

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted Via Federal Express

June 28, 2006

Ms. Sharon Hayes United States Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, MA 02114-2023

Re: GE-Pittsfield/Housatonic River Site East Street Area 2-North (GECD140) Demolition and Disposition Activities – Buildings 7, 17, 17C, and 19

Dear Ms. Hayes:

The General Electric Company (GE) has prepared this letter to notify the U.S. Environmental Protection Agency (EPA) of its plans for demolishing Buildings 7, 17, 17C, and 19 at GE's Pittsfield, Massachusetts facility (Figure 1), and to seek EPA's approval for the possible disposition of certain demolition debris. GE plans to initiate demolition of Buildings 7, 17, 17C, and 19 in summer 2006 as part of its ongoing Brownfields Program. As building demolition activities themselves are not part of the Removal Actions under the Consent Decree (CD) and the accompanying *Statement of Work for Removal Actions Outside the River* (SOW), this letter presents a general description of GE's anticipated demolition activities for these buildings. However, this letter also presents, for EPA approval, proposed plans for the disposition of the building material characterization activities performed by GE, as well as the evaluations that have been performed to demonstrate that certain of the building materials are suitable for use as subgrade backfill/grading material within particular portions of the GE facility and/or for consolidation at GE's On-Plant Consolidation Areas (OPCAs).

Based on recent discussions with EPA, GE has considered the possibility that certain building demolition materials (e.g., concrete, brick) may be used as subgrade backfill/grading materials within the portions of the GE facility that have been or will be transferred to the Pittsfield Economic Development Authority (PEDA), similar to the re-use of certain building demolition materials from GE's former 30s and 40s Complexes. Specifically, GE has considered the possibility that such materials may be used as subgrade backfill/grading materials within the portion of East Street Area 2-North that will be transferred to PEDA or within the former 20s, 30s, or 40s Complexes (all jointly referred to herein as the "PEDA Properties"). To assess this approach, GE has assembled available building material characterization data previously generated for the subject buildings, and collected supplemental building material characterization samples from all four buildings to further evaluate disposition options, including: 1) use of certain building materials for future subgrade backfill/grading materials within the PEDA Properties; 2) consolidation at the OPCAs; and/or 3) off-site disposition.

The remainder of this letter presents the following:

- summary of previous building material characterization activities and data;
- summary of supplemental building material characterization activities and data;
- assessment of the adequacy of the available building material characterization data to meet applicable characterization requirements;
- evaluation of the available building material characterization data to determine potential disposition options;
- general description of the anticipated demolition activities; and
- proposed building demolition material disposition activities.

1. Previous Building Material Characterization Activities

GE previously conducted building material characterization sampling at Buildings 17 and 19. Specifically, GE collected a total of 65 wipe and 119 core samples from Building 17 during a sampling event conducted in April/May 1996 for analysis of polychlorinated biphenyls (PCBs), and a total of 150 wipe, 235 core, and 17 paint chip samples from Building 19 over the course of four separate sampling events (conducted in April/May 1987, September 1996, January/February 2000, and July/August 2000) for PCB analysis. The results of these sampling events are presented in Attachment 1 (for Building 17) and Attachment 2 (for Building 19).

A review of the data from these previous sampling events indicated that PCBs were detected at levels ranging from non-detect to 4,120 parts per million (ppm) in core samples and from non-detect to 80 micrograms per 100 square centimeters ($\mu g/100 \text{ cm}^2$) in wipe samples. Specifically, 543 of the 586 collected samples (approximately 93%) contained PCBs at concentrations less than the levels regulated under EPA's regulations pursuant to the Toxic Substances Control Act (TSCA) – i.e., 50 ppm in core samples or 10 $\mu g/100 \text{ cm}^2$ in wipe samples. The remaining 43 samples contained PCBs at concentrations ranging from 50 to 4,120 ppm (for core samples) and 10 to 80 $\mu g/100 \text{ cm}^2$ (for wipe samples). Individual sample results and locations are presented in Attachments 1 and 2.

2. Supplemental Building Material Characterization Activities

GE performed additional pre-demolition characterization activities for Buildings 7, 17, 17C, and 19 on March 1 and 2, 2006, to supplement the existing PCB data described above. The purpose of these supplemental building material characterization activities was to: (1) obtain PCB data for Buildings 7 and 17C; (2) collect discrete PCB samples in Buildings 17 and 19 to facilitate the delineation of certain building materials exhibiting PCB concentrations at or above 50 ppm or 10 μ g/100 cm² (where appropriate); and (3) collect samples for analysis of non-PCB constituents from all four buildings. This supplemental building material characterization program was developed in consideration of the applicable characterization requirements discussed in Section 3 below.

This supplemental sampling program involved the collection of samples from 35 locations. Of these, 23 samples, including 17 core samples of concrete or brick and 6 wipe samples of steel surfaces, were collected for PCB analysis, and 20 composite core samples of concrete/brick wall materials were collected for analysis of the volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and inorganic compounds identified in Appendix IX of 40 CFR Part 264, plus three additional constituents (benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine) (Appendix IX+3). The

sampling locations are depicted on Figures 2 through 5. These sample locations were selected in the field based on the following considerations:

- Adequate distribution within Buildings 7, 17, 17C, and 19, considering the prior sample locations in Buildings 17 and 19;
- Collection of samples from building materials considered suitable for re-use as fill material (e.g., brick and concrete);
- Sample selection to include stained areas, areas that have been painted, and/or other areas potentially impacted by previous building operations;
- Collection of discrete PCB samples to delineate portions of building materials that exhibit PCB concentrations at or above TSCA-regulated levels;
- Distribution to gain spatial representation of the building materials (as practical);
- No collection of additional samples from the concrete floor slabs, since the floor slabs and subgrade foundations of all four building will remain in place following building demolition activities;
- No collection of samples from areas to be removed and consolidated at the Building 71 OPCA based on previous sampling results (i.e., building demolition debris exhibiting PCB concentrations at or above TSCA-regulated levels); and
- No collection of samples from wood and asphalt block flooring, as these materials will be removed and transported to an appropriate off-site disposal facility as part of the pre-demolition asbestos removal program.

At each sample location, GE collected a full-depth core sample of the material being tested (with the exception of PCB samples collected from steel building materials, in which case wipe samples were collected). All sampling and analytical procedures activities were performed in accordance with GE's approved *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP).

The analytical results of these samples are presented in Table 1 (for PCBs) and Table 2 (for the Appendix IX+3 VOCs, SVOCs, and inorganics). The PCB analytical results from the March 2006 characterization activities indicated that PCBs were detected at levels ranging from non-detect to 5.8 ppm in core samples. The arithmetic average concentration of the supplemental PCB core sample results is approximately 1 ppm. All wipe samples were non-detect.

The analytical data for the characterization samples were reviewed in accordance with the data validation protocols included in the FSP/QAPP. The results of this review are summarized in Attachment 3 and confirm that the data are within acceptable data validation parameters. Field notes collected during the March 2006 supplemental building material characterization activities are presented in Attachment 4.

3. Adequacy of Existing Building Material Characterization Data

The available building material characterization data, from both the previous sampling events and the supplemental characterization sampling, have been reviewed to determine whether they are adequate to meet applicable characterization requirements. The characterization requirements for buildings subject to demolition are set forth in GE's *Protocols for Building Demolition and Associated Characterization Activities* (Demolition Protocols), the most recent version of which was submitted to EPA in July 2003 (as Exhibit A-1 to Attachment A to GE's Project Operations Plan, incorporating modifications previously approved by EPA). Under the Demolition Protocols, initial characterization sampling of building materials subject to demolition (with the exception of wood block flooring and structural steel) is to be performed using an area-based approach, requiring the collection of one sample for every 5,000 square feet of floor area for analysis of PCBs. Application of this sampling frequency to the building involved here would require six samples from Building 7 (approximately 28,100 square feet), 27 samples from Building 17 (approximately 130,200 square feet), one sample from Building 17C (approximately 4,100 square feet), and 12 samples from Building 19 (approximately 59,000 square feet). In total, a minimum of 46 samples for PCB analysis would be necessary.

In addition, given the potential for the building material to be used as subgrade backfill/grading material, GE has also considered the requirements of the *Soil Cover and Backfill Characterization Plan* (Characterization Plan), included as Attachment B to the POP, as was done in evaluating the re-use of certain building materials at GE's former 30s and 40s Complexes. As stated in that plan, samples of potential backfill and soil cover material are required at a frequency of one composite sample (composed of 10 discrete "grab" samples) per 2,000 cubic yards (cy) of material for analysis of PCBs and Appendix IX+3 VOCs, SVOCs, and inorganics. In this case, a minimum of eight composite samples would be necessary based on an estimated volume of approximately 15,000 cy of building demolition materials that are eligible for potential use as backfill/grading material.

However, some modification to the guidelines presented in the Characterization Plan is necessary given that, unlike soil, building materials do not lend themselves to composite sampling of numerous "grab" samples. Therefore, similar to the approach utilized for the 30s and 40s Complexes, GE established a sampling frequency based on two discrete core samples per floor and one per roof of each building for analyses of PCBs and Appendix IX+3 VOCs, SVOCs, and inorganics. Application of this sampling frequency to the buildings involved here would require three samples from Building 7 (first floor and roof), five samples from Building 17 (first floor, second floor mezzanine, and roof), five samples from Building 17C (first floor, second floor, and roof). In total, a minimum of 20 samples would be necessary.

Presented below is a table summarizing the available data generated for all four buildings upon completion of the supplemental building material characterization program. This table demonstrates that there are sufficient data to meet the above-described sampling frequency criteria both under the Demolition Protocols and under the Characterization Plan.

Ms. Sharon Hayes June 28, 2006 Page 5 of 9

Analysis	Building 7	Building 17	Building 17C	Building 19	Total
PCB	6	123	5	237	371
PCB	0	69	0	152	221
PCB	0	0	0	17	17
Subtotal:	6	192	5	406	609
/OCs, SVOCs, & Inorganics	3	5	5	7	20
Subtotal:	3	5	5	7	20
					629
	PCB PCB PCB Subtotal: /OCs, SVOCs, & Inorganics	PCB 6 PCB 0 PCB 0 Subtotal: 6 /OCs, SVOCs, & Inorganics 3 Subtotal: 3	PCB6123PCB069PCB00Subtotal:6192/OCs, SVOCs, & Inorganics35Subtotal:35	PCB 6 123 5 PCB 0 69 0 PCB 0 0 0 PCB 0 0 0 Subtotal: 6 192 5 /OCs, SVOCs, & Inorganics 3 5 5 Subtotal: 3 5 5	PCB 6 123 5 237 PCB 0 69 0 152 PCB 0 0 0 17 Subtotal: 6 192 5 406 /OCs, SVOCs, & Inorganics 3 5 5 7 Subtotal: 3 5 5 7

4. Evaluation of PCB Data To Assess Potential Disposition

Based on past discussions with EPA and the Massachusetts Department of Environmental Protection (MDEP), to assess the potential for future use of the building demolition debris as subgrade backfill/grading materials, GE calculated arithmetic average concentrations of the PCB results - first considering all 609 PCB sample results (i.e., 586 from previous characterization activities and 23 from the March 2006 characterization activities), and then after excluding the results showing PCBs at or above-TSCA-regulated levels (43 sample results). The arithmetic average concentration of all 609 existing PCB characterization samples (including the 43 samples with PCB concentrations at or above TSCA-regulated levels) is approximately 27 ppm in core samples and 4.1 μ g/100 cm² in wipe samples. After identifying the portions of Buildings 17 and 19 corresponding to the 43 samples containing PCBs at or above TSCAregulated levels, and therefore subject to segregation and either consolidation at the Building 71 OPCA or transport to an appropriate off-site disposal facility, a second arithmetic average was calculated for the remaining 566 samples. The average of these remaining samples is 7.1 ppm in core samples and 1.6 µg/100 cm² in wipe samples. Calculation of arithmetic average concentrations to determine whether these building materials can be used as subgrade backfill/grading material was considered an appropriate method to represent the PCB concentration of the material, because the sample locations are well distributed and it is anticipated that, after segregation of the TSCA-regulated material, the various remaining building materials will be mixed and homogenized upon crushing/preparation for use as fill material.

The PCB sampling results associated with those materials that do not contain PCB concentrations at or above TSCA-regulated levels indicate that these materials could potentially be placed (following appropriate crushing and processing) as subgrade backfill/grading materials within industrial/commercial portions of the GE facility, such as the PEDA Properties. To demonstrate this, the PCB characterization data for those building materials were compared to the applicable soil-related Performance Standards established in the CD for industrial/commercial areas. The arithmetic average PCB concentration of the samples from these materials (7.1 ppm) is below the applicable PCB Performance Standards for soils in the 0- to 1-foot and 1- to 6-foot depth increments at industrial/commercial properties (25 ppm and 200

Ms. Sharon Hayes June 28, 2006 Page 6 of 9

ppm, respectively). In addition, the maximum PCB concentration in these remaining samples (46 ppm) is less than the "not-to-exceed" concentration of 125 ppm for materials in the 0- to 1-foot depth increment within the unpaved portion of industrial/commercial properties. Therefore, based on the available PCB data, GE concludes that use of these building materials as fill materials would not adversely impact achievement of the PCB Performance Standards for the 0- to 1-foot or 1- to 6-foot depth increments within the PEDA Properties.

5. Evaluation of VOC, SVOC, and Inorganic Data To Assess Potential Disposition

....

To assess whether the non-PCB data would allow the use of the Buildings 7, 17, 17C, and 19 demolition debris as subgrade backfill/grading material, GE has generally applied the procedures described in Attachment F to the SOW (Protocols for the Evaluation of Non-PCB Constituents in Soil). A summary of the evaluation activities is provided below.

The first step in the evaluation of the Appendix IX+3 VOCs, SVOCs, and inorganics data was the performance of a screening evaluation. In this step, the maximum concentrations of all detected constituents were compared to the EPA Region 9 Preliminary Remediation Goals (PRGs) set forth in Exhibit F-1 to Attachment F of the SOW, using the Industrial PRGs. For certain constituents for which EPA Region 9 PRGs are not available (i.e., certain polycyclic aromatic hydrocarbons), surrogate PRGs identified in the SOW were used. Table 3 presents the results of this screening step. As shown in Table 3, the maximum concentrations of all of the constituents detected in the samples collected in the March 2006 sampling event were below their respective PRGs, with the exception of arsenic.

For arsenic, GE has first compared the average concentration of arsenic to its applicable Method 1 "Wave 2" soil standard set forth in the Massachusetts Contingency Plan (MCP). Specifically, consistent with the April 14, 2006 addendum to the April 2005 *Conceptual Removal Design/Removal Action Work Plan for East Street Area 2- North* (Conceptual Work Plan), GE has compared the average arsenic concentration in the building materials to the MCP Method 1 Category S-2 soil standard (since the S-2 standards were applied to the 0- to 1-foot and the 1- to 6-foot depth increments). Table 4 presents the results of this comparison. As shown in Table 4, the arithmetic average concentration of arsenic (4.49 ppm) is well below the applicable Method 1 soil standard (20 ppm).

In addition, GE has considered the effect of adding the building materials to the existing soils at the PEDA Properties. To evaluate this effect, GE first compared the average arsenic concentration in the building materials to the average arsenic concentration in the existing soils at the portion of East Street Area 2-North that will be transferred to PEDA. The average arsenic concentrations in that portion of East Street Area 2-North (as presented in the above-referenced addendum to the Conceptual Work Plan) are 6.42 ppm in the 0- to 1-foot depth increment and 6.34 ppm in the 1- to 6-foot depth increment, which are higher than the average arsenic concentration found in the building materials. Thus, it is assumed that the combined average arsenic concentration would not increase by using the building demolition debris as subgrade backfill. The same is also true at the 20s, 30s, and 40s Complexes, at each of which the average arsenic concentration in the 0- to 1-foot and 1- to 6-foot depth increments exceed the average arsenic concentration in the building materials.

This evaluation confirms that, with the exception of those materials with PCB concentrations at or above TSCA-regulated levels (which will be either consolidated at the Building 71 OPCA or transported to an off-site disposal facility), the processed building materials are acceptable for use as subgrade backfill/grading material within the PEDA Properties.

Ms. Sharon Hayes June 28, 2006 Page 7 of 9

6. Demolition of Buildings 7, 17, 17C, and 19

GE is currently conducting pre-demolition activities at Buildings 7, 17, 17C, and 19, including, among other activities, asbestos abatement (which includes removal of wood block and asphalt block flooring), equipment and liquids removal, and removal of loose lead-based paint. Following completion of those activities, the buildings will be demolished using conventional construction equipment and practices, with appropriate ambient air monitoring and dust control measures during the demolition activities. At this time, it is anticipated that the existing concrete slab-on-grade floors of Buildings 7, 17, 17C, and 19 will generally be left intact and clean backfill from off-site sources will be placed as needed to fill subsurface voids in and around the buildings subject to demolition and also to create a level grade between the slabs and the surrounding surfaces. In addition, locations at which backfill is used to fill subsurface voids in the slabs and/or surrounding asphalt pavement areas will be patched with either asphalt or concrete to match the surrounding grade. Therefore, following building demolition and related restoration activities, the surface of the affected areas will consist of the existing concrete slab-on-grade floors (as patched with concrete) surrounded by asphalt pavement (as patched with asphalt).

7. Disposition of Building Demolition Materials

As discussed in Sections 4 and 5 above, review of the building materials characterization data for PCBs and other constituents indicates that, with the exception of those materials with PCB concentrations at or above TSCA-regulated levels, the building demolition materials from Buildings 7, 17, 17C, and 19 are acceptable for use as subgrade backfill/grading material within the PEDA Properties. The building materials with PCB concentrations at or above-TSCA regulated levels will be segregated and either consolidated at the Building 71 OPCA or transported to an appropriate off-site disposal facility. To establish the limits of such materials, GE took the following steps:

- First, all sample locations that showed PCB concentrations at or above TSCA-regulated levels (i.e., 50 ppm or 10 μg/100 cm²) were identified. These locations are all in Buildings 17 and 19 and are listed, along with their corresponding PCB concentrations, in Tables 5 and 6, respectively.
- Next, for the above-grade portions of these buildings, which are subject to demolition, GE identified the extent of the building surface areas associated with the samples showing PCB concentrations at or above TSCA-regulated levels. In this step, GE utilized the next closest location where PCBs were detected at concentrations below TSCA-regulated levels or the extent/limits of the floor or wall to delineate the limits of material subject to either consolidation at the Building 71 OPCA or off-site disposal. The approximate areas so delineated within the above-grade portions of the buildings are depicted on Figure 6 for Building 17 and on Figures 8 and 9 for Building 19.
- As shown in Tables 5 and 6, several samples collected from the concrete slab-on-grade floors of both Buildings 17 and 19 during previous sampling events exhibited PCB concentrations at or above TSCA-regulated levels. As stated above, GE intends to leave the existing concrete slab-on-grade floors of all four buildings in place. However, based on the limited extent of these TSCA-level samples in Building 19 relative to the numerous non-TSCA-level sample locations by which they are bounded, GE is proposing to remove three discrete areas of the concrete slab-on-grade floor at Building 19 for either consolidation at the Building 71 OPCA or off-site disposal. To determine the extent of these areas, GE again utilized the next closest locations with PCBs below TSCA-regulated levels to delineate the limits of the slab areas associated with the TSCA-level

samples. The three resulting "TSCA carve-out" areas within the Building 19 floor slab are depicted on Figure 7.

.....

As noted above, the building materials from the TSCA areas identified on Figures 6 through 9 will be segregated for subsequent disposition at either the Building 71 OPCA or an off-site disposal facility. With regard to the remaining, non-TSCA building demolition materials, the non-crushable materials (e.g., steel) will be segregated, downsized, and transported to the Hill 78 OPCA for consolidation. For the crushable materials (e.g., brick and concrete), which are estimated at approximately 15,000 cy, GE proposes, based on the evaluations presented in Sections 4 and 5, to temporarily stockpile that material on-site and, at a later time, to crush such material for use by PEDA as subgrade backfill/grading materials within the PEDA Properties. Specifically, GE proposes to: (1) downsize all crushable materials to approximately 4 feet in largest dimension; (2) temporarily stockpile these materials within the East Street Area 2-North RAA; (3) maintain these stockpiled materials until such time as GE elects to crush the materials for backfill/grading purposes; and (4) provide such material for use only within the PEDA Properties and only at depths greater than one foot below grade. If EPA approves this proposal, GE will submit a separate plan describing the proposal for off-site disposition of any material that remains in the stockpile at the end of that period.

For the building demolition debris to be consolidated at the OPCAs, such consolidation will be conducted consistent with the provisions of the CD and SOW, as well as the Demolition Protocols, regarding use of the OPCAs. Specifically, GE will not consolidate at the OPCAs free liquids, intact drums or other equipment that contain liquid PCBs, or asbestos-containing material required by applicable law to be removed from structures prior to demolition. Materials that are unsuitable for placement at the OPCAs will be disposed of at an appropriate off-site disposal facility. The transport, handling, placement, and grading of the demolition debris at the OPCAs will be performed in accordance with all applicable OPCA requirements, including GE's 2006 Addendum to OPCA Work Plan.

Finally, the concrete slab-on-grade floors that will remain following the demolition (after removal of the three discrete "TSCA carve-outs" in Building 19 as described above) will be addressed consistent with EPA's January 26, 2006 conditional approval letter for demolition and disposition activities at Buildings 1, 2, 3, 3B, 15, 15A, 15B, and 15W, also located in East Street Area 2-North, as well as GE's May 1, 2006 proposal regarding the remaining floor slabs at the 40s Complex. Specifically, GE will submit a plan for EPA's approval regarding characterization (where necessary) and disposition of the remaining floor slabs of Buildings 7, 17, 17C, and 19. The plan will be submitted by the earlier of: (1) 30 days after GE receives notice from PEDA of its foundation requirements for the portion of East Street Area 2-North that will be transferred to PEDA; or 2) December 29, 2006. If any of these slabs are to be removed, GE will provide details regarding the need for and scope of characterization of the slabs for disposition. If GE elects to leave any slabs in place, GE will submit to EPA information documenting how this option will be protective of human health and the environment (including any appropriate provisions for the Grant of Environmental Restriction and Easement for this portion of East Street Area 2-North). If, at such time, the future intended use for any slab is unknown or if any slab will remain unused, GE will submit a proposal for the installation and maintenance of engineering controls to mitigate direct contact and groundwater leaching risks.

In summary, based on the above, GE requests EPA's approval of GE's plans to:

- Segregate demolition debris from Buildings 17 and 19 exhibiting PCB concentrations at or above TSCA-regulated levels (as shown on Figures 6 through 9) for consolidation at the Building 71 OPCA or disposal at an appropriate off-site facility;
- 2) Temporarily stockpile the remaining, non-TSCA, crushable building demolition debris (estimated at approximately 15,000 cy) at East Street Area 2-North for later crushing and use, as needed, as backfill/grading material at depths greater than one foot below grade within the PEDA Properties; and
- 3) Transport the miscellaneous non-TSCA, non-crushable building demolition debris (e.g., steel) to the Hill 78 OPCA for consolidation.

If EPA has any comments or questions concerning this letter, please contact me at your earliest convenience. As noted above, if EPA approves this proposal, GE will submit a separate, specific plan for the temporary stockpile.

Sincerely,

John Novotny MPH

John F. Novotny, P.E. Manager, Facilities and Brownfields Programs

Attachments

cc: T. Conway, EPA*
J. Kilborn, EPA
D. Tagliaferro, EPA
H. Inglis, EPA
R. Howell, EPA*
S. Steenstrup, MDEP (2 copies)
J. Rothchild, MDEP*
T. Angus, MDEP*
A. Symington, MDEP*
K.C. Mitkevicius, USACE
L. Palmieri, Weston (2 copies)
Mayor J. Ruberto, City of Pittsfield

Pittsfield Commissioner of Public Health
T. Hickey, Director, PEDA
N.E. Harper, MA AG*
D. Young, MA EOEA*
J. Bernstein, Bernstein, Cushner & Kimmel*
T. Bowers, Gradient
R. McLaren, GE*
M. Carroll, GE*
J. Bieke, Goodwin Procter
J. Nuss, BBL
GE Internal Repositories
Public Information Repositories

(* without attachments)

Tables

TABLE 1 PCB DATA

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in ppm for core samples of concrete or brick and inµg/100 cm² for wipe samples of steel)

		Type of	Date	Aroclor-1016, -1221,				
Sample ID	Matrix	Sample	Collected	-1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
BC-7-1E-1	Concrete	Core	3/1/2006	ND(0.033)	ND(0.033)	0.039	0.057	0.096
BC-7-1N-2	Brick	Core	3/1/2006	ND(0.33)	ND(0.33)	4.3	1.5	5.8
BC-7-1N-3	Brick	Core	3/1/2006	ND(0.17)	ND(0.17)	2.6	0.71	3.31
BC-7-1S-5	Concrete	Core	3/1/2006	ND(0.033)	ND(0.033)	0.094	0.089	0.183
BC-7-1S-6	Concrete	Core	3/1/2006	ND(0.033)	ND(0.033)	0.17	0.13	0.30
BC-7-1W-4	Concrete	Core	3/1/2006	ND(0.17)	ND(0.17)	2.5	0.89	3.39
BC-17-1S-6	Brick	Core	3/1/2006	ND(0.033)	ND(0.033)	1.1	1.0	2.1
BC-17-1S-7	Brick	Core	3/1/2006	ND(0.033)	ND(0.033)	0.14	0.074	0.214
BC-17-1S-8	Concrete	Core	3/1/2006	ND(0.033)	ND(0.033)	0.28	0.14	0.42
BC-17-1S-9	Concrete	Core	3/1/2006	ND(0.033)	ND(0.033)	0.14	0.049	0.189
BC-17-BAY12:13-WALL-W3	Steel	Wipe	3/1/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BC-17-BAY12:13-WALL-W4	Steel	Wipe	3/1/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BC-17-BAY27:28-WALL-W1	Steel	Wipe	3/1/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BC-17-BAY27:28-WALL-W2	Steel	Wipe	3/1/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BC-17C-1E-3	Brick	Core	3/1/2006	ND(0.033)	ND(0.033)	0.15	0.14	0.29
BC-17C-1N-2	Brick	Core	3/1/2006	ND(0.033) [ND(0.033)]	ND(0.033) [ND(0.033)]	0.029 J [0.020 J]	0.037 [0.026 J]	0.066 [0.046 J]
BC-17C-1W-1	Brick	Core	3/1/2006	ND(0.033)	ND(0.033)	0.037	0.040	0.077
BC-17C-2N-5	Brick	Core	3/1/2006	ND(0.033)	0.086	0.17	ND(0.033)	0.256
BC-17C-2S-4	Brick	Core	3/1/2006	ND(0.033)	0.071	0.16	ND(0.033)	0.231
BC-19-1E-1	Brick	Core	3/2/2006	ND(0.033)	ND(0.033)	0.078	0.052	0.13
BC-19-1E-2	Brick	Core	3/2/2006	ND(0.033)	ND(0.033)	0.069	0.057	0.126
BC-19-CE3-NORTH-W1	Steel	Wipe	3/2/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BC-19-CE3-SOUTH-W2	Steel	Wipe	3/2/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc., for analysis of PCBs.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

3. Field duplicate sample results are presented in brackets.

Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Parameter	Sample ID: Matrix: Date Collected:	BC-7-1N-2 Brick 03/01/06	BC-7-1S-6 Concrete 03/01/06	BC-7-1W-4 Concrete 03/01/06	BC-17-1N-1 Brick 03/01/06	BC-17-1N-3 Brick 03/01/06
Volatile Organics	Date Collected.	03/01/00	03/01/00	03/01/00	03/01/00	03/01/00
Acetone		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020) [ND(0.020)]	ND(0.020)
Toluene		0.039	0.044	0.013	0.12 [0.065]	0.052
Semivolatile Organics	:	0.000	0.044	0.010	0.12 [0.000]	0.032
2-Methylnaphthalene	,	ND(0.33)	0.13 J	ND(0.33)	ND(0.33) [ND(0.33)]	ND(0.33)
Acetophenone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	0.11 J
Benzo(a)anthracene		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	0.058 J
Benzo(b)fluoranthene		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	0.093 J
Benzo(k)fluoranthene		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	0.073 J
bis(2-Ethylhexyl)phthala	ate	0.15 J	0.20 J	ND(0.33)	ND(0.33) [0.12 J]	0.34
Butylbenzylphthalate		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	ND(0.33)
Chrysene		0.065 J	0.041 J	ND(0.33)	ND(0.33) [ND(0.33)]	0.23 J
Dibenzofuran		ND(0.33)	0.21 J	ND(0.33)	ND(0.33) [ND(0.33)]	0.093 J
Di-n-Butylphthalate		0.042 J	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	ND(0.33)
Fluoranthene		0.20 J	0.59	ND(0.33)	0.051 J [0.14 J]	1.1
Isophorone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]	ND(0.33)
Naphthalene		ND(0.33)	0.13 J	ND(0.33)	ND(0.33) [ND(0.33)]	ND(0.33)
Phenanthrene		0.044 J	1.1	ND(0.33)	0.070 J [0.15 J]	1.3
Pyrene		0.12 J	0.25 J	ND(0.33)	ND(0.33) [0.060 J]	0.57
Inorganics						1
Antimony		ND(6.00)	ND(6.00)	ND(6.00)	ND(6.00) [ND(6.00)]	ND(6.00)
Arsenic		5.10	6.80	1.50	6.50 [7.50]	4.00
Barium		920	130	150	88.0 [92.0]	68.0
Beryllium		0.630	0.650	0.150 B	0.720 [0.880]	0.460 B
Cadmium		1.70	0.160 B	1.60	0.110 B [0.0860 B]	0.0510 B
Chromium		93.0	17.0	14.0	28.0 [16.0]	17.0
Cobalt		1.40 B	12.0	3.70 B	4.50 B [5.10]	2.90 B
Copper		4.60	26.0	9.20	6.40 [7.80]	6.40
Lead		680	18.0	320	110 [21.0]	74.0
Mercury		0.110	0.00910 B	0.0100 B	ND(0.100) [ND(0.100)]	ND(0.100)
Nickel		3.60 B	21.0	4.00	6.60 [7.50]	4.20
Selenium		0.500 B	1.20	1.20	0.630 B [0.730 B]	0.740 B
Thallium		ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00) [ND(1.00)]	ND(1.00)
Tin		3.70 B	3.50 B	3.90 B	3.50 B [4.00 B]	3.70 B
Vanadium		26.0	24.0	15.0	25.0 [25.0]	12.0
Zinc		330	58.0	310	20.0 [12.0]	19.0

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	BC-17-1N-5	BC-17-1S-2	BC-17-1S-4	BC-17C-1E-3	BC-17C-1N-2
Parameter	Matrix: Date Collected:	Brick 03/01/06	Brick 03/01/06	Brick 03/01/06	Brick 03/01/06	Brick 03/01/06
Volatile Organics		03/01/00	03/01/00	03/01/00	03/01/00	03/01/00
Acetone	-	ND(0.020)	0.012 J	ND(0.020)	0.025	ND(0.020) [ND(0.020)]
Toluene		0.099	0.091	0.088	0.14	0.065 [0.057]
Semivolatile Orga	anics	0.000	0.001	0.000	0.1.1	0.000 [0.001]
2-Methylnaphthale		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Acetophenone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Benzo(a)anthrace	ne	ND(0.33)	0.037 J	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Benzo(b)fluoranth		ND(0.33)	0.031 J	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Benzo(k)fluoranth	ene	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
bis(2-Ethylhexyl)p	hthalate	0.12 J	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [0.32 J]
Butylbenzylphthala		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Chrysene		ND(0.33)	0.051 J	0.057 J	ND(0.33)	ND(0.33) [ND(0.33)]
Dibenzofuran		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Di-n-Butylphthalat	e	ND(0.33)	ND(0.33)	0.042 J	0.049 J	ND(0.33) [ND(0.33)]
Fluoranthene		0.31 J	0.20 J	0.31 J	ND(0.33)	ND(0.33) [ND(0.33)]
Isophorone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	0.91 [9.0]
Naphthalene		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33) [ND(0.33)]
Phenanthrene		0.45	0.17 J	0.28 J	ND(0.33)	ND(0.33) [ND(0.33)]
Pyrene		0.14 J	0.11 J	0.15 J	ND(0.33)	ND(0.33) [ND(0.33)]
Inorganics				•		
Antimony		ND(6.00)	ND(6.00)	ND(6.00)	ND(6.00)	ND(6.00) [ND(6.00)]
Arsenic		8.00	6.70	8.30	1.90	2.80 [3.20]
Barium		180	67.0	98.0	52.0	56.0 [62.0]
Beryllium		0.890	0.630	0.740	0.290 B	0.280 B [0.300 B]
Cadmium		0.0870 B	0.0800 B	0.110 B	0.0730 B	0.0950 B [0.0900 B]
Chromium		22.0	13.0	12.0	10.0	9.50 [10.0]
Cobalt		4.10 B	4.50 B	4.10 B	4.50 B	5.10 [5.00 B]
Copper		7.30	6.80	6.00	13.0	12.0 [11.0]
Lead		64.0	21.0	28.0	4.00	5.10 [5.00]
Mercury		ND(0.100)	ND(0.100)	0.0260 B	ND(0.100)	ND(0.100) [ND(0.100)]
Nickel		6.90	6.80	5.60	8.50	8.30 [9.50]
Selenium		1.30	1.10	1.90	1.40	1.50 [2.30]
Thallium		ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00) [ND(1.00)]
Tin		4.40 B	3.90 B	3.70 B	3.10 B	2.90 B [3.10 B]
Vanadium		35.0	23.0	25.0	15.0	13.0 [14.0]
Zinc		13.0	14.0	20.0	20.0	23.0 [23.0]

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID: Matrix:	BC-17C-1W-1 Brick	BC-17C-2N-5 Brick	BC-17C-2S-4 Brick	BC-19-1N-3 Brick	BC-19-1W-4 Brick	BC-19-1W-5 Brick
Parameter	Date Collected:	03/01/06	03/01/06	03/01/06	03/02/06	03/02/06	03/02/06
Volatile Organics	8				•		
Acetone		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)
Toluene		0.17	0.068	0.056	0.019	0.044	0.012
Semivolatile Org	anics						
2-Methylnaphthale	ene	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Acetophenone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Benzo(a)anthrace	ene	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Benzo(b)fluoranth	iene	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Benzo(k)fluoranth	iene	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
bis(2-Ethylhexyl)p	ohthalate	ND(0.33)	ND(0.33)	0.19 J	0.18 J	0.19 J	ND(0.33)
Butylbenzylphthal	ate	ND(0.33)	2.7	5.4	0.10 J	ND(0.33)	ND(0.33)
Chrysene		ND(0.33)	ND(0.33)	ND(0.33)	0.035 J	0.043 J	ND(0.33)
Dibenzofuran		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Di-n-Butylphthalat	te	0.051 J	0.039 J	0.082 J	0.12 J	0.14 J	ND(0.33)
Fluoranthene		ND(0.33)	ND(0.33)	ND(0.33)	0.23 J	0.33	ND(0.33)
Isophorone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Naphthalene		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Phenanthrene		ND(0.33)	ND(0.33)	ND(0.33)	0.17 J	0.48	ND(0.33)
Pyrene		ND(0.33)	ND(0.33)	ND(0.33)	0.10 J	0.19 J	ND(0.33)
Inorganics						•	
Antimony		ND(6.00)	ND(6.00)	ND(6.00)	ND(6.00)	ND(6.00)	ND(6.00)
Arsenic		2.50	3.20	6.20	3.50	3.70	3.40
Barium		52.0	120	76.0	220	260	78.0
Beryllium		0.350 B	0.310 B	0.300 B	0.280 B	0.430 B	0.730
Cadmium		0.130 B	0.0610 B	0.100 B	ND(0.500)	ND(0.500)	ND(0.500)
Chromium		12.0	12.0	12.0	8.10	14.0	12.0
Cobalt		6.00	5.30	6.90	1.80 B	3.70 B	3.10 B
Copper		15.0	15.0	15.0	10.0	11.0	16.0
Lead		5.40	11.0	11.0	34.0	18.0	4.70
Mercury		ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	0.0190 B	ND(0.100)
Nickel		10.0	9.00	13.0	2.90 B	8.60	7.60
Selenium		2.60	0.860 B	1.30	ND(1.00)	ND(1.00)	0.490 B
Thallium		ND(1.00)	ND(1.00)	0.790 B	ND(1.00)	0.800 B	1.90
Tin		3.10 B	2.80 B	2.80 B	1.00 B	1.60 B	2.70 B
Vanadium		17.0	13.0	14.0	13.0	10.0	11.0
Zinc		21.0	63.0	47.0	120	120	21.0

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Parameter	Sample ID: Matrix: Date Collected:	BC-19-2E-6 Brick 03/02/06	BC-19-2N-8 Brick 03/02/06	BC-19-2W-7 Brick 03/02/06	BC-19-3W-9 Brick 03/02/06
Volatile Organics	Date Collected.	03/02/06	03/02/06	03/02/06	03/02/06
Acetone	1	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)
Toluene		0.015	0.018	0.21	0.19
	nino.	0.015	0.016	0.21	0.19
Semivolatile Organ					
2-Methylnaphthaler	ne	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Acetophenone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Benzo(a)anthracen		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Benzo(b)fluoranthe	-	ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Benzo(k)fluoranthe		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
bis(2-Ethylhexyl)ph		0.68	0.20 J	0.22 J	0.099 J
Butylbenzylphthalat	te	0.67	ND(0.33)	ND(0.33)	ND(0.33)
Chrysene		ND(0.33)	ND(0.33)	0.089 J	ND(0.33)
Dibenzofuran		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Di-n-Butylphthalate		0.10 J	ND(0.33)	0.14 J	ND(0.33)
Fluoranthene		0.22 J	0.094 J	0.49	ND(0.33)
Isophorone		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Naphthalene		ND(0.33)	ND(0.33)	ND(0.33)	ND(0.33)
Phenanthrene		0.18 J	0.12 J	0.23 J	0.053 J
Pyrene		0.093 J	0.039 J	0.20 J	ND(0.33)
Inorganics			•	•	•
Antimony		0.740 B	ND(6.00)	ND(6.00)	ND(6.00)
Arsenic		3.50	4.30	4.90	4.80
Barium		670	130	280	75.0
Beryllium		0.740	0.670	0.550	0.700
Cadmium		ND(0.500)	ND(0.500)	ND(0.500)	ND(0.500)
Chromium		19.0	14.0	10.0	11.0
Cobalt		4.70 B	5.00	2.10 B	3.70 B
Copper		8.90	12.0	3.80	6.40
Lead		40.0	6.40	14.0	7.10
Mercury		0.0310 B	ND(0.100)	0.0540 B	ND(0.100)
Nickel		8.90	11.0	3.10 B	6.20
Selenium		ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)
Thallium		2.20	1.40	1.40	1.70
Tin		2.90 B	2.00 B	1.80 B	2.00 B
Vanadium		12.0	14.0	30.0	21.0
Zinc		320	72.0	120	19.0

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles, and metals.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

3. Field duplicate sample results are presented in brackets.

4. Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 3

APPENDIX IX+3 DATA EVALUATION - COMPARISON TO SCREENING CRITERIA

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	Maximum	EPA Region 9	Constituent Retained for
Parameter	Date Collected:	Detect	Industrial PRG	Further Evaluation?
Volatile Organics				
Acetone		0.0250	6,100	No
Toluene		0.2100	520	No
Semivolatile Organics				•
2-Methylnaphthalene		0.13	190 *	No
Acenaphthene		0.11	28,000	No
Benzo(a)anthracene		0.058	3.6	No
Benzo(b)fluoranthene		0.093	3.6	No
Benzo(k)fluoranthene		0.073	36	No
bis(2-Ethylhexyl)phthalate		0.68	210	No
Butylbenzylphthalate		5.4	930	No
Chrysene		0.23	360	No
Dibenzofuran		0.21	3,200	No
Fluoranthene		1.1	37,000	No
Isophorone		0.91	3,200	No
Naphthalene		0.13	190	No
Phenanthrene		1.3	190 *	No
Pyrene		0.57	26,000	No
Inorganics				·
Antimony		0.74	750	No
Arsenic		8.3	3	Yes
Barium		920	100,000	No
Beryllium		0.89	3,400	No
Cadmium		1.7	930	No
Chromium		93	450	No
Cobalt		12	29,000	No
Copper		26	70,000	No
Lead		680	1,000	No
Mercury		0.11	560	No
Nickel		21	37,000	No
Selenium		2.6	9,400	No
Thallium		2.2	150 **	No
Tin		4.4	100,000	No
Vanadium		35	13,000	No
Zinc		330	100,000	No

Notes:

2.* - No EPA Region 9 PRG exists for 2-Methylnaphthalene or Phenanthrene. Naphthalene was used as the surrogate PRG.

3. ** - Indicates that the most stringent PRG value was used for the 7 Thallium compounds listed in the EPA Region 9 PRG table.

This table presents a comparison of the maximum detected concentrations of select non-PCB Appendix IX+3 constituents within the building materials being considered for re-use to the EPA Region 9 Preliminary Remediation Goals (PRGs) (or surrogate PRGs) for soil in industrial areas. The EPA Region 9 PRGs (or surrogate PRGs) are located in Attachment F to the Statement of Work for Removal Actions Outside the River (SOW).

TABLE 4 APPENDIX IX+3 DATA EVALUATION - RETAINED CONSTITUENTS

BUILDINGS 7, 17, 17C, AND 19 CHARACTERIZATION SAMPLING EAST STREET AREA 2 - NORTH **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in dry weight parts per million, ppm)

Parameter	Sample ID ¹ : Date Collected:	BC-7-1N-2 03/01/06	BC-7-1S-6 03/01/06	BC-7-1W-4 03/01/06	BC-17-1N-1 03/01/06	BC-17-1N-3 03/01/06	BC-17-1N-5 03/01/06	BC-17-1S-2 03/01/06	BC-17-1S-4 03/01/06	BC-17C-1E-3 03/01/06	BC-17C-1N-2 03/01/06	BC-17C-1W-1 03/01/06	BC-17C-2N-5 03/01/06
Inorganics													
Arsenic		5.10	6.80	1.50	6.50	4.00	8.00	6.70	8.30	1.90	2.80	2.50	3.20

Parameter	Sample ID: Date Collected:	BC-17C-2S-4 03/01/06	BC-19-1N-3 03/02/06	BC-19-1W-4 03/02/06	BC-19-1W-5 03/02/06	BC-19-2E-6 03/02/06	BC-19-2N-8 03/02/06	BC-19-2W-7 03/02/06	BC-19-3W-9 03/02/06	Arithmetic Average Concentration	Method 1 S-2 Soil Standard	Average Exceeds Method 1 Soil Standard?
Inorganics												
Arsenic		6.20	3.50	3.70	3.40	3.50	4.30	4.90	4.80	4.49	20	No

Notes:
 Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis.
 This table presents only those constituents that were detected in at least one building material sample which were retained following the comparison to screening criteria evaluation.

TABLE 5 BUILDING 17 SAMPLING RESULTS SUMMARY - TSCA LOCATIONS

GENERAL ELECTRIC COMPANY BUILDINGS 7, 17, 17C, AND 19 - DEMOLITION AND SITE RESTORATION PROGRAM PITTSFIELD, MASSACHUSETTS

Building		cation	Lab ID	Sample Date	Material Composition	Sample Type	PCB Cond	centration											
Building	L0	cation	Labib	Sample Date		Sample Type	µg/100 cm ²	ppm											
			17-1-WW64	4/15/1996	Corrugated Metal (painted)	Wipe	11												
		Walls	17-1-WW67	4/15/1996	Corrugated Metal (painted)	Wipe	47												
			17-1-WW74	4/15/1996	Cinder Block (painted)	Wipe	79												
	Above-Grade ¹	17-1-WW75 4/15/1996 Cinder Block (painted)		Wipe	80														
		Floor	17-B-UWP-43	4/19/1996	Wood Support (under wood plank flooring)	Core		382											
		Floor	17-B-WP14	4/11/1996	Wood Plank Flooring (unpainted)	Core		891											
			17-B-CW-39	4/19/1996	Steel (painted)	Wipe	10												
			17-1-WB-2	4/3/1996	Wood Block (unpainted)	Core		75											
			17-1-WB-31	4/10/1996	Wood Block (unpainted)	Core		69											
			17-1-WB-5	4/3/1996	Wood Block (unpainted)	Core		158											
		Floor	17-1-WB-16	4/8/1996	Wood Block (unpainted)	Core		61											
			17-1-WB-43	4/10/1996	Wood Block (unpainted)	Core		124											
				17-1-WB-47	4/10/1996	Wood Block (unpainted)	Core		51										
17			17-1-WB-48	4/10/1996	Wood Block (unpainted)	Core		78											
			17-1-WB-50	4/10/1996	Wood Block (unpainted)	Core		56											
		Floor (under wood block)	17-1-CUWB-127	4/18/1996	Concrete	Core		4,120											
	At/Below-Grade ²				17-1-FW-88	4/16/1996	Concrete	Wipe	12										
					-					-	-	-	-	17-1-FW-98	4/16/1996	Concrete	Wipe	11	
													17-1-FW-100	4/16/1996	Concrete	Wipe	45		
			17-1-FW-104	4/16/1996	Concrete	Wipe	10												
		Floor	17-1-FW-110	4/16/1996	Concrete	Wipe	12												
			17-1-FW-77	4/16/1996	Concrete	Wipe	39												
		-											17-1-FW-114	4/16/1996	Concrete	Wipe	33		
			17-1-FW-118	4/16/1996	Concrete	Wipe	11												
			17-1-FW-120	4/17/1996	Concrete	Wipe	13												

General Notes: 1. ppm - Parts per million.

2. µg/100 cm² - Micrograms per 100 centimeters squared.

3. E - East.

4. W - West.

5. -- Not applicable.

6. TSCA level results based on PCB concentrations \geq 50 ppm or \geq 10 µg/100 cm² (as applicable).

Notes:

1. Above-grade building materials exhibiting PCB concentrations at or above TSCA notification levels (i.e., 50 ppm or 10 μg/100 cm) will be segregated during demolition activities and transported to either the Building 71 OPCA or offsite for disposal as TSCA material.

2. With the exception of wood block flooring, at/below-grade flooring will remain in-place following demolition activities. Wood block flooring will be removed and transported offsite for disposal as part of the pre-demolition asbestos removal program.

TABLE 6 BUILDING 19 SAMPLING RESULTS SUMMARY - TSCA LOCATIONS

GENERAL ELECTRIC COMPANY BUILDINGS 7, 17, 17C, AND 19 - DEMOLITION AND SITE RESTORATION PROGRAM PITTSFIELD, MASSACHUSETTS

Building		cation	Lab ID	Sample Date	Material Composition	Sample Type	PCB Con	centration
Building	LO	cation	Labib	Sample Date	•	Sample Type	µg/100 cm ²	ppm
		Ceiling Truss Support	19-PC-6	7/27/2000	Metal (painted)	Paint Chip		52
		Walls	19-PC-7	7/28/2000	Brick (painted)	Paint Chip		68
		Columns	19-PC-15	7/28/2000	Metal (painted)	Paint Chip		158
		Columns	19-PC-16	7/28/2000	Metal (painted)	Paint Chip		230
			19-PC-10	7/28/2000	Metal (painted)	Paint Chip		104
	Above-Grade ¹		19-PC-11	7/28/2000	Metal (painted)	Paint Chip		87
	Above-Grade	Crane and Crane Rails	19-RAIL-2-W1	2/11/2000	Steel (painted)	Wipe	52	
			19-RAIL-2-W2 2/11/2000 (painted)		Steel (painted)	Wipe	29.6	
19			19-RAIL-2-W3	2/11/2000	Steel (painted)	Wipe	33.9	
			19-RAIL-4-W3	2/10/2000	Steel (painted)	Wipe	12.1	
			19-CRANE-2-W4	2/10/2000	Steel (painted)	Wipe	10.9	
			19-CRANE-2-W1	2/10/2000	Steel (painted)	Wipe	12.1	
			19-1-FW2	1996	Concrete	Wipe	11	
			19-1-FW17	1996	Concrete	Wipe	17	
	At/Below-Grade ²	At/Below-Grade Floor	19-1-FC-17	1/25/2000	Concrete (painted)	Core		360
			19-1-FC-31	1/26/2000	Concrete (painted)	Core		470
			19-1-C6	5/13/1987	Concrete	Composite Core		55

General Notes:

1. ppm - Parts per million.

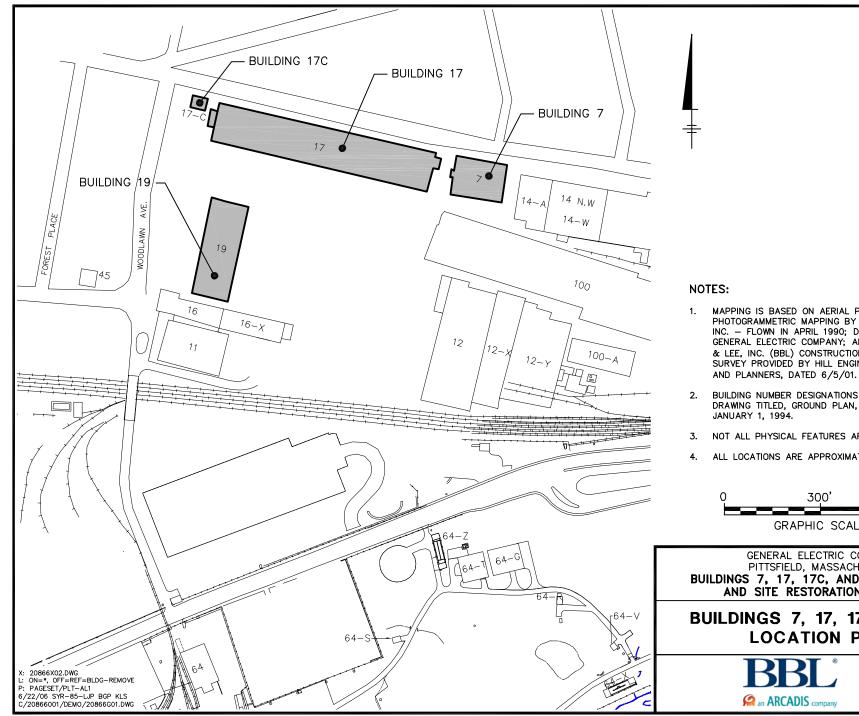
2. µg/100 cm² - Micrograms per 100 centimeters squared.

3. E - East.

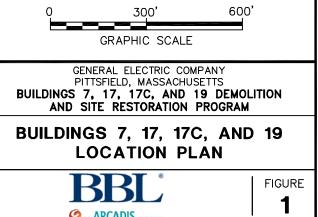
4. W - West.

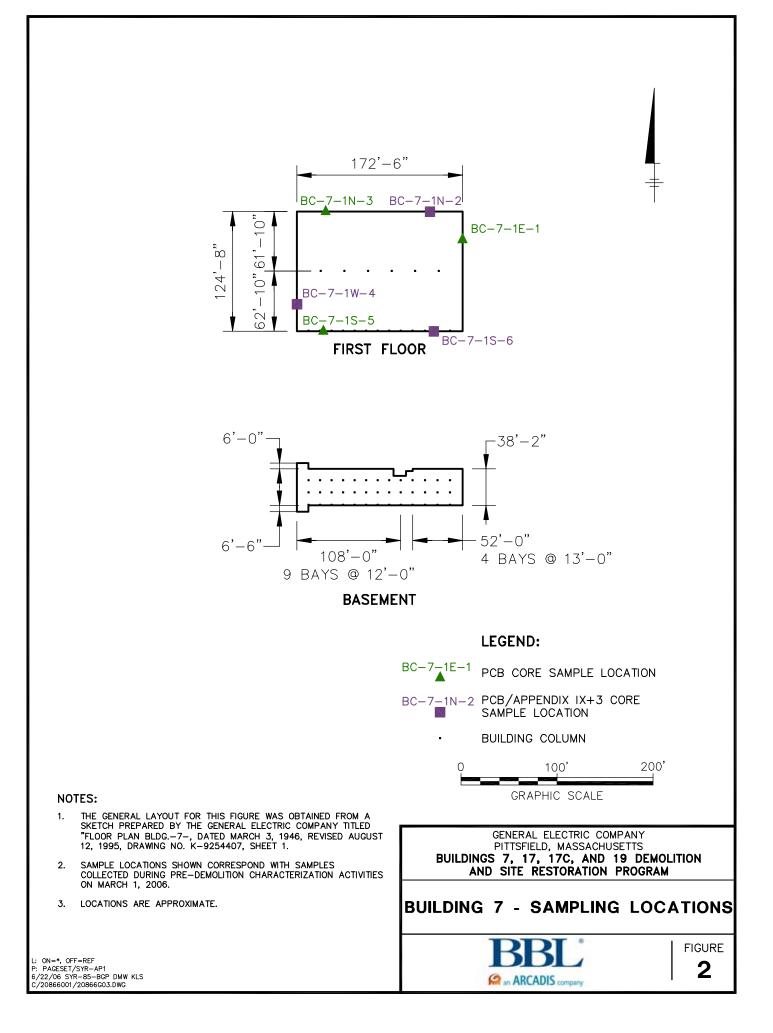
5. -- Not applicable.

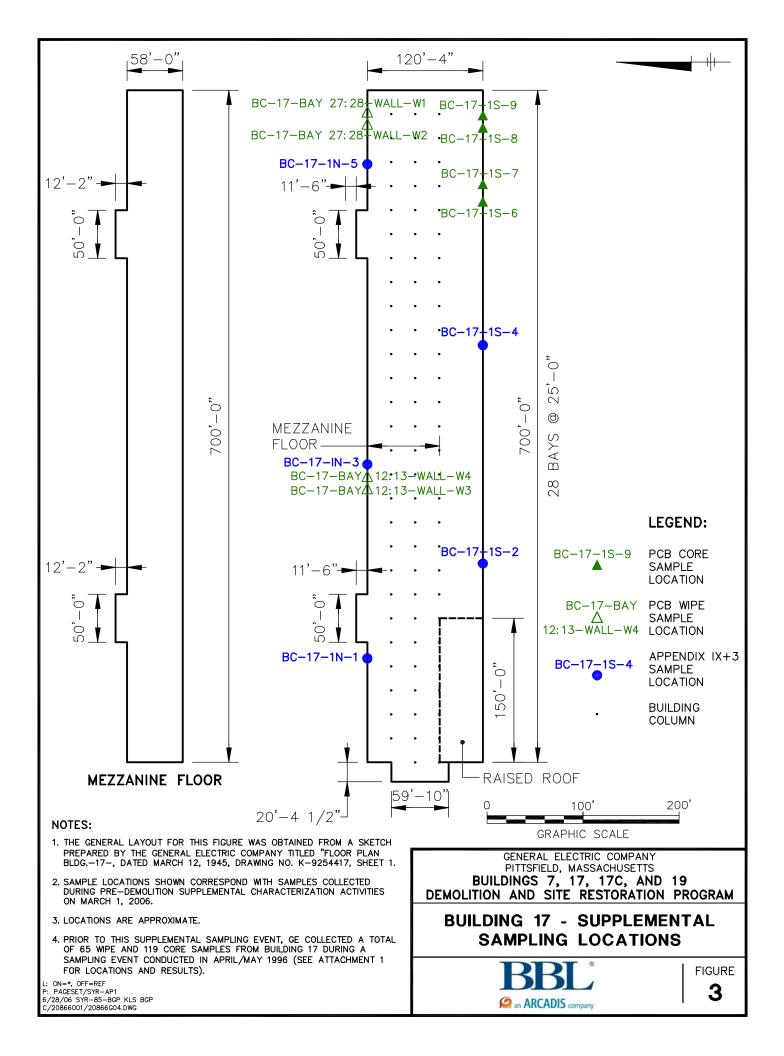
6. TSCA level results based on PCB concentrations \geq 50 ppm or \geq 10 $\mu g/100$ cm² (as applicable).

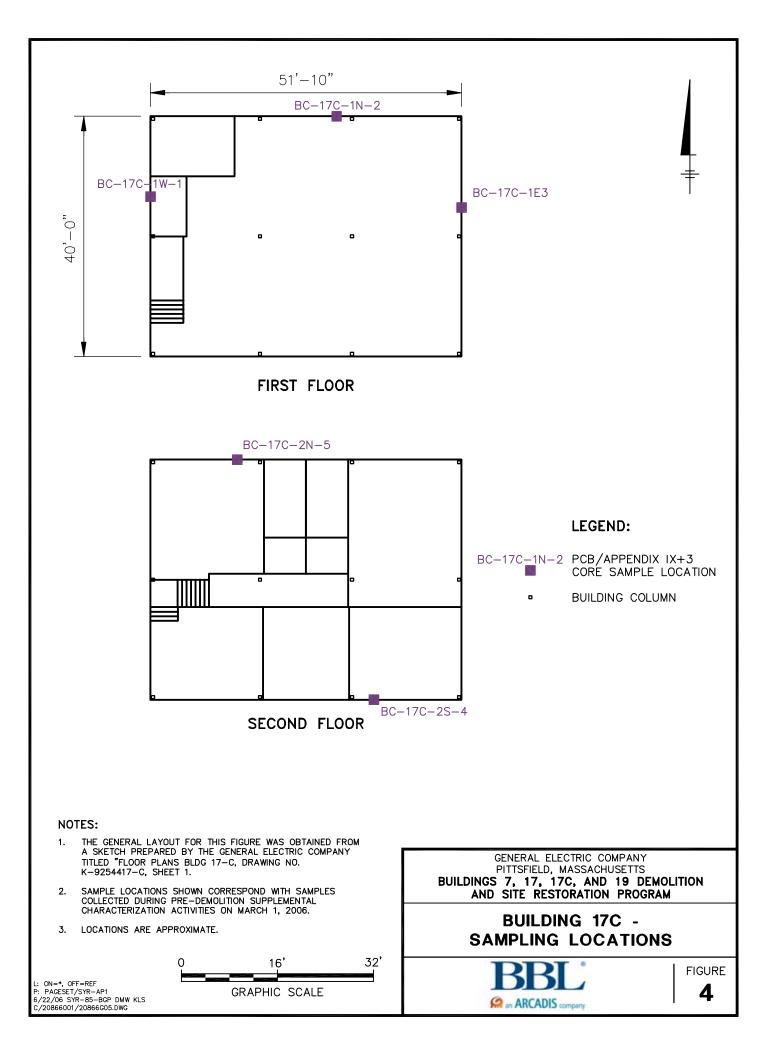

Notes:

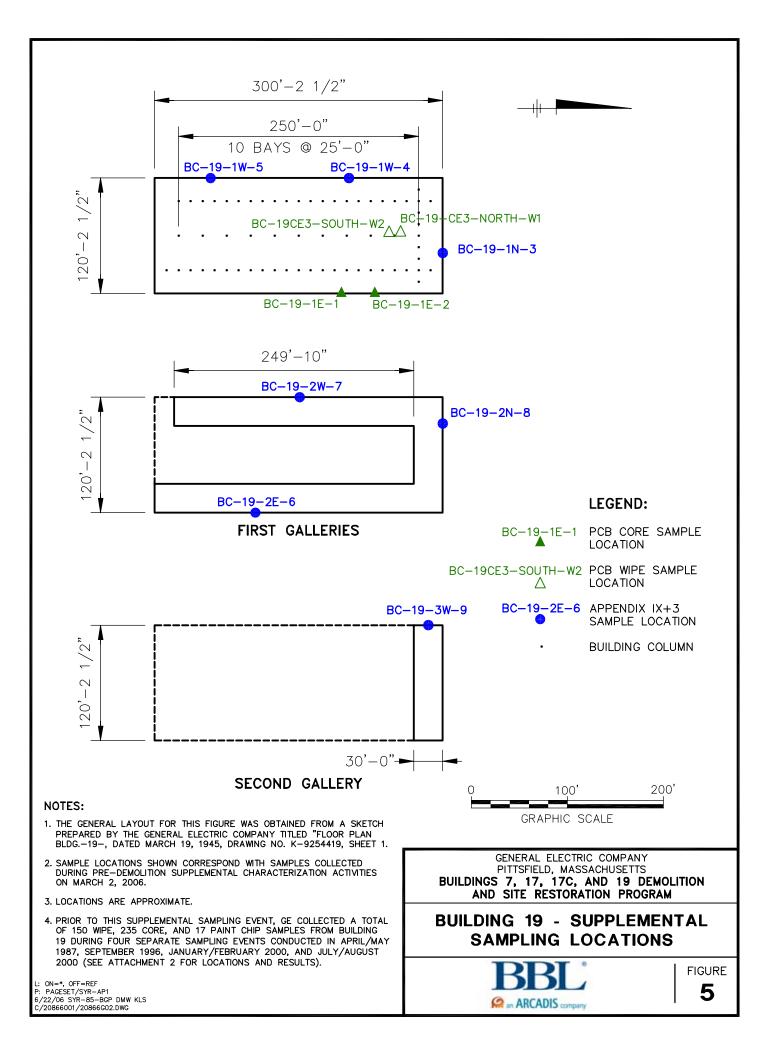
 Above-grade building materials exhibiting PCB concentrations at or above TSCA notification levels (i.e., 50 ppm or 10 μg/100 cf) will be segregated during demolition activities and transported to either the Building 71 OPCA or offsite for disposal as TSCA material.

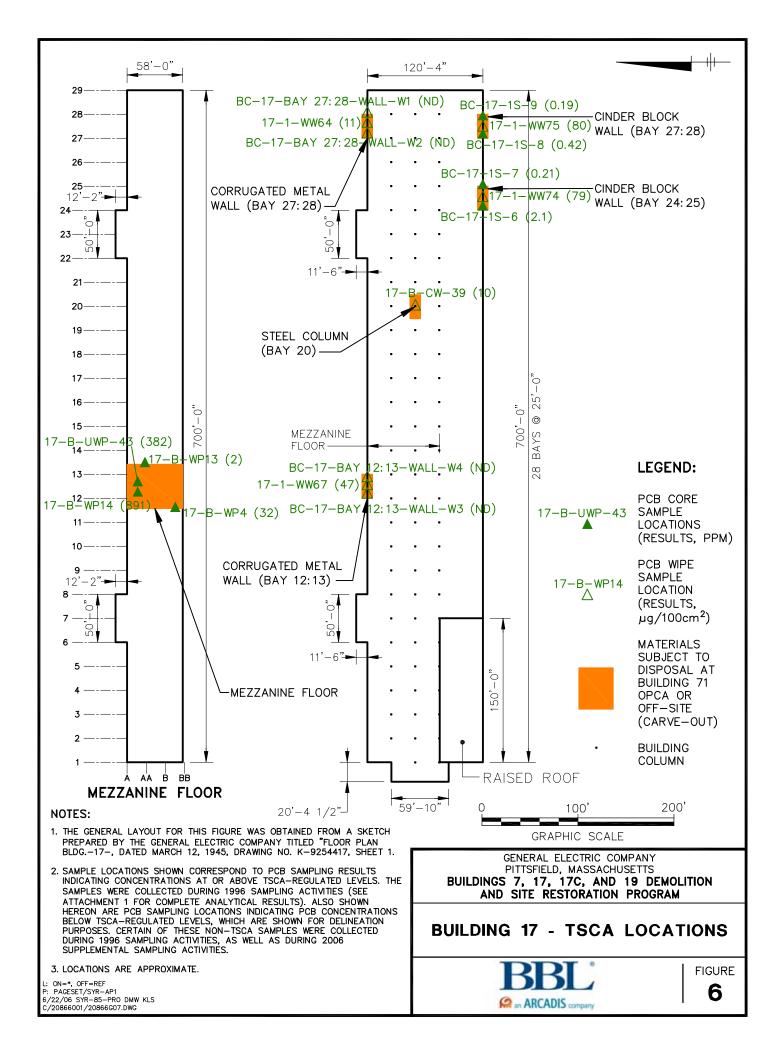

2. At/below-grade flooring exhibiting PCB concentrations at or above TSCA notification levels (i.e., 50 ppm or 10 µg/100 cm) will be segregated during demolition activities and transported to either the Building 71 OPCA or offsite for disposal as TSCA material.

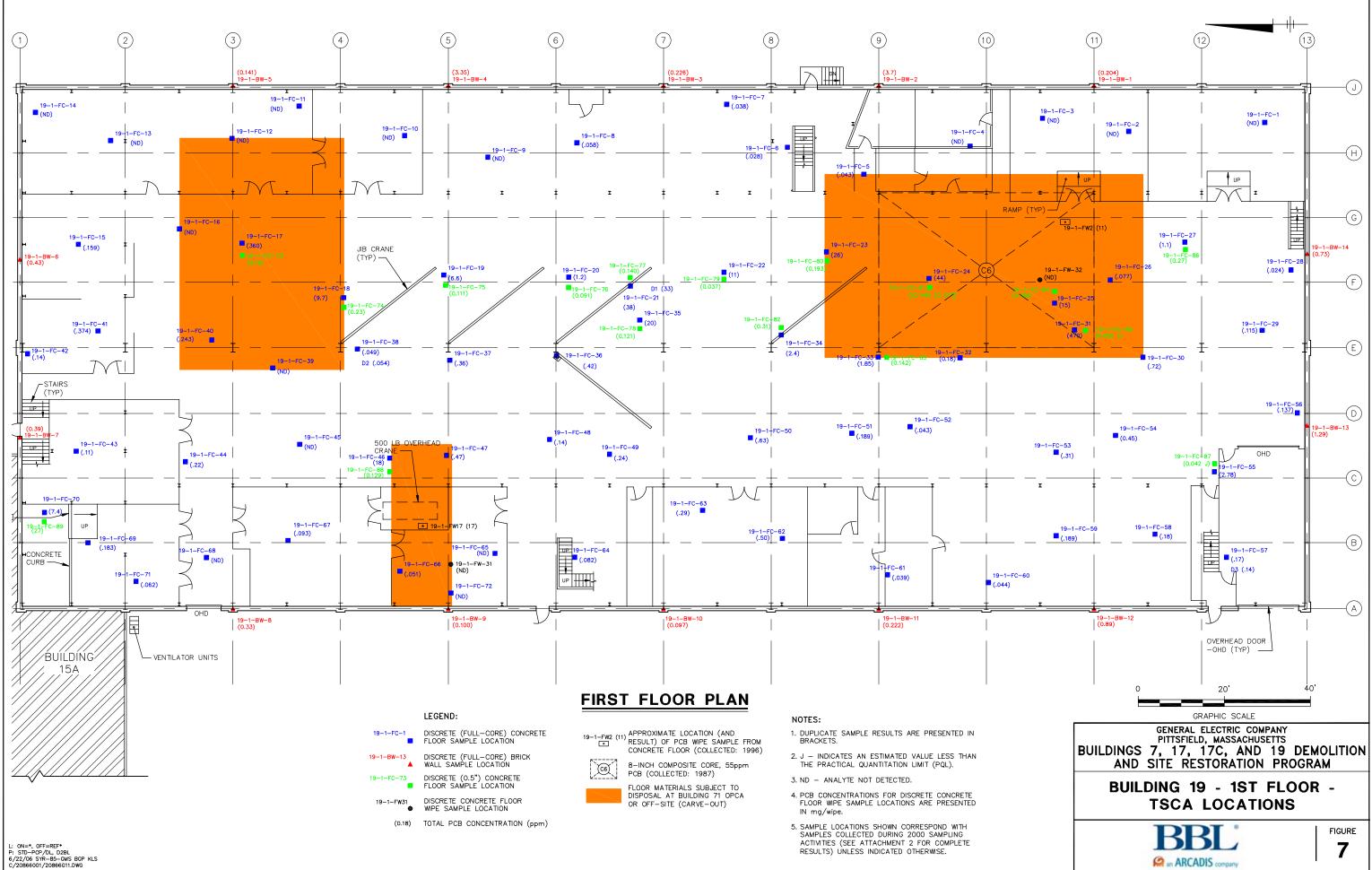

Figures

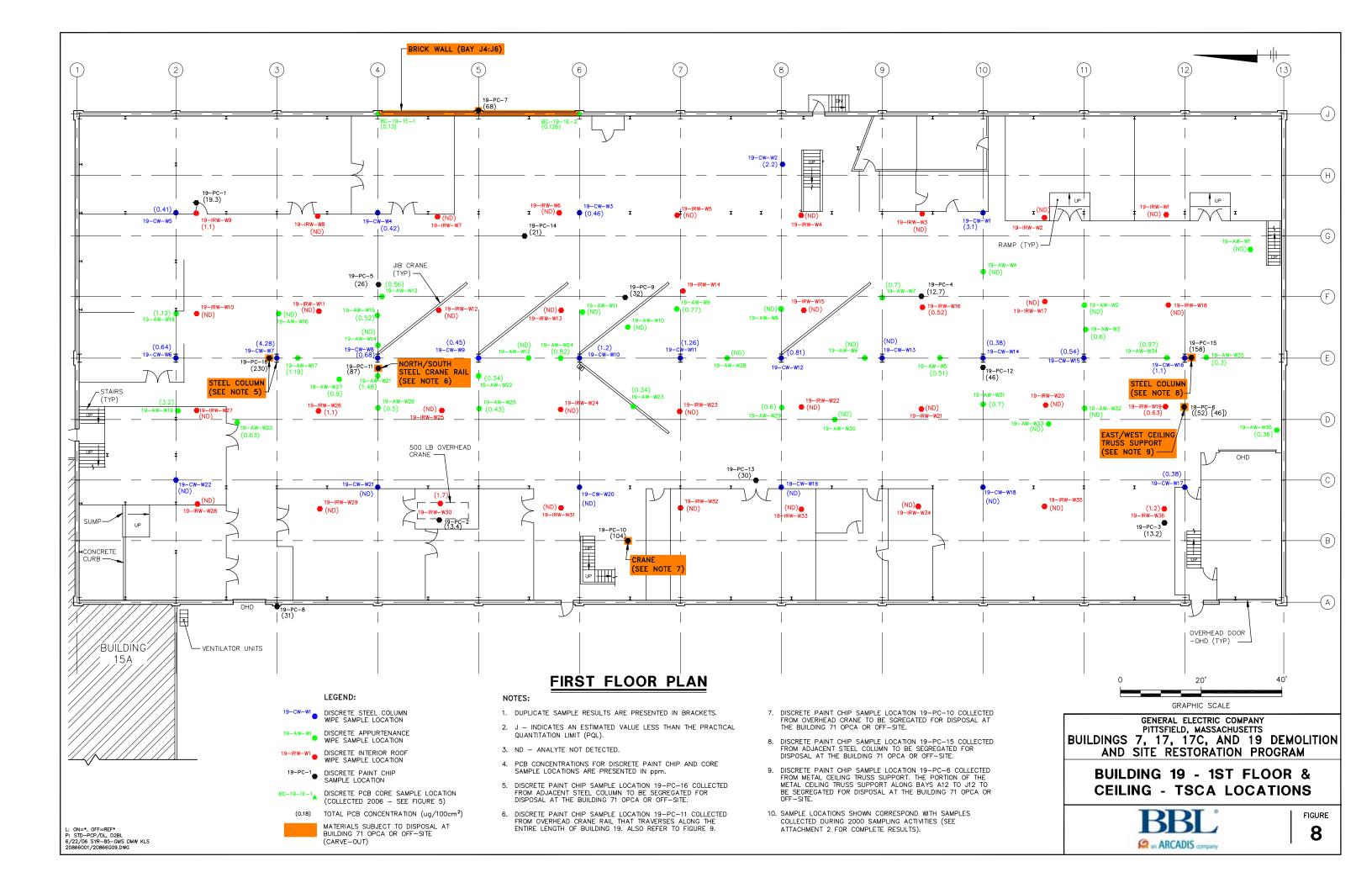


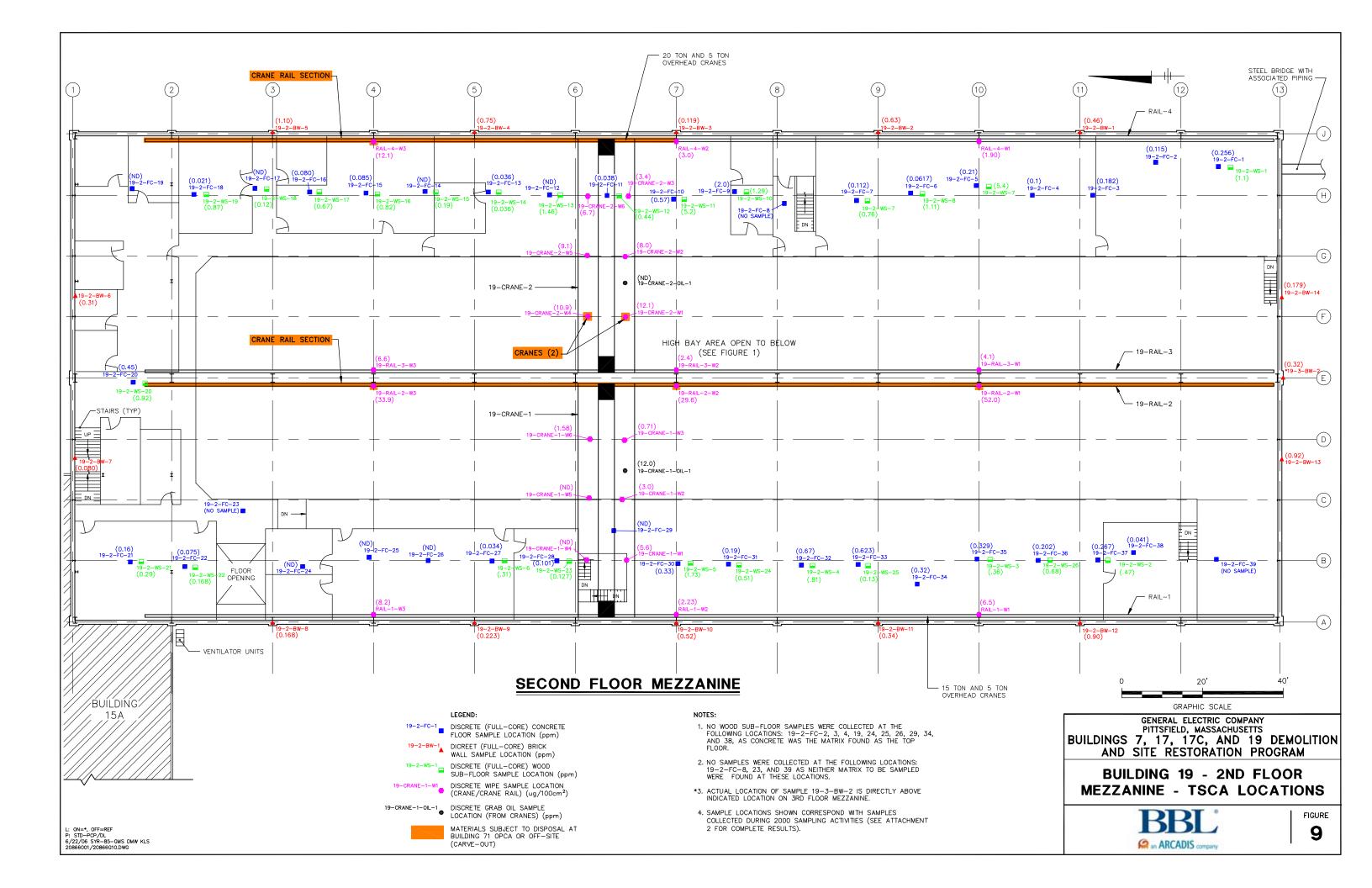



- 1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. - FLOWN IN APRIL 1990; DATA PROVIDED BY GENERAL ELECTRIC COMPANY; AND BLASLAND, BOUCK & LEE, INC. (BBL) CONSTRUCTION PLANS; AND FROM SURVEY PROVIDED BY HILL ENGINEERS, ARCHITECTS,
- BUILDING NUMBER DESIGNATIONS ARE BASED ON A GE DRAWING TITLED, GROUND PLAN, SHEET 1, AND DATED
- 3. NOT ALL PHYSICAL FEATURES ARE SHOWN.
- ALL LOCATIONS ARE APPROXIMATE.









Attachments

Attachment 1

Building 17 Analytical Results and Sample Locations Associated with Previous Sampling Activities

Buildings 15 and 17 Sampling Results, Cleanup Criteria, and Cleanup Plan

General Electric Company Pittsfield, Massachusetts

June 1996

<u>Table 2</u>

Building 17-1 Co	ncrete Floor \	Nipe Samples			
LABID	SAMPLE	SAMPLE	PCBs (ug/100cm²)	SAMPLE MATERIAL	SAMPLE TYPE
17-1-FW-77	4-16-96	77	39	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-78	4-16-96	78	<2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-80	4-16-96	80	<2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-82	4-16-96	82	3	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-84	4-16-96	84	3	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-86	4-16-96	86	<2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-88	4-16-96	88	12	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-90	4-16-96	90	3	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-92	4-16-96	92	<2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-94	4-16-96	94	<2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-96	4-16-96	96	<2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-98	4-16-96	98	11	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-100	4-16-96	100	45	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-102	4-16-96	102	3	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)
17-1-FW-104	4-16-96	104	10	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)

-

ì

.....

į., ., '

1

• •

<u>Table 2</u>

Building 17-1 Concrete Floor Wipe Samples							
LAB ID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ug/100cm²)	SAMPLE MATERIAL	SAMPLE TYPE		
17-1-FW-106	4-16-96	106	8	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-108	4-16-96	108	6	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-110	4-16-96	110	12	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-112	4-16-96	112	4	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-114	4-16-96	114	33	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-116	4-16-96	116	9	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-118	4-16-96	118	11	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		
17-1-FW-120	4-17-96	120	13	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-WIPE (HORIZONTAL)		

 $\mathbf{k}_{2^{*}}$

, ; ; ;

: .

Table 2

Building 17-1 Concrete Floor Core Samples					
LAB ID	SAMPLE	SAMPLE	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE
17-1-CF-76	4-16-96	76	2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-79	4-16-96	79	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-81	4-16-96	81	<1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-83	4-16-96	83	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-85	4-16-96	85	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-87	4-16-96	87	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-89	4-16-96	89	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-91	4-16-96	91	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-93	4-16-96	93	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-95	4-16-96	95	37	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-97	4-16-96	97	1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-99	4-16-96	99	<1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-101	4-16-96	101	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-103	4-16-96	103	1 -	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")
17-1-CF-105	4-16-96	105	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")

1.

1

.

:

: L--3

i.

.

.

.

Table 2

Building 17-1 Concrete Floor Core Samples							
LAB ID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE		
17-1-CF-107.	4-16-96	107	1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-109	4-16-96	109	2	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-111	4-16-96	111	<1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-113	4-16-96	113	<1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-115	4-16-96	115	. 10	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-117	4-16-96	117	<1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-119	4-16-96	119	13	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-121	4-17-96	121	< 1	CONCRETE-FLOOR (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-134	5-21-96	134	1	CONCRETE-FLOOR (5' N OF LOC 127) (UNPAINTED)	DISCRETE-CORE (0-1")		
17-1-CF-136	5-22-96	136	2	CONCRETE-FLOOR (5' S OF LOC 127) (UNPAINTED)	DISCRETE-CORE (0-1")		

<u>Table 2</u>

Building 17-1 Wood Block Core Samples					
LABID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE
17-1-WB-1	4-3-96	1	< 15	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-2	4-3-96	2	75	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-3	4-3-96	3	33	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-4	4-3-96	4	< 14	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE
17-1-WB-5	4-3-96	5	158	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-6	4-3-96	6	26	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-7	4-8-96	7	12	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-8	4-8-96	8	22	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-9	4-8-96	9	5	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-10	4-8-96	10	22	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-11	4-8-96	11	12	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
`17-1-WB-12	4-8-96	12	13	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-13	4-8-96	13	25	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-14	4-8-96	14	13	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-15	4-8-96	15	26	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")

- -

.

. .

<u>Table 2</u>

Building 17-1 Wood Block Core Samples					
LAB ID	SAMPLE DATE	SAMPLE	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE
17-1-WB-16	4-8-96	16	61	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-17	4-9-96	17	20	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-18	4-9-96	18	35	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-19	4-9-96	19	50	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-20	4-9-96	20	21	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-21	4-9-96	21	7	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-22	4-9-96	22	21	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-23	4-9-96	23	20	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-24	4-9-96	24	10	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-25	4-9-96	25	36	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-26	4-9-96	26	14	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-27	4-9-96	27	36	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-28	4-9-96	28	39	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-29	4-9-96	29	21 ~	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-30	4-9-96	30	14	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-31	4-10-96	31	69	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")

÷.

į...,

-

<u>Table 2</u>

Building 17-1 Wood Block Core Samples					
LABID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE
17-1-WB-32	4-10-96	32	27	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-33	4-10-96	33	34	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-34	4-10-96	34	23	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-35	4-10-96	35	7	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-36	4-10-96	36	17	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-37	4-10-96	37	34	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-38	4-10-96	38	13	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-39	4-10-96	39	23	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-40	4-10-96	40	41	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-41	4-10-96	41	15	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-42	4-10-96	42	21	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-43	4-10-96	43	124	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-44	4-10-96	44	17	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-45	4-10-96	45	22	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-46	4-10-96	46	23	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-47	4-10-96	47	51	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")

5

i .

1.2

.....

į

Table 2

Building 17-1 Wood Block Core Samples					
LAB ID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE
17-1-WB-48	4-10-96	48	78	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-49	4-10-96	49	41	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-50	4-10-96	50	56	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE (0-2")
17-1-WB-51	4-10-96	51	39	WOOD BLOCK (STAINED AREA) (UNPAINTED)	DISCRETE-CORE

<u>Table 2</u>

Building 17-1 Concr	ete Core Unde	er Wood Block S	amples		
LABID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE
17-1-CUWB-122	4-17-96	122	14	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-123	4-17-96	123	8	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-124	4-18-96	124	8	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-125	4-18-96	125	4	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-126	4-18-96	126	6	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-127	4-18-96	127	4120	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-128	4-18-96	128.	4	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-129	4-18-96	129	4	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-130	4-18-96	130	<1	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-131	4-18-96	131	<1	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-132	- 4-18-96 ·	132	27 ·	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-133	4-18-96	133	8	CONCRETE-FLOOR (STAINED AREA) (UNDER WOOD BLOCK)	DISCRETE-CORE (0-1")
17-1-CUWB-135	5-22-96	135	2	CONCRETE-FLOOR (5' W OF LOC 127) (UNDER 2 LAYERS OF WOOD BLOCK)	DISCRETE-CORE (0-1")

•

-

<u>Table 2</u>

Building 17-1 Wall Wipe Samples					
LAB ID	SAMPLE DATE	SAMPLE	PCBs (ug/100cm²)	SAMPLE MATERIAL	SAMPLE
17-1-WW64	4-15-96	64	11	CORREGATED METAL WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW65	4-15-96	65	<2	BRICK WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW66	4-15-96	66	<2	CORREGATED METAL WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW67	4-15-96	67	47	CORREGATED METAL WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW68	4-15-96	. 68	7	BRICK WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW69	4-15-96	69	3	CORREGATED METAL WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW70	4-15-96	70	2	COOREGATED METAL WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW71	4-15-96	71	3	CINDER BLOCK WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1- WW 72	4-15-96	72	<2	CORREGATED METAL WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW73	4-15-96	73	<2	CINDER BLOCK WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-WW74	4-15-96	74	· 79	CINDER BLOCK WALL (PAINTED)	- DISCRETE-WIPE (VERTICAL)
17-1- W W75	4-15-96	75	80	CINDER BLOCK WALL (PAINTED)	DISCRETE-WIPE (VERTICAL)

2 2

<u>Table 2</u>

ï

Building 17-1 C	Building 17-1 Column Wipe Samples				
LAB ID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ug/100cm ²)	SAMPLE MATERIAL	SAMPLE TYPE
17-1-CW52	4-15-96	52	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW53	4-15-96	53	9	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW54	4-15-96	54	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW55-	4-15-96	55	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW56	4-15-96	56	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW57	4-15-96	57	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW58	4-15-96	58	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW59	4-15-96	59	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW60	4-15-96	60	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW61	4-15-96	61	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW62	4-15-96	62	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-1-CW63	4-15-96	63	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)

3 **F**

÷

<u>Table 2</u>

Building 17-B W	Building 17-B Wood Plank Flooring Core Samples					
LAB ID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE	
17-B-WP1	4-3-96	1	< 32	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP2	4-3-96	2	7	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP3	4-3-96	3	< 27	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-8-WP4	4-3-96	4	32	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP5	4-3-96	5	16	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-8-WP6	4-3-96	6	22	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP7	4-11-96	7	3	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP8	4-11-96	8	1	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP9	4-11-96	9	4	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP10	4-11-96	10	17	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP11	4-11-96	11	5	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP12	4-11-96	12	4	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP13	4-11-96	13	2	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
17-B-WP14	4-11-96	14	891	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	
,17-8-WP15	4-12-96	15	2	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")	

n,

<u>Table 2</u>

Building 17-B We	ood Plank Floo	ring Core Sample	25		
LAB ID	SAMPLE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE
17-B-WP16	4-12-96	16	21	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")
17-B-WP17	4-12-96 -	17	14	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")
17-B-WP18	4-12-96	18	13	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")
17-B-WP19	4-12-96	19	11	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")
17-B-WP20	4-12-96	20	27	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")
17-B-WP21	4-12-96	21	26	WOOD PLANK FLOORING (STAINED AREA)	DISCRETE-CORE (0 - 1/2")

÷

Table 2

Building 17-B Wall Wipe Samples						
LAB ID	SAMPLE	SAMPLE LOCATION	PCBs (ug/100cm ²)	SAMPLE MATERIAL	SAMPLE TYPE	
17-B-WW-22	4-19-96	22	<2	STEEL WALL	DISCRETE-WIPE (VERTICAL)	
17-B-WW-23	4-19-96	23	<2	STEEL WALL	DISCRETE-WIPE (VERTICAL)	
17-B-WW-24	4-19-96	24	<2	STEEL WALL	DISCRETE-WIPE (VERTICAL)	
17-B-WW-25	4-19-96	25	<2	STEEL WALL	DISCRETE-WIPE (VERTICAL)	
17-B-WW-26	4-19-96	26	<2	STEEL WALL	DISCRETE-WIPE (VERTICAL)	
17-B-WW-27	4-19-96	27	7	STEEL WALL	DISCRETE-WIPE (VERTICAL)	

Table 2

.,

Building 17-B Column Wipe Samples					
LABID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ug/100cm ²)	SAMPLE MATERIAL	SAMPLE TYPE
17-8-CW-28	4-19-96	28	< 2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-29	4-19-96	29	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-30	4-19-96	30	< 2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-31	4-19-96	31	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-32	4-19-96	32	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-33	4-19-96	33	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-34	4-19-96	34	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-35	4-19-96	35	<2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-36	4-19-96	36	4	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-37	4-19-96	37	2	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-38	4-19-96	38	3	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)
17-B-CW-39	4-19-96	39	10	STEEL COLUMN (PAINTED)	DISCRETE-WIPE (VERTICAL)

ł

<u>Table 2</u>

Building 17-B Under Wood Plank Core Samples						
LAB ID	SAMPLE DATE	SAMPLE	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE	
17-B-UWP-40	4-19-96	40	18	WOOD SUPPORT (UNDER WOOD PLANK FLOORING)	DISCRETE-CORE (0 - 1")	
17-B-UWP-41	4-19-96	41	17	WOOD SUPPORT (UNDER WOOD PLANK FLOORING)	DISCRETE-CORE (0 - 1")	
17-B-UWP-42	4-19-96	42	9	WOOD SUPPORT (UNDER WOOD PLANK FLOORING)	DISCRETE-CORE (0 - 1")	
17-B-UWP-43	4-19-96	43	382	WOOD SUPPORT (UNDER WOOD PLANK FLOORING)	DISCRETE-CORE (0 - 1")	
17-B-UWP-44	4-19-96	44	10	WOOD SUPPORT (UNDER WOOD PLANK FLOORING)	DISCRETE-CORE (0 - 1")	
17-8-UWP-45	4-19-96	45	< 1	WOOD SUPPORT (UNDER WOOD PLANK FLOORING)	DISCRETE-CORE (0 - 1")	

 $\mathbb{V}_{1,2}$

<u>Table 2</u>

Building 17-B S	Wall Wood Pla	ink Core Sample	:s]		
LAB ID	SAMPLE DATE	SAMPLE LOCATION	PCBs (ppm)	SAMPLE MATERIAL	SAMPLE TYPE
17-B-SWWP- 46	4-19-96	46	1	WOOD WALL (BEHIND S. WALL WOOD PLANK)	DISCRETE-CORE (0 - 1")
17-B-SWWP- 47	4-19-96	47	2	WOOD WALL (BEHIND S. WALL WOOD PLANK)	DISCRETE-CORE
17-B-SWWP- 48	4-19-96	48	1	WOOD WALL (BEHIND S. WALL WOOD PLANK)	DISCRETE-CORE (0 - 1")

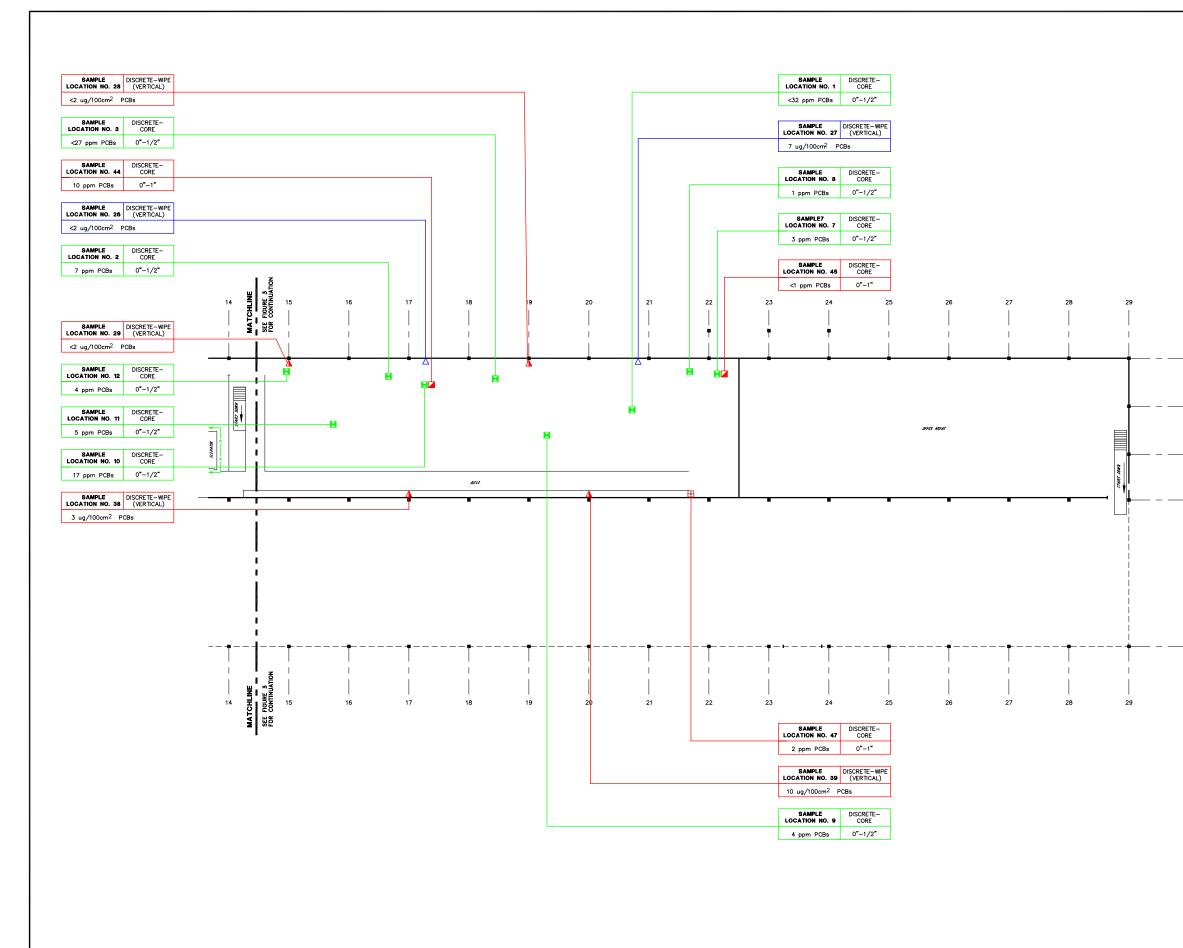
Figures

17

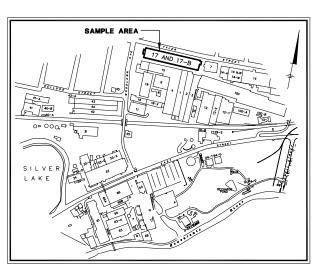
1

1.1

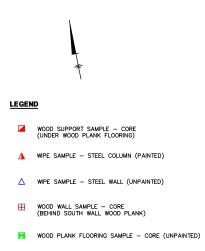
1


٤.,

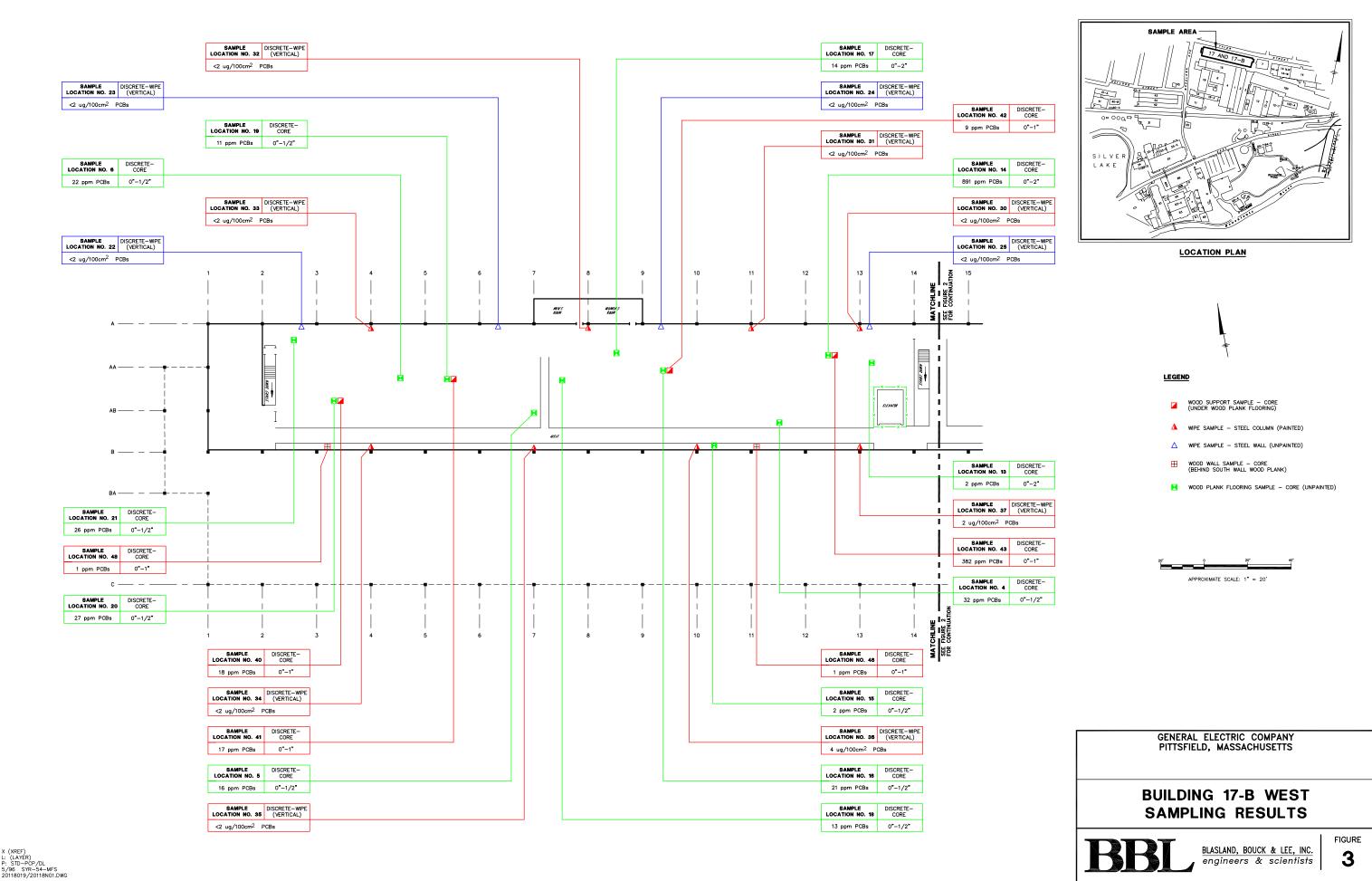
er. Sur Anna

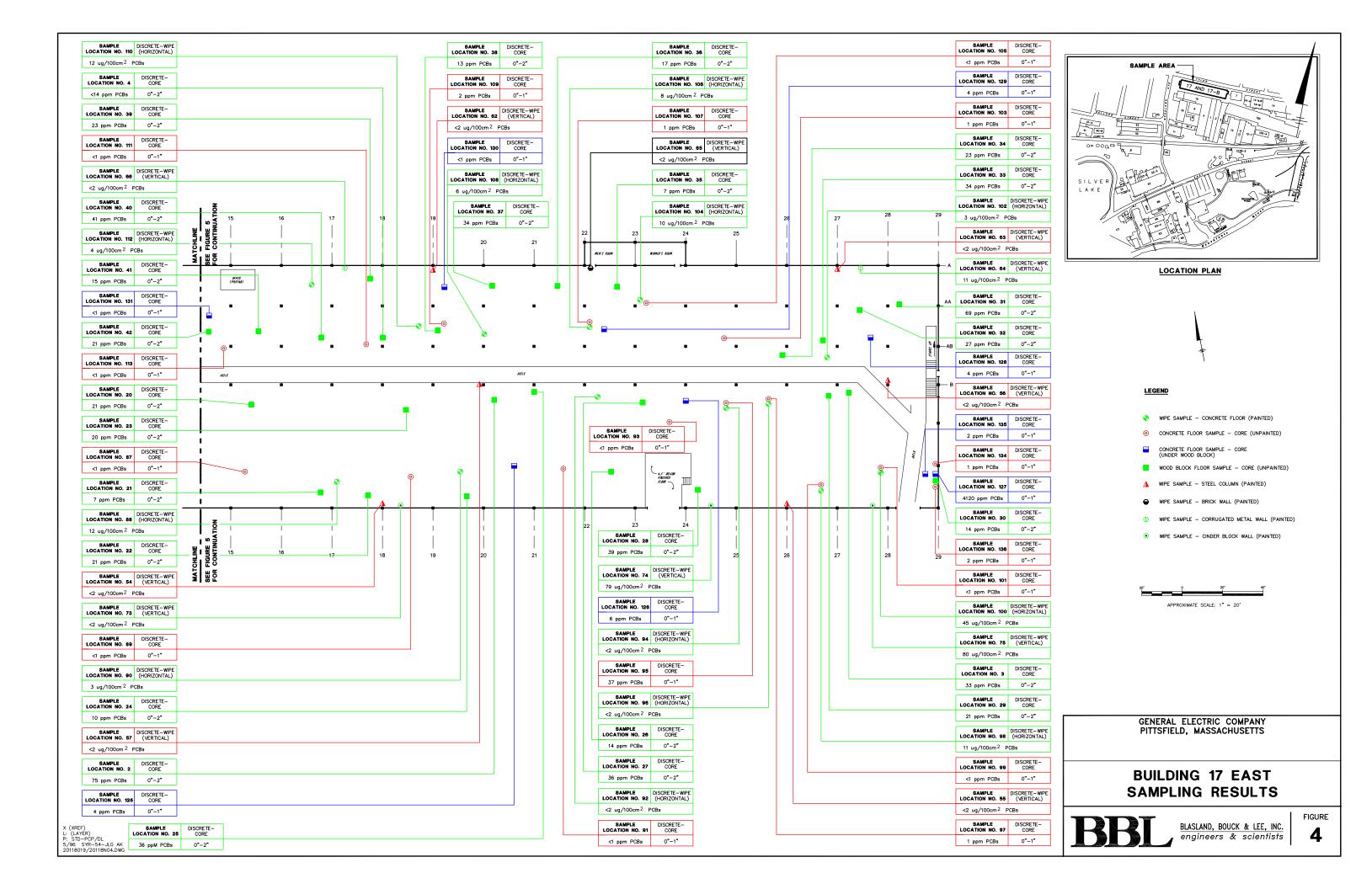

1. 1. 1.

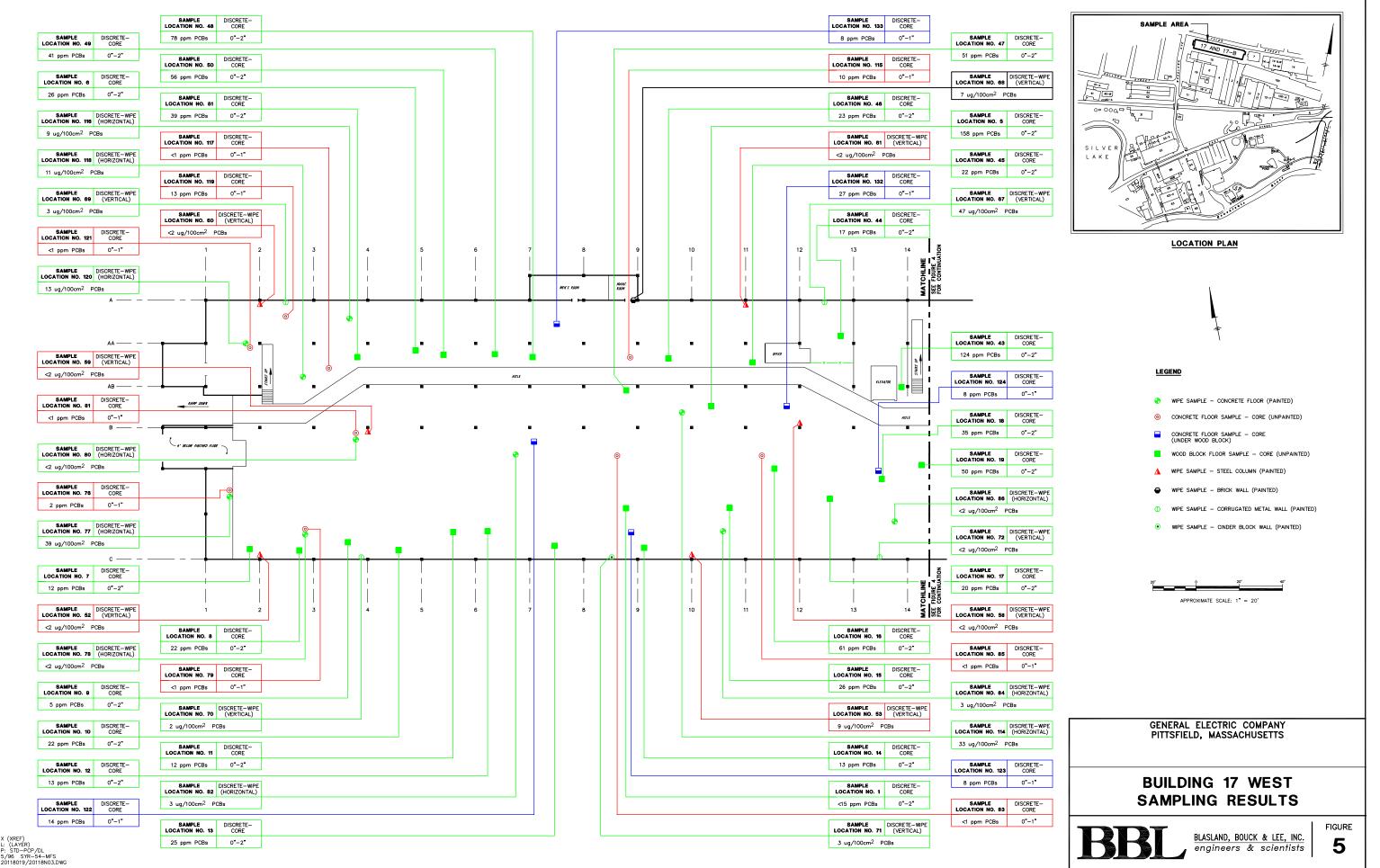
ĩı

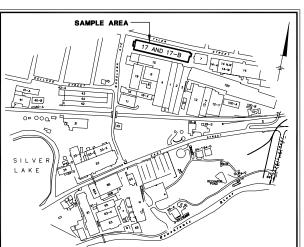

BLASLAND, BOUCK & LEE, INC. engineers & scientists

X (XREF) L: (LAYER) P: STD-PCP/DL 5/96 SYR-54-JLG, DJO, MFS 20118019/20118N02.DWG




LOCATION PLAN





Attachment 2

Building 19 Analytical Results and Sample Locations Associated with Previous Sampling Activities

April/May 1987 Sampling Event

ATTACHMENT 1

BUILDING 19-2 and 19-3 SAMPLING PROGRAM

The following is a summary of the sample results for the sampling conducted in Building 19 -2nd and 3rd floor. A drawing showing the sample location is attached (see Figures). An analytical report provided by OBG Laboratories has also been included.

PCB SAMPLE RESULTS

· LAB ID	TOTAL PCB (PPM)	SAMPLE MATERIAL	SAMPLE LOCATION	SAMPLE TYPE
<u>19-3-C1</u>	7.3	Sheet rock	See Figure 1	Wall Composite Core
19-3-C2	12	Homosite	See Figure _/ 1	Wall Composite Core
19-3-C3	<5	Wood	See Figure 1	Wall Composite Core
19-3-C4	8	Sheet rock	See Figure 2	Wall Composite Core
19-3-C5	<5	Homosite	See Figure 2	Wall Composite Core
19-3-C6	<5	Wood	See Figure 2	Wall Composite Core
19-3-C7	5.8	Ceiling tile	See Figure 3	Ceiling Composite Core

ATTACHMENT 2

BUILDING 19-1 SAMPLING PROGRAM

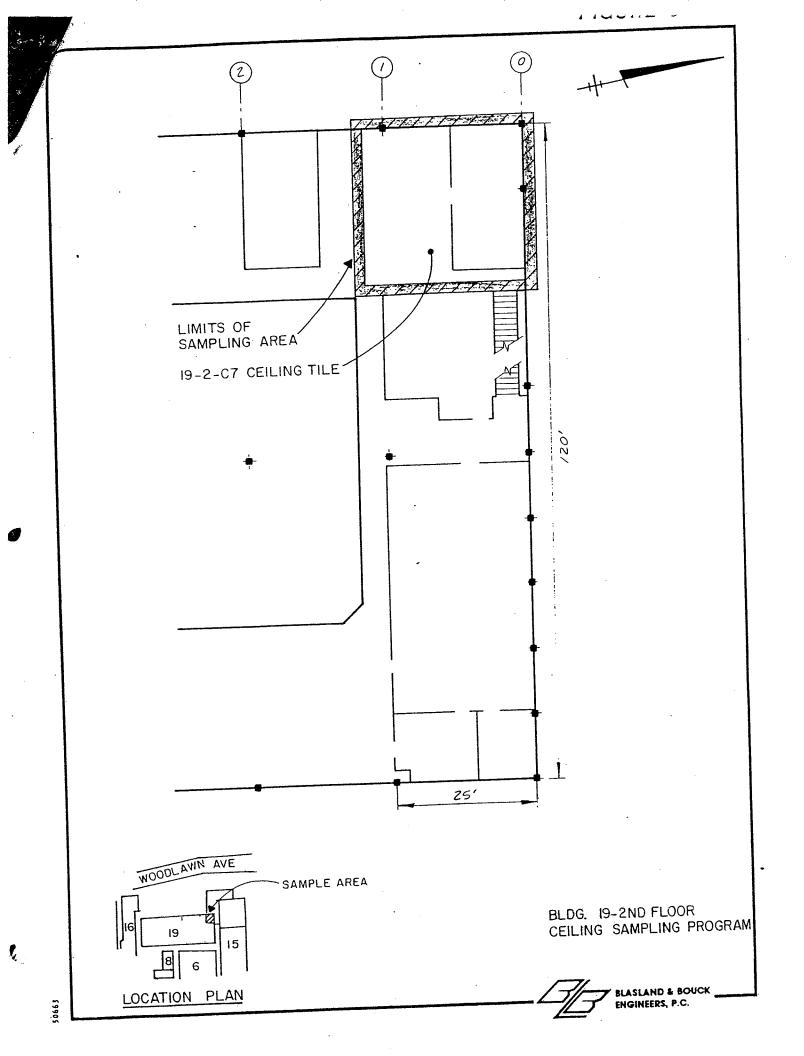
The following is a summary of the sample results for the sampling conducted in Building 19 - 1st floor. A drawing showing the sample location is attached (see Figure 1). An Analytical Report provided by OBG Laboratories has also been included.

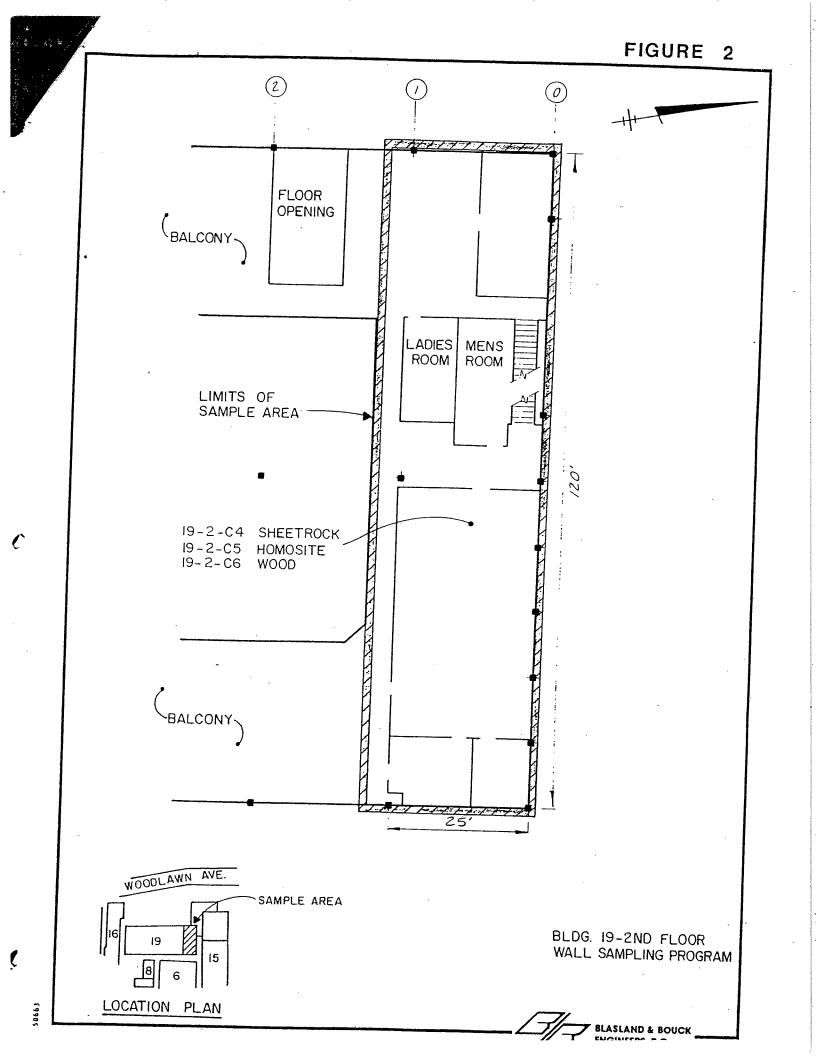
PCB Sampling	<u>g Results</u>			·	
Lab ID	Total PCB (ppm)	Sample Material	Sample Location	Sample ¹ Depth	Sample Type
19-1-C1	<5	Concrete	C1	8"	Composite Core
19-1-C2	<5	Concrete	C2	8"	Composite Core
19-1-C3	13	Concrete	C3	8"	Composite Core
19-1-C4	<5	Concrete	C4	8"	Composite Core
19-1-C5	<5	Concrete	C5	8"	Composite Core
19-1-C6	55	Concrete	C6	8"	Composite Core
19-1-C7	<5	Concrete	C7	8"	Composite Core
19-1-C8	<5	Concrete	C8 .	8"	Composite Core
19-1-9	41	Concrete	C9	8"	Composite Core
19-1-C10	7	Concrete	C10	8"	Composite Core
19-1-C11	<5	Concrete	. C11	8"	Composite Core
19-1-C12	<5	Concrete	C12	8"	Composite Core
19-1-C13	24	Concrete	C13	8"	Composite Core

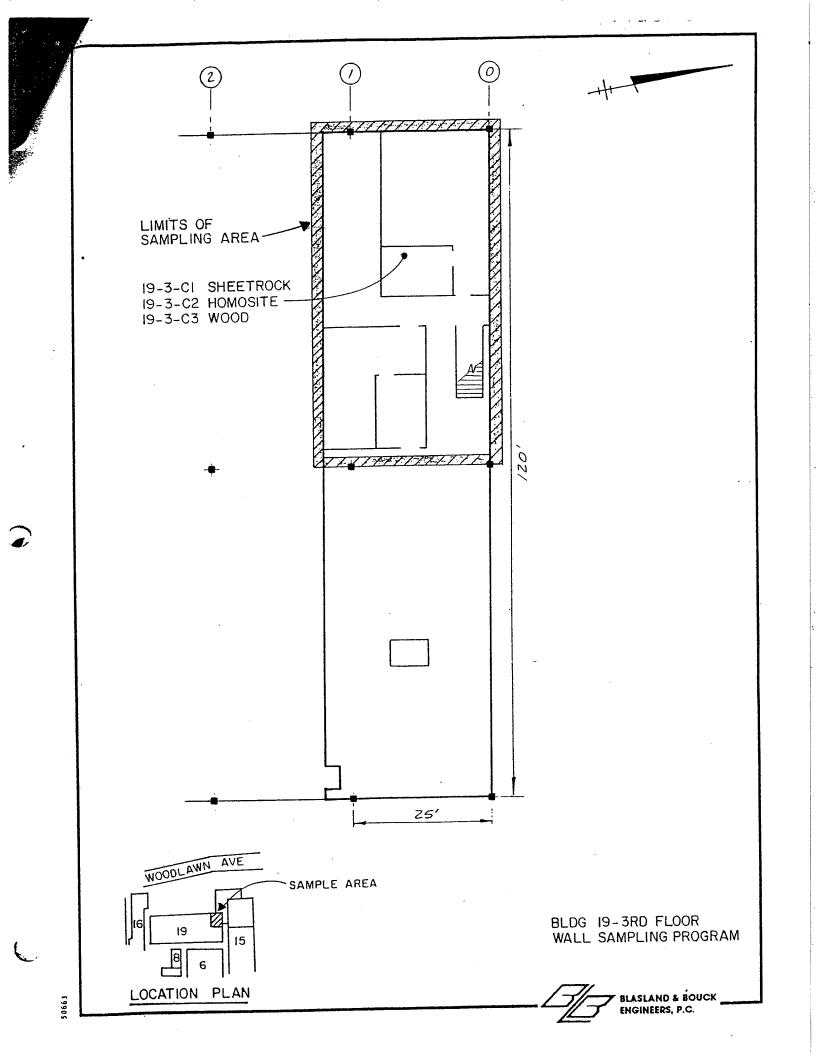
ţ

3/17/88

19-1-14	<5	Concrete	C14	8"	Composite Core
19-1-15	<5	Concrete	C15	8"	Composite Core
19-1-16	38	Concrete	C16	8"	Composite Core
19-1-17	<5	Concrete	C17	8"	Composite Core
19-1-18	<5	Concrete	C18	8"	Composite Core
19-1-19	<5	Concrete	C19	8"	Composite Core
19-1-20	<5	Concrete	C20	8"	Composite Core
19-1-F85	37 ²	Concrete	F85	8"	Composite Core
19-1-F89	7 ²	Concrete	F89	8"	Composite Core
19-1-F93	4 ²	Concrete	F93	8"	Composite Core
19-1-F97	43 ²	Concrete	F97	8"	Composite Core
19-1-F135	14 ²	Concrete	F135	8''	Composite Core
19-1-F143	14 ²	Concrete	F143	8"	Composite Core

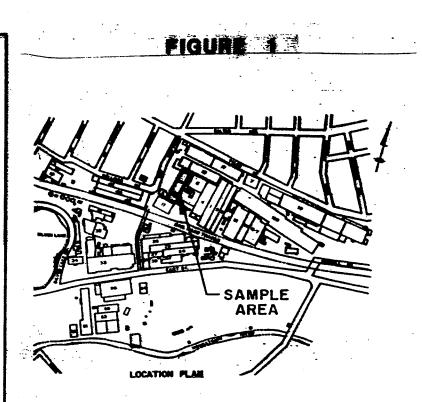

Notes:


3


Sample depth was determined by General Electric

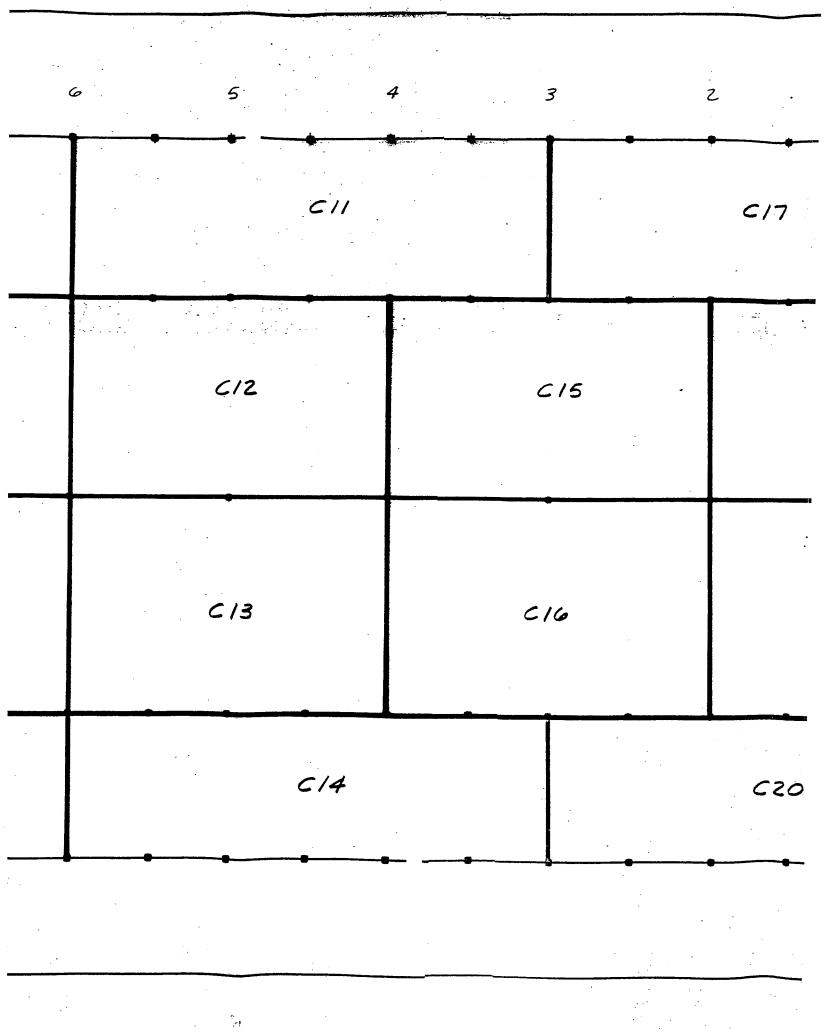
Individual analysis was requested by General Electric from 6 sample collections jars at locations from composite areas 19-1-C6 (total 4 jars) and 19-1-C9 (total 2 jars).

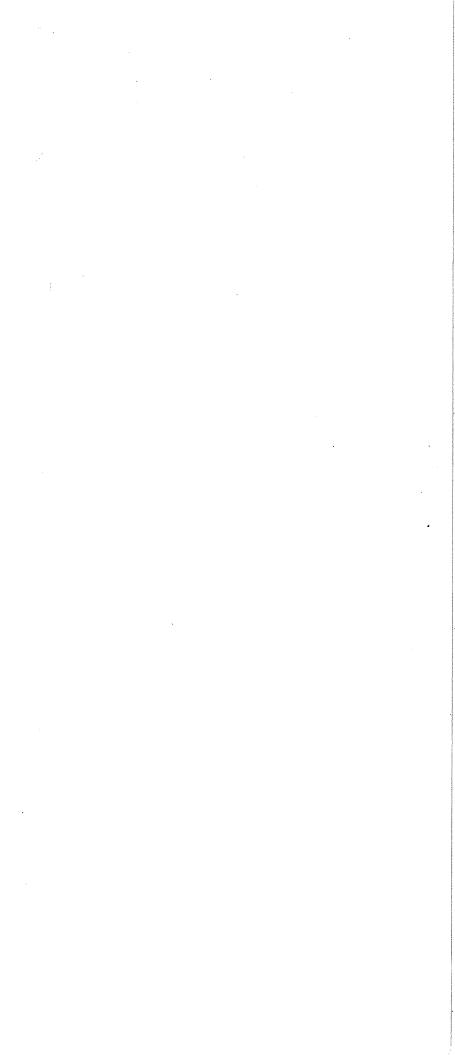
3/17/88

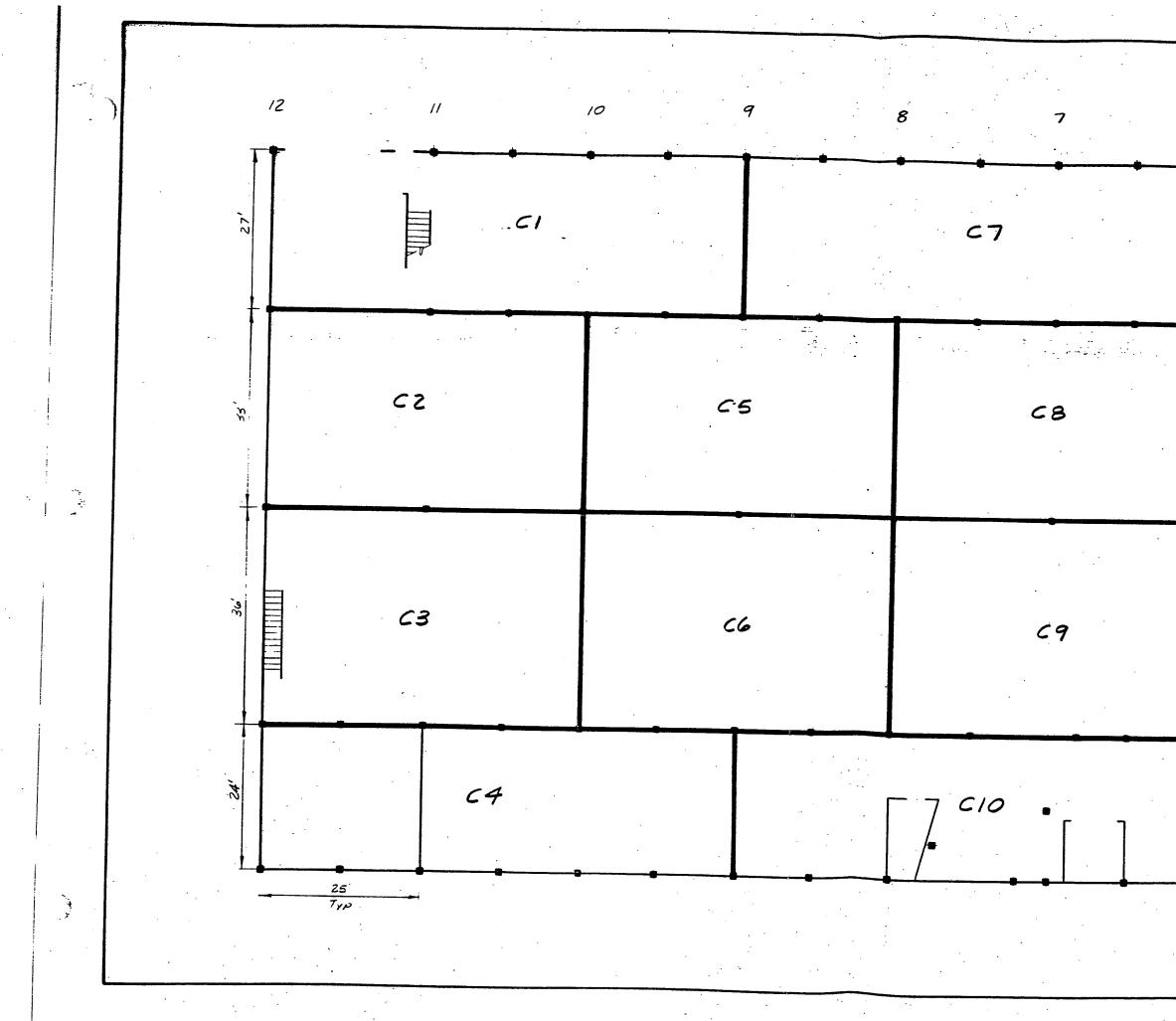


¢

C18 C19




Nore: CIZ Represents Lab I.D. 19-1-CIZ (Typ.)

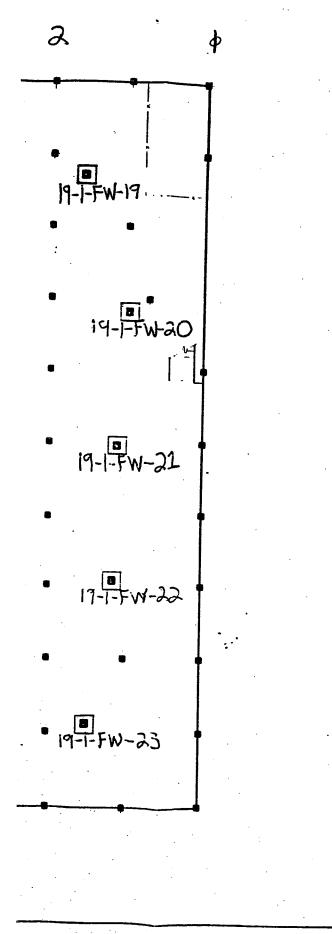

GENERAL ELECTRIC COMPANY

FLOOR SAMPLING BUILDING 19 - FIRST FLOOR

BLASLAND & BOUCK ENGINEERS, P.C.

. : 6 5 C11 Ç12 C/3 C/4

September 1996 Sampling Event


Bldg 19-1 Concrete Floor Wipe Sampling Program

(201.18.20)

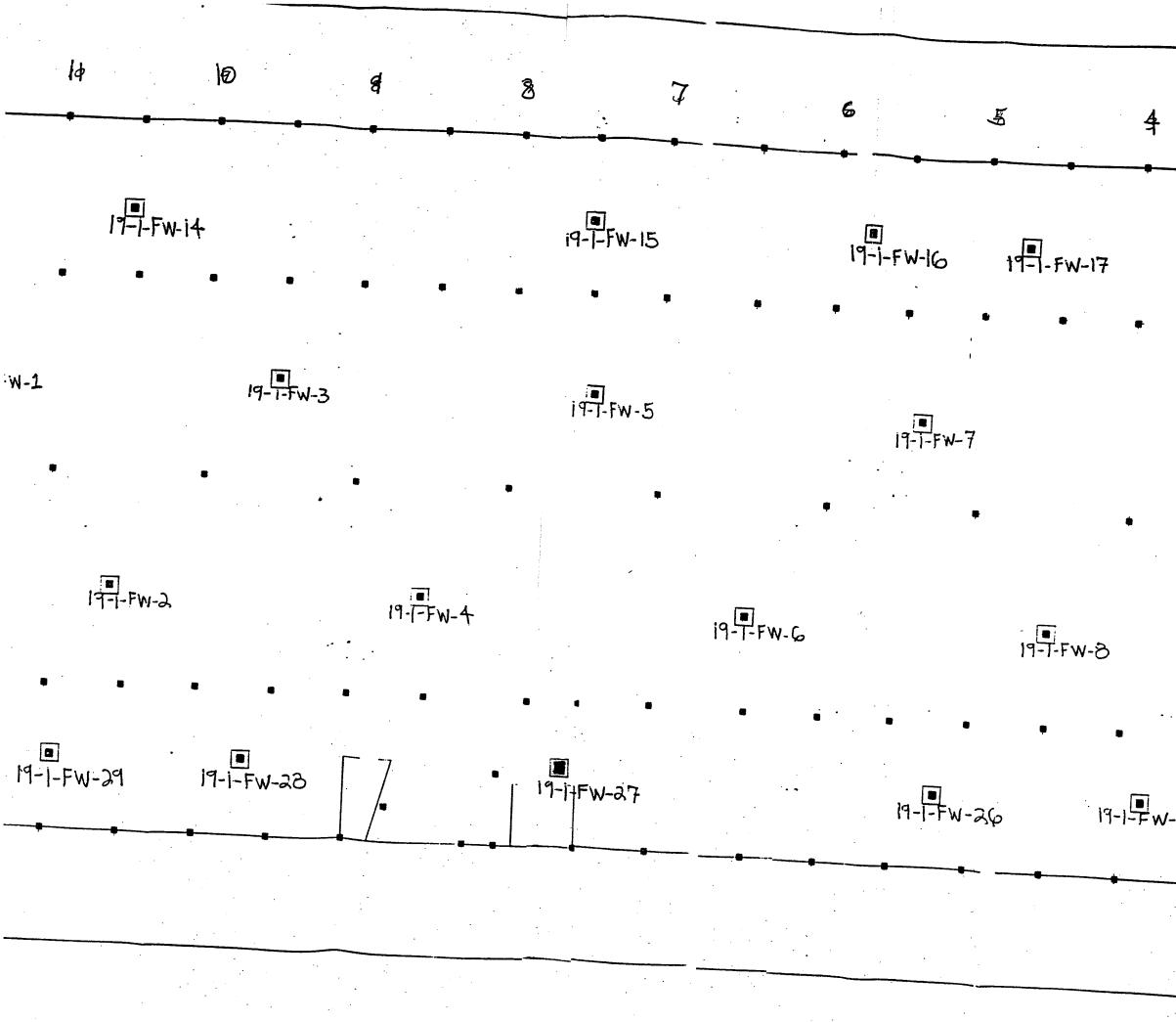
(Table 1)

LABID	SAMPLE DATE	SAMPLE LOCATION	PCB (ug/100cm2)	SAMPLE Material	SAMPLE Type	SEE
19-1-FW-1	9-11-96	1	3.	CONCRETE FLOOR (PAINTED)	DISCRETE-WIPE (HORIZONTAL)	FIGUR
19-1-FW-2	9-11-96	2	11.	CONCRETE FLOOR (PAINTED)	DISCRETE-WIPE (HORIZONTAL)	2
19-1-FW-3	9-11-96	3	5 .	CONCRETE FLOOR (PAINTED)	DISCRETE-WPE (HORIZONTAL)	2
19-1-FW-4	9-11-96	4	3.	CONCRETE FLOOR (PAINTED)		2
19-1-FW-5	9-11-96	5	2.	CONCRETE FLOCR (PAINTED)		
19-1-FW-6	9-11-96	6	5	CONCRETE FLOOR (PAINTED)	DISCRETE WPE (HORIZONTAL)	
19-1-FW-7	9-11.96	7	2	CONCRETE FLOOR (PAINTED)		
:9-1-FW-8	9-11-96	8	2	CONCRETE FLOOR (PAINTED)	DISCRETE MPE .HCRIZONTAL)	
19-1-FW-9	9-11-96	9	2		DISCRETE-MPE (HORIZONTAL)	2
19-1-FW-10	9-11-96	10	~		DISCRETE-MPE (HCRIZONTAL)	2
19-1-FW-11	9-11-96	11	. 2	CONCRETE FLOOR (PAINTED)	DISCRETE-MPE (HCRIZONTAL)	:
19-1-FW-12	9-11-96	12		CONCRETE FLOOR (PAINTED)	DISCRETE-MPE ,HORIZONTAL)	:
19-1-FW-13	9-11-96		<2.	CONCRETE FLOOR (PAINTED)	DISCRETE-WPE (HCRIZONTAL)	2
19-1-FW-14		13	<2	CONCRETE FLOOR (PAINTED)	DISCRETE-WPE , HORIZONTAL)	2
19-1-FW-15	9-11-96	14	<2	CONCRETE FLOOR (PAINTED)	DISCRETE-WPE .HORIZONTAL)	:
19-1-FW-16	9-11-96	15	<2	CONCRETE FLOOR (PAINTED)	DISCRETE MPE (HORIZONTAL)	:
	9-11-96	. 16	<2	CONCRETE FLOOR (PAINTED:	DISCRETE MPE (HORIZONTAL)	. 2
19-1-FW-17	9-11-96	17	17	CONCRETE FLOOR (PAINTED)	DISCRETE MPE (HORIZONTAL)	:
19-1-FW-18	9-11-96	18	2	CONCRETE FLOOR (PAINTED)	DISCRETE MPE (HORIZONTAL)	:
19-1-FW-19	9-11-96	19	<2.	CONCRETE FLOOR (PAINTED)	DISCRETE-MPE (HORIZONTAL)	2
19-1-FW-20	9-11-96	20	<2	CONCRETE FLOOR (PAINTED)	DISCRETE-MPE (HORIZONTAL)	
19-1-FW-21	9-11-96	21	3	CONCRETE FLOOR (PAINTED)	DISCRETE-WIPE (HORIZONTAL)	2
19-1-FW-22	9-11-96	22	3	CONCRETE FLOOR (PAINTED)	DISCRETE: MPE (HORIZONTAL)	2
19-1-FW-23	9-11-96	23	<2.	CONCRETE FLOOR (PAINTED)	DISCRETE-WPE (HORIZONTAL)	2
19-1-FW-24	9-11-96	24	<2.	CONCRETE FLOOR (PAINTED)		2
19-1.FW-25	9-11-96	25	< <u>.</u>	CONCRETE FLOOR (PAINTEC)		2
19-1-FW-26	9-11-96	26	<2.	CONCRETE FLOOR (PAINTED)		2
19-1-FW-27	9-11-96	27.	<2	CONCRETE FLOOR (PAINTED)	DISCRETE WPE (HORIZONTAL)	2
19-1-FW-28	9-11-96	· 28	<2		DISCRETE-WPE (HORIZONTAL)	2
19-1-FW-29	9-11-96	29	<2		DISCRETE-MPE (HORIZONTAL)	2
19-1-FW-30	9-11-96	30		CONCRETE FLOOR (PAINTED)	DISCRETE-MPE (HORIZONTAL)	2
			<2	CONCRETE FLOOR (PAINTED)	DISCRETE MPE (HORIZONTAL)	. 2

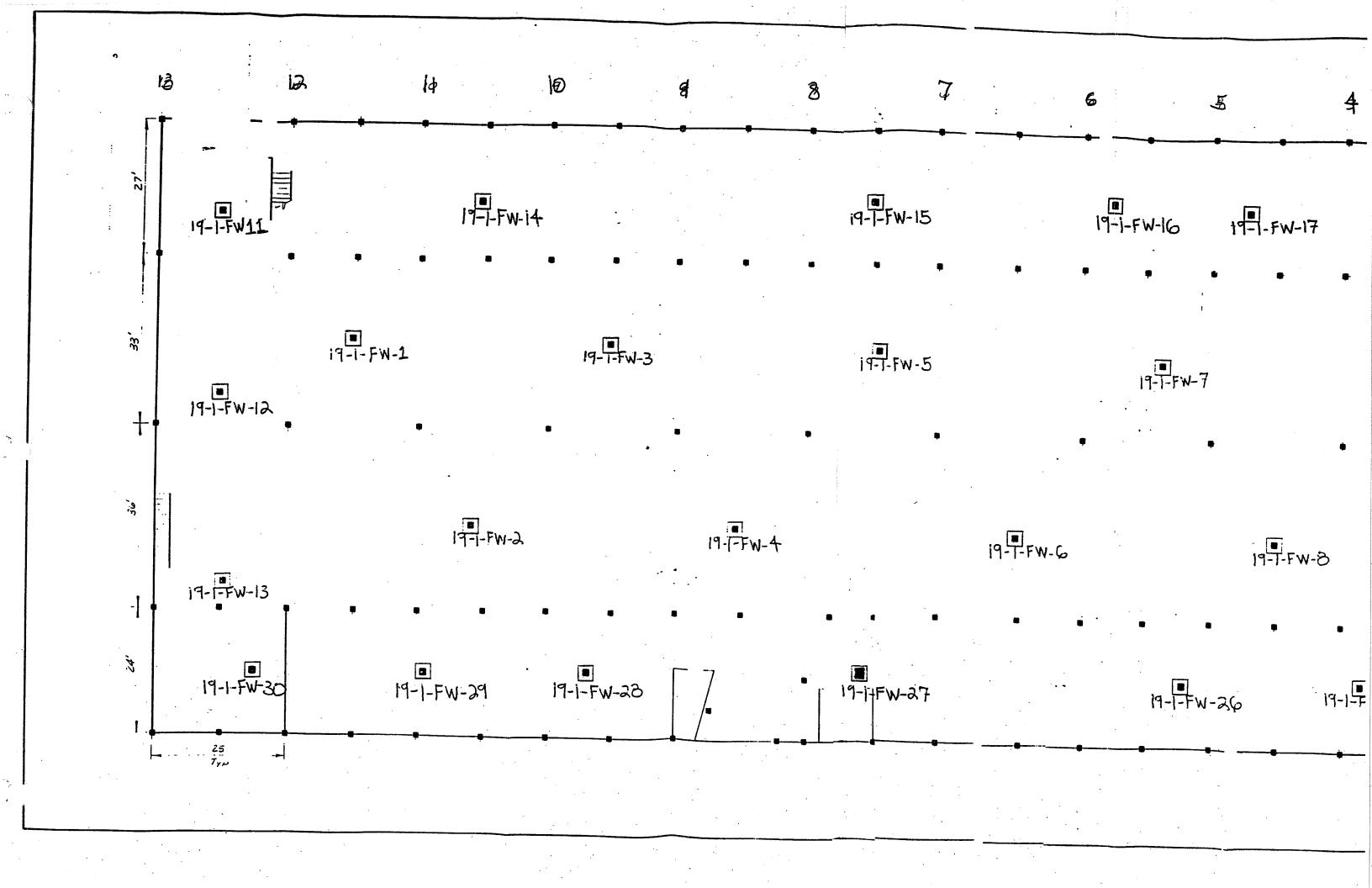
ijh September 17, 1996 finsum96\182019ct tbl

BUDG 19-1 CONVERTE FLOOR WIPE SAMPLING PROGRAM (201.18.20)

DISCRETE-WIRE CONCRETE FLOOR SAMPLE LOCATION - Column


GENERAL ELECTRIC COMPANY

. . . .


Note: Not to Scile

BUILDING 19 - FIRST FLOOR

3 Я 19-1-FW-18 19-1-FW-19 14-1-FW-20 19-1-FW-9 19-1-FW-22 19-1-FW-10 17-1-FW-22 19-1-FW-26 19-1-FW-25 19-1-FW-23

January/February 2000 Sampling Event

Building 19 Brownfields Sampling Program - (101.16.01)

(Table 1)

Building 19 (1* Floor Concrete Samples)							
LABID	SAMPLE DATE	PCBs (ppm)	SAMPLE LOCATION	SAMPLE MATERIAL			
19-1-FC-1 (0 - 9")	1/25/00	ND	19-1-FC-1	CONCRETE FLOOR (UNPAINTED / UNSTAINED)			
19-1-FC-2 (0 - 9'')	1/25/00	ND	19-1-FC-2	CONCRETE FLOOR (UNPAINTED / UNSTAINED)			
19-1-FC-3 (0 - 9')	1/25/00	ND	19-1-FC-3	CONCRETE FLOOR (UNPAINTED / UNSTAINED)			
19-1-FC-4 (0 - 9")	1/25/00	ND	19-1-FC-4	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-5 (0 - 9")	1/25/00	0.43	19-1-FC-5	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-6 (0 - 5")	1/25/00	0.028	19-1-FC-6	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-7 (0 - 11")	1/25/00	0.038	19-1-FC-7	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-8 (0 - 11")	1/25/00	0.058	19-1-FC-8	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-9 (0 - 9")	1/25/00	ND	19-1-FC-9	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-10 (0 - 10")	1/25/00	ND	19-1-FC-10	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-11 (0 - 11")	1/25/00	ND	19-1-FC-11	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-12 (0 - 11")	1/25/00	ND	19-1-FC-12	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-13 (0 - 7")	1/25/00	ND	19-1-FC-13	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-14 (0 - 11")	1/25/00	ND	19-1-FC-14	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-15 (0 - 11")	1/25/00	0.159	19-1-FC-15	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-16 (0 - 9")	1/25/00	ND	19-1-FC-16	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-17 (0 - 11")	1/25/00	360.	19-1-FC-17	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-18 (0 - 11")	1/25/00	9.7	19-1-FC-18	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-19 (0 - 24")	1/25/00	6.6	19-1-FC-19	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-20 (0 - 11")	1/25/00	1.2	19-1-FC-20	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-21 (0 - 11")	1/26/00	38.	1 9 -1-FC-21	CONCRETE FLOOR (PAINTED / HEAVY OIL STAIN)			
19-1-FC-22 (0 - 11")	1/26/00	11.	19-1-FC-22	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-23 (0 - 14")	1/26/00	26.	19-1-FC-23	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-24 (0 - 14")	1/26/00	44.	19-1-FC-24	CONCRETE FLOOR (PAINTED / STAINED)			
1 9 -1-FC-25 (0 - 14")	1/26/00	15.	19-1-FC-25	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-26 (0 - 5")	1/26/00	0.077	19-1-FC-26	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-27 (0 - 8")	1/26/00	1.1	19-1-FC-27	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-28 (0 - 11")	1/26/00	0.024	19-1-FC-28	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-29 (0 - 14")	1/26/00	0.115	19-1-FC-29	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-30 (0 - 11")	1/26/00	0.72	19-1-FC-30	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-31 (0 - 11")	1/26/00	470.	19-1-FC-31	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-32 (0 - 7'')	1/26/00	0.18	19-1-FC-32	CONCRETE FLOOR (PAINTED / UNSTAINED)			
19-1-FC-33 (0 - 16")	1/26/00	1.85	19-1-FC-33	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-34 (0 - 19")	1/26/00	2.4	19-1-FC-34	CONCRETE FLOOR (PAINTED / STAINED)			
19-1-FC-35 (0 - 15")	1/26/00	20.	19-1-FC-35	CONCRETE FLOOR (PAINTED / HEAVY OIL STAIN)			
19-1-FC-36 (0 - 15")	1/26/00	0.42	19-1-FC-36	CONCRETE FLOOR (PAINTED / SLIGHT STAIN)			

(Table 1 - continued)

Building 19 (1* Floor C	oncrete Sample	s - continued)		
LABID	SAMPLE DATE	PGBs (ppm)	SAMPLE LOCATION	SAMPLE MATERIAL
19-1=FC-37 (0 - 12")	1/27/00	0.36	19-1-FC-37	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-38 (0 - 17")	1/27/00	0.049	19-1-FC-38	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-39 (0 - 9")	1/27/00	ND	19-1-FC-39	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-40 (0 - 17")	1/27/00	0.243	19-1-FC-40	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-41 (0 - 16")	1/27/00	0.374	19-1-FC-41	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-42 (0 - 11")	1/27/00	0.14	19-1-FC-42	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-43 (0 - 11")	1/27/00	0.11	19-1-FC-43	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-44 (0 - 11")	1/27/00	0.22	19-1-FC-44	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-45 (0 - 4")	1/27/00	ND	19-1-FC-45	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-46 (0 - 7")	1/27/00	18.	19-1-FC-46	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-47 (0 - 11")	1/27/00	0.47	19-1-FC-47	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-48 (Ò - 15")	1/27/00	0.14	19-1-FC-48	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-49 (0 - 11")	1/27/00	0.24	19-1-FC-49	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-50 (0 - 15")	1/27/00	0.63	19-1-FC-50	CONCRETE FLOOR (PAINTED / SLIGHT STAIN)
19-1-FC-51 (0 - 11")	1/27/00	0.189	19-1-FC-51	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-52 (0 - 9")	1/27/00	0.043	19-1-FC-52	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-53 (0 - 11")	1/27/00	0.31	19-1-FC-53	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-54 (0 - 9")	1/27/00	0.45	19-1-FÇ-54	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-55 (0 - 11")	1/27/00	2.78	19-1-FC-55	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-56 (0 - 11")	1/27/00	0.137	19-1-FC-56	CONCRETE FLOOR (PAINTED / SLIGHT STAIN)
19-1-FC-57 (0 - 16")	1/27/00	0.17	19-1-FC-57	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-58 (0 - 11")	1/27/00	0.18	19-1-FC-58	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-59 (0 - 11")	1/27/00	0.189	19-1-FC-59	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-60 (0 - 11")	1/27/00	0.044	19-1-FC-60	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-61 (0 - 12")	1/28/00	0.039	19-1-FC-61	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-62 (0 - 11")	1/28/00	0.50	19-1-FC-62	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-63 (0 - 16")	1/28/00	0.29	19-1-FC-63	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-64 (0 - 15")	1/28/00	0.082	19-1-FC-64	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-65 (0 - 15")	1/28/00	ND	19-1-FC-65	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-66 (0 - 11")	1/28/00	0.051	19-1-FC-66	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-67 (0 - 13")	1/28/00	0.093	19-1-FC-67	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-68 (0 - 12")	1/28/00	ND	19-1-FC-68	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-69 (0 - 11")	1/28/00	0.183	19-1-FC-69	CONCRETE FLOOR (PAINTED / STAINED)
19-1-FC-70 (0 - 7")	1/28/00	7.4	19-1-FC-70	CONCRETE FLOOR (UNPAINTED / STAINED)
19-1-FC-71 (0 - 11")	1/28/00	0.062	19-1-FC-71	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-1-FC-72 (0 - 11")	1/28/00	ND	19-1-FC-72	CONCRETE FLOOR (PAINTED/ UNSTAINED)

.

(Table 1 - continued)

Building 19 (2 ^m Floo	eWaansinhaala	or Samples)		·
LABID	SAMPLE	PCBs (ppm)	- SAMPLE LOCATION	SAMPLEMATERIAL
19=2=WS-1 (0 - 2.5")	2/2/00	1.1	19-2-WS-1	1 ST WOOD SUB-FLOOR (STAINED)
19-2-WS-2 (0 - 2.5")	2/2/00	0.47	19-2-WS-2	2 ND WOOD SUB-FLOOR (STAINED)
19-2-WS-3 (0 - 2.5")	2/2/00	0.36	1 9 -2-WS-3	1 ST WOOD SUB-FLOOR (STAINED)
19-2-WS-4 (0 - 2.5")	2/2/00	0.81	19-2-WS-4	1 st WOOD SUB-FLOOR (STAINED)
1 9 -2-WS-5 (0 - 2.5")	2/2/00	1.73	19-2-WS-5	1 ^{\$T} WOOD SUB-FLOOR (STAINED)
19-2-WS-6 (0 - 2.5")	2/2/00	0.31	19-2-WS-6	2 ⁴⁰ WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-7 (0 - 2.5")	2/14/00	5.4	19-2-WS-7	3 rd WOOD SUB-FLOOR (STAINED)
19-2-WS-8 (0 - 2.5")	2/14/00	1.11	19-2-WS-8	3 rd WOOD SUB-FLOOR (STAINED)
19-2-WS-9 (0 - 2.5")	2/14/00	0.76	19-2-WS-9	3rd WOOD SUB-FLOOR (STAINED)
19-2-WS-10 (0 - 2.5")	2/14/00	1.29	19-2-WS-10	3rd WOOD SUB-FLOOR (STAINED)
19-2-WS-11 (0 - 2.5")	2/14/00	5.2	19-2-WS-11	3 rd WOOD SUB-FLOOR (STAINED)
19-2-WS-12 (0 - 2.5")	2/14/00	0.44	19-2-WS-12	3 rd WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-13 (0 - 2.5")	2/14/00	1.46	19-2-WŞ-13	3 rd WOOD SUB-FLOOR (STAINED)
19-2-WS-14 (0 - 2.5")	2/14/00	0.036	19-2-WS-14	3 rd WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-15 (0 - 2.5")	2/14/00	0.19	19-2-WS-15	2 ¹⁰ WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-16 (0 - 2.5")	2/14/00	0.82	1 0-2-WS-16	3 rd WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-17 (0 - 2.5")	2/14/00	0.67	19-2-WS-17	3rd WOOD SUB-FLOOR (UNSTAINED)
19-2-WŞ-18 (0 - 2.5")	2/14/00	0.12	19-2-WS-18	1 ST WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-19 (0 - 2.5")	2/14/00	0.87	19-2-WS-19	1 ⁸⁷ WOOD SUB-FLOOR (STAINED)
19-2-WS-20 (0 - 2.5")	2/14/00	0.92	19-2-WS-20	2 ¹⁰ WOOD SUB-FLOOR (UNSTAINED)
19-2-W8-21 (0 - 2.5")	2/14/00	0.29	19- 2-₩8-21	3 rd WOOD SUB-FLOOR (UNSTAINED)
1 9-2-WS-22 (0 - 2.5")	2/14/00	0.168	19-2-WS-22	3 rd WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-23 (0 - 2.5")	2/14/00	0.12	19-2-WS-23	2 ND WOOD SUB-FLOOR (UNSTAINED)
19-2-WS-24 (0 - 2.5")	2/14/00	0.51	19-2-WS-24	1 ^{sr} WOOD SUB-FLOOR (STAINED)
19-2- <u>W</u> \$-25 (0 - 2.5")	2/14/00	0.13	19-2-WS-25	1 ST WOOD SUB-FLOOR (STAINED)
19-2-WS-26 (0 - 2.5")	2/14/00	0.68	19-2-WS-26	1 st WOOD SUB-FLOOR (STAINED)
19-3-WS-1 (0 - 2.5")	2/14/00	0.052	19-3-WS-1	1 ST WOOD SUB-FLOOR (UNSTAINED)
19-3-WS-2 (0 - 2.5")	2/14/00	0.19	19-3-WS-2	1 ^{\$™} WOOD SUB-FLOOR (STAINED)
19-3-WS+3 (0 - 2.5")	2/14/00	0.081	19-3-WS-3	1 ST WOOD SUB-FLOOR (UNSTAINED)

ŗ

(Table 1 - continued)

. 1

Building 19 (2 nd Floor Concrete Samples)				
LABID	DATE	PCBs (ppm)	SAMPLE LOCATION	SAMPLE MATERIAL
19-2-FC-1 (0 - 4")	2/4/00	0.256	19-2-FC-1	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-2 (0 - 8")	2/4/00	0.115	19-2-FC-2	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-3 (0 - 8")	2/4/00	0.182	19-2-FC-3	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-2-FC-4 (0 - 8")	2/4/00	0.1	19-2-FC-4	CONCRETE FLOOR (PAINTED / UNSTAINED)
19-2-FC-5 (0 - 3")	2/4/00	0.21	19-2-FC-5	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-6 (0 - 4")	2/4/00	0.061	19-2-FC-6	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-7 (0 - 4")	2/4/00	0.112	19-2-FC-7	CONCRETE FLOOR (UNPAINTED / STAINED)
19-2-FC-9 (0 - 4")	2/4/00	2.	19-2-FC-9	CONCRETE FLOOR (UNPAINTED / STAINED)
19-2-FC-10 (0 - 4")	2/4/00	0.57	19-2-FC-10	CONCRETE FLOOR (UNPAINTED / STAINED)
19-2-FC-11 (0 - 4")	2/4/00	0.038	19-2-FC-11	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-12 (0 - 3")	2/4/00	ND	19-2-FC-12	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-13 (0 - 3'')	2/4/00	0.036	19-2-FC-13	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-14 (0 - 4")	2/4/00	NĎ	19-2-FC-14	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-15 (0 - 4")	2/4/00	0.085	19-2-FC-15	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-16 (0 - 4")	2/4/00	0.080	19-2-FC-16	CONCRETE FLOOR (UNPAINTED / STAINED)
19-2-FC-17 (0 - 4")	2/4/00	ND	19-2-FC-17	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-18 (0 - 4")	2/4/00	0.021	19-2-FC-18	CONCRETE FLOOR (UNPAINTED / STAINED)
19-2-FC-19 (0 - 8")	2/4/00	ND	19-2-FC-19	CONCRETE FLOOR (UNPAINTED / MASTIC COATED)
19-2-FC-20 (0 - 2")	2/4/00	0.45	19-2-FC-20	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-21 (0 - 1")	2/4/00	0.16	19-2-FC-21	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-22 (0 - 1")	2/4/00	0.075	19-2-FC-22	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-24 (0 - 6")	2/4/00	ND	19-2-FC-24	CONCRETE FLOOR (UNPAINTED / MASTIC COATED)
19-2-FC-25 (0 - 7")	2/4/00	ND	19-2-FC-25	CONCRETE FLOOR (UNPAINTED / MASTIC COATED)
19-2-FC-26 (0 - 8")	2/4/00	ND	19-2-FC-26	CONCRETE FLOOR (UNPAINTED / MASTIC COATED)
19-2-FC-27 (0 - 2")	2/4/00	0.034	19-2-FC-27	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-28 (0 - 2')	2/4/00	0.101	19-2-FC-28	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-29 (0 - 7")	2/4/00	ND	19-2-FC-29	CONCRETE FLOOR (UNPAINTED / STAINED)
19-2-FC-30 (0 - 1")	2/4/00	0.33	19-2-FC-30	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-31 (0 - 1")	2/4/00	0.19	19-2-FC-31	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-32 (0 - 2")	2/4/00	0.67	19-2-FC-32	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-33 (0 - 1")	2/4/00	0.623	19-2-FC-33	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-34 (0 - 6")	2/4/00	0.32	19-2-FC-34	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-35 (0 - 1")	2/4/00	0.329	19-2-FC-35	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FÇ-36 (0 - 1")	2/4/00	0.202	19-2-FC-36	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-37 (0 - 2")	2/4/00	0.267	19-2-FC-37	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-2-FC-38 (0 - 8")	2/4/00	0.041	19-2-FC-38	CONCRETE FLOOR (UNPAINTED / UNSTAINED)

(Table 1 - continued)

Boliding 19 (3 ^{ro} Filtor	Consiele Sampl	es)		
EAB ID	SAMPLE	PCEs (ppm)	SAMPLE	SAMPLE MATERIAL
19-3-FC-1 (0 - 1")	2/4/00	0.91	19-3-FC-1	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-3-FC-2 (0 - 1")	2/4/00	0.179	19-3-FÇ-2	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-3-FC-3 (0 - 2")	2/4/00	0.032	19-3-FC-3	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-3-FC-4 (0 - 6")	2/4/00	1.64	19-3-FC-4	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-3-FC-5 (0 - 6")	2/4/00	0.030	19-3-FC-5	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-3-FC-6 (0 - 6")	2/4/00	0.038	19-3-FC-6	CONCRETE FLOOR (UNPAINTED / UNSTAINED)
19-3-FC-7 (0 - 5")	2/4/00	0.034	19-3-FC-7	CONCRETE FLOOR (UNPAINTED / UNSTAINED)

(Table 1 - continued)

Building 19 (Brick Wall Samples - All Floors)						
LABID	SAMPLE DATE	(9686 (ppm)	SAMPLE LOCATION	SAMPLE MATERIAL		
19-1-BW-1 (0 - 10")	2/8/00	0.204	19-1-BW-1	BRICK WALL (EAST WALL /)		
19-1-BW-2 (0 - 10")	2/8/00	3.7	19-1-BW-2	BRICK WALL (EAST WALL /)		
19-1-BW-3 (0 - 10")	2/8/00	0.226	19-1-BW-3	BRICK WALL (EAST WALL /)		
19-1-BW-4 (0 - 10")	2/8/00	3.35	19-1-BW-4	BRICK WALL (EAST WALL /)		
19-1-BW-5 (0 - 10")	2/8/00	0.141	19-1-BW-5	BRICK WALL (EAST WALL /)		
19-1-BW-6 (0 - 10")	2/8/00	0.43	19-1-BW-6	BRICK WALL (NORTH WALL /)		
19-1-BW-7 (0 - 10")	2/8/00	0.39	19-1-BW-7	BRICK WALL (NORTH WALL /)		
19-1-BW-8 (0 - 10")	2/8/00	0.33	19-1-BW-8	BRICK WALL (WEST WALL /)		
1 9 -1-BW-9 (0 - 10")	2/8/00	0.100	<u>19-1-BW-9</u>	BRICK WALL (WEST WALL /)		
19-1-BW-10 (0 -10")	2/8/00	0.097	19-1-BW-10	BRICK WALL (WEST WALL /)		
19-1-BW-11 (0 - 10")	2/8/00	0.222	19-1-BW-11	BRICK WALL (WEST WALL /)		
19-1-BW-12 (0 - 10")	2/8/00	0.89	19-1-BW-12	BRICK WALL (WEST WALL /)		
19-1-BW-13 (0 - 10")	2/8/00	1.29	19-1-BW-13	BRICK WALL (SOUTH WALL /)		
19-1-BW-14 (0 - 10")	2/8/00	0.73	19-1-BW-14	BRICK WALL (SOUTH WALL /)		
19-2-BW-1 (0 - 10')	2/8/00	0.46	19-2-BW-1	BRICK WALL (EAST WALL /)		
1 9-2-BW-2 (0 - 10")	2/8/00	0.63	19-2-BW-2	BRICK WALL (EAST WALL /)		
19-2-BW-3 (0 - 10')	2/8/00	0.119	19-2-BW-3	BRICK WALL (EAST WALL /)		
19-2-BW-4 (0 - 10")	2/8/00	0.75	19-2-BW-4	BRICK WALL (EAST WALL /)		
19-2-BW-5 (0 - 10")	2/8/00	1.10	19-2-BW-5	BRICK WALL (EAST WALL /)		
19-2-BW-6 (0 - 10")	2/8/00	0.31	19-2-BW-6	BRICK WALL (NORTH WALL /)		
1 9 -2-BW-7 (0 - 10")	2/8/00	0.080	19-2-BW-7	BRICK WALL (NORTH WALL /)		
19-2-BW-8 (0 - 10")	2/8/00	0.168	19-2-8W-8	BRICK WALL (WEST WALL /)		
19-2-8W-9 (0 - 10")	2/8/00	0.223	19-2-BW-9	BRICK WALL (WEST WALL /)		
19-2-BW-10 (0 - 10")	2/8/00	0.52	<u>19-2-BW-10</u>	BRICK WALL (WEST WALL /)		
19-2-BW-11 (0 - 10")	2/8/00	0.34	19-2-BW-11	BRICK WALL (WEST WALL /)		
19-2-BW-12 (0 - 10")	2/8/00	0.90	19-2-BW-12	BRICK WALL (WEST WALL /)		
19-2-BW-13 (0 - 10")	2/9/00	0.92	19-2-BW-13	BRICK WALL (SOUTH WALL /)		
19-2-BW-14 (0 - 10")	2/9/00	0.179	19-2-BW-14	BRICK WALL (SOUTH WALL /)		
19-3-BW-1 (0 - 10')	2/8/00	0.26	19-3-BW-1	BRICK WALL (NORTH WALL /)		
19-3-BW-2 (0 - 10")	2/9/00	0.32	19-3-BW-2	BRICK WALL (SOUTH WALL /)		

(Table 1 - continued)

Building 19(Steel Col	umn Wipe Samp	lesj		
Ľ N B (D	SAMPLE - DATE	PCB4 (ug/100°cm)	SAMPLE LOCATION	SAMPLE MATERIAL
19-CW-W1	2/8/00	3.1	19-CW-W1	PAINTED STEEL COLUMN (G10) - VERTICAL
19-CW-W2	2/8/00	2.2	19-CW-W2	PAINTED STEEL COLUMN (H8) - VERTICAL
19-CW-W3	2/8/00	0.46	19-CW-W3	PAINTED STEEL COLUMN (G6) - VERTICAL
19-CW-W4	2/8/00	0.42	19-CW-W4	PAINTED STEEL COLUMN (G4) - VERTICAL
19-CW-W5	2/8/00	0.41	19-CW-W5	PAINTED STEEL COLUMN (G2) - VERTICAL
19-CW-W6	2/8/00	0.64	19-CW-W6	PAINTED STEEL COLUMN (E2) - HORIZONTAL
19-CW-W7	2/8/00	4.28	19-CW-W7	PAINTED STEEL COLUMN (E3) - HORIZONTAL
19-CW-W8	2/8/00	0.68	19-CW-W8	PAINTED STEEL COLUMN (E4) - HORIZONTAL
19-CW-W9	2/8/00	0.45	19-CW-W9	PAINTED STEEL COLUMN (E5) - HORIZONTAL
19-CW-W10	2/8/00	1.2	19-CW-W10	PAINTED STEEL COLUMN (E6) - HORIZONTAL
19-CW-W11	2/8/00	1.26	19-CW-W11	PAINTED STEEL COLUMN (E7) - HORIZONTAL
19-CW-W12	2/8/00	0.81	19-CW-W12	PAINTED STEEL COLUMN (E8) - HORIZONTAL
19-CW-W13	2/8/00	ND	19-CW-W13	PAINTED STEEL COLUMN (E9) - HORIZONTAL
19-CW-W14	2/8/00	0.38	19-CW-W14	PAINTED STEEL COLUMN (E10) - HORIZONTAL
19-CW-W15	2/8/00	0.54	19-CW-W15	PAINTED STEEL COLUMN (E11) - HORIZONTAL
19-CW-W16	2/8/00	1.1	19-CW-W16	PAINTED STEEL COLUMN (E12) - HORIZONTAL
19-CW-W17	2/8/00	0.38	19-CW-W17	PAINTED STEEL COLUMN (C12) - VERTICAL
19-CW-W18	2/8/00	ND	19-CW-W18	PAINTED STEEL COLUMN (C10) - VERTICAL
19-CW-W19	2/8/00	ND	19-CW-W19	PAINTED STEEL COLUMN (C8) - VERTICAL
19-CW-W20	2/8/00	ND	19-CW-W20	PAINTED STEEL COLUMN (C6) - VERTICAL
19-CW-W21	2/8/00	ND	19-CW-W21	PAINTED STEEL COLUMN (C4) - VERTICAL
19-CW-W22	2/8/00	ND	19-CW-W22	PAINTED STEEL COLUMN (C2) - VERTICAL

(Table 1 - continued)

Building 19 (Appurtenance Wipe Samples)				
LABID	SAMPLE	PGBs (49/100*cm)	SAMPLE LOCATION	SAMPLE MATERIAL
19-AW-W1	2/9/00	ND	19-AW-W1	Side of Overhead Light (Unpainted Metal) - Vertical
19-AW-W2	2/9/00	ND	19-AW-W2	Top of Emergency Light (Painted Metal) - Horizontal
19-AW-W3	2/9/00	0.6	19-AW-W3	Top of Junction Box (Painted Metal) - Horizontal
19-AW-W4	2/9/00	ND	19-AW-W4	Top of Duct Vent (Painted Metal) - Horizontal
19-AW-W5	2/9/00	0.51	19-AW-W5	Top of Ceiling Air Fan (Painted Metal) - Horizontal
19-AW-W6	2/9/00	ND	19-AW-W6	Top of Switch Box (Painted Metal) - Horizontal
19-AW-W7	2/9/00	0.7	19-AW-W7	Top of Steel Cross Beam (Painted Steel) - Horizontal
19-AW-W8	2/9/00	ND	19-AW-W8	Top of Steel Water Pipe (Painted Steel) - Horizontal
19-AW-W9	2/9/00	0.77	19-AW-W9	Top of Lighting Electrical Box (Painted Metal) - Horizontal
19-AW-W10	2/9/00	ND	19-AW-W10	Side of Overhead Light (Unpainted Metal) - Vertical
19-AW-W11	2/9/00	ND	1 9-AW-W 11	Top of Emergency Light (Painted Metal) - Horizontal
19-AW-W12	2/9/00	ND	19-AW-W12	Top of Ceiling Air Fan (Painted Metal) - Horizontal
19-AW-W13	2/9/00	0.56	19-AW-W13	Top of Duct Vent (Painted Metal) - Horizontal
19-AW-W14	2/9/00	ND	19-AW-W14	Top of Switch Box (Painted Metal) - Horizontal
19-AW-W15	2/9/00	0.52	19-AW-W15	Top of Sprinkler Pipe (Painted Steel) - Horizontal
19-AW-W16	2/9/00	ND	1 9-A W-W16	Top of Emergency Light (Painted Metal) - Horizontal
19-AW-W17	2/9/00	1.19	19-AW-W17	Top of Junction Box (Painted Metal) - Horizontal
19-AW-W18	2/9/00	1.12	19-AW-W18	Top of Steel Roof Trestle (Painted Steel) - Horizontal
	2/9/00	3.2	19-AW-W19	Top of Steel Roof Trestle (Painted Steel) - Horizontal
19-AW-W20	2/9/00	0.63	19-AW-W20	Side of Overhead Light (Unpainted Metal) - Vertical
19-AW-W21	2/9/00	1.48	19-AW-W21	Top of Jib Crane Bracket (Unpainted Steel) - Horizontal
19-AW-W22	2/9/00	0.34	19-AW-W22	Top of Dry Type Transformer (Painted Metal) - Horizontal
19-AW-W23	2/9/00	0.34	19-AW-W23	Top of Duct Vent (Painted Metal) - Horizontal
19-AW-W24	2/9/00	0.82	19-AW-W24	Top of Switch Box (Painted Metal) - Horizontal
19-AW-W25	2/9/00	0.43	19-AW-W25	Top of Emergency Light (Painted Metal) - Horizontal
19-AW-W26	2/9/00	0.5	19-AW-W26	Top of Sprinkler Pipe (Painted Steel) - Horizontal
19-AW-W27	2/9/00	0.9	19-AW-W27	Top of Ceiling Air Fan (Painted Metal) - Horizontal
19-AW-W28	2/9/00	ND	19-AW-W28	Top of Switch Box (Painted Metal) - Horizontal
19-AW-W29	2/9/00	0.6	19-AW-W29	Top of Steel Roof Trestle (Painted Steel) - Horizontal
19-AW-W30	2/9/00	ND	19-AW-W30	Side of Overhead Light (Unpainted Metal) - Vertical
19-AW-W31	2/9/00	0.7	19-AW-W31	Top of Sprinkler Pipe (Painted Steel) - Horizontal
19-AW-W32	2/9/00	ND	19-AW-W32	Top of Emergency Light (Painted Metal) - Horizontal
19-AW-W33	2/9/00	ND	19-AW-W33	Top of Duct Vent (Painted Metal) - Horizontal
19-AW-W34	2/9/00	0.97	19-AW-W34	Top of Celling Air Fan (Painted Metal) - Horizontal
19-AW-W35	2/9/00	0.3	19-AW-W35	Top of Junction Box (Painted Metal) - Horizontal
19-AW-W36	2/9/00	0.36	19-AW-W36	Top of Junction Box (Painted Metal) - Horizontal

(Table 1 - continued)

Building 19 (Interior R	oor <i>i</i> Ceiling W	pe Samples)		
LAE'ID	SAMPLE DATE	PCBs (ug/100fcm)	SAMPLE -	SAMPLE MATERIAL
19-IRW-W1	2/10/00	ND	19-IRW-W1	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W2	2/10/00	ND	19-IRW-W2	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W3	2/10/00	ND	19-1RW-W3	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W4	2/10/00	ND	19-IRW-W4	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W5	2/10/00	ND	19-IRW-W5	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W6	2/10/00	ND	19-IRW-W6	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W7	2/10/00	ND	19-IRW-W7	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W8	2/10/00	ND	19-IRW-W8	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W9	2/10/00	1.1	19-IRW-W9	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W10	2/10/00	ND	19-IRW-W10	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W11	2/10/00	ND	19-IRW-W11	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W12	2/10/00	ND	19-IRW-W12	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W13	2/10/00	ND	19-IRW-W13	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W14	2/10/00	ND	19-IRW-W14	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W15	2/10/00	ND	19-IRW-W15	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W16	2/10/00	0,52	19-IRW-W16	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W17	2/10/00	ND	19-IRW-W17	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W18	2/10/00	ND	19-IRW-W18	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W19	2/10/00	0.63	19-IRW-W19	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W20	2/10/00	ND	19-IRW-W20	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W21	2/10/00	ND	19-IRW-W21	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W22	2/10/00	ND	19-IRW-W22	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W23	2/10/00	ND	19-IRW-W23	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W24	2/10/00	ND	19-IRW-W24	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W25	2/10/00	ND	19-IRW-W25	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W26	2/10/00	1.1	19-IRW-W26	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W27	2/10/00	ND	19-IRW-W27	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W28	2/10/00	ND	19-IRW-W28	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W29	2/10/00	ND	19-IRW-W29	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W30	2/10/00	1.7	19-IRW-W30	Interior Roof / Celling (Painted Metal) - Horizontal
19-IRW-W31	2/10/00	ND	19-IRW-W31	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W32	2/10/00	ND	19-IRW-W32	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W33	2/10/00	ND	19-IRW-W33	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W34	2/10/00	ND	19-IRW-W34	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W35	2/10/00	ND	19-IRW-W35	Interior Roof / Ceiling (Painted Metal) - Horizontal
19-IRW-W36	2/10/00	1.2	19-IRW-W36	Interior Roof / Ceiling (Painted Metal) - Horizontal

(Table 1 - continued)

Building 49 (Grane / C	rane Ralls Wipe	Samples)		
LABID	SAMPLE DATE	PCBs (ug/400*cm)	SAMPLE LOCATION	SAMPLE MATERIAL
19-CRANE-1-W1	2/10/00	5.6	19-CRANE-1-W1	Top of North Crane Beam (Painted Steel) - Horizontal
19-CRANE-1-W2	2/10/00	3.0	19-CRANE-1-W2	Top of North Crane Beam (Painted Steel) - Horizontal
19-CRANE-1-W3	2/10/00	0.71	19-CRANE-1-W3	Top of North Crane Beam (Painted Steel) - Horizontal
19-CRANE-1-W4	2/10/00	ND	19-CRANE-1-W4	Top of South Crane Beam (Painted Steel) - Horizontal
19-CRANE-1-W5	2/10/00	ND	19-CRANE-1-W5	Top of South Crane Beam (Painted Steel) - Horizontal
19-CRANE-1-W6	2/10/00	1.58	19-CRANE-1-W6	Top of South Crane Beam (Painted Steel) - Horizontal
19-CRANE-2-W1	2/10/00	12.1	19-CRANE-2-W1	Top of North Crane Beam (Painted Steel) - Horizontal
19-CRANE-2-W2	2/10/00	8.0	19-CRANE-2-W2	Top of North Crane Beam (Painted Steel) - Horizontal
19-CRANE-2-W3	2/10/00	3.4	19-CRANE-2-W3	Top of North Crane Beam (Painted Steel) - Horizontal
19-CRANE-2-W4	2/10/00	10.9	19-CRANE-2-W4	Top of South Crane Beam (Painted Steel) - Horizontal
19-CRANE-2-W5	2/10/00	9.1	19-CRANE-2-W5	Top of South Crane Beam (Painted Steel) - Horizontal
19-CRANE-2-W6	2/10/00	6.7	19-CRANE-2-W6	Top of South Crane Beam (Painted Steel) - Horizontal
19-RAIL-1-W1	2/10/00	6.5	19-RAIL-1-W1	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-1-W2	2/10/00	2.23	19-RAIL-1-W2	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-1-W3	2/10/00	8.2	19-RAIL-1-W3	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-2-W1	2/11/00	52.	19-RAIL-2-W1	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-2-W2	2/11/00	29.6	19-RAIL-2-W2	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-2-W3	2/11/00	33.9	19-RAIL-2-W3	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-3-W1	2/11/00	4.1	19-RAIL-3-W1	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-3-W2	2/11/00	2.4	19-RAIL-3-W2	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-3-W3	2/11/00	6.6	19-RAIL-3-W3	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-4-W1	2/10/00	1.90	19-RAIL-4-W1	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-4-W2	2/10/00	3.0	19-RAIL-4-W2	Top of Crane Rail (Painted Steel) - Horizontal
19-RAIL-4-W3	2/10/00	12.1	19-RAIL-4-W3	Top of Crane Rail (Painted Steel) - Horizontal

(Table 1 - continued)

Building 19 (Crane Oi)	Samples).			
LABID.	SAMPLE- DATE	PG8s (ppm)	SAMPLE	SAMPLE MATERIAL
19-CRANE-1-OIL-1	2/11/00	12.	19-CRANE-1-OIL-1	Trolley Chassis - (Gear Oil)
19-CRANE-2-OIL-1	2/11/00	ND	19-CRANE-2-OIL-1	Main Trolley Gear Box - (Gear Oil)

(Table 1 - continued)

Building 19 QA/QC Sa	Building 19 QA/QC Samples (Concrete Floors)						
LABID	SAMPLE DATE	PGBs (ppm)	BEIND DUPLICATE SAMPLE ID	SAMPLE MATERIAL / DESCRIPTION			
19-FC-RB1	1/25/00	ND (ppb)		EQUIPMENT RINSE BLANK			
19-FC-RB2	1/26/00	ND (ppb)		EQUIPMENT RINSE BLANK			
19-FC-RB3	1/27/00	0.0022 (ppb)		EQUIPMENT RINSE BLANK			
19-FC-RB4	1/28/00	0.0244 (ppb)		EQUIPMENT RINSE BLANK			
19-FC-RB5	2/4/00	ND (ppb)		EQUIPMENT RINSE BLANK			
19-FC-D1	1/26/00	33. / 38.	19-1-FC-21 (0 - 11")	19-1 CONCRETE FLOOR			
19-FC-D2	1/27/00	0.054 / 0.049	19-1-FC-38 (0 - 17")	19-1 CONCRETE FLOOR			
19-FC-D3	1/27/00	0.14/0.17	19-1-FC-57 (0 - 16")	19-1 CONCRETE FLOOR			
19-FC-D4	2/4/00	0.143/0.1	19-2-FC-4 (0 - 8")	19-2 CONCRETE FLOOR			
19-FC-D5	2/4/00	ND / ND	19-2-FC-25 (0 - 7')	19-2 CONCRETE FLOOR			
19-FC-D6	2/4/00	0.033 / 0.038	19-3-FC-6 (0 - 6')	19-3 CONCRETE FLOOR			
19-1-FC-21 (0 - 11")	1/26/00	NA		MS / MSD			
19-1-FC-38 (0 - 17")	1/27/00	NA		MS / MSD			
19-1-FC-57 (0 - 16")	1/27/00	NA		MS / MSD			
19-2-FC-4 (0 - 8")	2/4/00	NA		MS / MSD			
19-2-FC-25 (0 - 7")	2/4/00	NA		MS / MSD			
19-3-FC-6 (0 - 6")	2/4/00	NA		MS / MSD			
Bolling 19 CAJCE San	npies/(Mood Sc	6-Floisles)					
	SAMPLE DATE	(jpm)	BLIND DUPLICATE SAMPLE ID	SAMPLE MATERIAL / DESCRIPTION			
19-WS-RB1	2/2/00	0.000026 (ppb)		EQUIPMENT RINSE BLANK			
19-WS-RB2	2/14/00	ND		EQUIPMENT RINSE BLANK			
19-WS-D1	2/2/00	2.9 / 1.73	19-2-WS-5 (0 - 2.5")	19-2 WOOD SUB-FLOOR			
19-WS-D2	2/14/00	0,234 / 0.13	19-2-WS-25 (0 - 2.5")	19-2 WOOD SUB-FLOOR			
19-2-WS-6 (0 - 2.5")	2/2/00	NA		MS / MSD			
19-2-WS-24 (0 - 2.5")	2/14/00	NA		MS / MSD			
Eulidine (19/0A)/06(San	iples (Briek Wa						
LABID	SAMPLE DATE	PGBs (ppm)	BUND DUPLICATE SAMPLE ID	SAMPLE MATERIAL I DESCRIPTION			
19-BW-RB1	2/8/00	ND (ppb)		EQUIPMENT RINSE BLANK			
19-BW-RB2	2/9/00	ND (ppb)		EQUIPMENT RINSE BLANK			
19- BW- D1	2/8/00	0.79 / 1.10	19-2-BW-5 (0 - 10")	19-2 BRICK WALL			
19-BW-D2	2/8/00	0.183 / 0.26	19-3-BW-1 (0 - 10")	19-3 BRICK WALL			
19-2-BW-5 (0 - 10')	2/8/00	NA		MS / MSD			
19-3-BW-1 (0 - 10")	2/8/00	NA	· · · · · · · · · · · · · · · · · · ·	MS / MSD			

(Table 1 - continued)

Building 19 DA/OC S	amples (Smel.Co	iluma Wipes).		
CAB ID	SAMPLE	PCB6 (U0/100fcm)	BLIND DUPLICATE SAMPLE ID	SAMPLE MATERIAL / DESCRIPTION
FIELD-BLANK-1	2/8/00	ND		HEXANE SOAKED GAUZE PAD
SPIKED-WIPE-1	2/8/00			DRY GAUZE PAD
Building 19 0A(ac. S.	imples Appune	cance Wipes)		
LAGID	SAMPLE	PGBs (uo)/100°cm)	BLIND DUPLICATE	SAMPLE MATERIAL /
FIELD-BLANK-1	2/9/00	ND		HEXANE SOAKED GAUZE PAD
SPIKED-WIPE-1	2/9/00			DRY GAUZE PAD
Ethialing (9:0).voicesa	mples (Colling)	lmenter Root V	(f. 5.) R	
LAB ID	SAMPLE DATE	Pitter (uglibicem)	BLIND DOPLICATE SAMPLE ID	SANPLE MATERIAL 7 DESCRIPTION
FIELD-BLANK-1	2/10/00	ND		HEXANE SOAKED GAUZE PAD
SPIKED-WIPE-1	2/10/00			DRY GAUZE PAD
Building (9) GAURIC Sa	mples (Oranies /	Staine Ralls Wi	pasj	
LABID	SAMPLE	(PCB) (UQ/100fcm)	ELINEI DUPLICATE SAMPLE ID	SAMPLE WATERIAL I IDESCRIPTION
FIELD-BLANK-2	2/10/00	ND		HEXANE SOAKED GAUZE PAD
SPIKED-WIPE-2	2/10/00			DRY GAUZE PAD
FIELD-BLANK-1	2/11/00	ND.		HEXANE SOAKED GAUZE PAD
SPIKED-WIPE-1	2/11/00			DRY GAUZE PAD

July/August 2000 Sampling Event

					•		•			•
Sample ID	, (feet)	Collected	Aroclor-1016	Aroclor-1221	A moclor-1737					
19-PC-I	NA	1/27/00:	(0'1)QN	ND(1.0)	NDVI ON	Arocior-1242	. Aroclar-1248	Arocior-1254	Aroclor-1260	Total PCBs
19-PC-2	NA	· 1/27/00 ·	ND(1.0)		VER AND	(h'I)(N)	(0.1)ON	9.3.	10	19.3
19-PC-3	. AN	. 1/27/00.	ND(1.0)	ND(10)	(0.1) (1.0)	ND(1.0)	(0.1)CIN	5.9.	7.5	13.4
19-PC-4	NA	7/27/00	ND(1.0)	10 L/CIN		ND(1:0)	(0'T)(GN	5.0 · · ·	8.2.	[3.2
19-PC-5	NA	7/27/00	ND(1.0)	ND(10)	ND/1 ND	(0.1)UN	ND(1.0)	6.3	6.4	12.7
19-PC-6	NA	. 7/27/00	ND(2.0) [ND(2.0)]	IND CATHOL ON CATHOL	NDCI AN AND AN	0.1	ND(1.0)	12	13	26
19-PC-7	NA	. 7/28/00	ND(9.8)		In The NTY of the	(0.2)0) [ND(2.0)]	ND(2.0) (ND(2.0)]	22 [18]	30 [28]	52 [46]
19-PC-8	NA.	7/28/00	ND(4.0)	ND(A (N	The start of	ND(9.8)	i ND(9,8)	31	37	68
19-PC-9	NA	. 7/28/00	ND(2.0)	ND(2-0)	NU(4.0)	ND(4.0)	ND(4.0)	16	15.	31
19-PC-10	NA:	7/28/00	ND(3.7)	ND(3.7)	NTN(2,0)	(0'Z)QN	ND(2.0)	16	16.	32
19-PC-11	NA	: 7/28/00.	ND(3.9)	(0.5)CIN		ND(3.7)	ND(3.7)	38	. 99	104
19-PC-12	NA	1/28/00	ND(1.9)	ND(1.9)	(C.C.)AV	NU(3.9)	ND(3.9)	24	63	87
19-PC-13	NA	7/28/00	ND(2.0)	ND(2) ON	(CIT)CIT	(6.1)UN	ND(1.9)	20	26	46
19-PC-14	NA	7/28/00	ND(0.98)	ND/0 08/		ND(2.0)	ND(2.0)	10	20	30
19-PC-15	NA	. 7/28/00.	ND(3.6)	ND(3.6)	(96'0)AN	ND(0.98)	ND(0.98)	10	1	21
19-PC-16	NA	7/28/00	ND(8.6)	ND/8 6)	(0.5)UN	ND(3.6)	ND(3.6)	58	100	158
19-FC-73	. 0-0.5	7/31/00	ND(0.033):	VER OTTA	111(6.0)	ND(8.6)	ND(8.6)	110	120	230
19-FC-74	0-0.5	7/31/00.	ND(0.033)	ND/0 0231	(cc0.0)UN	ND(0.033)	ND(0.033)	ND(0.033)	0.18	0.18
19-FC-75	. 0.0 .		ND(0.033)	VIDIO 0221	(1010) (1010) (1010)	ND(0.033)	ND(0.033)	0.11	0.12	0.23
19-FC-76	. 0-0.5	. 7/31/00.	ND(0.033)	(CCO.V)CM	ND(0.033)	ND(0.033)	ND(0.033)	0.048	0.063	1110
19-FC-77	0-0-2	- 00/12/2	ND(0.033)	(CEO.O)CIV	NU(0:035)	ND(0.033)	ND(0.033)	0.026 J	0.065	100.0
19-FC-78:	5.0-0	00/16/2	ND(0:033)	· NDO 6331	ND(0.033)	ND(0.033)	ND(0.033)	0.070	0.070	0.140
19-FC-79	. 0-0.5.	00/16//	ND(0.033)	ND(0.033)	-(CCU-V)U/1	ND(0.033)	ND(0.033)	0.060	0.06]	0.121
19-FC-80	. 5-0-0 :	00/1E//	ND(0.033)	ND/0 0331		ND(0.033)	ND(0.033)	ND(0.033)	0.037	0.037
19-FC-81	0-0.5		ND(0.033) (ND(0.033)1	ND(0.033) (ND(0.033)	VICTO VICTO VICTO	ND(0.033)	ND(0.033)	0.083:	0.11	0.193
19-FC-82	0-0.5	8/1/00 : 1	(EE0,0)CM	ND(0.033)	((CEN.N)AN) (CEN.N)AN	((550.0)(UN) (SCU.0)(UN)	((EE0.0)QN) (EE0.0)QN	0.054 [0.049]	0.092 [0.078]	0.146 [0.127]
19-FC-83	. 0-0.5	8/1/00	ND(0.033)	ND(0,033)	NDX0 0221	(550.0)001	(EE0.0XUN	0,13	0.18	0.31
19-EC-84	. 0-0.5	.00/1/8	ND(0.033)	ND/0.0331	(LEUNDATA		ND(0.033)	0.074	0.068	0.142
19-FC-85	0-0.5	8/1/00	ND(0,033)	ND(0.033)	VICCO-VICK	NU(0:035)	ND(0:033)	0.086	0.10	0.186
19-FC-86	0-0.5	8/1/00	ND(0.035)	(EE0.0)CIV	(ECO.D)CIV	ND(0:035)	ND(0.033)	0.026 J	0.024 J	0.050 J
19-FC-87	0-0.5	. 8/1/00	ND(0.033)	ND(0.033)	ND/0 033)		ND(0.033)	0.14	0.13	0.27
19-FC-88	0-0.5	8/1/00	ND(0.033)	ND(0,053)	NTD/0.0331	(500,000)	ND(0.023)	0.018 J	0.024 J	0.042 J
19-FC-89	0-0.5	8/1/00	ND(0.033)	ND(0,033)	(CTO'O)CH	NL(U.U33)	ND(0.033)	0.048	0.081	0.129
					1	(כנטיט)עמ	ND(0.033)	13	14	27
Notes:			· · · ·							

<u>Notes:</u> 1. Samples were collected by Blasiand, Bouck & Lee. Inc. and submitted to CT&E Environmental Services, Inc. for analysis of PCI

ċ.

ND · Analyte was not detected. The value \hat{m} barentheists is the associated detection limit.

quantitation limit (PQL) $A_{...}$ is findicates an estimated value less than the practical Field duplicate results are presented in brackets.

sectmonthly 08 00 P

f:\tilexchuidiv [3

۰.

BUILDING MATERIAL PCB DATA RECEIVED DURING AUGUST 2000 (Results are presented in dry-weight parts per million, ppm)

. .

EAST STREET AREA 1 - NORTH BUILDING 19 PEDA SAMPLING

•••

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

TABLE 5-3

8-16/00

HUU-10-2000 14.	00				DI F.03/03
•	1730333200000	السيدر	•		
	8			• • •	• • • • • • • •
	Total PCBs ND(1.0)	(0.1) (0.1)	· · · ·	· .	g
· ·	0tal PC) ND(1.0)	Ĕ		· · · · ·	8/,16/00
•	D Z	Z		• . •	ες S
· · ·					· · ·
· .				• ,	
	Aroclor-1260 ND(1.0)				·
· · ·	oclor-12 ND(1.0)	(01) (01) (01)			
	3 Z	2			
, ·	¥				
			· · ·	· ·	
· · · · ·			· · · · ·		•
	Aroclor-1254 ND(1_0)	2			· · ·
	roclor-125 ND(1.0)			· .	
· · · ·	D S C	2	· ·	• • •	
	¥ .		· .	· · ·	•
					• •
O		S.	·. ·	· ·	
GENERAL ELECTRIC COMPANY PITTSFIELD, MÁSSACHUSETTS EAST STREET AREA 2 - NORTH BUILDING 19 PEDA SAMPLING PLE PCB DATA RECEIVED DURING AUGUST 2000	Aroclor-1248 ND(1.0) ND(1.0)	to CT&E Environmental Services, Inc. for analysis of PCBs.			•
15	oclor-12 ND(1.0) ND/1 0)	ofI			
50	ND SC	sis			•
ă,	¥ l	lac			•
X E H O O	~ -				
PAI TRT TRT TRT	ared to Jg/wipe Aroclor-1242 ND(1.0)	¥¥ ₹			
	24	L L	•		
VE 249	геа ца нау roclor-124 ND(1.0) ND(1.0)	Ces			
UC EA IVE		ervi		. •	
CED AR	A1	als		· · ·	õ
RE SP		ent		•	۲ د
GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS EAST STREET AREA 2 - NORTH BUILDING 19 PEDA SAMPLING 2 PCB DATA RECEIVED DURING	Accourts are presented in µg/wipe) rocior-1232. Arocior-1242 ND(1.0) ND(1.0)	it nu	•		Page 1 of
DA DIN	(Acceler-1232 ND(1.0) ND(1.0)	lin vir		•	· .
LIS ISI	(Accurate octor-122 ND(1.0)	E E			• • •
EA EA	e ezzz	Elo K			· · ·
	· •	G G	·* .	• •	
		d to iate		· ·	•
SA	7	soc			•
WIPE SAN	2 00	c a:			
A A A A A A A A A A A A A A A A A A A	ocior-12 ND(1.0) ND(1.0)	s th	· .· .		
	Arocior-1221 ND(1.0) ND(1.0)	iss is	. · · ·		·
•	∀	Inc			
	╟╼╌┨╍┼╴┤	ຮູ້ມີ			•
• •	12	l pa 1 pa		•	• • •
• •	ିକ୍ ଚିଚି	y in the second s			xis
· · ·	Aroclor-1016 ND(1.0) ND(1.0)	otes: Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to CT&E Environn ND - Analyte was not detected. The value in parentheses is the associated detection limit.			fi'fflexchg\div18`ge\monthJy\08_000.Plant.xis
• •	ŢŗġZŻ	he			Idw
	<	T			8 I
· · · ·	╟──┨─┼╌╢	Bla	•	· · · ·	80
	- T	by etec			th Jy
•	Date Collected 8/1/00 8/1/00	ot d d	•	• •	Jon
· · ·		is n	•		Б. Э.
· . ·		× co		• .	80 19
		vere lyte		•	- F
• .		Lna)	· .		ង្គ្រ
· .	-32 -32	npik A			. D
	Sample ID 19-FW-31 19-FW-32	Sa Sa		•	ιų.
• • • • •	19- S	Notes: 1. San 2. ND		· . · .·	ب ت ا
	(استاد می در در این			· .	•
					, , ,
			· .		
UG 16 100 14:57			. 715	115 0161	TOTAL P.03

BBEPC 2ND FL ENG

AUG-16-2000 14:56

•

. . .

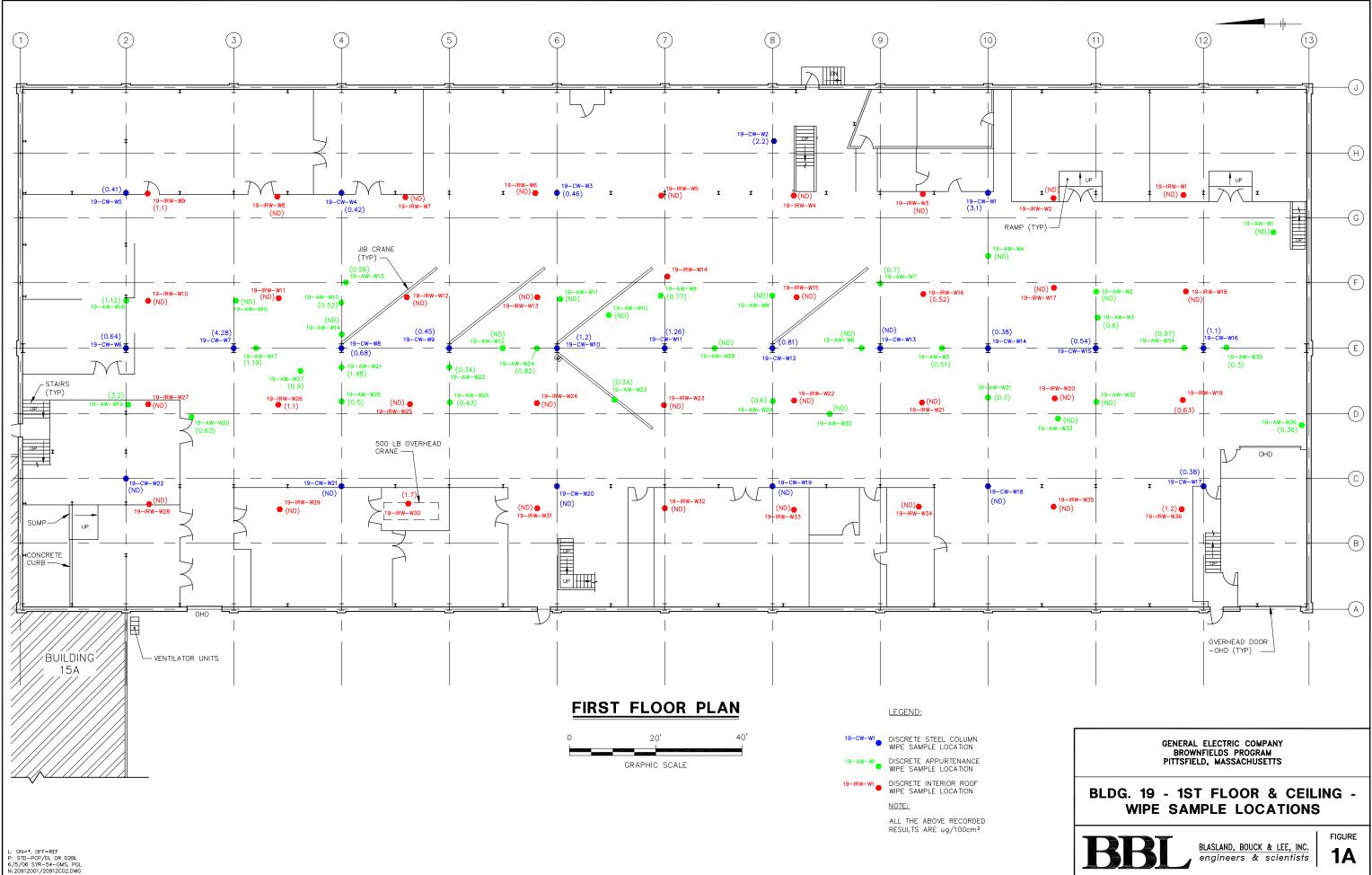
.

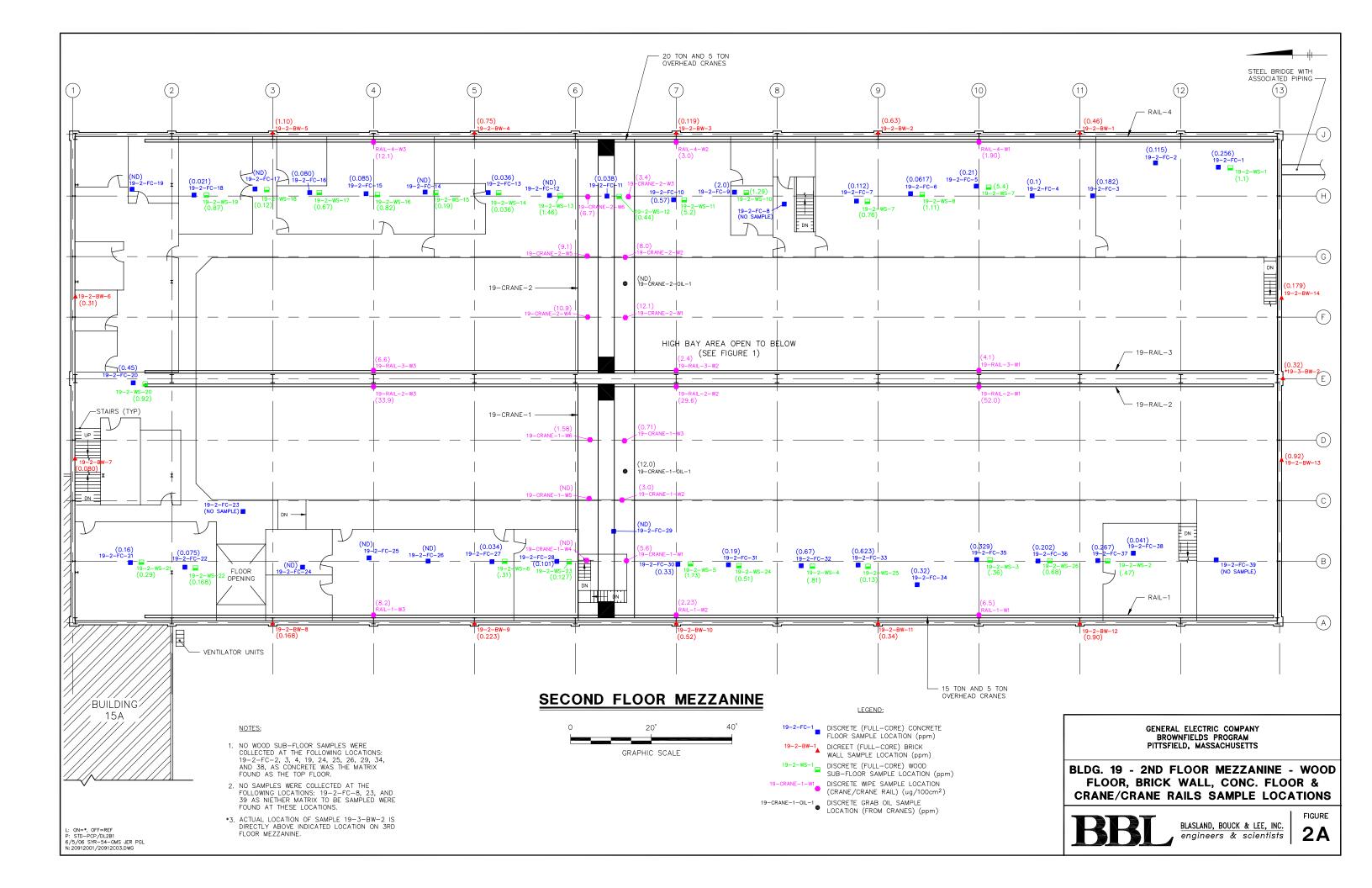
:

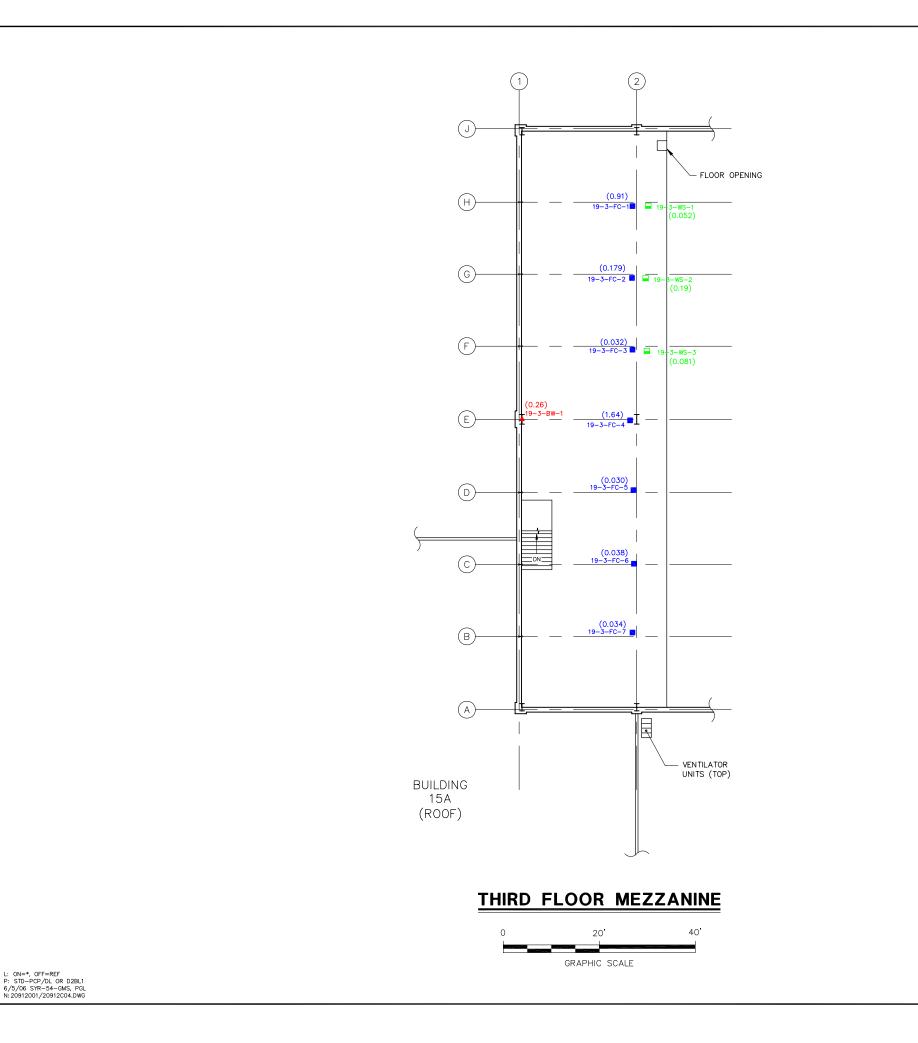
· · ·

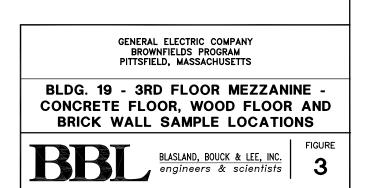
• •

:

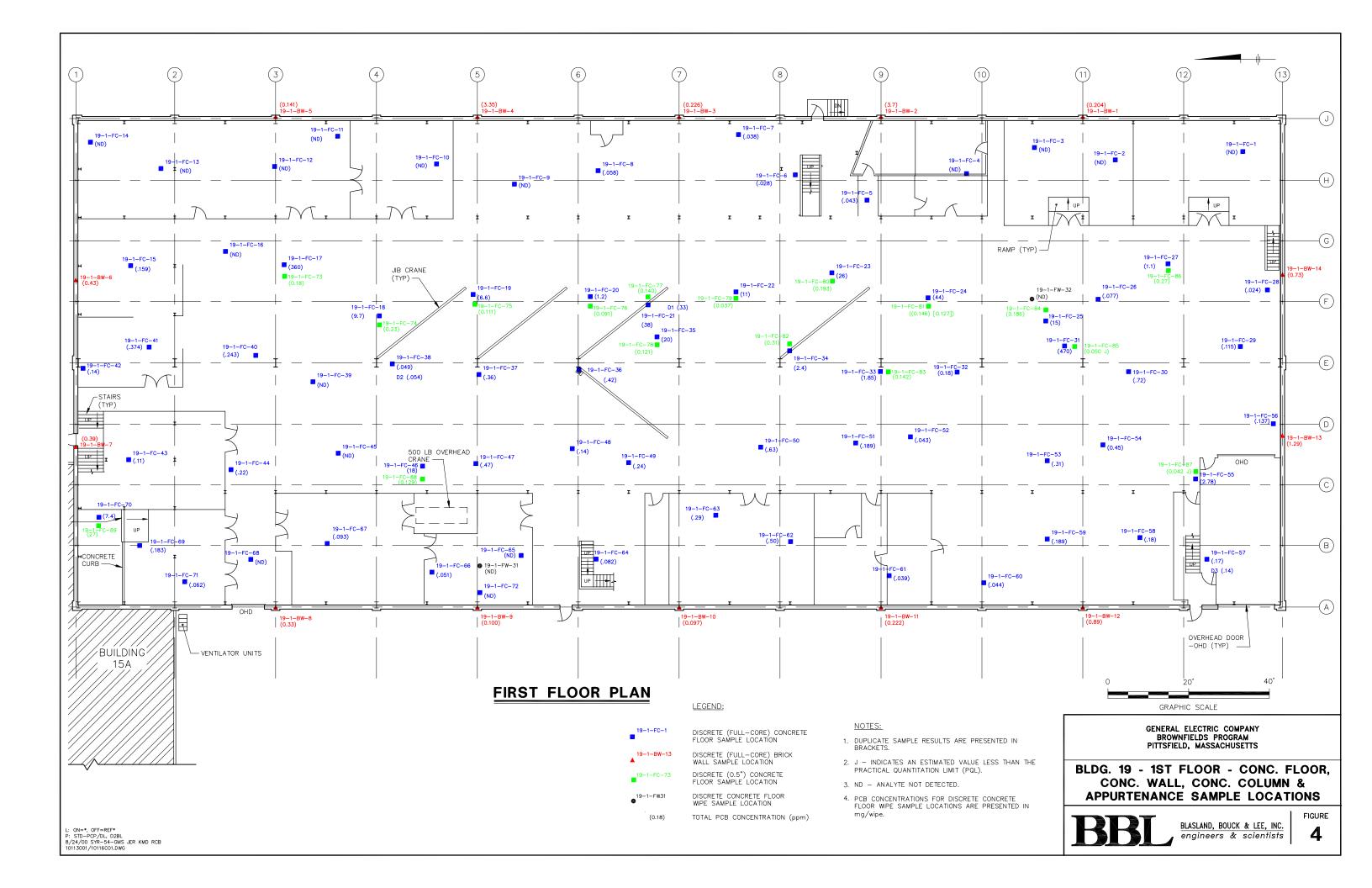

· · : :

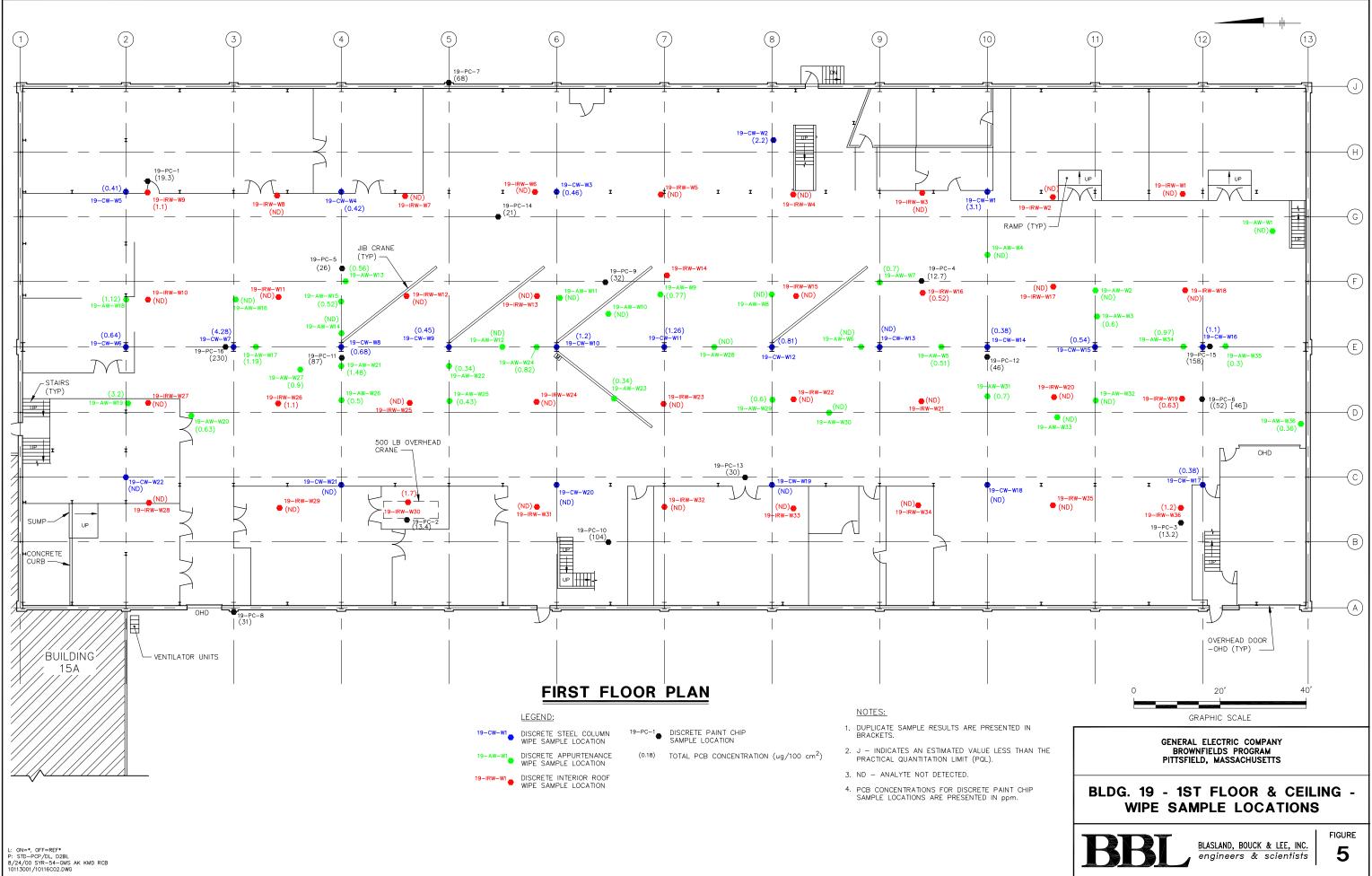

. .


. .


500C 07

315 445 9161 P.03/03




1. NO WOOD SUB-FLOOR SAMPLES WEREW COLLECTED AT THE FOLLOWING LOCATIONS: 19-3-FC-4, 5, 6 OR 7 AS CONCRETE WAS THE MATRIX FOUND AS THE TOP FLOOR.

2. ALL SAMPLE RESULTS ARE REPORTED AS

ppm.

- NOTES:
- DISCRETE (FULL-CORE) CONCRETE FLOOR SAMPLE LOCATION ▲^{19-3-BW-1} DICREET (FULL-CORE) BRICK WALL SAMPLE LOCATION □ DISCRETE (FULL-CORE) WOOD SUB-FLOOR SAMPLE LOCATION
- LEGEND:

Attachment 3

Data Validation Report

ATTACHMENT 3 DATA VALIDATION REPORT SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

1.0 General

This appendix summarizes the Tier I and Tier II data reviews performed for building material samples collected during supplemental investigation activities conducted at the East Street Area 2 – North Removal Action Area (RAA) located in Pittsfield, Massachusetts. The samples were analyzed for various constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents -- benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3), by SGS Environmental Services, Inc. (formerly CT&E) of Charleston, West Virginia. Data validation was performed for 28 polychlorinated biphenyl (PCB) samples, 26 volatile organic compound (VOC) samples, 24 semi-volatile organic compound (SVOC) samples, and 24 metals samples.

2.0 Data Evaluation Procedures

This attachment outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland, Bouck & Lee, Inc. (BBL; FSP/QAPP, approved May 25, 2004 and resubmitted June 15, 2004);
- Region I Tiered Organic and Inorganic Data Validation Guidelines, USEPA Region I (July 1, 1993);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, USEPA Region I (June 13, 1988) (Modified February 1989);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (February 1, 1988) (Modified November 1, 1988); and
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (Draft, December 1996).

A tabulated summary of the Tier I and Tier II data evaluations is presented in Table 3-1. Each sample subjected to evaluation is listed in Table 3-1 to document that data review was performed, as well as present the highest level of data validation (Tier I or Tier II) that was applied. Samples that required data qualification are listed separately for each parameter (compound or analyte) that required qualification.

The following data qualifiers were used in this data evaluation.

J The compound was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound is detected at an estimated concentration less than the corresponding practical quantitation limit (PQL).

- U The compound was analyzed for, but was not detected. The sample quantitation limit is presented and adjusted for dilution and (for solid samples only) percent moisture. Non-detect sample results are presented as ND(PQL) within this report and in Table 3-1 for consistency with documents previously prepared for investigations conducted at this RAA.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is estimated and may or may not represent the actual level of quantitation. Non-detect sample results that required qualification are presented as ND(PQL) J within this report and in Table 3-1 for consistency with documents previously prepared for investigations conducted at this RAA.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purpose.

3.0 Data Validation Procedures

The FSP/QAPP provides (in Section 7.5) that all analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (USEPA guidelines). Accordingly, 100% of the analytical data for these investigations were subjected to Tier I review. The Tier I review consisted of a completeness evidence audit, as outlined in the *USEPA Region I CSF Completeness Evidence Audit Program* (USEPA Region I, 7/31/91), to ensure that all laboratory data and documentation were present. In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with the USEPA Region I Tier I data completeness requirements.

As specified in the FSP/QAPP, approximately 25% of the laboratory sample delivery group packages were randomly chosen to be subjected to Tier II review. A Tier II review was also performed to resolve data usability limitations identified from laboratory qualification of the data during the Tier I data review. The Tier II data review consisted of a review of all data package summary forms for identification of quality assurance/quality control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. Due to the variable sizes of the data packages and the number of data qualification issues identified during the Tier I review, all of the data were subjected to a Tier II review. The Tier II review resulted in the qualification of data for several samples due to minor QA/QC deficiencies. Additionally, all field duplicates were examined for relative percent difference (RPD) compliance with the criteria specified in the FSP/QAPP. A tabulated summary of the samples subjected to Tier I and Tier II data evaluation is presented in the following table.

		Tier I Only			Tier I & Tier	r II	
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
PCBs	0	0	0	24	1	3	28
VOCs	0	0	0	20	2	4	26
SVOCs	0	0	0	20	2	2	24
Metals	0	0	0	20	2	2	24
Cyanide/Sulfide	0	0	0	0	0	2	2
Total	0	0	0	84	7	13	104

Summary of Samples Subjected to Tier I and Tier II Data Validation

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in USEPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented below for each analytical method.

4.0 Data Review

The initial calibration criterion for SVOCs analyses requires that the average relative response factor (RRF) has a value greater than 0.05. Sample results were qualified as estimated (J) when this criterion was not met. The compound that did not meet the initial calibration criterion and the number of samples qualified are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs	Safrole	24	J

Compound Qualified Due to Initial Calibration Deviations (RRF)

Continuing calibration criterion for VOCs and SVOCs analysis requires that the continuing calibration RRF have a value greater than 0.05. Sample data for detect and non-detect compounds with RRF values greater than 0.05 were qualified as estimated (J). The compounds that did not meet the continuing calibration criterion and the number of samples qualified due to those exceedences are presented in the following table.

Compo	Julius Qualified Due to Continuin	ing Campration Deviations	(KKF)
Analysis	Compounds	Number of Affected Samples	Qualification
VOCs	1,4-Dioxane	4	J
	Acetonitrile	3	J
SVOCs	4-Nitroquinoline-1-oxide	15	J

Compounds Qualified Due to Continuing Calibration Deviations (RRF)

Several of the VOCs and SVOCs compounds (including the compounds presented in the above tables detailing RRF deviations) exhibit instrument response factors (RFs) below the USEPA Region I minimum value of 0.05, but meet the analytical method criterion which does not specify minimum RFs for these compounds. These compounds were analyzed by the laboratory at a higher concentration than the compounds that normally exhibit RFs greater than the USEPA Region I minimum value of 0.05 in an effort to demonstrate acceptable response. USEPA Region I guidelines state that non-detect compound results associated with a RF less than the minimum value of 0.05 are to be rejected (R). However, in the case of these select organic compounds, the RF is an inherent problem with the current analytical methodology; therefore, the non-detect sample results were qualified as estimated (J).

The initial calibration criterion for SVOCs requires that the percent relative standard deviation (%RSD) must be less than or equal to 30%. Sample data for detect and non-detect compounds with %RSD values greater than 30% were qualified as estimated (J). The compound that exceeded the initial calibration criterion and the number of samples qualified due those exceedances are presented in the following table.

Compound Qualified Due to Initial Calibration %RSD Deviations

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs	Hexachlorophene	24	J

The continuing calibration criterion requires that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF for VOCs and SVOCs be less than 25%. Sample data for detect and non-detect compounds with %D values that exceeded the continuing calibration criteria were qualified as estimated (J). A summary of the compounds that exceeded the continuing calibration criterion and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Compounds Qualified Due to Continui	Number of Affected Samples	Qualification
VOCs	Acetone	2	J
	Acetonitrile	1	J
	Acrolein	1	J
	Acrylonitrile	1	J
	Chloroethane	1	J
	Chloromethane	2	J
	Dichlorodifluoromethane	1	J
	Iodomethane	1	J
	Isobutanol	1	J
	Propionitrile	1	J
SVOCs	1,3,5-Trinitrobenzene	17	J
	1,3-Dinitrobenzene	20	J
	1,4-Naphthoquinone	20	J
	1-Naphthylamine	7	J
	2,3,4,6-Tetrachlorophenol	20	J
	2,4-Dinitrophenol	5	J
	2-Acetylaminofluorene	1	J
	2-Nitroaniline	17	J
	2-Nitrophenol	7	J
	4-Aminobiphenyl	5	J
	a,a'-Dimethylphenethylamine	20	J
	Aniline	21	J
	Aramite	24	J
	Benzidine	24	J
	bis(2-Chloroisopropyl)ether	17	J
	Diallate	9	J
	Diphenylamine	7	J
	Hexachlorophene	20	J
	Hexachloropropene	1	J
	Isosafrole	20	J
	Methapyrilene	20	J
	Methyl Methanesulfonate	20	J

Compounds Qualified Due to Continuing Calibration of %D Values

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs (continued)	N-Nitroso-di-n-butylamine	24	J
	N-Nitrosomethylethylamine	17	J
	N-Nitrosomorpholine	3	J
	N-Nitrosopyrrolidine	19	J

Compounds Qualified Due to Continuing Calibration of %D Values

Contract required detection limit (CRDL) standards were analyzed to evaluate instrument performance at lowlevel concentrations that are near the analytical method PQL. These standards are required to have recoveries between 80% and 120% to verify that the analytical instrumentation was properly calibrated. When CRDL standard recoveries were outside the 80% to 120% control limits, the affected samples with detected results at or near the PQL concentration (i.e., less than three times the PQL) were qualified as estimated (J). The analytes that did not meet CRDL criteria and the number of samples qualified due to those deviations are presented in the following table.

Analytes Qualified Due to CRDL Standard Recovery Deviations

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Selenium	24	J
	Zinc	2	J

Blank action levels for organic compounds and inorganic analytes detected in the blanks were calculated at five times the blank concentrations (blank action levels were calculated at 10 times the blank concentration for common laboratory contaminants). Detected sample results that were below the blank action level were qualified with a "U." The analytes/compounds detected in method blanks which resulted in qualification of sample data, along with the number of affected samples, are presented in the following table.

Analysis	Analyte/Compound	Number of Affected Samples	Qualification
Inorganics	Cadmium	3	U
	Selenium	13	U
	Tin	19	U
SVOCs	bis(2-Ethylhexyl)phthalate	7	U

Analytes/Compounds Qualified Due to Blank Deviations

Matrix spike/Matrix spike duplicate (MS/MSD) sample analysis recovery criteria for inorganics MS/MSD recoveries must be within 75% to 125%. Inorganic sample results associated with MS/MSD recoveries less than the specified control limit, but greater than 30% were qualified as estimated (J). The analyte that did not meet MS/MSD recovery criteria and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Antimony	2	J

MS/MSD sample analysis recovery criteria for organics require that the RPD between the MS and MSD be less than the laboratory-generated QC acceptance limits specified on the MS/MSD reporting form. The compounds that exceeded RPD limits and the number of samples qualified due to deviations are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,1-Dichloroethene	1	J
SVOCs	1,2,4-Trichlorobenzene	1	J
	Acenaphthene	1	J

Compounds Qualified Due to MS/MSD RPD Deviations

Field duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures. The RPD between field duplicate samples is required to be less than 50% of sample values greater than five times the PQL. Sample results that exceeded these limits were qualified as estimated (J). The analytes/compounds that did not meet field duplicate RPD requirements and the number of samples qualified due to those deviations are presented in the following table.

		-	
Analysis	Analyte/Compound	Number of Affected Samples	Qualification
Inorganics	Chromium	13	J
	Lead	13	J
VOCs	Toluene	2	J
SVOCs	Isophorone	2	J

Analytes/Compounds Qualified Due to Field Duplicate Deviations

Laboratory duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures for inorganic analysis. The RPD between duplicate samples is required to be less than 35% for analyte concentrations greater than five times the PQL. Detected sample results for analytes that exceeded these limits were qualified as estimated (J). The inorganic analytes that did not meet laboratory duplicate RPD criteria and the number of samples qualified due to those deviations are presented in the following table.

	maijtes Quamiea Due to Eusoit	5 I	
Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Lead	2	J
	Zinc	2	J

Analytes Qualified Due to Laboratory Duplicate Deviations

Surrogate compounds are analyzed with every organic sample to aid in evaluation of the sample purging efficiency. As specified in the FSP/QAPP, all surrogate compounds must have a recovery between the laboratory specified control limits for SVOC sample analysis. Sample data for detected and non-detected compounds with surrogate recoveries that exceeded the surrogate recovery criteria and exhibited recoveries greater than 10% were qualified as estimated (J). A summary of the compounds affected by surrogate recovery deviations and the number of samples qualified due to those deviations are shown below.

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs	All acid compounds	1	J
	All base-neutral compounds	1	J

Compounds Qualified Due to Surrogate Recovery Deviations

5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability for site characterization purposes. Data completeness is defined as the percentage of sample results that have been determined to be usable during the data validation process. The percent usability calculation included analyses evaluated under both the Tier I and Tier II data validation reviews. Data completeness with respect to usability was calculated separately for inorganic and each of the organic analysis. The percent usability calculation also includes quality control samples collected to aid in the evaluation of data usability. Therefore, field/equipment blank, trip blank, and field duplicate data determined to be unusable as a result of the validation process are represented in the percent usability value tabulated in the following table.

Parameter	Percent Usability	Rejected Data
Inorganics	100	None
Cyanide and Sulfide	100	None
VOCs	100	None
SVOCs	100	None
PCBs	100	None

The data package completeness, as determined from the Tier I data review, was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between duplicate sample results. The duplicate samples used to evaluate precision included laboratory duplicates, field duplicates, MS/MSD samples, and ICP serial dilution samples. For this analytical program, 0.62% of the data required qualification due to field duplicate RPD deviations, 0.08% of the data required qualification due to laboratory duplicate RPD and 0.06% of the data required qualification due to MS/MSD RPD deviations. None of the data required qualification due to ICP serial dilution deviations.

5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, internal standards, LCSs, MS/MSD samples, and surrogate compound recoveries. For this analytical program, 9.7% of the data required qualification due to instrument calibration, 0.04% of the data required qualification due to Surrogate compound. None of the data required qualification due to internal standards or LCS recovery deviations.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter, which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in Agency-approved work plans, and by following the procedures for sample collection/analyses that were described in the FSP/QAPP. Additionally, the analytical program used procedures consistent with USEPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical program, none of the data required qualification due to holding time deviations.

5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. The USEPA SW-846¹ analytical methods presented in the FSP/QAPP are updated on occasion by the USEPA to benefit from recent technological advancements in analytical chemistry and instrumentation. In most cases, the method upgrades include the incorporation of new technology that improves the sensitivity and stability of the instrumentation or allows the laboratory to increase throughput without hindering accuracy and precision. Overall, the analytical methods for this investigation have remained consistent in their general approach through continued use of the basic analytical techniques (e.g., sample extraction/preparation, instrument calibration, QA/QC procedures). Through this use of consistent base analytical procedures and by requiring that updated procedures meet the QA/QC criteria specified in the FSP/QAPP, the analytical data from past, present, and future sampling events will be comparable to allow for qualitative and quantitative assessment of site conditions.

5.5 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. This analytical data set had an overall usability of 100%.

¹ Test Methods for evaluating Solid Waste, SW-846, USEPA, Final Update III, December 1996.

Sample											
Delivery Group No. PCBs	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
6C0P047	BC-17-1S-6	3/1/2006	Concrete	Tier II	No						
6C0P047	BC-17-1S-7	3/1/2006	Concrete	Tier II	No						
6C0P047	BC-17-1S-8	3/1/2006	Concrete	Tier II	No						
6C0P047	BC-17-1S-9	3/1/2006	Concrete	Tier II	No						
6C0P047	BC-17-BAY12:13-WALL-W3	3/1/2006	Wipe	Tier II	No						
6C0P047	BC-17-BAY12:13-WALL-W4	3/1/2006	Wipe	Tier II	No						
6C0P047 6C0P047	BC-17-BAY27:28-WALL-W1 BC-17-BAY27:28-WALL-W2	3/1/2006 3/1/2006	Wipe Wipe	Tier II Tier II	No No						
6C0P047 6C0P047	BC-17-FB-WIPE	3/1/2006	Wipe	Tier II	No						
6C0P047	BC-17-RB-030106-1	3/1/2006	Water	Tier II	No						
6C0P047	BC-17-SPIKED-WIPE-1	3/1/2006	Wipe	Tier II	No						
6C0P047	BC-17C-1E-3	3/1/2006	Brick	Tier II	No						
6C0P047	BC-17C-1N-2	3/1/2006	Brick	Tier II	No						
6C0P047	BC-17C-1W-1	3/1/2006	Brick	Tier II	No						
6C0P047	BC-17C-2N-5	3/1/2006	Brick	Tier II	No						
6C0P047	BC-17C-2S-4	3/1/2006	Brick	Tier II	No						
6C0P047 6C0P047	BC-7-1E-1	3/1/2006	Concrete	Tier II	No						
6C0P047 6C0P047	BC-7-1N-2 BC-7-1N-3	3/1/2006 3/1/2006	Brick Brick	Tier II Tier II	No No			+		+	+
6C0P047 6C0P047	BC-7-1N-3 BC-7-1S-5	3/1/2006	Concrete	Tier II	No	1					1
6C0P047	BC-7-1S-6	3/1/2006	Concrete	Tier II	No		-				
6C0P047	BC-7-1W-4	3/1/2006	Concrete	Tier II	No						
6C0P047	BC-DUP-030106-1	3/1/2006	Brick	Tier II	No						BC-17C-1N-2
6C0P086	BC-19-1E-1	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-1E-2	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-CE3-NORTH-W1	3/2/2006	Wipe	Tier II	No						
6C0P086	BC-19-CE3-SOUTH-W2	3/2/2006	Wipe	Tier II	No No			-			
6C0P086 Metals	BC-19-RB-030206-1	3/2/2006	Water	Tier II	INU						
6C0P047	BC-17-1N-1	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	28.0 J	ſ
0C0F047	BC-17-IN-1	3/1/2000	DIICK	TIEL II	165	Lead	Field Duplicate	135.9%	<50%	110 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.0) J	
						Selenium	Method Blank	-	-	ND(1.0)	
						Tin	Method Blank	-	-	ND(10)	
6C0P047	BC-17-1N-3	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	17.0 J	
						Lead	Field Duplicate	135.9%	<50%	74.0 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.0) J	
						Selenium	Method Blank	-		ND(1.0) ND(10)	
6C0P047	BC-17-1N-5	3/1/2006	Brick	Tier II	Yes	Tin Cadmium	Method Blank Method Blank	-		ND(10) ND(0.50)	-
0C0F047	BC-17-1N-5	3/1/2000	DIICK	TIEL II	165	Chromium	Field Duplicate	54.5%	<50%	22.0 J	
						Lead	Field Duplicate	135.9%	<50%	64.0 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.3) J	
						Selenium	Method Blank	-	-	ND(1.3)	
6C0P047	BC-17-1S-2	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	13.0 J	
	1					Lead	Field Duplicate	135.9%	<50%	21.0 J	
	1					Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.1) J	
	1					Selenium	Method Blank	-	-	ND(1.1)	
6C0P047	BC-17-1S-4	3/1/2006	Brick	Tier II	Yes	Tin Chromium	Method Blank	- 54.5%	- <50%	ND(10) 12.0 J	
000F04/	60-17-18-4	3/ 1/2006	DIICK	ner II	res	Lead	Field Duplicate Field Duplicate	54.5%	<50% <50%	12.0 J 28.0 J	+
	1					Selenium	CRDL Standard %R	128.7%	<00% 80% to 120%	ND(1.9) J	1
	1					Selenium	Method Blank	-	-	ND(1.9)	
	1					Tin	Method Blank	-	-	ND(10)	T
6C0P047	BC-17-RB-030106-1	3/1/2006	Water	Tier II	Yes	Selenium	CRDL Standard %R	126.5%	80% to 120%	ND(0.00500) J	
	l			I		Zinc	CRDL Standard %R	79.7%	80% to 120%	ND(0.0200) J	
6C0P047	BC-17C-1E-3	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	10.0 J	
	1					Lead	Field Duplicate	135.9%	<50%	4.00 J	
	1					Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.4) J	
	1					Selenium	Method Blank Method Blank	-	-	ND(1.4)	
6C0P047	BC-17C-1N-2	3/1/2006	Brick	Tier II	Yes	Tin Chromium	Field Duplicate	- 54.5%	- <50%	ND(10) 9.50 J	+
000F 047	DO-1/0-111-2	3/ 1/2000	DITCK	ner II	162		Field Duplicate	54.5%	<50%	9.50 J 5.10 J	
						Lead					

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Metals (conti	inued)										
6C0P047	BC-17C-1N-2	3/1/2006	Brick	Tier II	Yes	Selenium	Method Blank	-	-	ND(1.5)	
						Tin	Method Blank	-	•	ND(10)	
6C0P047	BC-17C-1W-1	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	12.0 J	
						Lead Selenium	Field Duplicate CRDL Standard %R	135.9% 128.7%	<50% 80% to 120%	5.40 J 2.60 J	
						Tin	Method Blank	-	-	ND(10)	
6C0P047	BC-17C-2N-5	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	12.0 J	
						Lead	Field Duplicate	135.9%	<50%	11.0 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.0) J	
						Selenium	Method Blank	-	-	ND(1.0)	
0000047	D0 170 00 1	0/4/0000	D : 1	T	Mark	Tin	Method Blank	-	-	ND(10)	
6C0P047	BC-17C-2S-4	3/1/2006	Brick	Tier II	Yes	Chromium Lead	Field Duplicate Field Duplicate	54.5% 135.9%	<50% <50%	12.0 J 11.0 J	
						Selenium	CRDL Standard %R	128.7%	<30% 80% to 120%	ND(1.3) J	
						Selenium	Method Blank	-	-	ND(1.3)	
						Tin	Method Blank	-	-	ND(10)	
6C0P047	BC-7-1N-2	3/1/2006	Brick	Tier II	Yes	Chromium	Field Duplicate	54.5%	<50%	93.0 J	
						Lead	Field Duplicate	135.9%	<50%	680 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.0) J	
						Selenium	Method Blank	-	-	ND(1.0)	
0000047	DO 7 40 0	2/4/2000	Comente	T	Vaa	Tin	Method Blank	-	-	ND(10)	
6C0P047	BC-7-1S-6	3/1/2006	Concrete	Tier II	Yes	Antimony Lead	MS %R Laboratory Duplicate	73.5% 39.9%	75% to 125% <35%	ND(6.00) J 18.0 J	
						Selenium	CRDL Standard %R	128.7%	<35% 80% to 120%	ND(1.2) J	
						Selenium	Method Blank	-	-	ND(1.2) 3	
						Tin	Method Blank	-	-	ND(10)	
						Zinc	Laboratory Duplicate	37.2%	<35%	58.0 J	
6C0P047	BC-7-1W-4	3/1/2006	Concrete	Tier II	Yes	Antimony	MS %R	73.5%	75% to 125%	ND(6.00) J	
						Lead	Laboratory Duplicate	39.9%	<35%	320 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	ND(1.2) J	
						Selenium	Method Blank		-	ND(1.2)	
						Tin Zinc	Method Blank Laboratory Duplicate	- 37.2%	- <35%	ND(10) 310 J	
6C0P047	BC-DUP-030106-1	3/1/2006	Brick	Tier II	Yes	Cadmium	Method Blank	51.270	<33 %	ND(0.50)	BC-17C-1N-2
0001 047	DC-DCI -030100-1	5/1/2000	DIICK	nei n	163	Chromium	Field Duplicate	54.5%	<50%	10.0 J	B0-170-111-2
						Lead	Field Duplicate	135.9%	<50%	5.00 J	
						Selenium	CRDL Standard %R	128.7%	80% to 120%	2.30 J	
6C0P047	BC-DUP-030106-2	3/1/2006	Brick	Tier II	Yes	Cadmium	Method Blank	-	-	ND(0.50)	BC-17-1N-1
						Chromium	Field Duplicate	54.5%	<50%	16.0 J	
						Lead	Field Duplicate	135.9%	<50%	21.0 J	
						Selenium Selenium	CRDL Standard %R Method Blank	128.7%	80% to 120%	ND(1.0) J ND(1.0)	
6C0P086	BC-19-1N-3	3/2/2006	Brick	Tier II	Yes	Selenium	CRDL Standard %R	124.4%, 134.6%	80% to 120%	ND(1.00) J	
		0/2/2000	Dilok	1101 11	100	Tin	Method Blank	-	-	ND(10)	1
6C0P086	BC-19-1W-4	3/2/2006	Brick	Tier II	Yes	Selenium	CRDL Standard %R	124.4%, 134.6%	80% to 120%	ND(1.00) J	
						Tin	Method Blank	-	-	ND(10)	
6C0P086	BC-19-1W-5	3/2/2006	Brick	Tier II	Yes	Selenium	CRDL Standard %R	124.4%, 134.6%	80% to 120%	0.490 J	
00000000	50 10 05 0	0/0/2000	D : :		X	Tin	Method Blank	-	-	ND(10)	
6C0P086	BC-19-2E-6	3/2/2006	Brick	Tier II	Yes	Selenium	CRDL Standard %R	124.4%, 134.6%	80% to 120%	ND(1.00) J	+
6C0P086	BC-19-2N-8	3/2/2006	Brick	Tier II	Yes	Tin Selenium	Method Blank CRDL Standard %R	- 124.4%, 134.6%	- 80% to 120%	ND(10) ND(1.00) J	
000-000	DC-19-2N-0	3/2/2000	DIICK	ner n	162	Tin	Method Blank	124.4%, 134.0%	00% IU 120%	ND(1.00) J ND(10)	1
6C0P086	BC-19-2W-7	3/2/2006	Brick	Tier II	Yes	Selenium	CRDL Standard %R	124.4%, 134.6%	80% to 120%	ND(10) J	1
						Tin	Method Blank	-	-	ND(10)	1
6C0P086	BC-19-3W-9	3/2/2006	Brick	Tier II	Yes	Selenium	CRDL Standard %R	124.4%, 134.6%	80% to 120%	ND(1.00) J	
						Tin	Method Blank	-	-	ND(10)	
6C0P086	BC-19-RB-030206-1	3/2/2006	Water	Tier II	Yes	Selenium	CRDL Standard %R	126.5%	80% to 120%	ND(0.00500) J	
					1	Zinc	CRDL Standard %R	79.7%	80% to 120%	ND(0.0200) J	I
VOCs	DO 47 4N 4	0/4/2000	D.2	T: 0	N	Taluara	Field Duplicate DDD	50 50/	-C01/	0.40	
6C0P047	BC-17-1N-1	3/1/2006 3/1/2006	Brick	Tier II	Yes	Toluene	Field Duplicate RPD	59.5%	<50%	0.12 J	
6C0P047 6C0P047	BC-17-1N-3 BC-17-1N-5	3/1/2006	Brick Brick	Tier II Tier II	No No		+	+ +		+	4
6C0P047 6C0P047	BC-17-1N-5 BC-17-1S-2	3/1/2006	Brick	Tier II	No					1	1
6C0P047	BC-17-1S-4	3/1/2006	Brick	Tier II	No	ł	+	+ +		+	+

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (contin	ued) BC-17-RB-030106-1	3/1/2006	Water	Tior II	Vaa	1,4-Dioxane	CCAL RRF	0.003	× 0.05	ND(0.20) 1	
6C0P047	BC-17-RB-030106-1	3/1/2006	water	Tier II	Yes	Acetonitrile	CCAL RRF	0.003	>0.05	ND(0.20) J ND(0.10) J	
6C0P047	BC-17C-1E-3	3/1/2006	Brick	Tier II	No	/ locionane	CONETUN	0.040	20.00	110(0.10)0	
6C0P047	BC-17C-1N-2	3/1/2006	Brick	Tier II	No						
6C0P047	BC-17C-1W-1	3/1/2006	Brick	Tier II	No						
6C0P047 6C0P047	BC-17C-2N-5	3/1/2006 3/1/2006	Brick	Tier II Tier II	No						
6C0P047 6C0P047	BC-17C-2S-4 BC-7-1N-2	3/1/2006	Brick Brick	Tier II	No No	-	-				
6C0P047	BC-7-1S-6	3/1/2006	Concrete	Tier II	No						
6C0P047	BC-7-1W-4	3/1/2006	Concrete	Tier II	Yes	1,1-Dichloroethene	MS/MSD RPD	15.0%	<14%	ND(0.0050) J	
6C0P047	BC-DUP-030106-1	3/1/2006	Brick	Tier II	No						BC-17C-1N-2
6C0P047	BC-DUP-030106-2	3/1/2006	Brick	Tier II	Yes	Acetone	CCAL %D	25.6%	<25%		BC-17-1N-1
						Acetonitrile	CCAL %D	30.8%	<25%	ND(0.10) J	
						Acrolein	CCAL %D CCAL %D	38.0%	<25%	ND(0.10) J	
						Chloromethane Dichlorodifluoromethane	CCAL %D CCAL %D	41.2% 72.8%	<25% <25%	ND(0.0050) J ND(0.0050) J	
						Isobutanol	CCAL %D CCAL %D	30.8%	<25%	ND(0.0050) J ND(0.10) J	
						Propionitrile	CCAL %D	36.0%	<25%	ND(0.010) J	
						Toluene	Field Duplicate RPD	59.5%	<50%	0.065 J	
6C0P047	TRIP BLANK	3/1/2006	Water	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.004	>0.05	ND(0.20) J	
						Acetone	CCAL %D	33.2%	<25%	ND (0.010) J	
						Acrylonitrile	CCAL %D	28.8%	<25%	ND (0.0050) J	
						Chloroethane	CCAL %D	33.6%	<25%	ND (0.0050) J	
						Chloromethane	CCAL %D	30.4%	<25%	ND (0.0050) J	
CO0D000		2/2/2000	Deiale	Ties II	Ne	lodomethane	CCAL %D	25.2%	<25%	ND (0.0050) J	
6C0P086 6C0P086	BC-19-1N-3 BC-19-1W-4	3/2/2006 3/2/2006	Brick Brick	Tier II Tier II	No No						
6C0P086	BC-19-1W-5	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-2E-6	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-2N-8	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-2W-7	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-3W-9	3/2/2006	Brick	Tier II	No						
6C0P086	BC-19-RB-030206-1	3/2/2006	Water	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.003	>0.05	ND(0.20) J	
						Acetonitrile	CCAL RRF	0.045	>0.05	ND(0.10) J	
6C0P086	TRIP BLANK	3/2/2006	Water	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.003 0.045	>0.05	ND(0.20) J	
SVOCs						Acetonitrile	CCAL RRF	0.045	>0.05	ND(0.10) J	
6C0P047	BC-17-1N-1	3/1/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	84.6%	<25%	ND(0.33) J	
000F047	BC-I/-IN-I	3/1/2000	DIICK	ner n	165	1,3-Dinitrobenzene	CCAL %D	47.6%	<25%	ND(0.67) J	
						1,4-Naphthoguinone	CCAL %D	32.2%	<25%	ND(0.67) J	
						1-Naphthylamine	CCAL %D	25.1%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	29.8%	<25%	ND(0.33) J	
						2-Nitrophenol	CCAL %D	31.4%	<25%	ND(0.67) J	
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J	
						a,a'-Dimethylphenethylamine	CCAL %D	76.6%	<25%	ND(0.67) J	
						Aniline	CCAL %D	33.0%	<25%	ND(0.33) J	
						Aramite	CCAL %D	65.1%	<25%	ND(0.67) J	
						Benzidine Diphenylamine	CCAL %D CCAL %D	90.2% 93.7%	<25% <25%	ND(0.67) J ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.33) J ND(0.67) J	
						Hexachlorophene	CCAL %D	99.7%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	59.8%	<25%	ND(0.67) J	
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D	32.0%	<25%	ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	28.5%	<25%	ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	25.5%	<25%	ND(0.67) J	
0000047		0/4/0000	D : 1	T	Mai	Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P047	BC-17-1N-3	3/1/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	CCAL %D CCAL %D	84.6% 47.6%	<25%	ND(0.33) J ND(0.67) J	
						1,3-Dinitropenzene 1,4-Naphthoguinone	CCAL %D CCAL %D	47.6%	<25% <25%	ND(0.67) J ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D CCAL %D	25.1%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	29.8%	<25%	ND(0.33) J	
						2-Nitrophenol	CCAL %D	31.4%	<25%	ND(0.67) J	
				•				-			

Delivery Group No.Sample IDDate CollectedMatrixValidation LevelCompoundCompoundQA/QC ParameterValueControl LimitsQualifiedSVOCs (continued)6C0P047BC-17-1N-33/1/2006BrickTier IIYes4-Nitroquinoline-1-oxideCCAL %D76.6%<25%ND(0.A_a^1-DimethylphenethylamineCCAL %D76.6%<25%ND(0.AnimiteCCAL %D65.1%<25%ND(0.AramiteCCAL %D65.1%<25%ND(0.BeridineCCAL %D65.1%<25%ND(0.BenzilineCCAL %D62.1%<25%ND(0.Beridine<25%ND(0.BenzilineCCAL %D90.2%<25%ND(0.BenzilineCCAL %D93.7%<25%ND(0.HexachloropheneICAL %RSD34.5%<30%ND(0.HexachloropheneCCAL %D99.7%<25%ND(0.HexachloropheneCCAL %D99.7%<25%ND(0.	
BC-17-1N-3 3/1/2006 Brick Tier II Yes 4-Nitroquinoline-1-oxide CCAL RRF 0.029 >0.05 ND(0. A,ai-Dimethylphenethylamine CCAL %D 76.6% <25% ND(0. Aniline CCAL %D 33.0% <25% ND(0. Aramite CCAL %D 36.1% <25% ND(0. Benzidine CCAL %D 90.2% <25% ND(0. Benzidine CCAL %D 90.2% <25% ND(0. Benzidine CCAL %D 90.2% <25% ND(0. Bis(2-Ethylhexyl)phthalate Rinse Blank - - ND(0. Bis(2-Ethylnexyl)phthalate Rinse Blank - - ND(0. Bis(2-Ethylnexyl)phthalate Rinse Blank - - ND(0. Hexachlorophene ICAL %BD 34.5% <30% ND(0. Hexachlorophene CCAL %D 99.7% <25% ND(0.	d Result Notes
a,a'-Dimethylphenethylamine CCAL %D 76.6% <25%	(7)
Aniline CCAL %D 33.0% <25% ND(0. Aramite CCAL %D 65.1% <25%	
Aramite CCAL %D 65.1% <25% ND(0. Benzidine CCAL %D 90.2% <25%	
bis(2-Ethylhexyl)phthalate Rinse Blank - - ND(0 Diphenylamine CCAL %D 93.7% <25%	
Diphenylamine CCAL %D 93.7% <25% ND(0. Hexachlorophene ICAL %RSD 34.5% <30%	
Hexachlorophene ICAL %RSD 34.5% <30% ND(0. Hexachlorophene CCAL %D 99.7% <25%	
Hexachlorophene CCAL %D 99.7% <25% ND(0.	
1303dillio 001L /00 33.370 <2370 ND(0/	1.67) J
Methapyrilene CCAL %D 59.8% <25% ND(0.	
Methyl Methanesulfonate CAL %D 99.9% <25% NDIO	
N-Nitroso-di-n-butylamine CCAL %D 32.0% <25% ND(0. N-Nitrosomethylethylamine CCAL %D 28.5% <25% ND(0.	1.67) J 1.67) J
	1.67) J
Safrole ICAL REF 0.043 >0.05 ND(0.	
6C0P047 BC-17-1N-5 3/1/2006 Brick Tier II Yes 2-Nitroaniline CCAL %D 33.8% <25% ND(1	1.7) J
Aniline CCAL %D 31.8% <25% ND(0.	
Aramite CAL %D 78.2% <25% ND(0.	
Benzidine CCAL %D 90.1% <25% ND(0. bis(2-Chloroisopropyl)ether CCAL %D 29.2% <25%	
bis(2-citiotispitopi)/artiel CAL /sD 22.2 Control (100)	
Diallate CCAL MD 57.4% <25% ND(c	
Hexachlorophene ICAL %RSD 34.5% <30% ND(0.	
N-Nitroso-di-n-butylamine CCAL %D 34.0% <25% ND(0.	
Image: Safrole ICAL RRF 0.043 >0.05 ND(0.000)	
6C0P047 BC-17-1S-2 3/1/2006 Brick Tier II Yes 2-Nitroaniline CCAL %D 33.8% <25% ND(1 Aniline CCAL %D 31.8% <25% ND(0.	1.7) J 1.33) J
Aniine CCAL%D 31.6% <25% ND(0. Aramite CCAL%D 78.2% <25% ND(0.	
Information OCAL #D Fill #D	
bis(2-Chloroisopropyl)ether CCAL %D 29.2% <25% ND(0.	
	l.67) J
Hexachlorophene ICAL %RSD 34.5% <30% NDIO	
	I.67) J I.33) J
CocDP047 BC-17-1S-4 3/1/2006 Brick Tier II Yes 2-Nitroaniline CCAL KNP 0.04-3 >0.05 NUL0	
Aniline CCAL %D 31.8% <25% ND(0.	
Aramite CCAL %D 78.2% <25% ND(0.	
Benzidine CCAL %D 90.1% <25% ND(0.	
bis(2-Chloroisopropyl)ether CCAL %D 29.2% <25% ND(0. Diallate CCAL %D 57.4% <25%	
Diallate CCAL %D 57.4% <25% ND(0. Hexachlorophene ICAL %RSD 34.5% <30%	
N-Nitros-di-n-butylamine CCAL %D 34.0% <25% ND(0.	
Safrole ICAL RRF 0.043 >0.05 ND(0.	
6C0P047 BC-17-RB-030106-1 3/1/2006 Water Tier II Yes <u>1,3-Dinitrobenzene</u> CCAL %D 51.2% <25% ND(0.0	
1,4-Naphthoquinone CCAL %D 31.7% <25% ND(0.0	
2,3,4,6-Tetrachlorophenol CCAL %D 35.5% <25% ND(0.0 2-Nitroaniline CCAL %D 31.3% <25%	
	010) J
a,a,-Dinethylphenethylamine CCAL WD 75.3% <25% ND(0.0	
Aramite CCAL %D 38.7% <25% ND(0.0	
Benzidine CCAL %D 90.2% <25% ND(0.0	
bis(2-Chloroisopropyl)ether CCAL %D 26.2% <25% ND(0.0	
Hexachlorophene ICAL %RSD 34.5% <30% ND(0.0 Hexachlorophene CCAL %D 99.8% <25%	
	020) J 010) J
	010) J
Methyl Methanesulfonate CCAL %D 99.9% <25% ND(0.0	010) J
N-Nitroso-di-n-butylamine CCAL %D 38.9% <25% ND(0.0	
N-Nitrosomorpholine CCAL %D 25.2% <25% ND(0.0	
	010) J 010) J
BC-17C-1E-3 3/1/2006 Brick Tier II Yes 1.3.5-Trinitrobenzene ICAL KRF 0.04.3 >0.05 NU(0.01)	
1,3,5 mindoenzene CCAL %D 47.6% <25% ND(0.	

NOCE continued	Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
BC/10:14:3 S10302 BEA Turi I Yes Alformanna Electronic Columna S250 CB0207 (1) CB0207 (1) S007047 BC/10:11-3 S10.300 BEA Turi I S10.200 BEA Columna Columna		•	Date Collected	IVIALITA	Level	Qualification	Compound	QA/QC Farameter	Value	Control Linits	Quaimed Result	Notes
SCIPUT SP-10-10-2 SP-20-2	6C0P047	,	3/1/2006	Brick	Tier II	Yes	1,4-Naphthoquinone	CCAL %D	32.2%	<25%	ND(0.67) J	
Komport Structure							1-Naphthylamine					
KURPEY KURC 102 KUR KURPEY KURPEY </td <td></td>												
BC/01/1 BC-1/C-1/N-2 S1 (2000 Free Processes G-26/20 HC/02 (2000)												
ECPOP ELTP: 11/2 S1200 First COLVE												
NC-170-18-7 No.2007 P NC-170-19-7 NO.2007 P NC-170-19-7 NO.2007 P NC-170-19-7 NC-170-19-7 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
100%17 8C-17C-1N-2 31/000 8C // -28% ND0 67/1												
000000000000000000000000000000000000												
60/04/7 8-17-51N2 31/206 Brids Col, SQ. 90.76 Col, SQ. 60/05 N00.607.1 60/04/7 Sec. 72-51N2 31/206 Brids Col, SQ. 99.05 Col, SQ. 60/05 N00.607.1 60/04/7 Sec. 72-51N2 31/206 Brids Col, SQ. 20.05 Col, SQ. <td></td>												
Biological State Super Part Part Part Part Part Part Part Par												
000Py17 80-17-1112 Shifty -26% N00631												
BC17C-112 31/200 Bit N Ter II Yes CAL ND 90 Ph -2796 MD00.03.1 - ICCPN 7 S1/20 276 CAL ND 22 Ph -2765 MD00.03.1 - ICCPN 7 S1/200 Bit K Ter II Yes CAL ND 22 Ph -2765 MD00.03.1 - ICCPN 7 S1/200 Bit K Ter II Yes S1/200 CAL ND 7.4 Ph -0.62 MD00.03.1 - - ICCPN 7 S1/200 Bit K Ter II Yes S1/200 CAL ND 7.4 Ph -												
SCOP107 SCAL 50 S20 -22% MD0007.3 Image: SCAL 50 S20% -22% MD007.3 Image: SCAL 50 S20%												
Security in Proceeding												
BC0P647 BC17C-1N-2 S12008 Brok Tor II Yes Alterospredicione SUBDATE CCRP57												
CODPORT S11702-111-2 S11722-01 S11702-01-02 S117000-02-02-00 S12.000 S12.0000 S12.0000 S12.0000 S12.0000 S12.00000 S12.000000 S12.000000000000000000000000000000000000												
BC0P07 BC17C-1W-1 31/200 Brok Tor II Yes Yes NOB067 J (Safrole		0.043			
SCOPORT BC17C-1W-1 31/200 Bick Terl II Year Year CAL %D 32.9% -29% NDD057) SCOPORT BC17C-1W-1 S1/200 CAL %D CAL %D 32.9% -29% NDD057) SCOPORT BC17C-1W-1 S1/200 CAL %D CAL %D 20% -29% NDD057) SCOPORT BC17C-1W-1 S1/200 S1/200 S2/5% -29% NDD057) SCOPORT CCLL %D CCLL %D CCLL %D 29.7% -29% NDD057) SCOPORT CCLL %D CCLL %D 64.7% -29% NDD057) - SCOPORT CCLL %D CCLL %D 24.5% NDD057) - - SCOPORT CCLL %D CCLL %D 24.5% NDD057) - - SCOPORT S1/200 S2.5% CCLL %D 26.5% NDD057) - SCOPORT S1/200 CCLL %D 26.5% ND057) - - - ND057) -	6C0P047	BC-17C-1N-2	3/1/2006	Brick	Tier II	Yes						
SCOPAT S1/206 Brik TerlI Yes 1.36-Trinitophenello CCAL %D 32.6% -42% ND0.73.1 SCOPAT S1/2008 Brik Farling CCAL %D 34.7% -42% ND0.67.1 SCOPAT S1/2008 S1/2008 CCAL %D 50.7% -42% ND0.67.1 SCOPAT CCAL %D 50.7% -42% ND0.67.1 SCOPAT SCOPAT CCAL %D 50.7% -42% ND0.67.1 SCOPAT S1/2008 Brik Farling CCAL %D 50.7% -42% ND0.67.1 SCOPAT S1/2008 Brik TerlI Yes SCOPAT 50.7% 60.7% -62% ND0.67.1 SCOPAT S1/2008 Brik TerlI Yes </td <td></td>												
SCOP047 BC-17C-1W-1 S1/2005 Bink Terl Yes 1.3.5.1000-0000-0000-0000-0000-0000-0000-00												
SCOPAT 8C-17C-1W-1 31/2008 Brok Ter II Yes Yes 22.7% -22% ND(0.67).3												
BC0P047 BC-17C-1W-1 S1/2005 Brick Ter II Yes CAL, %D 627, %D COD ND(0.67) Immediate BC0P047 BC-17C-1W-1 S1/2005 DECIDE CAL, %D 627, %D COD 257, %D COD												
Kongeneration BC-17C-1W-1 3/12006 Brok Ter/II Version CCAL %D 80.7% -225% ND[0.57]												
BC0P047 BC-17C-1W-1 3/12006 Bick Ter II Yes Yes Nu Armie CCAL %D 90.3% <25%												
SCOP047 BC-17C-1W-1 3/12006 Brick Ter II Yes A rania CCAL %0 50.9% -22% ND(0.57) J - SCOP047 BC-17C-1W-1 3/12006 First N CCAL %0 50.9% -22% ND(0.67) J - SCOP047 BC-17C-1W-1 S1/12006 First N CCAL %0.0 99.9% -225% ND(0.67) J - SCOP047 BC-17C-1W-1 S1/12006 First N ND(0.67) J -							Aniline	CCAL %D	29.7%			
BC00047 BC-17C-1W-1 3/1/2006 Brok Ter II Yes 1.3.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.												
BC17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.F Triningheren CCAL %0 36.6% -25% ND0.67.j - SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes CCAL %0.0 99.4% -25% ND0.67.j - SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes CCAL %0.0 99.9% -25% ND0.67.j - SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.F Triningherene CCAL %0.0 99.9% -25% ND0.67.j - SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.F Triningherene CCAL %0.0 28.9% -25% ND0.67.j - SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.F Triningherene CCAL %0.0 48.6% -25% ND0.67.j - SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.F Triningherene CCAL %0.0												
BC0P047 BC17C-1W-1 3/12006 Bink Tier II Yes Field Duplicate RPD 200.0% -630% ND(0.67)_J - BC0P047 BC-17C-1W-1 3/12006 Bink Tier II Yes A SS -25% ND(0.67)_J - - BC0P047 BC-17C-1W-1 3/12006 Bink Tier II Yes A SS -22% ND(0.67)_J -												
kent BC-17C-1W-1 3/1/2006 Bick Terl II Yes Score CCAL, %D 99.4%, <25%,												
sochorone Field Duplicate RPD 200.% <650%												
biosafroie CCAL %D 99.9% <-22%												
BC1PC-1W-1 3/1/2006 Brick First I Yes Nethyl Methanosultoniae CCAL, %D 99,9% -25% ND(0.67),1 BC0PD47 BC-17C-1W-1 3/1/2006 Brick Terl I Yes 1.3-Dinitober.2ene CCAL, %D 25.6% -25% ND(0.67),1 BC0PD47 BC-17C-1W-1 3/1/2006 Brick Terl I Yes 1.3-Dinitober.2ene CCAL, %D 24.6% ND(0.67),1 BC0PD47 BC-17C-1W-1 3/1/2006 Brick Terl I Yes 1.3-Dinitober.2ene CCAL, %D 24.6% -25% ND(0.67),1 BC0PD47 BC-17C-1W-1 S1/1/2006 Brick Terl I Yes 1.3-Dinitober.2ene CCAL, %D 24.6% -25% ND(0.67),1 BC0PD47 Brick Terl I Yes 1.3-Dinitober.2ene CCAL, %D 24.76% -25% ND(0.67),1 BC0PD47 Brick Terl I Yes A-BTetrachiorophenol CCAL, %D 22.6% ND(0.67),1 -25% ND(0.67),1 -25% ND(0.67),1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>99.9%</td><td></td><td>ND(0.67) J</td><td></td></t<>									99.9%		ND(0.67) J	
N-Nitoso-din-butylamine CCAL %D 37.5% -22% ND(0.67) J SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.5 Trinitrobenzene CCAL %D 29.6% -22% ND(0.67) J SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.5 Trinitrobenzene CCAL %D 84.6% -25% ND(0.67) J SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.5 Trinitrobenzene CCAL %D 44.6% -25% ND(0.67) J SCOP047 BC-17C-1W-1 3/1/2006 Brick Ter II Yes 1.3.5 Trinitrobenzene CCAL %D 47.6% -25% ND(0.67) J SCOP047 JA-Naphthogunone CCAL %D 32.6% +25% ND(0.67) J												
Number No. No.<												
Netroscograndinie CCAL %D 35.9% <25% ND(67) J 650P047 BC-17C-1W-1 3/1/2006 Brick Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 84.6% <25%												
BC-17C-1W-1 Safrole ICAL RRF 0.043 >0.05 ND[0.33] J 6C0P047 BC-17C-1W-1 3/1/2006 Brick Tier II Yes 1.3.5-Tinitrobenzene CCAL %D 84.6% <25%												
BC-17C-1W-1 3/1/2006 Brick Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 84.6% <25%												
1.3-Dinitrobenzene CCAL %D 47.6% <25%	6C0P047	BC-17C-1W-1	3/1/2006	Brick	Tier II	Yes						
1.4-Naphthoguinone CCAL.%D 32.2% <25%												
2,3,4,6-Tetrachlorophenol CCAL %D 29.8% <25%								CCAL %D		<25%	ND(0.67) J	
2-Nitrophenol CCAL %D 31.4% <25%												
4-Nitroquinoline-1-oxide CCAL RF 0.029 >0.05 ND(0.67) J a,a-Dimethylphenethylamine CCAL %D 76.6% <25%												
a,a'-Dimethylphenethylamine CCAL %D 76.6% <25%												
Aniline CCAL %D 33.0% <25%												
Aramite CCAL %D 65.1% <25%												
Benzidine CCAL %D 90.2% <25% ND(0.67) J Diphenylamine CCAL %D 93.7% <25%												
Diphenylamine CCAL %D 93.7% <25% ND(0.33) J Hexachlorophene ICAL %RSD 34.5% <30%												
Hexachlorophene CCAL %D 99.7% <25% ND(0.67) J Isosafrole CCAL %D 99.9% <25%												
Isosafrole CCAL %D 99.9% <25% ND(0.67) J Methapyrilene CCAL %D 59.8% <25%												
Methapyrilene CCAL %D 59.8% <25% ND(0.67) J Methyl Methanesulfonate CCAL %D 99.9% <25%												
Methyl Methanesulfonate CCAL %D 99.9% <25% ND(0.33) J N-Nitroso-di-n-butylamine CCAL %D 32.0% <25%												
N-Nitroso-di-n-butylamine CCAL %D 32.0% <25% ND(0.67) J N-Nitrosomethylethylamine CCAL %D 28.5% <25%												
N-Nitrosomethylethylamine CCAL %D 28.5% <25% ND(0.67) J N-Nitrosopyrrolidine CCAL %D 25.5% <25%												
N-Nitrosopyrrolidine CCAL %D 25.5% <25% ND(0.67) J												
											ND(0.33) J	

Sample											
Delivery Group No. SVOCs (conti	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
6C0P047	BC-17C-2N-5	3/1/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	84.6%	<25%	ND(0.33) J	
0001 011	20 11 0 211 0	0/112000	Billoit	1101 11		1,3-Dinitrobenzene	CCAL %D	47.6%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	32.2%	<25%	ND(0.67) J	
						1-Naphthylamine	CCAL %D	25.1%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	29.8%	<25%	ND(0.33) J	
						2-Nitrophenol	CCAL %D	31.4%	<25%	ND(0.67) J	
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J	
						a,a'-Dimethylphenethylamine Aniline	CCAL %D CCAL %D	76.6% 33.0%	<25% <25%	ND(0.67) J	
						Aniline	CCAL %D CCAL %D	33.0% 65.1%	<25%	ND(0.33) J ND(0.67) J	
						Benzidine	CCAL %D	90.2%	<25%	ND(0.67) J	
						Diphenylamine	CCAL %D	93.7%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	99.7%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	59.8%	<25%	ND(0.67) J	
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D	32.0%	<25%	ND(0.67) J	
					N-Nitrosomethylethylamine N-Nitrosopyrrolidine	CCAL %D CCAL %D	28.5% 25.5%	<25% <25%	ND(0.67) J ND(0.67) J		
						Safrole	ICAL %D	0.043	>0.05	ND(0.87) J ND(0.33) J	
6C0P047	BC-17C-2S-4	3/1/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	73.4%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	51.2%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	33.3%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	32.5%	<25%	ND(0.33) J	
						2-Nitroaniline	CCAL %D	35.4%	<25%	ND(1.7) J	
						4-Aminobiphenyl	CCAL %D	29.7%	<25%	ND(0.67) J	
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J	
						a,a'-Dimethylphenethylamine Aniline	CCAL %D	85.7%	<25%	ND(0.67) J	
						Aramite	CCAL %D CCAL %D	29.7% 64.7%	<25% <25%	ND(0.33) J ND(0.67) J	
						Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	29.1%	<25%	ND(0.33) J	
						bis(2-Ethylhexyl)phthalate	Rinse Blank	-	-	ND(0.33)	
						Diallate	CCAL %D	36.6%	<25%	ND(0.67) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	99.4%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	65.0%	<25%	ND(0.67) J	
						Methyl Methanesulfonate N-Nitroso-di-n-butylamine	CCAL %D CCAL %D	99.9% 37.5%	<25% <25%	ND(0.33) J ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	35.9%	<25%	ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P047	BC-7-1N-2	3/1/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	84.6%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	47.6%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	32.2%	<25%	ND(0.67) J	
						1-Naphthylamine	CCAL %D	25.1%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	29.8%	<25%	ND(0.33) J	
						2-Nitrophenol	CCAL %D	31.4%	<25%	ND(0.67) J	
						4-Nitroquinoline-1-oxide a,a'-Dimethylphenethylamine	CCAL RRF CCAL %D	0.029 76.6%	>0.05 <25%	ND(0.67) J ND(0.67) J	
						Aniline	CCAL %D	33.0%	<25%	ND(0.33) J	
						Aramite	CCAL %D	65.1%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.2%	<25%	ND(0.67) J	
						bis(2-Ethylhexyl)phthalate	Rinse Blank	-	-	ND(0.33)	
						Diphenylamine	CCAL %D	93.7%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	99.7%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	59.8%	<25%	ND(0.67) J	
						Methyl Methanesulfonate N-Nitroso-di-n-butylamine	CCAL %D CCAL %D	99.9% 32.0%	<25% <25%	ND(0.33) J ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	28.5%	<25%	ND(0.67) J	
L	I	1	l	l		ra raidosofficuryicuryidirii/le		20.070	N2070	140(0.07) 5	

Sample																																		
Delivery				Validation																														
Group No.	Sample ID	Date Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes																							
SVOCs (conti 6C0P047	BC-7-1N-2	3/1/2006	Brick	Tier II	Yes	N-Nitrosopyrrolidine	CCAL %D	25.5%	<25%	ND(0.67) J																								
0001 047	507 1112	0/1/2000	Bhok		105	Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J																								
6C0P047	BC-7-1S-6	3/1/2006	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	84.6%	<25%	ND(0.33) J																								
						1,3-Dinitrobenzene	CCAL %D	47.6%	<25%	ND(0.67) J																								
						1,4-Naphthoquinone	CCAL %D	32.2%	<25%	ND(0.67) J																								
						1-Naphthylamine 2,3,4,6-Tetrachlorophenol	CCAL %D CCAL %D	25.1% 29.8%	<25% <25%	ND(0.67) J ND(0.33) J																								
						2-Nitrophenol	CCAL %D	31.4%	<25%	ND(0.67) J																								
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J																								
						a,a'-Dimethylphenethylamine	CCAL %D	76.6%	<25%	ND(0.67) J																								
						Aniline	CCAL %D	33.0%	<25%	ND(0.33) J																								
						Aramite	CCAL %D	65.1%	<25%	ND(0.67) J																								
						Benzidine bis(2-Ethylhexyl)phthalate	CCAL %D Rinse Blank	90.2%	<25%	ND(0.67) J ND(0.33)																								
						Diphenylamine	CCAL %D	93.7%	<25%	ND(0.33) J																								
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J																								
						Hexachlorophene	CCAL %D	99.7%	<25%	ND(0.67) J																								
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J																								
						Methapyrilene	CCAL %D	59.8%	<25%	ND(0.67) J	<u> </u>																							
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	+																							
						N-Nitroso-di-n-butylamine N-Nitrosomethylethylamine	CCAL %D CCAL %D	32.0% 28.5%	<25% <25%	ND(0.67) J ND(0.67) J	1																							
						N-Nitrosopyrrolidine	CCAL %D	25.5%	<25%	ND(0.67) J																								
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J																								
6C0P047	BC-7-1W-4	3/1/2006	Concrete	Tier II	Yes	1,2,4-Trichlorobenzene	MS/MSD RPD	24.0%	<23%	ND(0.33) J																								
						1,3-Dinitrobenzene	CCAL %D	51.2%	<25%	ND(0.67) J																								
						1,4-Naphthoquinone	CCAL %D	31.7%	<25%	ND(0.67) J																								
						2,3,4,6-Tetrachlorophenol	CCAL %D	35.5%	<25%	ND(0.33) J																								
						2-Nitroaniline 4-Nitroquinoline-1-oxide	CCAL %D CCAL RRF	31.3% 0.029	<25% >0.05	ND(1.7) J ND(0.67) J																								
						a,a'-Dimethylphenethylamine	CCAL KKF	75.3%	<25%	ND(0.67) J																								
						Acenaphthene	MS/MSD RPD	31.0%	<19%	ND(0.33) J																								
						Aramite	CCAL %D	38.7%	<25%	ND(0.67) J																								
						Benzidine	CCAL %D	90.2%	<25%	ND(0.67) J																								
								1																						bis(2-Chloroisopropyl)ether	CCAL %D	26.2%	<25%	ND(0.33) J
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J																								
						Hexachlorophene Isosafrole	CCAL %D CCAL %D	99.8% 99.9%	<25% <25%	ND(0.67) J ND(0.67) J																								
						Methapyrilene	CCAL %D	61.2%	<25%	ND(0.67) J																								
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J																								
						N-Nitroso-di-n-butylamine	CCAL %D	38.9%	<25%	ND(0.67) J																								
						N-Nitrosomorpholine	CCAL %D	25.2%	<25%	ND(0.33) J																								
						N-Nitrosopyrrolidine	CCAL %D	45.4%	<25%	ND(0.67) J																								
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J																								
6C0P047	BC-DUP-030106-1	3/1/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	CCAL %D CCAL %D	73.4% 51.2%	<25% <25%	ND(0.33) J ND(0.67) J	BC-17C-1N-2																							
						1,3-Dinitrobenzene 1,4-Naphthoquinone	CCAL %D CCAL %D	51.2% 33.3%	<25% <25%	ND(0.67) J ND(0.67) J	1																							
						2,3,4,6-Tetrachlorophenol	CCAL %D	32.5%	<25%	ND(0.33) J	1																							
						2-Nitroaniline	CCAL %D	35.4%	<25%	ND(1.7) J	1																							
						4-Aminobiphenyl	CCAL %D	29.7%	<25%	ND(0.67) J																								
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J																								
						a,a'-Dimethylphenethylamine	CCAL %D	85.7%	<25%	ND(0.67) J	l																							
						Aniline	CCAL %D	29.7%	<25%	ND(0.33) J																								
						Aramite Benzidine	CCAL %D CCAL %D	64.7% 90.3%	<25% <25%	ND(0.67) J ND(0.67) J	+																							
						bis(2-Chloroisopropyl)ether	CCAL %D	90.3%	<25%	ND(0.67) J ND(0.33) J	1																							
						bis(2-Ethylhexyl)phthalate	Rinse Blank	-	-	ND(0.33)	1																							
						Diallate	CCAL %D	36.6%	<25%	ND(0.67) J	1																							
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J																								
						Hexachlorophene	CCAL %D	99.4%	<25%	ND(0.67) J																								
						Isophorone	Field Duplicate RPD	200.0%	<50%	9.0 J																								
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	<u> </u>																							
						Methapyrilene Methyl Methapagylfapata	CCAL %D	65.0%	<25%	ND(0.67) J	+																							
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	İ																							

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (conti		Date Collected	Watrix	Level	Quanneation	Compound	QA/QC Farameter	Value	Control Linnis	Qualified Result	Notes
6C0P047	BC-DUP-030106-1	3/1/2006	Brick	Tier II	Yes	N-Nitroso-di-n-butylamine	CCAL %D	37.5%	<25%	ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	35.9%	<25%	ND(0.67) J	
6C0P047		3/1/2006	Brick	Ties II	Yes	Safrole		0.043	>0.05 <25%	ND(0.33) J	
6C0P047	BC-DUP-030106-2	3/1/2006	Brick	Tier II	res	2-Nitroaniline Aniline	CCAL %D CCAL %D	33.8% 31.8%	<25%	ND(1.7) J ND(0.33) J	BC-17-1N-1
						Aramite	CCAL %D	78.2%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.1%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	29.2%	<25%	ND(0.33) J	
						bis(2-Ethylhexyl)phthalate	Rinse Blank	-	•	ND(0.33)	
						Diallate	CCAL %D	57.4%	<25%	ND(0.67) J	
						Hexachlorophene N-Nitroso-di-n-butylamine	ICAL %RSD CCAL %D	34.5% 34.0%	<30% <25%	ND(0.67) J ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P086	BC-19-1N-3	3/2/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	73.4%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	51.2%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	33.3%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol 2-Nitroaniline	CCAL %D CCAL %D	32.5% 35.4%	<25% <25%	ND(0.33) J ND(1.7) J	
						2-Nitroaniine 4-Aminobiphenyl	CCAL %D	35.4%	<25%	ND(1.7) J ND(0.67) J	
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J	
						a,a'-Dimethylphenethylamine	CCAL %D	85.7%	<25%	ND(0.67) J	
						Aniline	CCAL %D	29.7%	<25%	ND(0.33) J	
						Aramite	CCAL %D	64.7%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether Diallate	CCAL %D CCAL %D	29.1% 36.6%	<25% <25%	ND(0.33) J ND(0.67) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	99.4%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	65.0%	<25%	ND(0.67) J	
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine N-Nitrosomethylethylamine	CCAL %D CCAL %D	37.5% 29.6%	<25% <25%	ND(0.67) J ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	35.9%	<25%	ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P086	BC-19-1W-4	3/2/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	52.5%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	59.2%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	45.9%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol 2,4-Dinitrophenol	CCAL %D CCAL %D	42.3% 28.0%	<25% <25%	ND(0.33) J ND(1.7) J	
						2-Nitroaniline	CCAL %D	35.0%	<25%	ND(1.7) J	
						a,a'-Dimethylphenethylamine	CCAL %D	89.2%	<25%	ND(0.67) J	
	1			1		Aniline	CCAL %D	29.8%	<25%	ND(0.33) J	
	1			1		Aramite	CCAL %D	34.9%	<25%	ND(0.67) J	
	1			1		Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
	1			1		bis(2-Chloroisopropyl)ether Hexachlorophene	CCAL %D ICAL %RSD	33.6% 34.5%	<25% <30%	ND(0.33) J ND(0.67) J	<u> </u>
						Hexachlorophene	CCAL %RSD	92.6%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	66.0%	<25%	ND(0.67) J	
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D CCAL %D	29.6% 43.6%	<25% <25%	ND(0.67) J ND(0.67) J	l
						N-Nitrosopyrrolidine Safrole	ICAL %D	43.6%	<25%	ND(0.87) J ND(0.33) J	1
6C0P086	BC-19-1W-5	3/2/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	52.5%	<25%	ND(0.33) J	
		5. 11 2000				1,3-Dinitrobenzene	CCAL %D	59.2%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	45.9%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	42.3%	<25%	ND(0.33) J	
						2,4-Dinitrophenol	CCAL %D	28.0%	<25%	ND(1.7) J	
						2-Nitroaniline	CCAL %D	35.0%	<25%	ND(1.7) J	
						a,a'-Dimethylphenethylamine	CCAL %D CCAL %D	89.2% 29.8%	<25% <25%	ND(0.67) J ND(0.33) J	l
	I			I	1			23.070	<20/0	ND(0.33) J	

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (contin		Date content	matrix	2010.	qualification	Compound		Tuluo		quamouricount	
6C0P086	BC-19-1W-5	3/2/2006	Brick	Tier II	Yes	Aramite	CCAL %D	34.9%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	33.6%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene Isosafrole	CCAL %D CCAL %D	92.6% 99.9%	<25% <25%	ND(0.67) J ND(0.67) J	
						Methapyrilene	CCAL %D CCAL %D	99.9% 66.0%	<25%	ND(0.67) J ND(0.67) J	
						Methapymene Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	43.6%	<25%	ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P086	BC-19-2E-6	3/2/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	52.5%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	59.2% 45.9%	<25%	ND(0.67) J	
						1,4-Naphthoquinone 2,3,4,6-Tetrachlorophenol	CCAL %D CCAL %D	45.9%	<25% <25%	ND(0.67) J ND(0.33) J	
						2,3,4,6-retrachiorophenol	CCAL %D	28.0%	<25%	ND(0.33) J ND(1.7) J	
						2-Nitroaniline	CCAL %D	35.0%	<25%	ND(1.7) J	
						a,a'-Dimethylphenethylamine	CCAL %D	89.2%	<25%	ND(0.67) J	
						Aniline	CCAL %D	29.8%	<25%	ND(0.33) J	
						Aramite	CCAL %D	34.9%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	33.6%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	92.6%	<25%	ND(0.67) J	
						Isosafrole Methapyrilene	CCAL %D CCAL %D	99.9% 66.0%	<25% <25%	ND(0.67) J ND(0.67) J	
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	43.6%	<25%	ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P086	BC-19-2N-8	3/2/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	52.5%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	59.2%	<25%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	45.9%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol 2,4-Dinitrophenol	CCAL %D CCAL %D	42.3% 28.0%	<25% <25%	ND(0.33) J ND(1.7) J	
						2-Nitroaniline	CCAL %D	35.0%	<25%	ND(1.7) J	
						a,a'-Dimethylphenethylamine	CCAL %D	89.2%	<25%	ND(0.67) J	
						Aniline	CCAL %D	29.8%	<25%	ND(0.33) J	
						Aramite	CCAL %D	34.9%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	33.6%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene Isosafrole	CCAL %D CCAL %D	92.6% 99.9%	<25% <25%	ND(0.67) J ND(0.67) J	
						Methapyrilene	CCAL %D CCAL %D	99.9% 66.0%	<25%	ND(0.67) J ND(0.67) J	
						Methapymene Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	29.6%	<25%	ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	43.6%	<25%	ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P086	BC-19-2W-7	3/2/2006	Brick	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	52.5%	<25%	ND(0.33) J	
						1,3-Dinitrobenzene	CCAL %D	59.2%	<25%	ND(0.67) J	
						1,4-Naphthoquinone 2,3,4,6-Tetrachlorophenol	CCAL %D CCAL %D	45.9% 42.3%	<25% <25%	ND(0.67) J ND(0.33) J	
						2,3,4,6-1 etrachiorophenol 2,4-Dinitrophenol	CCAL %D CCAL %D	42.3%	<25% <25%	ND(0.33) J ND(1.7) J	
						2,4-Dinitrophenoi 2-Nitroaniline	CCAL %D CCAL %D	28.0%	<25%	ND(1.7) J ND(1.7) J	
						a,a'-Dimethylphenethylamine	CCAL %D	89.2%	<25%	ND(0.67) J	
						Aniline	CCAL %D	29.8%	<25%	ND(0.33) J	
						Aramite	CCAL %D	34.9%	<25%	ND(0.67) J	
						Benzidine	CCAL %D	90.3%	<25%	ND(0.67) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	33.6%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (contin	nued)					·	-		•		
6C0P086	BC-19-2W-7	3/2/2006	Brick	Tier II	Yes	Hexachlorophene	CCAL %D	92.6%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	66.0%	<25%	ND(0.67) J	
						Methyl Methanesulfonate N-Nitroso-di-n-butylamine	CCAL %D	99.9%	<25%	ND(0.33) J	
						N-Nitroso-di-n-butylamine	CCAL %D CCAL %D	29.6% 29.6%	<25% <25%	ND(0.67) J ND(0.67) J	
						N-Nitrosopyrrolidine	CCAL %D	43.6%	<25%	ND(0.67) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
6C0P086	BC-19-3W-9	3/2/2006	Brick	Tier II	Yes	1,2,4,5-Tetrachlorobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	Used Reanlysis
						1,2,4-Trichlorobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	-
						1,2-Dichlorobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						1,2-Diphenylhydrazine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						1,3,5-Trinitrobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						1,3,5-Trinitrobenzene	CCAL %D	74.4%	<25%	ND(0.40) J	
						1,3-Dichlorobenzene 1,3-Dinitrobenzene	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5% 27.3%, 17.5%	30% to 115%, 23% to 120% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.67) J	
						1,3-Dinitrobenzene	CCAL %D	47.2%	<25%	ND(0.67) J	
						1,4-Dichlorobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						1,4-Naphthoguinone	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						1,4-Naphthoquinone	CCAL %D	27.8%	<25%	ND(0.67) J	
						1-Naphthylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	31.2%	<25%	ND(0.40) J	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2,4-Dichlorophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2,4-Dimethylphenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2,4-Dinitrophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(2.0) J	
						2,4-Dinitrotoluene 2,6-Dichlorophenol	Surrogate Recovery Base-neutral Surrogate Recovery Acid	27.3%, 17.5% 14.7%, 23.7%	30% to 115%, 23% to 120% 25% to 121%, 24% to 113%	ND(0.40) J ND(0.40) J	
						2,6-Dinitrotoluene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						2-Acetylaminofluorene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						2-Acetylaminofluorene	CCAL %D	29.6%	<25%	ND(0.67) J	
						2-Chloronaphthalene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						2-Chlorophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2-Methylnaphthalene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						2-Methylphenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						2-Naphthylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						2-Nitroaniline 2-Nitroaniline	Surrogate Recovery Base-neutral CCAL %D	27.3%, 17.5% 30.0%	30% to 115%, 23% to 120%	ND(2.0) J ND(2.0) J	
						2-Nitrophenol	Surrogate Recovery Acid	14.7%, 23.7%	<25% to 121%, 24% to 113%	ND(2.0) J ND(0.67) J	
						2-Picoline	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
	1					3&4-Methylphenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.67) J	
	1					3,3'-Dichlorobenzidine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.80) J	
						3,3'-Dimethylbenzidine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
	1					3-Methylcholanthrene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1					3-Nitroaniline	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(2.0) J	
	1					4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
	1					4-Aminobiphenyl	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1					4-Aminobiphenyl	CCAL %D	25.4% 27.3%, 17.5%	<25%	ND(0.67) J ND(0.40) J	
	1					4-Bromophenyl-phenylether 4-Chloro-3-Methylphenol	Surrogate Recovery Base-neutral Surrogate Recovery Acid	27.3%, 17.5%	30% to 115%, 23% to 120% 25% to 121%, 24% to 113%	ND(0.40) J ND(0.40) J	
	1					4-Chloroaniline	Surrogate Recovery Acid	27.3%, 17.5%	25% to 121%, 24% to 113% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
	1					4-Chlorobenzilate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
	1					4-Chlorophenyl-phenylether	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
	1					4-Nitroaniline	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(1.7) J	
	1					4-Nitrophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(2.0) J	
	1					4-Nitroquinoline-1-oxide	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1					4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.67) J	
	1					4-Phenylenediamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1					5-Nitro-o-toluidine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1					7,12-Dimethylbenz(a)anthracene		27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1					a,a'-Dimethylphenethylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
L	1			L	L	a,a'-Dimethylphenethylamine	CCAL %D	66.6%	<25%	ND(0.67) J	

Sample											
Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (contin					-				-	-	
6C0P086	BC-19-3W-9	3/2/2006	Brick	Tier II	Yes	Acenaphthene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Acenaphthylene	Surrogate Recovery Base-neutral	27.3%, 17.5% 27.3%, 17.5%	30% to 115%, 23% to 120% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Acetophenone Aniline	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Aniline	CCAL %D	35.8%	<25%	ND(0.40) J	
						Anthracene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Aramite	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Aramite	CCAL %D	48.8%	<25%	ND(0.67) J	
						Benzidine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.80) J	
						Benzidine	CCAL %D	90.2%	<25%	ND(0.80) J	
						Benzo(a)anthracene Benzo(a)pyrene	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5% 27.3%, 17.5%	30% to 115%, 23% to 120% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Benzo(b)fluoranthene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Benzo(g,h,i)perylene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Benzo(k)fluoranthene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Benzyl Alcohol	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.80) J	
						bis(2-Chloroethoxy)methane	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						bis(2-Chloroethyl)ether	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						bis(2-Chloroisopropyl)ether bis(2-Chloroisopropyl)ether	Surrogate Recovery Base-neutral	27.3%, 17.5% 27.9%	30% to 115%, 23% to 120% <25%	ND(0.40) J ND(0.40) J	
						bis(2-Ethylhexyl)phthalate	Surrogate Recovery Base-neutral	27.3%. 17.5%	<25% 30% to 115%, 23% to 120%	0.47 J	
						Butylbenzylphthalate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Chrysene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Diallate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Diallate	CCAL %D	32.3%	<25%	ND(0.67) J	
						Dibenzo(a,h)anthracene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Dibenzofuran	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Diethylphthalate Dimethylphthalate	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5% 27.3%, 17.5%	30% to 115%, 23% to 120% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Di-n-Butylphthalate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Di-n-Octylphthalate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Diphenylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Ethyl Methanesulfonate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Fluoranthene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Fluorene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Hexachlorobenzene Hexachlorobutadiene	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5% 27.3%, 17.5%	30% to 115%, 23% to 120% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Hexachlorocyclopentadiene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Hexachloroethane	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Hexachlorophene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.80) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.80) J	
						Hexachlorophene	CCAL %D	96.7%	<25%	ND(0.80) J	
						Hexachloropropene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Hexachloropropene Indeno(1,2,3-cd)pyrene	CCAL %D	26.4% 27.3%, 17.5%	<25% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Indeno(1,2,3-cd)pyrene	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J ND(0.40) J	
						Isophorone	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Isosafrole	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Methapyrilene	CCAL %D	57.3%	<25%	ND(0.67) J	
						Methyl Methanesulfonate Methyl Methanesulfonate	Surrogate Recovery Base-neutral CCAL %D	27.3%, 17.5% 99.9%	30% to 115%, 23% to 120% <25%	ND(0.40) J ND(0.40) J	
						Naphthalene	Surrogate Recovery Base-neutral	27.3%, 17.5%	<25% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.67) J	
						Nitrobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						N-Nitrosodiethylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						N-Nitrosodimethylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						N-Nitroso-di-n-butylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						N-Nitroso-di-n-butylamine	CCAL %D	26.7%	<25%	ND(0.67) J	
1						N-Nitroso-di-n-propylamine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						N-Nitrosodiphenylamine N-Nitrosomethylethylamine	Surrogate Recovery Base-neutral Surrogate Recovery Base-neutral	27.3%, 17.5% 27.3%, 17.5%	30% to 115%, 23% to 120% 30% to 115%, 23% to 120%	ND(0.40) J ND(0.67) J	
						N-Nitrosomethylethylamine	CCAL %D	27.5%	<25%	ND(0.67) J	
						N-Nitrosomorpholine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
	1	1			1				22.2.13 110.0, 20.0 10 120.0		

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample											
Delivery				Validation							
Group No.	Sample ID	Date Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (contin											
6C0P086	BC-19-3W-9	3/2/2006	Brick	Tier II	Yes	N-Nitrosopiperidine	Surrogate Recovery Base-neutral		30% to 115%, 23% to 120%	ND(0.40) J	
						N-Nitrosopyrrolidine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						o,o,o-Triethylphosphorothioate	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						o-Toluidine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						p-Dimethylaminoazobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Pentachlorobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Pentachloroethane	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Pentachloronitrobenzene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Pentachlorophenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(2.0) J	
						Phenacetin	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.67) J	
						Phenanthrene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	0.050 J	
						Phenol	Surrogate Recovery Acid	14.7%, 23.7%	25% to 121%, 24% to 113%	ND(0.40) J	
						Pronamide	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Pyrene	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Pyridine	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Safrole	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.40) J	
						Thionazin	Surrogate Recovery Base-neutral	27.3%, 17.5%	30% to 115%, 23% to 120%	ND(0.40) J	
6C0P086	BC-19-RB-030206-1	3/2/2006	Water	Tier II	Yes	1,3-Dinitrobenzene	CCAL %D	51.2%	<25%	ND(0.010) J	
						1,4-Naphthoquinone	CCAL %D	31.7%	<25%	ND(0.010) J	
						2,3,4,6-Tetrachlorophenol	CCAL %D	35.5%	<25%	ND(0.010) J	
						2-Nitroaniline	CCAL %D	31.3%	<25%	ND(0.050) J	
						4-Nitroquinoline-1-oxide	CCAL RRF	0.029	>0.05	ND(0.010) J	
						a,a'-Dimethylphenethylamine	CCAL %D	75.3%	<25%	ND(0.010) J	
						Aramite	CCAL %D	38.7%	<25%	ND(0.010) J	
						Benzidine	CCAL %D	90.2%	<25%	ND(0.020) J	
						bis(2-Chloroisopropyl)ether	CCAL %D	26.2%	<25%	ND(0.010) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.020) J	
						Hexachlorophene	CCAL %D	99.8%	<25%	ND(0.020) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.010) J	
						Methapyrilene	CCAL %D	61.2%	<25%	ND(0.010) J	
						Methyl Methanesulfonate	CCAL %D	99.9%	<25%	ND(0.010) J	
						N-Nitroso-di-n-butylamine	CCAL %D	38.9%	<25%	ND(0.010) J	
						N-Nitrosomorpholine	CCAL %D	25.2%	<25%	ND(0.010) J	
						N-Nitrosopyrrolidine	CCAL %D	45.4%	<25%	ND(0.010) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.010) J	

Attachment 4

March 2006 Supplemental Building Material Characterization Field Notes

Supplemental Building Material Chanaderization

Activities

Book #1

NATIONAL 416 FIELD / TRANSIT BOOK २०४. ১৫. ০০১

(2) Proposal for Supplemental BLDG Ghuraitrication Activities 208.60.001 BC-176-1W-1 Dote: 3/1/06 5BS/TO BBL: NIN Time: 0730 Washen : Tech: Hild Jrill w/1" bit ALDI Hex DI Deconi PCBS, NOCS, SNOCS + Metals to A-ulgois: JGS 5- analosis ~10 standard TAT

Description: Discrete Grub; pulverized red bride & white-painty concrete; located along mest mull OF BLDG 17C, let Floor, 11.8' South OF NW corner OF BLDG, ~4' above ground Eloor; 3 holes, ~10' pereduction apjece

Proposal for Supplemental BLDG Characterization Audividies 908.66.001 BC-17-1N-2 Date: 3/1/06 BBL: SRS/TO Time: 0740 Meston; NIA Techi HIH Dill w/1" 4.8 Dewai Alc/DI/Hew/DI Analysis: PEBS, VORS, SVORS, + Metals to JAT bor analysis what should TAT

Description: Discrete-Grab; pulserized ved bride a green-pointed concrete; located along north mult of BLDG 17C, 1st Floor, ~18' mest of NE correr of BLDG, ~4' above ground floor; 5 holes; approx. 10' penetrotion apiece

* BC- DUR-030106-1 Notei collected here X

Proposal for Supplemental BLDG Chanacterication @ Proppsal for Supplemental BLDG Gharuthunder Activitates A Hividias YO8 22 001 208.66.001. BC-170-25-4 BC-17C-1E-3 Dute: 3/1/06 BBL: SBS/TO Dade: 3/1/06 BBL: 5B5/TO Time: 0900 AIN indexed Weston: N/A Time: 0750 Tech: Mild Dill w/1" 4it Tech: Hilli Dull w/1" Vir Deconi Mc DI Hex DI Decon: Dic DI Heal DE Analdis: PCBS, VOC, SVOC, + Metul, 20 505 <u>Analysis:</u> PCRs, NOTS, SVOTS, & Metals to For analysis the stadows TAT TAT Greeks alm dig hand its 223 Description: Discrete-Grab; pulverires red brick Description: Discrede- Grob; petrevices red + white-pointed concrete; to cated along south but be green-quinted concrete; Is called along wall of BLDG IZC, and Floor, Room BZ, ~20' Rust wall of BLOG 17C, 1st Floor, 13,5' west of SE come of BLDG , ~5' above 2td South of NE comen of BLDG, ~4 above Floor; 3 holes, ~ 10" penedration apiece ground Floor; 3 holes, ~10" penedration agree

Proposal Er Suplemental BLDG Characterication Proposal in Supposed BLDG Characterination ଚ୍ଚେ 🗉 Activites Activities 208.66.001 708.66.001 BC-7-1E-1 BC-17C-2N-5 Date: 3/1/06 BBL: SBS/TO Dute: 3/106 BBLI \$BS TO Time: 0840 Weston: NIA AIN , tober WID Time: 0810 Tech: Hill Dill ~11" Sit HILH DALL ~11" Lik Techi Decon: AlcOT/Her/DI ALDI HEN DI Deconi Analtsis: PCBs 20 505 ~ (a shouldn't TAT Analysis PCB, VOC, SVOC, ~ Metus TAT endender when elections and 202 ch Description: Discrede-Grab; pulverized concrete Description; Discrede- Grab; pulverized red located along east will of BLDG 7, 1st Floor, brick + while-painted concrete; located ~ 30' 50-32 OF NE (toruer of BLDG ~ 1' above along worth wall of BLDG 17 K, 2nd Floor, ground Floor; 3 holes, ~ 2" pereduction 13.5' east of NW comer of BLDG, Room B), ~ 4' above second Eloor; 3 holes, ~ 10" penetrution apircle

Proposal or Supplemendal BLDG Chamatereston (1) Proposal Son Supplementer BUDG Characteristican Suthities 208,66.001 208.66,001 BC-7-1N-3 BC-7-1N-2 Date: 3/1/06 BBL: SBS/TO Date: 3/1106 BBL: \$BS(TO Time: 0900 NIN inches W Time: 0850 AIN indexin Tech: Hilli Dill -11" Wh Techi Hill Dill ~/1" 512 Deconi Alc (PI) Her IDI Decon: Bic DI Heal DI Analtris: PCBs to 505 Wa shuled TAT Annulgois: PCB, NOCS, SNOCS, > Metals do 565 what solution TOT Description: Discrete - Grub; pulverized brick Description: Discrete-Grass, pulsarios yourlocated along North mall of RLDG 7, 1st Floor, quinted brick; bocated along North wall of ~48' Russ of NW conner, ~4' above BLDG 7, 152 FLOOR, ~48' Wash of WE ground Elost; 3 holes approd. 2-3" penetrution Conner of BLDG, ~3' above yours Floor; 8 holes, N2 5" perestation

Proposal for Supplemental BLDC Chinesteriation @ Proposal B- Supplemental BLDG Churchertention Buditions Burning 208,66.001 208.66.00) BC-7-1w-4 Date: 3/1/06 BBL: SBS TO Date: 3/1106 BBL: 5BS/TO Medri NIA Time: 0920 Weston: NID Time: 0910 Techi Hilt Drill w/1" bit Tech: Hilli Drill ~11" bit Deconi Alc/DI/Hex/DI Decon; Alc/DI/Hex/DI Andfrisi PCBs to 565 who should TAT Anuldsis: PCBS VOCS, SVOCS, - Metul, do SGS mla sdandard TAT Description: Discrete-Grab perherized concrete Description: Discrete-Gras; plavered bride cluder block; locaded along south mall of BLDG located along mest wall of BLDG 7, 1st Floor, 7, 1st Floor, ~ 36' Post of 5W corner, ~1' ~33' North of She corner, ~3' above above ground Stoor; 11 holes, approx 1" perhition asund These ; 15 holes ~ 2-7" genetation XMSMSD collected here Y Noti

Proposal For Supplemental BLOC Chamacharization D'Proposal & Supplemender) BLDG Chumbertundian Activities 508.00.00) 208.66.001 BC-17-1N-1 BC-7-15-6 Dute: 3/1/06 Dute: 3/1/06 BBL: \$ BSTO BBU: SB5/ AJS Wester: NIA Time: 1000 Moston: NID Time: 0930 Techi Hilly TE as DAN -11" his HILK Drin with bit Tech: Deconi All Do Heal DI Deconi Alc/DI/Hed/DI Analysis: NOC, SNOC, - Meduly to 565 Analtsis: PCBs, NOCS, SNOCS, & Metals 20 Ma shandand TAT JGS what standed TAT Derivisioni Discrede-Grob; pulvaties dellar- private Descriptor: Discrede-Grub; publicitad connete! bride i locale along worth wall so BDG 17, cinder block; located when south wall of BLDG 7, ~26' nest of SE comer ~1' 162 Eloor, 1' Ruit of alm A5, 24 nest 05 colum BG, ~3' above grow of 10 above ground totor; 15 hades - 1" gentedion , holes, ~ 7" pereduction 158 Floor Note: X BC-DUP-D30106-2 collected have t

Poposal or Supplemental BLDG Characterization 10 Proposal Er Supplementer BLDG | Characteristication Activities Audividia, 208.66.00) BC-17-1N-3 708.88.001 12-13-18-2 Dute: 3(1106 BBL: 5BS/AJS BBL: SBS BSJ Dute: 3/1/06 Wester: NIA Time: 1035 Aleston: NIA Time: 1015 Tech; Hilli TE 92 Drill -11" bit Techi Milli TE 92 DUII -11" Vis Deconi BILIDI HexIDI Deconi ALCIDE/HeaDE Analysis: VOCS, 5VOCS & Merry 20 565 Analdis: NOC, 5VOC, - Metal do 505 TAT Gububs DIN TAT bubaba why Dercutation: Discuste-Grate; pulseited yellow-patro Descriptioni Discrete- Godo; pulveriro tellonbring; localed along worth mail of BLDG 13, painted bridge ; located along south will Ist Floor 2' east 05 colum A13 23 most 20 Henry 1 North 2 11 11 11 2011 30 of column A14, ~ 3' above going Floor; column CQ DY east of column CS. ~ 4' aloove ground \$1000; 5 holes & how, ~ 2-4' penetration approd. J-a" pereduation

Proposal For Supplemental BLDG Churchertication TO Proposol 5- Supplementer BLDG Charantertin Autrines A Hibris 208.66.001 708.0000/ BC-17-W-5 BC-17-15-4 Dute: 3/1106 BBL: 5MIN55 Date; 3/1/06 BBL: JBSIASS Westeri NIA Techi Hilli TEQ2 Dall JI' bit Madon: NIA Time: 1955 Mildi TE 92 Duill -I' bit Techi Deconi AicloT Maslot Decor; MILDI HealDI Amilysis NOC, SNOR, Mehils 20 565 Analdivi VOC, 5VOC, & Meduls & 565 Ma shewing TAT what solar and TAT Descuizitioni Dischele-Grub; pulverizes fallow Description: Discrete-Grad; gulverial pointed bring , back of bing north mall at Jellompainded brick; loculed along south will of BLDG 17, 157 Elos , 2' ensi BUDG 17, Ist Floor, 3' weil of column BGC 95. East 22 colour 1952 ~2, apare of column C18, 27' west of column (19, around 81200; & poles, ~2-4" personation MY above ground Floor; 6 hold, man penetration

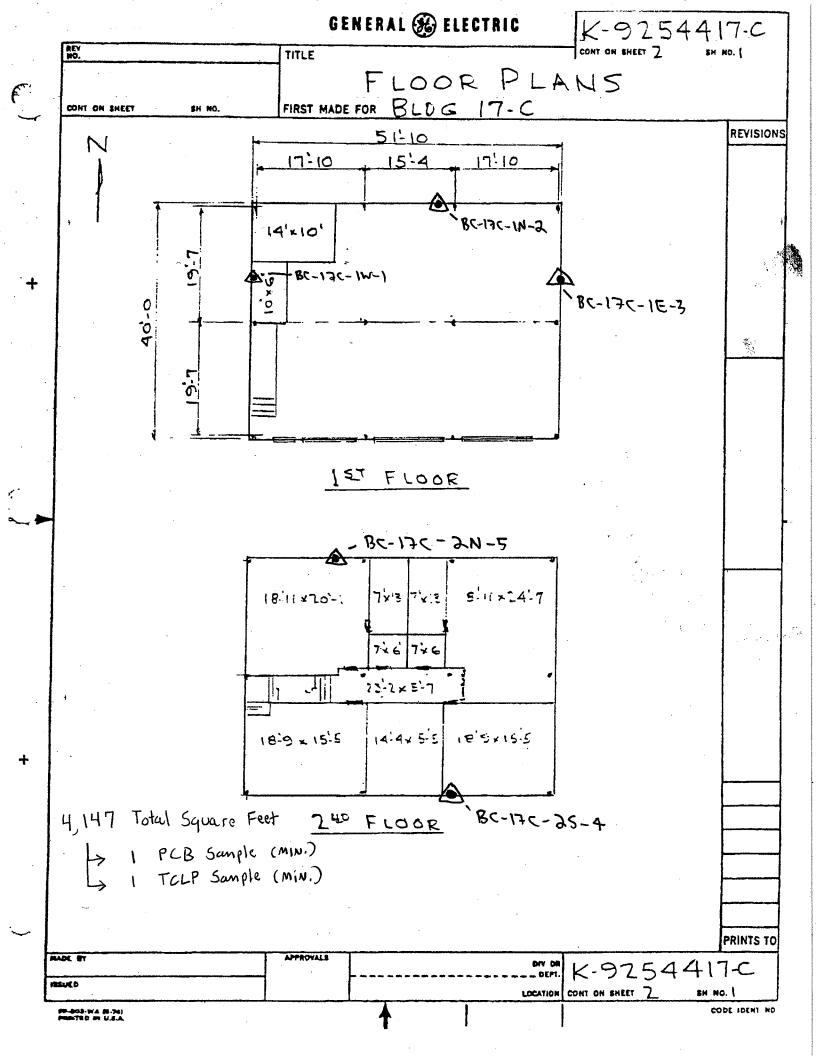
B Proposal 5 Jagelenardes BUDG Thematique the Proposal be Supplemental BLDG Churchterhow Non A Jivite, 208.55.00/ Activities 208,66.001 8-17-15-61 135-17-15-7 BBL: SRS/AJ5 Dube: 3/1/05 Dute: 3/106 BBLI JBS/AJS NIA index Time: 1125 All instead Time: 1135 Tech: Hill TEAR DAN -In 612 Touli Wilk TE92 Duill -11" bit Deconi MillOI Had DE Decori BIL/PI Heal DI Gundes alm 222 of 1979 illightered Analdisis PCBS to SES wha show TAT TAT Doscrights-: Discrede-out; pulveiro sellour Desuriedion: Discrete - Qual; pulvoires pellonpainted cinter blocks; locates along south paraled cluder block; to cales along south wall of TRDG 17, 157 Floor, 10' out of well of BLDG 17 (Sedner buds 24+25), column C24 15 mest of column 625, 257 Floor, 7' most of column 525, 18' ~ q' above ground Stoor; 11 holes . endo 20 - 40 - 40 mulos le bland ~ 1-2" genehatiste ; Collevid Johner Bys Start; 13 holes, ~1-2" penedration Mor Know york 25 4 46

Proposal 50 1 Supplemender | BLDC Characterination D @ Proposal Er Suggementer BLDG Churchteriention Autivitie, 208,66,001 Autivities 208.85.001 BC-17-15-91 BC-17-15-8 BBL: 5BS/BJS Date: 3(1125 Dute: 3/106 BBL: 505/AJ Time; 1200 AIN instran ALN indeed Fime: 1150 -Tochi Hill TE 12 Drill -JI' bir Terk: Hilk TE 92 Dull will " Deconi ALL/DI HealDI Deconi Bic DI Des 101 Analdiii: PCB1 to 505 who sources TAT Analdsia PCB, to 505 why showing TAT Description: Discrete- Emil; pullieites fullow-Description: Discrete-Gras; pelverizes yellow-Pointes cinter blocks; locates along south painted cinter blocks; bocates along south wall wall > 8 BLDG 17 (bedreen buddo 27+28) of RLDG 17 (between Buys 27 + 28), Ist FLOOV, IV Rust of column C27, 152 Elos, & vest of column 228, 17 and 14 west of column (28) ~ q' above , rectil know seeds for , FST muchos Bo 1.2-1: capper 'som el l' recl & proch I holes, art-2" pereduction penedradion

Proposed to Supplementer BLDG Characteristic (23) (3) Proposed For Supplemention BLDE Characteristic Barilians May Supp 208,66,001 Activities Whe surpling 208.55.001 <u>T(me:</u> 1325 Sample ID; Time, <u>Sample ID</u>; <u>Date</u>; 120 BC-17-Bay 27:38-will-w2 3/106 Date ; BC-17 - Bay 27:38- Wall- W1 3/106 Location: Book will BLDC 17, Lower Los 27-28 Location: North will Blac 17, between bab 27-24 Decon: 55x Wor scub Devoni, SSKI made surb Sumple Tipe: Discrede-Wipe Sample Type: Discred-mye Sample Fachi 10+ 10 cm2 Hadaw nipe Sumple Techi 10010 cm² Hedave where Origination: North will of BLDG 17 bedreen Orlyination: North will of BLDG 17 John EES to the 'b ' set a EES annulos 829 20 4m 01 , 829 0 12 B28 Sample Description: WI- Vertical - tellou-painted usetal Jangle Descriptions W&- Vertical- fellow-Tainto Meddel Sample Amilysis: PCAU & 555 what should be Sample Analdsils: PCR, to SCS what TAT bububb 2 191

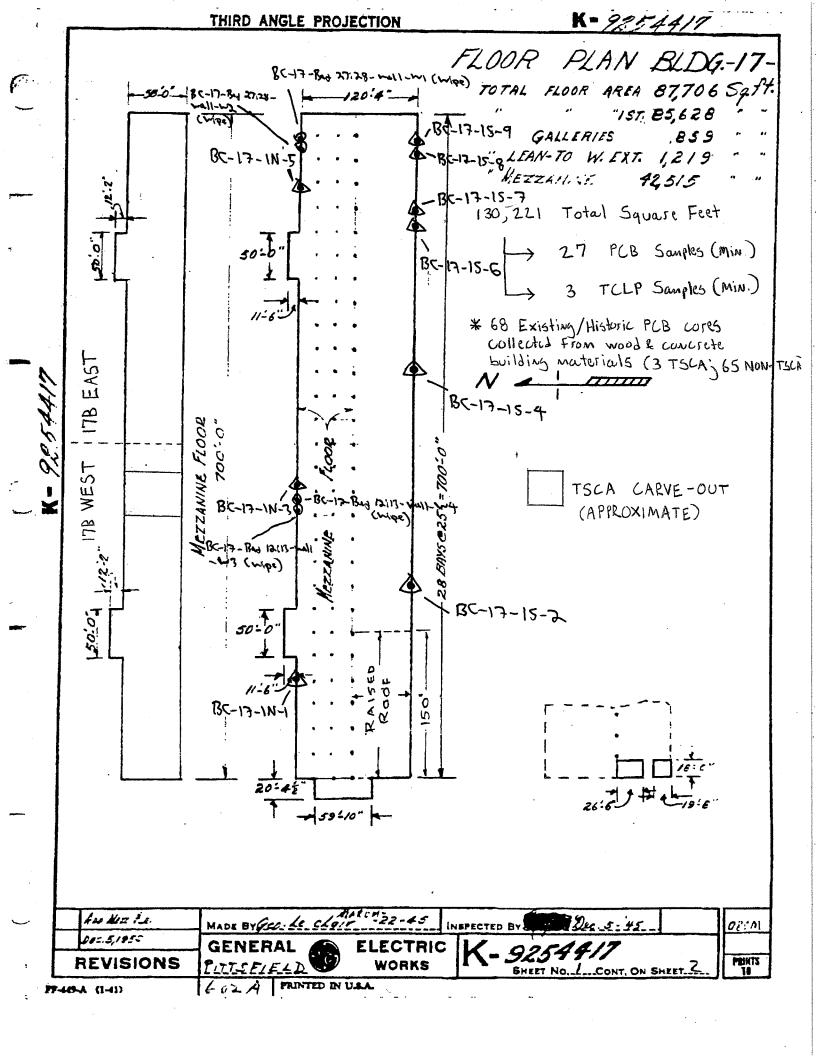
Proposul For Supplemental BLDG Chanasticution (23) (Proposed 54 Suggerender BLDG Churacterination Butilities Wipe Sampling 208,66.001 B dividio 14 245208.66.001 Date: Time: 3/1/06 1345 <u>Sample ID:</u> BC-13- Bago 12:13- mall-W3 30106 1340 BC-13- Bug 12:13- mall-W4 Sumple ID; Locubion: North wall at BLDG 17, between by 12-13. Locubion: North wall of ALDC 13, between by 12-13. Decori SSRI water sous Decon: 55x Water Scrub Single Teti 10 x 10 cm² Herare white Sample Joch; 100 10 cm² diebane vige Simple Type: Disciple where Surple Topei Discuele- Mape Ortigination: North will of RLDG 17 Letner Orlyinution: North will of RUDG 13 bedneen column A12 & A13, 9' ensit of A12 column, A12 + A12, of nest of A13 Sumple Descriptioni W4- Verdicus - Jullon printers statistic Sample Analysis PCBS do 565 white Jamphe Dualdesisi PCDI to SGS when Standard TA-S they bedrate

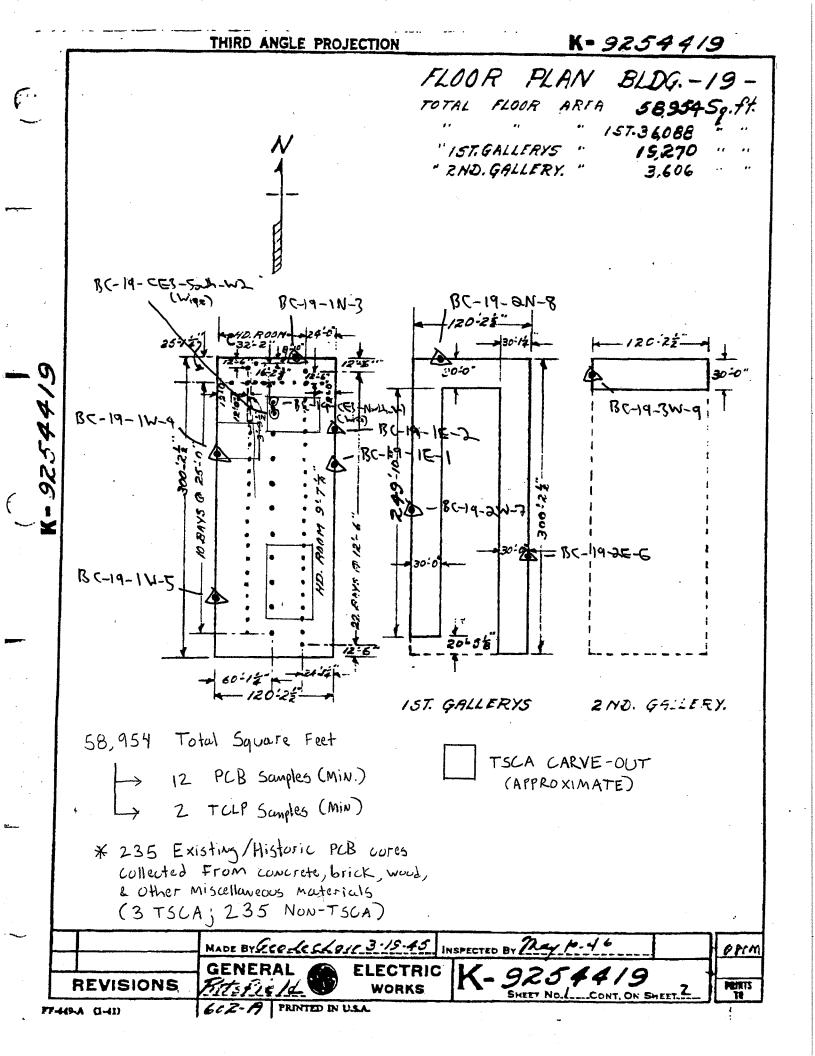
Proposal For Suppemental BLDG commutation (2) (25) Proposal and Inpelanorthe BLDG Churcherinadri-Audivities 208.55.001 Dy Jiniti, 208.86.201 Daki <u>Time:</u> 3/2/06 0915 Duter Time, Jample ID: 3/1/06 1900 BC-19-CE3-Northerwy Jample ID: BC-13- Spilesdy Apr -1 Description: There is noted games to be Locadion: BUDG 101, 10+ Eloon, Nouth site of Film E3 spiles by 145 Decons 55K) Water Samo 2017 Calinda alon 272 of 1829 . Richmand Sunde Terla 10 & 10 cm2 Wasser while Sumple Type: Discrede viere Ortylnubion: North ive of Column E3, BUDG Dat 1 Time; 3/1106 1405 Sangle IDi BC-13-FB-Mpe 19, 112 Flow, ~ 4' above yours \$1000 Decentration Dedoue source games games Sample Description: W/- Vertice) - helpe-quilibred abead May bucked a la 272 of 1829 relationed Sumple D-milisi - PCR, 25 565 bolla Stendard TAT


Proposal or Supplemental BLDG Churchimenter 63 (3) Proposal by Supplemental BLDG Chambertantion Aconitio 208.66.001 Acdivities 528 66.001 BC-19-1E-1 Dute: 3/2/05 ADU SASJATS Sample ID: B(-19- CE3- Janh-2-2 Date; Time Time: 0445 NIN 3/2106 messoni Dano Tehri LANN TE 02 Divill ~ 11 612 BUC DE Mas) DE Location: BLDG 19, 12 Floor, 5224 ile columes Decori Analysisi PCBS to 565 when showing Decon: 5541 Water study TAT Somple Techi 10 x 10 cm² Hesone were Sumple Type: Discuse- Vipe Descriptions: Discusser Ents ; Quilieites ver with Origination 5=+34 side 28 when E3 locates along east mult of BLPG 19, bit RUDG 19, 1st \$1000, ~5' above grown \$1000 Elor, 1' south at 100 J5, ~5' above ground Stoor) I holes, ma' Jample Description: WJ- Description - white points steel peretuition Note: I MisIMSD (others have It Jample Analysis: PCB, to 505 what standard TAT

Proportion for Supplemental RUDG Chamitantinition 3 Profosian 5 5 Sugalenation BLDC Chanteringtin Activities Activities 238.66.001 308.66.001 BE-19-1N-9 BC-19-1E-2 Dote: 3/2106 BBL: \$BS/AJS Date: 3/2/05 BBC: 575/ATS Time: 1015 Massari NIA. Time: 1000 Weiter: NIA Towi thousand TE US MIN -11" bit Tel: Hill Dull TE 92 -11" bis Deconi AlloTAAed/OIL Decon: Alc/DI/Hea/DI Analdrin: NOTS, SNOT, ~ Means to 565 Braldist: 958, to 565 mla Ma shubard TAT 5tar bulleritz Desuighton: Disack- Onis; jollow-painted Description: Discree- Crub; pulsarizes pulnerices bridi; locates along north nall red bride; locate along and will of OF BLDG 19, 1st Floor, Room B17, 18' BLDC 19, 100 Floor Room A19, 95' East at column Ell, ~6' above good story were 's an pt mulos to show 6 hold, ~4" powertwither ground Elson 3 hales, ~4" genetation

Proposal Son Supplementer PLOC Characteritation (33) 3 Proposal 50 Supplemental BLDE Channeternation Activities Activities 208 66.001 708.22.001 BC-19-1W-5 Br-19-1W-4 Dute: 3/2105 Date; 3/2/2 BBL: 5155/ATS BBL: 5B5/AJS Time: 1045 Wester: NIA Weiteri NID Time: 1030 Techi Hill Dill TE go will bid Techi Hilli TE 92 Dill will with Deconi AICIDI Heal PT Dewi BilDI) Hu PT Analysis: NOCS, SNORD, & Memb to 565 Analdsivi NOCI, SVOK, + Metals to SGS Wa standard TAT via showand The Desculation: Discrede- Grab; pulvided red Suit; Descurptor; Disvele- Grue; percenter julion located doing west will of TSUDE 19, 15 Eres, - quinted birty located along meit wall I' North of column All, ~ 2-5' stores OF BLDG 19, 1st Floor, Room AID, Y North of rolin A5, ~5' above grow SIDON; I holes, ~4-6" generation your \$100; 4 his ~ 6" gastation


Progosal for Supplemental ALDC Characterination 37 34 Proposul For Sugglementer BLDG Chumiteriteri Activities 208.66.001 Activitie, 208 66.001 8-19-21-2 BC-19-2E-6 BBL: 5BS BSS Date; 3/2105 BBL: STULATS Dute: 3 (2126 Ally indean All instant Time: Was Time; 1105 Techi Hill TE 92 Duill will bit Tel: Hilli TE 02 Will will ST Deconi AllDE/ HeaDE Deconi BACIDI HealDI Anuldini QOC, SNOC, + MEDIS +> 555 A-ultsisi VOC5, 5VX5, & Metuls to 565 what shouldon TBT TAT Enlant un Description Discrede Queb; pulsation pellon Description: Discrede-Grub; pulverind pell-upainded butil; located along nest not of pointes brick; bocaded along east wall of BLDG 19, 2nd Floor, 2' Songe of BLDG 19, 2. FISSY Room \$24, 2 column A7, ~ 2' above 2' 5100; 4 well it ender 59, ~ 3' done 2' they; A hates, -2-3" generations hados, ~ 6-8" generation


Proposal for Supplemental BLDG Characteritation 36 Proposal 54 Jugelineptier BLDG Churchterinter Adivition 208.65.001 Activition J28: 66.001 Br. 14- 3w-9 BC-19-2N-8 BBL: SBS/AJS Pate: 3(2105 BBL: 5851A35 Date: 3/2/06 Time: 1200 Westeri NIA Westeri NIA Time: 1195 Techi Hilli TE 92 Dvill ~11" Sid Techi Hillsi TE 92 Drill will bib Deconi Alupa Mas Int Decori Bic/DJ/Her/DI Anuldsisi VOCS, SVOKS, ~ Medals to SCS Analdsing VOR, 5400, + Metals to 505 nda showbon TAT Mu standard TAT Descrigtion: Discrede Grab; pulnerized white-Dosculation; Discrete-Grub; 24/100/20 Quinded-brick; bended along west wall of white quindes bythe; locades along nath BLDG 19, 3rd Floor, 13.5' South of wall of BLDG 19, 200 Floor; on NW come of BLDG, ~ 2: above 200 50-32 sibe 35 rolun 2), ~ 4.5. Sloor merzanine; 5 hors, ~ 6"-8" penehultin above 200 Stor stained landing; 3 holes, ~ 8' paredrukto

K-9254407 FLOOR PLAN BLDG. 6 28,113 Total Square Feet 6 PCB Samples (Min.) 1 TCLP Sample (Min.) BC-7-1N-3 , BC-7-IN-2 * CONCRETE Roof Deck 2 4- BC-7-1E-1 24-13 62:19 \$-BC-7-1W-9 r BC-7-15-6 BC-7-15-5 177.6 いへの 157. FLOOR 21506 \$ 6.6 19) BAYS CITO (n'e BESINIT. 1110 ANTH 515 6607 ¢ BRICK MADE BYGCC.LE Cloir 3-3-4 C INSPECTED BY 8-12-75 T.J.S. ECTRICK GENER PATS fie H VISIONS WORKS PRINTS SHEET NO. CONT. ON SHEET Z TC (1-41) 2- A PLINTED IN U.S.A.

Locations Nationwide Alaska

Louisiana

 New Jersey West Virginia

 North Carolina 055731 www.us.sgs.com

Hawaii

Maryland

1	CLIENT: BP	BL elo GE	Coro				SGS F	leference	э:									1		٨	
I	CONTACT: 🧲	11 5.1	PHONE N	10:(5)8)36	Q. 201-	>		1									PA	GE	C)F	
ł	PROJECT: 547	And the star Actuation	*`^ ` SITE/PWS		P110		No	SAMPLE TYPE	Preserva Used	-	~	-		-		_					
ł	REPORTS TO:	A CO KALCOTAS PROMINIS	<u> </u>		1119-9	1613	C O	C=	Analysis Require		/	/		/	/	/	/	/ /			
I	Michae	1 Hussett	FAX NO.:(315)44	9-411)		N T	C= COMP	3	/ /	/	/ /	/ /	/ /	/ /	/ /	/				
I	INVOICE TO:		QUOTE #	1			Â	G= GRAB	7				_/	5		/	/	/ /			
1 2	Bruce	Eulium	P.O. NUM	IBER 2つす	.66.03	۶ ۱	N E		/ c	<u>ي</u> اً (ي		5.		5 2							
Ĩ	LAB NO.	SAMPLE IDENTIFIC		DATE	TIME	MATRIX	R S		10]/\$	$\frac{1}{\sqrt{n}}$			/		/	/	/	REMA	RKS	
		BC-17C-IN	- 1	3/1/26	OFID	Bruck	2	G	\mathbf{X}	$\left \right\rangle$	X	$\mathbf{\times}$									
		BC-DC-IN	- 2		CAFO		9		X	\times	$\left \right\rangle$	\times						\$ BC-	DUP-C	30106. here	-18
I		BC-17C-1E	- 3		CTFO		2		X	\times	$\left \right>$	×									
		BC-17C-29	0800		3		X	\searrow	12	\times											
		BC-17C-21	N-5		0810		5		\succ	\times	X	$\mathbf{\dot{\times}}$									
		BC-7-1E-	<u> </u>		0845	(Sande	1		\times												
		BC-7-1N	5		0850	Brick	2		\times	\times	X	$\left \times \right $									
		BC-7-IN-	3		0955	V			X												
		BC-7-IN-	4		0912	Concrede	4		\mathbf{X}	\times	X	X	X					* ~ 1	nin r	ere A	
5	`	BC-7-15-	5		0922		1		\times												
Ì	~	nquished By:(1)	Date	Time	Received B	y:		(Shi	pping (Carrier	:			Sam	ples Re	eceive	d Cold? (Circle) \	ES NO	
	Ser		3/1106	1615					Sh	ipping '	Ticket I	No:			Tem	oeratur	e ∫C:_		ĩ	·	
I	Relinquished I	Ву: (2)	Date	Time	Received B	y:			Spe	ecial D	elivera	ble Rec	quireme	ents:	Chai	in of Cu	ustody	/ Seal: (C	ircle)		
															INTA	CT		BROKE	N	ABS	ENT
ſ	Relinquished I	elinquished By: (3) Date Time Received By:							Re	queste	d Turn	around	Time a	ind Spe	cial Ins	structio	ns:				
								.	4												
	Relinquished I	Ву: (4)	Date	Time	Received B	y:					24	anj	or g	T	AT	· ·					
												_									

 D 200 W. Potter Drive
 Anchorage, AK 99518
 Tel: (907) 562-2343
 Fax: (907) 561-5301

 D 5500 Business Drive
 Wilmington, NC 28405
 Tel: (910) 350-1903
 Fax: (910) 350-1557

© 1258 Greenbrier Street Charleston, WV 25311 Tel: (304) 346-0725 Fax: (304) 346-0761

٤,

Locations Nationwide Alaska

Louisiana

• Hawaii

Maryland
 North Carolina

 New Jersey West Virginia

055730 www.us.sgs.com

(1	40.																_				
Ĭ	CLIENT: BB	L do GE	(JOD.		·····		SGS	Reference	Ð :								PA	GE	L_OF	4	
		rist's Sanders	PHONE N	10:(518)3	68-58	FI		1	Preserva	tives	<u> </u>	<u> </u>		<u> </u>		- <u> </u>					
	PROJECT: > ~ Mate	pplemendal RLDG	SITE/PWS	SID#: GE-	7,66,9	(1)	No	SAMPLE TYPE	Used Analysis	uves ~	· ~			<u> </u>	<u> </u>					·	
I	REPORTS TO:						C O	C≃ COMP	Require		/	/	/	/	/	/	/	/ /			
	Michael	Hussett	FAX NO.:	315)49	9.411	\mathbf{V}	N T		3	/ /	/ /	/ /	' /	' /	' /	/ /	/	. .			
I	INVOICE TO:		QUOTE #	ŧ.			A	G≂ GRAB	/	/	/							' /			
	Brnie	Eulian	P.O. NUM	IBER 20	8.66.	$\partial \omega$	N E		/c	ζ/ L		5/-	3								
Ĭ	LAB NO.	SAMPLE IDENTIFIC	ATION	DATE	TIME	MATRIX	R S		d'u	' S	5/2				/	/ .	/.	/	REMAR	KS	
		BC-7-15-	6	3/1106	0930	(Saude	2	G	\times	X	\times	$\boldsymbol{\times}$									
		RC-17-1N-	1		1000	Brick	2	5		Х	X	\times						→ B<-	Dr9-0	20106-	2
		BC-17-15-	2-		1212		2	G		\times	$\left \right\rangle$	\times								AP	
		BC-17-1N-3 1035								\times	X	X							<u> </u>		
		BC-17-15.	4		1922		5	C		X	X	×									
		BC-17. IN.			1115		2	C		X	X	X									
		B(-17-15-	6		1125	(Jonarde	1	G	Х										· · · · · ·		
		BC-17-15-	7		1135			C	$\boldsymbol{\lambda}$												
		BC-12-15-			1150			G	×												
5		BC-17-15-	- 9		1200			G	Y												
Ì	Collected/Relin	equished By:(1)	Date	Time	Received E	By:				pping (Carrier:				Sam	ples Re	eceive	d Cold? (0	Circle) YE	S NO	
	St.		3/1/20	1617					Sh	pping ⁻	Ficket N	No:			Tem	peratur	e ∫C:		ï		
	Relinquished B	By: (2)	Date	Time	Received E	By:			Sp	ecial De	eliverat	ole Req	uireme	nts:	Chai	in of Cu	ustody	Seal: (Ci	rcle)		
															INTA	CT		BROKE	N	ABSE	NT
ľ	Relinquished B	Relinquished By: (3) Date Time Received By:							Re	queste	d Turna	around	Time a	nd Spe	cial In	structio	ns:				
									•												
	Relinquished B	uished By: (4) Date Time Received By:									\leq	1. set	6121	7	AT1						
														• '							
	00 W. Potter Drive	Anchorage, AK 99518 Tel: (90 Wilmington, NC 28405 Tel: (9	🗆 1258 G	reenbrier St	reet Char	leston, V	VV 25311	Tel: (30	04) 346-0	725 Fax	:: (304) 3	46-0761				Whi Vallow	te - Retaine eturned with	d by La			

Yellow - Returned with Report Pink - Retained by Sampler

-

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide

 Alaska • Hawaii Louisiana Maryland

 New Jersey West Virginia

 North Carolina 055725 www.us.sgs.com

	())	SL (10 GE	(21%).	·			SGS F	Reference	e :								PA	.GE <u>3</u>	DF
	CONTACT: 5	istà Sunders	PHONE N	10:(518) 3	69-59	<i>E</i> .	No	SAMPLE TYPE	Preserva Used	tives		.		23 N 43	N 6.2	•	T		
	REPORTS TO:	rementer BADE Makes					C O	C= COMP	Analysis Required		7	7	/	/	/	/	+		
	Michae INVOICE TO:	1 Hossett	FAX NO.:	(3)5) 44	114. 11	\	N T A	G= GRAB	3	/ /	/ /	/ /	/ /	/ /	/ /	' /	, 	/ /	
2		Eulin	QUUIL #	IBER 20			I N E	GRAB	-		21/2	$\frac{1}{5}$	Ĕ/.	212	ما ب م				
\checkmark	LAB NO.	SAMPLE IDENTIFIC		DATE	TIME	MATRIX	R S		000		1ñ			15		/			ARKS
		B(-DUP-07217 B(-DUR-0321		3/11/26		Brick	2	G	\overline{X}	$\mathbf{X}^{\mathbf{X}}$	X X	X							
┢		B(-17-RB-07			1545	Water	8		X		$\frac{\gamma}{\lambda}$	$\frac{\lambda}{\lambda}$	X	X					
		Trig Plante 3/1106 - W						5		X			<u></u>						
┣	1	······································	,										<u> </u>			•			
	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •						,											
							ļ												
5								L(4)										
		nquished By:(1)	Date 3)1/05	Time	Received	By:				pping C pping 1								d Cold? (Circle) `	
F	3/1/35 16/5 Relinquished By: (2) Date Time Received By:									ecial De			uireme	nts:				Seal: (Circle)	
															INTA	CT		BROKEN	ABSENT
	Relinquished E	elinquished By: (3) Date Time Received By:							Re	queste	d Turna	around	Time a	nd Spe	cial Ins	structio	ns:		
	Relinquished E	Iquished By: (4) Date Time Received By:									~	23	un)a		TA	7			

□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

1258 Greenbrier Street Charleston, WV 25311 Tel: (304) 346-0725 Fax: (304) 346-0761

*

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide Alaska,

Louisiana

Hawaii

Maryland

North Carolina

 New Jersey West Virginia

055726 www.us.sgs.com

CLIENT: BT	IL CO GE	Corp.				SGS	Referenc	;							PA	GE 4	OF	4
	Sisti Sunden Annorm Rube Mute Land Levinsin Anin 1 Llajsett Eurlian	PHONE N	SID#: CE- (315.) 44	P.33.8	(1) 1	No CONTAINER	SAMPLE TYPE C= COMP GRAB	Preservativer Used Analysis Required					}				OF	
LAB NO.	SAMPLE IDENTIFIC		DATE	TIME	MATRIX	s		$\left \frac{a}{c} \right $			/	[/	_	_	/	REMARK	S
	BC-17-B-121:28 RC-17-B-121:28			1322	W. PC		G	$\frac{X}{X}$									<u></u>	
	BC 17 Buy 12:13.			1340				X										
	BC-17-Buy 12-13-Wall-W4 1345							X		1							<u></u>	
	BC-17-5862 1400 1400					1		X						-				
	B(-17-FB-w	~13e		1405	\downarrow		V	X										·
			· · ·								.				4-			
																	•••	
5																		
	nquished By:(1)	Date	Time	Received	Śy:			Shipp	ing Carrie	er:			Sam	ples Re	eceive	d Cold? (Ci	rcle) YES	NO
		3/1/26	1012						ing Ticke				Tem	peratur	e (C:		ï	
Reinquisned	Relinquished By: (2) Date Time Received By:							Speci	al Deliver	able Red	quireme	ents:	Cha	in of Ci	ustody	Seal: (Cire	ole)	
Polinguished	Relinguished By: (3) Date Time Received By:												INTA			BROKEN		ABSENT
rteiinquisned								Requ	ested Tur					structio	ns:			
Relinquished	linquished By: (4) Date Time Received By:								5	ol n r b	113	TN	r Ŋ					
Q 200 W. Potter Drive	Anchorage, AK 99518 Tel: (90	1258 0	Greenbrier St	reet Char	eston WV	25311 Tol	(204) 246 (1725 Ea		46 0764				White	- Retained by La			

D 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

Fax: (304) 346-0761

Yellow - Returned with Report Pink - Retained by Sampler

Locations Nationwide

 Alaska Louisiana

 Maryland New Jersey West Virginia

North Carolina

055732 www.us.sgs.com

Hawaii

CLIENT: B.R.	ol do GE	Coro.						SGS R	eferenc	e:		an in i	ar Alfreda								F J	
CONTACT: 5	cold Sanders plemental BLDC mil macherizadion Activ	PHONEN	10:6	18)31	58-581	3													.GE	<u> </u>		·
PROJECT	plemental BLDC mit	SITE/PWS	SID# :	GE-	P122.1			No	SAMPLE TYPE	Presérva Used		· He	<u>\ </u>	LON	2 -	- Na	N 25	~				
							•	C O	C=	Analysis Require		/	/	/	/	/	/	/		/		
Michae	el Hassett	FAX NO.:(315	5) 44	9-411	١		N T	C= COMP	3	/ /	/		/ /	1	/ ./	/ /	/				
INVOICE TO:		QUOTE #	E					A	G= GRAB	17				7	5/	/		/	' /			
Bruce	Enlian	P.O. NUM	IBER	90,	8.66.0	(00		N E		/c	a) L	2/2	ن م (م	3		>/i	<u>,</u> ,					
LAB NO.	SAMPLE IDENTIFIC	CATION	D	ATE	TIME	МА	TRIX	R S	-		15	/2	50.2	!/ Ł	10	2/12	7	/	/	REMA	RKS	
	BC-19-1E	-)	3[:	aloe	10945	Br	زيام	2	G	X				X								
	RC-19-1E				1000)		X												
	BC-19-1N-3 1015									×.	$\boldsymbol{\times}$	\succ	X									
	BC-19-1W-4 1030										X	メ	X									
	BC-19-1W				1045			2			$\boldsymbol{\prec}$	8	X									
	BC-19-21			<u> </u>	1102			2			X	Y	X									
	BC- 19-2				1192			2			X	X	メ									
	BC-19-2				1145			2			X	Y	४									
· · · · · · · · · · · · · · · · · · ·	BC-19-32		L		1900			6			\times	X	メ									
	BC-19-RB-030	0906-1	\ \		1230	W	der	B	V	\overline{X}	$\left \right\rangle$	X	X		\times	X						
Collected/Relin	nquished By:(1)	Date	Tim	ie	Received E	By:				Shi	pping C	arrier:		· · · · · · · · · · · · · · · · · · ·	1	Sam	ples Re	eceive	d Cold?	(Circle) Y	ES N	C
×	<u> </u>	3/2/06	13	45						Shi	pping T	ïcket f	No:			Tem	peratur	e ∫C:_		ï_		
Relinquished E	By: (2)	Date	Tim	ie	Received E	By:				Spe	ecial De	liverat	ole Req	uireme	nts:	Chai	in of Cu	ustody	Seal: (Circle)	•	
																INTA	NCT		BROK	EN	AB	SENT
Relinquished B	linquished By: (3) Date Time Received By:									Re	questec	l Turna	around	Time a	nd Spe	ecial In	structio	ns:				
Relinquished B	By: (4)	Date	Tin	ie	Received E	By:	<u> </u>					5	Jani	Grul	T	7-61						-
		:		-									•				>					
				2						· · · · · · · · · · · · · · · · · · ·	2 in (A State Line Popula							

□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

□ 1258 Greenbrier Street Charleston, WV 25311 Tel: (304) 346-0725 Fax: (304) 346-0761

-.

Locations Nationwide • Alaska • Hawaii

Alaska
Louisiana
New Jersey

Maryland
 North Carolina

• West Virginia www.us.sgs.com 055733

1)																3.				-
CLIENT: BT	BL do GE	Corp.				SGS F	Reference	e:								PA	AGE	2		r
CONTACT:	Stold Sunders	PHONE N	10:(<i>516</i>)36	58-28	F		1													
PROJECT: 5	Astronomy BLDE mas	SITE/PWS	SID#: GE	- Oith F		No	SAMPLE TYPE	Preserva Used												
REPORTS TO:		11-13			~~~~	C O	0-	Analysis Require		/	/	/	/	/	/	/		/		
Michne	1 Hussell	FAX NO.:(315) 44	9-411	>	N T	C= COMP	3	/ /	/ /	/ /	/	/ /			/	/	/		
INVOICE TO:		QUOTE #				Ą	G= GRAB	\neg				- /		1	/			/		
2 Bruce	Eurlian	P.O. NUM	BER 20	8.66.9	100	N E		/_	م ارد	2/				. /						
LAB NO.	SAMPLE IDENTIFIC		DATE	TIME	MATRIX	R S		/5) 0			/	/	/	/	/	/	/	REM	IARKS	
	Trip Blan	र	3/2/06	-	Water	3	C	-	X		·						1			
	B (-19-CE3-1	North-WI		0415	Wipe	1		\times						·			1			
	B(-19-CE3-S		\checkmark	0920				X		-							1			
	·																			
	*											*								
						<u> </u>														
													ļ							
5)								4)												
	nquished By:(1)	Date	Time	Received E	By:				pping C	arrier:				Sam	ples Re	eceive	ed Colo	l? (Circle)	YES N	0
S	5	312/22	1345					Sh	pping T	ïcket N	lo:			Temp	peratur	e ∫C:_			ï	
Relinquished E	Зу: (2)	Date	Time	Received E	By:			Spe	ecial De	liverab	le Req	uireme	nts:	Chai	in of CL	ustody	/ Seal:	(Circle)	•	
														INTA	ACT		BRC	KEN	AB	SENT
Relinquished E	Relinquished By: (3) Date Time Received By:							Re	questec	l Turna	round	Time a	nd Spe	cial Ins	structio	ns:				
Relinquished I	Зу: (4)	Date	Time	Received E	By:				·	29	tan	bral	T	R	٦					
															-					
													·				Carlo a series			

□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

D 1258 Greenbrier Street Charleston, WV 25311 Tel: (304) 346-0725 Fax: (304) 346-0761