEXCELICAUSIVON XLSISheers



#### SIEVE ANALYSIS ASTM D 422-63 (SOP-S3)

______

NA Boring No. QUANTERRA Client NA Depth (ft) QUANTERRA C8J150154 Client Reference E2SC-04-GS01 Sample No. 98275-01 Project No. BROWN Soil Color 98275-01.001 Lab ID



544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7600 · Fax (412) 823-8999



#### WASH SIEVE ANALYSIS

ASTM D 422-53 (SOP-S3)

Moisture Content o	Passing 3/4" Material	Water Content of Retained 3	/4" Material
Client Client Reference Project No. Lab ID	QUANTERRA QUANTERRA C8J150154 98275-01 98275-01 001	Sample No Soil Color	NA NA E2\$C-04-G\$01 BROWN

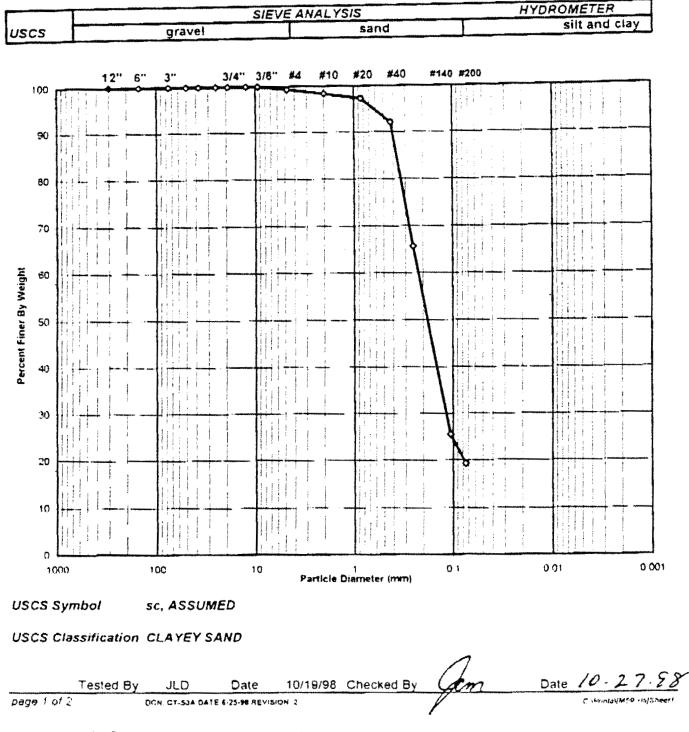
WOISDIE CONCENCOL BOOMING SHE			
Tare No.	1718	Tare No.	NA
Wgt_Tare + Wet Specimen (gm)	368.11	Wgt Tare + Wet Specimen (gm)	NA
Wgt Tare + Dry Specimen (gm)	332 74	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	82.43	Weight of Tare (gm)	NA
Weight of Water (gm)	35.37	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	250.31	Weight of Dry Soil (gm)	NA
Moisture Content (%)	14.1	Moisture Content (%)	NA
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	250.31
Dry Weight - 3/4" Sample (gm)	165.7	Weight of minus #200 material (gm)	84.62
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	165 69
Dry Weight + 3/4" Sample (gm)	0.00		
Total Dry Weight Sample (gm)	NA		

Sieve Size	Sieve Opening	Wgt.of Soil Retained	Percent Retained	Accumulated Percent	Percent Finer	Accumulated Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0 00	0 00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0 00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37 5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0 00	0.00	100.00	100.00
3/4"	19.0	0,00	0.00	0.00	100.00	100.00
1/2"	12.50	15,79	6 31	6.31	93.69	93.69
3/8"	9.50	1.55	0.62	6.93	93.07	93.07
#4	4 75	16.80	6,71	13.64	86.36	86.36
#10	2.00	21 80	8.71	22.35	77.65	77.65
#20	0.850	25.01	9 99	32.34	67.66	67.66
#40	0.425	21.68	8.66	41.00	59 00	59.00
#60	0.250	18.82	7.52	48.52	51.48	51.48
#140	0.105	35 44	14,16	62.68	37.32	37.32
#200	0.075	8 80	3.52	66.19	33.81	33.81
Pan	*	84.62	33.81	100.00	-	-

Tested By JLD Date 10/19 DCN CT-53A DATE 6-25-96 REVISION 2

Date 10/19/98 Checked By

Date 10-27-88


2 Cm

page 2 of 2



#### SIEVE ANALYSIS ASTM D 422-63 (SOP-53)

Client	QUANTERRA	Bonng No.	NA
Client Reference	QUANTERRA C8J150154	Depth (ft)	NA
Project No	98275-01	Sample No.	E2SC-04-GS02
Lab ID	98275-01.002	Soil Color	BROWN





#### WASH SIEVE ANALYSIS

ASTM D 422-63 (SOP-S3)

Client	QUANTERRA	Boring No	NA	
Client Reference	QUANTERRA C8J150154	Depth (ft)	NA	
Project No.	98275-01	Sample No.	E2SC-04-GS02	
Lab ID	98275-01.002	Soit Color	<b>BROWN</b>	

Moisture Content of Passing 3/4" Material		Water Content of Retained 3/4" Material	
Tare No.	1719A	Tare No.	NA
Wot.Tare + Wet Specimen (gm)	381,69	Wgt Tare + Wet Specimen (gm)	NA
Wgt Tare + Dry Specimen (gm)	351.85	Wgt Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	84.83	Weight of Tare (gm)	NA
Weight of Water (gm)	29.84	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	267.02	Weight of Dry Soil (gm)	NA
Moisture Content (%)	11.2	Moisture Content (%)	NA
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	267.02
Dry Weight - 3/4" Sample (gm)	215 7	Weight of minus #200 material (gm)	51.34
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	215.68
Dry Weight + 3/4" Sample (gm)	0.00		
Total Dry Weight Sample (gm)	NA		

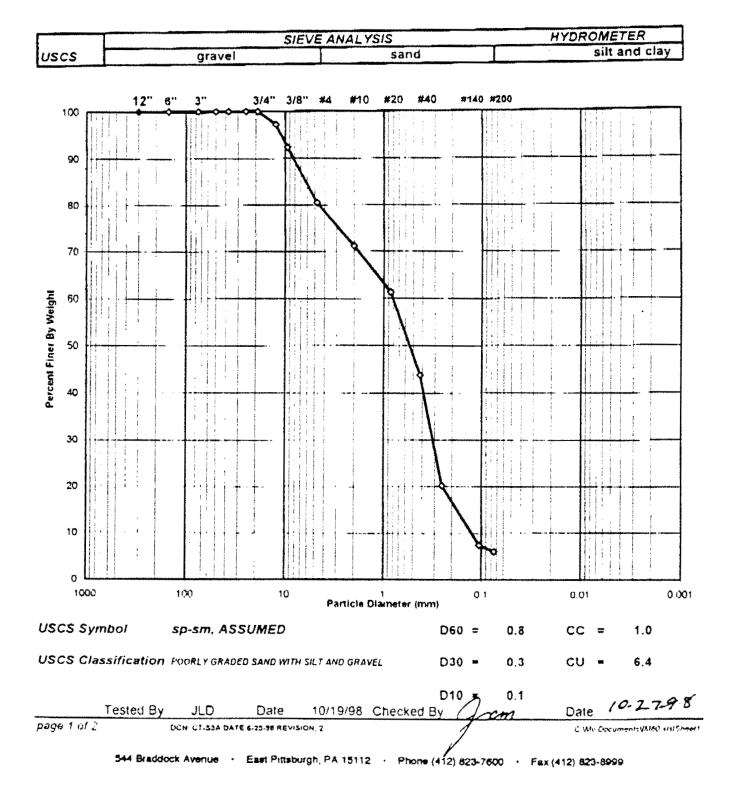
Sieve Size	Sieve Opening	Wgt.of Soil Retained	Percent Retained	Accumulated Percent	Percent Finer	Accumulated Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0 00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37 5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100,00	100.00
3/4"	19.0	0.00	0 00	0.00	100,00	100.00
1/2"	12.50	0.00	0 00	0.00	100.00	100.00
3/8"	9.50	0.00	0 00	0.00	100.00	100.00
#4	4,75	2.01	0.75	0.75	99.25	99.25
#10	2.00	2.47	0.93	1.68	98 32	98.32
#20	0.850	2.88	1.08	2.76	97.24	97.24
#40	0.425	13.87	5 19	7,95	92.05	92.05
#60	0.250	70.57	26 43	34.38	65.62	65.62
#140	0.106	107.40	40.22	74.60	25.40	25.40
#200	0.075	16 48	6.17	80.77	19.23	19.23
Pan	-	51 34	19.23	100.00	~	vil i i i i i i i i i i i i i i i i i i

	Tested By	JLD	Date	10/19/98	Checked By	Jam	Date	10.1	2 7.98	5
page 2 of 2		OCN: CT-SIA D	TE 5/20-90 REVIS	10N 2	,	/		© VEHINAYM 50	vis/Sheeti	

544 Braddock Avenue - East Pittsburgh, PA 15112 - Phone (412) 823-7600 - Fax (412) 823-8999



್ ಎಂದಿ ಎಂದಿ


SIEVE ANALYSIS ASTM D 422-53 (SOP-S3)

1000 1011

ست ست جد

ClientQUANTERRAClient ReferenceQUANTERRA C8J150154Project No.98275-01Lab ID98275-01.003	Boring No. Depth (ft) Sample No. Soil Color	NA NA E2SC-04-GS03 GRAY & BROWN
-----------------------------------------------------------------------------------------	------------------------------------------------------	------------------------------------------

sel elm-rus





#### WASH SIEVE ANALYSIS

ASTM D 422-63 (SOP-S3)

····

. . .

-

Client	QUANTERRA	Boring No	NA
Client Reference	QUANTERRA C8J150154	Depth (ft)	NA
Project No.	98275-01	Sample No	E2SC-04-GS03
Lab ID	98275-01.003	Soil Color	GRAY & BROWN

÷ · ·

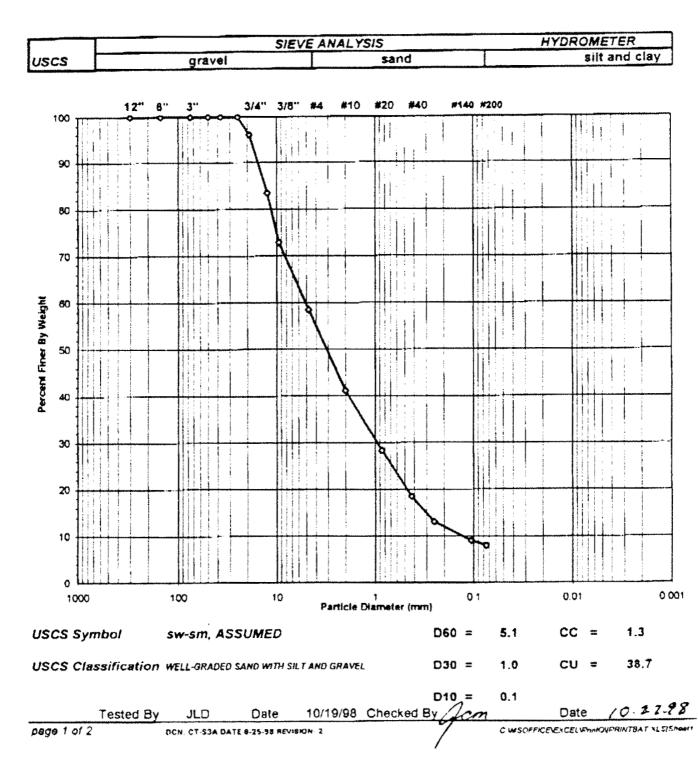
Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material		
Tare No.	598	Tare No.	NA	
Wgt.Tare + Wet Specimen (gm)	475.20	Wgt Tare + Wet Specimen (gm)	NA	
Wgt.Tare + Dry Specimen (gm)	423.60	Wgt Tare + Dry Specimen (gm)	NA	
Weight of Tare (gm)	84,79	Weight of Tare (gm)	NA	
Weight of Water (gm)	51.60	Weight of Water (gm)	NA	
Weight of Dry Soil (gm)	338.81	Weight of Dry Soil (gm)	NA	
Moisture Content (%)	15.2	Moisture Content (%)	NA	
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	338.81	
Dry Weight - 3/4" Sample (gm)	318.6	Weight of minus #200 material (gm)	20.19	
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	318 62	
Dry Weight + 3/4" Sample (gm)	0.00			
Total Dry Weight Sample (gm)	NA			

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3″	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37 5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0 00	0.00	100.00	100.00
3/4"	19.0	0.00	0 00	0.00	100.00	100.00
1/2"	12.50	9.62	2 84	2.84	97,16	97.16
3/8"	9 50	16.46	4 86	7.70	92.30	92.30
#4	4 75	40 41	11 93	19.62	80.38	80.38
#10	2.00	31.20	9 21	28.83	71,17	71.17
#20	0.850	33.63	9.93	38.76	61,24	61.24
#40	0.425	59.59	17.59	56.35	43,65	43.65
#60	0.250	79.72	23.53	79.88	20.12	20.12
#140	0 106	43.18	12 74	92.62	7.38	7.38
#200	0 075	4.81	1 42	94.04	5.96	5,96
Pan	-	20.19	5 96	100 00	······································	•

	Tested By	JLD	Date	10/19/98	Checked By	Jan	Date 10-27.48
page 2 of 2		DON CT-S3A DATE 4	123.98 REV	15IOH 2		/	C Mis Documents (MED vis)Sneet1

544 Braddock Avenue - East Plittsburgh, PA 15112 - Phone (412) 523-7600 - Fax (412) 523-8999




#### SIEVE ANALYSIS ASTM D 422-63 (SOP-S3)

10.10 1550

Client	QUANTERRA	Boring No.	NA
Client Reference	QUANTERRA C8J150154	Depth (ft)	NA
Project No.	98275-01	Sample No.	E2SC-04-GS04
Lab ID	98275-01.004	Soil Color	<b>BROWN</b>

- -

. . . .





#### WASH SIEVE ANALYSIS

ASTM D 422-63 (SOP-S3)

Client
Client Reference
Project No.
Lab ID

QUANTERRA QUANTERRA C8J150154 98275-01 98275-01.004 Boring No. Depth (ft) Sample No. Soil Color NA NA E2SC-04-GS04 BROWN

Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material		
Tare No.	585	Tare No.	NA	
Wgt.Tare + Wet Specimen (gm)	496.38	Wgt.Tare + Wet Specimen (gm)	NA	
Wot.Tare + Dry Specimen (gm)	469.06	Wgt.Tare + Dry Specimen (gm)	NA	
Weight of Tare (gm)	85.64	Weight of Tare (gm)	NA	
Weight of Water (gm)	27.30	Weight of Water (gm)	NA	
Weight of Dry Soil (gm)	383.42	Weight of Dry Soil (gm)	NA	
Moisture Content (%)	7.1	Moisture Content (%)	NA	
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	383.42	
Dry Weight - 3/4" Sample (gm)	337.9	Weight of minus #200 material (gm)	30.24	
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	353,18	
Dry Weight + 3/4" Sample (gm)	15.26	<u> </u>		
Total Dry Weight Sample (gm)	NA			

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1*	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	15.26	3.98	3.98	96.02	96.02
1/2"	12.50	48.56	12.66	16.64	83.36	83.36
3/8*	9.50	40.20	10.48	27.13	72.87	72.87
#4	4,75	55.24	14.41	41.54	58.46	58.46
#10	2.00	66.65	17.38	58.92	41.08	41.08
#20	0.850	49.07	12.80	71.72	28.28	28.28
#40	0.425	37.92	9.89	81.61	18,39	18.39
#60	0 250	20.87	5.44	87.05	12.95	12.96
#140	0.106	15.23	3.97	91.02	8.98	8.98
#200	0.075	4.18	1.09	92.11	7.89	7.89
Pan	-	30.24	7 89	100.00	-	

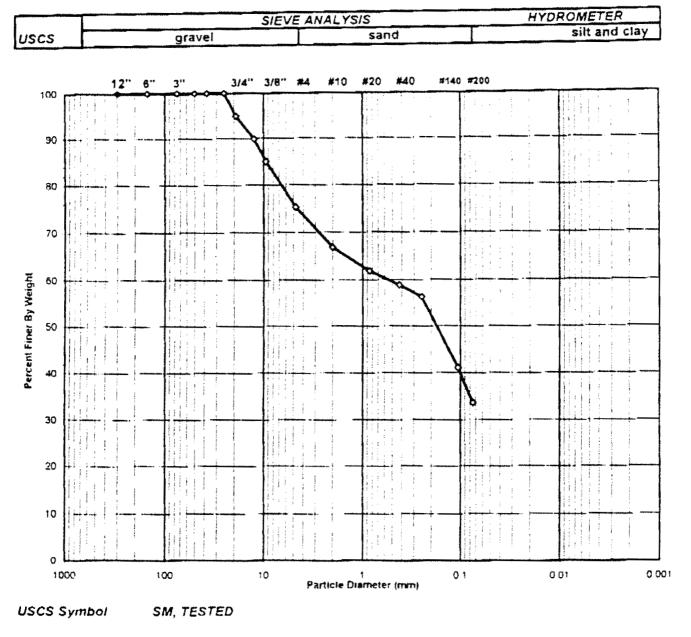


#### ATTERBERG LIMIT

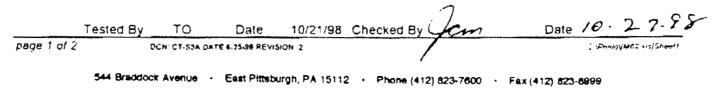
ASTM D 4318-96 (SOP - S4)

Client Client Reference Project No Lab ID QUANTERRA QUANTERRA C8J150154 98275-01 98275-01 005 Boring No. Depth (ft) Sample No. Visual Description NA NA E2SC-04-GS05 BROWN SILT (Minus No: 40 sieve material Airdried)

# NON - PLASTIC MATERIAL


Date 10-27-98 10/26/98 Checked By ΤŌ Date Tested By

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (\$12) 823-7600 · Fax (412) 823-6999




#### SIEVE ANALYSIS ASTM D 422-63 (SOP-S3)

Client	QUANTERRA	Boring No.	NA
Client Reference	QUANTERRA C8J150154	Depth (ft)	NA
Project No.	98275-01	Sample No.	E2SC-04-GS06
Lab ID	98275-01 006	Soil Color	BROWN



USCS Classification SILTY SAND WITH GRAVEL (NON-PLASTIC FINDS)





#### WASH SIEVE ANALYSIS

ASTM D 422-63 (SOP-S3)

Client	QUANTERRA	Boring No	NA
Client Reference	QUANTERRA CBJ150154	Depth (ft)	NA
Project No	98275-01	Sample No.	E2SC-04-GS06
Lab ID	98275-01.006	Soil Color	BROWN

Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material		
Tare No.	586	Tare No	NA	
Wgt.Tare + Wet Specimen (gm)	477.80	Wgt.Tare + Wet Specimen (gm)	NA	
Wgt.Tare + Dry Specimen (gm)	439.70	Wgt.Tare + Dry Specimen (gm)	NA	
Weight of Tare (gm)	82.70	Weight of Tare (gm)	NA	
Weight of Water (gm)	38.10	Weight of Water (gm)	NA	
Weight of Dry Soil (gm)	357.00	Weight of Dry Soil (gm)	NA	
Moisture Content (%)	10.7	Moisture Content (%)	NA	
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	357.00	
Dry Weight - 3/4" Sample (gm)	218.9	Weight of minus #200 material (gm)	119,97	
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	237.03	
Dry Weight + 3/4" Sample (gm)	18 18			
Total Dry Weight Sample (gm)	NA			

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0 00	100 00	100.00
3"	75	0 00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37 5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19,0	18.18	5 09	5.09	94.91	94.91
1/2"	12.50	18.08	5.06	10.16	89.84	89.84
3/8"	9 50	17.32	4.85	15.01	84,99	84.99
#4	4.75	34 73	973	24.74	75 26	75.26
#10	2 00	30.24	8.47	33 21	66.79	66.79
#20	0.850	17 99	5.04	38.25	61.75	61.75
#40	0.425	10.62	2 97	41 22	58,78	58.78
#60	0 250	9.07	2.54	43.76	56.24	56.24
#140	0.106	54.30	15 21	58,97	41.03	41.03
#200	0.075	26.50	7 42	66.39	33.61	33.61
Pan	•	119.97	33.61	100.00		-

	544 Braddo	ck Avenue -	East Pittabu	rgh, PA 15112	Phone (412) 823-7600	· Fax (412) 823-8099
page 2 of 2	2 OCH CT-S3A DATE 6-25-98 REVISION: 2			ION: 2		r vintaVM62 vis/sneer
	Tested By	JLD	Date	10/19/98	Checked By	Date 10-27.88



#### ATTERBERG LIMIT

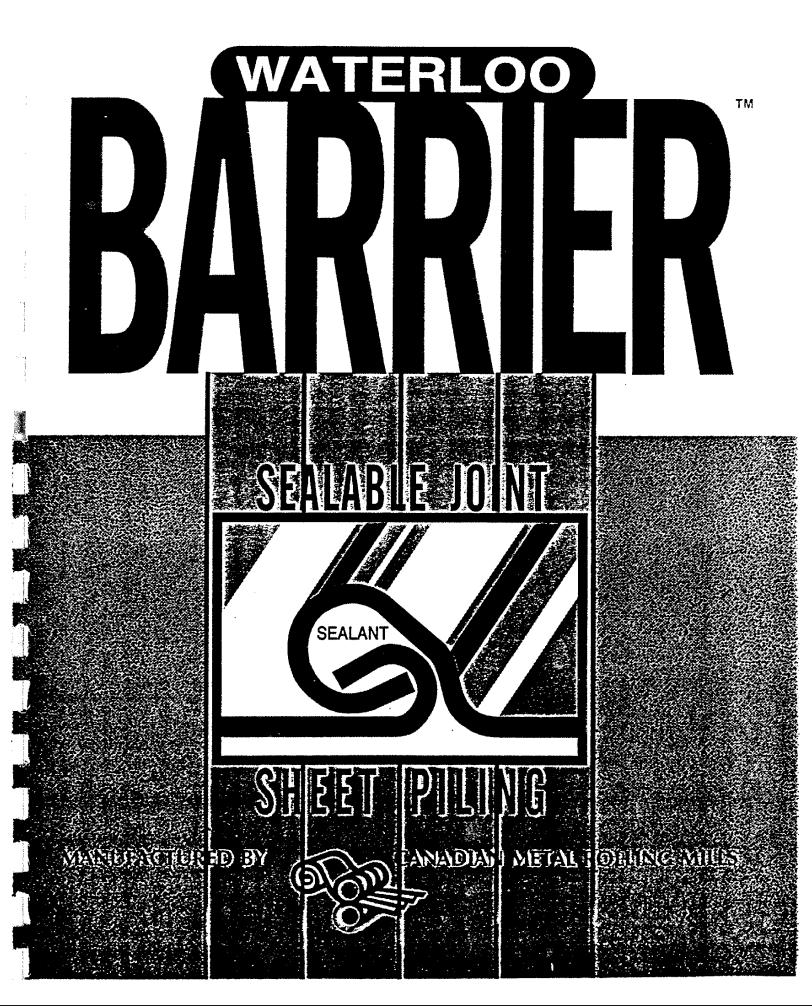
ASTM D 4318-96 (SOP - S4)

Client Client Reference Project No. Lab ID QUANTERRA QUANTERRA C8J150154 98275-01 98275-01 006 Boring No Depth (ft) Sample No. Visual Description NA NA E2SC-04-GS06 BROWN SILT (Minus No: 40 sieve material, Airdried)

# NON - PLASTIC MATERIAL

Tested By DBB Date 10/24/98 Checked By Com Date 10-27-98

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7800 · Fax (412) 823-5999


## Attachment D

BLASLAND, BOUCK & LEE, INC.

engineers & scientists

Waterloo Barrier Vendor Information

### GROUNDWATER CONTAINMENT AND CONTROL



### WHAT IS WATERLOO BARRIER™?

Waterloo Barrier is a low permeability cutoff wall for groundwater containment and control. It is a new design of steel sheet piling featuring joints that can be sealed after the sheets have been driven into the ground. The product was developed by researchers at the University of Waterloo (UW) and has patent/patent pending status in several countries. Canadian Metal Rolling Mills assisted in the development of the product and are currently the sole manufacturer. Field tests confirm that Waterloo Barrier is an effective method for providing low bulk hydraulic conductivity containment of groundwater in subsurface soil environments.

### DEVELOPMENT OF WATERLOO BARRIER™

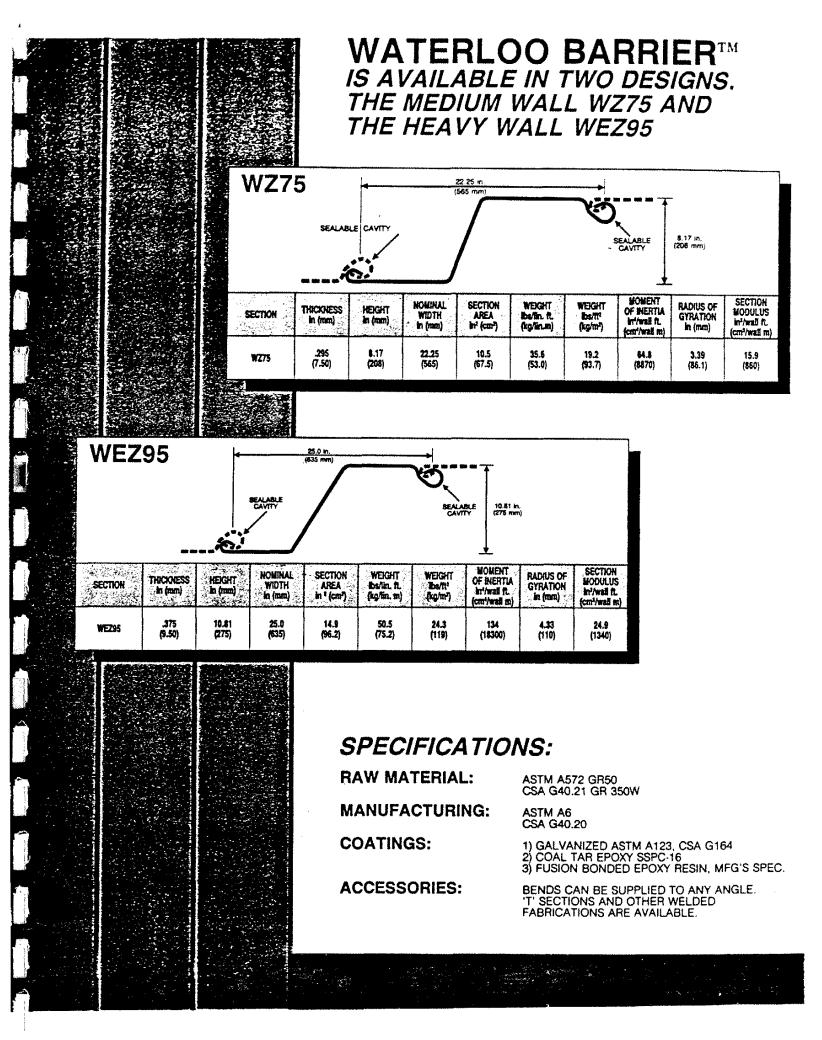
Low permeability containment walls are increasingly being applied in the control and remediation of groundwater pollution. Conventional technologies such as slurry walls and geomembranes do not necessarily provide cost-effective and efficient subsurface containment in all settings. Groundwater researchers at UW considered this in their construction of containment cells for field experiments involving contaminated groundwater. The concept of driving steel sheet piling and sealing the joints between adjacent piles was thus introduced. After a series of successful experimental cells the potential utility of Waterloo Barrier in real site conditions was confirmed with approximately one year of prototype field testing. UW and Canadian Metal Rolling Mills then collaborated to develop sheet piling in which a sealable cavity was incorporated into the pile interlock in the manufacturing process. A roll-formed shape was produced, and made available for field trials in 1991. Extensive field scale tests were conducted by UW, and bulk hydraulic conductivity values of less than 10-8 cm/sec were achieved. Installations of a commercial nature are currently in service.

### COMMERCIAL APPLICATIONS

Potential uses of the Waterloo Barrier include:

- deep, enclosing barriers around hazardous waste sites or municipal landfills.
- shallow, enclosing barriers to contain petroleum products or other light contaminants which float on the water table.
- shallow or deep enclosures to control future groundwater contamination at new industrial or waste disposal sites.
- temporary, enclosing barriers to facilitate various removal or in situ remediation procedures.
- barriers along shorelines to prevent seepage of contaminated groundwater into waterways.
- isolation of accidental spills.
- cofferdams in waterways to facilitate efficient dewatering procedures.
- funnelling or directing contaminant plumes to enhance the efficiency of pump-and-treat techniques.
- groundwater control in construction projects involving excavating and tunnelling.

### FEATURES & BENEFITS


- rapid installation and sealing
- minimal disturbance of site during construction
- easily adapted to irregular layouts.
- limited site access less of a problem compared to alternative cutoff wall techniques
- easily installed in areas with high water tables and surface water.
- easy to inspect and monitor for superior quality assurance and control during construction.
- predictable hydraulic performance.
- positive public perception.
- · long service life for permanent installations.
- · can be easily removed where applications are temporary.

### INSTALLATION AND SEALING

Waterloo Barrier sheet piles are installed using the same equipment and techniques as conventional product. Vibro equipment is suitable for most soil conditions although better results may be achieved with impact equipment in certain cohesive soils. Vibratory drivers with an eccentric moment in the area of 3000 in-lbs are recommended for both WZ75 and WEZ95. Pile lengths of up to 70 feet are available and for greater depths the piles can be spliced. Corners and special fabrications are available for any geometrical layout. A foot plate at the toe of each larger interlock prevents most of the soil from entering the sealable cavity during driving. After driving the cavities are water jetted to remove small amounts of loose soil and are ready for the injection of sealant. A number of clay-based, cementitious, polymer and mechanical sealants are available to meet a variety of site conditions.

# QUALITY ASSURANCE & CONTROL

Potential leak paths through the Barrier are limited to the sealed joints and therefore the joints are the focus of the quality control procedures. Joints are inspected before the sealing operation to confirm that the complete length of the cavity is open and can be sealed. Video inspection equipment can be lowered into each clean cavity to provide a permanent visual record. Each joint is sealed from bottom to top facilitating the emplacement of sealant into the entire length of the joint. Repair procedures can be initiated if joint separation or blockage is suspected. Quality assurance and control is further confirmed by the requirement that the pile driving and sealing be carried out by or under the supervision of trained and licenced personnel.

