01-0670 SDMS 201125

Revised Conceptual RD/RA Work Plan for East Street Area 1-North

Show the second se

States

holter

General Electric Company Pittsfield, Massachusetts

January 2004

 $O \vdash C O P O$

Conocate Environmental Programs General Electric Company 100 Weadlawn Avenue, Pittsfield, MA 01201

January 6, 2004

Mr. Michael Nalipinski U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

GE-Pittsfield/Housatonic River Site Re: East Street Area 1-North (GECD130) **Revised Conceptual Removal Design/Removal Action Work Plan**

Dear Mr. Nalipinski:

In accordance with EPA's November 26, 2003 conditional approval letter for the Conceptual Removal Design/Removal Action Work Plan for East Street Area 1-North Removal Action (October 2003), enclosed is GE's Revised Conceptual Removal Design/Removal Action Work Plan for East Street Area 1-North Removal Action.

Please call John Novotny or me if you have any questions about this report.

Sincerely,

Andrew J. Selfer / NME

Andrew T. Silfer, P.E. GE Project Coordinator

Enclosure

Bryan Olson, EPA cc: Tim Conway, EPA Holly Inglis, EPA Rose Howell, EPA (CD) K.C. Mitkevicius, USACE (CD) Dawn Jamros, Weston (Hard copy & CD) Susan Steenstrup, MDEP (2 copies) Anna Symington, MDEP* Robert Bell, MDEP* Thomas Angus, MDEP Nancy E. Harper, MA AG* Dale Young, MA EOEA* Mayor James Ruberto, City of Pittsfield

Pittsfield Department of Health Thomas Hickey, Director, PEDA* Jeffrey Bernstein, Bernstein, Cushner & Kimmel* Michael Carroll, GE* John Novotny, GE Rod McLaren, Esq., GE James Nuss, BBL James Bieke, Esq., Shea & Gardner Property Owner - Parcel K10-14-1 Stacy Watson May, Esq., CSX Robert Ratchford, CSX Public Information Repositories **GE** Internal Repositories

* (cover letter only)

Revised Conceptual RD/RA Work Plan for East Street Area 1-North

General Electric Company Pittsfield, Massachusetts

January 2004

e en en en el complete de la complete de la complete de la complete de complete de la complete de la complete d

Table of Contents

常业

Section	ı 1.	Introduction	1-1
		1.1 General	1-1
		1.2 Description of East Street Area 1-North	
		1.3 Scope and Format of Revised Conceptual RD/RA Work Plan	
Section	2 .	Summary of Pre-Design Soil Investigation Activities	2-1
		2.1 General	2-1
		2.2 Pre-Design Soil Investigations	2-1
		2.3 Supplemental Soil Investigations	
		2.4 Site Survey and Mapping	2-3
Section	n 3.	Summary of PCB Soil Evaluations	3-1
		3.1 General	3-1
		3.2 Overview of Applicable Performance Standards	3-1
		3.3 Summary of Evaluation Procedures	
		3.4 Summary of PCB Evaluations for East Street Area 1-North	3-5
Section	4.	Summary of Non-PCB Soil Evaluations	4-1
		4.1 General	
		4.2 Overview of Applicable Performance Standards	
		4.3 Summary of Preliminary Evaluations	
		4.3.1 Review of Data Qualifiers	
		4.3.2 Comparison to "Screening PRGs"	
		4.3.3 Comparison to MCP Method 1 Soil Standards	
		4.3.4 Dioxin/Furan Data Assessment	
		4.3.5 Area-Specific Risk Evaluations	4-10
Section	n 5.	Summary of Future Activities	5-1
Tables			
2-2 F	Pre-De	esign Investigation Soil Sampling Data for PCBs esign Investigation Soil Sampling Data for Appendix IX+3 Soil Analytical Results Soil Sampling Data for PCBs	
2-5 I	Histori	Appendix IX+3 Soil Analytical Results ical Soil Sampling Data for PCBs	
		ical Appendix IX+3 Soil Analytical Results	
4-1 (Compa	emental Pre-Design Investigation Soil Sampling Data for Appendix IX+3 Soil Analytical Re arison of Detected Appendix IX+3 Constituents to Industrial Screening PRGs, GE-Owned arison of Detected Appendix IX+3 Constituents to Industrial Screening PRGs, Non GE-Ov	Parcels
		I K10-14-1 arison of Detected Appendix IX+3 Constituents to Industrial Screening PRGs, Non GE-Ov	unad
F	Parcel	K11-1-15 with Projected Data	
	Existin Interva	ng Conditions – Comparison to Method 1 Soil Standards, GE-Owned Parcels (0- to 1-Foot al)	: Depth

BLASLAND, BOUCK & LEE, INC.

1

-	Interval)
4-6	Existing Conditions – Comparison to Method 1 Soil Standards, GE-Owned Parcels (0- to 15-Foot Depth Interval)
4-7	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K10-14-1 (0- to 1-Foot Depth Increment)
4-8	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K10-14-1 (0- to 3-Foot Depth Increment)
4-9	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K10-14-1 (1- to 6-Foot Depth Increment)
4-10	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K10-14-1 (0- to 15-Foot Depth Increment)
4-11	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K11-1-15 with Projected Data (0- to 1-Foot Depth Increment)
4-12	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K11-1-15 with Projected Data (0- to 3-Foot Depth Increment)
4-13	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K11-1-15 with Projected Data (1- to 6-Foot Depth Increment)
4-14	Existing Conditions – Comparison to Method 1 Soil Standards, Non GE-Owned Parcel K11-1-15 with Projected Data (0- to 15-Foot Depth Increment)
4-15	Existing Conditions – Comparison to Upper Concentration Limits (UCLs), GE-Owned Parcels (0- to 15- Foot Depth Increment)
4-16	Existing Conditions – Comparison to Upper Concentration Limits (UCLs), Non GE-Owned Parcel K10- 14-1 (0- to 15-Foot Depth Increment)
4-17	Existing Conditions – Comparison to Upper Concentration Limits (UCLs), Non GE-Owned Parcel K11-1- 15 with Projected Data (0- to 15-Foot Depth Increment)
Figure	s

Existing Conditions - Comparison to Method 1 Soil Standards, GE-Owned Parcels (1- to 6-Foot Depth

- 1-1 Removal Action Area
- 1-2 Soil Sample Locations

Appendices

4-5

- A Data Validation Report for Supplemental Soil Investigations
- B PCB Spatial Averaging Evaluation Tables and Polygon Maps
- C Risk Evaluation of Non-PCB Appendix IX+3 Constituents in Soils at East Street Area 1-North

1. Introduction

1.1 General

On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE). the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and several other government agencies was entered by the United States District Court for the District of Massachusetts. The CD requires (among other things) the performance of Removal Actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents present in soils, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts. These RAAs are part of the GE-Pittsfield/Housatonic River Site (the Site). For each Removal Action, the CD and accompanying *Statement of Work for Removal Actions Outside the River* (SOW) (Appendix E to the CD) establish Performance Standards that must be achieved, as well as specific work plans and other documents that must be prepared to support the response actions for each RAA. Related to soils, these work plans/documents typically include the following: Pre-Design Investigation Work Plan, and Final RD/RA Work Plan.

To date, GE has completed several evaluation and investigatory activities related to soils within the East Street Area 1-North RAA, and has submitted to EPA a *Pre-Design Investigation Work Plan for the East Street Area 1-North Removal Action* (PDI Work Plan) dated May 2002 and an *Addendum to Pre-Design Investigation Work Plan for the East Street Area 1-North Removal Action* (PDI Work Plan) dated May 2002 and an *Addendum to Pre-Design Investigation Work Plan for the East Street Area 1-North Removal Action* (PDI Work Plan Addendum) dated September 2002 (collectively, the PDI Work Plans). Following EPA approval of the PDI Work Plans, GE performed soil investigations between January 2 and January 15, 2003 and provided the results of these activities in the *Pre-Design Investigation Report for East Street Area 1-North Removal Action* (Pre-Design Report) dated April 2003.

In the Pre-Design Report, GE proposed -- based on the results of preliminary RD/RA evaluations -- additional soil sampling to further assess the extent of lead detected in surface soil within one of the parcels within this RAA. In a letter dated June 20, 2003, EPA: 1) approved GE's proposal to collect additional samples, 2) required that GE include sample collection and analysis for antimony at each of the proposed additional samples, and 3) submit an evaluation concerning the need for additional pre-design sampling related to elevated volatile organic compound (VOC) detection limits for certain pre-design samples. In response to the last of these requirements, GE, in a letter dated July 7, 2003, proposed supplemental VOC soil sampling at certain

locations to address the elevated analytical detection limits, and EPA approved GE's proposal in a letter dated July 16, 2003. These supplemental investigations were subsequently conducted in August 2003 and the results and GE's evaluation of the results were reported in the Conceptual RD/RA Work Plan for East Street Area 1-North (Conceptual RD/RA Work Plan), submitted to EPA in October 2003. The RD/RA evaluations submitted in that work plan concluded that no response actions were needed to achieve the soil-related Performance Standards set forth in the CD and SOW for PCBs or other constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents -- benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3).

In a letter dated November 26, 2003, EPA provided conditional approval of the Conceptual RD/RA Work Plan and required that GE prepare a revised work plan to address and incorporate the EPA comments regarding certain of the Appendix IX+3 evaluations presented in the Conceptual RD/RA Work Plan. This Revised Conceptual Removal Design/Removal Action Work Plan (Revised RD/RA Work Plan) addresses EPA comments and includes all tables and figures from the original Conceptual RD/RA Work Plan, updated where appropriate.

Groundwater at East Street Area 1-North is being addressed separately as part of GE's groundwater-related activities for the Plant Site 1 Groundwater Management Area (GMA 1), pursuant to the CD and the SOW. At the present time, GE has completed the first two years of a baseline monitoring program in accordance with GE's Baseline Monitoring Program Proposal for GMA 1, as conditionally approved by EPA, and is entering into an interim phase of baseline groundwater monitoring.

1.2 **Description of East Street Area 1-North**

East Street Area 1-North occupies an area of approximately 5 acres and is located immediately south of the East Street Area 2-North RAA and east of the 20s Complex within the GE facility (Figure 1-1). This area is generally bounded by railway property and the associated right-of-way to the north, Merrill Road to the west, East Street to the south, and a non-GE-owned commercial area to the east. East Street Area 1-North is located outside of the 100-year floodplain of the Housatonic River.

As shown on Figure 1-2, there are eight separate parcels (based on City of Pittsfield tax maps), as well as certain adjacent City-owned road easements and/or rights-of-way, located within East Street Area 1-North. The separate parcels consist of the following:

BLASLAND, BOUCK & LEE, INC

1.6.04

- Parcel J10-8-1;
- Parcel J10-8-2;
- Parcel J10-8-3;
- Parcel J10-8-4;
- Parcel J10-8-5;
- Parcel J10-8-6;
- Parcel K10-14-1; and
- Parcel K11-1-15 (portion).

Pursuant to the CD and SOW, all of East Street Area 1-North is considered a "commercial/industrial" area. Of the parcels identified above, the first six are owned by GE and are considered for the purpose of RD/RA evaluations to be a single averaging area. The remaining two parcels consist of: (a) a property owned by another private party (Parcel K10-14-1); and (b) a narrow strip of land extending across the northern portion of this RAA, which comprises part of Parcel K11-1-15, owned by a railroad company, respectively (see Figure 1-2).

Occupying portions of Parcel K10-14-1 and Parcel J10-8-6 is an existing structure; the portion of the structure located on GE-owned Parcel J10-8-6 is referred to as Building 69 and is subject to future demolition by GE. The area of East Street Area 1-North to the west of this structure (owned by GE) is mostly unpaved, while the area to the east of the structure (non-GE-owned) is mostly paved, as shown on Figure 1-2.

1.3 Scope and Format of Revised Conceptual RD/RA Work Plan

The remainder of this Revised Conceptual RD/RA Work Plan is presented in four sections. An overview of each section is presented below:

Section 2 – Summary of Pre-Design Soil Investigation Activities. This section describes the most recent soil investigation activities conducted by GE at East Street Area 1-North and also presents the complete soil data set obtained from the recent pre-design investigation, as well as other usable data collected by GE (prior to the pre-design efforts) and by EPA. This data set has been used to support RD/RA evaluations concerning the need for response actions to address PCBs and Appendix IX-3 constituents in soils.

Section 3 – Summary of PCB Soil Evaluations. This section provides an overview of the applicable PCB Performance Standards contained in the SOW and CD for commercial/industrial properties, and describes the procedures used to evaluate PCBs in soil. The results of the PCB evaluations for each area subject to evaluation within East Street Area I-North are presented in this section. As described in this section, existing conditions throughout this RAA already meet the applicable PCB-related Performance Standards established in the CD and SOW for industrial/commercial properties, so that no soil remediation is necessary to address PCBs within East Street Area 1-North.

Section 4 – Summary of Non-PCB Soil Evaluations. This section provides an overview of the applicable Appendix IX+3 Performance Standards contained in the SOW and CD for commercial/industrial properties, and describes the procedures used to evaluate Appendix IX+3 constituents in soil. The results of the Appendix IX+3 evaluations for each area subject to evaluation within East Street Area 1-North are presented in this section. As described in this section, existing conditions at this RAA meet the Appendix IX+3 Performance Standards established in the CD and SOW for commercial/industrial properties, so that no soil remediation is necessary to address Appendix IX+3 constituents within East Street Area 1-North.

Section 5 – Summary of Future Activities. This section describes remaining activities related to this RAA. Because no remediation actions are necessary to meet the applicable Performance Standards, no Final RD/RA Work Plan is necessary. Therefore, following EPA's approval of this Revised Conceptual RD/RA Work Plan, GE will proceed with a pre-certification inspection and preparation of a Final Completion Report and request for a Certification of Completion in accordance with the CD.

In addition, the information presented in the above sections is supplemented by various tables, figures, and appendices, as described in subsequent sections of this Revised Conceptual RD/RA Work Plan.

2. Summary of Pre-Design Soil Investigation Activities

2.1 General

To support evaluations concerning the need for and scope of remedial actions to achieve the applicable soilrelated Performance Standards, the CD and SOW include specific pre-design requirements concerning the characterization of soils within the RAA. The results of these pre-design activities, as well as other site-related information, serve as the basis for the subsequent technical RD/RA evaluations and submittals. This section provides a summary of the pre-design activities that have been performed by GE and others at East Street Area 1-North. These activities have primarily involved the performance of soil sampling and analyses in accordance with the investigation requirements contained in the CD and SOW; such activities have been previously summarized in documents provided to the EPA. In addition, GE has also conducted other pre-design activities to supplement the soil characterization program and to support the evaluations presented herein. A summary is provided below.

Pre-Design Soil Investigations 2.2

The information available to support technical RD/RA evaluations is derived from several sources, including;

- Pre-design soil investigations conducted by GE in January 2003 and August 2003 pursuant to the PDI Work Plans and subsequent correspondence with EPA, which have produced the majority of the PCB and other Appendix IX+3 data used for the RD/RA evaluations;
- Results of EPA analyses of pre-design samples collected at the same time as GE's pre-design activities in January 2003, which data were provided to GE and (except for the sample results rejected in EPA's data validation process) have been considered in the RD/RA evaluations for this RAA; and
- Historical soil investigations conducted prior to January 2003, where the sampling results were determined to be usable for RD/RA evaluations, as previously reported in the PDI Work Plan.

BLASLAND, BOUCK & LEE, INC

1/6/04

The soil data set available from the sources described above to support RD/RA evaluations is summarized below for each relevant group of constituents:

Analytical Parameter	GE Pre-Design Analyses	GE Historical Analyses	EPA Pre-Design and Historical Analyses	Total Analyses
PCBs	81	30	2	113
VOCs	28	4	2	34
SVOCs	26	4	3	33
PCDDs/PCDFs	26	4	0	30
Inorganics	26	4	3	33

The locations of the soil samples used in the RD/RA evaluations summarized in this report are shown on Figure 1-2. The analytical results from GE's pre-design investigations are presented in Table 2-1 for PCBs and Table 2-2 for other Appendix IX+3 constituents; the analytical results from EPA's sampling are presented in Table 2-3 for PCBs and Table 2-4 for other Appendix IX constituents; and the usable analytical results from prior (historical) investigations at this RAA are presented in Table 2-5 for PCBs and Table 2-6 for other Appendix IX+3 constituents.

2.3 Supplemental Soil Investigations

In the April 2003 Pre-Design Report, GE provided an evaluation of the sufficiency of the available data set to satisfy the pre-design investigation requirements contained in the CD and SOW, and thus to support RD/RA activities. While no specific, pre-design-related data needs were identified in that report, GE did include a proposal for additional sampling to further assess the extent of lead detected in surface soils within a portion of Parcel K10-14-1. This supplemental sampling was identified by GE based on preliminary RD/RA evaluations conducted at that time and specifically to delineate the extent of lead in this portion of the parcel. In a letter dated June 20, 2003, EPA provided conditional approval of GE's proposal to collect additional samples for lead, and required that GE also analyze the samples for antimony. In addition, that letter required GE to submit an evaluation concerning the need for additional pre-design sampling related to elevated VOC detection limits encountered at certain sampling locations. In response, and based on its evaluations, GE proposal to conduct supplemental VOC soil sampling in a letter to EPA dated July 7, 2003. EPA approved GE's proposal in a letter dated July 16, 2003.

The supplemental sampling activities discussed above were performed in August 2003 and consisted of the collection of three surface samples for lead and antimony analysis, and the collection of two samples from a

previous sample location (from the 0- to 1-foot and 6- to 8-foot depth intervals) for VOC analysis. The data for the soil samples collected by GE as part of these supplemental investigation activities have been reviewed in accordance with the data validation protocols in GE's approved *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP). The results of this review are summarized in the Data Validation Report provided in Appendix A. As described in that report, the supplemental sampling data collected by GE are within acceptable data validation parameters; 100% of these sampling results have been determined to be usable. This evaluation thus indicates that these data can be used in the evaluations presented in this Revised Conceptual RD/RA Work Plan.

The data for lead and antimony collected as part of this supplemental investigation adequately delineate concentrations of these inorganic constituents. The data for the samples collected for VOC analyses indicate that only ethylbenzene, toluene, and xylenes (total) had detected concentrations. These data further demonstrate that the laboratory was able to achieve lower detection limits for the analyzed constituents than those achieved for the original samples at these locations. These supplemental sampling data have been included in the Appendix IX+3 evaluations presented in Section 4 of this Revised Conceptual RD/RA Work Plan as follows: (a) For detected constituents, either the average of both samples (if the constituent was detected during both sampling events) or the value of the detected constituents, half the value of the detected during one of the supplemental sampling conducted in August 2003. Table 2-7 presents the results of supplemental soil samples collected in East Street Area 1-North during the month of August 2003.

2.4 Site Survey and Mapping

At the time when the Pre-Design Report was submitted to EPA, the current mapping available for East Street Area 1-North was not sufficient to support the detailed RD/RA evaluations needed as part of the Conceptual RD/RA Work Plan. As a result, GE developed detailed site mapping to include the following information:

- existing buildings;
- paved and unpaved areas;
- surface elevations and topography;
- property boundaries and easements;
- certain utilities (e.g., manholes, catch basins);

- soil sample locations; and
- other site features.

The site mapping resulting from this effort has been used to update the figures illustrating the soil sample locations and site features, and serves as the basis for the PCB and Appendix IX+3 evaluations presented in Sections 3 and 4, respectively, of this Revised Conceptual RD/RA Work Plan.

3. Summary of PCB Soil Evaluations

3.1 General

This section of the Revised Conceptual RD/RA Work Plan presents the results of preliminary evaluations regarding PCBs in soils within East Street Area 1-North and, based on the applicable PCB Performance Standards established in the CD and SOW, an assessment regarding the need for response actions. Included in this section is an overview of the applicable PCB-related Performance Standards, an evaluation of the existing PCB soil data, and a summary of findings related to the need for response actions.

3.2 Overview of Applicable Performance Standards

The soil-related Performance Standards for the GE Plant Area, within which East Street Area 1-North is located, are set forth in Paragraph 25 of the CD and Section 2.2.2 of the SOW. Those that are applicable to East Street Area 1-North are summarized below.

In general, the PCB-related Performance Standards applicable to East Street Area 1-North are based on spatial average PCB soil concentrations. Attachment E to the SOW identifies the averaging areas within each RAA, the methods to be used to determine existing spatial average PCB concentrations, and the procedures to be used to assess whether the anticipated response actions will achieve the PCB Performance Standards. For PCBs, there are three averaging/evaluation areas at East Street Area 1-North – one consisting of the GE-owned portion of the RAA and the other two consisting of the non-GE-owned properties. (For purposes of this Revised Conceptual RD/RA Work Plan, the above averaging/evaluation areas include the adjacent City-owned road easements/rights-of-way.)

For the <u>GE-owned</u> portion of East Street Area 1-North, GE is required to conduct the following PCB-related response actions:

• For the unpaved portion of this area, if the spatial average PCB concentration in the top foot exceeds 25 parts per million (ppm), GE shall either remove and replace soils or install a soil cover in accordance with the specifications for soil covers described in Attachment G of the SOW as necessary to achieve a spatial average PCB concentration of 25 ppm or less. In addition, since this entire area will constitute a single

averaging area in excess of 1 acre in size, GE shall remove any soils containing PCB concentrations greater than a not-to-exceed (NTE) level of 125 ppm from the top foot in this unpaved portion. [Note: A portion of the GE-owned area is currently covered with either asphalt or concrete pavement; however, these pavements are generally degraded and for conservative purposes related to these evaluations, have been considered to be unpaved areas.]

- For the entire area including both the unpaved portion and the grade-level slab that will remain following GE's demolition of Building 69 (which will be considered a paved area) if the spatial average PCB concentration in the top foot exceeds 25 ppm, GE shall recalculate the spatial average PCB concentration for the top foot after incorporating the anticipated actions (if any) described above for the unpaved portion (including the portion with degraded pavement described above that will be considered unpaved). If that recalculated spatial average PCB concentration still exceeds 25 ppm, GE shall maintain and enhance the existing concrete slab surface in those areas of the slab determined to cause the exceedance of the 25 ppm spatial average concentration for the top foot in the entire area, in accordance with the specifications described for pavement enhancement in Attachment G of the SOW.
- If the spatial average PCB concentration in the 1- to 6-foot depth increment in the entire area exceeds 200 ppm, GE shall undertake a combination of removal and replacement of soils in the unpaved portion and/or enhancement of the existing concrete slab surface in the paved area (in accordance with the specifications for pavement enhancement in Attachment G of the SOW) as necessary to ensure that the PCB concentrations causing the spatial average to exceed 200 ppm are removed or covered by enhanced pavement.
- If, after incorporating the anticipated performance of response actions in accordance with the foregoing Performance Standards, the spatial average PCB concentration for the 0- to 15-foot depth increment exceeds 100 ppm, GE shall install an engineered barrier either over the soil (in the unpaved portion) or over the concrete slab (in the Building 69 area) in accordance with the specifications for engineered barriers in Attachment G of the SOW.
- Where utilities potentially subject to emergency repair requirements are present and the spatial average PCB concentration for the soils in the utility corridor that may need to be removed during an emergency repair exceeds 200 ppm in the 1- to 6-foot depth increment, GE shall evaluate whether additional response actions are necessary for that corridor and submit that evaluation, and a proposal for such response actions if

needed, to EPA. In addition, if a new subgrade utility is installed or an existing subgrade utility is repaired or replaced in the future. GE shall ensure that the spatial average PCB concentration of the backfill material does not exceed 25 ppm.

For the <u>non-GE-owned</u> properties within East Street Area 1-North (Parcels K10-14-1 and K11-1-15), GE is required to make "best efforts" (as defined in the CD) to obtain a Grant of Environmental Restriction and Easement (ERE). For properties where such an ERE cannot be obtained, GE must implement a Conditional Solution in accordance with the CD. As documented in a letter to EPA and MDEP dated August 15, 2003, the owner of Parcel K10-14-1 has declined to execute and record an ERE on that property, and EPA and GE have agreed that, for the narrow portion of Parcel K11-1-15 within East Street Area 1-North, if that portion does not meet residential use standards, GE would implement a Conditional Solution. The applicable Performance Standards for a Conditional Solution for PCBs at these non-GE-owned properties are as follows:

- If the spatial average PCB concentration in the top foot (considering the paved and unpaved portions together) of this property exceeds 25 ppm, GE shall remove and replace soils as necessary to achieve that spatial average PCB concentration. In addition, GE shall remove any soils containing PCB concentrations greater than an NTE level of 125 ppm in the top foot of any unpaved portions of these parcels.
- If the spatial average PCB concentration in the 0- to 3-foot depth increment at this property (considering the paved and unpaved portions together) exceeds 25 ppm, GE shall remove and replace soils as necessary to achieve that spatial average PCB concentration.
- If the spatial average PCB concentration in the 1- to 6-foot depth increment at this property (considering the paved and unpaved portions together) exceeds 200 ppm, GE shall remove and replace soils as necessary to achieve that spatial average PCB concentration.
- If the remaining spatial average PCB concentration in the top 15 feet of soil exceeds 100 ppm (after incorporating the anticipated performance of any response actions for the top foot and 1- to 6-foot depth increment), GE shall install an engineered barrier in those areas determined to cause the exceedance of the 100 ppm spatial average concentration.
- Where utilities potentially subject to emergency repair requirements are present and the spatial average PCB concentration in the soils adjacent to these utilities exceeds 200 ppm, GE shall evaluate whether additional

response actions are necessary for that corridor and submit that evaluation, and a proposal for such response actions if needed, to EPA. In addition, if a new subgrade utility is installed or an existing subgrade utility is repaired or replaced in the future, GE shall ensure that the spatial average PCB concentration of the backfill material does not exceed 25 ppm.

• GE must also meet the other conditions for a Conditional Solution specified in the CD.

3.3 Summary of Evaluation Procedures

The procedures used to calculate PCB spatial average concentrations are established in Technical Attachment E to the SOW (Protocols for PCB Spatial Averaging) and are summarized below, while the evaluation results specific to East Street Area 1-North are presented in Section 3.4. To perform the evaluations summarized in this section, GE has prepared several detailed maps and computer spreadsheets. This information is included in Appendix B.

For each area and depth subject to PCB spatial average calculations, a detailed site plan was first developed to illustrate the following:

- property/area boundaries;
- surface topography;
- soil sampling locations within and adjacent to area;
- presence of roadways, utilities, easements, etc.;
- presence of buildings, pavement, and other permanent structures: and
- other significant site features.

The next step in the evaluation process was the development of Theissen polygon maps for each averaging area and depth interval. Theissen polygon mapping involves the use of computer software to draw perpendicular bisector lines between adjacent sample locations to create two-dimensional, sample-specific polygon areas. Certain boundary conditions impact the generation of Theissen polygons, such as the boundaries of the area subject to averaging, presence of paved and unpaved areas, easement boundaries, building footprints, property lines, etc. As appropriate, the computer-generated Theissen polygons were modified to reflect actual site conditions, presence/absence of soil at a given depth, locations of property ownership lines, or other specific or

unique site considerations. Once the Theissen polygon mapping was complete, all of the soil areas and depths potentially subject to response actions were adequately characterized for use in subsequent evaluations. After generation of the Theissen polygons, polygon identification numbers were assigned to each polygon and the surface area of each polygon was calculated.

The next step in the calculation of spatial average PCB concentrations was the development of computer spreadsheets to combine information obtained from the Theissen polygon mapping (i.e., polygon ID and area for each polygon) with the analytical results of soil sampling to provide a three-dimensional characterization of the soils associated with each polygon. The volume of soil associated with each polygon was based on the surface area of the polygon multiplied by the corresponding depth of soil for which samples were collected. Using the information described above, a spatial average PCB concentration was derived by multiplying the volume of each polygon by its assigned PCB concentration, summing the results of this calculation for each polygon involved in the evaluation, and then dividing that sum by the cumulative soil volume associated with all of the polygons. This procedure yields a spatial average PCB concentration that incorporates both volume- and area-weighted considerations.

The spatial average PCB concentrations under existing conditions were compared to the applicable PCB Performance Standards established in the CD and SOW to determine whether response actions are necessary and, if so, the type of response action required (e.g., soil removal, installation of a surface cover, etc.), as described in the CD and SOW and summarized in Section 3.2.

3.4 Summary of PCB Evaluations for East Street Area 1-North

Using the available PCB soil data from East Street Area 1-North and the detailed site mapping, the existing spatial average PCB concentrations have been calculated for each of the relevant areas (e.g., GE vs. non-GE-owned, paved vs. unpaved, etc.) and depth increments. In addition, the maximum concentration in the surface soil (i.e., top one foot) of unpaved areas was compared to the applicable NTE criterion for each averaging area. Finally, an evaluation has been conducted concerning the spatial average PCB concentration for subgrade utilities that may be subject to emergency repair activities in the future.

For each averaging area, the following evaluation materials have been prepared and are summarized in Appendix B:

- Site mapping identifying specific Theissen polygons for several depth increments;
- Computer spreadsheets for several depth increments to incorporate the site plan information (i.e., Theissen polygon size) and the corresponding PCB analytical data; and
- Calculations (summarized on the individual spreadsheets and then combined as appropriate) of the spatial average PCB concentrations for several depth increments.

From the various materials identified above and provided in Appendix B, the existing spatial average PCB concentration for each averaging area and applicable depth increment has been calculated. The following chart summarizes the information presented in the attachment.

	Spatial Average PCB Concentration (ppm)					
Depth Increment	Performance Standard	GE-Owned Parcels ¹	Parcel K10-14-1	Parcel K11-1-15		
0 to 1 foot - Unpaved Areas	25	0.98	NA ²	NA ²		
0 to 1 foot - Overall Area	25	0.86	0.35	0.67 ³		
0 to 3 feet	25	NA ²	0.30	0.95		
1 to 6 feet	200	1.54	0.22	1.16		
0 to 15 feet	100	0.95	0.283	0.61 ³		

Notes:

1. The GE-owned Parcels at East Street Area 1-North include Parcels J10-8-1, J10-8-2, J10-8-3, J10-8-4, J10-8-5 and J10-8-6.

2. NA = not applicable. As described in Section 3.2 and in accordance with Paragraph 25 of the CD and Section 2.2.2 of the SOW, there are no Performance Standards for the 0- to 3-foot depth increment at GE-owned properties and there are no separate spatial average Performance Standards for the unpaved portion of the 0- to 1-foot depth increment at non-GE-owned properties.

3. In the Conceptual RD/RA Work Plan, the numbers shown in this table differed slightly from the numbers shown in Appendix B (in some cases because of rounding errors). The numbers shown here are corrected to agree with those in Appendix B.

Based on the information summarized above, it can be seen that the existing PCB spatial average concentrations are well below the corresponding Performance Standards. As such, no response actions are necessary to achieve these standards.

As previously indicated, it is also necessary to compare the maximum PCB concentration (discrete sample basis) for unpaved surface soils within each averaging area to the NTE concentration of 125 ppm (for commercial/industrial areas). The maximum PCB sample results for unpaved surface soils within the GE-owned parcels (2.2 ppm), Parcel K10-14-1 (1.8 ppm), and Parcel K11-1-15 (2.2 ppm) are all below the 125 ppm

NTE concentration established in the SOW. Accordingly, no response actions are necessary within the uppermost 1 foot of unpaved soils to address elevated PCB levels.

Finally, where utilities potentially subject to emergency repair requirements are present and the spatial average PCB concentration for the soils in the corresponding utility corridor exceeds 200 ppm, GE is required to evaluate the need for additional response actions. As shown on Figure 2-1, several overlapping utility corridors are located within East Street Area 1-North. As shown on those figures, Parcels J10-8-6 and K10-14-1 have dedicated subsurface utility connections running from the main utility lines along East Street to the structures on those parcels. Table B-13 summarizes the PCB data collected from within these utility corridors. As summarized, the maximum PCB sample result for such soils within the utility corridors is 1.62 ppm; therefore, there can be no average concentration greater than 200 ppm for soils located within the utility corridors. Based on this assessment, it is not necessary to conduct a further evaluation of the need for separate response actions for these utility corridors.

In summary, as described above, the applicable Performance Standards for PCBs in soil at East Street Area 1-North are already achieved under existing site conditions. Specifically, at GE-owned properties, where EREs will be executed, the existing soil conditions already achieve the Performance Standards for industrial/commercial areas that will be subject to EREs. Similarly, for the non-GE-owned properties, at which Conditional Solutions will be implemented, existing soil conditions already achieve the applicable Performance Standards for such properties subject to Conditional Solutions. Indeed, the average PCB concentrations for each averaging area and depth are below the MCP Method 1 soil standard for PCBs (2 ppm). Hence, there is no need for any PCB-related remediation actions at this RAA.

4. Summary of Non-PCB Soil Evaluations

4.1 General

The Performance Standards established in the CD and SOW for non-PCB Appendix IX+3 constituents in soil set forth a prescribed process that includes and considers (as needed) several evaluation components. Similar to the PCB soil evaluations, the assessment of non-PCB constituents relies on the data set resulting from the predesign (and earlier) soil investigations. It also incorporates the anticipated performance of response actions (if any) that have been identified for PCBs. Beyond these initial evaluation components, the activities involved in the assessment of non-PCB constituents vary depending on the specific analytes under consideration, the possible elimination of certain constituents from further evaluation based on numerical screening and/or comparison to background conditions, and the specific risk-based evaluation method.

This section of the Revised Conceptual RD/RA Work Plan summarizes the Performance Standards and evaluation process established in the CD and SOW concerning non-PCB constituents in soil, and provides an evaluation of such constituents within East Street Area 1-North.

4.2 Overview of Applicable Performance Standards

As indicated above, the Performance Standards for non-PCB Appendix IX+3 constituents in soil consist of several prescribed evaluation steps, as well as numerical standards that are to be applied within the evaluation process. The applicable Performance Standards for Appendix IX+3 constituents in soil at the GE Plant Area, including East Street Area 1-North, are set forth in Section 2.2 and Attachment F of the SOW. Those Performance Standards apply to the same averaging areas as the PCB Performance Standards, which, in this case, means that the GE-owned parcels and the two non-GE-owned parcels are considered as separate averaging areas. The Performance Standards applicable to these averaging areas are summarized below. Because no response actions are necessary to address PCBs in soil at these areas, the discussion below omits those components of the evaluation process related to the consideration of response actions for PCBs.

1. Any data qualifiers for the Appendix IX+3 soil data shall be reviewed to eliminate analytical results that indicate constituent occurrence as a result of laboratory interference or contamination (as indicated by the laboratory blank data).

- The remaining data shall then be screened by making the following comparisons for the sample results that were not eliminated in the prior steps:
 - For constituents other than dioxins/furans, the maximum concentration of each detected constituent 8. shall be compared to the EPA Region 9 Preliminary Remediation Goals (PRGs) (set forth in Exhibit F-1 to Attachment F of the SOW) using the industrial PRGs for commercial/industrial areas, such as East Street Area 1-North. For polycyclic aromatic hydrocarbons (PAHs) for which EPA Region 9 PRGs do not exist, the EPA Region 9 PRG for benzo(a)pyrene shall be used for carcinogenic PAHs and the Region 9 PRG for naphthalene shall be used for non-carcinogenic PAHs. For other constituents for which EPA Region 9 PRGs do not exist, GE may propose screening concentrations based on either the EPA Region 9 PRGs for chemicals with similar characteristics or on other appropriate risk-based calculations, and upon EPA approval, may use such screening concentrations in this step. (The EPA Region 9 PRGs, together with the PRGs specified above for carcinogenic and non-carcinogenic PAHs for which there are no EPA Region 9 PRGs and any additional screening concentrations proposed by GE and approved by EPA, are hereinafter referred to jointly as "Screening PRGs.") Any constituent whose maximum concentration is at or below the applicable Screening PRGs will be eliminated from further consideration. Any constituents remaining after this step will be subject to further evaluation.
 - b. For each dioxin/furan sample, a total toxicity equivalency quotient (TEQ) concentration shall be calculated using the toxicity equivalency factors (TEFs) published by the World Health Organization (WHO) (Van den Berg et al., *Environ. Health Perspectives*, Vol. 106, No. 12, Dec. 1998). Then, for the relevant averaging area and depth increment, either the maximum TEQ concentration or the 95% upper confidence limit on the mean (95% Upper Concentration Limit [UCL]) of TEQ concentrations, whichever is lower, shall be compared to the applicable PRG established by EPA for dioxin TEQs. For commercial/industrial areas, these PRGs are 5 ppb in the top foot and 20 ppb in subsurface soil. If the maximum detected concentration or 95% UCL TEQ concentration is less than the applicable PRG, no further response actions will be necessary to address dioxins/furans. If the maximum detected concentration or 95% UCL TEQ concentration (whichever is used) exceeds the applicable PRG, GE shall develop response actions (as described below) for EPA review and approval to achieve the dioxin PRG(s).

- For each constituent (other than dioxins/furans) with a maximum concentration that exceeds its Screening 3. PRGs, the data set for that constituent within the particular RAA shall be compared with the background data set for that constituent, using either an appropriate statistical method or summary statistics (as described in the MDEP's Guidance for Disposal Site Risk Characterization, 1995). At this time, given that there is no EPA-approved site-specific background data set, GE has not sought to eliminate any constituents based on a comparison to background concentrations.
- 4 For each constituent (other than dioxins/furans) that is not eliminated in the prior steps, an average concentration for the soils within the RAA shall be calculated and compared to the applicable MCP Method 1 soil standard (S-1, S-2, or S-3). If there is no existing Method 1 soil standard for such a constituent, a Method 2 standard may be derived using the MCP procedures for doing so, and compared to the average concentration. In making these comparisons, separate average concentrations for surface soil and subsurface soil (using depth increments consistent with those evaluated for PCBs) shall be calculated and compared to applicable Method 1 (or 2) standards. Further, the determination of the applicable set of Method 1 (or 2) standards (i.e., S-1, S-2, or S-3) shall follow the MCP criteria for categorizing soil, and may take into account the EREs that will be imposed on the area in question. If all constituents evaluated in this step have average concentrations at or below the applicable Method 1 (or 2) standards, no further response actions will be necessary to address such constituents. If any such constituent(s) have average concentrations exceeding the applicable Method 1 (or 2) standards, then GE shall either:
 - Develop response actions sufficient to reduce the average concentrations of such constituent(s) to the a. Method 1 (or 2) standards (or to achieve the Screening PRGs or background levels); or
 - b. Conduct an area-specific risk evaluation, as described below.
- 5. If an area-specific risk evaluation will be conducted, that evaluation shall be performed for all constituents that were retained for evaluation prior to Step 4. In such an evaluation, the cumulative Excess Lifetime Cancer Risk (ELCR) and non-cancer risk for such constituents (excluding PCBs and dioxins/furans) shall be calculated based on the average concentrations of such constituents and the same uses for the area and depth increment in question (e.g., commercial/industrial worker, utility worker) that were assumed in developing the applicable PCB Performance Standards for such area and depth increment. In such an evaluation, the same exposure assumptions used in Attachment A to EPA's Action Memorandum for Removal Actions Outside the River (Appendix D to the CD) to support the PCB Performance Standards for

BLASLAND, BOUCK & LEE, INC

1/6/04

such area and depth increment shall be used, unless GE proposes and provides an adequate area-specific justification for alternate exposure assumptions for certain specified parameters and EPA approves such alternate assumptions. The toxicity values to be used for cancer and non-cancer risks in such an evaluation shall be derived from standard EPA sources, and other dose-response information, such as toxicity weighting factors and absorption factors for non-PCB constituents, shall be obtained from EPA and MDEP policies and guidance, except that GE may propose alternate dermal and oral absorption factors and use them if approved by EPA.

If the resulting cumulative ELCR for the area (excluding PCBs and dioxins/furans) does not exceed 1×10^{-5} and the non-cancer Hazard Index (excluding PCBs and dioxins/furans) does not exceed 1, no further response actions will be necessary to address these residual Appendix IX+3 constituents. Otherwise, further response actions will be necessary.

- 6. If the evaluations described above indicate the need for further response actions to address non-PCB constituents, GE shall develop, for EPA review and approval, specific Performance Standards for such response actions. Such Performance Standards shall be based on achieving the following:
 - a. For dioxin/furan TEQs, either maximum or 95% UCL TEQ concentrations that do not exceed the EPA dioxin PRGs; and
 - b. For other constituents, any combination of the following: (i) maximum concentrations of individual constituents that do not exceed the applicable Screening PRGs; (ii) concentrations of individual constituents that are consistent with background levels (using an appropriate statistical technique or summary statistics); or (iii) for the remaining constituents (if any), either (A) average concentrations that do not exceed the applicable MCP Method 1 (or 2) soil standards, or (B) cumulative risk levels that do not exceed (after rounding) an ELCR of 1 x 10⁻⁵ and a non-cancer Hazard Index of 1.

Where further response actions are necessary to achieve those Performance Standards, GE must propose to EPA the specific response actions to be taken, which are to be the same as the response actions established by the Performance Standards for PCBs at the area in question, subject to potential modification if necessary based on the nature and concentration of any volatile constituents detected.

4.3 Summary of Preliminary Evaluations

This section applies the Performance Standards and evaluation process summarized in the preceding section to the Appendix IX+3 constituents present in soils within East Street Area 1-North. As previously demonstrated in Section 3, no response actions are necessary for PCBs within East Street Area 1-North, so the evaluation of Appendix IX+3 constituents considered the entire soil data set without alteration to reflect any PCB-based response actions. Appendix IX+3 herbicides and pesticides were not included in these evaluations since they were not considered to be constituents of concern within East Street Area 1-North and were therefore excluded from the pre-design investigations, with EPA approval. The evaluations summarized below follow the evaluation process outlined in the SOW (and summarized in Section 4.2) and utilize several tables to supplement the discussions presented herein.

4.3.1 Review of Data Qualifiers

As previously mentioned, all of the soil data available to support RD/RA evaluations for East Street Area 1-North have been subject to a data quality assessment. For most of the pre-design sampling data, the results of this assessment were provided in the Pre-Design Report, while the remaining soil data were evaluated as described in Appendix A of this report. In several cases, the sampling results have been qualified to reflect the outcome of the quality assurance/quality control procedures performed. For the affected sample results, these qualifiers have been added to the Appendix IX+3 data summary tables provided in this Revised Conceptual RD/RA Work Plan and are further described in the notes provided with those tables. However, no sample results were rejected due to laboratory interference or laboratory contamination.

4.3.2 Comparison to "Screening PRGs"

Consistent with the protocols established in the SOW, the next step for Appendix IX+3 constituents other than PCBs and dioxins/furans consisted of comparison of the maximum concentrations of the detected constituents to the "Screening PRGs." With six exceptions (discussed below), all of the detected Appendix IX+3 constituents in soil have corresponding EPA Region 9 industrial PRGs (or, for non-carcinogenic PAHs without such PRGs, surrogate PRGs equivalent to the naphthalene, as specified in the SOW). For these constituents, the available data set for each area was reviewed and the maximum detected concentration of each detected constituent within each area was compared to EPA Region 9 (or surrogate) PRGs for soil in industrial areas. For constituents

without an EPA Region 9 PRG or SOW-established surrogate PRG (six total), the following surrogate PRGs were used for initial screening:

- 4-Methylphenol, as a surrogate PRG for 3&4-methylphenol;
- Hydrogen cyanide, as a surrogate PRG for total cyanide (consistent with evaluations presented in the Newell Street Area I Conceptual RD/RA Work Plan);
- Carbon disulfide, as a surrogate for sulfide (consistent with evaluations presented in the 20s, 30s, and, 40s
 Complexes Conceptual RD/RA Work Plan);
- m-Xylene, as a surrogate for total xylenes (consistent with evaluations presented in the Newell Street Area I Conceptual RD/RA Work Plan);
- Methyl ethyl ketone, as a surrogate for 2-hexanone (according to EPA's November 26, 2003 conditional approval letter for the East Street Area 1-North Conceptual RD/RA Work Plan); and
- N-nitrosopyrrolidine, as a surrogate for N-nitrosopiperidine (according to EPA's November 26, 2003 conditional approval letter for the East Street Area 1-North Conceptual RD/RA Work Plan).

Tables 4-1 through 4-3 present the results of the comparisons of the maximum detected concentrations with the Screening PRGs for the three evaluation areas within East Street Area 1-North. Based on these comparisons, the following constituents were retained for further evaluation in subsequent steps:

- For the GE-owned parcels benzo(a)anthracene. benzo(a)pyrene, benzo(b)fluoranthene.
 dibenzo(a,h)anthracene, and arsenic;
- For Parcel K10-14-1 benzo(a)pyrene, arsenic, antimony, and lead: and

• For Parcel K11-1-15 - benzo(a)pyrene, N-nitrosopiperidine, arsenic, antimony, and lead.

4.3.3 Comparison to MCP Method 1 Soil Standards

Next, GE evaluated all retained constituents identified in Section 4.3.2 against MCP Method 1 soil standards. As part of this assessment, it is first necessary to determine the appropriate Method 1 soil category(ies) (i.e., S-1, S-2, or S-3), so that corresponding soil standards can be compared to the constituents of interest. In general, under the MCP, the determination of the appropriate Method 1 soil standard(s) considers the physical accessibility of the soils (relative to their depth and the presence of pavement and buildings), as well as the current use of the area by adults and children and the relative frequency and intensity of such use (see 310 CMR 40.0933).

Several general considerations were involved in the selection of appropriate soil categories, including the industrial/commercial nature of East Street Area 1-North, the relative inaccessibility to the soils (due to existing buildings and paved areas), the absence of any children or related types of use within the RAA, and the limited adult activity within these areas. Specifically, it was assumed that: (1) children would not be present in this RAA; (2) adults workers in commercial operations would have a high frequency of use (based on the potential for such individuals to be present for 8 hours or more on a continuing basis), but a low intensity of use, since such individuals would typically not be engaged in activities that would disturb the soils; and (3) if groundskeepers are present, they could have a high intensity of use, but would have a low frequency, since they would not be expected to engage in groundskeeping activities for full days on a continuing basis. Based on these considerations (and consistent with the soil categories used and approved by EPA for commercial/industrial properties at Newell Street Area I), the following MCP Method I soil categories have been selected: The category S-2 soil standards have been applied to soils present in the upper three feet of the area -i.e., the 0- to 1-foot depth increment and, for parcels subject to Conditional Solutions (i.e., no EREs), the 0- to 3-foot depth increment. In addition, the Method 1 S-2 soil standards have been applied to the 1- to 6-foot depth increment at the GE-owned commercial/industrial parcels where an ERE will be executed. The Method 1 S-3 soil standards were determined to apply to subsurface soils, including the 1- to 6-foot depth increment at properties that will not have EREs and the 0- to 15-foot depth increment at all areas.

It should also be noted that the numerical values of the Method 1 soil standards can vary depending on the applicable groundwater classification. For East Street Area 1-North, the applicable MCP groundwater

categories are GW-2 and GW-3. However, for the constituents retained for evaluation at this RAA, the Method 1 S-2 and S-3 soil standards are the same regardless of which of these groundwater categories is used.

To allow the comparison to MCP Method 1 soil standards, arithmetic average concentrations have been calculated for each of the retained constituents, using the available data for specific depth intervals within each evaluation area. In calculating these arithmetic averages, all available sample results for a given evaluation area and depth increment were used, including both results with detectable concentrations and results with non-detect concentrations. Consistent with the protocols in Attachment F to the SOW, non-detect results were represented in the calculations as one-half the analytical detection limit. With regard to the additional VOC sampling performed as part of the supplemental soil investigations described in Section 2.3, the methods for inclusion of the VOC sample results in those areas subject to that additional sampling are described in Section 2.3.

Due to the limited amount of Appendix IX+3 sampling data for Parcel K11-1-15, GE used the following approach for comparison to MCP Method 1 soil standards: GE evaluated Parcel K11-1-15 using the data obtained from this parcel as well as the data collected along the property boundaries on the parcels adjacent to K11-1-15. That is, for the purposes of this evaluation, GE assumed that the Appendix IX+3 data collected from sample locations located on the adjacent parcels but near Parcel K11-1-15 was representative of soils within Parcel K11-1-15. For this approach, data obtained from the following sampling locations were projected onto Parcel K11-1-15: RAA6-A15, RAA6-A16, RAA6-A17, RAA6-B14, RAA6-B15, RAA6-C2, RAA6-C4, ES1-7, and ES1-9. Using these data, the evaluations described above were performed for the specific depth intervals within this evaluation area.

The arithmetic average concentrations in each averaging area were then compared to the applicable Method 1 S-2 or S-3 soil standards. The results of those comparisons are presented in the following tables:

Evaluation Area		Soil Depth	Increment		
Evaluation Area	0 to 1 foot	0 to 3 feet	1 to 6 feet	0 to 15 feet	
GE-Owned Parcels ¹	Table 4-4	NA ²	Table 4-5	Table 4-6	
Parcel K10-14-1	Table 4-7	Table 4-8	Table 4-9	Table 4-10	
Parcel K11-1-15	Table 4-11	Table 4-12	Table 4-13	Table 4-14	

1. The GE-owned Parcels at East Street Area 1-North include Parcels J10-8-1, J10-8-2, J10-8-3, J10-8-4, J10-8-5 and J10-8-6.

2. NA not applicable. As described in Section 3.2 and in accordance with Paragraph 25 of the CD and Section 2.2.2 of the SOW, there are no Performance Standards for this depth increment.

Based on the information presented in Tables 4-4 through 4-14, there are several constituents within each evaluation area for which the arithmetic average concentration exceeds its corresponding Method 1 soil standard or no Method 1 soil standard is listed for a specific constituent. These constituents are as follows:

Evaluation Area	Soil Depth Increment						
Evaluation Alea	0 to 1 foot	0 to 3 feet	1 to 6 feet	0 to 15 feet			
GE-Owned Parcels ¹	No exceedances	NA ²	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Benzo(a)pyrene			
Parcel K10-14-1	Antimony Lead	Antimony Lead	No exceedances	Antimony			
Parcel K11-1-15	N-nitrosopiperidine Antimony Lead	N-nitrosopiperidine Antimony Lead	N-nitrosopiperidine	N-nitrosopiperidine Antimony			

Notes:

1. The GE-owned Parcels at East Street Area 1-North include Parcels J10-8-1, J10-8-2, J10-8-3, J10-8-4, J10-8-5 and J10-8-6.

2. NA = not applicable. As described in Section 3.2 and in accordance with Paragraph 25 of the CD and Section 2.2.2 of the SOW, there are no Performance Standards for this depth increment.

The arithmetic average of all other constituents subject to evaluation did not exceed their corresponding Method 1 standard.

4.3.4 Dioxin/Furan Data Assessment

To assess the need for response actions for dioxins/furans present in soils within East Street Area 1-North, total TEQ concentrations were calculated for each dioxin/furan soil sample result using the TEFs published by the WHO. In making these calculations, the concentrations of the individual dioxin/furan compounds that were not detected in a given sample were represented as ½ the analytical detection limit for such compounds. Based on this available data set, the maximum TEQ concentration was determined for the appropriate depth increments for each evaluation area. The results of those calculations are presented in the following tables:

Evaluation Area		Soil Depth Increment		
Evaluation Area	0 to 1 foot	0 to 3 feet	1 to 15-feet	
GE-Owned Parcels ¹	Table 4-4	NA ²	Table 4-6	
Parcel K10-14-1	Tables 4-7	Tables 4-8	Tables 4-10	
Parcel K11-1-15	Table 4-11	Table 4-12	Table 4-14	

Notes:

1. The GE-owned Parcels at East Street Area 1-North include Parcels J10-8-1, J10-8-2, J10-8-3, J10-8-4, J10-8-5 and J10-8-6.

2. NA = not applicable. As described in Section 3.2 and in accordance with Paragraph 25 of the CD and Section 2.2.2 of the SOW, there are no Performance Standards for this depth increment.

As shown in these tables, the maximum TEQ concentrations for each evaluation area (in each depth increment) are below the applicable PRGs established in the Performance Standards for commercial/industrial areas (i.e., 5 ppb in the top foot and 20 ppb in subsurface soils). As a result, there was no need to calculate the 95% UCLs for the TEQ concentrations. Based on this analysis, no response actions to address dioxins/furans are necessary.

4.3.5 Area-Specific Risk Evaluations

As described in Section 4.2 of this Revised Conceptual RD/RA Work Plan, if the average concentration of a particular Appendix IX+3 constituent exceeds its corresponding MCP Method 1 soil standard, GE has two options for addressing the exceedance. Specifically, GE can either develop response actions that will be sufficient to reduce the average concentration of the subject exceedance to the Method 1 soil standards, or perform an area-specific risk evaluation to determine if unacceptable risks may exist and to develop appropriate response actions as needed.

Based on the Appendix IX+3 evaluations performed for East Street Area 1-North as summarized in Section 4.3.3 above, GE has elected to address the Appendix IX+3 exceedances of the Method 1 soil standards using an area-specific risk assessment conducted separately for each of the three evaluation areas within the RAA (i.e., the GE-owned property, Parcel K10-14-1, and the portion of Parcel K11-1-15 within this RAA).

In accordance with the protocols specified in the SOW, the risk evaluations have been performed for those constituents that were retained for comparison to MCP Method 1 standards and considered the same exposure scenarios used by EPA to develop the applicable PCB Performance Standards for these areas – i.e., the commercial/industrial groundskeeper scenario for the 0- to 1-foot depth increment (and, for parcels subject to Conditional Solutions, the 0- to 3-foot depth increment) and the utility worker scenario for the 1- to 6-foot depth

increment. In addition, for chemical-specific exposure parameters (i.e., oral and dermal absorption factors), the evaluations used default values recommended by EPA or MDEP. The evaluations also used standard EPA cancer and non-cancer toxicity values – i.e., Cancer Slope Factors (CSFs) and non-cancer Reference Doses (RfDs) – as set forth on EPA's Integrated Risk Information System (IRIS), together with EPA's recommended relative potency factors (RPFs) for the carcinogenic polycyclic aromatic hydrocarbons (PAHs) that do not have specific CSFs. As EPA has not developed a CSF for n-nitrosopiperidine, the CSF for n-nitrosopyrrolidine, which is a carcinogen that is similar in molecular structure and size, has been used as a surrogate to estimate potential carcinogenic risks associated with n-nitrosopiperidine, in accordance with EPA's November 26, 2003 conditional approval letter for the Conceptual RD/RA Work.

These risk evaluations are described and the results are presented in Appendix C to this Revised Conceptual RD/RA Work Plan, which was prepared by GE's risk assessment consultants at AMEC Earth and Environmental. As shown there, a cumulative ELCR was calculated for the carcinogenic constituents retained for each evaluation area (i.e., benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, N-Nitrosopiperidine, and arsenic, as applicable). In addition, a cumulative Hazard Index (HI) was calculated for each evaluation area for the retained constituents with non-cancer RfDs – arsenic and antimony. The resulting ELCR and HI for each evaluation area are well below the benchmarks set forth in the SOW of 1 x 10^{-5} for cancer risks and an HI of 1.0 for non-cancer impacts, as shown below:

5 X	Cumulative ELCR			Hazard Index			
Evaluation Area	0 to 1 Foot (Groundskeeper)	0 to 3 Feet (Groundskeeper)	1 to 6 Feet (Utility Worker)	0 to 1 Foot (Groundskeeper)	0 to 3 Feet (Groundskeeper)	1 to 6 Feet (Utility Worker)	
GE-Owned Parcels ¹	1.2x10 ⁻⁶	NA	7.0 x10 ⁻⁷	0.0041	NA	0.00083	
Parcel K10-14-1	1.3 x10 ⁻⁶	1.2 x10 ⁻⁶	1.7 x10 ⁻⁷	0.17	0.15	0.0011	
Parcel K11-1-15	1.7 x10 ⁻⁶	1.5 x10 ⁻⁶	3.5 x10 ⁻⁷	0.25	0.18	0.0051	

Notes:

1. The GE-owned Parcels at East Street Area 1-North include Parcels J10-8-1, J10-8-2, J10-8-3, J10-8-4, J10-8-5 and J10-8-6.

2. NA = not applicable. As described in Section 3.2 and in accordance with Paragraph 25 of the CD and Section 2.2.2 of the SOW, there are no Performance Standards for this depth increment.

For evaluation areas where lead was retained (Parcels K10-14-1 and K11-1-15), a different procedure had to be used since there are no EPA-prescribed toxicity values for lead. In accordance with EPA guidance, lead was evaluated through the use of EPA's conservative Adult Lead Methodology (ALM) model for the groundskeeper scenario at commercial/industrial parcels. This model was used to back-calculate a risk-based concentration (RBC) for lead in soil for use in the adult groundskeeper scenario. That RBC is 2,008 ppm. Since highly intermittent exposures are not well represented by the ALM model, that model could not be applied to backcalculate an RBC for the utility worker scenario applicable to the 1- to 6-foot depth increment at

commercial/industrial properties. Instead, based on agreement between EPA and GE, the average lead concentration for that depth interval at such properties was evaluated by comparison to a default level equivalent to the MCP UCL for lead of 6,000 ppm. These procedures are consistent with those presented for commercial/industrial properties in the EPA-approved Conceptual RD/RA Work Plan Addendum for Newell Street Area I, dated April 17, 2003.

Review of the average lead concentrations for the relevant depth increments at Parcels K10-14-1 and K11-1-15 (as set forth in Tables 4-7, 4-8, 4-9, 4-11, 4-12, and 4-13) indicates that, for both parcels, the average lead concentrations for the 0- to 1-foot and 0- to 3-foot depth increments are well below the RBC of 2,008 ppm and that the average lead concentrations for the 1- to 6-foot depth increment are far below the UCL of 6,000 ppm.

Finally, it should be noted that EPA's PCB-related risk evaluations presented in Attachment A to Appendix D to the CD do not include exposure scenarios or calculations for the 0- to 15-foot depth increment. Accordingly, there is no applicable risk evaluation scenario for that depth increment. Instead, since the applicable PCB Performance Standard for that depth increment (100 ppm) is the MCP UCL for PCBs in soil, the average concentration of each of the retained non-PCB constituents for the 0- to 15-foot depth increment at each evaluation area has been compared to the UCL for each such constituent. This approach is consistent with April 2003 Newell Street Area I Conceptual RD/RA Work Plan Addendum approved by EPA. These comparisons are shown in Tables 4-15 through 4-17. As indicated in these tables, all average concentrations of the retained constituents for the 0- to 15-foot depth increment at these evaluation areas are far below the applicable UCLs for constituents for which UCLs exist. For N-nitrosopiperidine, no MCP UCL exists, such that the comparison described above (related to Parcel K11-1-15) could not be performed. In these circumstances, GE has utilized an alternative method of assessment for N-nitrosopiperidine, based on comparison of the average concentration of that compound in the 0- to 15-foot depth increment with the average concentrations in other depth increments and the risks calculated for the latter. The average concentration of N-nitrosopiperidine in the 0- to 15-foot depth increment (0.77 ppm) is comparable to the average concentration in the 0- to 3-foot depth increment (0.72 ppm) and well below the average concentration in the 1- to 6-foot depth increment (1.27 ppm). The areaspecific risk evaluation for Parcel K11-1-15 (presented in Appendix C) calculated very low cancer risks for the retained constituents in the latter depth increments including N-nitrosopiperidine -1.5×10^{-6} for the 0- to 3-foot depth (based on a groundskeeper scenario) and 3.5 x 10^{-7} for the 1- to 6-foot depth (based on a utility worker scenario). Given these results, it is concluded that the concentration of N-nitrosopiperidine in the 0- to 15-foot depth increment would likewise present no unacceptable risks.

In summary, based on the results of the risk evaluations described above, existing concentrations of the non-PCB Appendix IX+3 constituents in soil at East Street Area 1-North already satisfy the applicable Performance Standards both at the GE-owned parcels (which will be subject to EREs) and at the non-GE-owned parcels (which will be subject to Conditional Solutions). As a result, no remediation actions are necessary to address the non-PCB Appendix IX+3 constituents within East Street Area 1-North.

5. Summary of Future Activities

Based on the results of the PCB and Appendix IX+3 soil evaluations presented in this Revised Conceptual RD/RA Work Plan, existing soil conditions both at the GE-owned parcels and at the non-GE-owned parcels at East Street Area 1-North already meet the applicable Performance Standards for commercial/industrial areas. As a result, no further response actions are necessary for soils in East Street Area 1-North. Therefore, there is no need for a Final RD/RA Work Plan for this RAA. Following EPA approval of this Revised Conceptual RD/RA Work Plan and assuming that GE and EPA concur that no further response actions are necessary, GE will proceed to schedule a pre-certification inspection under Paragraph 88 of the CD and will commence preparation of a Final Completion Report and request for a Certification of Completion for the East Street Area 1-North Removal Action in accordance with the CD. In addition, GE will proceed with preparation of EREs for the GE-owned parcels at this RAA and with the non-remediation steps necessary to implement Conditional Solutions at the non-GE-owned parcels in accordance with the CD.

Tables

I

A starting of the starting of

TABLE 2-1 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR PCBs

REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID	Depth (Feet)	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Arocior-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA6-A11	0-1	1/8/03	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	0.41	0.36	0.77
	1.3	1/8/03	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	0.12	0.12
	3-6	1/8/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)
	6-15	1/8/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)
RAA6-A13	0.1	1/8/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.048	ND(0.036)	0.048
	1.3	1/8/03	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	0.60	0.43	1.03
	3-6	1/8/03	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0 040)
	6-15	1/8/03	ND(0.039)	ND(0.039)	NO(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)
RAAG-A14	0.1	1/2/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0 036)	ND(0.036)	0.021 J	ND(0.036)	0.021 J
RAAG-A15	0.1	1/8/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.051	0.051	0 102
	1.3	1/8/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.13	0.13
	3-6	1/8/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
	6-15	1/8/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)
RAAS-A16	0-1	1/2/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.14	0.11	0.25
RAA6-A17	0.1	1/8/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.018 J	0.031 J	0.049 J
	1.3	1/8/03	ND(0.035)	ND(0 035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	0.022 J	0.022.3
	3-6	1/8/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0 038)
	6-15	1/8/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	NO(0.039)
RAA6-87	0-1	1/10/03	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	0.080	0.057	0 137
	1.6	1/10/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
	8-15	1/10/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
RAA6 B14	0-1	1/3/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.064	0.064	0.128
RAA6-B15	0.1	1/7/03	ND(0.039) J	ND(0.039) J	ND(0.039) J	ND(0.039) J	ND(0.039) J	0.14 J	L 990.9	0,209.3
RAA6-816	0.1	1/2/03	ND(0 039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.070	0.062	0.132
RAA6-B17	0-1	1/3/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.12	0 14	0.26
RAA6-B18	0-1	1/9/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.44	0.25	0.69
RAA5-C2	0.1	1/9/03	ND(0.19)	ND(0 19)	ND(0 19)	ND(0 19)	ND(0.19)	ND(0.19)	20	2.0
1379-12-124	1.6	1/9/03	ND(0.19)	ND(0 19)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0 19)	2.7	27
	6-15	1/9/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
RAA6-C3	6-15	1/15/03	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	0.64	0.64
RAA6-C4	0.1	1/10/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0 70	0.70
111110-QM	1-6	1/10/03	ND(0.20) [ND(0.20)]	ND(0.20) [ND(0.20)]	ND(0.20) [ND(0.20)]	ND(0.20) [ND(0.20)]	ND(0.20) [ND(0.20)]	ND(0.20) [ND(0.20)]	28 [36]	28[36]
	6-15	1/10/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	13	1.3
RAA6-C5	0.1	1/9/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.49	0.49
(Control of the second s	1-6	1/9/03	ND(0.19) [ND(0.038)]	ND(0.19) [ND(0.038)]	ND(0.19) [ND(0.038)]	ND(0.19) [ND(0.038)]	ND(0.19) [ND(0.038)]	ND(0.19) [ND(0.038)]	21[17]	21[17]
	6-15	1/9/03	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	0.59	0.59
RAA6-C6	0-10	1/10/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	NE)(0.038)	ND(0.038)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1-6	1/10/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.35	0.35
	6-15	1/10/03	ND(0.040) (ND(0.039))	ND(0.040) [ND(0.039)]	ND(0.040) [ND(0.039)]	ND(0.040) [ND(0.039)]	ND(0.040) [ND(0.039)]	ND(0.040) [0.084]	0.083 [0.15]	0.083 [0.234]
RAAG-C14	0-10	1/3/03	ND(0.030)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.12	0.052	0.172
RAA6-C15	0.1	1/7/03	ND(0.037)	ND(0.037)	ND(0.035)	ND(0.037)	ND(0.037)	0.060	NO(0.037)	0.060
HONAD-010	1-3	1/7/03							ND(0.040) J [ND(0.040) J]	
	3.6	17/03	ND(0.040) J [ND(0.040) J] ND(0.037) J	ND(0.040) J (ND(0.040) J) ND(0.037) J	ND(0.037) J	ND(0.040) J [ND(0.040) J]	ND(0.040) 3 [ND(0.040) 3] ND(0.037) J	ND(0.040) 3 [ND(0.040) 3]	ND(0.037) J	ND(0.037) J
	4				1	ND(0.037) J ND(0.040) J	ND(0.040) J	ND(0.037) 3 ND(0.040) J	ND(0.040) J	ND(0.040) J
DA 62 (140	6-15	1/7/03	ND(0.040) J	ND(0.040) J	ND(0.040) J ND(0.037)	ND(0.040) J ND(0.037)	ND(0.0407.5 ND(0.037)	0.080	0.12	0.20
RAA6-C16	0-1	1/2/03	ND(0.037)	ND(0.037)	the second s	A Constitution of the second	ND(0.037)	0.067	011	0.177
RAA6-C17	0-1	1/2/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)		0.14	0 10	0.177
	1-3	1/7/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0 14	NO(0.037)	0.24
	3.6	07/03	NO(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.078		
	6-12	1/7/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0 037)	L <u>V_V/8</u>	ND(0.037)	0.078

and another and another

#### TABLE 2-1 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR PCBs

j

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID	Depth (Fect)	Date Collected	Arocior-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Arocior-1254	Aroclor-1260	Total PCBs
RAA6-C18	0.1	1/9/03	ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)	0.34	0.34
RAA6-D7	0-1	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.84	0 78	1 62
14940 [2]	1.3	1/13/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.13	<u> 6 11</u>	0.24
	3-6	1/13/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.32	0.37	0.69
	6-15	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.38	0.38
RAA6-D8	0-1	1/9/03	ND(0.038)	NO(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.55	0.62	1,17
RAA6-D9	0-1	1/9/03	ND(0.036) J	0.38 J	0.72 J	1.1 J				
RAAG-D10	0 1	1/13/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0 037)	0.052	0.061	0 113
	13	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)
	3-6	1/13/03	ND(0.040)	ND(0.040)	NO(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	0.86	0 86
	6-15	1/13/03	ND(0.039)	ND(0.039)	NO(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.83 J	0 83 J
RAA6-D11	0-1	1/9/03	NO(0.039) J	ND(0.039) J	0 38 J	0.38 J				
RAA6-D12	0-1	1/9/03	ND(0.041) J	ND(0.041) J	0.33 J	0 33 J				
RAA6-D13	0-1	1/9/03	ND(0.038) J	ND(0 038) J	ND(0.038) J	ND(0.038) J	ND(0.038) J	ND(0.038) J	0.14 J	0.14 J
RAA6-D14	0-1	1/7/03	ND(0.036)	ND(0.036)	NO(0.036)	ND(0.036)	ND(0.036)	0.039	ND(0.036)	0 039
RAAG-D16	0-1	1/9/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.23	0.49	0.72
RAAG-D17	0-1	1/7/03	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.24	0.24
RAAG-D18	0-1	1/9/03	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	0.52	0 52
RAAG-E1	6-15	1/9/03	ND(0.038) J	ND(0.038) J	ND(0.038) J	NO(0.038) J	ND(0.038) J	ND(0.038) J	0.14 J	0.14 J
RAA6-E2	0.1	1/15/03	ND(0.046)	ND(0.046)	ND(0 046)	ND(0.046)	ND(0.046)	ND(0.046)	0.14	0.14
	1-6	1/15/03	ND(0.039)	ND(0.039)	NO(0.039)	ND(0.039)	ND(0.039)	0.065	ND(0.039)	0.065
	6-15	1/15/03	ND(0.038)	ND(0.038)	NO(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.039	0.039
RAA6-E3	0-1	1/14/03	ND(0.039)	ND(0.039)	NO(0.039)	ND(0.039)	ND(0.039)	0 15	0.39	0.54
	1-6	1/14/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0 *8	0.53	0.71
	6-15	1/14/03	NO(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.19	0.47	0.66
RAAG-E-4	6-15	1/15/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.36	0.57	0.93
RAAG-E5	0.1	1/14/03	ND(0.037)	NO(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.24	0.59	0.83
	1-6	1/14/03	ND(0.039) [ND(0.038)]	ND(0.039) [0.38]	1,3 [0 92]	13[13]				
4	6.15	1/14/03	ND(0.040)	ND(0.040)	ND(0-040)	ND(0.040)	ND(0.040)	ND(0.040)	1.6	1.6
RAAGES	0-1	1/13/03	NU(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.44	0.94	1.38
	1-6	1/13/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	Ő 20	0.47	0.67
1	6-15	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	NO(0.039)	ND(0.039)	0.17	0.17

#### Notes

1 Samples were collected by Blastand, Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of PCBs

2 Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002)

3. NO - Analyte was not detected. The number in parentheses is the associated detection limit.

4 Field duplicate sample results are presented in brackets

#### Data Qualitiers

Organics

3 - Indicates that the associated numerical value is an estimated concentration.

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-A11	RAA6-A11	RAA6-A15	RAA6-A15	RAA6-A16
Sample Depth(Feet): Parameter Date Collected:	0-1 01/08/03	1-3 01/08/03	3-5 01/08/03	3-6 01/08/03	0-1 01/02/03
1	01/08/03	01/08/03	01/08/03	01/08/03	01/02/03
olatile Organics					2 10000 00000
1,1,2-Tetrachioroethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
1,1-Trichloroethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
1,2,2-Tetrachloroethane	ND(0.0060) J	R	ND(0.0057) J	NA	ND(0.0057) J
.1,2-Trichloroethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
.1-Dichloroethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
.1-Dichloroethene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
.2,3-Trichloropropane	ND(0.0060) J	R	ND(0.0057) J	NA	ND(0.0057) J
2-Dibromo-3-chloropropane	ND(0.0060) J	R	ND(0.0057) J	NA	ND(0.0057) J
1,2-Dibromoethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
.2-Dichloroethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
,2-Dichloropropane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
4-Dioxane	ND(0.12) J	ND(0.12) J	ND(0.11) J	NA	ND(0.11) J
2-Butanone	ND(0.012) J	ND(0.012) J	ND(0.011) J	NA	ND(0.011) J
2-Chloro-1,3-butadiene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
2-Chloroethylvinylether	ND(0.0060) J	ND(0.0059) J	ND(0.0057) J	NA	ND(0.0057)
2-Hexanone	ND(0.012) J	ND(0.012) J	ND(0.011) J	NA	ND(0.011)
3-Chloropropene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
-Methyl-2-pentanone	ND(0.012) J	ND(0.012) J	ND(0.011) J	NA	ND(0.011)
Acetone	ND(0.024) J	ND(0.024) J	ND(0.023) J	NA	ND(0.023) J
Acetonitrile	ND(0.12) J	ND(0.12) J	ND(0.11) J	NA	ND(0.11) J
Acrolein	ND(0.12) J	ND(0.12) J	ND(0.11) J	NA	ND(0.11) J
Acrylonitrile	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Benzene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Bromodichloromethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Bromoform	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Bromomethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057) J
Carbon Disulfide	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Carbon Tetrachloride	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Chlorobenzene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Chloroethane	ND(0.0060) J	ND(0.0059) J	ND(0.0057) J	NA	ND(0.0057) J
Chioroform	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Chloromethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
cis-1,3-Dichloropropene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Dibromochloromethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Dibromomethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Dichlorodifluoromethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Ethyl Methacrylate	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Ethylbenzene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
odomethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
sobutanol	ND(0.12) J	ND(0.12) J	ND(0.11) J	NA	ND(0.11) J
Methacrylonitrile	ND(0.0060) J	ND(0.0059) J	ND(0.0057) J	NA	ND(0.0057) J
Methyl Methacrylate	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Methylene Chloride	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Propionitrile	ND(0.012) J	ND(0.012) J	ND(0.011) J	NA	ND(0.011) J
Styrene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Tetrachloroethene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Foluenc	0.0058 J	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
rans-1,2-Dichloroethene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
rans-1,3-Dichloropropene	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
rans-1,4-Dichloro-2-butene	ND(0.0060) J	R	ND(0.0057) J	NA	ND(0.0057) J
Trichloroethene	0.0080	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Trichlorofiuoromethane	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Vinyl Acetate	ND(0.0060) J	ND(0.0059) J	ND(0.0057) J	NA	ND(0.0057) J
Vinyi Chloride	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)
Xylenes (totai)	ND(0.0060)	ND(0.0059) J	ND(0.0057)	NA	ND(0.0057)

a state

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-A11	RAA6-A11	RAA6-A15	RAA6-A15	RAA6-A16
Sample Depth(Feet): Parameter Date Collected:	0-1 01/08/03	1-3 01/08/03	3-5	3-6	0-1
Parameter Date Collected: Semivolatile Organics	01/06/05	1 01/08/03	01/08/03	01/08/03	01/02/03
	ND(0.40)			NO(0.00)	him to
1.2,4,5-Tetrachlorobenzene	ND(0.40) ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
2-Dichlorobenzene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
1,2-Diphenylhydrazine	<i>مىسىمى ف</i>	ND(0.40) J ND(0.40) J	NA	ND(0.38)	ND(0.42)
1,3.5-Trinitrobenzene	ND(0.40) J		NA	ND(0.38) J	ND(0.42)
1,3-Dichlorobenzene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
1,3-Dinitrobenzene	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
1.4-Dichlorobenzene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
1.4-Naphthoquinone	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
I-Naphthylamine	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
2,3,4,6-Tetrachlorophenol	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
2,4,5-Trichlorophenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
2,4,6-Trichlorophenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
2.4-Dichlorophenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
2,4-Dimethylphenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
2.4-Dinitrophenol	ND(2.0) J	ND(2.0) J	NA	ND(1.9) J	ND(2.1) J
2,4-Dinitrotoluene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42) J
2,6-Dichlorophenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
2,6-Dinitrotoluene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
2-Acetylaminofluorene	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
2-Chioronaphthalene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
2-Chlorophenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
2-Methylnaphthalene	2.2	1.3 J	NA	ND(0.38)	ND(0.42)
2-Methylphenol	0.16 J	ND(0.40)	NA	ND(0.38)	ND(0.42)
2-Naphthylamine	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
2-Nitroaniline	ND(2.0)	ND(2.0) J	NA	ND(1.9)	ND(2.1) J
2-Nitrophenol	ND(0.80)	ND(0.80)	NA	ND(0.76)	ND(0.76)
2-Picoline	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
3&4-Methylphenol	0.56 J	ND(0.80)	NA	ND(0.76)	ND(0.76)
3.3'-Dichlorobenzidine	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.83)
3,3'-Dimethylbenzidine	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
3-Methylcholanthrene	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
3-Nitroaniline	ND(2.0)	ND(2.0) J	NA	ND(1.9)	ND(2.1) J
I.6-Dinitro-2-methylphenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
I-Aminobiphenyl	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
-Bromophenyl-phenylether	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
-Chloro-3-Methylphenol	ND(0.40)	ND(0.40)	NA	ND(0.38)	ND(0.42)
I-Chloroaniline	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
-Chlorobenzilate	ND(0.80)	ND(0.80)	NA	ND(0.76)	ND(0.76)
I-Chlorophenyl-phenylether	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
-Nitroaniline	ND(2.0)	ND(2.0) J	NA	ND(1.9)	ND(1.9)
-Nitrophenol	ND(2.0)	ND(2.0)	NA	ND(1.9)	ND(2.1) J
I-Nitroguinoline-1-oxide	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
I-Phenylenediamine	ND(0.80) J	ND(0.80) J	NA	ND(0.76) J	
5-Nitro-o-toluidine	ND(0.80)	ND(0.80) J	NA	ND(0.76) J	ND(0.76) J ND(0.76)
12-Dimethylbenz(a)anthracene	ND(0.80)	ND(0.80) J	NA	ND(0.76)	
	ND(0.80)	ND(0.80) J	NA	ND(0.75) ND(0.75)	ND(0.76)
	*****	from a second	÷		ND(0.76)
	1.2	0.42 J	NA	ND(0.38)	ND(0.42)
cenaphthylene	1.1	0.29 J	NA	ND(0.38)	ND(0.42)
Acetophenone	0.19 J	0 15 J	NA	ND(0.38)	ND(0.42)
Aniline	0.11 J	ND(0.40) J	NA	ND(0.38)	ND(0.42) J
Inthracene	1.0	021J	NA	ND(0.38)	0.16 J
Vramite	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
Benzidine	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.83)
Benzo(a)anthracene	3.3	0.72 J 0.22 J	NA	ND(0.38)	0.50
Benzo(a)pyrene	1.6		NA	ND(0.38)	0.50

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-A11	RAA6-A11	RAA6-A15	RAA6-A15	RAA6-A16
Sample Depth(Feet):	0-1	1-3	3-5	3-6	0-1
Parameter Date Collected:	01/08/03	01/08/03	01/08/03	01/08/03	01/02/03
Semivolatile Organics (continued)		0.10.1			
Benzo(g,h.i)perylene	1.8	0.40 J	NA	ND(0.38)	0.33 J
Benzo(k)fiuoranthene	1,4	ND(0.40) J	NA	ND(0.38)	0.26 J
Benzyl Alcohol	ND(0.80)	ND(0.80)	NA	ND(0.76)	ND(0.83)
bis(2-Chloroethoxy)methane	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	ND(0.39)	ND(0.39) J	NA	ND(0.38)	ND(0.37)
Chrysene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Diallate	3.8 ND(0.80)	0.77 J ND(0.40) J	NA NA	ND(0.38)	0.50
Dianate Dibenzo(a,h)anthracene	0.36 J	ND(0.40) J	NA	ND(0.76)	ND(0.76)
Dibenzofuran	1.4	ND(0.80) J	NA	ND(0.38)	ND(0.42)
Diethylphthalate	ND(0.40)	0.088 J	NA NA	ND(0.38)	ND(0.42)
Dimethylphthalate	ND(0.40)			ND(0.38)	ND(0.42)
Dinemyiphmalate Dinn-Butylphthalate	ND(0.40)	1.0 J ND(0.40) J	NA NA	ND(0.38)	ND(0.42)
Di-n-Octylphthalate	ND(0.40)	ND(0.40) J ND(0.40) J	NA NA	ND(0.38)	ND(0.42)
Diphenylamine	ND(0.40)	ND(0.40) J ND(0.40) J	NA NA	ND(0.38) ND(0.38)	ND(0.42) ND(0.42)
Ethyl Methanesulfonate	ND(0.40)	ND(0.40) J	NA NA	ND(0.38) ND(0.38)	ND(0.42) ND(0.42)
Fluoranthene	10	3.4 J	NA NA	ND(0.38) ND(0.38)	<u>ND(0.42)</u> 1.0
Fluorene	0.69	0.24 J	NA NA	ND(0.38)	ND(0.42)
Hexachlorobenzene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Hexachiorobutadiene	ND(0.40)	ND(0.40) J	NA NA	ND(0.38)	ND(0.42)
Hexachlorocyclopentadiene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Hexachloroethane	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42) J ND(0.42)
Hexachlorophene	ND(0.80) J	ND(0.80) J	NA	ND(0.36)	ND(0.83) J
Iexachloropropene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.63) J ND(0.42)
indeno(1,2,3-cd)pyrene	1.5	0.34 J	NA	ND(0.38)	0.29 J
sodrin	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
sophorone	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
sosafrole	ND(0.80)	ND(0.80) J	NA	ND(0.38)	ND(0.42) ND(0.76)
Methapyrilene	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
Methapymene Methyl Methanesulfonate	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Naphthalene	5.4	ND(0.80) J	NA	ND(0.38)	ND(0.42)
Nitrobenzene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
N-Nitrosodiethylamine	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
N-Nitrosodimethylamine	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
N-Nitroso-di-n-butvlamine	ND(0.80)	ND(0.40) J	NA	ND(0.76)	ND(0.76)
N-Nitroso-di-n-propylamine	ND(0.40)	ND(0.80) J	NA	ND(0.38)	ND(0.42)
N-Nitrosodiphenylamine	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Nitrosomethylethylamine	ND(0.80)	ND(0.40) J	NA	ND(0.76)	ND(0.76)
N-Nitrosomorpholine	ND(0.40)	ND(0.80) J	NA	ND(0.38)	ND(0.42)
Nitrosopiperidine	ND(0.40)	3.6 J	NA	ND(0.38)	ND(0.42)
N-Nitrosopyrrolidine	ND(0.80)	ND(0.40) J	NA	ND(0.76)	ND(0.76)
o.o. Triethylphosphorothloate	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
>Toluidine	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
p-Dimethylaminoazobenzene	ND(0.80)	ND(0.80)	NA	ND(0.76)	ND(0.76)
Pentachiorobenzene	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Pentachloroethanc	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Pentachioronitrobenzene	ND(0.80)	ND(0.80) J	NA I	ND(0.76)	ND(0.76)
Pentachtorophenol	ND(2.0)	ND(2.0)	NA	ND(1.9)	ND(2.1)
Phenacetin	ND(0.80)	ND(0.80) J	NA	ND(0.76)	ND(0.76)
Phenanthrene	5.7	2.5 J	NA	ND(0.38)	0.69
Phenol	0.61	0.25 J	NA	ND(0.38)	ND(0.42)
Pronamide	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Pyrene	8.7	2.4 J	NA	ND(0.38)	0.96
Pyridine	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Safrole	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)
Thionazin	ND(0.40)	ND(0.40) J	NA	ND(0.38)	ND(0.42)

VnGE_Pittsheid_CD_ESA_1_North/Reports and Presentations/Revised CRD_RA_WP005421967ables vis Table 3-2 Page 3 of 37

Parameter         Date Collected:         01/08/03         01/08/03         01/08/03         01/08/03         01/02/0           2.3.7.8-FCDF         0.000019 Y         0.000023 Y         NA         0.0000027 J         0.0000028 J         0.0000027 J         0.0000028 J         0.0000027 J         0.0000028 J         0.0000028 J         0.0000027 J         0.0000027 J         0.0000028 J         0.00000028 J         0.0000028 J         <	Sample ID: Sample Depth(Feet):	RAA6-A11 0-1	RAA6-A11 1-3	RAA6-A15 3-5	RAA6-A15 3-6	RAA6-A16 0-1
2.3.7.8.7.6.7         0.90019 Y         0.900023 Y         NA         0.9000025 J         0.0000025 J         0.0000025 J         0.0000025 J         0.0000027 J         0.00000023 J         0.00000023 J         0.00000023 J         0.00000023 J         0.00000023 J         0.0000023 J         0.00000023 J         0.00000023 J	Parameter Date Collected:	01/08/03	01/08/03	01/08/03	1 · · · · · · · · · · · · · · · · · · ·	01/02/03
TCDFs (bta)         0.00014         0.000075         NA         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.00000028         0.00000028         0.00	Furans		<b></b>			
TCDFs (bta)         0.00014         0.000075         NA         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000027         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.0000028         0.00000028         0.00000028         0.00	2.3.7.8-TCDF	0.000019 Y	0.000023 Y	NA	0.0000020.1	0.000012 Y
1.2.3.7.8-PGCDF         0.600011 J         0.000076 J         NA         ND0.0000027 J         0.000079 J           2.3.7.8-PGCDF         0.00018 C         0.00015 G         NA         ND0.00000201         0.00000000000000000000000000000000000			the second s			
2.3.4.7.8-PECDF         0.00016.j         0.00076.j         NA         ND(0.0000030)         0.00030           PeCDFs (total)         0.00018.C         0.00018.C         0.000084.J         NA         ND(0.00000030)         0.00000030)           1.2.3.6.7.8-HxCDF         0.0000084.J         0.0000071.J         NA         ND(0.00000035)         0.0000021           2.3.4.7.8-HxCDF         0.0000071.J         NA         ND(0.00000035)         0.0000021         0.0000021           2.3.4.6.7.8-HxCDF         0.000025.Q         0.000015.Q         NA         ND(0.00000021)         0.000022           2.3.4.6.7.8-HxCDF         0.000026.Q         0.000015.Q         NA         ND(0.00000028)         0.000021           1.2.3.4.7.8-HxCDF         0.000045.J         0.000029.J         NA         ND(0.00000028)         0.0000021           1.2.3.4.7.8-HxCDF         0.000045.J         0.0000023.J         NA         ND(0.00000011)         0.0000021           1.2.3.4.7.8-HxCDF         0.0000027.J         0.0000023.J         NA         ND(0.00000011)         0.0000022           2.3.4.7.8-HxCDF         0.0000027.J         0.000003.J         NA         ND(0.00000020)         ND(0.00000020)           2.3.7.8-FxCDD         ND(0.0000014.J         0.0000053.J         NA <t< td=""><td></td><td>where the second s</td><td>······································</td><td></td><td></td><td></td></t<>		where the second s	······································			
PeCDF is totelin         0.0018 C         0.00018 C         0.000084 J         NA         NEt(0.5000083)         0.0000024           1.2.3.4,7,8-HxCDF         0.0000084 J         0.0000071 J         NA         ND(0.00000013)         0.0000011           1.2.3.4,7,8-HxCDF         0.0000021 J         0.0000011 J         NA         ND(0.00000013)         0.0000011           1.2.3.4,7,8-HxCDF         0.000012 J         0.000011 J         NA         ND(0.00000013)         0.000021           1.2.3.4,7,8-HxCDF         0.000012 J         0.000013 J         NA         ND(0.00000013)         0.000021           1.2.3.4,7,8-HxCDF         0.000005 J         0.000012 J         NA         ND(0.00000028)         0.000022           1.2.3.4,7,8-HxCDF         0.000004 J         0.0000073         NA         ND(0.0000028)         0.00001           0.00014         0.000041 J         NA         ND(0.0000022)         ND(0.0000021)         NA         ND(0.0000022)         ND(0.00000022)         ND(0.00000021)			+			
1.2.3.4.7.8-HxCDF         0.000010 J         0.0000084 J         NA         ND(0.00000024)         0.0000021           1.2.3.6.7.8-HxCDF         0.0000021 J         0.0000013 J         NA         ND(0.00000021)         0.0000021           1.2.3.7.8-HxCDF         0.0000021 J         0.0000021 J         NA         ND(0.00000021)         0.0000021           2.3.4.6.7.8-HxCDF         0.000020 J         0.000015 D         NA         ND(0.00000021)         0.0000021           1.2.3.4.7.8-HxCDF         0.0000050         0.000022 NA         NA         ND(0.00000028)         0.0000021           1.2.3.4.7.8-HxCDF         0.000014         0.000023 NA         ND(0.00000018)         0.0000021           1.2.3.4.7.8-HxCDF         0.000014         0.0000023 NA         ND(0.00000018)         0.0000010           1.2.3.4.7.8-HxCDF         0.000014         0.0000021         NA         ND(0.00000018)         0.0000010           Dixins         2.3.7.8-HxCDD         ND(0.00000021)         NA         ND(0.00000022)         ND(0.00000022)           2.3.7.8-PxCDD         ND(0.0000021)         NA         ND(0.00000019)         0.0000022)         ND(0.0000019)         ND(0.0000019)         ND(0.0000019)         ND(0.0000019)         ND(0.0000019)         ND(0.00000019)         ND(0.0000019)         ND			for the reason of the second			
1.2.3.6,7.8-HxCDF         0.0000084.j         0.0000071.j         NA         ND(0.0000003)         0.000010           1.2.3.7.8.9-HxCDF         0.000015.j         0.000013.j         NA         ND(0.00000073)         0.00000000000000000000000000000000000					the second s	0.0000094 J
12.3.2.8.9-HxCDF         0.000021 J         0.000015 J         NA         ND(0.0000015)         0.000002           2.3.4.6,7.8-HxCDF         0.000015 J         0.000012 J         NA         ND(0.0000021)         0.00002           1.2.3.4.6,7.8-HxCDF         0.000022 Q         0.000029 NA         ND(0.00000054)         0.000002           1.2.3.4.6,7.8-HxCDF         0.000024 J         0.000029 NA         ND(0.0000054)         0.0000002           1.2.3.4.7.8.3+HxCDF         0.000014 J         0.0000023 NA         ND(0.0000054)         0.00000000000000000000000000000000000						
2.3.4.6.7.8-HxCDF         0.000015 J         NA         ND(0.0000021)         0.000022           hxCDFs (total)         0.00022 Q         0.00015 Q         NA         ND(0.0000028)         0.000028           1.2.3.4.6.7.8-HxDDF         0.000026 J         0.000029 J         NA         ND(0.0000028)         0.000028           1.2.3.4.7.8.9-HxDDF         0.0000045 J         0.0000021 NA         ND(0.0000028)         0.000014           0.00014         0.000014         0.000013 NA         ND(0.0000022)         NA         ND(0.0000022)           0.0014         0.000014         0.000013 J         NA         ND(0.0000022)         ND(0.0000022)           0.2.7.8-TCDD         ND(0.0000021)         0.0000021         NA         ND(0.0000022)         ND(0.0000022)           1.2.3.4.7.8-HxCDD         0.0000027 J         0.0000021         NA         ND(0.0000022)         ND(0.0000022)           1.2.3.4.7.8-HxCDD         0.0000027 J         0.0000026 NA         0.0000027 J         0.0000029 NA         ND(0.0000029 J         0.0000027 J           1.2.3.4.7.8-HxCDD         ND(0.0000021 NA         ND(0.0000021 NA         ND(0.0000024 J			······			0.0000029 J
HcCDFs (dtal)         0.00022 Q         0.60015 Q         NA         ND(0.0000073)         0.00027           1.2.3.4.6.7,8-HpCDF         0.000025 J         0.000029         NA         ND(0.0000054)         0.000029           HpCDFs (ttal)         0.00014         0.000023 J         NA         ND(0.0000054)         0.000021           HpCDFs (ttal)         0.00014         0.000013         NA         ND(0.0000054)         0.000010           Disxins         2.3,7.8-FCDD         ND(0.0000021)         0.000021         NA         ND(0.0000022)         ND(0.0000021)           2.3,7.8-FCDD         ND(0.0000021)         0.000021         NA         ND(0.0000022)         ND(0.0000022)           12.3,7.8-FCDD         0.0000027 J         0.0000021         NA         0.00000021 J         0.0000021           12.3,7.8-FACDD         0.0000027 J         0.0000026 J         NA         0.00000021 J         0.0000021 J           12.3,7.8-FACDD         ND(0.0000021 J         NA         ND(0.0000054 J         ND(0.0000024 J         ND(0.0000054 J         0.000017 J         J.3.7.8.9+HcCDD         0.000017 J         0			······		+	
1.2.3.4.6.7.8-HpCDF         0.000050         0.000029         NA         ND(0.0000028)         0.000021           1.2.3.4.7.8-HpCDF         0.000014         0.000073         NA         ND(0.0000028)         0.00000000000000000000000000000000000					and the second se	
1.2.3.4.7.8.9-HpCDF         0.0000045 J         0.0000029 J         NA         ND(0.0000054)         0.000002           hpCDF s (total)         0.00014         0.000073         NA         ND(0.0000028)         0.00001           Dioxins			······		from woman and a second	
HpCDFs (total)         0.00014         0.000073         NA         ND(0.0000028)         0.00001           Dixxins					forwards and the second s	
OCDF         0.00014         0.000044 J         NA         ND(0.000001)         0.000010           Dixins				·····	demonstration of the second	
Dioxins         ND(0.0000021)         0.0000033 J         NA         ND(0.0000022)         ND(0.0000022)           2.37,8-TCDD         0.0000014         0.0000021         NA         ND(0.0000022)         0.0000022)           2.37,8-PeCDD         0.0000027 J         0.0000056 J         NA         0.00000019 J         0.0000022)           PeCDDS (total)         0.00000019         NA         0.00000019 J         0.00000019           1.2.3,7,8-HxCDD         ND(0.0000019)         NA         ND(0.0000004)         ND(0.0000004)           1.2.3,6,7.8-HxCDD         0.0000054         ND(0.0000054)         ND(0.0000054)         ND(0.0000054)           1.2.3,6,7.8-HxCDD         0.0000054         0.000011 NA         ND(0.0000054)         0.0000054)           1.2.3,6,7.8-HxCDD         0.000016         0.00011 NA         ND(0.0000054)         0.000011           1.2.3,6,7.8-HxCDD         0.00016         0.00011 NA         ND(0.0000054)         0.000011           1.2.3,6,7.8-HxCDD         0.00017         0.0011 NA         ND(0.0000030)         0.000011           1.2.3,6,7.8-HxCDD         0.00017         0.0011 NA         ND(0.0000030)         0.000011           1.2.3,6,7.8-HxCDD         0.0017         0.0011 NA         ND(0.0000014)         0.0000011      1						The second se
2.3,7,8-TCDD         ND(0.0000021)         0.0000033 J         NA         ND(0.0000022)         ND(0.000002)           TCDDs (total)         0.0000014         0.0000021         NA         NA         ND(0.0000022)         0.0000002           PeCDDs (total)         0.0000027 J         0.0000020 NA         0.00000019         0.00000019         0.00000017           PeCDDs (total)         0.00000019         ND(0.0000019)         ND(0.0000012 Q         NA         0.00000054         ND(0.00000054)         ND(0.00000054)         ND(0.00000054)         ND(0.00000054)         ND(0.00000054)         ND(0.00000054)         ND(0.00000054)         ND(0.00000054)         0.00000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·		1 2.0000.110 1			0.00010.0
TCDDs (total)         0.0000014         0.000021         NA         ND(0.0000052)         0.00000000000000000000000000000000000		ND(0.0000021)	0.000033.1	NIA		
1.2.3.7.8-PeCDD         0.0000027 J         0.0000056 J         NA         0.00000019 J         0.00000000000000000000000000000000000				the state of the second s	terren and the second	
PeCDDs (total)         0.000062 Q         0.00012 Q         NA         0.0000019         0.0000071           1.2.3.4.7.8-HxCDD         ND(0.0000019)         ND(0.0000021)         NA         ND(0.0000054)         ND(0.0000054)           1.2.3.6.7.8-HxCDD         0.0000075 J         0.0000068 J         NA         ND(0.0000054)         ND(0.0000054)           1.2.3.7.8-HxCDD         0.000054         0.0000083 J         NA         ND(0.0000054)         0.000002           HxCDDS (total)         0.000054         0.00011         NA         ND(0.0000054)         0.000011           HxCDDS (total)         0.00018         0.00011         NA         ND(0.0000054)         0.000011           PCDDS (total)         0.00017         0.0011         NA         ND(0.0000033)         0.00002           OCDD         0.0017         0.00011         NA         ND(0.0000033)         0.00002           Inorganics         National         1.60 J         1600         NA         1.60 J         1600           Artemory         3.80 J         100         NA         1.60 J         1600         19.0           Barium         3.80 G         61.0         NA         0.300 B         0.200 B         1.00         NA         0.300 B <td< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td></td<>					+	
1.2.3,4,7,8-HxCDD         ND(0.0000019)         ND(0.0000021)         NA         ND(0.0000054)         ND(0.0000054)           1.2.3,6,7,8-HxCDD         0.0000049 J         0.000008 J         NA         ND(0.0000054)         0.0000054)           1.2.3,6,7,8-HxCDD         0.000018 Q         NA         ND(0.0000054)         0.00000054)         0.00000054)         0.00000054)           1.2.3,4,6,7,8-HxCDD         0.000018 Q         NA         ND(0.00000054)         0.000011           1.2.3,4,6,7,8-HxCDD         0.00018 Q         NA         ND(0.00000054)         0.000011           1.2.3,4,6,7,8-HxCDD         0.00018 Q         NA         ND(0.0000014)         0.000011           1.2.3,4,6,7,8-HxCDD         0.00017         0.0011         NA         ND(0.0000014)         0.000003           0.00017         0.00011         NA         ND(0.0000033)         0.00002           0.00017         0.00011         NA         ND(0.0000033)         0.00002           Inorganics         0.000022         0.000024         NA         0.00000055         0.00002           Inorganics         9.30         13.0         NA         5.80         19.0           Barlum         3.80 J         100         NA         7.60         15.0		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
1.2.3,6,7.8-HxCDD         0.0000075 J         0.0000068 J         NA         ND(0.0000054)         ND(0.0000054)           HxCDDs (total)         0.000054         0.000018 Q         NA         ND(0.0000054)         0.0000054)           HxCDDs (total)         0.00016         0.00011         NA         ND(0.0000054)         0.00001           HyCDDs (total)         0.00018         0.00011         NA         ND(0.0000054)         0.00001           HyCDDs (total)         0.00013         0.00011         NA         ND(0.00000054)         0.00001           HpCDDs (total)         0.00017         0.0011         NA         ND(0.0000033)         0.00002           OLDD         0.0017         0.0011         NA         ND(0.0000055)         0.00002           Inorganics         0.000022         0.000024         NA         0.0000055         0.00002           Artimony         3.80 J         100         NA         1.60 J         1600           Artemony         3.80 J         100         NA         2.60 0         77.0           Barium         3.80 S         6.10         NA         0.400 B         1.00           Chromum         9.30         5.80         NA         0.400 B         1.00					4	
1.2.3.7.8,9-HxCDD         0.0000049 J         0.000038 J         NA         ND(0.0000054)         0.0000054           HxCDDs (total)         0.000054         0.00018 Q         NA         ND(0.0000054)         0.0000154           1.2.3,4,6,7,8-HpCDD         0.00018         0.00011         NA         ND(0.0000059)         0.000016           HpCDDs (total)         0.00017         0.00011         NA         ND(0.0000033)         0.00003           OCDD         0.0017         0.0011         NA         ND(0.0000033)         0.00002           Inorganics         0.000022         0.000024         NA         ND(0.0000033)         0.00002           Inorganics         9.30         13.0         NA         1.60 J         1600           Arsenic         9.30         13.0         NA         0.300 B         0.200 B           Barium         38.0         61.0         NA         0.300 B         0.200 B           Cadmium         0.360 D         0.750         NA         0.400 B         1.00           Chromum         19.0         8.40         NA         7.60         15.0           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromum			for more and the second s			
HxCDDs (total)         0.000054         0.00018 Q         NA         ND(0.0000054)         0.00001           1,2,3,4,6,7,8-HpCDD         0.00018         0.00011         NA         ND(0.0000039)         0.000016           HpCDDs (total)         0.00034         0.00022         NA         ND(0.0000039)         0.000016           OCDD         0.0017         0.0011         NA         ND(0.0000033)         0.00005           Total TEQs (WHO TEFs)         0.000022         0.000024         NA         0.0000055         0.00002           Inorganics					the second s	
1.2.3.4.6,7.8-HpCDD         0.00018         0.00011         NA         ND(0.0000089)         0.000014           HpCDDs (total)         0.00034         0.00022         NA         ND(0.0000089)         0.000033         0.000005           OCDD         0.0017         0.0011         NA         ND(0.0000033)         0.00005           OcDD         0.00012         0.000024         NA         0.0000055         0.00002           Inorganics         0.000021         0.000024         NA         1.60 J         1.600           Artsenic         9.30         13.0         NA         5.80         19.0           Barium         38.0         61.0         NA         26.0         77.0           Baryllum         0.370 B         0.340 B         NA         0.300 B         0.200 B           Chomum         19.0         8.40         NA         7.60         15.0           Chomum         19.0         8.40         NA         0.400 B         1.00           Copper         120         160         NA         15.0         4100           Copper         120         160         NA         13.0         3200           Nickei         11.0         10.0         N					+	· · · · · · · · · · · · · · · · · · ·
HpCDDs (total)         0.00034         0.00022         NA         ND(0.000014)         0.00003           OCDD         0.0017         0.0011         NA         ND(0.000033)         0.00005           Total TEQs (WHO TEFs)         0.000022         0.000024         NA         0.00000055         0.00002           Inorganics					to warmen and and a comment of the second	
OCD         0.0017         0.0011         NA         ND(0.000033)         0.00003           Total TEQs (WHO TEFs)         0.000022         0.000024         NA         0.0000055         0.00002           Inorganics         Antimony         3.80 J         100         NA         1.60 J         1600           Arsenic         9.30         13.0         NA         5.80         19.0           Barium         38.0         61.0         NA         0.300 B         0.200 E           Cadmium         0.370 B         0.340 B         NA         0.300 B         0.200 E           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.40           Coper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0 <td></td> <td></td> <td></td> <td></td> <td>·····</td> <td></td>					·····	
Total TEQs (WHO TEFs)         0.000022         0.000024         NA         0.0000055         0.00002           Inorganics         Antimony         3.80 J         100         NA         1.60 J         1600           Artsenic         9.30         13.0         NA         5.80         19.0           Barium         38.0         61.0         NA         26.0         77.0           Beryllium         0.370 B         0.340 B         NA         0.300 B         0.200 B           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         0.860         0.755         NA         0.400 B         1.00           Cobalt         5.80         S.80         NA         8.40         8.10           Coper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         0.0530 B         0.820           Lead         120         470         NA         13.0         3200           Nckel         11.0         10.0         NA         0.850 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         13.0					for a second sec	
Inorganics         Occord of the second				******	the second se	
Antimony         3.80 J         100         NA         1.60 J         1600           Arsenic         9.30         13.0         NA         5.80         19.0           Barium         38.0         61.0         NA         26.0         77.0           Beryllium         0.370 B         0.340 B         NA         0.300 B         0.200 B           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         13.0         810           Cyanide         0.270         0.340         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0 980 B         1.30         NA         0.800 B         1.20           Silver <td>· · · · · · · · · · · · · · · · · · ·</td> <td>0.000022</td> <td>0.000024</td> <td>1974</td> <td>0.00000055</td> <td>0.000026</td>	· · · · · · · · · · · · · · · · · · ·	0.000022	0.000024	1974	0.00000055	0.000026
Arsenic         9.30         13.0         NA         5.80         19.0           Barium         38.0         61.0         NA         26.0         77.0           Beryllium         0.370 B         0.340 B         NA         0.300 B         0.200 B           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0 980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         13.0         34.0           Silver         ND(1.00)         ND(1.00)         NA         13.0         54.0		2 00 1	100	<b>B</b> IA	1.00.1	1000
Barium         38.0         61.0         NA         26.0         77.0           Beryllium         0.370 B         0.340 B         NA         0.300 B         0.200 B           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Silver         ND(1.00)         NA         0.300 B         1.20           Silver         ND(1.00)         NA         13.0         34.0           Silver         ND(1.00)         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         13.0         54.0           Thallium         ND(10.0)         320			for many second s		forman for a station of the second station o	
Beryllium         0.370 B         0.340 B         NA         2000 B         1100           Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.10           Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         340           Selenium         0 980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         NA         13.0         34.0         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.0)         320         NA         ND(1.0)         ND(1.10)           Tr						
Cadmium         0.860         0.750         NA         0.400 B         1.00           Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         ND(0.230)         ND(0.57)           Lead         120         470         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Silver         0.980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         NA         13.0         34.0         120           Silver         ND(1.00)         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.00)           Tra         ND(10.0)         320         NA         ND(1.00)         6600           Vanadium         ND(1.00)					4	
Chromium         19.0         8.40         NA         7.60         15.0           Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         ND(0.230)         ND(0.570           Lead         120         470         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         3200           Selenium         0.980 B         1.30         NA         0.6800 B         1.20           Silver         ND(1.00)         NA         13.0         34.0         34.0           Silver         ND(1.00)         NA         13.0         34.0         1.20           Silver         ND(1.00)         NA         13.0         54.0         1.00           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.00)         6600           Vanadium         10.0         320         NA         ND(1.00)         8.80	······				the second s	
Cobalt         5.80         5.80         NA         8.40         8.10           Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         ND(0.230)         ND(0.570           Lead         120         470         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0.980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         NA         0.800 B         1.20         34.0           Silver         ND(1.00)         NA         0.800 B         1.20         34.0           Silver         ND(1.00)         NA         0.800 B         1.20         ND(1.00)           Silver         ND(1.00)         NA         13.0         54.0           Thallium         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(10.0)         320         NA         ND(1.00)         6600           Vanadium         10					the second s	
Copper         120         160         NA         15.0         4100           Cyanide         0.270         0.340         NA         ND(0.230)         ND(0.570           Lead         120         470         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0.980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         0.800 B         1.20           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(10.0)         320         NA         ND(10.0)         6600						
Cyanide         0.270         0.340         NA         ND(0.230)         ND(0.570           Lead         120         470         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0.980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         ND(1.00)         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(10.0)         320         NA         ND(1.00)         6600           Vanadium         10.0         12.0         NA         9.00         8.80						
Lead         120         470         NA         13.0         3200           Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         3200           Selenium         0.980 B         1.30         NA         0.0530 B         0.820           Silver         ND(1.00)         NA         13.0         34.0           Sulfide         53.0         74.0         NA         ND(1.00)         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(10.0)         320         NA         ND(1.00)         6600           Vanadium         10.0         12.0         NA         9.00         8.80						
Mercury         0.0980 B         0.140         NA         0.0530 B         0.820           Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0.980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         ND(1.00)         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(10.0)         320         NA         ND(10.0)         6600           Vanadium         10.0         12.0         NA         9.00         8.80						and a second
Nickel         11.0         10.0         NA         13.0         34.0           Selenium         0.980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         ND(1.00)         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(10.0)         320         NA         ND(10.0)         6600           Vanadium         10.0         12.0         NA         9.00         8.80						
Selenium         0 980 B         1.30         NA         0.800 B         1.20           Silver         ND(1.00)         ND(1.00)         NA         ND(1.00)         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10)           Tin         ND(100)         320         NA         ND(10.0)         6600           Vanadium         10.0         12.0         NA         9.00         8.80					farmer and the second	
ND(1.00)         ND(1.00)         NA         ND(1.00)         ND(1.00)           Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10) J           Tin         ND(10.0)         320         NA         ND(10.0)         6600           Vanadium         10.0         12.0         NA         9.00         8.80				and the second se		
Sulfide         53.0         74.0         NA         13.0         54.0           Thallium         ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10) J           Tin         ND(10.0)         320         NA         ND(10.0)         6600           Vanadium         10.0         12.0         NA         9.00         8.80				and the second sec		
ND(1.20) J         ND(1.20) J         NA         ND(1.10) J         ND(1.10) J           Tin         ND(100)         320         NA         ND(100)         6600           Vanadium         10.0         12.0         NA         9.00         8.80		·····			······	
ND(10.0)         320         NA         ND(10.0)         6600           Vanadium         10.0         12.0         NA         9.00         8.80			www.www.www.www.www.www.www.www.www.	····	the second s	
Vanadium 10.0 12.0 NA 9.00 8.80						
0.00						the second se
Zinc 150 130 NA 56,0 160						the state of the s

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-A17	RAA6-B14	RAA6-B15
Sample Depth(Feet):	1-3	0-1	6-8
Parameter Date Collected:	01/08/03	01/03/03	01/07/03
olatile Organics		*****	
.1.1,2-Tetrachloroethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
,1.1-Trichieroethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
.1.2.2-Tetrachioroethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
.1,2-Trichloroethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
,1-Dichloroethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
,1-Dichloroethene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
.2,3-Trichloropropane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
.2-Dibromo-3-chloropropane	ND(0.0053) J	ND(0 0055)	ND(0 0059) [ND(0.0060)]
.2-Dibromoethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
.2-Dichloroethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
,2-Dichloropropane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
,4-Dioxane	ND(0.10) J	ND(0.11) J	ND(0.12) J [ND(0.12) J]
2-Butanone	ND(0.010) J	ND(0.011) J	ND(0.012) J [ND(0.012) J]
2-Chloro-1,3-butadiene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
2-Chloroethylvinylether	ND(0.0053) J	ND(0.0055) J	ND(0.0059) J [ND(0.0060) J]
2-Hexanone	ND(0.010) J	ND(0.011) J	ND(0.012) J [ND(0.012) J]
3-Chioropropene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
4-Methyl-2-pentanone	ND(0.010) J	ND(0.011) J	ND(0.012) J [ND(0.012) J]
Acetone	ND(0.021) J	ND(0.022) J	ND(0.024) J [ND(0.024) J]
Acetonitrile	ND(0.10) J	ND(0.11) J	ND(0.12) J [ND(0.12) J]
Acrolein	ND(0.10) J	ND(0.11) J	ND(0.12) J [ND(0.12) J]
Acrylonitrile	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Benzene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Bromodichloromethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Bromoform	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Bromomethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Carbon Disulfide	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Carbon Tetrachloride	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Chlorobenzene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Chloroethane	ND(0.0053) J	ND(0.0055)	ND(0.0059) J [ND(0.0060)]
Chloroform	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Chloromethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
cis-1,3-Dichloropropene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Dibromochloromethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Dibromomethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Dichlorodifluoromethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Ethyl Methacrylate	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Ethylbenzene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
odomethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
sobutanol	ND(0.10) J	ND(0.11) J	ND(0.12) J [ND(0.12) J]
Methacrylonitrile	ND(0.0053) J	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Methyl Methacrylate	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Methylene Chloride	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Propionitrile	ND(0.010) J	ND(0.011) J	ND(0.012) J [ND(0.012) J]
Styrene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
[etrachloroethene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
oluene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
rans-1.2-Dichloroethene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
rans-1,3-Dichioropropene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
rans-1,4-Dichloro-2-butene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Frichloroethene	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Trichlorofluoromethane	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Vinyl Acetate	ND(0.0053) J	ND(0.0055)	ND(0 0059) J [ND(0.0060)]
Vinyl Chioriae	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]
Xylenes (total)	ND(0.0053)	ND(0.0055)	ND(0.0059) [ND(0.0060)]

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-A17	RAA6-B14	RAA6-B15
Sample Depth(Feet): Parameter Date Collected:	1-3 01/08/03	0-1 01/03/03	6-8 01/07/03
Semivolatile Organics	01/06/03	01/03/03	01/07/03
1.2.4.5-Tetrachiorobenzene	ND(0.20)	L NO(4 O)	
1.2.4.5-1 etrechlorobenzene	ND(0.35) ND(0.35)	ND(1.0)	NA
1,2-4-inchorobenzene	ND(0.35) ND(0.35)	ND(1.0)	NA
1,2-Dichiorobenzene 1,2-Diphenythydrazine	ND(0.35)	ND(1.0) ND(1.0)	NA NA
1.3.5-Trinitrobenzene	ND(0.35) J	ND(1.0) J	NA NA
1,3-Dichlorobenzene	ND(0.35) 0	ND(1.0) 3	NA NA
1.3-Dinitrobenzene	ND(0.71)	ND(1.0)	NA NA
1.4-Dichlorobenzene	ND(0.35)	ND(1.0)	NA NA
1.4-Naphthoguinone	ND(0,71)	ND(1.0)	NA NA
1-Naphthylamine	ND(0.71)	ND(1.0)	NA
2,3,4,6-Tetrachlorophenoi	ND(0.35)	ND(1.0)	NA
2.4.5-Trichlorophenol	ND(0.35)	ND(1.0)	NA
2,4.6-Trichlorophenol	ND(0.35)	ND(1.0)	NA
2,4-Dichlorophenoi	ND(0.35)	ND(1.0)	NA
2,4-Dimethylphenol	ND(0.35)	ND(1.0)	NA
2,4-Dinitrophenol	ND(1.8) J	ND(5.3)	NA
2,4-Dinitrotoluene	ND(0.35)	ND(1.0)	NA
2,6-Dichlorophenol	ND(0.35)	ND(1.0)	NA
2,6-Dinitrotoluene	ND(0.35)	ND(1.0)	NA
2-Acetylaminofluorene	ND(0.71)	ND(1.0)	NA
2-Chioronaphthalene	ND(0.35)	ND(1.0)	NA
2-Chlorophenol	ND(0.35)	ND(1.0)	NA
2-Methyinaphthalene	ND(0.35)	ND(1.0)	NA
2-Methylphenol	ND(0.35)	ND(1.0)	<u>NA</u>
2-Naphthylamine	ND(0.71)	ND(1.0)	<u>NA</u>
2-Nitroaniline	ND(1.8)	ND(5.3)	<u>NA</u>
2-Nitrophenol	ND(0.71)	ND(1.0)	NA
2-Picoline	ND(0.35)	ND(1.0)	NA
3&4-Methylphenol	ND(0.71)	ND(1.0)	NA
3,3'-Dichlorobenzidine	ND(0.71)	ND(2.1)	NA
3,3'-Dimethylbenzidine	ND(0.35)	ND(1.0)	NA
3-Methylcholanthrene	ND(0.71)	ND(1.0)	NA
3-Nitroaniline	ND(1.8)	ND(5.3)	NA
4,6-Dinitro-2-methylphenol	ND(0.35)	ND(1.0)	NA
4-Aminobiphenyl 4-Bromophenyl-phenylether	ND(0.71)	ND(1.0)	NA
4-Chloro-3-Methylphenol	ND(0.35) ND(0.35)	ND(1.0) ND(1.0)	NA NA
4-Chloroaniline	ND(0.35)	ND(1.0)	NA NA
4-Chlorobenzilate	ND(0.71)	ND(1.0)	NA NA
4-Chlorophenyi-phenyiether	ND(0.35)	ND(1.0)	NA
4-Nitroaniline	ND(1.8)	ND(1.9)	NA
4-Nitrophenol	ND(1.8)	ND(5.3)	NA
4-Nitroquinoline-1-oxide	ND(0.71)	ND(1.0) J	NA
4-Phenylenediamine	ND(0.71) J	ND(1.0) J	NA
5-Nítro-o-toluidine	ND(0.71)	ND(1 0)	NA
7,12-Dimethylbenz(a)anthracene	ND(0.71)	ND(1.0)	NA
a,a'-Dimethylphenethylamine	ND(0.71)	ND(1.0)	NA
Acenaphthene	ND(0.35)	ND(1.0)	NA
Acenaphthylene	ND(0.35)	ND(1.0)	NA
Acetophenone	ND(0.35)	ND(1.0)	NA
Aniline	ND(0.35)	ND(1.0)	NA
Anthracene	ND(0.35)	ND(1.0)	NA
Aramite	ND(0.71)	ND(1.0)	NA
Benzidine	ND(0.71)	ND(2.1) J	NA
Benzo(a)anthracene	ND(0.35)	0.23 J	NA
Benzo(a)pyrene	ND(0.35)	ND(1.0)	NA
Benzo(b)fluoranthene	ND(0.35)	0.46 J	NA

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-A17	RAA6-B14	RAA6-B15
Sample Depth(Feet):	1-3	0-1	6-8
Parameter Date Collected:	01/08/03	01/03/03	01/07/03
Semivolatile Organics (continued)			
Benza(g,h,i)perylene	ND(0.35)	026 J	NA
Benzo(k)fluoranthene	ND(0.35)	ND(1.0)	NA
Benzyl Alcohol	ND(0.71)	ND(2.1)	NA
bis(2-Chloroethoxy)methane	ND(0.35)	ND(1.0)	NA
bis(2-Chioroethyl)ether	ND(0.35)	ND(1.0)	<u>NA</u>
bis(2-Chioroisopropyl)ether bis(2-Ethylhexyl)phthalate	ND(0.35)	ND(1.0)	<u>NA</u>
Butylbenzylphthalate	ND(0.35) ND(0.35)	ND(0.53) ND(1.0)	<u>NA</u>
Chrysene	ND(0.35)	0.22 J	NA NA
Dialiate	ND(0.71)	ND(1.0)	NA
Dibenzo(a,h)anthracene	ND(0.35)	ND(1.0)	NA
Dibenzofuran	ND(0.35)	ND(1.0)	NA NA
Diethylohthalate	ND(0.35)	ND(1.0)	NA
Dimethylphthalate	ND(0.35)	ND(1.0)	NA
Di-n-Butylphthalate	ND(0.35)	ND(1.0)	NA
Di-n-Octylphthalate	ND(0.35)	ND(1.0)	NA
Diphenylamine	ND(0.35)	ND(1.0)	NA
Ethyl Methanesulfonate	ND(0.35)	ND(1.0)	NA
Fluoranthene	0.089 J	0.39 J	NA
Fluorene	ND(0.35)	ND(1.0)	NA
Hexachlorobenzene	ND(0.35)	ND(1.0)	NA
Hexachlorobutadiene	ND(0.35)	ND(1.0)	NA
Hexachlorocyclopentadiene	ND(0.35)	ND(1.0) J	NA
Hexachloroethane	ND(0.35)	ND(1.0)	NA
Hexachlorophene	ND(0.71) J	ND(2.1) J	<u>NA</u>
Hexachloropropene	ND(0.35)	ND(1.0)	NA
Indeno(1,2,3-cd)pyrene	ND(0.35)	0.22 J	NA
Isodrin	ND(0.35)	ND(1.0)	NA
Isophorone	ND(0.35)	ND(1.0)	NA
Isosafrole	ND(0.71)	ND(1.0)	NA
Methapyrilene	ND(0.71) ND(0.35)	ND(1.0) ND(1.0)	<u>NA</u>
Naphthalene	ND(0.35)	0.23 J	NA
Nitrobenzene	ND(0.35)	ND(1.0)	NA NA
Nitrosodiethylamine	ND(0.35)	ND(1.0)	NA
N-Nitrosodirethylamine	ND(0.35)	ND(1.0)	NA NA
N-Nitroso-di-n-butylamine	ND(0.71)	ND(1.0)	NA
N-Nitroso-di-n-propylamine	ND(0.35)	ND(1.0)	NA
N-Nitrosodiphenylamine	ND(0.35)	ND(1.0)	NA
N-Nitrosomethylethylamine	ND(0.71)	ND(1.0)	NA
N-Nitrosomorpholine	ND(0.35)	ND(1.0)	NA
N-Nitrosopiperidine	ND(0.35)	ND(1.0)	NA
N-Nitrosopyrrolidine	ND(0.71)	ND(1.0)	NA
o.o.o-Triethylphosphorothioate	ND(0.35)	ND(1.0)	NA
o-Toluidine	ND(0.35)	ND(1.0)	NA
p-Dimethylaminoazobenzene	ND(0.71)	ND(1.0)	NA
Pentachlorobenzene	ND(0.35)	ND(1.0)	NA
Pentachloroethane	ND(0.35)	ND(1.0)	NA
Pentachloronitrobenzene	ND(0.71)	ND(1.0) J	NA
Pentachiorophenol	ND(1.8)	ND(5.3)	NA
Phenacetin	ND(0.71)	ND(1.0)	NA
Phenanthrene	ND(0.35)	0.30 J	NA
Phenol	ND(0.35)	ND(1.0)	NA
Pronamide	ND(0.35)	ND(1 0)	NA
Pyrene	0.088 J	0.82 J	NA
Pyridine Safrole	ND(0.35)	ND(1.0)	<u>NA</u> NA
	ND(0.35)	ND(1.0)	

VIGE_Pittsfield_CD_ESA_1_NorthiReports and Presentations/Revised CRD_RA_WP\00542196Tables xis Table 2-0 Page 7 of 37

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

·····	Sample ID:	RAA6-A17	RAA6-B14	RAA6-B15
	le Depth(Feet):	1-3 01/08/03	0-1 01/03/03	6-8 01/07/03
	Date Collected:	01/08/03	01/03/03	01/0//03
Furans				
2.3,7,8-TCDF		0.0000025 Y	0.0000068 J	NA
TCDFs (total)		0.000021	0.000066	NA
1.2,3.7.8-PeCDF		0.0000010 J	0.0000037 J	NA
2.3,4,7,8-PeCDF		0.0000045 J	0.000028	NA
PeCDFs (total)		0.000041	0.00018 Q	NA
1.2.3.4.7.8-HxCDF		0.0000012 J	0.0000077 J	NA
1.2,3,6,7,8-HxCDF		0.0000013 J	0.0000068 J	NA
1,2,3,7,8,9-HxCDF		0.00000044 J	0.0000015 J	NA
2,3,4,6,7,8-HxCDF		0.000025 J	0.000013 J	NA
HxCDFs (total)		0.000032	0.00017 Q	NA
1,2,3,4,6,7,8-HpCDF		0.0000029 J	0.000013 J	NA
1,2,3,4,7,8,9-HpCDF		ND(0.0000033)	0.000020 J	NA NA
HpCDFs (total)		0.0000062	0.000030	NA
OCDF		0.0000024 J	0.000011 J	NA
Dioxins				
2,3,7,8-TCDD		ND(0.00000019)	ND(0.0000010)	NA
TCDDs (total)		ND(0.00000019)	ND(0.0000024)	NA
1,2,3,7,8-PeCDD		0.00000037 J	ND(0.0000016)	NA
PeCDDs (total)		0.00000084	0.0000080 Q	NA
1,2.3,4,7,8-HxCDD		ND(0.0000025)	ND(0.0000013)	NA
1,2,3,6,7,8-HxCDD		0.0000063 J	0.0000024 J	NA
1.2,3,7,8,9-HxCDD		ND(0.0000042)	0.0000022 J	NA
HxCDDs (total)		0.0000013	0.000018	NA NA
1,2,3,4,6,7,8-HpCDD		0.0000042 J	0.000020 J	NA
HpCDDs (total)		0.0000078	0.000038	NA
OCDD		0.000025	0.00011	NA
Total TEQs (WHO TEFs)		0.0000037	0.000020	NA
Inorganics				
Antimony		2.10 J	7.70 J	NA NA
Arsenic	1	4.80	10.0	NA
Barium	1	26.0	46.0	NA
Beryllium	1	0.150 B	1.80 J	NA
Cadmium	1	0.470 B	2.20	NA
Chromium		8.00	13.0	NA
Cobalt		7.20	8.00	NA
Copper		26.0	59.0	NA
Cyanide		ND(0.210)	ND(0.550)	NA
Lead		21.0	150	NA
Mercury		0.0610 B	0.460	NA
Nickel		12.0	11.0	NA
Selenium	T	0.760 B	2.00 J	NA
Silver		ND(1.00)	ND(1.50) J	NA
Sulfide		8.50	41.0	NA
Thallum		ND(1.00) J	2.00 J	NA
Тіл		ND(10.0)	24.0	NA
Vanadium		4.20 B	8 20	NA
Zinc	1	46.0	67.0	NA

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-B15	RAA6-C2	RAA6-C2	RAA6-C2
Sample Depth(Feet):	6-15	1-6	5-6	6-15
Parameter Date Collected:	01/07/03	01/09/03	01/09/03	01/09/03
olatile Organics				
,1.1,2-Tetrachloroethane	NÁ	NA	ND(0.0058)	NA
1.1.1-Trichioroethane	NA	NA	ND(0.0058)	NA
1.1.2.2-Tetrachioroethane	NA	NA	ND(0.0058)	NA
1,1,2-Trichloroethane	NÁ	NA	ND(0.0058)	NA
1,1-Dichloroethane	NA	NA	ND(0.0058)	NA
1.1-Dichloroethene	NA	NA	ND(0.0058)	NA
1,2,3-Trichloropropane	NA	NA	ND(0.0058)	NA
1.2-Dibromo-3-chloropropane	NA	NA	ND(0.0058) J	NA
1,2-Dibromoethane	NĂ	NA	ND(0.0058)	NA
1,2-Dichloroethane	NA	NA	ND(0.0058)	NA
1,2-Dichloropropane	NA	NA	ND(0.0058)	NA
1,4-Dioxane	NA	NA	ND(0.12) J	NA
2-Butanone	NA	NA	ND(0.012) J	NA
2-Chloro-1,3-butadiene	NA	NA	ND(0.0058)	NA
2-Chloroethylvinylether	NA	NA	ND(0.0058) J	NA
2-Hexanone	NA	NA	ND(0.012) J	NA
3-Chloropropene	NA	NA	ND(0.0058)	NA
4-Methyl-2-pentanone	NA	NA	ND(0.012) J	NA
Acetone	NA	NA	ND(0.023) J	NA
Acetonitrile	NA	NA	ND(0.12) J	NA
Acrolein	NA	NA	ND(0.12) J	NA
Acrylonitrile	NA	NA	ND(0.0058)	NA
Benzene	NA	NA	ND(0.0058)	NA
Bromodichloromethane	NA	NA	ND(0.0058)	NA
Bramafarm	NA	NA	ND(0.0058)	NA
Bromomethane	NA	NA	ND(0.0058) J	NA
Carbon Disulfide	NA	NA	ND(0.0058)	NA
Carbon Tetrachloride	NA	NA	ND(0.0058)	NA
Chlorobenzene	NA	NA	ND(0.0058)	NA
Chloroethane	NA	NA	ND(0.0058) J	NA
Chloroform	NA	NA	ND(0.0058)	NA
Chloromethane	NA	NA	ND(0.0058)	NA
cis-1.3-Dichloropropene	NA	NA	ND(0.0058)	NA
Dibromochloromethane	NA	NA	ND(0.0058)	NA
Dibromomethane	NA	NA	ND(0.0058)	NA
Dichlorodifluoromethane	NA	NA	ND(0.0058)	NA
Ethyi Methacrylate	NA	NA	ND(0.0058)	NA
Ethylbenzene	NA	NA	ND(0.0058)	NA
odomethane	NA	NA	ND(0.0058)	NA
sobutanol	NA	NA	ND(0.12) J	NA
Methacrylonitrile	NA	NA	ND(0.0058)	NA
Methyl Methacrylate	NA	NA	ND(0.0058) J	NA
Methylene Chloride	NA	NA	ND(0.0058)	NA
Propionitrile	NA	NA	ND(0.012) J	NA
Styrene	NA	NA	ND(0.0058)	NA
Fetrachloroethene	NA	NA NA	ND(0.0058)	NA
Toluene	NA	NA	ND(0.0058)	NA
rans-1,2-Dichloroethene	NA	NA	ND(0.0058)	NA
rans-1,3-Dichloropropene	NA	NA	ND(0.0058)	NA
rans-1,4-Dichloro-2-butene	NA	NA	ND(0.0058)	NA
Trichiproethene	NA	NA NA	ND(0.0058)	NA
Trichlorofluoromethane	NA	NA	ND(0.0058)	NA
Vinvi Acetate	NA	NA	ND(0.0058) J	NA
Vinyi Adeiale	NA	NA NA	ND(0.0058)	NA
Xylenes (total)	NA	NA	ND(0.0058)	NA

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-B15	RAA6-C2	RAA6-C2	RAA6-C2
Sample Depth(Feet):	6-15	1-6	5-6	6-15
Parameter Date Collected:	01/07/03	01/09/03	01/09/03	01/09/03
Semivolatile Organics				
1,2,4.5-Tetrachlorobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
1.2.4-Trichlorobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38) J
1,2-Dichlorobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2-Diphenylhydrazine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
1.3,5-Trinitrobenzene	ND(0.39) J [ND(0.40) J]	ND(0.38)	NA	ND(0.38)
1,3-Dichlorobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	ŇA	ND(0.38)
1,3-Dinitrobenzene	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
1,4-Dichlorobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38) J
1,4-Naphthoquinone	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
1-Naphthylamine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
2,3,4,6-Tetrachlorophenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2,4,5-Trichlorophenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2.4,6-Trichlorophenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2,4-Dichiorophenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2.4-Dimethylphenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2.4-Dinitrophenol	ND(2.0) J [ND(2.0) J]	ND(2.0) J	NA	ND(2.0) J
2.4-Dinitrotoluene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2,6-Dichlorophenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2.6-Dinitrotoluene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2-Acetylaminofluorene	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
2-Chloronaphthalene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2-Chlorophenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2-Methylnaphthalene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
2-Methylphenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Naphthylamine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
2-Nitroaniline	ND(2.0) [ND(2.0)]	ND(2.0)	NA	ND(2.0)
2-Nitrophenol	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
2-Picoline	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
3&4-Methylphenol	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
3.3'-Dichlorobenzidine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
3,3'-Dimethylbenzidine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Methylcholanthrene	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
3-Nitroaniline	ND(2.0) [ND(2.0)]	ND(2.0)	NA	ND(2.0)
,6-Dinitro-2-methylphenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Aminobiphenyl	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0 77)
-Bromophenyi-phenylether	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Chioro-3-Methylphenol	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Chloroaniline	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Chlorobenzilate	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
-Chlorophenyl-phenylether -Nitroaniline	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Nitrophenol	ND(2.0) [ND(2.0)]	ND(2.0)	NA	ND(2.0)
-Nitroquinoline-1-oxide	ND(2.0) [ND(2.0)]	ND(2.0)	NA	ND(2.0)
	ND(0.79) [ND(0.80)]	ND(0.78) J	NA	ND(0.77) J
-Phenylenediamine	ND(0 79) J [ND(0.80) J]	ND(0.78)	NA	ND(0.77)
	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
,12-Dimethylbenz(a)anthracene ,a'-Dimethylphenethylamine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
.cenaphthene	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
cenaph(nene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38) J
cetophenone	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
niline	ND(0.39) [ND(0.40)] ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
withracene		ND(0.38)	NA	ND(0.38)
Vamite	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Benzidine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
Benzo(a)anthracene Benzo(a)ovrene	ND(0.39) [ND(0.40)] ND(0.39) [ND(0.40)]	ND(0.38) ND(0.38)	NA	ND(0.38)
		<ul> <li>Fait (11) (345)</li> </ul>	NA I	ND(0.38)

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-B15	RAA6-C2	RAA6-C2	RAA6-C2
Sample Depth(Feet):	6-15	1-6	5-6	6-15
Parameter Date Collected:	01/07/03	01/09/03	01/09/03	01/09/03
Semivolatile Organics (continued)				
Benzo(g.h.i)perylene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Benzo(k)/fluoranthene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Benzyl Alcohol	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
bis(2-Chloroethoxy)methane	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
bis(2-Chioroethyi)ether bis(2-Chioroisopropyi)ether	ND(0.39) [ND(0.40)] ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
bis(2-Chlorolosopropyhether bis(2-Ethylhexyl)phthalate		ND(0.38)	NA	ND(0.38)
Butylbenzylphthalate	ND(0.39) [ND(0.39)] ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Chrysene	ND(0.39) [ND(0.40)] ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Diallate	ND(0.79) [ND(0.80)]	ND(0.38)	NA	ND(0.38)
Dibenzo(a,h)anthracene	ND(0.39) [ND(0.80)] ND(0.39) [ND(0.40)]	ND(0.78)	NA	ND(0.77)
Dibenzofuran	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Diethylphthalate	ND(0.39) (ND(0.40))	ND(0.38) ND(0.38)	NA NA	ND(0.38)
Dimethylphthalate	ND(0.39) [ND(0.40)]	ND(0.38)		ND(0.38)
Di-n-Butylphthalate	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38) ND(0.38)
Di-n-Octylphthalate	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
Diphenylamine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
Ethyl Methanesulfonate	ND(0.39) [ND(0.40)]	ND(0.38)		ND(0.38)
Fluoranthene	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
luorene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
lexachlorobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-lexachlorobutadiene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
1exachlorocyclopentadiene	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
lexachloroethane	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
lexachlorophene	ND(0.79) J [ND(0.80) J]	ND(0.78) J	NA NA	ND(0.77) J
Hexachloropropene	ND(0.39) [ND(0.40)]	ND(0.38) J	NA NA	ND(0.38) J
ndeno(1,2,3-cd)pyrene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
sodrin	ND(0.39) J [ND(0.40) J]	ND(0.38)	NA	ND(0.38)
sophorone	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
sosafrole	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
Methapyrilene	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0 77)
Methyl Methanesulfonate	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
laphthalene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
litrobenzene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
I-Nitrosodiethylamine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
I-Nitrosodimethylamine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
I-Nitroso-di-n-butylamine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
I-Nitroso-di-n-propylamine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
I-Nitrosodiphenylamine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
I-Nitrosomethylethylamine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
I-Nitrosomorpholine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
4-Nitrosopiperidine	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
I-Nitrosopyrrolidine	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(0.77)
.o.o-Triethylphosphorothioate	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
-Toluloine -Dimethylaminoazobenzene	ND(0.39) [ND(0.40)] ND(0.79) [ND(0.80)]	ND(0.38)	NA	ND(0.38)
Pentachtorobenzene	ND(0.79) [ND(0.80)] ND(0.39) [ND(0.40)]	ND(0.78)	NA	ND(0.77)
Pentachloroethane	ND(0.39) [ND(0.40)] ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38)
entachioronitrobenzene	ND(0.39) [ND(0.40)]	ND(0.38) ND(0.78) J	NA NA	<u>ND(0.38)</u> ND(0.77) J
entachlorophenol	ND(2.0) [ND(2.0)]	ND(0.78) J ND(2.0)	NA NA	ND(0.77) J ND(2.0)
'henacetin	ND(0.79) [ND(0.80)]	ND(0.78)	NA	ND(2.0) ND(0.77)
'henanthrene	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
henol	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
ronamide	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
Vrene	ND(0.39) [ND(0.40)]	ND(0.38)	NA	ND(0.38) J
Vridine	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
Safrole	ND(0.39) [ND(0.40)]	ND(0.38)	NA NA	ND(0.38)
hionazin	ND(0.39) [ND(0.40)]	ND(0.38)	/ 1/75	14010 001

V IGE_Pittsheid_CD_ESA_1_NorthIReports and Presentations/Revised CRD_RA_WP/00542196Tables xts Table 2-2 Page 11 of 37

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-B15	RAA6-C2	RAA6-C2	RAA6-C2
Sample Depth(Feet):	6-15	1-6	5-6	6-15
Parameter Date Collected:	01/07/03	01/09/03	01/09/03	01/09/03
Furans				
2,3.7.8-TCDF	ND(0.00000013) [ND(0.00000012) X]	0.0000084 Y	NA	ND(0.00000030)
TCDFs (total)	ND(0.0000012) [ND(0.0000012)]	0.000092	NA	ND(0.0000030)
1,2,3,7.8-PeCDF	ND(0.000000070) X [ND(0.00000032)]	0.0000030 J	NA	0 06000023 J
2,3,4,7,8-PeCDF	ND(0.0000010) [ND(0.00000042)]	0.000020	NA	ND(0.00000019)
PeCDFs (total)	ND(0.0000010) [ND(0.00000083)]	0.00020	NA	ND(0.00000042)
1.2.3,4,7.8-HxCDF	ND(0.0000029) [0.00000041 J]	L 06000000	NA	ND(0.00000056)
1,2,3,6,7,8-HxCDF	ND(0.00000010) [0.00000040 J]	0.0000069 J	NA	ND(0.00000025)
1,2,3,7,8,9-HxCDF	ND(0.0000029) [0.0000042 J]	ND(0.0000024)	NA	ND(0.00000056)
2.3,4,6,7,8-HxCDF	ND(0.0000029) [ND(0.0000037) X]	0.000020 J	NA	ND(0.0000056)
HxCDFs (total)	ND(0.0000029) [0.0000012]	0.00030	NA	ND(0.0000025)
1,2,3,4,6,7,8-HpCDF	ND(0.0000029) [0.00000037 J]	0.000026	NA	ND(0.0000026) X
1,2,3,4,7,8,9-HpCDF	ND(0.0000029) [ND(0.0000036)]	0.0000045 J	NA	ND(0.00000056)
HpCDFs (total)	ND(0.0000029) [ND(0.00000074)]	0.000066	NA	ND(0.00000056)
OCDF	ND(0.00000058) [ND(0.00000074)]	0.000017 J	NA	ND(0.0000011)
Dioxins		······································		,
2.3.7.8-TCDD	ND(0.0000020) [ND(0.0000012)]	ND(0.0000010) X	NA	ND(0.0000032)
TCDDs (total)	ND(0.0000022) [ND(0.0000027)]	ND(0.00000079)	NA	ND(0.00000066)
1,2,3,7,8-PeCDD	ND(0.0000029) [ND(0.00000031) X]	ND(0.0000017) X	NA	ND(0.00000056)
PeCDDs (total)	ND(0.0000029) [ND(0.0000012)]	0.00000066	NA	ND(0.00000095)
1,2,3,4,7,8-HxCDD	ND(0.0000029) [ND(0.0000042)]	ND(0.00000076) X	NA	ND(0.00000072)
1,2,3,6,7,8-HxCDD	ND(0.0000029) [ND(0.00000044)]	ND(0.0000017) X	NA	ND(0.00000067)
1.2.3.7.8.9-HxCDD	ND(0.0000029) [ND(0.0000042)]	ND(0.0000014) X	NA	ND(0.00000068)
HxCDDs (total)	ND(0.00000037) [0.0000013]	ND(0.0000015)	NA	ND(0.00000099)
1.2.3.4.6.7.8-HpCDD	ND(0.0000040) X [ND(0.0000064)]	ND(0.000011)	NA	ND(0.00000056)
HpCDDs (total)	ND(0.0000029) [ND(0.0000083)]	0.000019	NA	ND(0.00000056)
OCDD	ND(0.0000024) [ND(0.0000023)]	ND(0.000056)	NA	ND(0.0000032)
Total TEQs (WHO TEFs)	0.00000038 [0.00000055]	0.000017	NA	0.00000072
Inorganics		0.000017	1975	0.00000012
Antimony	2.00 B [1.90 B]	ND(6.00) J	NA	ND(6.00) J
Arsenic	4.30 [4.10]	5.40	NA	5.80
Barium	18.0 B [18.0 B]	26.0	NA NA	30.0
Beryllium	0.160 B [0.140 B]	0.210 B	NA NA	0.230 B
Cadmium	0.490 B [0.390 B]	0.260 B	NA NA	0.230 B
Chromium	4.30 [3.60]	6.80	NA NA	8.60
Cobalt	5.60 (5.10)	8.40	NA	10.0
Copper	11.0 [10.0]	22.0	NA NA	18.0
Cyanide	ND(0.590) [ND(0.600)]	ND(0.580)	NA	ND(0.570)
Lead	4.80 [4.50]	17.0	NA	7.00
Mercury	ND(0.120) [ND(0.120)]	0.0420 B	NA NA	ND(0,110)
Nickel	9.60 [8.40]	16.0	NA NA	18.0
Selenium	ND(1.00) [ND(1.00)]	0.830 B	NA NA	0.960 B
Silver	ND(1.00) [ND(1.00)]	ND(1.00)	NA NA	ND(1.00)
Sulfide	21.0 [13.0]	18.0	NA NA	+
Thallium	ND(1.20) J [ND(1.20) J]	ND(1,20) J	NA NA	9.20
Tin	ND(120) 3 [ND(120) 3] ND(10.0) [ND(10.0)]			ND(1 10) J
Vanadium	4.20 B [3.60 B]	ND(10.0)	NA	ND(10.0)
Zinc	4.20 B [3.60 B] 35.0 [26.0]	6.60 47.0	NA NA	7.80

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

	Sample ID:	RAA6-C2	RAA6-C4	RAA6-C6	RAA6-C6
	Sample Depth(Feet):	8-10	0-1	0-1	6-8
Parameter	Date Collected:	01/09/03	01/10/03	01/10/03	01/10/03
Volatile Organics			······		
1,1,1,2-Tetrachlor		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) (ND(3.6))
1,1,1-Trichloroetha		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,1,2,2-Tetrachlord		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,1.2-Trichloroetha		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,1-Dichioroethane		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,1-Dichloroethen		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,2,3-Trichloroprop		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,2-Dibromo-3-chl		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1,2-Dibromoethan		ND(0.0059)	ND(0.0055)	ND(3.5) J	ND(3.9) J [ND(3.6) J]
1,2-Dichloroethand		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1.2-Dichloropropa	ne	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
1.4-Dioxane		ND(0.12) J	ND(0.11) J	ND(140) J	ND(150) J [ND(150) J]
2-Butanone		ND(0.012) J	ND(0.011)	ND(70)	ND(77) [ND(73)]
2-Chloro-1,3-butad		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
2-Chloroethylvinyle	etner	ND(0.0059) J	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
2-Hexanone		ND(0.012) J	ND(0.011)	ND(7.0)	ND(7.7) [ND(7.3)]
3-Chloropropene		ND(0.0059)	ND(0.0055)	ND(7.0) J	ND(7.7) J [ND(7.3) J]
4-Methyl-2-pentan	one	ND(0.012)	ND(0.011)	ND(7.0)	ND(7.7) [ND(7.3)]
Acetone		ND(0.024) J ND(0.12) J	ND(0.022)	ND(70)	ND(77) [ND(73)] ND(77) [ND(73)]
Acetonitrile		······································	ND(0.11) ND(0.11) J	ND(70)	ND(77) J [ND(73) J]
Acrolein		ND(0.12) J		ND(70) J	ND(7.7) J [ND(7.3) J]
Acryionitrile		ND(0.0059)	ND(0.0055)	ND(7.0) J	
Benzene		ND(0.0059) ND(0.0059)	ND(0.0055) ND(0.0055)	ND(3.5) ND(3.5)	ND(3.9) [ND(3.6)] ND(3.9) [ND(3.6)]
Bromodichloromet Bromoform	Indite	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
		ND(0.0059) J	ND(0.0055)	ND(3.3)	ND(3.9) [ND(3.0)]
Bromomethane Carbon Disulfide		ND(0.0059) 0 ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Carbon Tetrachior	ida	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Carbon retraction Chlorobenzene	iue	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Chloroethane		ND(0.0059) J	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Chloroform		ND(0.0059) 3	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Chloromethane		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.0)] ND(7.7) [ND(7.3)]
		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
cis-1,3-Dichloropri Dibromochlorome	***************************************	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Dibromomethane	unane	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Dichlorodifluorome	othono	ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Ethyl Methacrylate		ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Ethylbenzene		ND(0.0059)	ND(0.0055)	19	ND(3.9) [ND(3.6)]
Iodomethane		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Isobutanol		ND(0.12) J	ND(0.11) J	ND(140) J	ND(150) J [ND(150) J]
Methacrylonitrile		ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Methyl Methacryla	te	ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Methylene Chlorid	*****	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Propionitrile	<u>Y</u>	ND(0.012) J	ND(0.011) J	ND(35) J	ND(39) J [ND(36) J]
Styrene		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Tetrachloroethene		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Toluene		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
rans-1,2-Dichioro	ethene	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
rans-1.3-Dichloro		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
rans-1.4-Dichloro		ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Trichloroethene		ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Trichlorofiuoromet	hane	ND(0.0059)	ND(0.0055)	ND(3.5)	ND(3.9) [ND(3.6)]
Vinvi Acetate		ND(0.0059) J	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Vinyi Chloride		ND(0.0059)	ND(0.0055)	ND(7.0)	ND(7.7) [ND(7.3)]
Xylenes (totai)		ND(0.0059)	ND(0.0055)	160	35 [24]

# PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

	Sample ID:	RAA6-C2	RAA6-C4	RAA6-C6	RAA6-C6
Deressee	Sample Depth(Feet):	8-10	0-1	0-1	6-8
Parameter	Date Collected:	01/09/03	01/10/03	01/10/03	01/10/03
Semivolatile O		<b>A</b> ) A	100003 T		
1,2.4,5-Tetrachi	the second s	NA	ND(0.37)	ND(0.38)	NA
1,2,4-Trichlorob		NA	ND(0.37)	ND(0.38)	NA
1,2-Dichloroben		NA	ND(0.37)	ND(0.38)	NA
1.2-Diphenylhyc		NA	ND(0.37)	ND(0.38)	NA
1,3,5-Trinitrober		NA	ND(0.37)	ND(0.38)	NA
1.3-Dichloroben		NA	ND(0.37)	ND(0.38)	NA
1.3-Dinitropenze		NA	ND(0.74)	ND(0.75)	NA
1.4-Dichloroben		NA	ND(0.37)	ND(0 38)	NA
1,4-Naphthoquir		NA	ND(0.74)	ND(0.75)	NA
1-Naphthylamin		NA	ND(0.74)	ND(0.75)	NA
2.3.4.6-Tetrachi		NA	ND(0.37)	ND(0.38)	NA
2,4,5-Trichlorop		NA	ND(0.37)	ND(0.38)	NA
2,4,6-Trichlorop		NA	ND(0.37)	ND(0.38)	NA
2.4-Dichlorophe		NA	ND(0.37)	ND(0.38)	NA
2,4-Dimethylphe	·····	NA	ND(0.37)	ND(0.38)	NA
2,4-Dinitropheno		NA	ND(1.9) J	ND(1.9) J	NA
2,4-Dinitrotoluer	······································	NA	ND(0.37)	ND(0.38)	NA
2,6-Dichlorophe		NA	ND(0.37)	ND(0.38)	NA
2,6-Dinitrotoluer		NA	ND(0.37)	ND(0.38)	NA
2-Acetylaminofic		NA	ND(0.74)	ND(0.75)	NA
2-Chloronaphtha	alene	NA	ND(0.37)	ND(0.38)	NA
2-Chlorophenol		NA	ND(0.37)	ND(0.38)	NA
2-Methylnaphtha	alene	NA	ND(0.37)	7.2	NA
2-Methyiphenol		NA	ND(0.37)	ND(0.38)	NA
2-Naphthylamine	e	NA	ND(0.74)	ND(0.75)	NA
2-Nitroaniline		NA	ND(1.9)	ND(1.9)	NA
2-Nitrophenol		NA	ND(0.74)	ND(0.75)	NA
2-Picoline		NA	ND(0.37)	ND(0.38)	NA
3&4-Methylphen		NA	ND(0.74)	ND(0.75)	NA
3,3'-Dichloroben	zidine	NA	ND(0.74)	ND(0.75)	NA
3,3'-Dimethylber	nzidine	NA	ND(0.37)	ND(0.38)	NA
3-Methylcholanti	hrene	NA	ND(0.74)	ND(0.75)	NA
3-Nitroaniline		NA	ND(1.9)	ND(1.9)	NA
1,6-Dinitro-2-me	thylphenol	NA	ND(0.37)	ND(0.38)	NA
-Aminobipheny	1	NA	ND(0.74)	ND(0.75)	NA
Bromophenyi-	phenylether	NA	ND(0.37)	ND(0.38)	NA
-Chloro-3-Meth	ylphenol	NA	ND(0.37)	ND(0.38)	NA
-Chloroaniline		NA	ND(0.37)	ND(0.38)	NA
-Chlorobenzilat	e	NA	ND(0.74)	ND(0.75)	NA
-Chlorophenyl-	phenylether	NA	ND(0,37)	ND(0.38)	NA
-Nitroaniline		NA	ND(1.9)	ND(1.9)	NA
-Nitrophenol		NA	ND(1.9)	ND(1.9)	NA
-Nitroguinoline-	1-oxide	NA	ND(0.74)	ND(0.75)	NA
-Phenylenediar		NA	ND(0.74)	ND(0.75)	NA
-Nitro-o-toluidir		NA	ND(0.74)	ND(0.75)	NA
	nz(a)anthracene	NA	ND(0.74)	ND(0.75)	NA
a'-Dimethylphe		NA	ND(0.74)	ND(0.75)	NA
cenaphthene		NA	ND(0.37)	0.18 J	NA NA
cenaphthylene		NA	0.095 J	ND(0.38)	NA NA
vcetophenone		NA	ND(0.37)	ND(0.38)	NA NA
niine	· · · · · · · · · · · · · · · · · · ·	NA	ND(0.37)		
vnthracene		NA	0.079 J	ND(0.38) 0.45	NA
vamite		NA	*****		NA NA
Senzidine		NA	ND(0.74)	ND(0.75)	NA
enzo(a)anthrac	aria	NA NA	<u>ND(0.74)</u> 0.14 J	ND(0.75)	NA
Benzo(a)pyrene		NA	0.14 J	0.70	NA
Senzo(b)fluorant	2000	NA	0.14 J 0.20 J	0.55	<u>NA</u> NA

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-C2	RAA6-C4	RAA6-C6	RAA6-C6
Sample Depth(Feet):	8-10	0-1	0-1	6-8
Parameter Date Collected:	01/09/03	01/10/03	01/10/03	01/10/03
Semivolatile Organics (continued)				
Benzo(g,h.i)perylene	NA	0.14 J	0.29 J	NA
Benzo(k)fluoranthene	NA	0 096 J	0.30 J	NA
Benzyl Alcohol	NA	ND(0.74)	ND(0.75)	NA
bis(2-Chloroethoxy)methane	NA	ND(0.37)	ND(0.38)	NA
bis(2-Chloroethyl)ether	NA	ND(0.37)	ND(0.38)	NA
bis(2-Chloroisopropyl)ether	NA	ND(0.37)	ND(0.38)	NA
bis(2-Ethylhexyl)phthalate	NA	ND(0.36)	ND(0.37)	NA
Butylbenzylphthalate	NA	ND(0.37)	ND(0.38)	NA
Chrysene	NA	0.15 J	0.60	NA
Diallate	NA	ND(0.74)	ND(0.75)	NA
Dibenzo(a,h)anthracene	NA	ND(0.37)	ND(0.38)	NA
Dibenzofuran	<u>NA</u>	ND(0.37)	0.14 J	NA
Diethylphthalate	NA	ND(0.37)	ND(0.38)	NA
Dimethylphthalate	NA NA	ND(0.37)	ND(0.38)	NA
Di-n-Butylphthalate	NA NA	ND(0.37)	ND(0.38)	NA
	NA NA	ND(0.37) ND(0.37)	ND(0.38)	NA
Diphenylamine Ethyl Methanesulfonate	NA NA		ND(0.38)	NA
Fluoranthene	NA	ND(0.37) 0.33 J	ND(0.38)	NA NA
Fluorantinene	NA NA	0.33 J ND(0.37)	1.6 0.24 J	NA NA
Hexachiorobenzene	NA	ND(0.37)		NA NA
Hexachlorobutadiene	NA NA	ND(0.37)	ND(0.38)	NA
Hexachlorocyclopentadiene	NA NA	ND(0.37)	ND(0.38) ND(0.38)	
Hexachloroethane	NA	ND(0.37)	ND(0.38)	NA NA
Hexachiorophene	NA	ND(0.74) J	ND(0.38)	NA
Hexachloropropene	NA NA	ND(0.74) J ND(0.37) J	ND(0.38) J	NA NA
Indeno(1,2,3-cd)pyrene	NA	0.12 J	0.27 J	NA
Isodrin	NA	ND(0.37)	ND(0.38)	NA
Isophorone	NA	ND(0.37)	ND(0.38)	NA
Isosafrole	NA	ND(0.74)	ND(0.75)	NA
Methapyrilene	NA	ND(0.74)	ND(0.75)	NA
Methyl Methanesulfonate	NA	ND(0.37)	ND(0.38)	NA
Naphthalene	NA	ND(0.37)	10	NA
Nitrobenzene	NA	ND(0.37)	ND(0.38)	NA
N-Nitrosodiethylamine	NA	ND(0.37)	ND(0.38)	NA
N-Nitrosodimethylamine	NA	ND(0.37)	ND(0.38)	NA
N-Nitroso-di-n-butylamine	NA	ND(0.74)	ND(0.75)	NA
N-Nitroso-di-n-propylamine	NA	ND(0.37)	ND(0.38)	NA
N-Nitrosodiphenylamine	NA	ND(0.37)	ND(0.38)	NA
N-Nitrosomethylethylamine	NA	ND(0.74)	ND(0.75)	NA
N-Nitrosomorpholine	NA	ND(0.37)	ND(0.38)	NA
N-Nitrosopiperidine	NA	ND(0.37)	ND(0.38)	NA
N-Nitrosopyrrolidine	NA	ND(0.74)	ND(0.75)	NA
o.o.o-Triethyiphosphorothioate	NA	ND(0.37)	ND(0.38)	NA
p-Toluidine	NA	ND(0.37)	ND(0.38)	NA
p-Dimethylaminoazobenzene	NA	ND(0 74)	ND(0 75)	NA
Pentachlorobenzene	NA	ND(0.37)	ND(0.38)	NA
Pentachloroethane	NA	ND(0 37)	ND(0.38)	NA
Pentachloronitrobenzene	NA	ND(0.74) J	ND(0.75) J	NA
Pentachlorophenol	NA	ND(1.9)	ND(1.9)	NA
Phenacetin	NA	ND(0.74)	ND(0.75)	NA
Phenanthrene	NA	0.18 J	1.4	NA
Phenol	NA	ND(0.37)	ND(0.38)	NA
Pronamide	NA	ND(0.37)	ND(0.38)	NA
Pyrene	NA	0.27 J	1.3	NA
Pyridine	NA	ND(0.37)	ND(0.38)	NA
Safrole	NA	ND(0.37)	ND(0.38)	NA
Thionazin	NA	ND(0.37)	ND(0.38)	NA

VIGE_Pittefield_CD_ESA_1_North/Reports and Presentations/Revised CRD_RA_WP9036421961 ables xis Tuble 2-2 Page 15 of 37

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID: Sample Depth(Feet):	RAA6-C2 8-10	RAA6-C4 0-1	RAA6-C6 0-1	RAA6-C6 6-8
Parameter Date Collected:	01/09/03	01/10/03	01/10/03	01/10/03
Furans		1 01.10.00	0.1.0.00	01110/00
2.3.7.8-TCDF	NA	0.000013 Y	ND(0.0000020) X	NA
TCDFs (total)	NA	0.00013	0.000012	NA NA
1,2,3,7,8-PeCDF	NA	0.000065	0.0000016 J	NA NA
2,3,4,7,8-PeCDF	NA	0.000016	ND(0.0000029) X	NA
PeCDFs (total)	NA	0.00021 QI	0.000017	NA NA
1.2,3,4,7,8-HxCDF	NA	0.00002101	ND(0.0000023) X	NA NA
1.2.3.6.7.8-HxCDF	NA	0.0000064	ND(0.0000023) X	NA
1,2,3,7,8,9-HxCDF	NA	0.000004	ND(0.0000011) X	NA
2,3,4,6,7,8-HxCDF	NA	0.000018	ND(0.0000018) X	NA
HxCDFs (total)	NA	0.00025	ND(0.000013)	NA NA
1.2.3.4.6.7.8-HpCDF	NA	0.000026	ND(0.0000031)	NA NA
1.2.3.4.7.8.9-HpCDF	NA	0.000026 J	ND(0.0000010)	NA
HpCDFs (total)	NA	0.000063	ND(0.0000056)	NA
DCDF	NA	0.000030	ND(0.0000036) X	NA
Dioxins	11/1	1 0.000000		
2,3,7,8-TCDD	NA	0.00000066 J	ND(0.0000014)	NA
TCDDs (total)	NA	0.0000019	ND(0.0000014)	NA NA
1.2.3.7.8-PeCDD	NA	0.0000019 0.0000012 J	ND(0.0000029)	NA NA
PeCDDs (total)	NA	0.0000012 3	ND(0.0000027)	NA NA
1,2,3,4,7,8-HxCDD	NA	0.0000048 Q		
1.2.3.6.7.8-HxCDD	NA	0.0000013 J	ND(0.0000028) ND(0.0000027)	NA NA
1,2,3,7,8,9-HxCDD	NA	0.0000020 J	ND(0.0000027)	NA NA
HxCDDs (total)	NA	0.0000133	ND(0.0000027)	NA NA
1.2.3.4.6.7.8-HpCDD	NA	0.000030	ND(0.0000027)	NA
HpCDDs (total)	NA	0.000060	ND(0.0000053)	NA NA
OCDD	NA	0.00021	ND(0.0000051)	NA NA
Total TEQs (WHO TEFs)	NA	0.000021	0.0000038	NA NA
norganics	110	0.000010	0.0000038	INA
Antimony	NA	N(D)(C 00)	0.050.0	<b>.</b>
Arsenic	NA	ND(6.00) 3.40	0.950 B 9.00	NA
Barium	NA	21.0		NA
Beryllium	NA NA	0.120 B	42.0	NA
Cadmium	NA NA	0.120 B	0.230 B 0.360 B	NA
Chromium	NA	5.60	10.0	NA NA
Cobalt	NA	4.90 B	16.0	NA NA
Copper	NA	15.0	44.0	NA NA
Coppei Cvanide	NA	ND(0.220)	ND(0.220)	NA NA
_ead	NA	24.0	210	NA NA
Jeau Mercury	NA NA	0.0470 B	0.0330 B	NA NA
Nickel	NA NA	10.0	19.0	NA NA
Selenium	NA NA	0.690 B	1.80	NA NA
Silver	NA NA	ND(1.00)	1.40	NA NA
Sulfide	NA	14.0	90.0	NA NA
Thallium	NA NA	ND(1.10) J	90.0 ND(1.10) J	NA NA
Tin	NA	ND(100)	ND(11.0) J	
/anadium	NA NA	6.10		NA NA
Vanauuun	INA.	1 0.10	9.90	NA.

Sample ID:	RAA6-C6	RAA6-C15	RAA6-C15	RAA6-C17
Sample Depth(Feet):	6-15	3-6	4-6	0-1
Parameter Date Collected:	01/10/03	01/07/03	01/07/03	01/02/03
/olatile Organics				· · · · · · · · · · · · · · · · · · ·
1.1.2-Tetrachioroethane	NA	NA	ND(0.0056)	ND(0.0058)
1.1-Trichloroethane	<u>NA</u>	NA	ND(0.0056)	ND(0.0058)
1,2,2-Tetrachloroethane	NA	NA	ND(0.0056)	ND(0.0058) J
,1,2-Trichloroethane	<u>NA</u>	NA	ND(0.0056)	ND(0.0058)
,1-Dichioroethane	NA	NA	ND(0.0056)	ND(0.0058)
,1-Dichloroethene	NA	NA	ND(0.0056)	ND(0.0058)
,2,3-Trichloropropane	NA	NA	ND(0.0056)	ND(0.0058) J
,2-Dibromo-3-chloropropane	NA	NA	ND(0.0056)	ND(0.0058) J
,2-Dibromoethane	NA	NA	ND(0.0056)	ND(0.0058)
1,2-Dichloroethane	NA	NA	ND(0.0056)	ND(0.0058)
1,2-Dichloropropane	NA	NA	ND(0.0056)	ND(0.0058)
,4-Dioxane	NA	NA	ND(0.11) J	ND(0.12) J
2-Butanone	NA	NA	ND(0.011) J	ND(0.012) J
2-Chloro-1,3-butadiene	NA	NA	ND(0.0056)	ND(0.0058)
2-Chloroethylvinylether	NA	NA	ND(0.0056) J	ND(0.0058)
2-Hexanone	NA	NA	ND(0.011) J	ND(0.012)
3-Chioropropene	NA	NA	ND(0.0056)	ND(0.0058)
4-Methyl-2-pentanone	NA	NA	ND(0.011) J	ND(0.012)
Acetone	NA	NA	ND(0.022) J	ND(0.023) J
Acetonitrile	NA	NA	ND(0.11) J	ND(0.12) J
Acrolein	NA	NA	ND(0.11) J	ND(0.12) J
Acrylonitrile	NA	NA	ND(0.0056)	ND(0.0058)
Benzene	NA	NA	ND(0.0056)	ND(0.0058)
Bromodichloromethane	NA	NA	ND(0.0056)	ND(0.0058)
Bromoform	NA	NA	ND(0.0056)	ND(0.0058)
Bromomethane	NA	NA	ND(0.0956)	ND(0.0058) J
Carbon Disulfide	NA	NA	ND(0.0056)	ND(0.0058)
Carbon Tetrachloride	NA	NA	ND(0.0056)	ND(0.0058)
Chlorobenzene	NA	NA	ND(0.0056)	ND(0.0058)
Chloroethane	NA	NA	ND(0.0056)	ND(0.0058) J
Chloroform	NA	NA	ND(0.0056)	ND(0.0058)
Chloromethane	NA	NA	ND(0.0056)	ND(0.0058)
cis-1,3-Dichloropropene	NA	NA	ND(0.0056)	ND(0.0058)
Dibromochloromethane	NA	NA	ND(0.0056)	ND(0.0058)
Dibromomethane	NA	NA	ND(0 0056)	ND(0.0058)
Dichlorodifluoromethane	NA	NA	ND(0.0056)	ND(0.0058)
Ethyl Methacrylate	NA	NA	ND(0.0056)	ND(0.0058)
Ethylbenzene	NA	NA	ND(0.0056)	ND(0.0058)
odomethane	NA	NA	ND(0.0056)	ND(0.0058)
sobutanol	NA	NA	ND(0.11) J	ND(0.12) J
Methacrylonitrile	<u>NA</u>	NA	ND(0.0056)	ND(0.0058) J
Methyl Methacrylate	NA	NA	ND(0.0056)	ND(0.0058)
Methylene Chloride	NA	NA	ND(0.0056)	ND(0.0058)
Propionitrile	NA	NA	ND(0.011) J	ND(0.012) J
Styrene	NA	NA	ND(0.0056)	ND(0.0058)
Tetrachioroethene	<u>NA</u>	NA	ND(0.0056)	ND(0.0058)
Toluene	<u>NA</u>	NA	ND(0.0056)	ND(0.0058)
rans-1,2-Dichloroethene	NA	NA	ND(0,0056)	ND(0.0058)
rans-1,3-Dichloropropene	NA	NA	ND(0.0056)	ND(0.0058)
rans-1,4-Dichloro-2-butene	NA	NA	ND(0.0056)	ND(0.0058) J
Trichloroethene	NA	NA	ND(0.0056)	ND(0.0058)
Trichlorofluoromethane	NA	NA	ND(0.0056)	ND(0.0058)
Vinyl Acetate	NA	NA	ND(0.0056)	ND(0.0058) J
Vinyi Chloride	NA	NA	ND(0.0056)	ND(0.0058)
Xvienes (total)	NA	NA	ND(0.0056)	ND(0.0058)

# PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

	Sample ID:	RAA6-C6	RAA6-C15	RAA6-C15	RAA6-C17
_	Sample Depth(Feet):	6-15	3-6	4-6	0-1
Parameter	Date Collected:	01/10/03	01/07/03	01/07/03	01/02/03
Semivolatile Or					
.2.4.5-Tetrachie		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
,2.4-Trichlorob		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
.2-Dichloroben	zene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
.2-Diphenylhyd		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
,3,5-Trinitrober	zene	ND(0.40) J [ND(0.39) J]	ND(0.37) J	NA	ND(0.39)
.3-Dichloroben.	zene	ND(0.40) [ND(0 39)]	ND(0.37)	NA	ND(0.39)
.3-Dinitrobenze		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
.4-Dichloroben:	zene	ND(0 40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
1,4-Naphthoquin		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
I-Naphthylamine		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
2,3,4,6-Tetrachio		ND(0.40) J [ND(0.39) J]	ND(0.37)	NA	ND(0.39)
2,4,5-Trichloropt		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
2,4,6-Trichloropt		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
2,4-Dichloropher		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
4-Dimethylphe	nol	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
4-Dinitropheno		ND(2.0) J [ND(2.0) J]	ND(1.9) J	NA	ND(2.0) J
4-Dinitrotoluen	e	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39) J
6-Dichloropher	lor	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
2,6-Dinitrotoluen	e	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
2-Acetylaminoflu	orene	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
-Chloronaphtha	lene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Chlorophenol		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Methylnaphtha	lene	0.15 J [0.26 J]	ND(0.37)	NA	ND(0.39)
-Methylphenol		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Naphthylamine	2	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
-Nitroaniline		ND(2.0) [ND(2.0)]	ND(1.9)	NA	ND(2.0) J
-Nitrophenol		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
-Picoline		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
&4-Methylphen	ol	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
,3'-Dichloroben:	zidine	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
.3'-Dimethylben	zidine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Methylcholanth	rene	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
-Nitroaniline		ND(2.0) [ND(2.0)]	ND(1.9)	NA	ND(2.0) J
.6-Dinitro-2-met	hylphenol	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Aminobiphenyl		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
-Bromophenyl-p	phenylether	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Chioro-3-Methy	ylphenoi	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Chloroaniline		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Chlorobenzilate	8	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
-Chlorophenyi-p	henylether	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
-Nitroaniline		ND(2.0) [ND(2.0)]	ND(1.9)	NA	ND(2.0)
-Nitrophenoi		ND(2.0) [ND(2.0)]	ND(1.9)	NA	ND(2.0) J
-Nitroquinoline-	1-oxide	ND(0.80) J [ND(0.78) J]	ND(0.74)	NA	ND(0,78)
-Phenylenediam	nine	ND(0.80) [ND(0.78)]	ND(0.74) J	NA	ND(0.78) J
-Nitro-o-toluidin	e	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
,12-Dimethylber	nz(a)anthracene	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
a'-Dimethylphe		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
cenaphthene		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
cenaphthylene		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
cetophenone		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
niline		ND(0 40) [ND(0.39)]	ND(0.37)	NA	ND(0.39) J
nthracene		ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
ramite		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
enzidine		ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
enzo(a)anthrace	ene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	0.20 J
enzo(a)pyrene		ND(0.40) (ND(0.39))	ND(0 37)	NA NA	0.20 J
enzo(b)/iuoranti	N238123	ND(0.40) [ND(0.39)]	ND(0.37)	NA NA	0.22 J 0.29 J

Sample ID:	RAA6-C6	RAA6-C15	RAA6-C15	RAA6-C17
Sample Depth(Feet):	6-15	3-6	4-6	0-1
Parameter Date Collected:	01/10/03	01/07/03	01/07/03	01/02/03
Semivolatile Organics (continued)				
Benzo(g,h.i)perylene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	0.15 J
Benzo(k)fluoranthene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	0.15 J
Benzyl Alcohol	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
bis(2-Chloroethoxy)methane	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
pis(2-Chloroethyl)ether	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
ois(2-Chloroisopropyl)ether	ND(0.40) J [ND(0.39) J]	ND(0 37)	NA	ND(0.39)
bis(2-Ethylhexyl)phthalate	ND(0.39) [ND(0.39)]	ND(0.37)	NA	ND(0.38)
Butylbenzylphthalate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Chrysene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	0.22 J
Dialiate	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
Dibenzo(a,h)anthracene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Dibenzofuran Diata databailata	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Diethylphthalate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Di-n-Butylphthalate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Di-n-Octylphthalate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Diphenylamine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Ethyl Methanesulfonate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Fluoranthene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	0.39
Fluorene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Hexachlorobenzene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Hexachlorobutadiene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Hexachlorocyclopentadiene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39) J
lexachioroethane	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
lexachiorophene	ND(0.80) J [ND(0.78) J]	ND(0.74) J	NA	ND(0.78) J
Hexachloropropene	ND(0.40) J [ND(0.39) J]	ND(0.37)	NA	ND(0.39)
ndeno(1.2.3-cd)pyrene	ND(0.40) [ND(0.39)]	ND(0.37)	NA NA	0.12 J
Isodrin	ND(0.40) [ND(0.39)]	ND(0.37) J	NA	ND(0.39)
sophorone	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
sosafrole	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
Vethapyrilene	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
Methyl Methanesulfonate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Naphthalene	0.27 J [0.27 J]	ND(0.37)	NA	ND(0.39)
Nitrobenzene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitrosodiethylamine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitrosodimethylamine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitroso-di-n-butylamine	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
N-Nitroso-di-n-propylamine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitrosodiphenylamine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitrosomethylethylamine	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
N-Nitrosomorpholine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitrosopiperidine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
N-Nitrosopyrrolidine	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
o.o.o-Triethylphosphorothioate	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
p-Toluidine	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
D-Dimethylaminoazobenzene	ND(0.80) [ND(0.78)]	ND(0.74)	NA NA	ND(0.78)
Pentachlorobenzene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Pentachloroethane	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Pentachloronitrobenzene	ND(0.80) J [ND(0.78) J]	ND(0.74)	NA	ND(0.78)
Pentachloropheno:	ND(2.0) [ND(2.0)]	ND(1.9)	NA	ND(2.0)
Phenacetin	ND(0.80) [ND(0.78)]	ND(0.74)	NA	ND(0.78)
Phenanihrene	ND(0.40) [ND(0.39)]	ND(0.37)	NA	0.17 J
Phenol	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Pronamide	ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)
Pyrene	ND(0.40) [ND(0.39)]	ND(0.37)	NA NA	0.34 J
Pyridine	ND(0.40) [ND(0.39)]	ND(0.37)	NA NA	ND(0.39)
Safrole	ND(0.40) [ND(0.39)] ND(0.40) [ND(0.39)]	ND(0.37)	NA	ND(0.39)

Sample ID: Sample Depth(Feet):		RAA6-C6 6-15	RAA6-C15 3-6	RAA6-C15 4-6	RAA6-C17 0-1
Parameter Dat	e Collected:	01/10/03	01/07/03	01/07/03	01/02/03
Furans					
2.3.7.8-TCDF		ND(0.00000075) [ND(0.0000013)]	ND(0.0000011)	NA	0.000015 Y
TCDFs (total)		ND(0.0000075) [ND(0.000013)]	ND(0.00000011)	NA	0.00020
1.2.3.7.8-PeCDF		ND(0.0000017) [ND(0.00000061)]	ND(0.00000027)	NA	0.0000070 J
2.3.4.7.8-PeCDF		VD(0.0000036) X [ND(0.00000092)]	ND(0.00000073)	NA	0.000036
PeCDFs (total)	· · · · · · · · · · · · · · · · · · ·	ND(0.00000014) (ND(0.0000015))	ND(0.00000073)	NA	0.00034
1,2,3,4,7,8-HxCDF		ND(0.00000055) X (0.00000094 J)	ND(0.0000027)	NA	0.0000090 J
1.2.3.6.7.8-HxCDF		ND(0.0000017) [ND(0.00000057)]	ND(0.00000027)	NA	ND(0.000087) X
1.2.3.7.8.9-HxCDF		ND(0.0000017) [ND(0.0000025)]	ND(0.00000027)	NA	0.0000023 J
2.3.4.6.7.8-HxCDF		ND(0.0000017) [ND(0.0000025)]	ND(0.0000027)	NA	0.000019 J
HxCDFs (total)		ND(0.0000017) [ND(0.0000015)]	ND(0.0000027)	NA	0.00022
1.2.3.4.6.7.8-HpCDF		0.0000010 J [ND(0,0000018)]	ND(0.00000027)	NA	0.000019 J
1.2.3.4.7.8.9-HoCDF		ND(0.0000017) [ND(0.0000025)]	ND(0.00000027)	NA	ND(0.0000024) X
HpCDFs (total)		ND(0.0000010) [ND(0.0000018)]	ND(0.0000027)	NA	0.000037
OCDF		ND(0.0000016) [ND(0.0000025) X]	ND(0.00000054)	NA	0.000011 J
Dioxins					
2.3.7.8-TCDD		ND(0.0000081) [ND(0.0000012)]	ND(0.00000013)	NA	ND(0.0000010) X
TCDDs (total)		ND(0.0000024) [ND(0.0000029)]	ND(0.00000020)	NA	0.0000046
1.2.3.7.8-PeCDD		ND(0.0000017) [ND(0.000025)]	ND(0.00000027)	NA	ND(0.0000017) X
PeCDDs (total)		ND(0.0000031) [ND(0.0000042)]	ND(0.0000027)	NA	0.000014
1,2,3,4.7,8-HxCDD		ND(0.0000017) [ND(0.0000025)]	ND(0.0000027)	NA	ND(0,0000013) X
1,2,3,6,7,8-HxCDD		ND(0.0000017) [ND(0.0000025)]	ND(0.00000027)	NA	0.0000034 J
1.2.3.7.8.9-HxCDD		ND(0.0000017) [ND(0.0000025)]	ND(0,0000027)	NA	0.0000024 J
HxCDDs (total)		ND(0.0000033) [ND(0.0000051)]	ND(0.0000030)	NA	0.000032
1,2,3,4,6,7,8-HpCDD		ND(0.0000018) [ND(0.0000036)]	ND(0.00000024) X	NA	0.000019 J
HpCDDs (total)		ND(0.000027) [ND(0.0000053)]	ND(0.0000027)	NA	0.000037
OCDD		0.000014 J [ND(0.000019)]	ND(0.0000012)	NA	0.000085
Total TEQs (WHO TEFs)		0.0000020 [0.0000029]	0.0000033	NA	0.000026
Inorganics					
Antimony	1	ND(6.00) [ND(6.00)]	1.50 B	NA	33.0
Arsenic		8.40 [7.20]	5.60	NA	5,90
Barium		22.0 [17.0 B]	19.0 B	NA	52.0
Beryllium		0.120 B [0.170 B]	0.240 B	NA	0.200 B
Cadmium		0.280 B (0.270 B)	0.490 B	NA	0.370 B
Chromium		8.20 [7.80]	5.00	NA	5.90
Cobalt		12.0 [10.0]	6.60	NA	6.40
Copper		27.0 (20.0)	11.0	NA	88.0
Cyanide		ND(0.240) [ND(0.230)]	ND(0.560)	NA	ND(0.580)
Lead		9.40 [7.30]	9.00	NA	140
Mercury		ND(0.120) [ND(0.120)]	ND(0,110)	NA	0.480
Nickel		19.0 [19.0]	10.0	NA	10.0
Selenium		1.60 [1.00 B]	ND(1 00)	NA	ND(1.00)
Silver		ND(1.00) [ND(1.00)]	ND(1.00)	NA	ND(1.00)
Sulfide		37.0 [32.0]	28.0	NA	47.0
Thallium		ND(1.20) J [ND(1.20) J]	ND(1.10) J	NA	ND(1.20)
Tin		ND(10.0) [ND(10.0)]	ND(10.0)	NA	110
Vanadium		6 70 [6.60]	5.20	NA	6.60
Zinc		58.0 (51.0)	34,0	NA	81.0

Sample ID:	RAA6-D5	RAA6-D5	RAA6-D5	RAA6-D7	RAA6-D7
Sample Depth(Feet):	0-1	1-6	4-6	0-1	1-3
Parameter Date Collected:	01/14/03	01/14/03	01/14/03	01/13/03	01/13/03
/olatile Organics	NE (S CORD)		NOTE FOR THE		100000000
1.1.2-Tetrachloroethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
.1.1-Trichloroethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
.1.2.2-Tetrachioroethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
1.2-Trichloroethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
1-Dichloroetnane	ND(0.0056)	NA NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
1-Dichloroethene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
2.3-Trichloropropane	ND(0.0056)	NA NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
2-Dibromo-3-chloropropane	ND(0.0056)		ND(0.0053)	ND(0.0058)	ND(0.0057)
2-Dibromoethane	ND(0.0056) ND(0.0056)	NA NA	ND(0.0053) ND(0.0053)	ND(0.0058)	ND(0.0057) ND(0.0057)
2-Dichloroethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058) ND(0.0058)	ND(0.0057)
,2-Dichloropropane	ND(0.11) J	NA	ND(0.10) J		ND(0.00577 ND(0.11) J
.4-Dioxane	ND(0.011)	NA NA	ND(0.010)	ND(0.12) J ND(0.012)	ND(0.011)
2-Chloro-1,3-butadiene	ND(0.0056)	NA NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
-Chloroethylvinylether	ND(0.0056)	NA NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
-Chlordeinyivinyieiner	ND(0.0058)	NA	ND(0.0053)	ND(0.0058)	ND(0.0037) ND(0.011)
Hexanone B-Chloropropene	ND(0.0056) J	NA	ND(0.0053) J	ND(0.0058)	ND(0.0057) J
	ND(0.0011)	NA	ND(0.010)	ND(0.012)	ND(0.011)
Acetone	0.015 J	NA	0.021 J	ND(0.023)	ND(0.023)
Acetonitrile	ND(0.11) J	NA	ND(0.10) J	ND(0.12)	ND(0.11)
Acrolein	ND(0.11) J	NA	ND(0.10) J	ND(0.12) J	ND(0.11) J
Acrylonitrile	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Benzene	ND(0.0056)	NA	0.020	ND(0.0058)	ND(0.0057)
Bromodichloromethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Bromoform	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Bromomethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057) J
Carbon Disulfide	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Carbon Tetrachloride	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Chlorobenzene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Chloroetnane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Chloroform	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0,0057)
Chloromethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
cis-1,3-Dichloropropene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Dibromochloromethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Dibromomethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Dichlorodifluoromethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Ethyl Methacrylate	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Ithylbenzene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
odomethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
sobutanol	ND(0.11) J	NA	ND(0.10) J	ND(0.12) J	ND(0.11) J
Methacryionitrile	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Aethyl Methacrylate	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Methylene Chloride	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Propionitrile	ND(0.011) J	NA	ND(0.010) J	ND(0.012) J	ND(0.011) J
Styrene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
etrachloroethene	0.0044 J	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
foluene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
rans-1,2-Dichlorbethene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
rans-1,3-Dichloropropene	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
rans-1,4-Dichloro-2-butene	ND(0.0056) J	NA	ND(0.0053) J	ND(0.0058)	ND(0.0057)
Trichloroethene	ND(0.0056)	NA,	ND(0.0053)	ND(0.0058)	ND(0.0057)
richlorofluoromethane	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
/invi Acetate	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
/inv! Chloride	ND(0.0056)	NA	ND(0.0053)	ND(0.0058)	ND(0.0057)
Xvienes (total)	ND(0.0056)	NA	0.061	ND(0.0058)	ND(0.0057)

# PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-D5	RAA6-D5	RAA6-D5	RAA6-D7	RAA6-D7
Sample Depth(Feet): Parameter Date Collected:	0-1 01/14/03	1-6	4-6	0-1	1-3
	01/14/03	01/14/03	01/14/03	01/13/03	01/13/03
Semivolatile Organics	ND/0 17	10000		NO. (0.00	
1.2,4,5-Tetrachlorobenzene	ND(0.37) ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
.2-Dichiorobenzene	ND(0.37)	ND(0.37)	NA NA	ND(0.39)	ND(0.38)
.2-Diphenylhydrazine	ND(0.37)	ND(0.37) ND(0.37)	NA NA	ND(0.39)	ND(0.38)
3.5-Trinitrobenzene	ND(0.37) J	ND(0.37) J	NA NA	ND(0.39) ND(0.39) J	ND(0.38)
.3-Dichlorobenzene	ND(0.37)	ND(0.37) 3	NA NA	ND(0.39) 5	ND(0.38) J ND(0.38)
.3-Dinitrobenzene	ND(0.75)	ND(0.75)	1 NA	ND(0.78)	ND(0.38)
.4-Dichloropenzene	ND(0.37)	ND(0.37)	NA NA	ND(0.39)	ND(0.38)
,4-Naphthoguinone	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
Naphthylamine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
2,3,4,6-Tetrachlorophenol	ND(0.37) J	ND(0.37) J	NA	ND(0.39) J	ND(0.38) J
.4.5-Trichlorophenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
,4.6-Trichlorophenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
,4-Dichlorophenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
4-Dimethylphenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
.4-Dinitrophenol	ND(1.9) J	ND(1.9) J	NA	ND(2.0) J	ND(1.9) J
,4-Dinitrotoluene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
.6-Dichlorophenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
.6-Dinitrotoluene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Acetylaminofluorene	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
-Chloronaphthalene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Chlorophenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Methylnaphthalene	ND(0.37)	0.47	NA	ND(0.39)	0.17 J
-Methylphenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Naphthylamine -Nitroaniline	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
-Nitrophenol	ND(1.9) ND(0.75)	ND(1.9) ND(0.75)	NA NA	ND(2.0)	ND(1.9)
-Picoline	ND(0.75)	ND(0.75) ND(0.37)	NA NA	ND(0.78)	ND(0.76)
&4-Methylphenoi	ND(0.75)	ND(0.75)	NA NA	ND(0.39)	ND(0.38)
3'-Dichlorobenzidine	ND(0.75)	ND(0.75)	NA	ND(0.78) ND(0.78)	ND(0.76) ND(0.76)
3'-Dimethylbenzidine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.78)
-Methylcholanthrene	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
-Nitroaniline	ND(1.9)	ND(1.9)	NA	ND(2.0)	ND(1.9)
,6-Dinitro-2-methylphenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Aminobiphenyl	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
-Bromophenyl-phenylether	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Chloro-3-Methylphenol	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Chloroaniline	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-Chlorobenzilate	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
-Chlorophenyi-phenylether	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Nitroaniline	ND(1.9)	ND(1.9)	NA	ND(2.0)	ND(1.9)
Nitrophenoi	ND(1.9)	ND(1.9)	NA	ND(2.0)	ND(1.9)
-Nitroquinoline-1-oxide	ND(0.75) J	ND(0 75) J	NA	ND(0.78) J	ND(0.76) J
-Phenylenediamine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
-Nitro-o-toluidine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
12-Dimethylbenz(a)anthracene	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
a'-Dimethylphenethylamine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
cenaphthelie	<u>ND(0.37)</u> 0.24 J	ND(0.37) ND(0.37)	NA NA	0.14 J	0.91
cetophenone	ND(0.37)	0.60	NA NA	ND(0.39)	0.077 J
niine	ND(0.37)	ND(0.37)	NA NA	ND(0.39)	ND(0.38)
nthracene	0.26 J	ND(0.37)	NA NA	<u>ND(0.39)</u> 0.33 J	ND(0.38) 3.2
ramite	ND(0.75)	ND(0.37) ND(0.75)	NA	0.33 J ND(0.78)	3.2 ND(0.76)
enzidine	ND(0.75)	ND(0.75)	NA NA	ND(0.78) ND(0.78)	ND(0.76)
enzo(a)anthracene	0.43	ND(0.37)	NA	0.65	5.3
enzo(a)pyrene	0.56	ND(0.37)	NA NA	0.65	3.8
enzo(b)fluoranthene	0.70	ND(0.37)	NA	0.50	4.0

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-D5	RAA6-D5	RAA6-D5	RAA6-D7	RAA6-D7
Sample Depth(Feet):	0-1	1-6	4-6	0-1	1-3
Parameter Date Collected:	01/14/03	01/14/03	01/14/03	01/13/03	01/13/03
emivolatile Organics (continued)					
lenzo(g.h.i)perylene	0.40	ND(0.37)	NA	0.32 J	1.8
Senzo(k)fluoranthene	0.27 J	ND(0.37)	NA	0 26 J	1.7
Benzyl Alcohol	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
is(2-Chloroethoxy)methane	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
ois(2-Chloroethyi)ether	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
bis(2-Chloroisopropyl)ether	ND(0.37) J	ND(0.37) J	NA	ND(0.39) J	ND(0.38) J
ois(2-Ethylhexyl)phthalate	ND(0.37)	ND(0.37)	NA	ND(0.38)	ND(0.37)
Butyibenzyiphtnalate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Chrysene	0.36 J	ND(0.37)	NA	0.59	4.3
Diallate	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
Dibenzo(a,h)anthracene	0.14 J	ND(0.37)	NA	ND(0.39)	0.57
Dibenzofuran	ND(0.37)	ND(0.37)	NA	ND(0.39)	0.57
Diethylphthalate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Dimethylphthalate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Di-n-Butylphthalate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Di-n-Octylphthalate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Diphenylamine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Ethyl Methanesulfonate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
luoranthene	0.60	ND(0.37)	NA	1.5	11
Fluorene	ND(0.37)	ND(0.37)	NA	0.11 J	1.0
Hexachlorobenzene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
lexachlorobutadiene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
-lexachlorocyclopentadiene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Hexachloroethane	ND(0.37)	ND(0.37)	NA	0.099 J	ND(0.38)
Hexachlorophene	ND(0.75) J	ND(0.75) J	NA	ND(0.78) J	ND(0.76) J
Hexachloropropene	ND(0.37) J	ND(0.37) J	NA	ND(0.39) J	ND(0.38) J
ndeno(1,2,3-cd)pyrene	0.38	ND(0.37)	NA	0.30 J	1.7
sodrin	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
sophorone	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
sosafrole	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
Methapyrilene	ND(0.75)	ND(0.75)	NA	ND(0 78)	ND(0.76)
Methyl Methanesulfonate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Naphthalene	ND(0.37)	0.75	NA	ND(0.39)	0.16 J
Nitrobenzene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitrosodiethylamine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitrosodimethylamine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitroso-di-n-butylamine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
N-Nitroso-di-n-propylamine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitrosodiphenylamine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitrosomethylethylamine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
N-Nitrosomorpholine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitrosopiperidine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
N-Nitrosopyrrolidine	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
o.o.o-Triethylphosphorothioate	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
p-Toluídine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
p-Dimethylaminoazobenzene	ND(0.75)	ND(0 75)	NA	ND(0.78)	ND(0.76)
Pentachlorobenzene	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Pentachloroethane	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Pentachloronitrobenzene	ND(0.75) J	ND(0.75) J	NA	ND(0.78) J	ND(0.76) J
Pentachlorophenoi	ND(1.9)	ND(1.9)	NA	ND(2.0)	ND(1.9)
Phenacetin	ND(0.75)	ND(0.75)	NA	ND(0.78)	ND(0.76)
Phenanthrene	0.24 J	ND(0.37)	NA	1,1	9.5
Phenol	ND(0.37)	ND(0.37)	NA	8.2	ND(0.38)
Pronamide	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Pyrene	0.48	ND(0.37)	NA	ND(0.39)	85
Pyridine	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Safrole	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)
Thionazin	ND(0.37)	ND(0.37)	NA	ND(0.39)	ND(0.38)

Sample ID: Sample Depth(Feet):		RAA6-D5 1-6	RAA6-D5 4-6	RAA6-D7 0-1	RAA6-D7 1-3
Parameter Date Collected:	6	01/14/03	01/14/03	01/13/03	01/13/03
Furans				3	1 01.10.00
2.3,7,8-TCDF	ND(0.0000020) X	0.0000016 J	NA	0.0000092 Y	0.0000094 Y
TCDFs (total)	0.0000078	0.0000016	NA NA	0.00023 Q	0.0000094 1 0.00015 Q
1.2.3.7.8-PeCDF	ND(0.0000015) X	ND(0.0000084) X	NA	ND(0.000049) X	0.000038 JQ
2.3.4.7.8-PeCDF	0.0000043 J	0.0000014 J	NA	0.000024	0.000013 Q
PeCDFs (total)	0.000039	ND(0.0000014)	NA	0.00021 Q	0.00013 Q
1,2,3,4,7,8-HxCDF	ND(0.0000024) X	ND(0.0000029)	NA	0.000010	0.000072
1.2.3.6.7.8-HxCDF	ND(0.0000019)	ND(0.00000082) X	NA	0.0000086	0.0000059
1.2.3.7.8.9-H×CDF	ND(0.0000012) X	0.00000086 J	NA	0.0000021 JQ	0.0000012 JO
2.3.4.6.7.8-HxCDF	ND(0.0000033) X	ND(0.0000084) X	NA	0.000017	0.000012.30
HxCDFs (total)	0.000028	ND(0.0000077)	NA	0.00026 Q	0.00012 0.00016 Q
1,2,3,4,6,7,8-HpCDF	0.0000053 J	0.0000032 J	NA	0.00028 0	0.00017
1.2.3.4.7.8.9-HoCDF	ND(0.0000012) X	ND(0.0000018) X	NA	0.0000045	0.000029 J
HpCDFs (total)	0.000010	0.0000072	NA	0.00013	0.0000253
OCDF	0.0000085 J	0.0000077 J	NA	0.00011	0.000046
Dioxins		0.00000770	1975	0.00011	0.000040
2.3.7.8-TCDD	ND(0.0000011)	ND(0.00000097) X	NA	ND(0.00000056) X	ND(0.00000028)
TCDDs (total)	0.0000047	ND(0.0000037) X	NA NA	0.00000021 Q	
1.2.3.7.8-PeCDD	ND(0.0000027)	ND(0.0000025)	NA NA	0.00000021 Q	0.0000014 Q 0.00000081 J
PeCDDs (total)	ND(0.0000028)	ND(0.0000025)	NA NA	0.0000018 J	0.0000022 Q
1,2,3,4,7,8-HxCDD	ND(0.0000027)	ND(0.0000020)	NA NA	0.00000310	0.0000022 0 0.00000051 J
1,2,3,6,7,8-HxCDD	ND(0.0000014) X	ND(0.0000025)	NA NA	0.0000028.3	
1.2.3.7.8.9-HxCDD	0.0000015 J	0.00000023)	NA NA	0.0000062 0.0000054 J	0.0000011 J 0.0000083 JQ
HxCDDs (total)	0.0000042	0.0000097.3	NA	0.000054 J	
1,2,3,4,6,7,8-HoCDD	ND(0.000011)	ND(0.0000052)	NA NA	0.000041	0.0000055 Q
HpCDDs (total)	ND(0.000020)	ND(0.0000032)	NA NA	0.00011	0.000036
OCDD	ND(0.000020)	ND(0.000032)	NA NA	0.00071	0.000068
Total TEQs (WHO TEFs)	0.0000051	0.0000033	NA	0.000022	0.00061
norganics	0.0000001	0.0000035	INA	0.000022	0.000012
~		ND(0.00)		1.005	
Antimony Arsenic	ND(6.00) 7,10	ND(6.00)	NA	1.30 B	ND(6.00)
Barium	30.0	8.60	NA	5.90	6.80
		26.0	NA	26.0 J	31.0 J
Beryllium Cadmium	ND(0.50) 0.430 B	ND(0.50)	NA	0.240 B	0.280 B
Chromium		0.460 B	NA	0.830	0.660
Cobalt	6.30 11.0	7.40	NA	9.20	7.90
	30.0	9,10	NA	6.60 J	9.50 J
Copper Cyanide	ND(0.220)	33.0	NA NA	46.0	41.0
_ead	36.0	ND(0.220)		0.200 J	ND(0.110)
	0.0750 B	36.0	NA	91.0	44,0
Mercury Nickel	13.0	0.190	NA NA	0.0520 B	0.0510 B
	1.00 B	15.0		13.0	16.0
Selenium Silver	ND(1.00)	1.70	NA	0.890 B	0.810 B
Sulfide	a any conservation of the second s	ND(1.00)	NA	ND(1.00)	ND(1.00)
Sunde Thallium	38.0	210	NA	22.0 J	24.0 J
i nailium Tin	ND(1.10) J	ND(1.10) J	NA	ND(1.20) J	ND(1.10) J
3	ND(10.0)	ND(10.0)	NA	ND(10.0)	ND(10.0)
Vanadium Zinc	<u>8.60</u> 50.0	6.70	NA	8.00	7.50

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-D10	RAA6-D10	RAA6-D10	RAA6-D12	RAA6-D14
Sample Depth(Feet):	0-1	6-8	6-15	0-1	0-1
Parameter Date Collected:	01/13/03	01/13/03	01/13/03	01/09/03	01/07/03
/olatile Organics					
1,1,1,2-Tetrachioroethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
,1,1-Trichleroethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
1.2.2-Tetrachloroethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
1.2-Trichloroethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
1.1-Dichloroethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
,1-Dichloroethene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
2,2,3-Trichloropropane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
2-Dibromo-3-chloropropane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
I.2-Dibromoethane	ND(0.0055)	ND(0.0058)	<u>NA</u>	ND(0.0062)	ND(0.0054)
· · · ·	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
,2-Dichloropropane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
,4-Dioxane	ND(0.11) J	ND(0.12) J	NA	ND(0.12)	ND(0.11) J
-Butanone	ND(0.011)	ND(0.012)	NA	ND(0.012)	ND(0.011) J
2-Chioro-1,3-butadiene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
-Chloroethylvinylether	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054) J
-Hexanone	ND(0.011)	ND(0.012)	NA	ND(0.012)	ND(0.011) J
B-Chloropropene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
-Methyl-2-pentanone	ND(0.011)	ND(0.012)	NA	ND(0.012)	ND(0.011) J
Acetone	ND(0.022)	ND(0.023)	NA	ND(0.025)	ND(0.021) J
Acetonitrile	ND(0.11)	ND(0.12)	NA	ND(0.12)	ND(0.11) J
Acrolein	ND(0.11) J	ND(0.12) J	NA	ND(0.12)	ND(0.11) J
crylonitrile	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Benzene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Bromodichloromethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Bromoform	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Bromomethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Carbon Disulfide	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Carbon Tetrachloride	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Chlorobenzene	ND(0.0055)	ND(0.0058) J	NA	ND(0.0062)	ND(0.0054)
Chloroethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Chloroform	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Chloromethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
is-1,3-Dichloropropene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Dibromochloromethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
)ibromomethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Dichlorodifluoromethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
thyi Methacrylate	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
thylbenzene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
odomethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
sobutanol	ND(0.11) J	ND(0.12) J	NA	ND(0.12)	ND(0.11) J
lethacrylonitrile	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
Nethyl Methacrylate	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
fethylene Chloride	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
ropionitrile	ND(0.011) J	ND(0 012) J	NA	ND(0.012)	ND(0.011) J
tyrene	ND(0.0055)	ND(0.0058)	NA	ND(0.0052)	ND(0.0054)
etrachioroethene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
oluene	ND(0.0055)	ND(0.0058) J	NA	ND(0.0062)	ND(0.0054)
ans-1,2-Dichloroethene	ND(0 0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
ans-1,3-Dichloropropene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
rans-1,4-Dichloro-2-outene	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
richloroethene	ND(0.0055)	ND(0.0058) J	NA	ND(0.0062)	ND(0.0054)
richlorofluoromethane	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
inyl Acetate	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
inyl Chloride	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)
(ylenes (total)	ND(0.0055)	ND(0.0058)	NA	ND(0.0062)	ND(0.0054)

「日本の日本

# PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-D10	RAA6-D10	RAA6-D10	RAA6-D12	RAA6-D14
Sample Depth(Feet):	0-1	6-8	6-15	0-1	0-1
Parameter Date Collected:	01/13/03	01/13/03	01/13/03	01/09/03	01/07/03
Semivolatile Organics	1:0/0.07				
1,2,4,5-Tetrachiorobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
1.2.4-Trichlorobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
1,2-Dichiorobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
1,2-Diphenyihydrazine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
1,3,5-Trinitrobenzene	ND(0.37) J	NA	ND(0.39)	ND(0.41)	ND(0.36) J
1.3-Dichlorobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
1.3-Dinitrobenzene	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
1,4-Dichlorobenzene	ND(0.37)	NA	0.36 J	ND(0.41)	ND(0.36)
1,4-Naphthoquinone	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
I-Naphthylamine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
2.3.4,6-Tetrachlorophenol	ND(0.37) J	NA	ND(0.39) J	ND(0.41)	ND(0.36)
2,4,5-Trichlorophenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2.4,6-Trichlorophenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2,4-Dichlorophenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2,4-Dimethylphenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
4-Dinitrophenol	ND(1.9) J	NA	ND(2.0) J	ND(2.1) J	ND(1.8) J
2,4-Dinitrotoluene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2,6-Dichlorophenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2,6-Dinitrotoluene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2-Acetylaminofluorene	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
2-Chioronaphthalene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2-Chlorophenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2-Methylnaphthalene	ND(0.37)	NA	0.50	ND(0.41)	ND(0.36)
2-Methyiphenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
2-Naphthylamine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
2-Nitroaniline	ND(1.9)	NA	ND(2.0)	ND(2.1)	ND(1.8)
2-Nitrophenol	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
2-Picoline	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
3&4-Methylphenol	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.30)
3,3'-Dichlorobenzidine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
3.3'-Dimethylbenzidine	ND(0.37)	NA NA	ND(0.39)		
3-Methylcholanthrene	ND(0.74)	NA	**************************************	ND(0.41)	ND(0.36)
3-Nitroaniline	ND(1.9)	NA NA	ND(0.78)	ND(0.82)	ND(0.72)
.6-Dinitro-2-methylphenol			ND(2.0)	ND(2.1)	ND(1.8)
-Aminobiphenyl	<u>ND(0.37)</u> ND(0.74)	NA	ND(0.39)	ND(0.41)	ND(0.36)
		NA	ND(0.78)	ND(0.82)	ND(0.72)
-Bromophenyl-phenylether	ND(0.37) ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
I-Chloro-3-Methylphenol		NA	ND(0.39)	ND(0.41)	ND(0.36)
	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
-Chlorobenzilate	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
-Chlorophenyl-phenylether	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Nitroaniline	ND(1.9)	NA	ND(2.0)	ND(2.1)	ND(1.8)
-Nitrophenol	ND(1.9)	NA	R	ND(2.1)	ND(1.8)
-Nitroquinoline-1-oxide	ND(0.74) J	NA	ND(0.78) J	ND(0.82) J	ND(0.72)
I-Phenylenediamine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72) J
-Nitro-a-toluidine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
.12-Dimethylbenz(a)anthracene	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
,a'-Dimethylphenethylamine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
cenaphthene	ND(0.37)	NA	ND(0.39) J	ND(0.41)	ND(0.36)
cenaphthylene	0.12 J	NA	ND(0.39)	0.22 J	ND(0.36)
cetophenone	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Inline	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
nthracene	0.076 J	NA	ND(0.39)	0.22 J	ND(0.36)
vamite	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
Benzidine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
lenzo(a)anthracene	0 37	NA	ND(0.39)	0.80	ND(0.36)
lenzo(a)pyrene	036J	NA	ND(0.39)	0.80	ND(0.36)
Benzo(p)fluoranthene	0.59	NA	ND(0.39)	1.1	ND(0.36)

Sample ID:	RAA6-D10	RAA6-D10	RAA6-D10	RAA6-D12	RAA6-D14
Sample Depth(Feet):	0-1	6-8	6-15	0-1	0-1
Parameter Date Collected:	01/13/03	01/13/03	01/13/03	01/09/03	01/07/03
Semivolatile Organics (continued)	0.00 /		1177 (0. 50)		
Benzo(g.h,i)perylene	0.30 J	NA	ND(0.39)	0.53	ND(0.36)
Benzo(k)fluoranthene	0.23 J	NA	ND(0.39)	0.45	ND(0.36)
Benzyl Alcohol	ND(0.74)	NA NA	ND(0.78)	ND(0.82)	ND(0.72)
bis(2-Chloroethoxy)methane	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
bis(2-Chloroethyl)ether	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
bis(2-Chloroisopropyl)ether	ND(0.37) J	NA	ND(0.39)	ND(0.41)	ND(0.36)
bis(2-Ethylhexyl)phthalate	ND(0.36)	NA	ND(0.39)	ND(0.41)	ND(0.35)
Butyibenzylphthalate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Chrysene	0.38	NA	ND(0.39)	0.80	ND(0.35)
Diallate	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
Dibenzo(a,h)anthracene	0.096 J	NA	ND(0.39)	0.14 J	ND(0.36)
Dibenzoturan	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Diethylphthalate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Dimethylphthalate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Di-n-Butylphthalate	ND(0.37)	NA	ND(0.39)	0.11 J	ND(0.36)
Di-n-Octylphthalate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Diphenylamine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Ethyl Methanesulfonate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
luoranthene	0.98	NA	ND(0.39)	2.0	ND(0.36)
Fluorene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Hexachlorobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Hexachlorobutadiene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Hexachlorocyclopentadiene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Hexachloroethane	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Hexachlorophene	ND(0.74) J	NA	ND(0.78) J	ND(0.82) J	ND(0.72) J
Hexachloropropene	ND(0.37) J	NA	ND(0.39)	ND(0.41) J	ND(0.36)
indeno(1,2,3-cd)pyrene	0.28 J	NA	ND(0.39)	0.49	ND(0.36)
Isodrin	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36) J
sophorone	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
sosafrole	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
Methapyrilene	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
Methyl Methanesulfonate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Naphthalene	ND(0.37)	NA	0.81	ND(0.41)	ND(0.35)
Nitrobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitrosodiethylamine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitrosodimethylamine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitroso-di-n-butylamine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
N-Nitroso-di-n-propylamine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitrosodiphenylamine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitrosomethylethylamine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
N-Nitrosomorpholine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitrosopiperidine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
N-Nitrosopyrrolidine	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
o.o.o-Triethylphosphorothioate	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
p-Toluidine	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
o-Dimethylaminoazobenzene	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
Pentachiorobenzene	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Pentachioroethane	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Pentachloronitrobenzene	ND(0.74) J	NA	ND(0.78) J	ND(0.82) J	ND(0.72)
Pentachiorophenol	ND(1.9)	NA	ND(2.0)	ND(2.1)	ND(1.8)
Phenacetin	ND(0.74)	NA	ND(0.78)	ND(0.82)	ND(0.72)
Phenanthrene	0.43	NA	ND(0.39)	0.97	ND(0.36)
Pnenol	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Pronamide	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Pyrene	0.66	NA	ND(0.39)	1.4	ND(0.36)
Pyridine	ND(0.37)	NA	ND(0,39)	ND(0.41)	ND(0.36)
Safrole	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)
Thionazin	ND(0.37)	NA	ND(0.39)	ND(0.41)	ND(0.36)

:	Sample ID: Sample Depth(Feet):	RAA6-D10 0-1	RAA6-D10 6-8	RAA6-D10 6-15	RAA6-D12 0-1	RAA6-D14 0-1
Parameter	Date Collected:	01/13/03	01/13/03	01/13/03	01/09/03	01/07/03
Furans						
2,3.7,8-TCDF	}	0.0000044 Y	NA	0.00000061 J	0.0000076 Y	0.0000013 J
TCDFs (total)		0.000047 Q	NA	0.0000018	0.000090	0.000014
1,2,3,7,8-PeCDF		0.0000020 JQ	NA	0.0000010 J	0.00000 <b>3</b> 0 J	0.0000011 J
2,3,4,7,8-PeCDF		0.000065	NA	0.0000014 J	0.000013	0.0000044 J
PeCDFs (total)		0.000077 Q	NA	0.0000068 Q	0.00017 Q	0.000035
1.2,3,4,7,8-HxCDF	:	0.0000032 J	NA	0.0000028 J	0.000014	0.0000018 J
1,2,3.6,7,8-HxCDF		0.0000028 J	NA	0.0000012 J	0.0000081	0.0000016 J
1,2,3.7,8.9-HxCDF		0.0000015 JQ	NA	0.0000013 J	0.0000018 JQ	0.00000088 J
2,3.4,6.7,8-HxCDF		0.0000060	NA	0.0000014 J	0.000018	0.0000040 J
HxCDFs (total)		0.000081	NA	0.000011	0.00028 Q	0.000043
1.2,3,4,6,7,8-HpC(	)F	0.000019	NA	0.0000055 J	0.000089	0.0000033 J
1.2.3.4.7.8.9-HpCI	DF 1	0.0000030 J	NA	0.0000024 J	0.000010	0.00000084 J
HoCDFs (total)		0.000064	NA	0.000016	0.00028	0.0000085
OCDF		0.000076	NA	0.000019	0.00032	0.0000035 J
Dioxins						
2.3.7.8-TCDD		ND(0.0000033) X	NA	ND(0.0000023)	0.00000058 J	ND(0.00000026)
TCDDs (total)		0.00000035 Q	NA	ND(0.0000023)	0.0000022	ND(0.00000026)
1,2,3,7,8-PeCDD		ND(0.0000012) XQ	NA	ND(0.00000077) X	0.0000022 J	0.00000067 J
PeCDDs (total)		0.0000016 Q	NA	0.00000038	0.0000086 Q	ND(0.00000067)
1.2.3.4.7.8-HxCDE	)	0.0000013 J	NA	0.00000077 J	0.0000033 J	ND(0.00000076) X
1.2.3.6.7.8-HxCDD		0.0000025 J	NA	0.0000012 J	0.000010	ND(0.0000011)
1,2,3,7,8,9-HxCDE		0.0000022 J	NA	0.0000012 J	0.0000064	ND(0.0000010)
HxCDDs (total)		0.000016	NA	0.0000042	0.000063	0.0000040
1,2,3,4,6,7,8-HpCI	חר	0.000047	NA	0.000011	0.00025	0.0000027 J
HpCDDs (total)		0.000080	NA	0.000020	0.00042	0.0000021 5
OCDD		0.00036	NA	0.000073	0.0018	ND(0.000014)
Total TEQs (WHO	TEES)	0.0000072	NA	0.0000025	0.000020	0.0000042
Inorganics		0.0000012	175	0.0000020	0.000020	0.0000042
		0.960 B	NA	1.90 B	4.50 1	0.60.0
Antimony Arsenic		6.80	NA NA	5.20	1.50 J 7.90	2.50 B 6.80
Barium		23.0 J	NA NA			
Bervilium		0.190 B	NA	15.0 J 0.190 B	37.0	24.0 0.200 B
Cadmium		0.690	NA NA		0.660	
				0.570	1.00	1.90
Chromium		10.0 10.0 J	NA NA	5.60	14.0	5.30
Cobalt			an and share and an interest of the state of	6.60 J	8.90	5.70
Copper		40.0	NA	16.0	41.0	19.0
Cyanide		ND(0.220)	NA	ND(0.580)	0.220 B	ND(0.110)
Lead		29.0	NA	6.80	140	18.0
Mercury		0.0280 B	NA	ND(0.120)	0.100 B	ND(0.110)
Nickel		18.0	NA	10.0	18.0	8.10
Selenium		1.10	NA	0.530 B	1.60	0.860 B
Silver		ND(1.00)	NA	ND(1 00)	0.550 B	ND(1.00)
Sulfide		26.0 J	NA	37.0 J	16.0	19.0
Thallium		ND(1.10) J	NA	ND(1.20) J	ND(1.20) J	ND(1.10) J
Tin		ND(10.0)	NA	ND(10.0)	5.90 B	ND(10.0)
Vanadium		8.00	NA NA	4.40 B	12.0	3.40 B

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	RAA6-E1	RAA6-E1	RAA6-E1	RAA6-E3	RAA6-E3
Sample Depth(Feet): Parameter Date Collected:	0-1 01/09/03	6-15 01/09/03	12-15	0-1	1-6
Volatile Organics	01/09/03	01109/03	01/09/03	01/14/03	01/14/03
1,1,2-Tetrachloroethanc	ND(0.0061)	NA	ND/0.0000	NDG COTO	
1.1.1.2-retractionorderina.to	ND(0.0061)	NA NA	ND(0.0058) ND(0.0058)	ND(0.0059)	NA
1.2.2-Tetrachioroethane	ND(0.0061)	NA NA	ND(0.0058)	ND(0.0059)	NA
1.1.2-Trichloroethane	ND(0.0061)	NA NA	ND(0.0058)	ND(0.0059) ND(0.0059)	NA
1,1-Dichloroethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
1,1-Dichloroethene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA NA
1,2.3-Trichloropropane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
1.2-Dibromo-3-chioropropane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA NA
1,2-Dibromoethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
1,2-Dichloropropane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
1.4-Dioxane	ND(0.12) J	NA	ND(0.12) J	ND(0.12) J	NA
2-Butanone	ND(0.012) J	NA	ND(0.012) J	ND(0.012)	NA
2-Chloro-1,3-butadiene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
2-Chloroethylvinylether	ND(0.0061) J	NA	ND(0.0058) J	ND(0.0059)	NA
2-Hexanone	ND(0.012) J	NA	ND(0.012) J	ND(0.012)	NA
3-Chloropropene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059) J	NA
4-Methyl-2-pentanone	ND(0.012)	NA	ND(0.012)	ND(0.012)	NA
Acetone	ND(0.024) J	NA	ND(0.023) J	ND(0.023)	NA
Acetonitrile	ND(0.12) J	NA	ND(0.12) J	ND(0.12) J	NA
Acrolein	ND(0.12) J	NA	ND(0.12) J	ND(0.12) J	NA
Acrylonitrile	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Benzene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Bromodichloromethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Bromoform	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Bromomethane	ND(0.0061) J	NA	ND(0.0058) J	ND(0.0059)	NA
Carbon Disulfide	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Carbon Tetrachloride	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Chlorobenzene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Chloroethane	ND(0.0061) J	NA	ND(0.0058)	ND(0.0059)	NA
Chioroform	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Dhioromethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
sis-1,3-Dichloropropene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Dibromochloromethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Dibromomethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Dichlorodifluoromethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
Ethyl Methacrylate	ND(0.0061) ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
odomethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
sobutanol	ND(0.0081)	NA	ND(0.0058)	ND(0.0059)	NA
Methacrylonitrile	ND(0.0061)	NA NA	ND(0.12) J	ND(0.12) J	NA
Methacrylate	ND(0.0061)	NA NA	ND(0.0058)	ND(0.0059)	NA
Methylene Chloride	ND(0.0061)	NA NA	ND(0.0058) ND(0.0058)	ND(0.0059) ND(0.0059)	NA NA
Propionitrile	ND(0.012) J	NA			
Styrene	ND(0.0061)	NA	ND(0.012) J ND(0.0058)	ND(0.012) J ND(0.0059)	NA NA
etrachioroethene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA NA
oluene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
ans-1,2-Dichloroetbene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
rans-1,3-Dichloropropene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA NA
rans-1,4-Dichioro-2-butene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059) J	NA
richloroethene	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
richlorofluoromethane	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
/inyl Acetate	ND(0.0061) J	NA	ND(0.0058) J	ND(0.0059)	NA
/inyl Chloride	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA
(yienes (total)	ND(0.0061)	NA	ND(0.0058)	ND(0.0059)	NA

V IGE_Pritisfield_CD_ESA_1_North:Reports and PresentationsIRevised CRD_RA_WPi805421967ables x/s Table 2-2 Page 29 of 37

## PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-E1	RAA6-E1	RAA6-E1	RAA6-E3	RAA6-E3
Sample Depth(Feet): Parameter Date Collected:	0-1 01/09/03	6-15 01/09/03	12-15	0-1	1-6
Semivolatile Organics	01103/03	01/03/03	01/09/03	01/14/03	01/14/03
,2.4.5-Tetrachiorobenzene	ND(0.65)	ND(0.99)		NOVA AA	LIDIO AT
2.4-Trichlorobenzene	ND(0.65)	ND(0.38) ND(0.38)	NA	ND(0.39)	ND(0.37)
.2-Dichlorobenzene	ND(0.65)	ND(0.38)	NA NA	ND(0.39) ND(0.39)	ND(0.37) ND(0.37)
.2-Dichenvihvdrazine	ND(0.65)	ND(0.38)	NA NA	ND(0.39)	the second se
.3.5-Trinitrobenzene	ND(0.65)	ND(0.38)	NA	ND(0.39) J	ND(0.37) ND(0.37) J
.3-Dichlorobenzene	ND(0.65)	ND(0.38)	NA NA	ND(0.39)	ND(0.37) J ND(0.37)
.3-Dinítrobenzene	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.37) ND(0.74)
.4-Dichlorobenzene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
,4-Naphthoquinone	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
-Naphthylamine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
2,3.4,6-Tetrachlorophenol	ND(0.65)	ND(0.38)	NA	ND(0.39) J	ND(0.37) J
2.4,5-Trichlorophenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
.4,6-Trichlorophenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
,4-Dichlorophenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
.4-Dimethylphenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
,4-Dinitrophenol	ND(3.3) J	ND(2.0) J	NA	ND(2.0) J	ND(1.9) J
,4-Dinitrotoluene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
,6-Dichlorophenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
,6-Dinitrotoluene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Acetylaminofluorene	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
-Chloronaphthalene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Chiorophenoi	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Methylnaphthalene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Methylphenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Naphthylamine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
Nitroaniline	ND(3.3)	ND(2.0)	NA	ND(2.0)	ND(1.9)
-Nitrophenol	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
-Picoline	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
&4-Methylphenoi	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
3'-Dichlorobenzidine	ND(1.3)	ND(0.77)	NA	ND(0.78)	ND(0.74)
,3'-Dimethylbenzidine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Methylcholanthrene	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
.6-Dinitro-2-methylphenol	ND(3.3)	ND(2.0)	NA	ND(2.0)	ND(1.9)
-Aminobiphenyl	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Bromophenyl-phenylether	ND(0.82) ND(0.65)	ND(0.77) ND(0.38)	NA	ND(0.78)	ND(0.74)
-Chloro-3-Methylphenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
-Chloroaniline	ND(0.65)	ND(0.38)	NA NA	ND(0.39) ND(0.39)	ND(0.37)
-Chiorobenzilate	ND(0.82)	ND(0.77)	NA	ND(0.39) ND(0.78)	ND(0.37) ND(0.74)
-Chiorophenyl-phenylether	ND(0.65)	ND(0.38)	NA	ND(0.78)	ND(0.74)
Nitroaniline	ND(2.1)	ND(2.0)	NA	ND(2.0)	ND(0.37)
Nitrophenoi	ND(3.3)	ND(2.0)	NA	ND(2.0)	ND(1.9)
-Nitroguinoline-1-oxide	ND(0.82) J	ND(0.77) J	NA	ND(0.78) J	ND(0.74) J
-Phenylenediamine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
Nitro-o-toluidine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
12-Dimethylbenz(a)anthracene	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
a'-Dimethylphenethylamine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
cenaphthene	ND(0.65)	ND(0.38)	NA	0.12 J	ND(0.37)
cenaphthylene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
cetophenone	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
nline	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
nthracene	ND(0.65)	ND(0.38)	NA	0.20 J	0.13 J
ramite	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
enzidine	ND(1.3)	ND(0.77)	NA	ND(0.78)	ND(0.74)
enzo(a)anthracene	0.27 J	ND(0.38)	NA	0.45	0.17 J
enzo(a)pyrene	0.30 J	ND(0.38)	NA	0.39	0,16 J
enzo(b)fluoranthene	0.33 J	ND(0.38)	NA	0.48	0.14 J

### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

Sample ID:	RAA6-E1	RAA6-E1	RAA6-E1	RAA6-E3	RAA6-E3
Sample Depth(Feet):	0-1	6-15	12-15	0-1	1-6
Parameter Date Collected:	01/09/03	01/09/03	01/09/03	01/14/03	01/14/03
Semivolatile Organics (continued)	0.10.1				
Benzo(g,h,i)perylene	0.18 J	ND(0.38)	NA	0.27 J	0 085 J
Benzo(k)fluoranthene	ND(0.65)	ND(0.38)	NA	0.18 J	0.079 J
Benzyl Alcohol Jis(2-Chioroethoxy)methane	ND(1.3) ND(0.65)	ND(0.77) ND(0.38)	NA NA	ND(0.78) ND(0.39)	ND(0.74) ND(0.37)
bis(2-Chloroethyl)ether	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
bis(2-Chloroisopropyl)ether	ND(0.65)	ND(0.38)	NA	ND(0.39) J	ND(0.37) J
bis(2-Ethylhexyl)phthaiate	ND(0.40)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Butylbenzylphthalate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Chrysene	0.27 J	ND(0.38)	NA	0.39	0.15 J
Diallate	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
Dibenzo(a,h)anthracene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Dibenzofuran	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Diethylphthalate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Dimethylphthalate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Di-n-Butylphthalate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Di-n-Octylphthalate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Diphenylamine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Ethyl Methanesulfonate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Fluoranthene	0.53 J	ND(0.38)	NA	1.2	0.46
Fluorene	ND(0.65)	ND(0.38)	NA	0.11 J	ND(0.37)
Hexachlorobenzene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Hexachlorobutadiene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Hexachlorocyclopentadiene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
lexachloroethane	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
lexachlorophene	ND(1.3) J	ND(0.77) J	NA	ND(0.78) J	ND(0.74) J
Hexachloropropene	ND(0.65) J 0.16 J	ND(0.38) J ND(0.38)	NA NA	ND(0.39) J	ND(0.37) J
ndeno(1,2,3-cd)pyrene	ND(0.65)	ND(0.38)	NA NA	0.23 J ND(0.39)	ND(0.37) ND(0.37)
sophorone	ND(0.65)	ND(0.38)	NA NA	ND(0.39)	ND(0.37)
sosafrole	ND(0.82)	ND(0.38)	NA	ND(0.78)	ND(0.37)
Methapyrilene	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
Methal Methanesulfonate	ND(0.65)	ND(0.38)	NA NA	ND(0.39)	ND(0.37)
Naphthalene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Vitrobenzene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitrosodiethylamine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitrosodimethylamine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitroso-di-n-butylamine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
N-Nitroso-di-n-propylamine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitrosodiphenylamine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitrosomethylethylamine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
N-Nitrosomorpholine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitrosopiperidine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
N-Nitrosopyrrolidine	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
b.o,o-Triethylphosphorothioate	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
>-Toluidine	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
o-Dimethylaminoazobenzene	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
Pentachlorobenzene	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Pentachioroethane	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Pentachioronitrobenzene	ND(0.82) J	ND(0 77) J	NA	ND(0.78) J	ND(0.74) J
Pentachlorophenol	ND(3.3)	ND(2.0)	NA	ND(2.0)	ND(1.9)
Phenacetin	ND(0.82)	ND(0.77)	NA	ND(0.78)	ND(0.74)
Phenanthrene	0.24 J	ND(0.38)	NA	88.0	0.43
Phenol	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Pronamide	ND(0.65)	ND(0.38)	NA	ND(0.39)	ND(0.37)
Pyrene	0.46 J	ND(0.38)	NA	0.97	0.35 J
Pyndine	ND(0.65)	ND(0.38)	NA NA	ND(0.39)	ND(0.37) ND(0.37)
Safrole	ND(0.65)	ND(0.38)		ND(0.39)	

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

0-1	6-15	12-15	0-1	1-6
	01/09/03	01/09/03	01/14/03	01/14/03
0.0000037 Y	0.00000024 J	NA	0.0000086 Y	0.0000067 Y
			the second se	0.000042
			manufacture and the second	0.0000035 J
			and the second sec	0.0000050 J
	the second			0.000065
				0.0000035 J
and the second se			the second s	0.0000023 J
and the second			and a second	0.00000083 J
				0.0000056
				0.000071
			an and an	0.0000092
		and a second	and the second	0.0000012 J
				0.000022
				0.000013
0.00000.			0.000110	0.000070
ND(0.0000042) X	ND(0.0000022)	NΔ	ND(0.0000074) X	ND(0.0000039) X
	the second s	The second		ND(0.00000040)
		and the second		ND(0.00000052) X
	the second s			ND(0.00000032) X
	the second se			0.00000076 J
the second se	the second se	Construction of the second	and a state of the	0.00000079 J
				ND(0.0000077) X
				0.0000071
				0.000011
The second secon				0.000071
	and the second			0.000024
			and the second se	0.000084
0.000095	0.0000062 1	NA	0.000019	0.0000034
				ND(6.00)
				6.80
				36.0
and a second sec		and the second		ND(0.50)
				0.580
				8.10
		A CONTRACT OF A		9.30
				23.0
			and a second	ND(0.220)
				41.0
				0.0520 B
	Land and the second		and a second	16.0
				1.60
and a second and a second s	4			ND(1.00)
and union and and a state of the second state	Land and the second sec			12.0
				ND(1.10) J
and a company of the same of t				ND(10.0)
				7.20
	0.000048 0.000013 J 0.000011 Q 0.0000031 J 0.0000030 J ND(0.00000069) 0.0000065 0.00010 Q 0.000004 0.0000057 ND(0.0000042) X 0.0000065 0.0000068 0.0000068 0.00000060 Q ND(0.00000089) X 0.00000000 J 0.0000000 J 0.00000000 J 0.0000000 J 0.000000000 J 0.0000000 J 0.000000 J 0.00000 J 0.000000 J 0.00000 J 0.00000 J 0.00000 J 0.00000 J 0.00000 J 0.00000 J 0.00000 J 0.00000 J 0.00000 J 0.0000 J 0.00	0.0000013 J         0.0000020 J           0.000016         ND(0.0000024)           0.0000031 J         ND(0.0000026)           0.0000030 J         ND(0.00000024) X           ND(0.00000069)         ND(0.00000054)           0.0000066         ND(0.00000011)           0.0000065         ND(0.00000037)           0.0000065         ND(0.00000037)           0.0000065         ND(0.00000037)           0.0000057         0.00000078)           0.0000068         ND(0.00000054)           0.0000068         ND(0.00000054)           0.0000060 Q         ND(0.00000054)           0.0000060 Q         ND(0.00000054)           0.0000060 Q         ND(0.00000054)           0.0000010 J         ND(0.00000054)           0.00000011 J         ND(0.00000054)           0.00000020         ND(0.00000054)           0.0000021 J         ND(0.00000054)           0.0000020         ND(0.00000053)           0.0000021 J         ND(0.00000053)           0.0000059         ND(0.00000053)           0.0000059         ND(0.00000053)           0.0000059         ND(6.00) J           5.60         5.60           35.0         22.0           0.240 B </td <td>0.0000013 J         0.0000020 J         NA           0.000010         ND(0.0000024)         NA           0.0000031 J         ND(0.0000026)         NA           0.00000069         ND(0.0000026)         NA           0.0000066         ND(0.0000024) X         NA           0.0000065         ND(0.00000054)         NA           0.0000066         ND(0.00000037)         NA           0.0000024         ND(0.00000037)         NA           0.0000055         ND(0.00000037)         NA           0.000065         ND(0.00000078)         NA           0.0000057         0.00000070         NA           0.00000068         ND(0.00000022)         NA           0.00000089         ND(0.00000054)         NA           0.0000010 J         ND(0.00000054)         NA           0.0000020         ND(0.00000054)         NA           0.0000021 J         ND(0.00000054)         NA           0.0000021 J         ND(0.00000054)         NA           0.000021 J         ND(0.00000054)         NA           0.000021 J         ND(0.00000054)         NA           0.000021 J         ND(0.00000054)         NA           0.000020 ND(0.0000054)         NA         <t< td=""><td>0.000013 J         0.0000020 J         NA         ND(0.0000039) X           0.00011 C         ND(0.0000024)         NA         0.000013 Q           0.000013 J         ND(0.0000026)         NA         0.000074           0.0000051 J         ND(0.0000026)         NA         0.0000074           0.0000069)         ND(0.0000024) X         NA         0.0000074           0.0000069)         ND(0.0000024) X         NA         0.0000074           0.0000069)         ND(0.0000015)         NA         0.0000011           0.000024         ND(0.00000037)         NA         0.000017 Q           0.000027         NA         0.0000029         0.0000069           0.000028         NA         0.0000092         0.0000071 Q           0.000027         NA         0.0000074 X         0.0000074 X           0.0000057         0.00000070         NA         0.0000074 X           0.0000068         ND(0.00000024)         NA         0.0000074 X           0.00000069 \         ND(0.00000024)         NA         0.0000074 X           0.00000060 \         NA         0.0000074 X         0.0000074 X           0.00000060 \         NA         0.0000074 X         0.0000072           0.00000060 \</td></t<></td>	0.0000013 J         0.0000020 J         NA           0.000010         ND(0.0000024)         NA           0.0000031 J         ND(0.0000026)         NA           0.00000069         ND(0.0000026)         NA           0.0000066         ND(0.0000024) X         NA           0.0000065         ND(0.00000054)         NA           0.0000066         ND(0.00000037)         NA           0.0000024         ND(0.00000037)         NA           0.0000055         ND(0.00000037)         NA           0.000065         ND(0.00000078)         NA           0.0000057         0.00000070         NA           0.00000068         ND(0.00000022)         NA           0.00000089         ND(0.00000054)         NA           0.0000010 J         ND(0.00000054)         NA           0.0000020         ND(0.00000054)         NA           0.0000021 J         ND(0.00000054)         NA           0.0000021 J         ND(0.00000054)         NA           0.000021 J         ND(0.00000054)         NA           0.000021 J         ND(0.00000054)         NA           0.000021 J         ND(0.00000054)         NA           0.000020 ND(0.0000054)         NA <t< td=""><td>0.000013 J         0.0000020 J         NA         ND(0.0000039) X           0.00011 C         ND(0.0000024)         NA         0.000013 Q           0.000013 J         ND(0.0000026)         NA         0.000074           0.0000051 J         ND(0.0000026)         NA         0.0000074           0.0000069)         ND(0.0000024) X         NA         0.0000074           0.0000069)         ND(0.0000024) X         NA         0.0000074           0.0000069)         ND(0.0000015)         NA         0.0000011           0.000024         ND(0.00000037)         NA         0.000017 Q           0.000027         NA         0.0000029         0.0000069           0.000028         NA         0.0000092         0.0000071 Q           0.000027         NA         0.0000074 X         0.0000074 X           0.0000057         0.00000070         NA         0.0000074 X           0.0000068         ND(0.00000024)         NA         0.0000074 X           0.00000069 \         ND(0.00000024)         NA         0.0000074 X           0.00000060 \         NA         0.0000074 X         0.0000074 X           0.00000060 \         NA         0.0000074 X         0.0000072           0.00000060 \</td></t<>	0.000013 J         0.0000020 J         NA         ND(0.0000039) X           0.00011 C         ND(0.0000024)         NA         0.000013 Q           0.000013 J         ND(0.0000026)         NA         0.000074           0.0000051 J         ND(0.0000026)         NA         0.0000074           0.0000069)         ND(0.0000024) X         NA         0.0000074           0.0000069)         ND(0.0000024) X         NA         0.0000074           0.0000069)         ND(0.0000015)         NA         0.0000011           0.000024         ND(0.00000037)         NA         0.000017 Q           0.000027         NA         0.0000029         0.0000069           0.000028         NA         0.0000092         0.0000071 Q           0.000027         NA         0.0000074 X         0.0000074 X           0.0000057         0.00000070         NA         0.0000074 X           0.0000068         ND(0.00000024)         NA         0.0000074 X           0.00000069 \         ND(0.00000024)         NA         0.0000074 X           0.00000060 \         NA         0.0000074 X         0.0000074 X           0.00000060 \         NA         0.0000074 X         0.0000072           0.00000060 \

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	RAA6-E3
	Sample Depth(Feet):	4-6
Parameter	Date Collected:	01/14/03
Volatile Organics		
1.1.1,2-Tetrachioroethar	ne	ND(0.0057)
1.1.1-Trichloroethane		ND(0.0057)
1.1.2,2-Tetrachioroethar	ne	ND(0.0057)
1,1,2-Trichloroethane		ND(0.0057)
1,1-Dichloroethane		ND(0.0057)
1,1-Dichloroethene		ND(0.0057)
1,2.3-Trichloropropane		ND(0.0057)
1,2-Dibromo-3-chloropro	opane	ND(0.0057)
1.2-Dibromoethane		ND(0.0057)
1.2-Dichloroethane		ND(0.0057)
1.2-Dichloropropane		ND(0.0057)
1,4-Dioxane		ND(0.11) J
2-Butanone		ND(0.011)
2-Chloro-1,3-butadiene		ND(0.0057)
2-Chloroethylvinylether		ND(0.0057)
2-Hexanone		ND(0.011)
3-Chloropropene		ND(0.0057) J
4-Methyl-2-pentanone		ND(0.011)
Acetone		ND(0.023)
Acetonitrile		ND(0.11) J
Acrolein		ND(0.11) J
Acrylonitrile		ND(0.0057)
Benzene Bromodiobloromothopo		ND(0.0057)
Bromodichloromethane Bromoform		ND(0.0057)
Bromomethane		ND(0.0057)
Carbon Disulfide		ND(0.0057)
Carbon Tetrachloride		ND(0.0057)
Chlorobenzene		ND(0.0057)
Chloroethane		ND(0.0057)
Chioroform		ND(0.0057)
Chloromethane		ND(0.0057)
cis-1,3-Dichloropropene		ND(0.0057)
Dibromochloromethane		ND(0.0057)
Dibromomethane		ND(0.0057)
Dichlorodifluoromethane		ND(0.0057) ND(0.0057)
Ethyl Methacrylate		ND(0.0057)
Ethylbenzene		ND(0.0057)
lodomethane		ND(0.0057)
Isobutano!		ND(0.11) J
Methacrylonitrile		ND(0.0057)
Methyl Methacrylate		ND(0.0057)
Methylene Chloride		ND(0.0057)
Propionitrile		ND(0.011) J
Styrene		ND(0.0057)
Tetrachloroethene		0.0034 J
Toluene		ND(0.0057)
rans-1,2-Dichloroethene	3	ND(0.0057)
rans-1,3-Dichloroproper		ND(0.0057)
rans-1.4-Dichloro-2-bute		ND(0.0057) J
Trichloroethene		ND(0.0057)
Trichlorofluoromethane		ND(0.0057)
Vinyl Acetate		ND(0.0057)
Vinyi Chloride		ND(0.0057)
Xylenes (total)		ND(0.0057)

VIGE_Pitt-field_CD_ESA_1_North/Peports and Prosentations/Revised CRD_RA_WP00b42196Tables xis Table 2-2 Page 33 of 37

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID;	RAA6-E3
	Sample Depth(Feet):	4-6
Parameter	Date Collected:	01/14/03
Semivolatile Organics		
1.2,4,5-Tetrachlorobenze	ene	NA
1,2,4-Trichlorobenzene		NA
1,2-Dichlorobenzene		NA
1,2-Diphenyihydrazine		NA
1.3,5-Trinitrobenzene		NA
1,3-Dichlorobenzene		NA
1,3-Dinitrobenzene		NA
1,4-Dichlorobenzene		NA
1,4-Naphthoquinone		NA
1-Naphthylamine		NA
2,3,4,6-Tetrachlorophene		NA
2,4,5-Trichlorophenol		NA
2,4,6-Trichlorophenol		NA
2,4-Dichlorophenol		NA
2,4-Dimethylphenol		NA
2,4-Dinitrophenol		NA
2,4-Dinitrotoluene		NA
2,6-Dichlorophenol		NA
2,6-Dinitrotoluene		NA
2-Acetylaminofluorene		NA
2-Chloronaphthalene		NA
2-Chiorophenol		NA
2-Methylnaphthalene		NA
2-Methylphenol		NA
2-Naphthylamine		NA
2-Nitroaniline		NA
2-Nitrophenol		NA
2-Picoline		NA
3&4-Methylphenol		NA
3,3'-Dichlorobenzidine		NA
3.3'-Dimethylbenzidine		NA
3-Methylcholanthrene		NA
3-Nitroaniline		<u>NA</u>
4,6-Dinitro-2-methylphen	ol	NA
4-Aminobiphenyl		NA
4-Bromophenyl-phenyleti		NA
4-Chloro-3-Methylphenol		NA
4-Chloroaniline		NA
1-Chlorobenzilate		NA
1-Chlorophenyl-phenyletl	ner	NA
I-Nitroaniline		NA
1-Nitrophenol		NA
1-Nitroquinoline-1-oxide		NA
-Phenylenediamine		NA
S-Nitro-o-toluidine		NA
.12-Dimethylbenz(a)ant		NA
a,a'-Dimethylphenethylar	nine	NA
Acenaphthene		NA
Acenaphthylene		NA
Acetophenone		NA
Aniline		NA
Inthracene		NA
Aramite		NA
Benzidine		NA
Benzo(a)anthracene		NA
Benzo(a)pyrene		NA
lenzo(b)fluoranthene		NA

V.\GE_Pitsfeld_CD_ESA_1_Nodn/Reports and Presentations\Revised CRD_RA_WPi00542196Tables xis Table 2-2 Page 34 of 37

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

RAA6-E3 Sample ID: Sample Depth(Feet): 4-6 01/14/03 Parameter **Date Collected:** Semivolatile Organics (continued) NA Benzo(g,h,i)perylene Benzo(k)fluoranthene NA NA Benzyl Alcohol bis(2-Chloroethoxy)methane NA bis(2-Chloroethyi)ether NA bis(2-Chloroisopropyl)ether NA bis(2-Ethylhexyl)phthalate NA Butytbenzylphthalate NA Chrysene NA Diallate NA Dibenzo(a,h)anthracene NA Dibenzofuran NA Diethylphthalate NA Dimethylphthalate NA Di-n-Butylphthalate NA Di-n-Octylphthalate NA Diphenylamine NA Ethyi Methanesulfonate NA Fluoranthene NA Fluorene NA Hexachiorobenzene NA Hexachlorobutadiene NA Hexachlorocyclopentadiene NA Hexachloroethane NA Hexachlorophene NA Hexachioropropene NA Indeno(1,2,3-cd)pyrene NA Isodrin NA NA Isophorone NA Isosafrole NA Methapyrilene Methyl Methanesulfonate NA NA Naphthalene Nitrobenzene NA N-Nitrosodiethylamine NA N-Nitrosodimethylamine NA N-Nitroso-di-n-butylamine NA N-Nitroso-di-n-propylamine NA N-Nitrosodiphenylamine NA N-Nitrosomethylethylamine NA N-Nitrosomorpholine NA N-Nitrosopiperidine NA N-Nitrosopyrrolidine NA o.o.o-Triethylphosphorothioate NA o-Toluidine NA p-Dimethylaminoazobenzene NA Pentachlorobenzene NA Pentachioroethane NA Pentachloronitrobenzene NA Pentachiorophenol NA Phenacetin NA Phenanthrene NA Phenol NA Pronamide NA Pyrene NA Pyridine NA Safrole NA Thionazin NA

VIUE_Prinsfield_CO_ESA_1_Nonh/Reports and Presentations/Revised CRD_RA_WPi00542196Tebres iva Page 35 of 37

## TABLE 2-2 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	RAA6-E3
	Sample Depth(Feet):	4-6
Parameter	Date Collected:	01/14/03
Furans		
2.3.7.8-TCDF		NA
TCDFs (total)		NA
1,2,3,7,8-PeCDF		NA
2,3,4,7,8-PeCDF		NA
PeCDFs (total)		NA
1,2,3,4,7.8-HxCDF		NA
1.2.3.6.7.8-HxCDF		NA
1,2,3,7.8,9-HxCDF		NA
2.3,4,6,7,8-HxCDF		NA
HxCDFs (total)		NA
1,2,3,4,6,7,8-HpCDF		<u>NA</u>
1,2,3,4,7,8,9-HpCDF		NA
HpCDFs (total)		NA
OCDF		NA
Dioxins		;1 ⁻
2,3,7,8-TCDD		NA
TCDDs (total)		NA NA
1,2,3,7,8-PeCDD		NA NA
PeCDDs (total)		NA
***************************************		NA NA
1,2,3,4,7,8-HxCDD		
1,2,3,6,7,8-HxCDD		<u>NA</u>
1,2,3,7,8,9-HxCDD		<u>NA</u>
HxCDDs (total)		NA
1,2,3,4,6,7,8-HpCDD		NA
HpCDDs (total)	·····	NA
OCDD		NA
Total TEQs (WHO TE	<u>[</u> ]	NA
Inorganics		
Antimony		NA
Arsenic		NA
Barium		NA
Beryllium		NA
Cadmium		NA
Chromium		NA
Cobalt		NA
Copper		NA
Cyanide		NA
Lead		NA
Mercury		NA
Nickel		NA
Selenium		NA
Silver		NA
Sulfide		NA
Thallium		NA
Tin		NA
Vanadium		NA
Zinc		NA

VIGE_Pitsheid_CD_ESA_1_NorthReports and PresentationsRevised CRD_RA_WPi80542166Tables xis Table 2-2 Page 36 of 37

#### TABLE 2-2

#### PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

#### Notes:

- Samples were collected by Biasland Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of Appendix. IX + 3 constituents.
- 2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield,
  - Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002).
- 3. NA Not Analyzed
- 4. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 5. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health
- Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- 6. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

Organics (volatiles, semivolatiles, dioxin/furans)

- I Polychlorinated Diphenyl Ether (PCDPE) Interference.
- J Indicates that the associated numerical value is an estimated concentration.
- Q Indicates the presence of quantitative interferences.
- X Estimated maximum possible concentration.
- Y- 2.3.7.8-TCDF results have been confirmed on a DB-225 column.
- R Data was rejected due to a deficiency in the data generation process.

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

#### TABLE 2-3 EPA SOIL SAMPLING DATA FOR PCBs

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Location ID	Sample ID	Depth(Feet)	Date Collected	Aroclor-1016	Aroclor-1221	Arocior-1232	Aroclor-1242	Aroclor-1248	Arocior-1254	Aroclor-1260	Total PCBs
RAA6-C5	1N-BH000887-0-0060	6-15	1/9/2003	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	2.0	2.0
RAA6-C3	1N-BH000896-0-0100	10-12	1/15/2003	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	2.1	2.1

Notes:

1. Sample collection and analysis performed by United States Environmental Protection Agency (EPA) Subcontractors. Results provided to GE under a Data Exchange Agreement between GE and EPA.

2 ND - Analyte was not detected. The number in parentheses is the associated detection limit.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Location ID: Sample ID: Sample Depth(Feet):	RAA6-C5 1N-BH000887-0-0060 6-15	RAA6-E6 1N-BH000891-0-0060 6-15	RAA6-E6 1N-BH000891-0-0080 8-10	RAA6-C3 1N-BH000896-0-0100 10-12
Parameter	Date Collected:	01/09/03	01/13/03	01/13/03	01/15/03
Volatile Organic:	S				
1,1,1.2-Tetrachio	and the second sec	ND(0.46)	NA	ND(0.49)	NA
1,1,1-Trichloroeth		ND(0.46)	NA	ND(0.49)	NA
1,1,2,2-Tetrachior		ND(0.46)	NA	ND(0.49)	NA
1.1.2-Thchloroeth	And a state of the second	ND(0.46)	NA	ND(0.49)	NA
1.1-Dichloroethan		ND(0.46)	NA	ND(0.49)	NA
1,1-Dichloroethen	and the second sec	ND(0.46)	NA	ND(0.49)	NA
2,3-Trichloropro		ND(0.46)	NA	ND(0.49)	NA
1.2,4-Trichlorober		ND(0.46)	NA	ND(0.49)	NA
1.2-Dibromo-3-ch		ND(0.46)	NA	ND(0.49)	NA
1.2-Dibromoethar	and the second	ND(0.46)	NA	ND(0.49)	NA
1.2-Dichlorobenze		ND(0.46)	NA	ND(0.49)	NA
1.2-Dichloroethan		ND(0.46)	NA	ND(0.49)	NA
1,2-Dichloropropa	manual spectrum state at a second state	ND(0.46)	NA	ND(0.49)	NA
3-Dichlorobenze		0.32 J	NA	ND(0.49)	NA
1.4-Dichlorobenze	ene	2.3	NA	0.27 J	NA
1.4-Dioxane		R	NA	R	NA
2-Butanone	diana	R	NA	0.22 J	NA
2-Chloro-1,3-buta		ND(0.46)	NA	ND(0.49)	NA
2-Chloroethylviny	leiner	ND(0.46)	NA	ND(0.49)	NA
2-Hexanone		ND(0.46)	NA	6,1	NA
3-Chloropropene		ND(0.46)	NA	ND(0.49)	NA
-Methyl-2-pentar	ione	ND(0.46)	NA	ND(0.49)	NA
Acetone		R	NA	R	NA
Acrolein		R	NA	R	NA
Acrylonitrile		ND(0.46)	NA	ND(0.49)	NA
Benzene		ND(0.46)	NA	ND(0.49)	NA
Bromodichlorome	thane	ND(0.46)	NA	ND(0.49)	NA
Bromoform		0.095 j	NA	0.14 J	NA
Bromomethane		ND(0.46) J	NA	ND(0.49)	NA
Carbon Disulfide		ND(0.46)	NA	ND(0 49)	NA
Carbon Tetrachlo	ride	ND(0.46)	NA	ND(0.49)	NA
Chiorobenzene		ND(0.46)	NA	ND(0.49)	NA
Chloroethane		ND(0.46)	NA	ND(0.49)	NA
Chloroform		ND(0.46)	NA	ND(0.49)	NA
Chloromethane		ND(0.46)	NA	ND(0.49)	NA
sis-1,2-Dichloroet		ND(0.46)	NA	ND(0.49)	NA
is-1,3-Dichioropr	and a support of the second	ND(0.46)	NA	ND(0.49)	NA
Dibromochlorome	thane	ND(0.46)	NA	ND(0.49)	NA
Dibromomethane		ND(0.46)	NA	ND(0.49)	NA
thyl Methacrylate	9	ND(0.46)	NA	ND(0.49)	NA
thylbenzene		ND(0.46)	NA	ND(0.49)	NA
reon 12		ND(0.46)	NA	ND(0.49)	NA
odomethane		ND(0.46)	NA	ND(0.49)	NA
sobutanol		R	NA	R	NA
n&p-Xylene		ND(0.46)	NA	0.20 J	NA
Aethacrylonitrile	· • · ·	ND(0.46)	NA	ND(0.49)	NA
Aethyl Methacryla		ND(0.46)	NA	0.73	NA
Aethyl tert-butyl e		ND(0.46)	NA	ND(0.49)	NA
Aethylene Chlorid	16	ND(0.46)	NA	ND(0.49)	NA
laphthalene		ND(0.46)	NA	ND(0.49)	NA
-Xylene		ND(0.46)	NA	ND(0.49)	NA
ropionitrile		R	NA	R	NA
tyrene		ND(0.46)	NA	ND(0.49)	NA
etrachloroethene	<u>و</u>	ND(0.46)	NA	ND(0.49)	NA
oluene		ND(0.46)	NA	ND(0.49)	NA
ans-1,2-Dichloro	where we want the second	ND(0.46)	NA	ND(0.49)	NA
rans-1.3-Dichloro	and the second	ND(0.46)	NA	ND(0.49)	NA
ans-1.4-Dichloro	-2-butene	ND(0.46)	NA	ND(0.49)	NA
richloroethene		ND(0.46)	NA	ND(0.49)	NA
richiorofluorome	thane	ND(0.46) J	NA	ND(0.49) J	NA
inyl Acetate		NO(0.46)	NA	ND(0.49)	NA
/inyl Chlorido		ND(0.46)	NA	ND(0.49)	NA
(vienes (total)		ND(0.46)	NA	0.21 J	NA

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Location ID: Sample ID: Sample Death(Sect)	RAA6-C5 1N-BH000887-0-0060	RAA6-E6 1N-BH000891-0-0060	RAA6-E6 1N-BH000891-0-0080	RAA6-C3 1N-BH000896-0-0100
Sample Depth(Feet): Parameter Date Collected:	6-15 01/09/03	6-15 01/13/03	8-10	10-12
Semivolatile Organics	01303103	01/13/05	01/13/03	01/15/03
1,2,4,5-Tetrachlorobenzene	ND(0.34)	ND(0.39)	NA	NEXT OF
1.2.4-Trichlorobenzene	ND(0.34)	ND(0.39)	NA NA	ND(4.2) 0.086 J
1.2-Dichlorobenzene	ND(0.34)	ND(0.39)	NA	ND(0.42)
1.3.5-Trinitrobenzene	ND(0.34) J	ND(0.39)	NA	ND(4,2)
1,3-Dichioropenzene	0.022 J	ND(0.39)	NA	0.18 J
1.3-Dinitrobenzene	ND(0.34)	ND(0.39)	NA	ND(4,2)
1.4-Dichlorobenzene	0.13 J	ND(0.39)	NA	1.4 J
.4-Naphthoquinone	ND(0.34)	ND(0.39)	NA	ND(4.2)
-Naphthylamine	ND(0.34) J	ND(0.39) J	NA	ND(4.2) J
2,3,4,6-Tetrachlorophenol	ND(0 34)	ND(0.39)	NA	ND(4.2)
2.4.5-Trichlorophenol	ND(0.85)	ND(0.98)	NA	ND(10)
2.4.6-Trichlorophenoi 2.4-Dichlorophenoi	ND(0.34)	ND(0.39)	NA	ND(4 2)
2.4-Dimethylphenol	ND(0.34) ND(0.34)	ND(0.39)	NA	ND(0.42)
2.4-Dinitrophenol	ND(0.85)	ND(0.39) ND(0.98)	NA NA	ND(0.42)
2.4-Dinitrotoluene	ND(0.85)	ND(0.39)	NA NA	ND(10) ND(4,2)
2.6-Dichlorophenol	ND(0.34)	ND(0.39)	NA NA	ND(4.2)
2.6-Dinitrotoluene	ND(0.34)	ND(0.39)	NA	ND(4.2)
2-Acetylaminofluorene	ND(0.34) J	ND(0.39)	NA	ND(4.2)
2-Chloronaphthalene	ND(0.34)	ND(0.39)	NA	ND(4.2)
2-Chlorophenol	ND(0.34)	ND(0.39)	NA	ND(0.42)
2-Methylnaphthalene	ND(0.34)	ND(0.39)	NA	ND(0.42) J
2-Methylphenol	ND(0.34)	ND(0.39)	NA	ND(0.42)
2-Naphthylamine	ND(0.34) J	ND(0.39) J	NA	ND(4.2) J
-Nitroaniline	ND(0.85)	ND(0.98)	NA	ND(10)
-Nitrophenol	ND(0.34)	ND(0.39)	NA	ND(0.42)
Picoline	ND(0.34)	ND(0.39)	NA	ND(0.42)
3'-Dimethylbenzidine	ND(0.34) J ND(0.34) J	ND(0.39)	NA	ND(4.2)
-Methylcholanthrene	ND(0.34)	ND(0.39) ND(0.39)	NA NA	ND(4.2)
-Nitroaniline	ND(0.85)	ND(0.98) J	NA	ND(4.2) ND(10)
.6-Dinitro-2-methylphenol	ND(0.85) J	ND(0.98)	NA	ND(10)
I-Aminobiphenyl	ND(0.34) J	ND(0.39) J	NA	ND(4.2) J
-Bromophenyl-phenylether	ND(0.34) J	ND(0.39)	NA	ND(4.2)
-Chloro-3-Methylphenol	ND(0.34)	ND(0.39)	NA	ND(0.42) J
-Chloroaniline	ND(0.34)	ND(0.39)	NA	ND(0.42) J
-Chlorobenzilate	ND(0.34) J	ND(0.39)	NA	ND(4.2)
-Chlorophenyl-phenylether	ND(0.34)	ND(0.39)	NA	ND(4.2)
Methylphenol	ND(0.34)	ND(0.39)	NA	ND(0.42)
-Nitroaniline	ND(0.85)	ND(0.98)	NA	ND(10)
-Nitroquinoline-1-oxide	ND(0.85) R	ND(0.98)	NA	ND(10)
-Phenylenediamine	ND(0.34)	ND(0.39) ND(0.39) J	NA	ND(4.2)
-Nitro-o-toluidine	ND(0.34)	ND(0.39) 3	NA NA	ND(0.42) J ND(4.2)
.12-Dimethylbenz(a)anthracene	ND(0.34)	ND(0.39)	NA	ND(4.2) ND(4.2)
.a'-Dimethylphenethylamine	ND(0.34)	NU(0.39)	NA	ND(0.42) J
cenaphthene	ND(0.34)	ND(0.39)	NA	ND(4.2)
cenaphthylene	ND(0.34)	ND(0 39)	NA	ND(4.2)
cetophenone	ND(0.34)	ND(0.39)	NA	ND(0.42)
nline	ND(0.85)	ND(0.98)	NA	ND(1.0)
httpracene	ND(0.34) J	ND(0.39)	NA	ND(4.2)
ramite	ND(0.34) J	ND(0.39)	NA	ND(4.2)
zobenzene enzo(a)anthracone	ND(0.34) J	ND(0.39)	NA	ND(4.2)
enzo(a)pyrene	ND(0.34) J   ND(0.34)	ND(0.39)	NA NA	ND(4.2)
enzo(b)fluoranthene	ND(0.34)	ND(0.39) ND(0.39)	NA NA	ND(4.2)
enzo(a.h.i)perviene	ND(0.34)	ND(0.39)	NA	ND(4.2) ND(4.2)
enzo(k)fluoranthene	ND(0.34)	ND(0.39)	NA	ND(4.2)
enzyi Alcohoi	ND(0.34)	ND(0.39)	NA	NU(0.42)
is(2-Chloroethoxy/methane	ND(0,34)	ND(0.39)	NA	ND(0.42)
is(2-Chloroethyl)ether	ND(0.34)	ND(0.39)	NA	ND(0.42)
is(2-Chloroisopropyl)ether	ND(0.34)	ND(0.39)	NA 1	ND(0.42)
is(2-Ethylhexyl)phthalate	ND(0.34) J	ND(0.39)	NA	ND(4.2)
lutylbenzylphthalate	ND(0.34) 3	ND(0.39)	NA	N()(4,2)

ACCURACIÓN OF

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Location ID: Sample ID:	RAA6-C5 1N-BH000887-0-0060	RAA6-E6 1N-BH000891-0-0060	RAA6-E6 1N-BH000891-0-0080	RAA6-C3 1N-BH000896-0-0100
Sa Parameter	Date Collected:	6-15 01/09/03	6-15 01/13/03	8-10 01/13/03	10-12 01/15/03
Semivolatile Organ					
Chrysene	1	ND(0.34) J	NU(0.39)	NA	ND(4.2)
Diailate		ND(0.34) J	ND(0.39)	NA	ND(4.2)
Dibenzo(a.h)anthra	cene	ND(0,34)	ND(0.39)	NA	N[3(4-2)
Dibenzofuran		ND(0.34)	ND(0.39)	NA	ND(4.2)
Diethylphthalate		ND(0.34)	ND(0.39)	NA	ND(4.2)
Dimethylphthalate		ND(0.34)	ND(0.39)	NA	ND(4.2)
Di-n-Butyiphthalate		ND(0.34) J	ND(0.39)	NA	ND(4.2)
Di-n-Octyiphthalate	the last state of the	ND(0.34) ND(0.34)	ND(0.39) ND(0.39)	NA NA	ND(4.2) ND(0.42)
Ethyl Methanesulfo Fluoranthene	nate	ND(0.34) ND(0.34) J	ND(0.39)	NA	ND(0.42)
Pluorene		ND(0.34)	ND(0.39)	NA	ND(4.2)
Hexachlorobenzene	·	ND(0.34)	ND(0.39)	NA	ND(4.2)
Hexachlorobutadier		ND(0.34)	ND(0.39)	NA	ND(0.42) J
Hexachlorocycloper		ND(0.34)	ND(0.39)	NA	ND(4.2)
Hexachloroethane		ND(0.34)	ND(0.39)	NA	ND(0.42)
Hexachioropropene		ND(0.34) J	ND(0.39) J	NA	ND(0.42) J
ndeno(1,2,3-cd)pyr	rene	ND(0.34)	ND(0.39)	NA	ND(4.2)
sophorone		ND(0.34)	ND(0.39)	NA	ND(0.42)
sosafroie		ND(0.34)	ND(0.39)	NA	ND(0.42) J
Methapyrilene		ND(0.34) J	ND(0.39)	NA	ND(4.2)
Methyl Methanesulf	onate	ND(0.34)	ND(0.39)	NA	ND(0.42)
Naphthalene		ND(0.34)	ND(0.39)	NA	ND(0.42) J
Vitrobenzene		ND(0.34)	ND(0.39)	NA	ND(0.42)
N-Nitrosodiethylami		ND(0.34) ND(0.34)	ND(0.39) ND(0.39)	NA NA	ND(0.42) ND(0.42)
Nitroso-di-n-buty		ND(0.34)	ND(0.39)	NA	ND(0.42) J
N-Nitroso-di-n-prop	THE REAL PROPERTY AND ADDRESS OF THE OWNER.	ND(0.34)	ND(0.39)	NA	ND(0.42)
Nitrosodiphenyla		ND(0.34) J	ND(0.39)	NA	ND(4.2)
N-Nitrosomethyleth		ND(0.34)	ND(0.39)	NA	ND(0.42)
N-Nitrosomorpholin	·····	ND(0.34)	ND(0.39)	NA	ND(0.42)
N-Nitrosopiperidine		ND(0.34)	ND(0.39)	NA	ND(0.42)
V-Nitrosopyrrolidine		ND(0.34)	ND(0.39)	NA	ND(0.42)
o-Toluidine		ND(0.34)	ND(0.39)	NA	ND(0.42)
o-Dimethylaminoaz	obenzene	ND(0.34) J	ND(0.39)	NA	ND(4.2)
Pentachiorobenzen	ē	ND(0.34)	ND(0.39)	NA	ND(4.2)
Pentachloroethane		ND(0.34)	ND(0.39)	NA	ND(0.42)
Pentachloronitrober	nzene	ND(0.34) J	ND(0.39)	NA	ND(4.2)
Pentachlorophenol		ND(0.85) J	ND(0.98)	NA	ND(10)
Phenacetin		ND(0.34) J	ND(0.39)	NA NA	ND(4.2)
Phenanthrene Phenol		ND(0.34) J ND(0.34)	ND(0.39) ND(0.39)	NA	ND(4.2) ND(0.42)
Pronamide		ND(0.34) ND(0.34) J	ND(0.39)	NA	ND(4.2)
Pyrene		ND(0.34) J	ND(0.39)	NA	ND(4.2)
Pyridine		ND(0.34)	ND(0 39) J	NA	ND(0.42) J
Safrole		ND(0.34)	ND(0.39)	NA	ND(4.2)
Herbicides				<u> </u>	hanna ann an tha an
Dinoseb		ND(0.34) J	ND(0.39)	NA	N()(4 2)
norganics				di	
Antimony		ND(0.270)	R	NA	ND(0.330)
Arsenic		5.00	11.8	NA	6.90 J
Barium		20.8	22.7	NA	34.9
Beryllium		0.170 J	0.220 J	NA	0.290 J
Cadmium		ND(0.0770)	ND(0.0880)	NA	ND(0 0480) J
Chromium		6.90	11.9 J	NA	14,2
Cobalt		8.50	16.6	NA	14.1
Copper		15.0	31.2	NA	41.3
Lead		7.20 ND(0.0170)	11.0 J	NA NA	10.4 J ND(0.0200)
Mercury		ND(0.0170) 13.9	ND(0.0190) 26.0	NA NA	26.7
Nickel Selenium		13.9 ND(0.270)	26.0 ND(0.310)	NA NA	<u>26.7</u> R
Silver		0.170 J	0.290 J	NA	ND(0,190)
Thallium	2 2 2	ND(0.250)	ND(0.320)	NA NA	ND(0.350) J
Tin	1 	ND(0.490)	ND(0.870)	NA NA	0 550 J
Vanadium		8.50	13.8 J	NA	13.4
Zinc		49.0	80.4	NA	92.7

作品に

State of the second

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Notes

- 1. Sample collection and analysis performed by United States Environmental Protection Agency (EPA) Subcontractors Results
  - provided to GE under a Data Exchange Agreement between GE and EPA.
- 2. NA Not Analyzed.
  - Data Qualifiers: (volatiles, semivolatiles, herbicides, dioxin/furans)
    - J Estimated Value

R - Rejected

#### TABLE 2-5 HISTORICAL SOIL SAMPLING DATA FOR PCBs

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Location ID	Sample ID	Depth(Feet)	Date Collected	Arocior-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
ES1-7	ES107.502	0.5-2	10/9/1996	ND(0.038)	ND(0.077)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	14	1.4
CONT	ES10700.5	0-0.5	5/16/1996	ND(0.044)	ND(0.090)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	0.45	0.45
	ES1070204	2-4	5/16/1996	ND(0.035)	ND(0.072)	ND(0.035)	ND(0.035)	ND(0.035)	NO(0.035)	1.7	17
	ES1070406	4-6	5/16/1996	ND(0.039)	ND(0.080)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	6.4	6.4
	ES1070608	6-8	5/16/1996	ND(0.039) [ND(2.1)]	ND(0.080) [ND(4.3)]	ND(0.039) [ND(2.1)]	ND(0.039) [ND(2.1)]	ND(0.039) [ND(2.1)]	NO(0.039) [NO(2.1)]	1.8 P [2.7 P]	1.8 [2.7]
	ES1071416	14-16	5/16/1996	ND(1.8)	ND(3.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(3.8)
ES1-8	ES108.502	0 5-2	10/9/1996	ND(0.036)	ND(0.074)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.34	0.34
	ES10800.5	0.0.5	5/16/1996	ND(0.040)	ND(0.081)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	11	11
	E\$1080204	2-4	5/16/1996	ND(0.036)	ND(0.073)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	1.4	1.4
	ES1080406	4-6	5/16/1996	ND(3.9)	ND(7.9)	ND(3.9)	ND(3 9)	ND(3.9)	ND(3.9)	7.7	7.7
	ES1081416	14-16	5/16/1996	ND(0.037)	ND(0.075)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.075)
ES1-9	ES109.502	0.5-2	10/9/1996	ND(0.040)	ND(0.080)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	2.2	2.2
	ES10900.5	0-0.5	5/16/1996	ND(0.041)	ND(0.083)	ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)	1.9	1.9
	ES1090204	2-4	5/16/1996	ND(0.038)	ND(0.077)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.73	073
	ES1090406	4-6	5/16/1996	ND(0.038)	ND(0.078)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.078)
	ES1090608	6-8	5/16/1996	ND(0.038)	ND(0.078)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.078)
ES1 14	E\$1140002	0-2	7/29/1996	ND(0.34)	ND(0.70)	ND(0.34)	ND(0.34)	ND(0.34)	ND(0.34)	1.8 P	18
	ES1140204	2-4	7/29/1996	ND(0.18)	ND(0.36)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	0.23	0.23
	ES1140406	4-6	7/29/1996	ND(0.038)	ND(0.078)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.078)
	E\$1140608	6-8	7/29/1996	ND(0.038)	ND(0.078)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.078)
	ES1140810	8-10	7/29/1996	ND(0.037)	ND(0.075)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	5.0	5.0
	ES1141012	10-12	7/29/1996	ND(0.035)	ND(0.070)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	9 030.0	0.080
	ES1141214	12-14	7/29/1996	ND(0.040)	ND(0.081)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.081)
	ES1141416	14-16	7/29/1996	ND(0.037)	ND(0.075)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.30	0.30
GE1106-SB3	GEI106-SB3	5-7	6/8/1994	NR	NR	NR	NR	NR	NR	NR	ND(1.0)
130	SI -56	2-2.5	3/3/1980	NR	NR	NR	NR	NR	NR	Į NR	1.3
	SL-57	4-5	3/3/1980	NR	NR	NR	NR	NR	NR	NR	ND(1.0)
	SL-59	6-7	3/3/1980	NR	NR	NR	NR	NR	NR	NR	2.6
	SL 60	8-9	3/3/1980	NR	NR	NR	NR	NR	NR	NR	3.1
	SL-61	9-10	3/3/1980	NR	NR	NR	NR	NR	NR	NR NR	0,10

#### Notes

1. Samples were collected and analyzed by General Electric Company subcontractors for PCBs.

2. ND - Analyte was not detected. The number in parentheses is the associated detection limit.

3 NR Not Reported. Total PCB data was entered from summary data tables and not the laboratory report form.

4 Field duplicate sample results are presented in brackets

#### **Data Qualifiers**

P - The analyte is detected in the sample. The percent difference in the concentrations calculated from two dissimilar GC columns is greater than 25%. The value should be considered estimated.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Location ID: Sample ID:	ES1-7 ES1070608	ES1-8 ES1080406	ES1-9 ES1090406	ES1-14 ES1141416
	ample Depth(Feet):	6-8	4-6	4-6	14-16
Parameter	Date Collected:	05/16/96	05/16/96	05/16/96	07/29/96
Volatile Organics					
1.1.1.2-Tetrachloro		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
1,1,1-trichloro-2,2,2	~	ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	NA
1,1.1-Trichloroetha		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
1,1,2.2-Tetrachioro		ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.012)	ND(0.011)
1,1,2-trichloro-1,2,2		ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.012)	NA
1,1,2-Trichloroetha		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
1,1-Dichloroethane		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
1,1-Dicnioroethene		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
1.2.3-Trichloroprop		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
1,2-Dibromo-3-chic	~~~~	ND(0.060) [ND(0.065)]	ND(0.060)	ND(0.059)	ND(0.056)
1,2-Dibromoethane		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
1,2-Dichioroethane 1,2-Dichloropropan		ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.012)	ND(0.011)
1,4-Dioxane	6	ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
2-Butanone		ND(61) [ND(66)] ND(0.042) [ND(0.045)]	ND(61)	ND(60)	ND(57)
2-Butanone 2-Chloroethylvinyle	ther		ND(0.042)	ND(0.041)	ND(0.039)
2-Unioroetnyivinyie 2-Hexanone	u or	ND(0.018) [ND(0.019)] ND(0.042) [ND(0.045)]	ND(0.018) ND(0.042)	ND(0.018)	ND(0.017)
3-Chloropropene		ND(0.018) [ND(0.019)]		ND(0.041)	ND(0.039)
4-Methyl-2-pentanc		ND(0.030) [ND(0.032)]	ND(0.018)	ND(0.018)	ND(0.017)
Acetone		0.032 JB [0.033 JB]	ND(0.030)	ND(0.029)	ND(0.028)
Acetonitrile		ND(0.24) [ND(0.26)]	0.050 JB	0.023 JB	0.023 JB
Acrolein		ND(0.24) [ND(0.20)]	ND(0.24)	ND(0.24)	ND(0.22)
Acrylonitrile		ND(0.25) [ND(0.27)]	ND(0.27) ND(0.25)	ND(0.27) ND(0.25)	ND(0.26)
Benzene		ND(0.018) [ND(0.019)]	ND(0.25)		ND(0.24)
Bromodichlorometh	iana	ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.018)	ND(0.017)
Bromoform		ND(0.018) [ND(0.019)]	ND(0.024)	ND(0.024) ND(0.018)	ND(0.022) ND(0.017)
Bromomethane		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.018)	ND(0.022)
Carbon Disulfide		ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.024)	ND(0.022)
Carbon Tetrachlorid	le	ND(0.018) [ND(0.019)]	ND(0.012)	ND(0.012)	ND(0.017)
Chiorobenzene		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
Chloroethane		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
Chloroform		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
Chloromethane		ND(0.042) [ND(0.045)]	ND(0.042)	ND(0.041)	ND(0.039)
sis-1,3-Dichloropro	pene	ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.012)	ND(0.011)
sis-1,4-Dichloro-2-b		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	NA NA
Crotonaldenyde		ND(0.66) [ND(0.71)]	ND(0.65)	ND(0.65)	NA
Dibromochiorometh	nane	ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
Dibromomethane		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
Dichlorodifluoromet	ihane	NA	NA	NA	ND(0.011)
Ethyl Methacrylate		ND(0.030) [ND(0.032)]	ND(0.030)	ND(0.029)	ND(0.028)
Ethylbenzene		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
odomethane		ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.012)	ND(0.011)
sobutanol		ND(16) [ND(17)]	ND(15)	ND(15)	ND(15)
Aethacrylonitrile		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
Methyl Methacrylate	2	ND(0.060) [ND(0.065)]	ND(0.060)	ND(0.059)	ND(0.056)
Methylene Chloride		0.013 JB [0.011 JB]	0.010 JB	0.013 JB	0.014 JB
Propionitrile		ND(0.71) [ND(0.77)]	ND(0.70)	ND(0.69)	ND(0.66)
Styrene		ND(0.012) [ND(0.013)]	ND(0.012)	ND(0.012)	ND(0.011)
etrachloroethene		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
oluene		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
rans-1,2-Dichloroe		ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
rans-1,3-Dichlorop	ropene	ND(0.018) [ND(0.019)]	ND(0.018)	ND(0.018)	ND(0.017)
rans-1,4-Dichloro-2	2-butene	ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
richloroetnene		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
richiorofluorometh	ane	ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
/inyl Acetate		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
/inyl Chloride		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)
(vienes (total)		ND(0.024) [ND(0.026)]	ND(0.024)	ND(0.024)	ND(0.022)

V IGE_Pittsfield_CD_ESA_1_North/Réports and Presentations/Revised CRD_RA_WP/006421967atilics.xis Table 2-6 Page 1 of 5

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Location ID: Sample ID: Sample Depth(Feet):	ES1-7 ES1070608 6-8	ES1-8 ES1080406 4-6	ES1-9 ES1090406 4-6	ES1-14 ES1141416 14-16
Parameter Date Collected:	05/16/96	4-6 05/16/96	4-6 05/16/96	07/29/96
Semivolatile Organics		1 001000	03/10/30	01120/00
1.2.3.4-Tetrachiorobenzene	NA	NA	NA	NOVO 701
1.2.3.5-Tetrachiorobenzene	NA	NA NA	NA NA	ND(0.72) ND(1.5)
1,2,3-Trichlorobenzene	NA	NA	NA	ND(1.5) ND(0.67)
1.2.4.5-Tetrachlorobenzene	ND(1.6) IND(8.4)]	ND(7.7)	ND(7.6)	ND(0.57) ND(1.5)
1.2.4-Trichlorobenzene	ND(0.66) (ND(3.6))	ND(3.3)	ND(3.2)	ND(0.62)
1,2-Dichlorobenzene	ND(0.71) [ND(3.8)]	ND(3.5)	ND(3.5)	ND(0.66)
1.2-Dinitrobenzene	NA	NA	NA	ND(0.74)
1,2-Diphenylhydrazine	ND(0.83) [ND(4.5)]	ND(4.1)	ND(4.1)	ND(0.78)
1,3,5-Trichlorobenzene	NA	NA	NA	ND(0.69)
1,3,5-Trinitrobenzene	ND(1.1) [ND(5.9)]	ND(5.4)	ND(5.4)	ND(1.0)
1,3-Dichlorobenzene	0.064 J [ND(3.3)]	ND(3.0)	ND(3.0)	ND(0.57)
1.3-Dinitrobenzene	ND(0.67) [ND(3.6)]	ND(3.3)	ND(3.3)	ND(0.63)
1.4-Benzenediamine	NA	NA	NA	ND(0.74)
1.4-Dichlorobenzene	0.46 J [ND(3.4)]	ND(3.1)	ND(3.1)	ND(0.58)
1,4-Naphthoquinone	ND(1.9) [ND(10)]	ND(9.5)	ND(9.4)	ND(1.8)
1-Chloronaphthalene	NA	NA	NA	ND(1.3)
1-Methylnaphthalene	NA	NA	NA	ND(1.2)
1-Naphthylamine	ND(1.7) [ND(9.1)]	ND(8.3)	ND(8.2)	ND(1.6)
2,3,4,6-Tetrachlorophenol	ND(1.7) [ND(9.1)]	ND(8.3)	ND(8.2)	ND(1.6)
2.4.5-Trichlorophenol	ND(1.6) [ND(8.4)]	ND(7.7)	ND(7.6)	ND(1.5)
2,4,6-Trichlorophenol	ND(1.6) [ND(8.4)]	ND(7.7)	ND(7.6)	ND(1.5)
2,4-Dichlorophenol	ND(0.66) [ND(3.6)]	ND(3.3)	ND(3.2)	ND(0.62)
2,4-Dimethylphenol	ND(0.73) [ND(3.9)]	0.34 J	ND(3.6)	ND(0.69)
2,4-Dinitrophenol	ND(2.0) [ND(11)]	ND(10)	ND(10)	ND(1.9)
2,4-Dinitrotoluene	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
2,6-Dichlorophenol	ND(1.4) [ND(7.8)]	ND(7.1)	ND(7.1)	ND(1.3)
2,6-Dinitrotoluene	ND(0.90) [ND(4.9)]	ND(4.5)	ND(4.4)	ND(0.84)
2-Acetylaminofluorene	ND(0.85) [ND(4.6)]	ND(4.2)	ND(4.2)	ND(0.80)
2-Chloronaphthalene	ND(1.2) [ND(6.3)]	ND(5.8)	ND(5.7)	ND(1.1)
2-Chlorophenol	ND(0.76) [ND(4.1)]	ND(3.8)	ND(3.7)	ND(0.71)
2-Methylnaphthalene	ND(1.0) [ND(5.4)]	ND(5.0)	ND(4.9)	ND(0.94)
2-Methylphenol	ND(0.78) [ND(4.2)]	ND(3.9)	ND(3.8)	ND(0.73)
2-Naphthylamine	ND(1.0) [ND(5.6)]	ND(5,1)	ND(5.1)	ND(0.97)
2-Nitroaniline	ND(1.3) [ND(7.1)]	ND(6.5)	ND(6.5)	ND(1.2)
2-Nitrophenol	ND(0.74) [ND(4.0)]	ND(3.7)	ND(3.6)	ND(0.70)
2-Picoline	ND(1.4) [ND(7.8)]	ND(7.1)	ND(7.1)	ND(1.3)
3.3'-Dichlorobenzidine	ND(0.60) [ND(3.2)]	ND(3.0)	ND(2.9)	ND(0.56)
3,3'-Dimethoxybenzidine	NA	NA	NA	ND(1.1)
3,3'-Dimethylbenzidine	ND(1.2) [ND(6.3)]	ND(5.8)	ND(5.7)	ND(1.1)
3-Methylcholanthrene	ND(0.73) [ND(3.9)]	ND(3.6)	ND(3.6)	ND(0.69)
3-Methylphenol	ND(1.6) [ND(8.4)]	ND(7.7)	ND(7.6)	ND(1.5)
3-Nitroaniline	ND(0.83) [ND(4.5)]	ND(4.1)	ND(4.1)	ND(0.78)
3-Phenylenediamine	ND(0.79) [ND(4.3)]	ND(3 9)	ND(3.9)	ND(0.74)
,4'-Methylene-bis(2-chloroaniline)	NA	NA	NA	ND(0.51)
4,6-Dinitro-2-methylphenol	ND(2.2) [ND(12)]	ND(11)	ND(11)	ND(2.0)
4-Aminobiphenyl	ND(0.49) [ND(2.7)]	ND(2.4)	ND(2.4)	ND(0.46)
4-Bromophenyl-phenylether	ND(0.90) [ND(4.9)]	ND(4.5)	ND(4.4)	ND(0.84)
4-Chioro-3-Methylphenol	ND(0.90) [ND(4.9)]	ND(4 5)	ND(4.4)	ND(0.84)
Chloroaniline	ND(0.83) [ND(4.5)]	ND(4.1)	ND(4.1)	ND(0.78)
-Chlorobenzilate	ND(0.85) [ND(4.6)]	ND(4.2)	ND(4.2)	ND(0.80)
Chlorophenol		NA	NA	ND(0.74)
Chiorophenyi-phenylether	ND(0.72) [ND(3.9)]	ND(3.6)	ND(3.5)	ND(0.67)
4-Methylphenol	ND(1.6) [ND(8.4)]	ND(7.7)	ND(7.6)	ND(1.5)
-Nitroaniline	ND(1.3) [ND(7.1)]	ND(6.5)	ND(6.5)	ND(1.2)
-Nitrophenol	ND(5.4) [ND(29)]	ND(27)	ND(26)	ND(5.1)
-Nitroquinoline-1-oxide	ND(5.8) [ND(31)]	ND(29)	ND(28)	ND(5.4)
5-Nitro-o-toluidine 7.12-Dimethylbenz(a)anthracene	ND(1.2) [ND(6.5)] ND(0.49) [ND(2.7)]	ND(6.0) ND(2.4)	ND(5.9) ND(2.4)	ND(1.1) ND(0.46)

VIGE_Pittsfield_CD_ESA_1_Nodh/Reports and Presentations/Revised CRD_RA_WPN00642196Tables xis Table 2-8 Page 2 of 5

20

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Location ID:	ES1-7	ES1-8	ES1-9	ES1-14
Sample ID:	ES1070608	ES1080406	ES1090406	ES1141416
Sample Depth(Feet):	6-8	4-6	4-6	14-16
Parameter Date Collected:	05/16/96	05/16/96	05/16/96	07/29/96
Semivolatile Organics (continued)				
a,a'-Dimethylphenethylamine	ND(0.79) [ND(4,3)]	ND(3.9)	ND(3.9)	ND(0.74)
Acenaphthene	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
Acenaphthylene	ND(0.80) [ND(4.3)]	ND(4.0)	ND(3.9)	ND(0.75)
Acetophenone	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
Aniline	ND(0.67) [ND(3.6)]	ND(3.3)	ND(3.3)	ND(0.63)
Anthracene	ND(0.89) [ND(4.8)]	ND(4.4)	ND(4.4)	ND(0.83)
Aramite	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
Benzal chloride	NA	NA	NA	ND(0.60)
Benzidine	ND(1.9) [ND(10)]	ND(9.5)	ND(9.4)	ND(1.8)
Benzo(a)anthracene	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
Benzo(a)pyrene	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
Benzo(b)fluoranthene	ND(0.92) [ND(5.0)]	ND(4.6)	ND(4.5)	ND(0.87)
Benzo(g,h,i)perylene	ND(0.74) [ND(4.0)]	ND(3.7)	ND(3.6)	ND(0.70)
Benzo(k)fluoranthene	ND(0.74) [ND(4.0)]	ND(3.7)	ND(3.6)	ND(0.70)
Benzoic Acid	NA	NA	NA	ND(2.1)
Benzotrichloride		NA	NA	ND(0.70)
Benzyl Alcohol	ND(0.66) [ND(3.6)]	ND(3.3)	ND(3.2)	ND(0.62)
Benzyl Chloride bis(2-Chloroethoxy)methane		NA	NA	ND(0.65)
bis(2-Chloroethyl)ether	ND(0.80) [ND(4.3)]	ND(4.0)	ND(3.9)	ND(0.75)
bis(2-Chloroisopropyl)ether	ND(0.71) [ND(3.8)]	ND(3.5)	ND(3.5)	ND(0.66)
	ND(0.78) [ND(4.2)]	ND(3.9)	ND(3.8)	ND(0.73)
bis(2-Ethylhexyl)phthalate	0.10 J [ND(4.9)]	ND(4.5)	ND(4.4)	0.47 J
Chrysene	ND(0.82) [ND(4.4)]	ND(4.0)	ND(4.0)	ND(0.76)
Cyclophosphamide	ND(0.65) [ND(3.5)]	ND(3.2)	ND(3.2)	ND(0.61)
Diallate (cis isomer)	NA ND(0.70) IND(1.20)	NA	NA	ND(0.71)
Diallate (trans isomer)	ND(0.79) [ND(4.3)] ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
Dibenz(a,j)acridine	ND(0.79) [ND(4.3)] NA	ND(3.9)	ND(3.9)	ND(0.74)
Dibenzo(a,h)anthracenc	ND(0.52) [ND(2.8)]	NA	NA	ND(0.46)
Dibenzofuran	ND(0.83) [ND(4,5)]	ND(2.6)	ND(2.5)	ND(0.48)
Diethylphthalate	ND(0.86) [ND(4.5)]	ND(4.1)	ND(4.1)	ND(0.78)
Dimethoate	NA	ND(4.3)	ND(4.2)	ND(0.81)
Dimethylphthalate	ND(1.2) [ND(6.3)]	NA ND(5.8)	NA ND(5.7)	ND(0.74)
Di-n-Butylphthalate	ND(0.92) [ND(5.0)]	ND(5.8) ND(4.6)	ND(5.7)	ND(1.1)
Di-n-Octylphthalate	ND(0.58) [ND(3.1)]	ND(4.6) ND(2.9)	ND(4.5)	ND(0.87)
Diphenylamine	ND(1.7) [ND(9.1)]	ND(2.9)	ND(2.8)	ND(0.54)
Disulfoton	NA NA	NA NA	ND(8.2) NA	ND(1.6)
Ethyl Methacrylate	NA	NA	NA NA	ND(0.74)
Ethyl Methanesulfonate	ND(0.72) [ND(3.9)]	ND(3.6)	ND(3.5)	ND(0.66) ND(0.67)
Ethyl Parathion	NA	NA NA	NA NA	ND(0.67)
-amphur	NA	NA	NA	ND(0.74) ND(2.2)
luoranthene	ND(1.1) [ND(6.0)]	ND(5.5)	ND(5.4)	ND(2.2) ND(1.0)
luorene	ND(0.83) (ND(4.5))	ND(4.1)	ND(4.1)	ND(1.0) ND(0.78)
texachlorobenzene	ND(0.92) [ND(5.0)]	ND(4.6)	ND(4.5)	ND(0.78)
lexachiorobutadiene	ND(0.67) [ND(3.6)]	ND(3.3)	ND(3.3)	ND(0.63)
Hexachlorocyclopentadiene	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.03)
lexachioroethane	ND(0.72) [ND(3.9)]	ND(3.6)	ND(3.5)	ND(0.67)
lexachioropropene	ND(0.68) [ND(3.7)]	ND(3.4)	ND(3.4)	ND(0.64)
ndeno(1,2,3-cd)pyrene	ND(0.55) [ND(3.0)]	ND(2.7)	ND(2.7)	ND(0.52)
sodrin	ND(1.1) [ND(6.0)]	ND(5.5)	ND(5.4)	ND(1.0)
sophorone	ND(0.82) [ND(4.4)]	ND(4.0)	ND(4.0)	ND(0.76)
sosafrole	ND(1.6) [ND(8.4)]	ND(7.7)	ND(7.6)	ND(1.5)
Aethapyrilene	ND(1.6) [ND(8.4)]	ND(7.7)	ND(7.6)	ND(1.5)
ethyi Methanesulfonate	ND(0.84) [ND(4.5)]	ND(4.2)	ND(4.1)	ND(0.79)
Aethyl Parathion	NA	NA NA	NA	ND(0.74)
laphthalene	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0.74)
litrobenzene	ND(0.82) [ND(4.4)]	ND(4.0)	ND(4.0)	ND(0.76)
I-Nitrosodiethylamine	ND(0.72) [ND(3.9)]	ND(3.6)	ND(3.5)	ND(0.67)

V1GE_Pitsfield_CD_ESA_1_North:Reports and Presentations\Revised CRD_RA_WP.00542196Tables ics Table 2.6 Page 3 of 5

南の美味

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

1.2,3,7.8-PeCDF         ND(0.00000091) [ND(0.00000011)]         ND(0.00000038) Y         ND(0.00000012)         ND(0.00000005)           2,3,4,7,8-PeCDF         ND(0.0000005) [ND(0.00000088)]         ND(0.00000025)         ND(0.00000005)         ND(0.00000026)         ND(0.00000026)<	Location II	D: ES1-7	E\$1-8	ES1-9	ES1-14
Parameter         Date Collected:         05/1596         05/1596         07/29/65           Semivabilité Organics (continued)         ND(0.27) (ND(2.4)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.39)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.32)         ND(0.30)         ND(0.32)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.30)         ND(0.40)	Sample II	ES1070608	ES1080406	ES1090406	ES1141416
Semivaliti Organics (continued)         ND(0.79)         ND(0.3)         ND(0.3)         ND(0.5)         ND(0.6)         ND(0.6) <t< th=""><th>Sample Depth(Feet</th><th>): 6-8</th><th>4-6</th><th>4-6</th><th>14-16</th></t<>	Sample Depth(Feet	): 6-8	4-6	4-6	14-16
N+Brissoudmethylamine         ND(2.7)         IND(2.3)         ND(2.3)         ND(2.3)           N+Winsoud-th-orgopylamine         ND(7.7)         IND(2.6)         ND(2.6)         ND(2.6)           N+Winsoud-th-orgopylamine         ND(7.7)         IND(2.6)         ND(2.6)         ND(2.6)           N+Winsoud-th-orgopylamine         ND(2.6)         IND(2.6)         ND(2.6)         ND(2.6)           N+Winsoud-th-orgonatione         ND(2.6)         IND(2.6)         ND(2.2)         ND(2.6)           N+Winsoud-th-orgonatione         ND(2.6)         IND(2.6)         ND(2.2)         ND(2.6)           N-Winsoud-th-orgonatione         ND(2.6)         IND(2.6)         ND(2.6)         ND(2.6)           N-Winsoud-th-orgonatione         ND(2.6)         IND(2.6)         ND(2.6)         ND(2.6)           ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)           Prenatabliconethene         ND(2.6)         ND(2.6)	Parameter Date Collected	1: 05/16/96	05/16/96	05/16/96	07/29/96
NHArasso-d-in-butyamine         ND(1.7)         ND(2.3)         ND(2.4)	Semivolatile Organics (continued)				
N-Mitosoch-n-propylamma         ND(2.5)         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)           N-Mitosoch-n-propylamma         ND(7.7)         ND(7.0)         ND(7.6)         ND(7.6)           N-Mitosoch-n-propylamma         ND(2.6)         ND(2.6)         ND(2.2)         ND(7.6)           N-Mitosoch-n-propylamma         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)           N-Mitosoch-n-propylamma         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)         ND(2.6)           N-Mitosoch-n-propylamma         ND(2.6)         ND(2.6)         ND(2.2)         ND(2.1)         ND(2.6)           N-Mitosoch-n-propylamma         ND(2.6)         ND(2.6)         ND(2.2)         ND(2.1)         ND(2.2)           ND(2.4)         ND(2.4)         ND(2.2)         ND(2.1)         ND(2.2)         ND(2.2)           Paralethylo         NA         NA         NA         NA         NA         ND(2.2)         ND(2.	N-Nitrosodimethylamine	ND(0.79) [ND(4.3)]	ND(3.9)	ND(3.9)	ND(0 74)
N-Mitosoch-n-gropyJamme         ND(2, 13)         ND(3, 6)         ND(3, 6)         ND(3, 6)           N-Mitosocheryamme         ND(1, 7)         ND(1, 6)         ND(3, 2)         ND(1, 6)           N-Mitosocheryamme         ND(0, 4)         ND(2, 4)         ND(0, 6)           N-Mitosocheryamme         ND(0, 4)         ND(2, 4)         ND(2, 4)           N-Mitosocheryamme         ND(0, 4)         ND(2, 4)         ND(2, 4)           N-Mitosocheryamme         ND(2, 4)         ND(2, 4)         ND(2, 4)           N-Mitosocheryaminasocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminosocheryaminoso	N-Nitroso-di-n-butylamine	ND(1.7) (ND(9.1))	ND(8.3)	ND(8.2)	ND(1,6)
N-Nirosodprenylamme         ND(1,2)         ND(2,3)         ND(2,2)         ND(1,3,2)           N-Nirosodprenylamme         ND(0,3,5)         ND(2,3,2)         ND(2,4,3)         ND(2,4,3)         ND(2,4,4)	N-Nitroso-di-n-propylamine	ND(0.73) [ND(3.9)]	ND(3.6)		the second
N-N-Insonnethydethylerme         ND(3.5)         ND(3.2)         ND(3.2)         ND(3.2)           N-Nirosongrothine         ND(3.9)         ND(4.6)         ND(4.4)         ND(3.6)           N-Nirosongrothine         ND(3.6)         ND(4.6)         ND(4.6)         ND(4.6)           N-Nirosogynothinaete         ND(6.6)         ND(3.2)         ND(3.1)         ND(6.6)           0.o.0-Teethylphosphorthinaete         ND(6.4)         ND(3.2)         ND(3.2)         ND(3.2)           Paradethyde         NA         NA         NA         ND(3.2)         ND(2.2)           Paradethyde         NA         NA         NA         ND(3.2)         ND(3.2)         ND(3.2)           Paradethyde         NA         NA         NA         NA         ND(3.2)         ND(3.2)           Paradethyde         ND(3.2)         ND(3.4)         ND(3.2)         ND(3.2)         ND(3.2)           Paradethyde         ND(3.7)         ND(4.3)         ND(3.2)         ND(3.3)         ND(3.2)         ND(3.5)         ND(3.5)           Paradethoronthrobenzene         ND(3.7)         ND(4.3)         ND(3.4)         ND(3.6)         ND(3.6)         ND(6.6)           Paradethoronthrobenzene         ND(3.7)         ND(4.3)         ND(3.4)					
N-Mirosoparticitie         ND(3.4)         ND(4.4)         ND(4.4)         ND(4.4)           N-Mirosoparticitie         ND(3.4)         ND(4.4)         ND(4.4)         ND(6.1)           N-Mirosoparticitie         ND(6.4)         ND(6.1)         ND(6.2)         ND(6.1)           n-Mirosoparticitie         ND(6.4)         ND(6.2)         ND(6.2)         ND(6.2)           n-Mirosoparticitie         ND(6.4)         ND(6.4)         ND(6.4)         ND(6.4)           n-Mirosoparticitie         ND(6.4)         ND(6.4)         ND(6.4)         ND(6.4)           n-Mirosoparticitie         ND(6.4)         ND(6.4)         ND(6.4)         ND(6.4)           n-Mirosoparticitie         ND(6.5)         ND(6.4)         ND(6.4)         ND(6.4)           n-Mirosoparticitie         ND(6.7)         ND(6.4)         ND(6.4)         ND(6.4)           n-Mirosoparticitie         ND(6.7)         ND(6.4)         ND(6.4)         ND(6.4)           n-Particitionomiroberzene         ND(6.7)         ND(6.4)         ND(6.4)         ND(6.4)           n-Particitionomiroberzene         ND(7.1)         ND(3.4)         ND(6.4)         ND(7.4)           n-Particitionomiroberzene         ND(7.4)         ND(7.4)         ND(7.4)         ND(7.4)	N-Nitrosomethylethylamine			to an a second s	
N-Nirosopperdine         ND(4.4)         ND(4.4)         ND(4.4)         ND(4.4)           N-Nirosopperdine         ND(6.4) (ND(3.4)         ND(3.2)         ND(3.1)         ND(6.6)           o.o.o-Tethylphosphorothroate         ND(6.4) (ND(3.4)         ND(3.2)         ND(7.1)         ND(6.6)           Paraledhyde         NA         NA         NA         NA         NA         NA           Pertachiorobenzene         ND(0.40) (ND(7.3)         ND(2.4)         ND(7.5)         ND(7.5)           Pertachiorobenzene         ND(1.0) (ND(7.5)         ND(0.40)         ND(7.5)         ND(7.5)           Pertachiorobenzene         ND(1.7) (ND(7.6)         ND(2.6)         ND(7.5)         ND(7.5)           Pertachiorobenzene         ND(1.7) (ND(7.6)         ND(2.6)         ND(7.5)         ND(7.5)           Pertachiorobenzene         ND(1.7) (ND(7.6)         ND(3.6)         ND(7.6)         ND(7.6)           Pertachiorobenzene         ND(1.7) (ND(7.6)         ND(3.6)         ND(7.6)         ND(7.6)           Pertachiorobenzene         ND(7.7) (ND(7.6)         ND(3.6)         ND(7.6)         ND(7.6)           Pertachiorobenzene         ND(7.7) (ND(7.6)         ND(3.6)         ND(7.6)         ND(7.6)           Pertachiorobenzene         ND(7.7) (ND(7.6)		the second s		the second	
N-Nicosop/molidine         NDIG.41 (NDIG.42)         NDIG.31 (NDIG.00)           o.p-TreetryphosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphortDiosphoresphortDiosphortDiosphortDiosphoresphortDiosphortDio	N-Nitrosopiperidine	and the second		+	
D.a.d. Trefftyghosphorthoste         ND[24] (ND[24])         ND[22)         ND[31]         ND[26.0]           - Foludine         NA         NA         NA         NA         ND[25]         ND[26]				A construction of the second s	
D-Toludine         ND(2.4) (ND(13)         ND(12)         ND(12)         ND(12)           0-Dimetrylaminazobenzene         ND(0.89) (ND(4.3)         ND(4.0)         ND(3.9)         ND(0.75)           Pentachiorobenzene         ND(0.79) (ND(4.3)         ND(3.9)         ND(3.9)         ND(3.9)         ND(7.4)           Pentachiorobenzene         ND(0.77) (ND(4.1)         ND(3.8)         ND(3.8)         ND(0.72)           Pentachiorobenzene         ND(0.73) (ND(4.1)         ND(3.8)         ND(3.8)         ND(0.72)           Pentachiorobenzene         ND(0.73) (ND(9.1)         ND(3.6)         ND(3.6)         ND(0.69)           Pentachiorobenzene         ND(0.73) (ND(3.9)         ND(3.6)         ND(0.69)         Pentachiorobenzene           Pentachiorobenzene         ND(0.73) (ND(3.9)         ND(3.6)         ND(0.72)         ND(3.6)         ND(0.73)           Pentachiorobenzene         ND(0.73) (ND(4.2))         ND(3.4)         ND(0.73)         ND(0.65)           Pronamide         ND(0.73) (ND(4.2))         ND(3.3)         ND(3.2)         ND(0.62)           Proteine         ND(0.65) (ND(3.6))         ND(3.2)         ND(0.62)         ND(0.62)           Proteine         ND(0.65) (ND(3.6))         ND(3.3)         ND(3.4)         ND(0.62)           S	o.o.o-Triethylphosphorothioate		and the second	· · · · · · · · · · · · · · · · · · ·	
Parafedbyde         NA         NA         NA         ND(0.40)           >-Domethydaminoszoberszene         ND(0.60) (ND(4.3)         ND(0.40)         ND(3.9)         ND(0.75)           Pentachlorostherzene         ND(0.71) (ND(4.3)         ND(3.9)         ND(3.9)         ND(0.73)           Pentachlorostherzene         ND(1.01) (ND(5.4))         ND(3.8)         ND(2.72)         ND(0.72)           Pentachlorostherzene         ND(0.71) (ND(4.1))         ND(3.8)         ND(2.8)         ND(2.72)           Pentachlorostherzene         ND(0.72) (ND(3.9))         ND(3.6)         ND(2.6)         ND(0.69)           Pentachlorostherzene         ND(0.72) (ND(3.9))         ND(3.4)         ND(2.6)         ND(0.73)           Phenal         ND(0.72) (ND(2.7))         ND(3.4)         ND(0.6)         ND(0.73)           Prorate         ND(0.69) (ND(3.7))         ND(3.8)         ND(0.73)         ND(7.3)           Prorate         ND(0.69) (ND(2.6))         ND(3.8)         ND(0.73)         ND(7.3)         ND(7.4)           Prorate         ND(0.69) (ND(2.6))         ND(3.8)         ND(3.8)         ND(3.8)         ND(3.8)         ND(3.8)         ND(3.8)         ND(3.8)         ND(7.4)         ND(0.62)           Staffue         ND(0.60) (ND(2.6))         ND(3.8) <td></td> <td></td> <td> Acuswinstein</td> <td></td> <td>······································</td>			Acuswinstein		······································
Dimetry antinoacoberzene         ND(0.76)         ND(0.75)         ND(0.76)           Pentach/ordenzene         ND(0.71)         ND(3.9)         ND(3.9)         ND(3.9)         ND(3.9)           Pentach/ordenzene         ND(0.71)         ND(4.9)         ND(3.8)         ND(0.72)           Pentach/ordenzene         ND(0.71)         ND(4.9)         ND(3.8)         ND(2.72)           Pentach/ordenzene         ND(0.71)         ND(6.3)         ND(2.72)         ND(1.6)           Pentach/ordenzene         ND(0.72)         ND(3.9)         ND(3.6)         ND(0.72)           Pentach/ordenzene         ND(0.72)         ND(3.7)         ND(3.6)         ND(0.73)           Pentach/ordenzene         ND(0.72)         ND(3.7)         ND(3.6)         ND(0.73)           Pentach/ordenzene         ND(0.66)         ND(3.7)         ND(3.8)         ND(0.74)           Proteit         NA         NA         NA         NA         ND(0.74)           Proteit         ND(0.70)         ND(4.3)         ND(7.43)         ND(7.43)         ND(7.43)           Pyrdine         ND(0.65)         ND(3.5)         ND(3.4)         ND(0.65)         ND(7.43)           Strite         ND(0.70)         ND(74)         ND(74)         ND(74)		the second s		+	Without a substance of the second s
Pentachiorotherzene         ND(0.79)         ND(3.9)         ND(3.9)         ND(0.74)           Pentachiorotherzene         ND(0.71)         ND(4.9)         ND(4.9)         ND(4.9)         ND(4.9)           Pentachiorotherzene         ND(0.71)         IND(3.8)         ND(3.8)         ND(3.8)         ND(3.8)           Pentachiorophenol         ND(1.7)         IND(3.9)         ND(3.6)         ND(2.6)         ND(3.6)         ND(0.72)         ND(3.6)         ND(0.71)         ND(3.6)         ND(0.72)         ND(3.6)         ND(0.72)         ND(3.6)         ND(0.72)         ND(3.6)         ND(0.73)         ND(3.8)         ND(0.73)         ND(3.8)         ND(0.73)         ND(3.6)         ND(3.6			Contraction of the second s		Contraction of the second s
Pentachkronithane         ND(10) [ND(6 4)]         ND(4 5)         ND(4 5)         ND(6 7)           Pentachkronithospzene         ND(0 77) [ND(6 1)]         ND(6 3)         ND(8 3)         ND(8 2)         ND(6 7)           Pentachkronithospzene         ND(0 77) [ND(5 1)]         ND(8 3)         ND(8 2)         ND(6 2)         ND(6 3)           Pentachkronithospzene         ND(0 73) [ND(2 9)]         ND(3 5)         ND(2 6)         ND(0 70)           Pentachkronithospzene         ND(0 73) [ND(2 0)]         ND(3 7)         ND(2 6)         ND(0 70)           Phenanthrene         ND(0 70) [ND(2 1)]         ND(4 3)         ND(7 4)         ND(0 74)           Phorate         ND(0 69) [ND(2 7)]         ND(4 3)         ND(7 4)         ND(0 8)         ND(0 74)           Profine         ND(0 69) [ND(2 6)]         ND(3 3)         ND(2 3)         ND(6 2)         ND(0 82)           Pyrdine         ND(0 60) [ND(4 3)]         ND(3 5)         ND(3 4)         ND(0 74)           Thourphotes         NA         NA         NA         ND(0 74)           Satiolep         NA         NA         NA         ND(0 00000025)         ND(0 00000071)         ND(0 00000071)         ND(0 00000071)         ND(0 00000071)         ND(0 000000071)         ND(0 00000071)         ND(0 000				······································	for the second s
Pentablicronitrobenzene         ND(0.77) (ND(4.1)         ND(8.3)         ND(8.3)         ND(8.3)           Pentablicronitrobenzene         ND(0.73) (ND(3.9)         ND(8.3)         ND(8.3)         ND(8.3)         ND(8.3)           Phenacterin         ND(0.73) (ND(3.9)         ND(3.6)         ND(0.64)         ND(0.65)           Phenacterin         ND(0.74) (ND(4.0)         ND(3.6)         ND(0.64)         ND(0.65)           Phenacterin         ND(0.71) (ND(4.1)         ND(3.6)         ND(0.73)           Phenaterin         NA         NA         NA         NA         NA         NA         ND(0.73)           Pronemide         ND(0.70) [ND(4.2)]         ND(3.5)         ND(3.5)         ND(0.82)         ND(0.82)           Pyrene         ND(0.65) [ND(4.7)]         ND(4.3)         ND(4.3)         ND(0.82)         ND(0.82)           Suffolep         NA         NA         NA         NA         NA         NA         NA         NA         NA         ND(0.62)         ND(0.62) <t< td=""><td>A second state and second state and state and a second state state state state state state state state state state</td><td></td><td></td><td>the second se</td><td></td></t<>	A second state and second state and state and a second state			the second se	
Pentactiorophenol         ND(1.7] (ND(3.1)         ND(3.5)         ND(8.2)         ND(1.6)           Phenactetin         ND(0.73) (ND(3.9)]         ND(3.6)         ND(3.6)         ND(0.69)           Phenactetin         ND(0.74) (ND(3.9)]         ND(3.7)         ND(3.4)         ND(3.4)         ND(3.4)           Phenattrene         ND(0.74) (ND(4.2)]         ND(3.7)         ND(3.4)         ND(3.4)         ND(0.4)           Phonatte         NA         NA         NA         NA         NA         ND(0.62)           Pronamide         ND(0.79) (ND(4.2)]         ND(4.3)         ND(0.73)         ND(0.62)           Pyridine         ND(0.65) (ND(3.6)]         ND(3.3)         ND(3.4)         ND(0.62)           Stoffetp         NA         NA         NA         NA         ND(0.62)           Stoffetp         NA         NA         NA         NA         ND(0.62)           Thobuşhopsphate         NA         NA         NA         NA         ND(0.70)           2.3.7.8 - TCDF         ND(0.00000025) (ND(0.00000035)]         0.00000079         ND(0.000000067)         ND(0.000000025)           2.3.7.8 - PCDF         ND(0.000000025) (ND(0.00000035)]         0.00000070         ND(0.000000025)         ND(0.000000025)			the second design of the secon	for the second s	
Prenacetin         ND(0.73) [MD(3.9)]         ND(3.6)         ND(3.6)         ND(0.70)           Phenanthrene         ND(0.74) [ND(4.0)]         ND(3.7)         ND(3.6)         ND(0.70)           Phenanthrene         ND(0.74) [ND(4.0)]         ND(3.7)         ND(3.6)         ND(0.70)           Phonamide         ND(7.74) [ND(4.7)]         ND(3.4)         ND(0.74)         ND(0.74)           Pronamide         ND(0.73) [ND(4.7)]         ND(3.3)         ND(7.43)         ND(0.74)           Pyrateie         ND(0.66) [ND(3.6)]         ND(3.2)         ND(0.62)         Strice           Strice         ND(0.65) [ND(3.6)]         ND(3.5)         ND(3.4)         ND(0.62)           Strice         ND(0.60) [ND(3.8)]         ND(3.5)         ND(3.74)         ND(0.62)           Strice         ND(0.74)         ND(0.74)         ND(0.74)         ND(0.74)           Thiotyphosphate         NA         NA         NA         NA         ND(0.70)           Furans					
Phenarthrene         ND(0.74)         ND(2.6)         ND(2.5)         ND(2.5)           Phenol         ND(0.69)         (ND(3.7)]         ND(3.7)         ND(3.6)         ND(0.70)           Phorate         NA         NA         NA         NA         NA         ND(0.64)           Prorate         ND(0.73)         (ND(4.2)]         ND(3.8)         ND(0.73)         ND(0.73)           Pyrdene         ND(0.66)         (ND(3.6)]         ND(3.3)         ND(3.2)         ND(0.62)           Safrole         ND(0.66)         (ND(3.6)]         ND(3.5)         ND(3.4)         ND(0.62)           Safrole         ND(0.70)         (ND(3.8)]         ND(3.5)         ND(0.62)         Safrole           Safrole         ND(0.70)         (ND(3.8)]         ND(3.5)         ND(3.4)         ND(0.67)           Safrole         NA         NA         NA         NA         ND(0.60000005)           Furans         2.37.8-TCDF         ND(0.00000025)         (ND(0.00000079)         ND(0.00000067)         ND(0.00000067)           2.3.7.8-TCDF         ND(0.00000025)         (ND(0.00000025)         ND(0.00000060)         ND(0.00000060)         ND(0.00000060)         ND(0.00000060)         ND(0.00000060)         ND(0.00000060)         ND(0.00000060)			the second s	······	
Phenol         ND(0.69) [ND(3.7)]         ND(3.4)         ND(3.4)         ND(0.74)           Phorate         NA         NA         NA         NA         ND(0.74)           Pronamide         ND(0.73) [ND(4.2)]         ND(3.9)         ND(3.8)         ND(0.74)           Pyrene         ND(0.66) [ND(3.6)]         ND(3.3)         ND(7.3)         ND(0.62)           Safrole         ND(0.70) [ND(3.8)]         ND(3.5)         ND(0.74)         ND(0.65)           Sulfotep         NA         NA         NA         NA         ND(0.74)           Thionacin         ND(0.60) [ND(4.3)]         ND(4.0)         ND(3.9)         ND(0.74)           Thionacin         ND(0.80) [ND(4.3)]         ND(0.00000079         ND(0.00000067)         ND(0.00000067)           12.3.7.8-FCDF         ND(0.00000025) [ND(0.00000035)]         0.00000079         ND(0.00000067)         ND(0.00000067)           12.3.7.8-FCDF         ND(0.00000025) [ND(0.00000031)]         ND(0.00000027)         ND(0.00000027)         ND(0.00000027)           12.3.7.8-FCDF         ND(0.00000027) [ND(0.00000031)]         ND(0.00000027)         ND(0.00000027)         ND(0.00000027)           12.3.7.8-FCDF         ND(0.00000027) [ND(0.00000028)]         ND(0.00000028)         ND(0.00000028)         ND(0.00000028)         ND(0.				······································	******
Phorate         NA         NA         NA         NA         NA         ND(0.74)           Pronamide         ND(0.78) [ND(4.2)]         ND(3.9)         ND(3.8)         ND(0.73)           Pyrdene         ND(0.68) [ND(4.7)]         ND(4.3)         ND(4.3)         ND(0.82)           Pyrdene         ND(0.65) [ND(3.6)]         ND(3.5)         ND(3.5)         ND(3.4)         ND(0.65)           Suffole         ND(0.70) [ND(3.6)]         ND(3.5)         ND(3.4)         ND(0.74)           Suffole         ND(0.60) [ND(4.3)]         ND(4.0)         ND(3.9)         ND(0.74)           Thoursein         ND(0.60) [ND(4.3)]         ND(4.0)         ND(3.9)         ND(0.74)           Suffole         NA         NA         NA         NA         NA           Viansein         ND(0.00000025) [ND(0.00000035)]         0.0000079 J         ND(0.00000067)         ND(0.00000007)           2.3.7.8-PeCDF         ND(0.00000025) [ND(0.00000025)]         ND(0.00000038) Y         ND(0.000000067)         ND(0.000000057)           1.2.3.7.8-PeCDF         ND(0.00000057) [ND(0.00000025)]         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)					the second secon
Pronamide         ND(0.78) [ND(4.2)]         ND(3.9)         ND(3.8)         ND(0.73)           Pyrene         ND(0.88) [ND(4.7)]         ND(4.3)         ND(4.3)         ND(0.82)           Pyrene         ND(0.70) [ND(3.6)]         ND(3.5)         ND(3.4)         ND(0.62)           Safrole         ND(0.70) [ND(3.8)]         ND(3.5)         ND(3.4)         ND(0.75)           Safrole         ND(0.70) [ND(3.8)]         ND(4.0)         ND(0.75)           Thiouzan         ND(0.70) [ND(3.8)]         ND(4.0)         ND(0.75)           Thiouzan         ND(0.0000025) [ND(0.0000035)]         0.0000079 J         ND(0.0000067)         ND(0.00000067)           2.3.7.8-FeCDF         ND(0.00000025) [ND(0.00000035)]         0.0000079 J         ND(0.00000067)         ND(0.00000067)           2.3.4.7.8-FeCDF         ND(0.00000025) [ND(0.00000035)]         0.0000079 J         ND(0.00000067)         ND(0.00000067)           2.3.4.7.8-FeCDF         ND(0.00000025) [ND(0.00000035)]         ND(0.00000066)         ND(0.00000027)         ND(0.00000026)           2.3.4.7.8-FeCDF         ND(0.00000027) [ND(0.00000036)]         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)           2.3.4.7.8-FeCDF         ND(0.00000027) [ND(0.00000026)]         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)		······································			and the second
Pyrene         ND(0.88) [ND(4.7)]         ND(4.3)         ND(4.3)         ND(4.3)         ND(0.82)           Pyridine         ND(0.66) [ND(3.6)]         ND(3.3)         ND(3.4)         ND(0.62)           Safrole         ND(0.70) [ND(3.8)]         ND(3.5)         ND(3.4)         ND(0.65)           Sufforep         NA         NA         NA         NA         NA         NA         ND(0.75)           Thionazin         ND(0.00) [ND(4.3)]         ND(4.0)         ND(3.9)         ND(0.75)         Thiohyphosphate         NA         NA         NA         ND(0.00000005)					
Pyridine         ND(0.66) (ND(3.6)]         ND(3.2)         ND(3.2)         ND(0.62)           Safrole         ND(0.70) (ND(3.8)]         ND(3.5)         ND(3.4)         ND(0.62)           Safrole         NA         NA         NA         NA         ND(0.71)           Thionazin         ND(0.80) (ND(4.3)]         ND(4.0)         ND(3.9)         ND(0.75)           Tributyphosphate         NA         NA         NA         NA         NA         ND(0.00000067)			the second se	and and a second s	
Safrole         ND(0.70) (ND(3.6)         ND(3.5)         ND(3.4)         ND(0.65)           Suifotep         NA         NA         NA         NA         NA         ND(0.74)           Thionazin         ND(0.80) (ND(4.3)]         ND(4.0)         ND(0.75)         ND(0.75)           Tributyiphosphate         NA         NA         NA         NA         ND(0.75)           Furans         2.3.7.8-TCDF         ND(0.00000025) (ND(0.00000035))         0.00000079         ND(0.00000067)         ND(0.00000001)           12.3.7.8-PcCDF         ND(0.00000025) (ND(0.00000035))         0.00000066)         ND(0.00000002)         ND(0.00000002)           2.3.4.7.8-PcCDF         ND(0.00000050) (ND(0.00000028))         ND(0.00000066)         ND(0.00000002)         ND(0.00000020)           2.3.4.7.8-PcCDF         ND(0.00000020) (ND(0.0000008))         ND(0.00000020)         ND(0.00000020)         ND(0.00000020)           1.2.3.4.7.8-HxCDF         ND(0.00000020) (ND(0.0000008))         ND(0.000000050)         ND(0.00000050)         ND(0.00000050)         ND(0.00000050)         ND(0.00000050)           1.2.3.4.7.8-HxCDF         ND(0.00000020) (ND(0.0000010))         0.00000050)         ND(0.00000050)         ND(0.00000050)         ND(0.00000050)         ND(0.00000050)         ND(0.000000051)         ND(0.000000051)         ND(0.0000				former the second secon	the second secon
Sulfotep         NA         NA         NA         NA         NA         NA         ND(0.74)           Thionazin         ND(0.80) (ND(4.3)]         ND(4.0)         ND(2.9)         ND(0.75)           Thioutyphosphate         NA         NA         NA         NA         NA         ND(0.75)           Furans         2.37.8-TCDF         ND(0.00000025) (ND(0.00000035)]         0.00000079 J         ND(0.00000067)         ND(0.00000001)           TCDFs (total)         ND(0.00000025) (ND(0.00000025)]         ND(0.00000079 J         ND(0.00000001)         ND(0.000000071)         ND(0.000000025)         ND(0.00000000			the second se	and the second	
Thionazin         ND(0.80) [ND(4.3)]         ND(4.0)         ND(3.9)         ND(0.75)           Tributyphosphate         NA         NA         NA         NA         NA         NA         ND(0.00000057)         ND(0.00000052)         ND(0.00000051)         ND(0.00000051)         ND(0.00000051)<			the second		
Tribuly(phosphate         NA         NA         NA         NA         ND(0.74)           Furans					
Furans         ND(0.00000025) [ND(0.0000035)]         0.0000079 J         ND(0.00000067)         ND(0.000000057)           2.3.7.8-TCDF         ND(0.00000025) [ND(0.00000035)]         0.00000079 J         ND(0.00000001)         ND(0.00000001)           12.3.7.8-PeCDF         ND(0.00000025) [ND(0.00000035)]         ND(0.000000050)         ND(0.000000025)         ND(0.000000025)           2.3.4.7.8-PeCDF         ND(0.00000050) [ND(0.00000088)]         ND(0.000000050)         ND(0.000000055)         ND(0.000000025)           PeCDFs (total)         ND(0.00000050) [ND(0.00000088)]         ND(0.000000055)         ND(0.000000055)         ND(0.000000055)           1.2.3.4.7.8-HxCDF         ND(0.00000020) [ND(0.00000010)]         0.00000055)         ND(0.000000056)         ND(0.000000056)           1.2.3.4.7.8-HxCDF         ND(0.00000020) [ND(0.00000020)]         ND(0.000000055)         ND(0.000000051)         ND(0.000000051)           2.3.4.6.7.8-HxCDF         ND(0.00000020) [ND(0.0000034)]         ND(0.000000051)         ND(0.000000051)         ND(0.000000051)           1.2.3.4.7.8-HxCDF         ND(0.00000021) [ND(0.00000045)]         ND(0.00000055)         ND(0.00000051)         ND(0.00000051)           1.2.3.4.6.7.8-HxCDF         ND(0.00000071) [ND(0.0000078)]         ND(0.00000026)         ND(0.00000051)         ND(0.00000051)           1.2.3.4.7.8-HxCDF         ND(0.00000079			+		and the second se
2.3.7,8-TCDF         ND(0.0000025) [ND(0.0000035)]         0.00000079 J         ND(0.00000067)         ND(0.00000001)           TCDFs (total)         ND(0.00000025) [ND(0.0000035)]         0.00000079         ND(0.00000010)         ND(0.000000011)           1.2.3.7,8-PeCDF         ND(0.00000091) [ND(0.00000025)]         ND(0.00000038)         ND(0.00000022)         ND(0.00000022)           2.3.4.7,8-PeCDF         ND(0.00000050) [ND(0.00000025)]         ND(0.00000038)         ND(0.00000022)         ND(0.00000025)           PeCDFs (total)         ND(0.00000050) [ND(0.00000088)]         ND(0.00000025)         ND(0.00000025)         ND(0.000000025)           1.2.3.4.7,8-HxCDF         ND(0.00000020) [ND(0.00000018)]         ND(0.000000055)         ND(0.000000056)         ND(0.000000056)           1.2.3.6.7,8-HxCDF         ND(0.00000021) [ND(0.00000020)]         ND(0.000000055)         ND(0.000000051)         ND(0.000000051)           1.2.3.6.7,8-HxCDF         ND(0.00000021) [ND(0.00000034)]         ND(0.000000051)         ND(0.000000051)         ND(0.000000051)           1.2.3.4.7,8.9-HxCDF         ND(0.00000021) [ND(0.0000014)]         0.0000035 ND(0.00000051)         ND(0.00000051)           1.2.3.4.7,8.8-HxCDF         ND(0.00000071) [ND(0.0000014)]         0.0000015 ND(0.00000051)         ND(0.00000051)           1.2.3.4.7,8.8-HxCDF         ND(0.00000021) [ND(0.00000014)]         0.0		I NA	<u>  NA</u>	NA NA	ND(0.74)
TCDFs (total)         ND(0.00000025) (ND(0.00000035)]         0.00000079         ND(0.00000010)         ND(0.00000010)           1,2,3,7,8-PeCDF         ND(0.00000091) (ND(0.00000025)]         ND(0.00000066)         ND(0.000000025)         ND(0.000000025)           2,3,4,7,8-PeCDF         ND(0.00000007) (ND(0.00000025)]         ND(0.00000066)         ND(0.000000025)         ND(0.000000025)           PeCDFs (total)         ND(0.00000050) (ND(0.00000028)]         ND(0.000000066)         ND(0.000000066)         ND(0.000000066)           1,2,3,7,8-HxCDF         ND(0.00000020) (ND(0.00000020)]         ND(0.000000055)         ND(0.000000066)         ND(0.000000041)           1,2,3,7,8-HxCDF         ND(0.00000020) (ND(0.00000020)]         ND(0.000000055)         ND(0.000000051)         ND(0.000000051)           1,2,3,7,8-HxCDF         ND(0.00000020) (ND(0.0000020)]         ND(0.000000055)         ND(0.000000051)         ND(0.000000051)           1,2,3,4,6,7,8-HxCDF         ND(0.00000020) (ND(0.0000014)]         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)           1,2,3,4,6,7,8-HxCDF         ND(0.00000012) (ND(0.0000014)]         0.00000051)         ND(0.00000026)         ND(0.00000026)           1,2,3,4,6,7,8-HxCDF         ND(0.00000012) (ND(0.0000018)]         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)         ND(0.000000026)         ND(0.00000026)					
1.2.3.7.8-PeCDF         ND(0.00000091) [ND(0.00000011)]         ND(0.00000038) Y         ND(0.00000011)         ND(0.00000005)           2.3.4.7.8-PeCDF         ND(0.00000050) [ND(0.00000088)]         ND(0.00000025)         ND(0.000000066)         ND(0.000000041         1.2.3.4.7.8.4-K2DF         ND(0.00000020) [ND(0.00000034)]         ND(0.000000055)         ND(0.000000051)         ND(0.000000041         2.3.4.6.7.8-HxCDF         ND(0.00000020) [ND(0.00000034)]         ND(0.000000051)         ND(0.			······	ND(0.00000067)	ND(0.00000010)
2.3.4,7,8-PeCDF         ND(0 00000017) [ND(0.00000025)]         ND(0.00000066)         ND(0.00000092)         ND(0.000000052)           PeCDFs (total)         ND(0.00000050) [ND(0.00000088)]         ND(0.00000025)         ND(0.00000025)         ND(0.000000053)           1.2.3.4,7,8-HxCDF         ND(0.00000020) [ND(0.00000018)]         ND(0.000000055)         ND(0.000000066)         ND(0.000000066)           1.2.3.6,7.8-HxCDF         ND(0.00000020) [ND(0.00000018)]         ND(0.000000053)         ND(0.000000053)         ND(0.000000051)         ND(0.000000053)           1.2.3.7,8.9-HxCDF         ND(0.00000020) [ND(0.00000014)]         ND(0.000000053)         ND(0.000000051)         ND(0.000000025)         ND(0.000000025)         ND(0.000000025)         ND(0.000000025)         ND(0.000000025)         ND(0.00000025)         ND(0.000000025)         ND(0.000000025)			0.00000079	ND(0.00000010)	ND(0.00000010)
PecDFs (total)         ND(0.00000050) [ND(0.0000088)]         ND(0.0000038)         ND(0.00000025)         ND(0.00000057)           1,2,3,4,7,8-HxCDF         ND(0.00000057) [ND(0.0000010)]         0.0000036 J         ND(0.00000066)         ND(0.00000004           1,2,3,6,7,8-HxCDF         ND(0.00000020) [ND(0.00000010)]         ND(0.000000059)         ND(0.000000066)         ND(0.000000031           1,2,3,7,8-HxCDF         ND(0.00000021) [ND(0.00000034)]         ND(0.000000059)         ND(0.000000051)         ND(0.000000031           1,2,3,7,8-HxCDF         ND(0.00000021) [ND(0.0000014)]         ND(0.000000051)         ND(0.000000051)         ND(0.000000051)           1,2,3,4,6,7,8-HxCDF         ND(0.0000012) [ND(0.0000014)]         0.0000035         ND(0.00000026)         ND(0.00000026)           1,2,3,4,6,7,8-HxCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000026)         ND(0.00000026)           1,2,3,4,7,8-HxCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000026)         ND(0.00000026)           1,2,3,4,7,8-HxCDF         ND(0.00000079) [ND(0.00000023)]         ND(0.00000026)         ND(0.00000026)           1,2,3,4,7,8-HxCDF         ND(0.00000079) [ND(0.00000023)]         ND(0.00000045)         ND(0.00000065)           1,2,3,4,7,8-HxCDF         ND(0.00000028) [ND(0.00000020)]         ND(0.00000012)         ND(0.00000067)           2,3,7			ND(0.0000038) Y	ND(0.00000011)	ND(0.00000051)
1.2,3,4,7,8-HxCDF         ND(0 0000057) [ND(0.0000010)]         0 000036 J         ND(0.00000066)         ND(0.00000003           1.2,3,6,7,8-HxCDF         ND(0 00000020) [ND(0.00000020)]         ND(0.00000059)         ND(0.00000066)         ND(0.000000066)         ND(0.00000026)         ND(0.00000066)         ND(0.00000066)         ND(0.00000066)         ND(0.00000067)         ND(0.00000066)         ND(0.00000067)         ND(0.00000066)         ND(0.00000067)         ND(0.00000066)			ND(0.00000066)	ND(0.00000092)	ND(0.00000056)
1,2,3,6,7,8-HxCDF         ND(0.0000020) [ND(0.0000018)]         ND(0.00000059)         ND(0.00000066)         ND(0.000000031)           1,2,3,7,8,9-HxCDF         ND(0.0000020) [ND(0.0000020]]         ND(0.00000033)         ND(0.000000031)         ND(0.000000031)           1,2,3,6,7,8-HxCDF         ND(0.0000020) [ND(0.0000034)]         ND(0.000000033)         ND(0.000000031)         ND(0.000000031)           1,2,3,4,6,7,8-HxCDF         ND(0.00000021) [ND(0.0000016)]         0.0000036         ND(0.00000051)         ND(0.00000021)           1,2,3,4,6,7,8-HxCDF         ND(0.00000012) [ND(0.0000016)]         0.0000031         ND(0.00000026)         ND(0.00000026)           1,2,3,4,6,7,8-HxCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000031)         ND(0.00000026)         ND(0.00000026)           1,2,3,4,6,7,8-HxCDF         ND(0.00000071) [ND(0.0000023)]         0.000011         ND(0.00000026)         ND(0.00000026)           1,2,3,4,7,8,9-HxCDF         ND(0.00000028) [ND(0.00000023)]         0.000011         ND(0.00000026)         ND(0.00000026)           0 CDF         0.000017 [ND(0.00000020)]         ND(0.00000013)         ND(0.00000012)         ND(0.000000667)           1,2,3,7,8-TCDD         ND(0.00000028) [ND(0.00000020)]         ND(0.00000054)         ND(0.00000067)         ND(0.00000067)           1,2,3,7,8-PeCDD         ND(0.00000026) [ND(0.00000020)] <td></td> <td></td> <td>ND(0.0000038)</td> <td>ND(0.00000025)</td> <td>ND(0.00000051)</td>			ND(0.0000038)	ND(0.00000025)	ND(0.00000051)
1,2,3,7,8,9-HxCDF         ND(0.0000020) [ND(0.00000020)]         ND(0.00000055)         ND(0.00000051)         ND(0.00000051)           2,3,4,6,7,8-HxCDF         ND(0.00000021) [ND(0.0000014)]         ND(0.00000093)         ND(0.00000051)         ND(0.000000051)           HxCDFs (total)         ND(0.00000021) [ND(0.0000016)]         0.0000036         ND(0.00000051)         ND(0.00000051)           1,2,3,4,6,7,8-HpCDF         ND(0.0000012) [ND(0.0000018)]         0.0000035         ND(0.00000026)           1,2,3,4,7,8,9-HpCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000026)         ND(0.00000026)           PpCDFs (total)         ND(0.0000017) [ND(0.00000078)]         ND(0.00000026)         ND(0.00000026)           OCDF         0.000017 [ND(0.00000061)]         0.000015         ND(0.00000065)           Dioxins         2,3,7,8-TCDD         ND(0.00000028) [ND(0.00000020)]         ND(0.00000012)         ND(0.00000067)           TCDDs (total)         ND(0.00000028) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000087)         ND(0.00000067)           1,2,3,7,8-PeCDD         ND(0.00000029) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000087)         ND(0.00000071)           1,2,3,7,8-PeCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000075)         ND(0.00000075)         ND(0.000000075)           1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF		0.0000036 J	ND(0.00000066)	ND(0.00000043)
2,3,4,6,7,8-HxCDF         ND(0.00000021) [ND(0.00000034)]         ND(0.00000093)         ND(0.00000026)         ND(0.00000093)         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)         ND(0.00000093)         ND(0.00000021)         ND(0.00000022)         ND(0.00000023)         ND(0.00000023)         ND(0.00000023)         ND(0.00000023)         ND(0.000000023)         ND(0.000000023)         ND(0.000000023)         ND(0.000000055)         ND(0.000000055)         ND(0.000000055)         ND(0.000000023)         ND(0.0000000637)         ND(0.0000000637)         ND(0.0000000637)         ND(0.000000667)         ND(0.000000667)         ND(0.000000667)         ND(0.000000650         ND(0.000000650)         ND(0.000000650)         ND(0.000000650)         ND(0.000000650         ND(0.000000650)         ND(0.000000650)         ND(0.0000000650)         ND(0.0000000650)	1,2,3,6,7,8-HxCDF		ND(0.00000059)	ND(0.00000066)	ND(0.00000035)
HxCDFs (total)         ND(0.00000096) [ND(0.0000016)]         0.0000036         ND(0.00000051)         ND(0.00000033)           1,2,3,4,6,7,8-HpCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000026)         ND(0.00000026)         ND(0.00000026)           1,2,3,4,7,8,9-HpCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000021)         ND(0.00000026)         ND(0.00000026)           HpCDFs (total)         ND(0.0000017) [ND(0.0000023)]         0.000011         ND(0.00000045)         ND(0.00000026)           OCDF         0.000017 [ND(0.0000061)]         0.000015         ND(0.00000038)         ND(0.00000026)           Dioxins         2,3,7,8-TCDD         ND(0.00000028) [ND(0.0000020)]         ND(0.00000012)         ND(0.000000667)           1,2,3,4,7,8-PeCDD         ND(0.00000029) [ND(0.0000020)]         ND(0.00000085)         ND(0.00000067)         ND(0.00000087)           1,2,3,4,7,8-PeCDD         ND(0.00000029) [ND(0.00000020)]         ND(0.00000085)         ND(0.00000087)         ND(0.00000087)           PeCDDs (total)         ND(0.00000092) [ND(0.00000072)]         ND(0.00000075)         ND(0.00000085)         ND(0.00000075)           1,2,3,4,7,8-PeCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000075)         ND(0.00000055)         ND(0.00000077)           1,2,3,6,7,8-HxCDD         ND(0.00000093) [ND(0.00000077)]         ND(0.00	1,2,3,7.8,9-HxCDF		ND(0.00000055)	ND(0.00000051)	ND(0.00000047)
1.2.3.4,6,7,8-HpCDF         ND(0.0000012) [ND(0.0000014)]         0.0000045 J         ND(0.00000026)         ND(0.00000026)           1.2.3.4,7,8,9-HpCDF         ND(0.00000079) [ND(0.00000078)]         ND(0.00000031)         ND(0.00000021)         ND(0.00000032)           HpCDFs (total)         ND(0.0000017) [ND(0.0000023)]         0.000011         ND(0.00000045)         ND(0.00000025)           OCDF         0.000017 [ND(0.0000061)]         9.000015         ND(0.00000045)         ND(0.00000065)           Dioxins         2,3,7,8-TCDD         ND(0.00000028) [ND(0.0000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.000000657)           TCDDs (total)         ND(0.00000020) [ND(0.0000020)]         ND(0.00000045)         ND(0.00000067)         ND(0.00000067)           PeCDDs (total)         ND(0.00000020) [ND(0.0000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000067)           PeCDbs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000007)           1.2,3,7,8-PeCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000075)         ND(0.00000067)         ND(0.00000070)           1.2,3,4,7,8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000055)         ND(0.00000055)         ND(0.00000055)           1.2,3,7,8,9-HxCDD         ND(0.00000093) [ND(0.00000075)	2,3,4,6,7,8-HxCDF	ND(0.0000021) [ND(0.0000034)]	ND(0.0000093)	ND(0.00000093)	ND(0.00000041)
1.2.3.4,7,8.9-HpCDF         ND(0.00000079) [ND(0.0000078)]         ND(0.0000031)         ND(0.00000021)         ND(0.00000021)           HpCDFs (total)         ND(0.0000017) [ND(0.0000023)]         0.000011         ND(0.00000045)         ND(0.00000025)           OCDF         0.000017 [ND(0.0000061)]         0.000015         ND(0.00000045)         ND(0.00000025)           Dioxins             ND(0.00000025)         ND(0.00000054)         ND(0.00000067)           TCDDs (total)         ND(0.00000026) [ND(0.0000020)]         ND(0.00000045)         ND(0.00000067)         ND(0.00000067)           1.2.3,7.8-PeCDD         ND(0.00000026) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000067)         ND(0.00000067)           PeCDbs (total)         ND(0.00000026) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000067)         ND(0.00000067)           1.2.3,7.8-PeCDD         ND(0.00000045) [ND(0.00000071)]         ND(0.00000075)         ND(0.00000067)         ND(0.00000007)           PeCDbs (total)         ND(0.00000092) [ND(0.00000072)]         ND(0.00000075)         ND(0.00000007)         ND(0.00000071           1.2.3,7.8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000066)         ND(0.00000055)         ND(0.00000055)           1.2.3,7.8.9-HxCDD         ND(0.00000093) [ND(0.00000075)]	HxCDFs (total)	ND(0.0000096) [ND(0.0000016)]	0.0000036	ND(0.00000051)	ND(0.000000035)
HpCDFs (total)         ND(0.0000017) [ND(0.0000023)]         0.000011         ND(0.0000045)         ND(0.00000025)           OCDF         0.000017 [ND(0.0000061)]         0.000015         ND(0.00000038)         ND(0.00000055)           Dioxins         2,3,7,8-TCDD         ND(0.00000085) [ND(0.00000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.00000067)           TCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000067)           1,2,3,7,8-PeCDD         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.000000112)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.000000112)           PeCDDs (total)         ND(0.00000020) [ND(0.00000072)]         ND(0.000000075)         ND(0.000000071)         ND(0.000000071)           1,2,3,4,7,8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.000000036)         ND(0.000000071)         ND(0.000000071)           1,2,3,6,7,8-HxCDD         ND(0.00000097) [ND(0.00000075)]         ND(0.00000053)         ND(0.00000053)         ND(0.00000053)           1,2,3,7,8,9-HxCDD         ND(0.00000097) [ND(0.00000075)]         ND(0.00000053)         ND(0.00000053)         ND(0.00000055)           1,2,3,4,6,7,8-HxCDD         ND(0.00000031) [ND	1,2,3,4,6,7,8-HpCDF	ND(0.0000012) [ND(0.0000014)]	0.0000045 J	ND(0.0000026)	ND(0.00000028)
OCDF         0.000017 [ND(0.0000061)]         0.000015         ND(0.0000038)         ND(0.00000085)           Dioxins         2,3,7,8-TCDD         ND(0.00000085) [ND(0.0000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.000000667)           TCDDs (total)         ND(0.00000020) [ND(0.0000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000067)           1,2,3,7,8-PeCDD         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000067)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.000000071)           1,2,3,4,7,8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1,2,3,6,7,8-HxCDD         ND(0.00000093) [ND(0.00000072)]         ND(0.00000036)         ND(0.00000055)         ND(0.000000071)           1,2,3,7,8,9-HxCDD         ND(0.00000093) [ND(0.00000075)]         ND(0.00000066)         ND(0.00000053)         ND(0.000000653)           1,2,3,4,6,7,8-HxCDD         ND(0.00000097) [ND(0.00000075)]         ND(0.00000070)         ND(0.000000653)         ND(0.000000653)           1,2,3,4,6,7,8-HxCDD         ND(0.00000031) [ND(0.00000075)]         ND(0.00000070)         ND(0.00000055)         ND(0.000000653)           1,2,3,4,6,7,8-HxCDD         N	1,2,3,4,7,8,9-HpCDF	ND(0.0000079) [ND(0.00000078)]	ND(0.0000031)	ND(0.00000021)	ND(0.00000032)
Dioxins           2,3,7,8-TCDD         ND(0.00000085) [ND(0.0000020)]         ND(0.00000013)         ND(0.00000012)         ND(0.00000067)           TCDDs (total)         ND(0.00000020) [ND(0.0000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.00000067)           1,2,3,7,8-PcCDD         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000011)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000087)         ND(0.00000011)           1,2,3,4,7,8-PcCDD         ND(0.00000092) [ND(0.00000020)]         ND(0.00000075)         ND(0.000000071)         ND(0.000000071)           1,2,3,4,7,8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.000000055)         ND(0.000000055)         ND(0.000000071)           1,2,3,6,7,8-HxCDD         ND(0.00000093) [ND(0.00000075)]         ND(0.00000056)         ND(0.00000055)         ND(0.00000055)           1,2,3,7,8,9-HxCDD         ND(0.00000093) [ND(0.00000075)]         ND(0.00000056)         ND(0.00000055)         ND(0.00000055)           1,2,3,7,8,9-HxCDD         ND(0.00000093) [ND(0.00000075)]         ND(0.00000056)         ND(0.00000055)         ND(0.00000055)           1,2,3,4,6,7,8-HxCDD         ND(0.00000031) [ND(0.00000048)]         0.00000051         ND(0.00000052)         ND(0.00000055)         ND(0.000000052)	HpCDFs (total)		0.000011	ND(0.00000045)	ND(0.00000028)
Dioxins           2,3,7,8-TCDD         ND(0.00000085) [ND(0.00000020)]         ND(0.00000013)         ND(0.00000012)         ND(0.00000067)           TCDDs (total)         ND(0.00000020) [ND(0.0000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.00000067)           1,2,3,7,8-PeCDD         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000011)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000011)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000017)         ND(0.000000011)           1,2,3,4,7,8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.000000036)         ND(0.000000055)         ND(0.000000071)           1,2,3,6,7,8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.00000056)         ND(0.00000053)         ND(0.000000053)           1,2,3,7,8,9-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.00000056)         ND(0.00000053)         ND(0.00000055)           1,2,3,7,8,9-HxCDD         ND(0.00000093) [ND(0.00000075)]         ND(0.00000056)         ND(0.00000055)         ND(0.00000055)           1,2,3,7,8,9-HxCDD         ND(0.00000031) [ND(0.00000075)]         ND(0.00000055)         ND(0.00000055)         ND(0.00000055)         ND(0.000000055)	OCDF	0.000017 [ND(0.0000061)]	0.000015	ND(0.0000038)	ND(0.000000058)
TCDDs (total)         ND(0.0000028) [ND(0.0000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.00000067)           1.2,3,7.8-PeCDD         ND(0.00000020) [ND(0.00000011)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000010)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000087)         ND(0.00000010)           1.2,3,4,7.8-PeCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1.2,3,4,7.8-HxCDD         ND(0.00000093) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1,2,3,6,7.8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.000000056)         ND(0.000000053)         ND(0.000000053)           1,2,3,7,8,9-HxCDD         ND(0.00000097) [ND(0.000000075)]         ND(0.00000070)         ND(0.000000055)         ND(0.00000066)           HxCDDs (total)         ND(0.00000031) [ND(0.00000048)]         0.0000043         ND(0.00000052)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000057)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000057)         ND(0.00000066)           0.0000021 [0.000021] [ND(0.0000031)]         0.000	Dioxins		***		
TCDDs (total)         ND(0.0000028) [ND(0.0000020)]         ND(0.00000054)         ND(0.00000012)         ND(0.00000067)           1.2,3,7.8-PeCDD         ND(0.00000020) [ND(0.00000011)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000010)           PeCDDs (total)         ND(0.00000020) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000087)         ND(0.00000010)           1.2,3,4,7.8-PeCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1.2,3,4,7.8-HxCDD         ND(0.00000093) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1,2,3,6,7.8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.000000056)         ND(0.000000053)         ND(0.000000053)           1,2,3,7,8,9-HxCDD         ND(0.00000097) [ND(0.000000075)]         ND(0.00000070)         ND(0.000000055)         ND(0.00000066)           HxCDDs (total)         ND(0.00000031) [ND(0.00000048)]         0.0000043         ND(0.00000052)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000057)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000057)         ND(0.00000066)           0.0000021 [0.000021] [ND(0.0000031)]         0.000	2.3.7.8-TCDD	ND(0.00000085) (ND(0.0000020))	ND(0.00000013)	ND(0.00000012)	ND/0.000000671
1.2.3.7.8-PeCDD         ND(0.00000020) [ND(0.00000011)]         ND(0.00000045)         ND(0.00000087)         ND(0.00000010           PeCDDs (total)         ND(0.00000045) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000017)         ND(0.00000010           1.2.3.4.7.8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1.2.3.4.7.8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.00000036)         ND(0.00000055)         ND(0.000000071)           1.2.3.6.7.8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.000000056)         ND(0.000000053)         ND(0.000000053)           1.2.3.7.8.9-HxCDD         ND(0.00000097) [ND(0.00000017)]         ND(0.00000070)         ND(0.000000053)         ND(0.000000653)           HxCDDs (total)         ND(0.00000031) [ND(0.00000048)]         0.0000043         ND(0.00000017)         ND(0.00000055)           1.2.3.4.6.7.8-HpCDD         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000057)         ND(0.00000052)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000060           OCDD         0.000021 [0.000029]         0.000045         ND(0.0000055)         ND(0.00000065)         ND(0.00000066)				*	· · · · · · · · · · · · · · · · · · ·
PecDDs (total)         ND(0.00000045) [ND(0.00000020)]         ND(0.00000075)         ND(0.00000017)         ND(0.00000010)           1.2.3.4,7.8-HxCDD         ND(0.00000092) [ND(0.00000072)]         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1.2.3.6,7.8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.000000066)         ND(0.000000053)         ND(0.000000053)           1.2.3,7.8,9-HxCDD         ND(0.00000097) [ND(0.000000075)]         ND(0.000000050)         ND(0.000000065)           1.2.3,7.8,9-HxCDD         ND(0.00000097) [ND(0.000000075)]         ND(0.00000070)         ND(0.00000065)           HxCDDs (total)         ND(0.00000031) [ND(0.00000048)]         0.6000043         ND(0.00000017)         ND(0.000000652)           1.2.3,4.6,7.8-HpCDD         ND(0.0000021) [ND(0.0000031)]         0.000060 J         ND(0.00000052)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000066)           OcDD         0.000021 [0.000029]         0.000045         ND(0.0000057)         ND(0.00000066)	the second se			the second second and second	
1.2.3.4,7.8-HxCDD         ND(0.00000092)         ND(0.00000072)         ND(0.00000036)         ND(0.000000055)         ND(0.000000071)           1.2.3.6,7.8-HxCDD         ND(0.00000093)         [ND(0.000000017)]         ND(0.00000066)         ND(0.000000053)         ND(0.000000053)           1.2.3,7.8,9-HxCDD         ND(0.00000097)         [ND(0.000000075)]         ND(0.000000070)         ND(0.000000053)         ND(0.000000066)           HxCDDs (total)         ND(0.00000031)         [ND(0.00000048)]         0.0000043         ND(0.00000017)         ND(0.00000066)           1.2.3,4.6,7.8-HpCDD         ND(0.0000021)         [ND(0.0000031)]         0.00000043         ND(0.00000052)         ND(0.00000066)           HxCDDs (total)         ND(0.0000021)         [ND(0.0000031)]         0.0000060 J         ND(0.00000052)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021)         [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000066)           OCDD         0.000021 [0.000029]         0.000045         ND(0.0000055)         ND(0.00000066)	the internet of the second		And an other second state of the second state	the second s	
1,2,3,6,7,8-HxCDD         ND(0.00000093) [ND(0.00000017)]         ND(0.00000066)         ND(0.000000053)         ND(0.000000053)           1,2,3,7,8,9-HxCDD         ND(0.000000097) [ND(0.000000075)]         ND(0.00000070)         ND(0.000000085)         ND(0.000000063)           HxCDDs (total)         ND(0.00000021) [ND(0.00000048)]         0.0000043         ND(0.00000017)         ND(0.00000065)           1,2,3,4,6,7,8-HpCDD         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000052)         ND(0.00000066)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000066)           CDD         0.000021 [0.000021]         0.000031)         0.000011         ND(0.0000057)         ND(0.00000066)				the second secon	
ND(0.00000097)         ND(0.000000075)         ND(0.00000070)         ND(0.00000085)         ND(0.00000085)           HxCDDs (total)         ND(0.00000031)         ND(0.00000048)         0.0000043         ND(0.00000017)         ND(0.00000055)           1.2.3.4.6.7.8-HpCDD         ND(0.0000021)         IND(0.0000031)         0.0000060 J         ND(0.00000052)         ND(0.000000600000000000000000000000000000			•	· · · · · · · · · · · · · · · · · · ·	*
HxCDDs (total)         ND(0.0000031) [ND(0.0000048)]         0.0000043         ND(0.00000017)         ND(0.00000055)           1.2.3.4.6.7.8-HpCDD         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000052)         ND(0.00000060)           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000060)           CDD         0.000021 [0.000029]         0.000045         ND(0.0000065)         ND(0.00000084)	the second s	ND(0.0000000000) (ND/0.00000017))		and the second sec	**
1.2.3.4.6.7.8-HpCDD         ND(0.0000021) [ND(0.0000031)]         0.0000060 J         ND(0.00000052)         ND(0.00000060           HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000060           OCDD         0.000021 [0.000029]         0.000045         ND(0.0000065)         ND(0.00000084			f	the second	
HpCDDs (total)         ND(0.0000021) [ND(0.0000031)]         0.000011         ND(0.0000057)         ND(0.00000060           OCDD         0.000021 [0.000029]         0.000045         ND(0.00000065)         ND(0.00000084			**************************************	······································	
0.000021 [0.000029] 0.000045 ND(0.000065) ND(0.0000065)		and a second	\$	······································	
	The second s			Company and the second design of the second design	
	Total TEQs (WHO TEFs)	0.0000030 [0.0000037]	0.000045	0.00000016	0.00000012

のないの

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Location Sample Sample Depth(Fe Parameter Date Collect	ID: ES1070608 et): 6-8	ES1-8 ES1080406 4-6 05/16/96	ES1-9 ES1090406 4-6 05/16/96	ES1-14 ES1141416 14-15 07/29/96
Inorganics				
Antimony	0.500 BN (ND(0.390) N)	ND(0.350) N	ND(0 340) N	ND(0.250) N
Arsenic	7.10 [7.60]	4.90	3.00	3.80
Barium	35.1 [20.5 B]	10.7 B	16.4 B	22.7
Beryllium	0.390 B [0.300 B]	0.260 B	0.270 B	0.180 B
Cadmium	ND(0.0600) N [ND(0.0700) N]	ND(0.0600) N	ND(0.0600) N	ND(0.0300) N
Chromium	11.4 [8.50]	5.70	4,70	7.30
Cobalt	12.1 [9.80]	15.6	5.80	7 90 E
Copper	29.2 [36.0]	29.2	12.3	14.7 *
Cyanide	ND(0.620) N [ND(0.630) N]	ND(0.550) N	ND(0.600) N	NA
Lead	9.20 [9.40]	7.80	5.50	7.40 E
Mercury	ND(0.110) N [ND(0.130) N]	ND(0.120) N	0.130 N	ND(0.110)
Nickel	22.9 [17.8]	20.6	10.1	14.5 E
Selenium	ND(0.330) N [ND(0.380) N]	ND(0.330) N	ND(0.320) N	ND(0.340) N
Silver	ND(0.0800) [ND(0.0900)]	ND(0.0800)	ND(0.0800)	ND(0.0700)
Sulfide	ND(76.8) [ND(107)]	ND(35.1)	ND(67.9)	ND(61.7)
Thallium	ND(0.430) [ND(0.480)]	ND(0.430)	ND(0.410)	ND(0.350)
Tin	ND(1.00) [ND(1.10)]	ND(1.00)	ND(0.980)	1.40 B
Vanadium	8.30 [5.70 B]	3.60 B	3.60 B	5.40 B
Zinc	74.7 [50.9]	42.4	35.0	46.6

Notes:

1. Samples were collected and analyzed by General Electric Company subcontractors for Appendix IX + 3 constituents.

2. ND - Analyte was not detected. The number in parentheses is the associated detection limit.

3. NA - Not Analyzed.

 Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.

5. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles, dioxin/furans)

B - Analyte was also detected in the associated method blank.

J - Indicates an estimated value less than the practical quantitation limit (PQL),

Y - 2,3,7,8-TCDF results have been confirmed on a DB-225 column.

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

N - Indicates sample matrix spike analysis was outside control limits.

E - Serial dilution results not within 10%. Applicable only if analyte concentration is at least 50X the IDL in original sample.

* - Indicates laboratory duplicate analysis was outside control limits.

#### TABLE 2-7

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	RAA6-A15	RAA6-A17	RAA6-B16	RAA6-C6	RAA6-C6
Parameter	Sample Depth(Feet): Date Collected:	0-1 08/11/03	0-1 08/11/03	0-1 08/11/03	0-1 08/29/03	6-8
Volatile Organ		00/11/00	00/11/03	00/11/05	08/29/03	08/11/03
1,1.1,2-Tetrach		NA	NA	NA	ND(0.029)	ND/0 0022-
1,1,1-Trichloros		NA	NA	NA NA	ND(0.029)	ND(0.0063) ND(0.0063)
1.1.2.2-Tetrach	······································	NA	NA	NA	ND(0.029)	ND(0.0063)
1.1.2-Trichloroe		NA	NA	NA	ND(0.023)	ND(0.0063)
1,1-Dichloroeth		NA	NA	NA	ND(0.029)	ND(0.0063)
1,1-Dichloroeth		NA	NA	NA	ND(0.029)	ND(0.0063)
1.2.3-Trichloros		NA	NA	NA	ND(0.029)	ND(0.0063)
	chloropropane	NA	NA	NA	ND(0.029)	ND(0.0063)
1,2-Dibromoeth		NA	NA	NA	ND(0.029)	ND(0.0063)
1,2-Dichloroeth	ane	NA	NA	NA	ND(0.029)	ND(0.0063)
1,2-Dichloropro	pane	NA	NA	NA	ND(0.029)	ND(0.0063)
1,4-Dioxane		NA	NA	NA	ND(0.29)	ND(0.13)
2-Butanone		NA	NA	NA	ND(0.029)	ND(0.013)
2-Chioro-1,3-bu	utadiene	NA	NA	NA	ND(0.029)	ND(0.0063)
2-Chloroethylvi		NA	NA	NA	ND(0.029)	ND(0.0063)
2-Hexanone		NA	NA	NA	ND(0.058)	ND(0.013)
3-Chloroproper	ré	NA	NA	NA	ND(0.029)	ND(0.0063)
4-Methyl-2-pen		NA	NA	NA	ND(0.058)	ND(0.013)
Acetone		NA	NA	NA	ND(0.058)	ND(0.025)
Acetonitrile		NA	NA	NA	ND(0.58)	ND(0.13)
Acrolein		NA	NA	NA	ND(0.58)	ND(0.13)
Acrylonitrile		NA	NA	NA	ND(0.029)	ND(0.0063)
Benzene		NA	NA	NA	ND(0.029)	ND(0.0063)
Bromodichloror	nethane	NA	NA	NA	ND(0.029)	ND(0.0063)
Bromoform		NA	NA	NA	ND(0.029)	ND(0.0063)
Bromomethane		NA	NA	NA	ND(0.029)	ND(0.0063)
Carbon Disulfid	e	NA	NA	NA	ND(0.029)	ND(0.0063)
Carbon Tetrach	loride	NA	NA	NA	ND(0.029)	ND(0.0063)
Chlorobenzene		NA	NA	NA	ND(0.029)	ND(0.0063)
Chloroethane		NA	NA	NA	ND(0.029)	ND(0.0063)
Chloroform		NA	NA	NA	ND(0.029)	ND(0.0063)
Chloromethane		NA	NA	NA	ND(0.029)	ND(0.0063)
cis-1,3-Dichloro	propene	NA	NA	NA	ND(0.029)	ND(0.0063)
Dibromochloror	nethane	NA	NA	NA	ND(0.029)	ND(0.0063)
Dibromomethar	ne	NA	NA	NA	ND(0.029)	ND(0.0063)
Dichlorodifluoro	methane	NA	NA	NA	ND(0.029)	ND(0.0063)
Ethyl Methacryl		NA	NA	NA	ND(0.029)	ND(0.0063)
Ethylbenzene		NA	NA	NA	14	0.048
odomethane		NA	NA	NA	ND(0.029)	ND(0.0063)
sobutanol		NA	NA	NA	ND(0.58)	ND(0.13)
Aethacrylonitrik	e	NA	NA	NA	ND(0.029)	ND(0.0063)
Methyl Methacr	viate	NA	NA	NA	ND(0.029)	ND(0.0063)
lethviene Chio	ride	NA	NA	NA	ND(0.029)	ND(0.0063)
ropionitrile		NA	NA	NA	ND(0.029)	ND(0.013)
Styrene		NA	NA	NA	ND(0.029)	ND(0.0063)
etrachloroethe	ine	NA	NA	NA	ND(0.029)	ND(0.0063)
oluene		NA	NA	NA	0.33	ND(0.0063)
rans-1,2-Dichic	proethene	NA	NA	NA	ND(0.029)	ND(0.0063)
rans-1,3-Dichlo	***************************************	NA	NA	NA	ND(0.029)	ND(0.0063)
ans-1,4-Dichio		NA	NA	NA	ND(0.029)	ND(0.0063)
richloroethene		NA	NA	NA	ND(0.029)	ND(0.0063)
richlorofluorom		NA	NA	NA	ND(0.029)	ND(0.0063)
inyl Acetate		NA	NA	NA	ND(0.029)	ND(0.0063)
/inyl Chloride		NA	NA	NA	ND(0.029)	ND(0.0063)
(vienes (total)	·····	NA	NA	NA	120	0.41
norganics						с, <del>т</del> .
ntimony		520	4.50 B	4.10 B [8.30]	NA	NA
ead		3,800	37.0	93.0 [93.0]	NA	NA NA

#### TABLE 2-7

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 SOIL ANALYTICAL RESULTS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR THE EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

#### Notes:

- 1. Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of volatiles, antimony and lead.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. Field duplicate sample results are presented in brackets.

#### Data Qualifiers.

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

#### TABLE 4-1 COMPARISON OF DETECTED APPENDIX IX+3 CONSTITUENTS TO INDUSTRIAL SCREENING PRGs GE-OWNED PARCELS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Analytical Parameter	Maximum Detect	USEPA Region 9 Industrial PRGs (See Notes 1, 2, and 3)	Constituent Retained for Further Evaluation? (See Note 4)	
Volatile Organics			,000 11010 47	
1.3-Dichlorobenzene	0.32	140	No	
1.4-Dichlorobenzene	2.3	7.3	No	
2-Butanone	0.22	27.000	No	
2-Hexanone	6.1	27,000	No	
Acetone	0.05	6.100	No	
Benzene	0.02	1.4	No	
Bromoform	0,14	380	No	
Ethylpenzene	16.5	230	No	
m&p-Xylene	0.2	210	No	
Methyl Methacrylate	073	7,300	No	
Methylene Chloride	0.013	20	No	
Tetrachloroethene	0.0044	16	No	
Foluene	0.33	520	No	
(ylenes (total)	140	210	No	
Semivolatile Organics				
1,2,4-Trichlorobenzene	0.086	1.700	No	
1,3-Dichlorobenzene	0.18	140	No	
1.4-Dichlorobenzene	1.4	7.3	No	
2.4-Dimethylphenol	0.34	21,000	No	
2-Methyinaphthalene Acenaphthene	7.2	190	No	
	0.91	28,000	No	
Acenaphthylene	0.24	190	No	
Acetophenone	0.6	1.6	No	
	3.2	220.000	No	
Benzo(a)anthracene	5.3	3.6	Yes	
Benzo(a)pyrene	3.8	0,35	Yes	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	4	3.6	Yes	
Senzo(g,n,nperyiene Benzo(k)fluoranthene		190	No	
pis(2-Ethylhexyl)phthalate	0.1	36	No	
Dhrysene	4.3	210	No	
Dibenzo(a,h)anthracene	4.3	360	No	
Dibenzofuran		0.36	Yes	
luoranthene	0.57	3,200	No	
luorene	1	37,000	No	
lexachloroethane	0.099	22,000	No	
ndeno(1.2.3-cd)pyrene	1.7	210	No	
laphthalene	1.7	3.6	No	
Phenanthrene	95	190	No	
henol	95 8.2	190	No	
yrene	8.5	26,000	No No	
norganics		20,000	190	
ntimony	1.3	750	h :	
VISENIC	11.8	3	No	
Jarium	58	100,000	Yes	
ierylium	0.39	3,400	No No	
ladmium	0.96	930	NO No	
bromium	14.2	450	No No	
obalt	16.6	29,000	No	
opper	46	70,000	No	
lyanide	0.2	21,000	No	
ead	210	1.000	No	
tercury	0.19	560	NO	
lickel	267	37,000	No	
elenium	18	9.400	N0 N0	
ilver	1.4	9.400	No	
uffide	210	1.200	No	
in	0.55	100 000	No	
asadrum	13.8	13,000	No	
inc	110	100,500	No	

#### TABLE 4-1

#### COMPARISON OF DETECTED APPENDIX IX+3 CONSTITUENTS TO INDUSTRIAL SCREENING PRGs GE-OWNED PARCELS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm. dry weight)

30125

- 1 PRG a Pretaminary Remediation Coal.
- 2. Per Anachment F to Statement of Work for Removal Actions Outside the River (SOW), companison to PRGs is recurred for all detected Appendix X+3 constituents except PCBs, downs and tyrans
- 3 In accurdance with Technical Attachment F of the SCW, USEPA Region 9 PRGs for commercial/industrial areas were used for initial screening comparison. For construents for which there are no such PRGs, the following surrogate Region 9 PRGs were used for initial screening all benzolajoyrene for carcinogenic PAHs, per Technical Attachment F. Section 2.0. Step 3a.
  - bi napthalen- fui noncarcinogenic PAHs, per Technical Attachment F. Section 2.5, Step 3a
  - c hydrogen cyande for total cyanide, per EPAs Newell Street Area I RDIRA Work Plan Condustral Approval Letter, dated May 24 2002
  - d im xylene for total xylenes, per EPAs Newell Street Area i RD/RA Work Plan Conditional Approval Letter, dated May 24, 2002
  - e carbon devilide for sulfide, per EPAS 20s, 30s, 40s Complexes RD/RA Work Plan Conditional Approval Letter, dated March 13 (2002) f methyl ethyl xetone for 2-hexanone, as requested by the EPA in the November 26, 2003 conditional approval ethyl the
- East Street Area 1-North Conceptual Removal Design/Removal Action Work Plan 4. Constituent to retained for further evaluation if its maximum detected concentration exceeds its corresponding PRG

#### TABLE 4-2 COMPARISON OF DETECTED APPENDIX IX+3 CONSTITUENTS TO INDUSTRIAL SCREENING PRGs NON GE-OWNED PARCEL K10-14-1

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Analytical Parameter	Maximum Detect	USEPA Region 9 Industrial PRGs (See Notes 1, 2, and 3)	Constituent Retained for Further Evaluation? (See Note 4)
Volatile Organics			
Acetone	0.023	6,100	No
Methylena Chloride	0.014	20	No
Semivolatile Organics			
1.4-Dichlorobenzene	0.35	7.3	No
2-Methylnaphthalene	0.5	190	No
Acenaphthylene	0.22	190	No
Anthracene	0,22	220,000	No
Benzo(a)anthracene	0.8	36	No
Benzo(a)pyrene	0.8	0.36	Yes
Benzo(b)fluoranthene	11	3.6	No
Benzo(g.h.i)perylene	0.53	190	No
Benzo(k)fluoranthene	0.45	35	No
bis(2-Ethylhexyl)phthalate	0.47	210	No
Chrysene	0.B	360	No
Dibenzo(a,h)anthracene	0.14	0.36	No
Di-n-Butyiphthalate	0.11	110.000	No
Fluoranthene	2	37,000	No
Indeno(1,2.3-cd)pyrene	0.49	3.5	No
Naphthalene	0.81	190	No
Phenanthrene	0.97	190	No
Pyrene	1.4	26,000	No
Inorganics			
Antimony	1,600	750	Yes
Arsenic	19	3	Yes
Barium	77	100.000	No
Beryllium	1.8	3.400	No
Cadmium	2.2	930	No
Chromium	15	450	No
Cobalt	10	29,000	No
Copper	4,100	70.000	No
Cyanide	0.22	21,000	No
Lead	3,800	1.000	Yes
Mercury	0.82	560	No
Nickel	34	37,000	No
Selenium	2	9.400	No
Silver	0.55	9.400	No
Sulfide	54	210	No
Thallium	2	150	No
Tin	6,600	100.000	No
Vanadium	32	13,000	No
Zinc	160	100,000	No

Notes

1 PRG = Preliminary Remediation Goal

2. Per Attachment F to Statement of Work for Removal Actions Outside the River (SOW), comparison to PRGs is required for all detected Appendix IX+3 constituents except PCBs, downs and furans

3 In accordance with Technical Attachment F of the SOW, USEPA Region 9 PRGs for commercial industrial areas were used for initial screening comparison. For constituents for which there are no such PRGs, the following surrogate Region 9 PRGs were used for initial screening.

al benzul ajpyrene for cwiselogenic PAHs, per Technical Attachment F. Switten 2.0, Step 3a b, napthalene for noncaronogenic PAHs, ber Technical Attachment F. Section 2.0, Step 3a

c, hydrogen cyankle for total cyankle, per EPAs Newell Street Area (RD/RA Work Ptan Conditional Approval Letter, dated May 24, 2002)

C. Hydrogen Cyanitie for soar cyarice, per EPAs Newer Steel Area (ROPA Work Pron Constantial Approval Cetter, dated may 24, 24
 d. m-kytene for total kytenes, per EPAs Newer Street Area (ROPA Work Pran Coaddional Approval Letter, dated May 24, 2002)

e carbon disultate for suffate, per EPAs 20s, 30s, 40s Complexes RD/RA Work Plan Condational Approval Letter, dated March 19, 2002

4 Constituent is relained for further evaluation if its maximum detected concentration exceeds its corresponding PRG

#### TABLE 4-3 COMPARISON OF DETECTED APPENDIX IX+3 CONSTITUENTS TO INDUSTRIAL SCREENING PRGS NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Analytical Parameter	Maximum Detect	USEPA Region 9 Industrial PRGs (See Notes 1, 2, and 3)	Constituent Retained for Further Evaluation? (See Note 4)
Volatile Organics			
Acetone	0.033	5.100	No
Methylene Chlonde	0.013	20	No
Toluene	0.0058	520	No
Trichloroethene	0.008	6.1	No
Semivolatile Organics			•
1.3-Dichlorobenzene	0.064	140	No
1.4-Dichlorobenzene	0.46	7.3	No
2-Methyinaphthalene	2.2	190	No
2-Methylphenol	016	53,000	No
3&4-Methylphenol	0.56	5,300	No
Acenaphthene	1.2	28.000	No
Acenaphthylene	1.1	190	No
Acetophenone	0.19	1,6	No
Aniline	0.17	530	No
Anthracene	1	220.000	No
Benzo(a)anthracene	3.3	3.6	No
Benzo(a)pyrene	1.6	0.36	Yes
Benzo(b)fluoranthene	3.5	3.6	No
Benzo(g.h.i)perylene	1 8	190	No
Benzo(k)fluoranthene	1,4	36	No
bis(2-Ethylhexyl)phthalate	0.1	210	No
Chrysene	3.9	360	No
Dibenzo(a.h)anthracene	0.36	0.36	No
Dibenzofuran	1.4	3.200	No
Diethylphthalate	0.088	100.000	No
Dimethylphthalate	1	100,000	No
Fluoranthene	10	37.000	No
Fiuorene	0.69	22,000	No
Indeno(1.2.3-cd)pyrene	1.5	3.6	No
Naphthalene	5.4	190	No
N-Nitrosopiperidine	3.6	1.4	Yes
Phenanthrene	57	190	No
Pheno!	0.61	100.000	No
Pyrene	8.7	26.000	No
Inorganics			
Antimony	1,600	750	Yes
Arsenic	19	3	Yes
Barium	77	100,000	No
Berylium	1.8	3.400	No
Cadmium	2.2	930	No
Chromium	19	450	No
Cobalt	12.1	29.000	No
Copper	4,100	70,000	No
Cyanide	0.34	21,000	No
Lead	3.800	1.000	Yes
Mercury	0.82	560	No
Nickel	34	37,000	No
Selenium	2	9.400	No
Sulfide	74	210	No
Thaliium	2	150	No
Tin	6,600	100.000	No
Vanadium	12	13,000	No
Zinç	160	100,000	No

#### TABLE 4-3

COMPARISON OF DETECTED APPENDIX IX+3 CONSTITUENTS TO INDUSTRIAL SCREENING PRGs NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

142185

PRG = Presmicury Remediation Goal

2 Per Attachment 4 to Solement of Work for Removal Actions Outside the River (SOW), comparison to PRQs is required for all detected Appendix X+3 constituents except PCBs, dioxins and furans

3 In accordance with Technical Atlactiment F of the SOW, USEPA Region 9 PRGs for commercial industrial areas were used for initial screening companson. For constituents for which there are no turn PRGs, the bilinitian surrogate RHyris 5 PRGs were used for incut screening a polizikajpyrene for caromygerik, PAHs, per Technikai Atlacsmeni F., Section 2.0, Step 3a

5 napthalene for honoarcinogenic PAris, per Technical Attachment F, Section 2.0, Step 3a

c, hydrogen cyande fur tidal cyands, per EPAs Newell Street Area I RD/RA Work Plan Conditional Approval Letter, dated May 24, 2502

d. m. sylmie for total sylenes, per EPAs Newed Street Ares i RD/RA Work Plan Conditional Approval Letter, dated May 24, 2002

el carbon disultide for surfice, per EPAs 20s. 30s. 40s Complexes RD/RA Work Prim Conditional Approval Letter, dated March 10, 2002

1 4-methylphonol for 384-methylphenol

g. N-nitrosopymolidine for N-nitrosopiperidine, as requested by the EPA in the November 25, 2003 conditional approval letter for the East Street Area 1-Narth Conceptuar Removal Design/Removal Action Work Plan

4. Constituent is relained for further evaluation if its maximum detected concentration exceeds its corresponding PRG

#### .....

#### TABLE 4-4 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS GE-OWNED PARCELS (0- TO 1-FOOT DEPTH INTERVAL)

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Sample	D: RAA6-C4	RAA6-C6 (See Note 6)	RAAB-D5	RAA8-D7	RAA6-E1
Sample Depth (Fe	xt): 0-1	0-1	0-1	0-1	0-1
Parameter Date Collect	ed: 01/10/03	01/10/2003 & 08/29/03	01/14/03	01/13/03	01/09/03
Semivolatile Organics					
Bonzo(a)anthracene	0.14	070	0.43	0.65	0.27
Benzo(a)pyrene	0.14	0.55	0.56	0.56	0.30
Benzo(b)fluoranthene	0.20	0.63	0.70	0.64	0.33
Dibenzo(a,h)anthracene	0.185	0.19	0.14	0,195	0.325
Dioxins/Furans					
Total TEQs (WHO TEFs)	1.60E-05	3.80E-06	5.10E-06	2.20E-05	9.50E 06
Inorganics Arsenic					***************************************
Arsenic	3.40	9.00	7.10	5.90	5.60

Sample Sample Depth (F Parameter Date Collec	eet): 0-1	Maximum Sample Result (See Note 3)	Arithmetic Average Concentration (See Note 3)	MCP Method 1 S-2 (GW-2/GW-3) Soll Standard (See Note 4)	Constituent Exceeds Initial Comparison Criteria? (See Note 5)
Semivolatile Organics					
Benzo(a)anthracene	0.45	N/A (See Note 5)	0.44	1 1	No
Benzo(a)pyrene	0 39	N/A (See Note 5)	0.42	0.7	No
Benzo(b)fluoranthene	0.48	N/A (See Note 5)	0.50	1	No
Dibenzo(a,h)anthracene	0.195	N/A (See Note 5)	0.21	0.7	No
Dioxins/Furans					
Total TEQs (WHO TEFs)	1.90E-05	2.20E-05	N/A (See Note 5)	5.00E-03	No
Inorganics					
Arsenic	6.20	N/A (See Note 5)	6.20	30	No

NO.U.S.

1. Total 2.3,7.8-TCDD lookly equivalency quotients (TEOs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factors (TEPs) for all PCDD/PCDF compounds

Where instrudual compounds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations

2. With the exception of Total/TCQs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surregate PRGs.

3. Non-detect sample results included as one-half the detection limit in the calculation of maximum and arithmetic average concentrations and presented in bold.

4 The Method 1.5-2 sell standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent), except for Dioxin/Furan Total TEQs. Total TEQs are compared to the EPA PRGs for such TEQs set nut in Attachment F of the Statement of Work for Ramoval Actions Outside the River (SOW) or the other TEQ comparison criteria utilized in With Couceptual RD/RA Work Plan for Newell Street Area L.

5 Arithmetic average concentrations of all construents, except Total TEQs, are compared to Method 1 Soll Standards. For TEQs, the maximum concentration is compared to the appropriate EPA FRG (or other comparison orderon).

6 Sampling data for sampling location RAA6-C6 have been included in these evaluations as follows: (a) For detected constituents, either the average of both sampling (if the constituent was detected during both sampling events) or the value of the detected constituent (if the constituent was only detected during one of the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during the sampling events); and (b) for non-detected constituents, half the value of the detection limit achieved during events); and (b) for non-detected constituents, half the value of the detection limit achieved during events); an

#### TABLE 4-5 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS GE-OWNED PARCELS (1- TO 6-FOOT DEPTH INTERVAL)

-

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 • NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

	Sample ID: Sample Depth (Feet):	ES1-8 4-6	ES1-9 4-6	RAA6-C2	RAA6-C2 5-6	RAA6-D5	RAA6-D5 4-6
Parameter	Date Collected:	05/16/96	05/16/96	01/09/03	01/09/03	01/14/03	01/14/03
Semivolatile O	Irgantes						
3enzo(a)anthra	ICene	1.95	1.95	0.19	**	0.185	·····
Benzo(a)pyrene	8	1.95	1.95	0.19		0,185	<ul> <li>McContribution and an Antonio and an antiparticle and a state of the s</li></ul>
3enzo(b)fluorar		2.30	2.25	0.19		0.185	and a second
Dibenzo(a,h)an	ithracene	1.30	1.25	0.19		0.19	
norganics			*****	<u></u>			
Arsenic	1	4.90	3.00	5.40		8.60	

Parameter	Sample ID: Sample Depth (Feet): Date Collected:	RAA6-D7 1-3 01/13/03	RAA6-E3 1-6 01/14/03	RAA6-E3 4-6 01/14/03	Arithmetic Average Concentration (See Note 2)	MCP Method 1 S-2 (GW-2/GW-3) Soll Standard (See Note 3)	Constituent Exceeds Initial Comparison Criteria? (See Note 4)
Semivolatile Ö	rganics						
Benzo(a)anthra	icene	5.30	0.17		1.62	1	Yes
Benzo(a)pyrene		3 80	0.16		1 37	0.7	Yes
Benzo(b)fluorar		4.00	0.14	~*	1,51	1	Yes
Dibenzo(a,h)an	thracene	0.57	0.19		0.61	0.7	No
norganics							
Atsenic	T T	6.60	6.80	···	5.92	30	No

Notes.

1 The constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 industrial PRGs or surrogate PRGs.

2 Non-detect sample results included as one-ball the detection time in the calculation of arithmetic average concentrations and presented in bold.

3 The Method 1 soll-standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent).

4 Arithmetic average concentrations of all constituents are compared to Method 1 Soit Standards

5 - - - - - constituent not subject to analysis

#### TABLE 4-6 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS GE-OWNED PARCELS (0- TO 15-FOOT DEPTH INTERVAL)

a provide and

JANK.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Sample		RAA6-C6 (See Note 3)	RAA6-D5	RAA6-D7	RAA6-E1	RAA6-E3
Sample Depth(Fe	•et}: 0-1	0-1	0-1	0-1	0-1	0-1
Parameter Date Collec	ed: 01/10/03	01/10/2003 & 08/29/03	01/14/03	01/13/03	01/09/03	01/14/03
Semivolatile Organics						
Benzo(a)anthracene	0.14	0.70	0.43	0.65	0 27	0.45
lenzo(a)pyrene	0.14	0.55	0.56	0.56	0.30	0.39
ienzo(b)fluoranthene	0.20	0.63	0.70	0.64	0.33	0.48
Dibenzu(a,h)anthracene	0.165	0.19	0.14	0,195	0.325	0,195
Dioxins/Furans						
fotal TEQs (WHO TEFs)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)
norganics					······································	
Visenic	3.40	9 00	7.10	5.90	5.60	6.20

Sample II Sample Depth(Feet		ES1-9 4-6	RAA6-C2 1-6	RAA6-C2 5-6	RAA6-D5 1-6	RAA6-D5 4-5
Parameter Date Collected		05/16/96	01/09/03	01/09/03	01/14/03	01/14/03
Semivolatile Organics				***************************************		1
Benzo(a)aethracene	1.95	1.95	0.19	1	0.185	
Benzo(a)pyrene	1.95	1.95	0,19		0,185	The second
Benzo(b)fluoranthene	2.30	2.25	0.19		0.185	
Dibenzo(a,h)anthracene	1,30	1,25	0.19		0.19	
Dioxins/Furans				······································	***************************************	· · · · · · · · · · · · · · · · · · ·
Total TEQs (WHO TEFs)	1.30E-06	1.60E-07	1.70E-05		3 30E-06	
Inorganics	*****			***************************************		L
Arsenic	4.90	3.00	5.40		8.60	

Sample ID: Sample Depth(Feet): Parameter Date Collected:	RAA6-D7 1-3 01/13/03	RAA6-E3 1-6 01/14/03	RAA6-E3 4-6 01/14/03	ES1-7 6-8 05/16/96	RAA6-C2 6-15 01/09/03	RAA5-C2 8-10 01/09/03
Semivolatile Organics					*********************	······································
3enzo(a)anthracene	5.30	0.17		1.27	0,19	· · ·
ienzo(a)pyrene	3.80	0.16	and	1.27	0.19	And the second
lenzo(b)fluoranthene	4.00	0.14		1.48	0.19	v v v
libenzo(a,h)anthracene	0.57	0.19		0.83	0,19	an a
Noxins/Furans		······································				
otal TEQs (WHO TEFs)	1.20E-05	5.40E-06		3.35E-07	7.20E-07	
vorganics			·····			
rsenic	6,80	6 80	~~	7.35	5 80	

#### TABLE 4-6 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS GE-OWNED PARCELS (0- TO 15-FOOT DEPTH INTERVAL)

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Sample		RAA6-C5	RAA6-C6 (See Note 3)	RAA6-C6	RAA6-E1	RAA6-E1
Sample Depth(Fe		6-15	6-8	6-15	6-15	12-15
Parameter Date Collect	ed: 01/15/03	01/09/03	01/10/2003 & 08/11/03	01/10/03	01/09/03	01/09/03
Semivolatile Organics						
Benzo(a)anthracene	2.10	0.17		0.20	0.19	
Benzo(a)pyrene	2,10	0.17	~-	0.20	0.19	we will start of a second start of a second start st
Benzo(b)fluoranthene	2.10	0.17		0.20	0.19	and a substant of the second state of the seco
Dibenzo(a,h)anthracene	2.10	0.17	~~	0.20	0.19	and - Berner Fage, 12 (1998), 29 ( )
Dioxins/Furans		****				
Total TEQs (WHO TEFs)		••	[	2.458-06	6.20E-07	
inorganics		******				······································
Arsenic	8.90	5.00		7.80	5 60	v 4

Sample De	ample ID; pth(Feet): Collected;	RAA6-E6 6-15 01/13/03	RAA6-E6 8-10 01/13/03	Maximum Sample Result (See Note 5)	Arithmetric Average Concentration (See Note 5)	MCP Method 1 S-3 (GW-2/GW-3) Soll Standard (See Note 6)	Constituent Exceeds Initial Comparison Criteria? (See Note 7)
Semivolatile Organics							
Benzo(a)anthracene		0.20	**	(See Note 8)	0.88	4	No
Benzo(a)pyrene		0.20	~•	(See Note 8)	0.79	0.7	Yes
Benzo(b)fluoranthene		0.20	^-	(See Note 8)	0.87	4	No
Dibenzo(a,h)anthracene		0.20		(See Note 8)	0.46	0.8	No
DioxIns/Furans							
Total TEQs (WHO TEFs)			**	1.70E-05	(See Note 8)	2.00E-02	No
Inorganics				······································			
Arsena		11.80	4	(See Note 8)	6.63	30	No

NOI25

1 Total 2.3, 7.8-TCDD toxicity equivalency quotients (TEQs) were calculated using World Health Organization (WHO). Toxicity Equivalency Factors (TEFs) for all PCDD/PCDF compounds.

Where indextual compounds were not detected, a value of one-half the analytical refection limit was used to calculate the TEQ concentrations.

2 Total TEQs were evaluated for the 1- to 15 foot depth increment only.

3 Sampling state for sampling location RA46-C6 have been included in these evaluations as follows: (a) For detected constituents, either the average of both sampling (if the constituent was detected during both sampling events) or the value.

of the detected constituent (if the constituent was only detected during one of the sampling ments) and (b) for non-detected constituents, half the value of the detection limit achieved during the supplemental sampling conducted in Angust 2003

4 With the exception of Total TEQs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 industrial PRGs or surrogate PRGs

5 Non detect sample insults included as one-half the detection thirit in the calculation of maximum and arithmetic average cuncentrations and presented in bold

6 The Method 1 \$13 sof standards listed are those associated with GW-2 of GW-3 groundwater (whichever is more stringent), except for Dioxin/Furan Total TEQs. Total TEQs are compared to the EPA PRGs for such

TEQs set out in Attachment Fol the Statement of Work for Renoval Actions Outside the River (SOW) or the other TEQ comparison citeria utilized in the Conceptual RD/RA Work Para for Newell Spect Area 1

7 Arithmetic average concentrations of all constituents, except Total TEQs, are compared to Method 1 Sol Standards. For TEQs, the maximum concentration is compared to the appropriate EPA PRG (or other companion citerice)

8 --- < constituent not subject to analysis

#### TABLE 4-7 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K10-14-1 0- TO 1-FOOT DEPTH INCREMENT

(Charles

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID	RAA6-A15	RAA5-A16	RAA5-A17	RAA6-B14	RAA6-B16	RAA6-C17	RAA6-D10
Sample Depth (Feet)	: 0-1	0-1	0-1	0-1	0-1	0-1	0-1
Parameter Date Collected	: 08/11/03	01/02/03	08/11/03	01/03/03	08/11/03	01/02/03	01/13/03
Semivolatile Organics							
Benzo(a)pyrene Dioxins/Furans		0 5	4100	0.5		0.22	0,36
Dioxins/Furans	1						
Total TEQs (WHO TEFs)		2.60E-05		2 00E-05	·· ·	2.60£-05	7 20E-06
Inorganics							
Antimony	520	1,600	4.5	7.7	6.2	33	0.96
Arsenic		19		10	~~	5.9	6.8
Lead	3,800	3,200	37	150	93	140	29

Sample ID: Sample Depth (Feet): Parameter Date Collected:	RAA6-D12 0-1 01/09/03	RAA6-D14 0-1 01/07/03	Maximum Sample Result (See Note 3)	Arithmetic Average Concentration (See Note 3)	MCP Method 1 S-2 (GW-2/GW-3) Soll Standard (See Note 4)	Constituent Exceeds Initial Comparison Criteria? (See Note 5)
Semivolatlie Organics						
Benzo(a)pyrene	0.6	0.18	N/A (See Note 5)	0 43	0.7	Na
Dioxins/Furans			***************************************			
Total TEOs (WHO TEF's)	2.00E-05	4.20E 06	2.608-05	N/A (See Note 5)	5.00E-03	No
Inorganics		1-11				
Antimony	1.5	2.5	N/A (See Note 5)	242	40	Yes
Arsenic	7.9	6.8	N/A (See Note 5)	9.4	30	No
Lead	14()	18	N/A (See Note 5)	845	600	Yes

Notes.

1 Total 2,3/7.8/1COD to with equivalency quotients (TEQs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factures (TEFs) for all PCDD/PCDF compounds. Where individual compounds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations.

2 With the exception of Total TEOs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs

3 Non-detect sample results included as one-half the detection limit in the calculation of maximum and anithmetic average concentrations and presented in bold.

4 The Method 1.5-2 soil standards listed are thrise associated with GW-2 or GW-3 groundwater (whichever is more straigent), except for Disvin/Furan Total TEQs. Total TEQs are compared to the EPA PRGs for such TEQs set out in Attachment F of the Statement of Work for Removal Actions Critiside the River. (SOW) or the other TEQ comparison orderia utilized in evaluations performed for the Conceptual R0/RA Work Plan for Nexet Street Area I.

 Antimatic average concentrations of all constituents, except Total TECs, are compared to Method. 1 Soil Standards. For TEOs, the maximum concentration is compared to the appropriate EPA PRG (or other comparison orderion).

6 --- * constituent not subject to analysis

#### TABLE 4-8 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K10-14-1 0-TO 3-FOOT DEPTH INCREMENT

No weeks

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID Sample Depth (Feet) Parameter Date Collected	0-1	RAA6-A16 0-1 01/02/03	RAA6-A17 0-1 08/11/03	RAA6-B14 0-1 01/03/03	RAA6-B16 0-1 08/11/03	RAA6-C17 0-1 01/02/03	RAA6-D10 0-1 01/13/03
Semivolatile Organics							
Benzu(a)pyrene	· 1	05	.~	0.5		0.22	0.36
Dioxins/Furans							
Total TEQs (WHO TEFs)		2.60E-05	}	2.00E-05	[	2.60E-05	7.20E-06
Inorganics							****
Antimony	520	1,600	4.5	77	6.2	33	0.96
Arsenic	1 mm	19		10	9 9 9	5,9	6.8
Lead	3,800	3,200	37	150	93	140	29

Sample ID Sample Depth (Feet) Parameter Date Collected	0-1	RAA6-D14 0-1 01/07/03	RAA6-A17 1-3 01/08/03	Maximum Sample Result (See Note 3)	Arithmetic Average Concentration (See Note 3)	MCP Method 1 S-2 (GW-2/GW-3) Soll Standard (See Note 4)	Constituent Exceeds Initial Comparison Criteria? (See Note 5)
Semivolatile Organics							
Benzo(a)pyrene	0.8	0.18	0.18	N/A (See Note 5)	0 39	0.7	No
Dioxins/Furans							
Total TEQs (WHO TEFs)	2 00E-05	4.20E-06	3.70E-06	2.60E-05	N/A (See Note 5)	5.00E-03	No
Inorganics							
Antimony	1.5	2.5	2.1	N/A (See Note 5)	217.85	40	Yes
Arsenic	7.9	6.8	4.8	N/A (See Note 5)	8.7	30	No
Lead	140	18	21	N/A (See Note 5)	762.80	600	Yes

Notes.

5 Total 2,3 7,8 7CDB toxicity equivalency quictients (TEQs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factors (TEFs) for all PODD/PCDF compounds. Where individual compounds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations.

7. We the insception of Total TEQs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs.

3 Non-detect sample results included as one-half the detection limit in the valculation of maximum and archimetic average concentrations and presented in bold

4 The Method 1.S.2 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent), except for Dorin/Furan Total TEQs. Total TEQs are compared to the FPA PRGs for such TEQs set out in Attachment F of the Statement of Work for Reproval Actions. Outside the River (SOW) or the other TEQ comparison criteria utilized in evaluations performed for the Conceptual RD/RA Work Plan for Newell Struct Area 1.

5 Authentik average concentrations of all constituents, except Total TEOs, are compared to Method 1 Sol Standards. For TEOs, the maximum concentration is compared to the appropriate EPA PPG (or other comparison oritemon).

6 --- - constituent not subject to analysis

#### TABLE 4-9 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K10-14-1 1- TO 6-FOOT DEPTH INCREMENT

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Sample Depth (Feet): Parameter Date Collected:	RAA6-A15 3-6 01/08/03	RAA6-A17 1-3 01/08/03	RAA6-C15 3-6 01/07/03	Arithmetic Average Concentration (See Note 2)	MCP Method 1 S-3 (GW-2/GW-3) Soil Standard (See Note 3)	Constituent Exceeds Initial Comparison Criteria? (See Note 4)
Semivolatile Organics						
Benzo(a)pyrene	0.19	0.18	0.19	0.18	0.7	No
Inorganics						
Antimony	1.6	2.1	1.5	1.73	40	No
Arsenic	58	4,8	5.6	5.40	30	No
Lead	13	21	9.0	14.33	600	No

Notes

1 Coostilatents evaluated above have a maximum sample result that exceeds their respective CPA Region 9 Industrial PRGs or surrogate PRGs.

2 Non-detect sample results included as one-half the detection limit in the calculation of maximum and arithmetic average concentrations and presented in bold

3 The Method 1 S-3 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent)

4 Antibinetic average concentrations of all constituents are compared to Method 1 Soil Standards.

#### TABLE 4-10 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K10-14-1 0- TO 15-FOOT DEPTH INCREMENT

Singer a

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Sample Depth (Feet): Parameter Date Collected:	RAA6-A15 0-1 08/11/03	RAA6-A16 0-1 01/02/03	RAA6-A17 0-1 08/11/03	RAA6-B14 0-1 01/03/03	RAA6-B16 0-1 08/11/03	RAA6-C17 0-1 01/02/03	RAA6-D10 0-1 01/13/03
Semivolatile Organics							
Benzo(a)pyrene	[	0.5		0.5		0.22	0.36
lioxins/Furans							
otal TEQs (WHO TEFs)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)	(See Note 2)
norganics			***************************************		k	الهجم ويسترك أنست المتراجم المتركب المسترك المسترك المسترك المسترك المسترك المسترك المسترك المسترك المسترك الم	(500, 100, 57
ntimony	520	1,600	4.5	7,7	6.2	33	<i>a 6</i> n
tsenic		19		10	-n	5.9	68
ead	3,800	3,200	37	150	93	140	29

Sample ID: Sample Depth (Feet): Parameter Date Collected:	RAA6-D12 0-1 01/09/03	RAA6-D14 0-1 01/07/03	RAA6-A15 3-6 01/08/03	RAA6-A17 1-3 01/08/03	RAA6-C15 3-6 01/07/03	ES1141416 14-16 07/29/96	RAA6-B15 6-15 01/07/03
Semivolatile Organics					01101100	1 01128:00	01/07/03
Senzo(a)pyrene	0.8	0.18	0.19	0.18	0.19	0.37	0.20
Dioxins/Furans				· · · · · · · · · · · · · · · · · · ·			
otal TEQs (WHO TEFs)	(See Note 2)	(See Note 2)	5.50E-07	3.70E-06	3.30E-07	1 20E-07	4 65E-07
norganics							
Antimony	1.5	2 5	1.6	2.1	1.5	0.13	2.0
usenic	7.9	6.8	5.8	4.8	5.6	3.8	4.2
ead	t40	18	13	21	9.0	74	A 7

Samp Sample Depth (F Parameter Date Colle	eet): 6-15	Maximum Sample Result (See Note 4)	Arithmetic Average Concentration (See Note 4)	MCP Method 1 S-3 (GW-2/GW-3) Soil Standard (See Note 5)	Constituent Exceeds Initial Comparison Criterla? (See Note 6)
Semivolatile Organics					
Benzo(a)pyrene	0.20	N/A (See Note 5)	0.32	0.7	No
Dioxins/Furans					
Total TEQs (WHO TEFs)	2 50E-06	3 70E-06	N/A (See Note 5)	2.00E-02	No
Inorganics			<b></b>		
Antimony	1.9	N/A (See Note 5)	145.70	40	Yes
Arsenic	5 2	N/A (See Note 5)	7.15	30	No
Lead	6.8	N/A (See Note 5)	511,26	600	No

#### TABLE 4-10 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K10-14-1 0- TO 15-FOOT DEPTH INCREMENT

Sec. 1

server and a

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Notes.

1. Total 2.3,7.8-TCDD loxicity equivalency quoberts (TEQs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factors (TEFs) for all PCDD/PCDF compounds. Where individual compounds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations.

- 2. Total TEQs were evaluated for the 1- to 15-doot depth increment only.
- 3 With this exception of Total TEOs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs.
- 4 Non-detect sample results included as one-halt the detection limit in the calculation of maximum and anthmetic average concentrations and presented in bold.

5 The Method 1.5-3 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent), except for Dioxin/Furan Total TEQs. Total TEQs are compared to the EPA PRGs for such TEQ4 set out in Attachment F of the Statement of Work for Removal Actions Outside the River (SQW) or the other TEQ comparison chieria utilized in evaluations performed for the Conceptual RD:RLA Work Plan for Newell Street Area (

6 Antibitibility average concentrations of all constituents, except Total TEQs, are compared to Method. ESoil Standards. For TEQs, the maximum concentration is compared to the appropriate EPA PRG (or other companison criterion).

6 .... > constituent not subject to analysis

#### TABLE 4-11 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA 0- TO 1-FOOT DEPTH INCREMENT

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID:	RAA6-C4	RAA8-A11	RAA6-A15	RAA6-A16	RAA6-A17
Sample Depth (Feet):	0-1	0-1	0-1	0-1	0-1
Parameter Date Collected:	01/10/03	01/08/03	08/11/03	01/02/03	08/11/03
Semivolatile Organics					
Benzo(a)pyrene	0.14	1.60		0 50	·
N-Nitrosopiperidine	0.19	0.20		0.21	
Furans			****		<b>4</b>
Total TEQs (WHO TEFs)	1.60E-05	2.20E-05	~	2.60E-05	
Inorganics		·····			
Antimony	3.00	3.80	520.00	1,600.00	4.50
Arsenic	3.40	9.30	**	19.00	••••••••••••••••••••••••••••••••••••••
Lead	24.00	120.00	3,800.00	3,200.00	37.00

Sample ID: Sample Depth (Feet): Parameter Date Collected:	RAA6-B14 0-1 01/03/03	Maximum Sample Result (See Note 3)	Arithmetic Average Concentration (See Note 3)	MCP Method 1 S-2 (GW-2/GW-3) Soil Standard (See Note 4)	Constituent Exceeds Initial Comparison Criteria? (See Note 5)
Semivolatile Organics					
Benzo(a)pyrene	0.50	N/A (See Note 5)	0.69	0.7	No
N-Nitrosopiperidine	0.50	N/A (See Note 5)	0.27	(See Note 6)	Yes
Furans					<b>&amp;</b>
Total TEQs (WHO TEFs)	2.00E-05	2.60E-05	N/A (See Note 5)	5.00E-03	No
Inorganics	<u></u>				
Antimony	7.70	N/A (See Note 5)	356.50	40	Yes
Arsenic	10.00	N/A (See Note 5)	10.43	30	No
Lead	150.00	N/A (See Note 5)	1,221.83	600	Yes

Notes

2 With the exception of Total TEQs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs

3 Non-detect sample results included as one-half the detection limit in the calculation of maximum and anthmetic average concentrations and presented in bold

4 The Method 1.S-2 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent), except for Dioxin/Furan Total TEOs. Total TEOs are compares to the EPA PRGs for such TEOs set out in Attachment F of the Statement of Work for Removal Actions Outside the River (SOW) or the other TEQ comparison citeria utilized in evaluations, performed for the Newell Street Area I RAA.

5 Arithmetic average concentrations of all constituents, except Total TEOs, are compared to Method 1 Soil Standards. For TEOs, the maximum concentration is compared to the appropriate EPA PRG (or other comparison criterion).

6 No MCP Method 1 Soit Standard evailable for evaluation of this compound, therefore, this constituent will be retained for subsequent area specific risk evaluation

7 - - - constituent not subject to analysis.

^{1.} Total 2,3,7.8-TCDD texacity equivalency quotients (TEQs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factors (TEFs) for all PC0D/PC0F compounds. Where individual comprunds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations.

#### TABLE 4-12 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA 0- TO 3-FOOT DEPTH INCREMENT

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Sample Depth (Feet): Parameter Date Collected:	RAA8-C4 0-1 01/10/03	RAA6-C2 1-6 01/09/03	RAA6-A11 0-1 01/08/03	RAA6-A15 0-1 08/11/03	RAA6-A16 0-1 01/02/03	RAA6-A17 0-1 08/11/03	RAA6-B14 0-1 01/03/03
Semivolatile Organics					••••••••••••••••••••••••••••••••••••••		···
Benzo(a)pyrene	0.14	0.19	1.60	**	0.50		0.50
N-Nitrosopiperidine	0.19	0.19	0.20		0.21		0.50
Furans							
Total TEQs (WHO TEFs)	1,60E-05	1.70E-05	2.20E-05	**	2.60E-05		2.00E-05
Inorganics		****					
Antimony	3.00	3.00	3.80	520.00	1,600.00	4,50	7.70
Arsenic	3.40	5.40	9.30		19.00		10.00
Lead	24.00	17.00	120.00	3,800.00	3,200.00	37.00	150.00

Sample ID: Sample Depth (Feet): Parameter Date Collected;	RAA6-A11 1-3 01/08/03	RAA6-A17 1-3 01/08/03	Maximum Sample Result (See Note 3)	Arithmetic Average Concentration (See Note 3)	MCP Method 1 S-2 (GW-2/GW-3) Soil	Constituent Exceeds Initial Comparison
Semivolatile Organics	01100103	01/00/05	(See note 3)	(See Note 3)	Standard (See Note 4)	Criteria? (See Note 5)
Benzo(a)pyrene	0.22	0.18	N/A (See Note 5)	0.48	0.7	No
N-Nitrosopiperidine	3.6	0.18	N/A (See Note 5)	0.72	(See Note 7)	Yes
Furans		- Indana - I			(	
Total TEOs (WHO TEFs)	2.40E-05	3.70E-06	2.60E-05	N/A (See Note 5)	5.00E-03	No
Inorganics	· · · · · · · · · · · · · · · · · · ·					
Antimony	100.00	2.10	N/A (See Note 5)	249.34	40	Yes
Arsenic	13.00	4.80	N/A (See Note 5)	9,27	30	No
Lead	470 00	21.00	N/A (See Note 5)	871.00	600	Yes

Notes

1 Total 2,3,7.8-TCDD toxicity equivalency quotients (TEQs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factors (TEFs) for all PCDD/PCDF compounds. Where individual compounds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations.

2 With the exception of Total TEQs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs.

3 Non-detect sample results included as one-half the detection limit in the calculation of maximum and antimetic average concentrations and presented in bold.

4 The Method 1.S-2 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent), except for Dioxin/Furan Total TEQs. Total TEQs are compared to the EFA PRGs for such 1EQs set out in Attachment F of the Statement of Work for Removal Actions Quiside the River. (SOW) or the other TEQ comparison criteria utilized in evaluations performed for the Newell Street Area i RAA.

5 Antimetic average concentrations of all constituents, except Total TEQs, are compared to Method 1 Soil Standards. For TEQs, the maximum concentration is compared to the appropriate EPA PRG (or other comparison ceterion).

6 No MCP Method 1 Sol Standard available for evaluation of this compound, therefore, this constituent will be retained for subsequent accu-specific risk evaluation.

7 --- = constituent not subject to analysis

#### TABLE 4-13 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA 1- TO 6-FOOT DEPTH INCREMENT

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Sample Depth (Feet): Parameter Date Collected:	ES1-9 4-5 05/16/96	RAA6-C2 1-6 01/09/03	RAA6-A11 1-3 01/08/03	RAA6-A15 3-6 01/08/03	RAA6-A17 1-3 01/08/03
Semivolatile Organics					
Benzo(a)pyrené	1.95	0.19	0.22	0.19	0.18
N-Nitrosopiperidine	2.20	0.19	3.6	0.19	0.18
Inorganics				······································	
Antimony	0.17	3.00	100.00	1,60	2.10
Arsenic	3.00	5.40	13.00	5.80	4 80
Lead	5.50	17.00	470.00	13.00	21,00

San Parameter	Sample ID: nple Depth (Feet): Date Collected:		MCP Method 1 S-3 (GW-2/GW-3) Soil Standard (See Note 3)	Constituent Exceeds Initial Comparison Criteria? (See Note 4)
Semivolatile		(000 /1010 2/		onder joee note ij
Benzo(a)pyre		0.55	0,70	No
N-Nitrosopipe		1.27	(See Note 6)	Yes
Inorganics	······································		· · · · · · · · · · · · · · · · · · ·	
Antimony		21.37	40	No
Arsenic		6.40	30	No
Lead		105.30	600	No

#### Notes

1 The constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs

2 Non-detect sample results included as one-half the detection limit in the calculation of arithmetic average concentrations and presented in bold

3 The Mothod 1 S 3 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent)

4. Aothinetic average concentrations of all constituents are compared to Method 1 Soil Standards

5 No MCP Method 1 Soil Standard available for evaluation of this compound, therefore, this constituent will be retained for subsequent area-specific risk evaluation

#### TABLE 4-14 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA 0- TO 15-FOOT DEPTH INCREMENT

Sales Crease Theory

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID:	RAA6-C4	ES1-9	RAA6-C2	ES1-7	RAA6-C2	RAA6-A11	RAA6-A15
Sample Depth (Feet):		4-6	1-6	6-8	8-15	0-1	0-1
Parameter Date Collected:	01/10/03	05/16/96	01/09/03	05/16/96	01/09/03	01/08/03	08/11/03
Semivolatile Organics					*****	*****	
Benzo(a)pyrene	0.14	1.95	0.19	1.27	0.19	1.60	84%
N-Nitrosopiperidine	0.19	2.20	0.19	1.42	0.19	0.20	an anna an ann ann ann ann an ann an ann an a
Furans					and the second		
Total TEQs (WHO TEFs)	(See Note 2)	1.60E-07	1.70E-05	3.35E-07	7.20E-07	(See Note 2)	(See Note 2)
Inorganics							· · · · · · · · · · · · · · · · · · ·
Antimony	3.00	0.17	3.00	0.35	3.00	3.80	520,00
Arsenic	3.40	3.00	5.40	7.35	5.80	9.30	антана на ули ули на селото со работ со работ со селото на ули и селото на селото на селото на селото на селот К. н.
Lead	24.00	5.50	17.00	9.30	7.00	120.00	3800.00

Sample ID	RAA6-A16	RAA6-A17	RAA6-B14	RAA6-A11	RAA6-A15	RAA6-A17	RAA6-B15
Sample Depth(Feet)	i: 0-1	0-1	0-1	1-3	3-6	1-3	6-15
Parameter Date Collected	: 01/02/03	08/11/03	01/03/03	01/08/03	01/08/03	01/08/03	01/07/03
Semivolatile Organics							1999 - Marine Marine and an anna an ann an anna an anna an anna an an
Benzo(a)pyrene	0 50		0.50	0.22	0.19	0.18	0.20
N-Nitrosopiperidine	0.21		0.50	3.6	0.19	0.18	0.20
Furans							
Total TEQs (WHO TEFs)	(See Note 2)	(See Note 2)	(See Note 2)	2.40E-05	5.50E-07	3.70E-06	4.65E-07
Inorganics							······
Antimony	1,600.00	4.50	7.70	100.00	1.60	2.10	1.95
Arsenic	19.00		10,00	13.00	5.80	4.80	4.20
Lead	3,200.00	37.00	150.00	470.00	13.00	21.00	4,65

Sample ID: Sample Depth (Feet):		Arithmetic	MCP Method 1 S-3	Constituent Exceeds
Parameter Date Collected:	1	Average Concentration (See Note 4)	(GW-2/GW-3) Soil Standard (See Note 5)	Initial Comparison Criteria? (See Note 6)
Semivolatile Organics			· · · · · · · · · · · · · · · · · · ·	
Велго(а)ругеле	N/A (See Note 5)	0 59	0.70	No
N-Nitrosopiperidine	N/A (See Note 5)	0.77	(See Note 7)	Yes
Furans				
Total TEQs (WHO TEFs)	2.40E-05	N/A (See Note 6)	2.00E-02	No
Inorganics	······		······································	н н н
Antimony	N/A (See Note 5)	160.80	40	Yes
Arsenic	N/A (See Note 5)	7.59	30	No
Lead	N/A (See Note 5)	562 75	600	No

#### TABLE 4-14 EXISTING CONDITIONS - COMPARISON TO METHOD 1 SOIL STANDARDS NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA 0- TO 15-FOOT DEPTH INCREMENT

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Notes

1 Total 2.3.7,8-TCDD toxicity equivalency quotients (TEQs) were calculated using World Health Organization (WHO) Toxicity Equivalency Factors (TEFs) for all PCDD/PCDF compounds. Where individual compounds were not detected, a value of one-half the analytical detection limit was used to calculate the TEQ concentrations.

2 Fotal TEQs were evaluated for the 1- to 15-foot depth increment only

3 With the exception of Total TEQs, constituents evaluated above have a maximum sample result that exceeds their respective EPA Region 9 Industrial PRGs or surrogate PRGs.

4 Non-detect sample results included as one-half the detection limit in the calculation of maximum and arithmetic average concentrations and presented in bald.

5 The Method 1.S-3 soil standards listed are those associated with GW-2 or GW-3 groundwater (whichever is more stringent), except for Dioxin/Furan Total TEQs. Total TEQs are compared to the EPA PRGs for such TEQs set out in Attachment F of the Statement of Work for Removal Actions Duiside the River (SOW) or the other TEQ comparison criteria requested in EPA's May 24, 2002 comment letter regarding this RAA.

6 Antimetic average concentrations of all constituents, except Tatal TEOs, are compared to Method 1 Soil Standards. For TEOs, the maximum concentration is compared to the appropriate EPA PRG (or other comparison criterion)

7 No MCP Method 1 Soil Standard available for evaluation of this compound; therefore, this constituent will be retained for subsequent area-specific risk evaluation.

8 --- 1 constituent not subject to analysis

#### TABLE 4-15 EXISTING CONDITIONS - COMPARISON TO UPPER CONCENTRATION LIMITS (UCLs) GE-OWNED PARCELS (0- TO 15-FOOT DEPTH INCREMENT)

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Parameter	Sample ID: Sample Depth (Feet): Date Collected:	Arithmetic Average Concentration (See Note 2)	MCP UCL for Sails	Average Exceeds UCL?
Semivolatile O	rganics			
Benzo(a)anthra	içene	0.88	100	No
Benzo(a)pyrene	3	0.79	100	No
Benzo(b)fluorar	nthene	0.87	109	No
Dibenzo(a.h)an	thracene	0.46	100	No
Inorganics				
Arsenic		6.63	300	No

#### NORS

1. Constituents evaluated have a maximum sample result that exceeds their respective EPA Regine 9 industrial PRGs or sumigate PRGs

2 For sampling locations other than RAA6-06 non-detect sample results included as one-trait the detection limit in the calculation of arithmetic average concentrations. Sampling data for sampling location RAA6-06 have been included in these evaluations as follows: (a) For detected construents, enter the average of both samples (if the construent was detected during both sampling events) or the value of the detected construents, are construent was only detected during one of the sampling events) or the value of the detected during one of the sampling events) and (b) for non-detected construents, half the value of the detection limit achieved during the supplemental sampling consults (at RAC6-06 in a construent value).

## TABLE 4-16 INDEC 4-10 INDEC 4-10 INDEC 2000 INTERNATION LIMITS (UCLs) NON GE-OWNED PARCEL K10-14-1 (0- TO 15-FOOT DEPTH INCREMENT)

# REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Sar Parameter	Sample ID: nple Depth (Feet): Date Collected:	Average Concentration	MCP UCL for Soils	Average Exceeds UCL?
Semivolatile	Organics			
Benzo(a)pyre	:ne	0.32	100	No
Inorganics				
Antimony		145.70	400	i No
Arsenic		7.15	300	2 No
Lead		513.26	6.000	No

Notes. 1. Construents evaluated have a maximum sample result that exceeds their respective EPA Region 9 industrial PRGs or surrogate PRGs. Non-detent sample results included as one-half the detention limit in the calculation of arstimetic average concentrations

# TABLE 4-17 EXISTING CONDITIONS - COMPARISON TO UPPER CONCENTRATION LIMITS (UCLs) NON GE-OWNED PARCEL K11-1-15 WITH PROJECTED DATA

#### **D- TO 15-FOOT DEPTH INCREMENT**

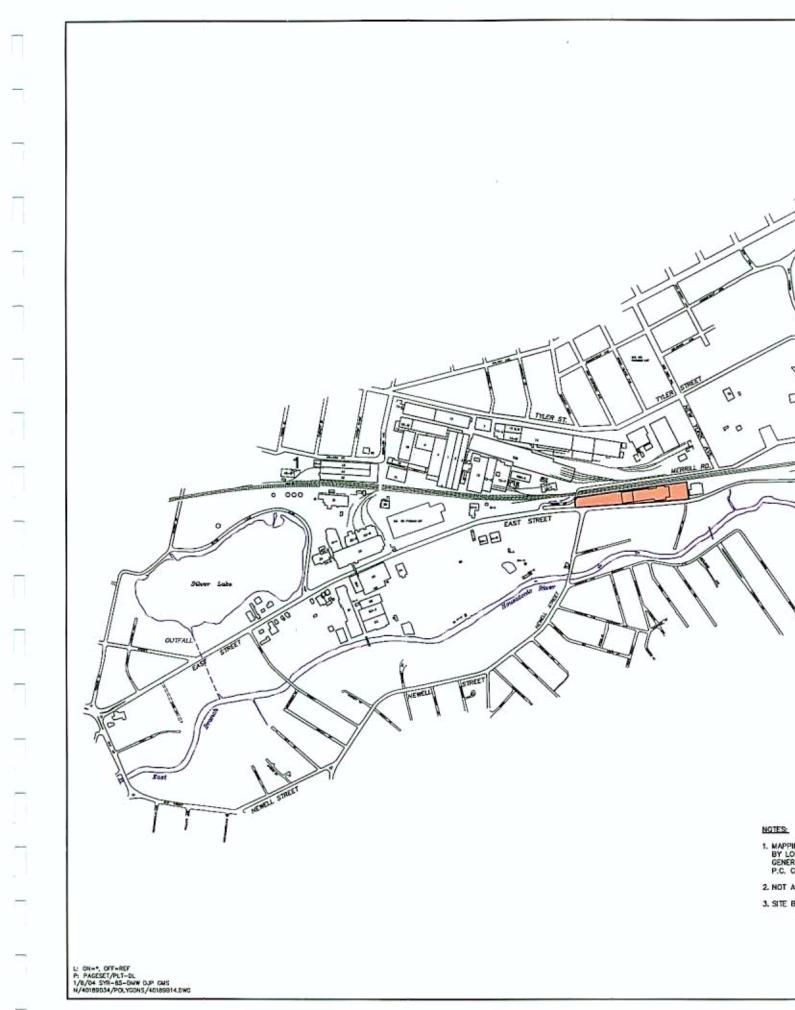
## REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results in ppm, dry weight)

Sample ID: Sample Depth (Feet): Parameter Date Collected:		Arithmetic Average Concentration (See Note 2)	MCP UCL for Soils	Average Exceeds UCL?
Semivolatile	Organics	······································		
Benzo(a)pyre	ne	0.59	100	Ne
N-Nitrosopipe	aridina	0.77	See Note 3	See Note 3
Inorganics		······································		
Antimony		160.80	400	No
Arsenic		7.59	300	No
Lead		562.75	6,000	No

#### histes

1 Constituents evaluated have a maximum sample result that exceeds their respective EPA Region 9 industrial PROs or surrogate PRGs.

Non-detect sample results included as one-half the detection limit in the calculation of artimetic average concentrations.
 No UCL was insted for N-introsopiperdine. See text for discussion of this issue.


# Figures



. NARAMA ALAO MARAKANA MANA MANANA MANANA

Contraction (1)

and a second second



1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. - FLOWN IN APRIL 1990; DATA PROVIDED BY GENERAL ELECTRIC COMPANY; AND BLASLAND AND BOUCK ENGINEERS, P.C. P.C. CONSTRUCTION PLANS.

D

0/

.q

2. NOT ALL PHYSICAL FEATURES SHOWN.

Cut answer and

An

-

STREET

3. SITE BOUNDARIES/LINITS ARE APPROXIMATE.





# **Appendices**



REALIZED FOR A COMPANY DEDICATION OF COMPANY DATA STRUCTURE STRUCTURES.

# Appendix A

# Data Validation Report for Supplemental Soil Investigations



#### APPENDIX A

### GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

#### EAST STREET AREA 1-NORTH SUPPLEMENTAL PRE-DESIGN INVESTIGATION

#### SOIL SAMPLING DATA VALIDATION REPORT

#### 1.0 General

This appendix summarizes the Tier I and Tier II data reviews performed for soil samples collected during supplemental pre-design investigation activities at the East Street Area 1-North RAA, located in Pittsfield, Massachusetts. The supplemental sampling activities consisted of the collection of three surface samples for lead and antimony analysis, and the collection of two samples from a previous sampling location for VOC analysis. Data validation was performed on all samples (including field and laboratory quality control samples).

#### 2.0 Data Evaluation Procedures

This Soil Sampling Data Validation Report outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland, Bouck & Lee, Inc. (FSP/QAPP, approved November 4, 2002 and resubmitted December 10, 2002);
- Region I Tiered Organic and Inorganic Data Validation Guidelines, USEPA Region I (July 1, 1993);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. USEPA Region I (June 13, 1988) (Modified February 1989);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (February 1, 1988) (Modified November 1, 1988);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (Draft, December 1996); and
- National Functional Guidelines for Dioxin/Furan Data Validation, USEPA (Draft, January 1996).

A summary of the Tier I and Tier II data evaluations is presented in Table 1. Each sample subjected to evaluation is listed in Table 1 to document that the data review was performed, as well as to present the highest level of data validation (Tier I or Tier II) that was applied. Samples that required data qualification are listed separately for each parameter (compound or analyte) that required qualification.

The following data qualifiers have been used in this data evaluation.

- J The compound or analyte was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound or analyte is detected at estimated concentrations less than the practical quantitation limit (PQL).
- U The compound or analyte was analyzed for, but was not detected. The sample quantitation limit is presented and adjusted for dilution and (for solid samples only) percent moisture. Non-detected sample results are presented as ND(PQL) within data reporting tables and in Table 1 for consistency with previous documents prepared for this investigation.
- UJ The compound or analyte was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual level of quantitation. Non-detected sample results that required qualification are presented as ND(PQL) J within this report and in Table 1 for consistency with previous documents prepared for this investigation.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purposes.

### 3.0 Data Validation Procedures

The FSP/QAPP provides (in Section 7.5) that all analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (USEPA guidelines). Accordingly, 100% of the analytical data for these investigations were subjected to Tier I review. The Tier I review consisted of a completeness evidence audit, as outlined in the *USEPA Region I CSF Completeness Evidence Audit Program* (USEPA Region I, 7/31/91), to ensure that all laboratory data and documentation were present.

In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with USEPA Region I Tier I data completeness requirements.

The Tier II data review consisted of a review of all data package summary forms for identification of Quality Assurance/Quality Control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. The Tier II review resulted in the qualification of data for several samples due to minor QA/QC deficiencies. Additionally, all field duplicates were examined for Relative Percent Difference (RPD) compliance with the criteria specified in the FSP/QAPP.

A tabulated summary of the samples subjected to Tier I and Tier II data evaluation is presented below.

Parameter		Tier I Only			Tenter I		
	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
VOCs	()	()	0	3	0	2	5
Metais	<u>}</u> 0	0	0	4		0	5
Total	0	0	0	7	1	2	10

Summary of Samples Subjected to Tier I and Tier II Data Validation

V. GE [Patisfield: CD] ESA [1] North/Reports and Presentations-Conceptual RD [RA/ESA) month Validation doc.

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in USEPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented below for each analytical method.

#### 4.0 Data Review

Initial calibration criterion for organic analyses requires that the average Relative Response Factor (RRF) has a value greater than 0.05. Sample results were qualified as estimated (J) when this criterion was exceeded. The compounds that exceeded initial calibration criterion and the number of samples qualified are presented below.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,4-Dioxane	5	J
	2-Butanone	4	J
realized stores the	Acetonitrile	5	J
	Acrolein	1	J
	Isobutanol	4	J

Analysis Qualified Due to Initial Calibration Deviations

The continuing calibration criterion requires that the Percent Deviation (%D) between the initial calibration RRF and the continuing calibration RRF for VOCs and SVOCs be less than 25%. Sample data for detected and non-detected compounds with %D values that exceeded the continuing calibration criterion were qualified as estimated (J). A summary of the compounds that exceeded continuing calibration criterion and the number of samples qualified due to those deviations are identified below.

Compounds	Oualified Due	to Continuing	Calibration	of %D Values
compoundo.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0	

Analysis	Compound Number of Affected Samples		Qualification
VOCs	Acetone		Į.
	Bromoform	]	J
	Bromomethane	1	J
	Dichlorodifluoromethane	2	ļ,
	Isobutano!	1	J

Matrix spike (MS) sample analysis recovery criteria for organics require that the RPD between the MS and matrix spike duplicate (MSD) be less than the laboratory generated QC acceptance limits specified on the MS reporting form. The compounds that exceeded RPD limits and the number of samples qualified due to deviations are presented below.

#### **Compounds Qualified Due to Matrix Spike RPD Deviations**

an an tailine an a	Analysis	Compounds	Number of Affected Samples	Qualification
AND DESC	VOCs	Chlorobenzene	I	J

Laboratory duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures for inorganic analysis. The RPD between duplicate samples is required to be less than 35% for soil samples with analyte concentrations greater than five times the PQL. Detected sample results for analytes that exceeded these limits were qualified as estimated (J). The inorganic analytes that did not meet laboratory duplicate RPD criteria and the samples qualified due to those deviations are presented below.

# Analytes Qualified Due to Laboratory Duplicate Deviations Analysis Analytes Number of Affected Samples Qualification Inorganics Antunony 4 J

## 5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability for site characterization purposes. Data completeness is defined as the percentage of sample results determined to be usable during the data validation process. Data completeness with respect to usability was calculated separately for inorganic and each of the organic analyses. The percent usability calculation included analyses evaluated under both the Tier I and Tier II data validation reviews. The percent usability. Therefore, field/equipment blank, trip blank, and field duplicate data determined to be unusable as a result of the validation process are represented in the percent usability value tabulated below.

Data Usability										
Parameter Percent Usability Rejected Data										
Inorganics	100	None								
VOCs	100	None								

The data package completeness as determined from the Tier I data review was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

#### 5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between duplicate sample results. The duplicate samples used to evaluate precision included laboratory duplicates, field duplicates, MS/MSD samples, and

ICP serial dilution samples. For this analytical program, 1.1 % of the data required qualification for laboratory duplicate RPD deviations and 0.27% of the data required qualification MS/MSD RPD deviations. None of the data required qualification for ICP serial dilution deviations or field duplicate RPD deviations.

#### 5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, internal standards, Laboratory Control Standards (LCSs), MS/MSD samples, CRDL samples, and surrogate compound recoveries. For this analytical program, 6.8% of the data required qualification for calibration deviations. None of the data required qualification for LCS recovery deviations, CRDL standard recoveries, internal standard recoveries, or surrogate compound standard recoveries.

#### 5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in Agency-approved work plans and by following the procedures for sample collection/analyses described in the FSP/QAPP. Additionally, the analytical program used procedures that were consistent with USEPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical program, none of the data required qualification for exceeding holding time requirements.

#### 5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. The USEPA SW-846¹ analytical methods presented in the FSP/QAPP are updated on occasion by the USEPA to benefit from recent technological advancements in analytical chemistry and instrumentation. In most cases, the method upgrades include the incorporation of new technology that improves the sensitivity and stability of the instrumentation or allows the laboratory to increase throughput without hindering accuracy and precision. Overall, the analytical methods for this investigation have remained consistent in their general approach through continued use of the basic analytical techniques (i.e., sample extraction/preparation, instrument calibration, QA/QC procedures, etc.). Through this use of consistent base analytical procedures and by requiring that updated procedures meet the QA/QC criteria specified in the FSP/QAPP, the analytical data from past, present, and future sampling events will be comparable to allow for qualitative and quantitative assessment of site conditions.

#### 5.5 Completeness

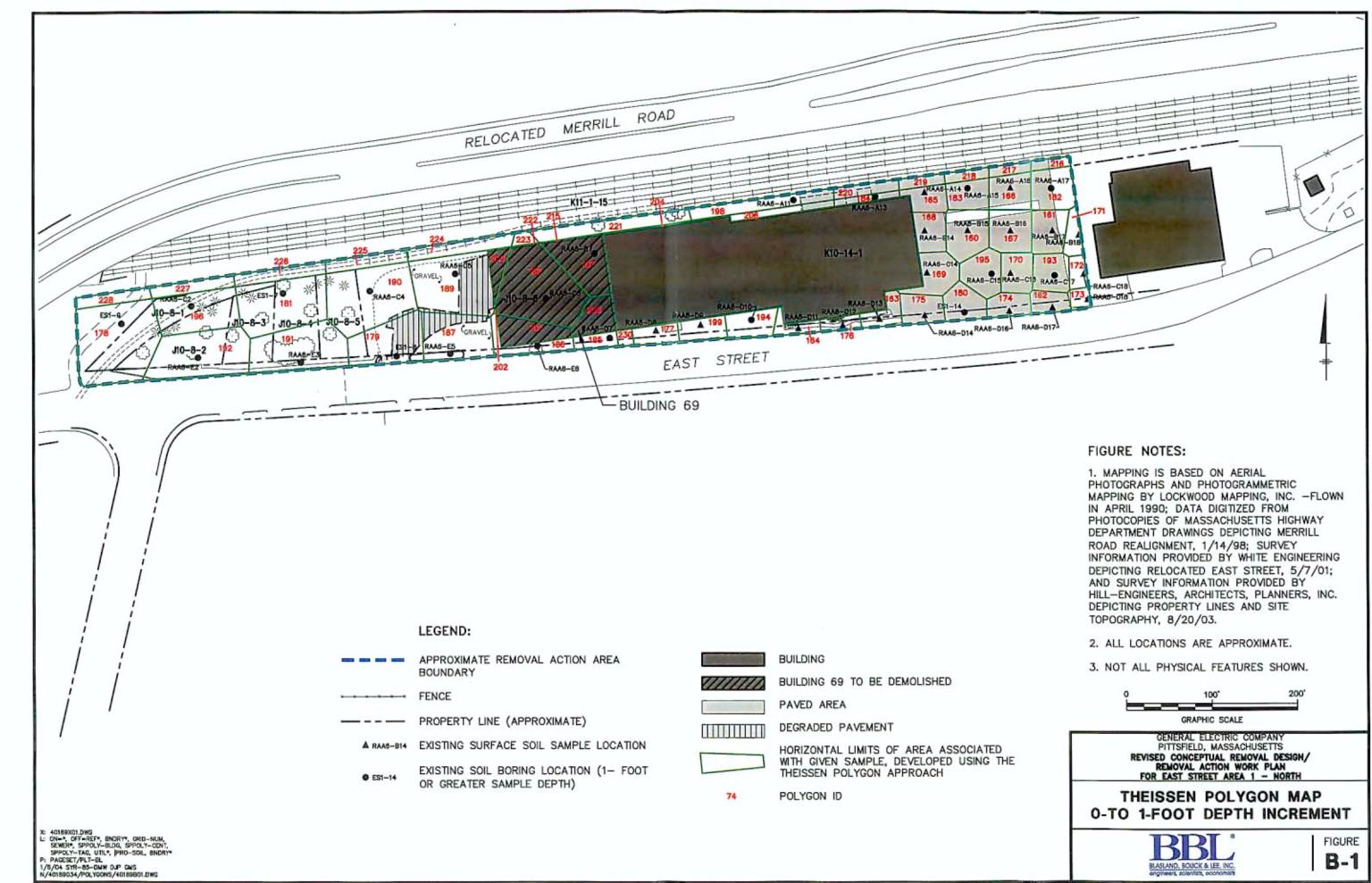
¹ Test Methods for evaluating Solid Waste, SW-846, USEPA, Final Update III, December 1996.

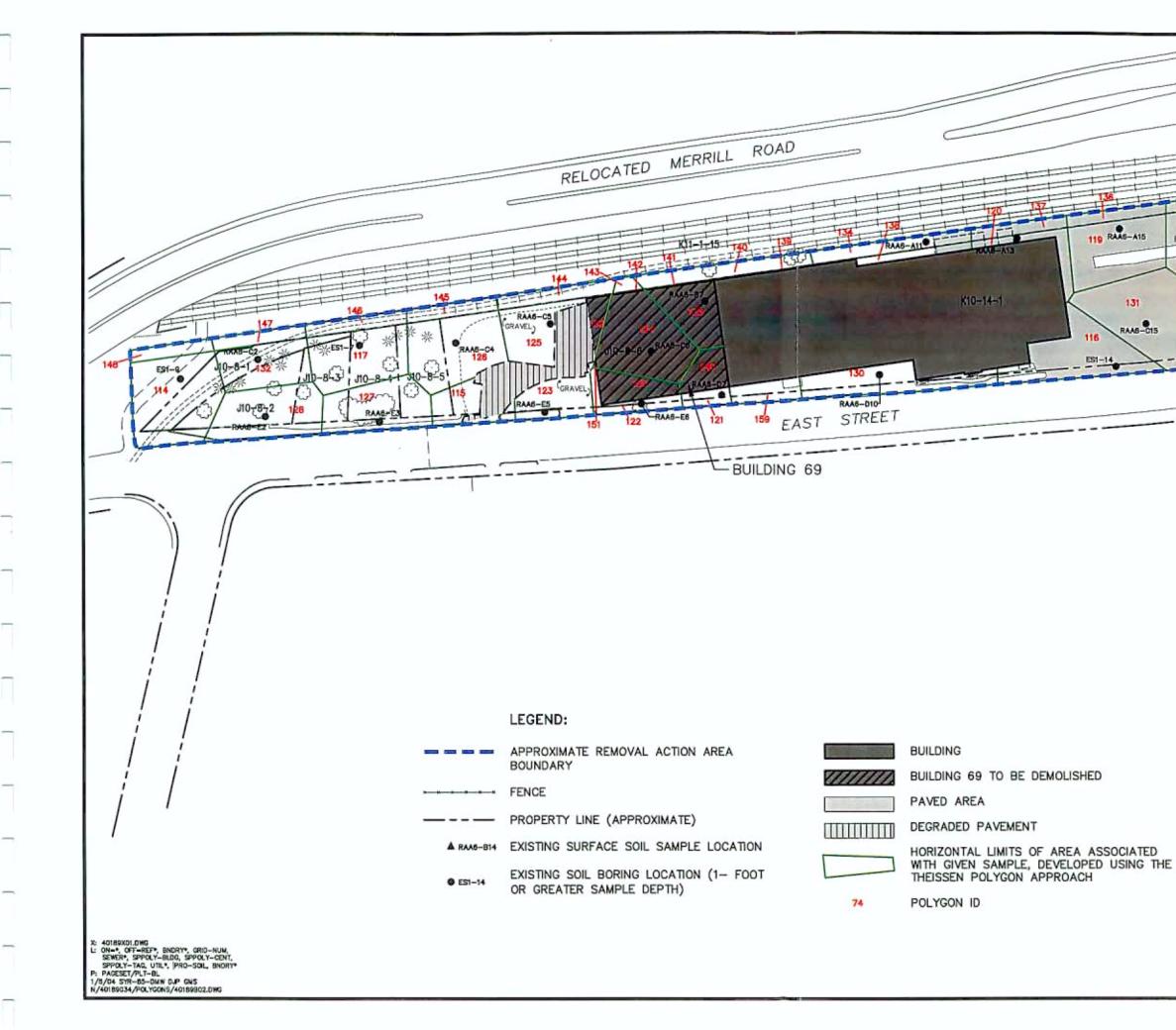
V. OE, Provided CD [ENA] 1. North-Reports and Presentations Conceptual RD [R.VESA1 month Validation doc.

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. The actual completeness of this analytical data for individual analytical parameters and overall usability of this data set is 100%.

#### TABLE A-1 EAST AREA 1 NORTH SUPPLEMENTAL PRE-DESIGN INVESTIGATION SAMPLES

#### ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS


(Results are presented in parts per militon, ppm)

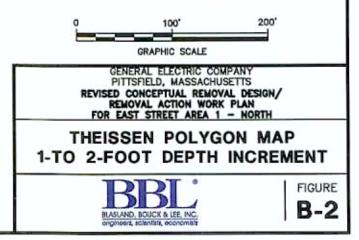

Sample			1		1	1		[	1	1	
Delivery Group				Vaildation				1	1		
No.	Sample ID	Date Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Aotals										. <u> </u>	
3H0P239	RAA6-A15 (0 - 1)	8/11/2003	Sol	Tier II	Yes	Anteriony	Laboratory Duplicate RPD (Soil)	67 7%	<35%	520 J	
3130/2239	RAA6-A17-(8 - 1)	8/11/2003	Soil	Lier S	Yes	Antimony	Laboratory Duplicate RPD (Soil)	67.7%	<35%	4.50 J	
314012239	RAA6 816 (0 + 1)	8/11/2003	Soit	Tier il	Yes	Antimony	Laboratory Dupilcate RPD (Soil)	67.7%	<35%	4 10 3	
8:09239	RAA6-OUP-7 (0 - 1)	8/11/2003	Soil	Tier I	Yes	Antimony	Laboratory Duplicate RPD (Soil)	67.7%	<35%	8 30 J	······································
H0P239	R8-081103-1 (0 - 0)	8/11/2003	Water	Tigr H	No						a a fining in granter a second of the single second
/0Cs											
31401239	RAA8-C0 (6 - 8)	8/11/2003	Soil	Tier B	Yes	1,4-Diexane	ICAL RRF	0.010	>0.05	ND(0.13) J	1
			1			Acetone	CCAL %D	69.2%	<25%	ND(0.025) J	and the second state of the second state of the second states and
						Acetonitale	ICAL RRF	0.041	>0.05	ND(0.13) J	n an
	1					Acrolem	ICAL RRF	0.005	>0.05	NO(0,13) J	and the second
	1					Bromotom	CCAL %D	312%	<25%	ND(0.0063) J	The local fits and does not a subscription of the fits of the sub-
					1	Bromomethane	CCAL %D	38.4%	₹25%	ND(0.0063).J	an an anna an ann an Anna an An
						Chlorobenzene	MS/MSD RPD	57.0%	<50%	ND(0.0063) J	a shadh and Manadan, shanga, and make have been been a
	1					Isobutanol	CCAL %D	28.0%	<25%	NO(0.13) J	** http:///www.setupticf.mg/page/##1/1/********************************
94002233	R8-081103-1 (0 - 0)	8/11/2003	Water	Tier II	Yes	1.4-Dioxane	ICAL RRF	0.001	>0.05	NO(0.20) J	an an Caulor ann an Anna a' Ruinn an Anna Anna Anna Anna Anna Anna Ann
						2-8utanone	ICAL RRF	0.049	>0.05	ND(0.010) J	and a subsection of the set of a second set of the
	1					Acetonitrile	ICAL RRF	0.044	>0.05	N(0(0,10) J	and the strength of the second strength of th
Campany and Table 1991 - 1						Isobutanui	ICAL RRF	0.011	>0.05	NO(0.10) J	
9-09239	TRUP BLANK	8/11/2003	Water	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.20) J	1
	1					2-Balanone	ICAL RRF	0.049	>0.05	ND(0.010) J	}
	1					Acetonitrie	ICAL RRF	0.044	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0.011	>0.05	ND(0.10) J	an shakata dha dagaya ku sa shaka dhayada dha ya sh
H0P616	[RAA6 C6 (0 - 1) ]	8/23/2093	Soi	Tior II	Yes	1,4-Oloxane	ICAL RRP	0.001	>0.05	ND(0.29) J	And the second s
					1	2-Butanone	ICAL RRF	0.049	>0.05	ND(0.029) J	Contraction of the second second second second
						Acetooitale	ICAL RRF	0.044	>0 35	NO(0.58) J	
						Dichlorodilluoromethane	CCAL %D	30.4%	<25%	ND(0.029) J	
		. Value hard as here . 1997 - A. "A Makin harmonic harmonic data of the	1			Isobotanol	ICAL RRF	0.011	>0.05	NO(0.58) J	and a second sec
R00616	TRIP BLANK	8/29/2003	Sot	Tior il	Yes	1,4-Ciaxane	ICAL RRF	0.001	>0.05	ND(0.29) J	
						2-Butanone	IÇAL RRF	0.049	30.0<	ND(0.029) J	Contract of the brought family administration of the base of the
						Acetonitrile	ICAL RRF	0.044	>0.05	ND(0.58) J	* Normalistation have all standard herbit the dataset
						Dichlerodilluoromethane	CCAL %D	30.4%	<25%	ND(0.029) J	County the education and alternative and an end
	1		1			Isobutanol	UCAL RRF	0.011	>0.05	ND(0.58) J	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

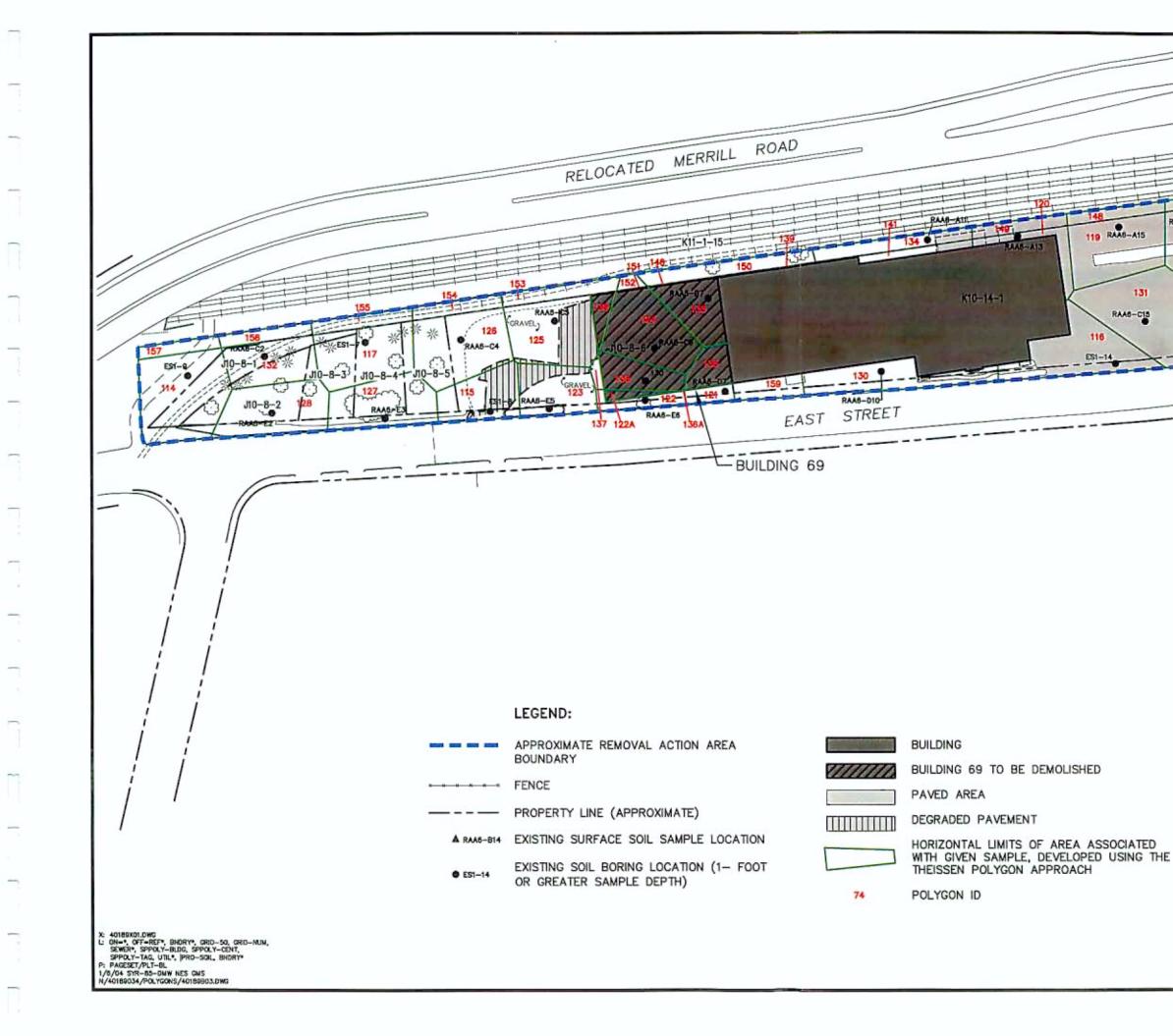
# Appendix B

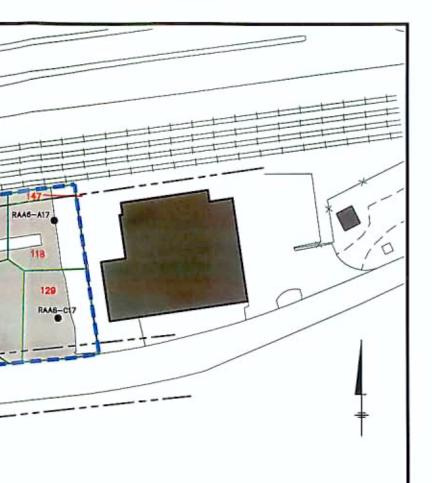
# PCB Spatial Averaging Evaluation Tables and Polygon Maps







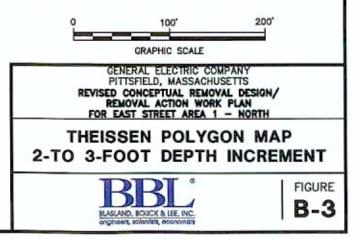



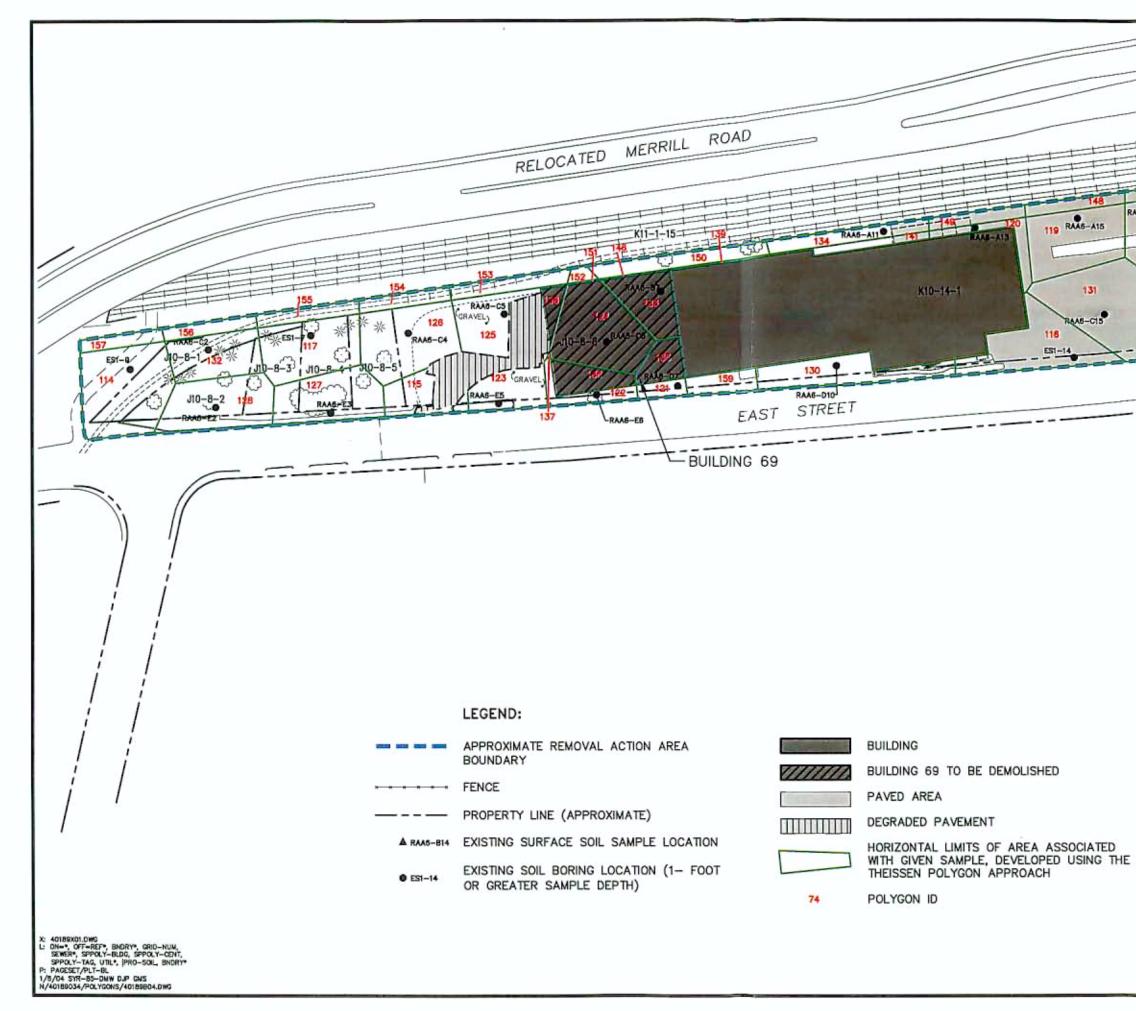


## FIGURE NOTES:

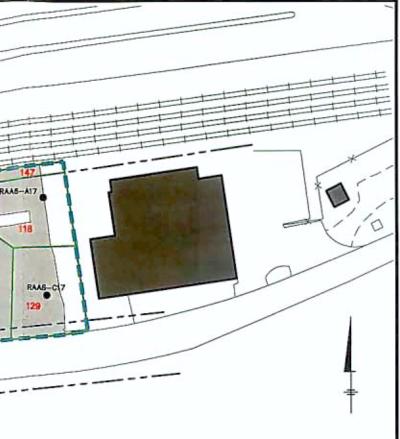
1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. -FLOWN IN APRIL 1990; DATA DIGITIZED FROM PHOTOCOPIES OF MASSACHUSETTS HIGHWAY DEPARTMENT DRAWINGS DEPICTING MERRILL ROAD REALIGNMENT, 1/14/98; SURVEY INFORMATION PROVIDED BY WHITE ENGINEERING DEPICTING RELOCATED EAST STREET, 5/7/01; AND SURVEY INFORMATION PROVIDED BY HILL-ENGINEERS, ARCHITECTS, PLANNERS, INC. DEPICTING PROPERTY LINES AND SITE TOPOGRAPHY, 8/20/03.

- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. NOT ALL PHYSICAL FEATURES SHOWN.





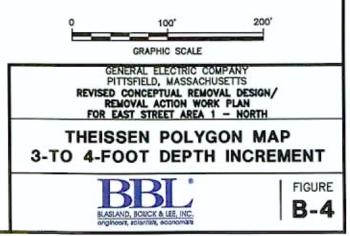



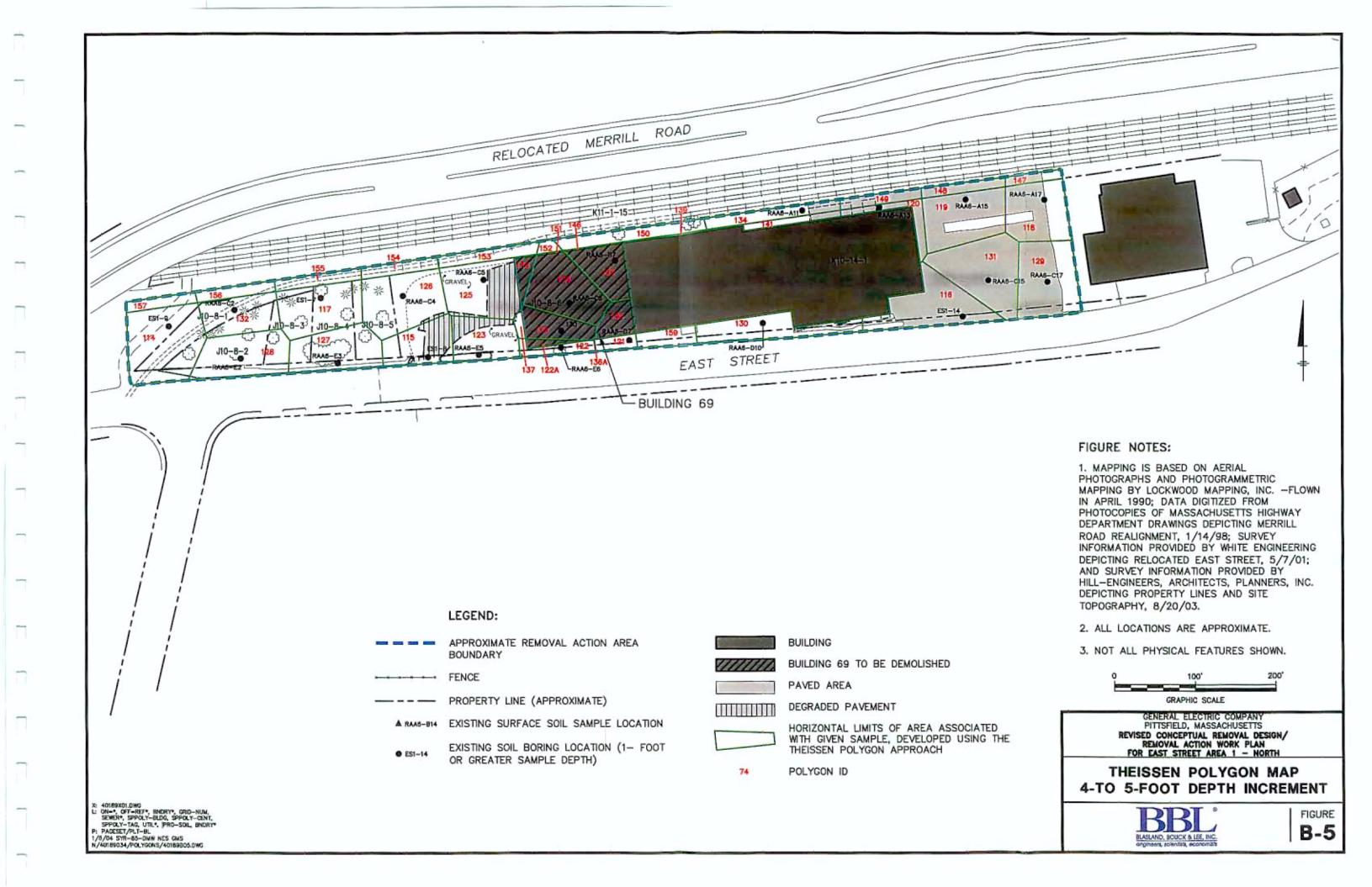


# FIGURE NOTES:

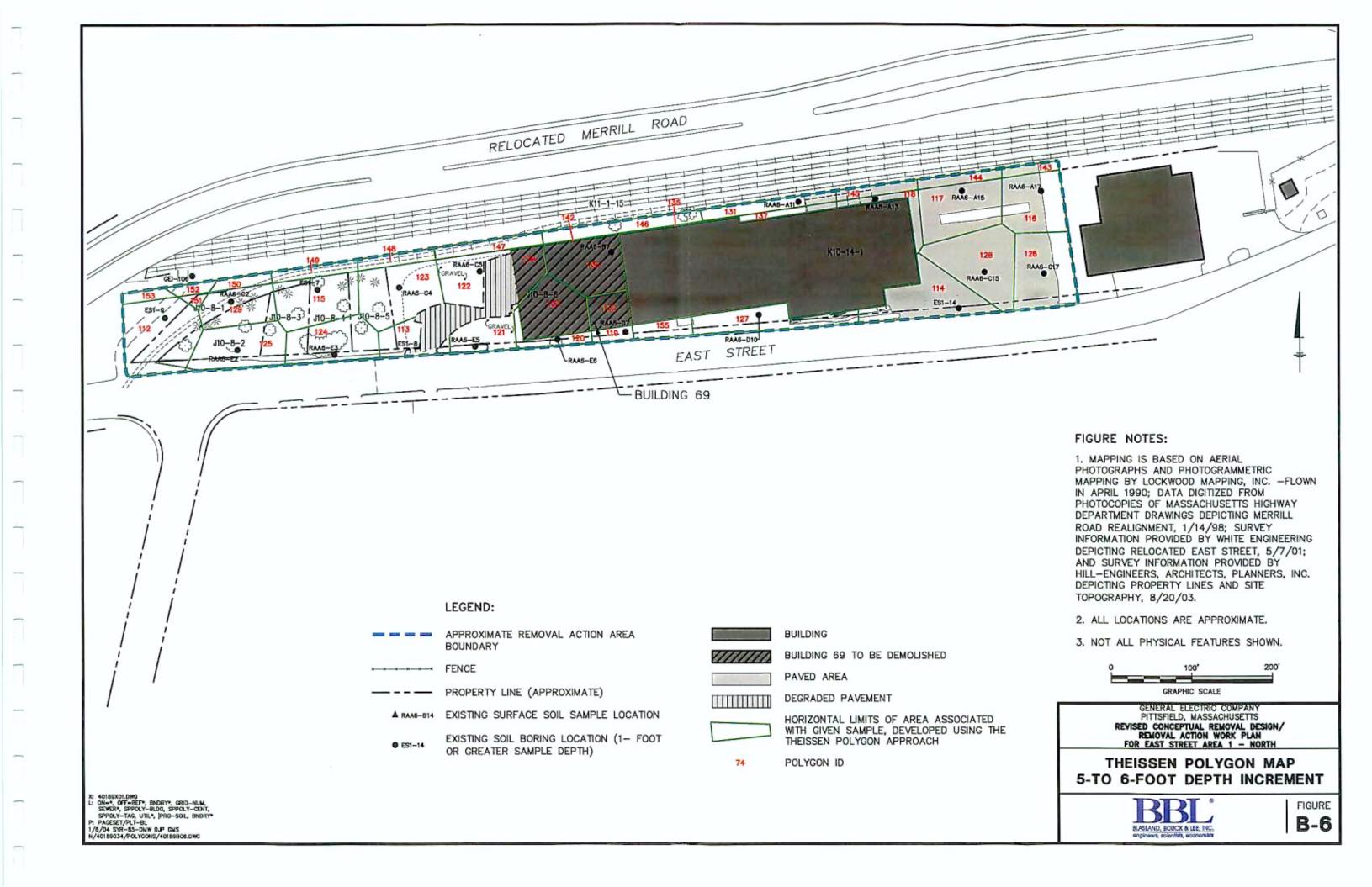
1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. -FLOWN IN APRIL 1990; DATA DIGITIZED FROM PHOTOCOPIES OF MASSACHUSETTS HIGHWAY DEPARTMENT DRAWINGS DEPICTING MERRILL ROAD REALIGNMENT, 1/14/98; SURVEY INFORMATION PROVIDED BY WHITE ENGINEERING DEPICTING RELOCATED EAST STREET, 5/7/01; AND SURVEY INFORMATION PROVIDED BY HILL-ENGINEERS, ARCHITECTS, PLANNERS, INC. DEPICTING PROPERTY LINES AND SITE TOPOGRAPHY, 8/20/03.

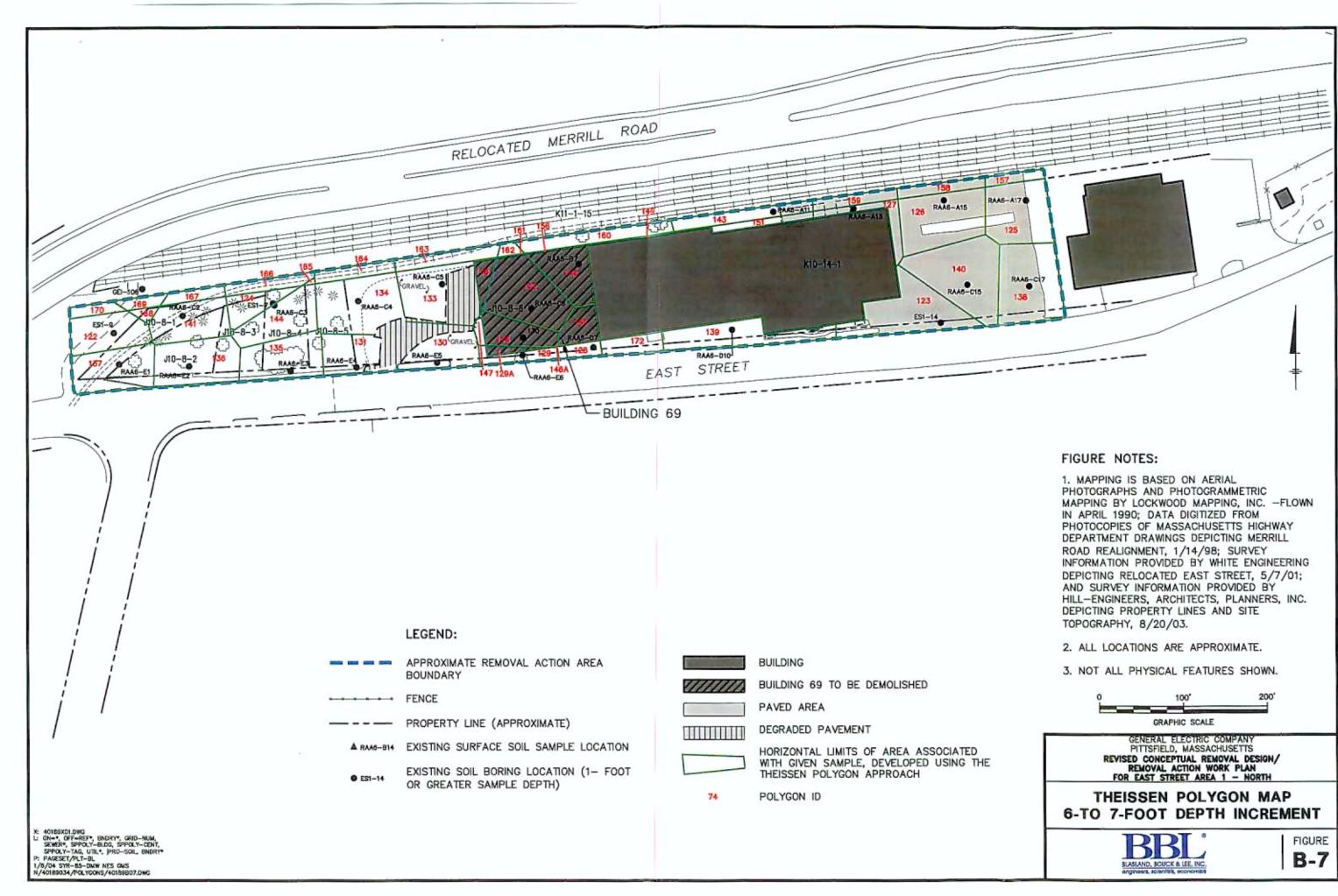
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. NOT ALL PHYSICAL FEATURES SHOWN.



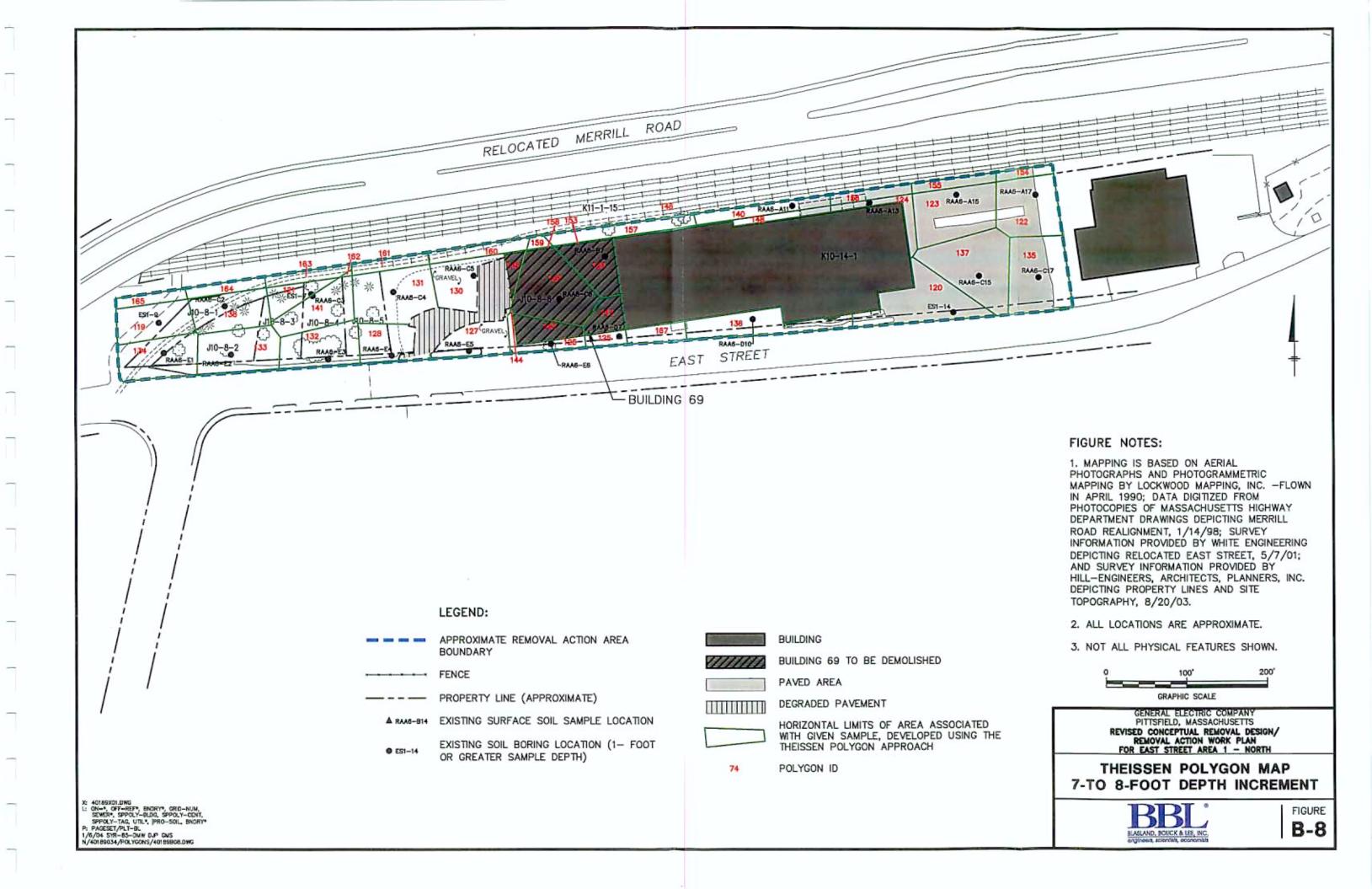


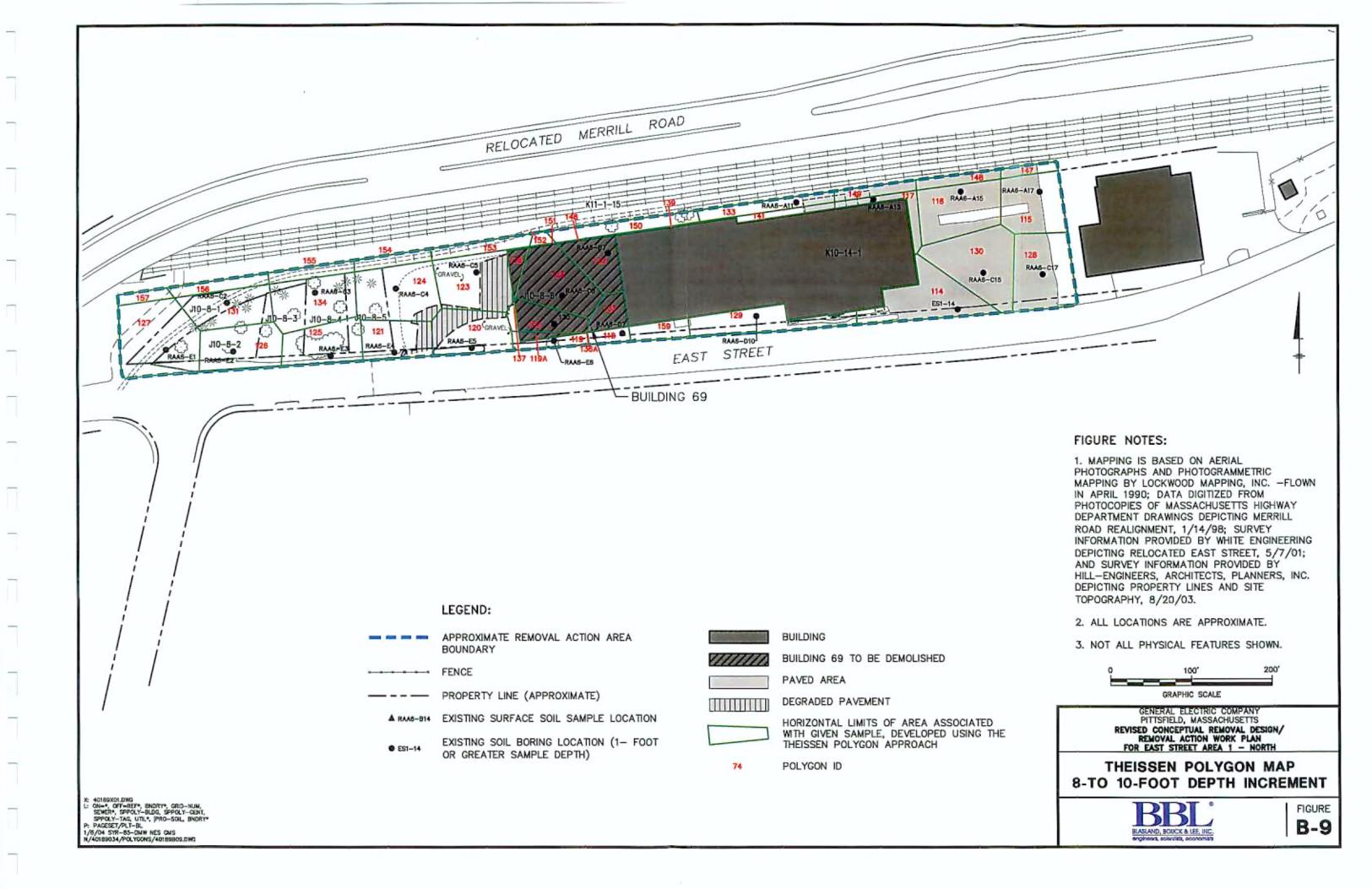



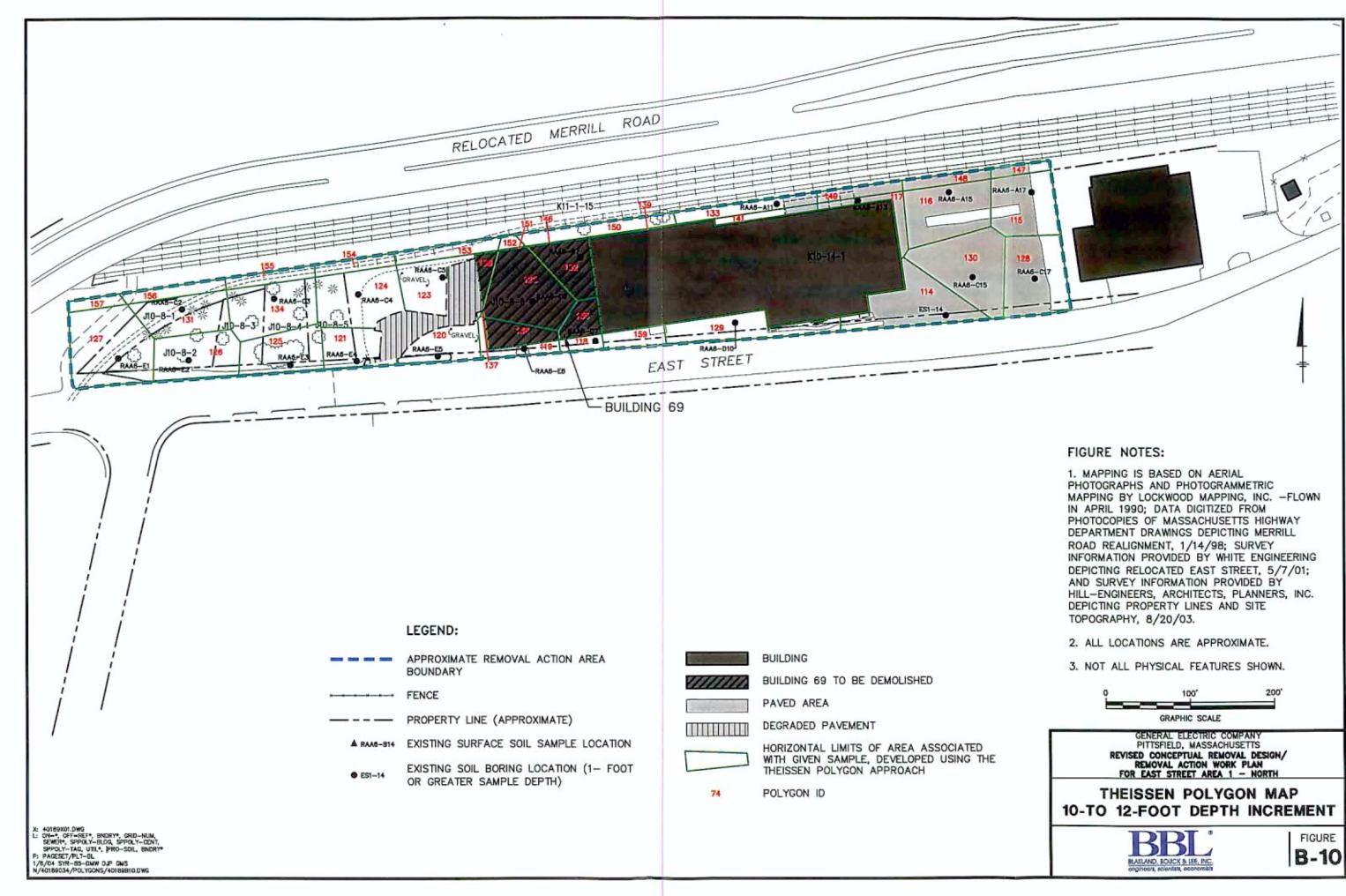


## FIGURE NOTES:

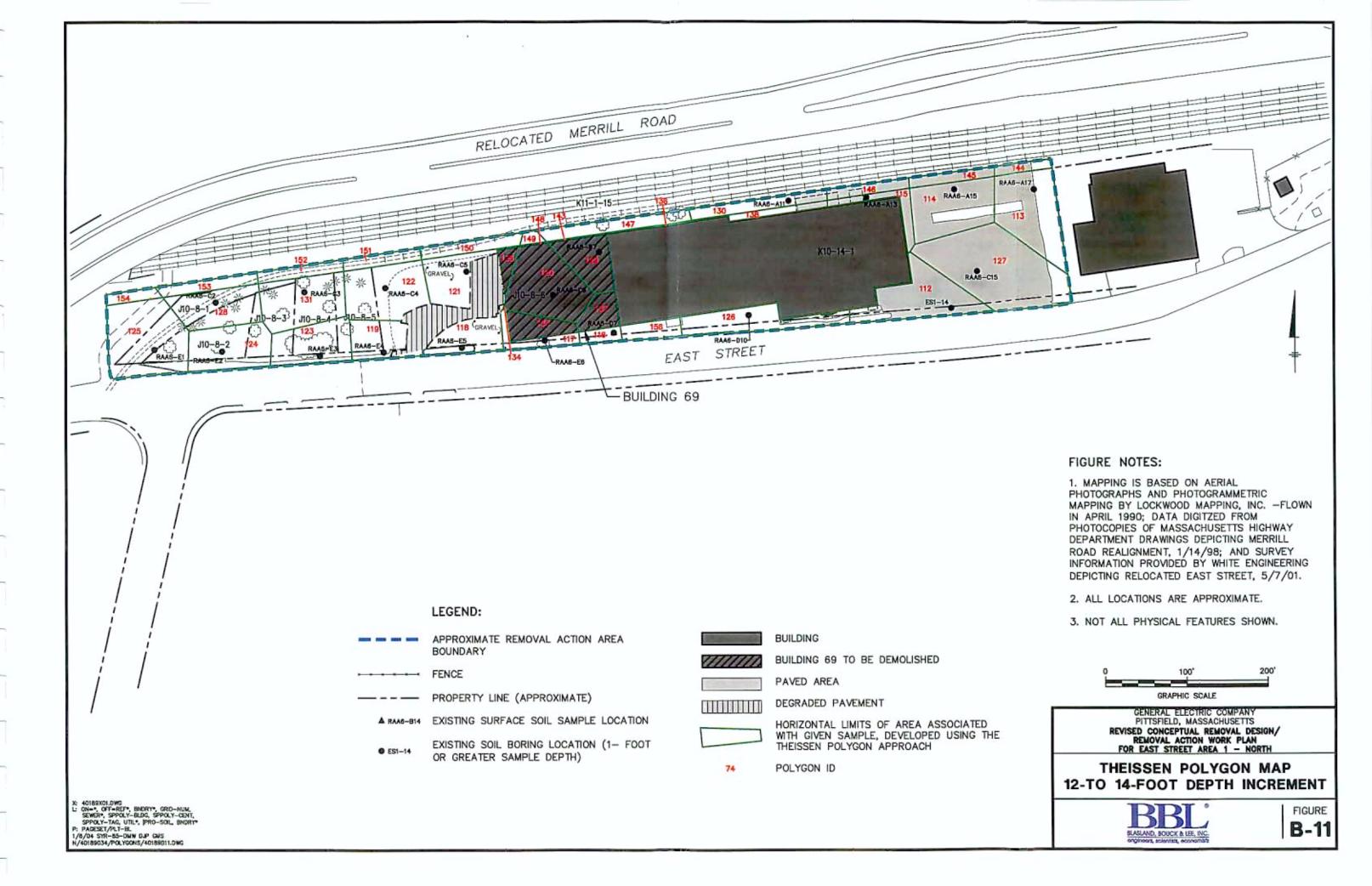

1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. -FLOWN IN APRIL 1990; DATA DIGITIZED FROM PHOTOCOPIES OF MASSACHUSETTS HIGHWAY DEPARTMENT DRAWINGS DEPICTING MERRILL ROAD REALIGNMENT, 1/14/98; SURVEY INFORMATION PROVIDED BY WHITE ENGINEERING DEPICTING RELOCATED EAST STREET, 5/7/01; AND SURVEY INFORMATION PROVIDED BY HILL-ENGINEERS, ARCHITECTS, PLANNERS, INC. DEPICTING PROPERTY LINES AND SITE TOPOGRAPHY, 8/20/03.

- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. NOT ALL PHYSICAL FEATURES SHOWN.




	0 100' 200'
ſ	GRAPHIC SCALE GENERAL ELECTRIC COMPANY
	PITTSFIELD, MASSACHUSETTS REVISED CONCEPTUAL REMOVAL DESIGN/ REMOVAL ACTION WORK PLAN FOR EAST STREET AREA 1 - NORTH
	THEISSEN POLYGON MAP 6-TO 7-FOOT DEPTH INCREMENT
	BBBL® BLASLAND, BOUCK & LEE, INC. angeleast, scientist, economistry B-7











#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	178	8,314	0 - 0.5	1.9	153.97	2.05	631.27
			0.5 - 1	2.2	307.94		
RAA6-C2	196	4,415	0 - 1	2.0	163.52	2.00	327.05
RAA6-E2	192	6,094	0 - 1	0.14	225.70	0.14	31.60
ES1-7	181	5,987	0 - 0.5	0.45	110.87	0.93	205.11
			0.5 - 1	1.4	221.74		
RAA6-E3	191	5,563	0 - 1	0.54	206.05	0.54	111.27
RAA6-C4	190	6,966	0 - 1	0.70	258.00	0.70	180.60
ES1-8	179	4,184	0 - 0.5	1.1	77.48	0.72	111.57
			0.5 - 1	0.34	154.95		
RAA6-C5	189	6,363	0 - 1	0.49	235.66	0.49	115.47
RAA6-E5	187	4,330	0 - 1	0.83	160.39	0.83	133.12
RAA6-C6	202,222	53	0 - 1	0.019	1.95	0.02	0.04
RAA6-B7	215	73	0 - 1	0.137	2.69	0.14	0.37
RAA6-E6	186	1,517	0 - 1	1.38	56.18	1.38	77.53
RAA6-D7	185	891	0 - 1	1.62	33.01	1.62	53.47
Totals:		54,750			2,027.78		1,978.46
					Volume Weigh	ted Average:	0.98

Notes:

1. Polygon ID and area based on information shown on Figure B-1.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	178	8,314	0 - 0.5	1.9	153.97	2.05	631.27
			0.5 - 1	2.2	307.94		
RAA6-C2	196	4,415	0 - 1	2.0	163.52	2.00	327.05
RAA6-E2	192	6,094	0 - 1	0.14	225.70	0.14	31.60
ES1-7	181	5,987	0 - 0.5	0.45	110.87	0.93	205.11
			0.5 - 1	1.4	221.74		
RAA6-E3	191	5,563	0 - 1	0.54	206.05	0.54	111.27
RAA6-C4	190	6,966	0 - 1	0.70	258.00	0.70	180.60
ES1-8	179	4,184	0 - 0.5	1.1	77.48	0.72	111.57
			0.5 - 1	0.34	154.95		
RAA6-C5	189,203	7,254	0 - 1	0.49	268.66	0.49	131.65
RAA6-E5	187	4,330	0 - 1	0.83	160.39	0.83	133.12
RAA6-C6	188,202,222	7,280	0 - 1	0.019	269.62	0.02	5.12
RAA6-B7	197,215	3,595	0 - 1	0.137	133.13	0.14	18.24
RAA6-E6	186,201	3,639	0 - 1	1.38	134.76	1.38	185.97
RAA6-D7	185,200	2,656	0 - 1	1.62	98.38	1.62	159.38
Totals:		70,277			2,602.84		2,231.94
		······			Volume Weigh	ted Average:	0.86

Notes:

1. Polygon ID and area based on information shown on Figure B-1.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

 All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	114	8,314	1 - 2	2.2	307.94	2.20	677.46
RAA6-C2	132	4,415	1 - 2	2.7	163.53	2.70	441.52
RAA6-E2	128	6,094	1 - 2	0.065	225.69	0.07	14.67
ES1-7	117	5,987	1 - 2	1.4	221.74	1.40	310.43
RAA6-E3	127	5,563	1 - 2	0.71	206.05	0.71	146.29
RAA6-C4	126	6,966	1 - 2	3.2	257.99	3.20	825.57
ES1-8	115	4,184	1 - 2	0.34	154.97	0.34	52.69
RAA6-C5	125,152	7,254	1 - 2	1.9	268.68	1.90	510.50
RAA6-E5	123	4,330	1 - 2	1.3	160.37	1.30	208.48
RAA6-C6	124,137,151	6,564	1 - 2	0.35	243.12	0.35	85.09
RAA6-E6	150, 122	3,639	1 - 2	0.67	134.76	0.67	90.29
RAA6-B7	133, 141	3,594	1 - 2	0.019	133.13	0.02	2.53
RAA6-D7	149, 121	2,656	1 - 2	0.24	98.38	0.24	23.61
Totals:		69,561	w at		2,576.33		3,389.14
					Volume Weigh	ted Average:	1.32

### 1- TO 2-FOOT DEPTH INCREMENT

#### 2- TO 3-FOOT DEPTH INCREMENT

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc: (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	114	8,314	2 - 3	0.73	307.94	0.73	224.79
RAA6-C2	132	4,415	2 - 3	2.7	163.53	2.70	441.52
RAA6-E2	128	6,094	2 - 3	0.065	225.69	0.07	14.67
ES1-7	117	5,987	2 - 3	1.7	221.74	1.70	376.95
RAA6-E3	127	5,563	2 - 3	0.71	206.05	0.71	146.29
RAA6-C4	126	6,966	2 - 3	3.2	257.99	3.20	825.57
ES1-8	115	4,184	2 - 3	1.4	154.97	1.40	216.95
RAA6-C5	125,138	7,192	2 - 3	1.9	266.38	1.90	506.12
RAA6-E5	123	4.274	2 - 3	1.3	158.28	1.30	205.77
RAA6-C6	124,151	6,233	2 - 3	0.35	230.86	0.35	80.80
130	136,136A,137	3,037	2 - 3	1.3	112.50	1.30	146.25
RAA6-E6	122,122A	1,793	2 - 3	0.67	66.41	0.67	44.49
RAA6-B7	133.146	3,594	2 - 3	0.019	133.13	0.02	2.53
RAA6-D7	135,121	2,629	2 - 3	0.24	97.39	0.24	23.37
Totals:		70,277			2,602.84	**	3,256.09
					Volume Weigh	ted Average:	1.25

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	114	8,314	3 - 4	0.73	307.94	0.73	224.79
RAA6-C2	132	4,415	3 - 4	2.7	163.53	2.70	441.52
RAA6-E2	128	6,094	3 - 4	0.065	225.69	0.07	14.67
ES1-7	117	5,987	3 - 4	1.7	221.74	1.70	376.95
RAA6-E3	127	5,563	3 - 4	0.71	206.05	0.71	146.29
RAA6-C4	126	6,966	3 - 4	3.2	257.99	3.20	825.57
ES1-8	115	4,184	3 - 4	1.4	154.97	1.40	216.95
RAA6-C5	125,138	7,254	3 - 4	1.9	268.68	1.90	510.50
RAA6-E5	123	4,330	3 - 4	1.3	160.37	1.30	208.48
RAA6-C6	124,151,137	7,280	3 - 4	0.35	269.62	0.35	94.37
RAA6-E6	136,122	3,639	3 - 4	0.67	134.76	0.67	90.29
RAA6-B7	133,146	3,594	3 - 4	0.019	133.13	0.02	2.53
RAA6-D7	135,121	2,656	3 - 4	0.69	98.38	0.69	67.88
Totals:		70,277			2,602.84		3,220.81
***************************************					Volume Weigh	ted Average:	1.24

## 3- TO 4-FOOT DEPTH INCREMENT

### 4- TO 5-FOOT DEPTH INCREMENT

		Polygon Area	De	nple		PCB Conc.	Volume (cumulative)	Average PCB Concentration	Average PCB Conc. TIMES
Sample ID(s)	Polygon ID	(sq. ft.)	()	ft.)		(ppm)	(cy)	Per Foot	Total Volume
ES1-9	114	8,314	4	- 5	n N	0.039	307.94	0.04	12.01
RAA6-C2	132	4,415	4	- 5	ŝ	2.7	163.53	2.70	441.52
RAA6-E2	128	6,094	4	- 5	5	0.065	225.69	0.07	14.67
ES1-7	117	5,987	4	- 5	5	6.4	221.74	6.40	1,419.11
RAA6-E3	127	5,563	4	- 5	5	0.71	206.05	0.71	146.29
RAA6-C4	126	6,966	4	- 5	5	3.2	257.99	3.20	825.57
ES1-8	115	4,184	4	- 5	5	7.7	154.97	7.70	1,193.25
RAA6-C5	125,138	7,192	4	- {	5	1.9	266.38	1.90	506.12
RAA6-E5	123	4,330	4	- 5	5	1.3	160.37	1.30	208.48
RAA6-C6	124,151	6,253	4	- {	5	0.35	231.58	0.35	81.05
130	136,136A.137	3.037	4	- {	5	0.5	112.50	0.50	56.25
RAA6-E6	122,122A	1,793	4	- 5	5	0.67	66.41	0.67	44.49
RAA6-B7	133,146	3.594	4	- {	5	0.019	133.13	0.02	2.53
RAA6-D7	135,121	2,629	4	- {	5	0.69	97.39	0.69	67.20
Totals:	*-	70,352		w		÷-	2,605.65		5,018.55
*******	• • • • • • • • • • • • • • • • • • • •				****		Volume Weigh	ted Average:	1.93

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	112	8,116	5 - 6	0.039	300.60	0.04	11.72
GEI-106	151	386	5 - 6	0.5	14.31	0.50	7.16
RAA6-C2	129	4,227	5 - 6	2.7	156.56	2.70	422.71
RAA6-E2	125	6,094	5 - 6	0.065	225.69	0.07	14.67
ES1-7	115	5,987	5 - 6	6.4	221.74	6.40	1,419.11
RAA6-E3	124	5,563	5 - 6	0.71	206.05	0.71	146.29
RAA6-C4	123	6,966	5 - 6	3.2	257.99	3.20	825.57
ES1-8	113	4,184	5 - 6	7.7	154.97	7.70	1,193.25
RAA6-C5	122,134	8,546	5 - 6	1.9	316.51	1.90	601.36
RAA6-E5	121	4,330	5 - 6	1.3	160.37	1.30	208.48
RAA6-E6	133,120	6,706	5 - 6	0.67	248.38	0.67	166.41
RAA6-B7	130,142	6,112	5 - 6	0.019	226.36	0.02	4.30
RAA6-D7	132,119	3,060	5 - 6	0.69	113.33	0.69	78.20
Totals:		70,277		***	2,602.84		5,099.23
				*****	Volume Weigh	ted Average:	1.96

### 5- TO 6-FOOT DEPTH INCREMENT

### SUMMARY 1- TO 6-FOOT DEPTH INCREMENT

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
Totals:	Par sis	70,352		~~	12,990.50		19,983.81
					Volume Weigh	ted Average:	1.54 P. 261

#### Notes:

1. Polygon ID and area based on information shown on Figures B-2 through B-6.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clanty.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### 0- TO 1- FOOT DEPTH INCREMENT (SEE TABLE B-2)

Sample ID(s)	Area	Sample Depth (ft.)	PCB Conc. (ppm)	(cumulative)	Concentration	Average PCB Conc. TIMES Total Volume
Totals:	 70,277		10-04	2,602.84		2,231.94
		<u></u>		Volume Weigh	ted Average:	0.86

## 1- TO 6- FOOT DEPTH INCREMENT (SEE TABLE B-3)

Sample ID(s)	Area	PCB Conc. (ppm)	(cumulative)		Average PCB Conc. TIMES Total Volume
Totals:	 70,352	 	12,990.50		19,983.81
			Volume Weigh	ted Average:	1.54

#### 6- TO 7-FOOT DEPTH INCREMENT

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	122	3,905	6 - 7	0.039	144.62	0.04	5.64
RAA6-E1	137	4,845	6 - 7	0.14	179.46	0.14	25.12
GEI-106	168	386	6 - 7	0.5	14.31	0.50	7.16
RAA6-C2	141	4,225	6 - 7	0.019	156.49	0.02	2.97
RAA6-E2	136	5,456	6 - 7	0.039	202.06	0.04	7.88
ES1-7	124	1,961	6 - 7	2.25	72.64	2.25	163.44
RAA6-C3	144	4,200	6 - 7	0.64	155.56	0.64	99.56
RAA6-E3	135	4,743	6 - 7	0.66	175.66	0.66	115.94
RAA6-C4	134	6,801	6 - 7	1.3	251.89	1.30	327.45
RAA6-E4	131	4,118	6 - 7	0.93	152.54	0.93	141.86
RAA6-C5*	133,148	7,197	6 - 7	1.295	266.54	1.30	345.17
RAA6-E5	130	5,151	6 - 7	1.6	190.78	1.60	305.25
RAA6-C6	132,161	6,233	6 - 7	0.1585	230.86	0.16	36.59
130	146.146A,147	3,037	6 - 7	2.6	112.50	2.60	292.50
RAA6-E6	129,129A	1,793	6 - 7	0.17	66.41	0.17	11.29
RAA6-B7	142,156	3,594	6 - 7	0.019	133.13	0.02	2.53
RAA6-D7	145,128	2,629	6 - 7	0.38	97.39	0.38	37.01
Totals:		70,277	100 100 100 100 100 100 100 100 100 100		2,602.84		1,927.36
					Volume Weigh	ted Average:	0.74

2352

### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Samp Dept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
ES1-9	119	4,103	7 -	8	0.039	151.97	0.04	5.93
RAA6-E1	134	4,845	7 -	8	0.14	179.46	0.14	25.12
RAA6-C2	138	4,413	7 -	8	0.019	163.46	0.02	3.11
RAA6-E2	133	5,456	7 -	8	0.039	202.06	0.04	7.88
ES1-7	121	1,961	7 -	8	2.25	72.64	2.25	163.44
RAA6-C3	141	4,200	7 -	8	0.64	155.56	0.64	99.56
RAA6-E3	132	4,743	7 -	8	0.66	175.66	0.66	115.94
RAA6-C4	131	6,801	7 -	8	1.3	251.89	1.30	327.45
RAA6-E4	128	4,118	7 -	8	0.93	152.54	0.93	141.86
RAA6-C5*	130,145	7,259	7 -	8	1.295	268.85	1.30	348.16
RAA6-E5	127	5,207	7 -	8	1.6	192.87	1.60	308.59
RAA6-C6	129,158,144	7,280	7 -	8	0.1585	269.62	0.16	42.74
RAA6-E6	143,126	3,639	7 -	8	0.17	134.76	0.17	22.91
RAA6-B7	139,153	3,594	7 -	8	0.019	133.13	0.02	2.53
RAA6-D7	142,125	2,656	7 -	8	0.38	98.38	0.38	37.39
Totals:		70,277				2,602.84		1,652.59
						Volume Weigh	ted Average:	0.63

### 7- TO 8-FOOT DEPTH INCREMENT

#### 8- TO 10-FOOT DEPTH INCREMENT

Samala (D/a)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth	PCB Conc.	Volume (cumulative)	Average PCB Concentration	Average PCB Conc. TIMES
Sample ID(s)			(ft.)	(ppm)	(cy)	Per Foot	Total Volume
RAA6-E1	127	8,531	8 - 10	0.14	631.93	0.14	88.47
RAA6-C2	131	4,853	8 - 10	0.019	359.45	0.02	6.83
RAA6-E2	126	5,456	8 - 10	0.039	404.13	0.04	15.76
RAA6-C3	134	6,140	8 - 10	0.64	454.79	0.64	291.06
RAA6-E3	125	4,743	8 - 10	0.66	351.32	0.66	231.87
RAA6-C4	124	6,801	8 - 10	1.3	503.77	1.30	654.91
RAA6-E4	121	4,118	8 - 10	0.93	305.07	0.93	283.72
RAA6-C5*	123.138	7,197	8 - 10	1.295	533.09	1.30	690.35
RAA6-E5	120	5,151	8 - 10	1.6	381.56	1.60	610.50
RAA6-C6	122,151	6,233	8 - 10	0.1585	461.73	0.16	73.18
130	136,136A,137	3,037	8 - 9	3.1	112.50	1.60	360.00
			9 - 10	0.1	225.00	r i i i i i i i i i i i i i i i i i i i	
RAA6-E6	119,119A	1,793	8 - 10	0.17	132.82	0.17	22.58
RAA6-B7	132,146	3,594	8 - 10	0.019	266.25	0.02	5.06
RAA6-D7	135,118	2.629	8 - 10	0.38	194.77	0.38	74.01
Totais:		70,277		**	5,205.68		3.408.30
					Volume Weigh	ted Average:	0.65

STATES OF

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
RAA6-E1	127	8,531	10 - 12	0.14	631.93	0.14	88.47
RAA6-C2	131	4,853	10 - 12	0.019	359.45	0.02	6.83
RAA6-E2	126	5,456	10 - 12	0.039	404.13	0.04	15.76
RAA6-C3*	134	6,140	10 - 12	1.37	454.79	1.37	623.06
RAA6-E3	125	4,743	10 - 12	0.66	351.32	0.66	231.87
RAA6-C4	124	6,801	10 - 12	1.3	503.77	1.30	654.91
RAA6-E4	121	4,118	10 - 12	0.93	305.07	0.93	283.72
RAA6-C5*	123,138	7,259	10 - 12	1.295	537.69	1.30	696.31
RAA6-E5	120	5,207	10 - 12	1.6	385.74	1.60	617.18
RAA6-C6	122,151,137	7,280	10 - 12	0.1585	539.25	0.16	85.47
RAA6-E6	136,119	3,639	10 - 12	0.17	269.52	0.17	45.82
RAA6-B7	132,146	3,594	10 - 12	0.019	266.25	0.02	5.06
RAA6-D7	135,118	2,656	10 - 12	0.38	196.77	0.38	74.77
Totals:		70,277		***	5,205.68		3,429.22
					Volume Weigh	ited Average:	0.66

## 10- TO 12-FOOT DEPTH INCREMENT

#### 12- TO 14-FOOT DEPTH INCREMENT

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
RAA6-E1	125	8,531	12 - 14	0.14	631.93	0.14	88.47
RAA6-C2	128	4,853	12 - 14	0.019	359.45	0.02	6.83
RAA6-E2	124	5,456	12 - 14	0.039	404.13	0.04	15.76
RAA6-C3	131	6,140	12 - 14	0.64	454.79	0.64	291.06
RAA6-E3	123	4,743	12 - 14	0.66	351.32	0.66	231.87
RAA6-C4	122	6,801	12 - 14	1.3	503.77	1.30	654.91
RAA6-E4	119	4,118	12 - 14	0.93	305.07	0.93	283.72
RAA6-C5*	121,135,	7,259	12 - 14	1.295	537.69	1.30	696.31
RAA6-E5	1 <b>1</b> 8	5,207	12 - 14	1.6	385.74	1.60	617.18
RAA6-C6	120,148,134	7,280	12 - 14	0.1585	539.25	0.16	85.47
RAA6-E6	133,117	3,639	12 - 14	0.17	269.52	0.17	45.82
RAA6-B7	129,143	3.594	12 - 14	0.019	266.25	0.02	5.06
RAA6-D7	132,116	2,656	12 - 14	0.38	196.77	0.38	74.77
Totals:	~~	70,277		**	5,205.68	***	3,097.23
······					Volume Weigh	ted Average:	0.59

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
RAA6-E1	130	8,531	14 - 15	0.14	315.97	0.14	44.24
RAA6-C2	133	4,831	14 - 15	0.019	178.91	0.02	3.40
RAA6-E2	129	5,456	14 - 15	0.039	202.06	0.02	7.88
ES1-7	138	1,961	14 - 15	1.9	72.64	1.90	138.02
RAA6-C3	136	4,200	14 - 15	0.64	155.56	0.64	99.56
RAA6-E3	128	4,743	14 - 15	0.66	175.66	0.66	115.94
RAA6-C4	127	6,466	14 - 15	1.3	239.47	1.30	311.31
RAA6-E4	124	2,707	14 - 15	0.93	100.24	0.93	93.22
ES1-8	137	2,629	14 - 15	0.0375	97.38	0.04	3.65
RAA6-C5*	126,142	7,254	14 - 15	1.295	268.68	1.30	347.94
RAA6-E5	123	4,330	14 - 15	1.6	160.37	1.60	256.59
RAA6-C6	125,155,141	7,280	14 - 15	0.1585	269.62	0.16	42.74
RAA6-E6	140,122	3,639	14 - 15	0.17	134.76	0.17	22.91
RAA6-B7	134,150	3,594	14 - 15	0.019	133.13	0.02	2.53
RAA6-D7	139,121	2,656	14 - 15	0.38	98.38	0.38	37.39
Totals:		70,277	++	<b>46 16</b>	2,602.84		1,527.31
					Volume Weigh	0.59	

#### 14- TO 15-FOOT DEPTH INCREMENT

#### SUMMARY 0- TO 15-FOOT DEPTH INCREMENT

Sample ID(s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)		Average PCB Concentration Per Foot	Average PCB Conc. TIMES Total Volume
Totals:		70,277			39,018.90	<b>.</b>	37,257.77
					Volume Weighted Average:		0.95

#### Notes:

1. Polygon ID and area based on information shown on Figures B-7 through B-12.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

5. * = Concentration represents an average of sample collected by GE and sample collected by USEPA.

#### TABLE B-5 EXISTING CONDITIONS NON GE-OWNED PARCEL K10-14-1 0- TO 1- FOOT DEPTH INCREMENT

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	204	102	0 - 1	0.137	3.79	0.14	0.52
RAA6-A11	206	1,082	0 - 1	0.77	40.09	0.77	30.87
RAA6-A13	184	635	0 - 1	0.048	23.50	0.05	1.13
RAA6-A14	165	1,372	0 - 1	0.021	50.80	0.02	1.07
RAA6-A15	183	1,676	0 - 1	0.102	62.06	0.10	6.33
RAA6-A16	166	2,031	0 - 1	0.25	75.22	0.25	18.80
RAA6-A17	182	2,427	0 - 1	0.049	89.88	0.05	4.40
RAA6-B14	168	1,660	0 - 1	0.128	61.47	0.13	7.87
RAA6-B15	160	2,710	0 - 1	0.209	100.39	0.21	20.98
RAA6-B16	167	2,457	0 - 1	0.132	90.99	0.13	12.01
RAA6-B17	161	2,081	0 - 1	0.26	77.08	0.26	20.04
RAA6-B18	171	941	0 - 1	0.69	34.86	0.69	24.05
RAA6-C14	169	2,183	0 - 1	0.172	80.85	0.17	13.91
RAA6-C15	195	2,166	0 - 1	0.060	80.21	0.06	4.81
RAA6-C16	170	1,765	0 - 1	0.20	65.37	0.20	13.07
RAA6-C17	193	1,908	0 - 1	0.177	70.66	0.18	12.51
RAA6-C18	172	767	0 - 1	0.34	28.40	0.34	9.66
RAA6-D7	230	360	0 - 1	1.62	13.33	1.62	21.59
RAA6-D8	177	1,207	0 - 1	1.17	44.71	1.17	52.31
RAA6-D9	199	1,460	0 - 1	1.1	54.07	1.10	59.47
RAA6-D10	194	1,745	0 - 1	0.113	64.62	0.11	7.30
RAA6-D11	164	890	0 - 1	0.38	32.96	0.38	12.53
RAA6-D12	176	724	0 - 1	0.33	26.81	0.33	8.85
RAA6-D13	163	1,268	0 - 1	0.14	46.96	0.14	6.57
RAA6-D14	175	1,666	0 - 1	0.039	61.70	0.04	2.41
RAA6-D16	174	1,344	0 - 1	0.72	49.77	0.72	35.84
RAA6-D17	162	1,133	0 - 1	0.24	41.98	0.24	10.08
RAA6-D18	173	584	0 - 1	0.52	21.64	0.52	11.25
ES1-14	180	1,812	0 - 1	1.8	67.12	1.80	120.82
Totals:		42,154		÷	1,561.28		551.04
					Volume Weigh	ted Average:	0.35

#### Notes:

1. Polygon ID and area based on information shown on Figure B-1.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### 0- TO 1- FOOT DEPTH INCREMENT (SEE TABLE B-5)

Sample ID (s)	Polygon	Area	Depth	Conc.	(cumulative)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume		
Totals:		42,154			1,561.28	* -	551.04		
					Volume Weighted Average: 0.35				

#### 1-TO 2-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	De	nple pth i.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	1 -	- 2	0.019	3.79	0.02	0.07
RAA6-A11	138	1,082	1 .	• 2	0.12	40.09	0.12	4.81
RAA6-A13	120	1,622	1 ·	· 2	1.03	60.06	1.03	61.86
RAA6-A15	119	6,323	1.	• 2	0.13	234.18	0.13	30.44
RAA6-A17	118	5,547	1.	· 2	0.022	205.44	0.02	4.52
RAA6-C15	131	7,621	1 -	· 2	0.020	282.24	0.02	5.64
RAA6-C17	129	6,915	1 -	· 2	0.24	256.12	0.24	61.47
RAA6-D7	159	1,623	1 -	2	0.24	60.10	0.24	14.42
RAA6-D10	130	4,703	1 .	- 2	0.020	174.17	0.02	3.40
ES1-14	116	6,617	1.	· 2	1.8	245.08	1.80	441.15
Totals:	-+	42,154	-	-		1,561.28	- <b>-</b>	627.79
						Volume Weigh	0.40	

#### 2- TO 3-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	2 - 3	0.019	3.79	0.02	0.07
RAA6-A11	141	1,082	2 - 3	0.12	40.09	0.12	4.81
RAA6-A13	120	1,622	2 - 3	1.03	60.06	1.03	61.86
RAA6-A15	119	6,323	2 - 3	0.13	234.18	0.13	30.44
RAA6-A17	118	5,547	2 - 3	0.022	205.44	0.02	4.52
RAA6-C15	131	7,621	2 - 3	0.020	282.24	0.02	5.64
RAA6-C17	129	6,915	2 - 3	0.24	256.12	0.24	61.47
RAA6-D7	159	1,623	2 - 3	0.24	60.10	0.24	14.42
RAA6-D10	130	4,703	2 - 3	0.020	174.17	0.02	3.40
ES1-14	116	6,617	2 - 3	0.23	245.08	0.23	56.37
Totals:		42.154			1,561.28		243.01
					Volume Weigh	0.16	

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### SUMMARY 0- TO 3-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon	Polygon Area (sq. ft.)	Depth	Conc.	(cumulative)	Average PCB Concentration Per Foot (ppm)	Conc. TIMES
Totals:		42,154			4,683.83		1,421.84
					Volume Weigh	ted Average:	0.30

Notes:

1. Polygon ID and area based on information shown on Figures B-1 through B-3.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	C	ample )epth (ft.)	5 T E	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	1	- ;	2	0.019	3.79	0.02	0.07
RAA6-A11	138	1,082	1		2	0.12	40.09	0.12	4.81
RAA6-A13	120	1,622	1		2	1.03	60.06	1.03	61.86
RAA6-A15	119	6,323	1	-	2	0.13	234.18	0.13	30.44
RAA6-A17	118	5,547	1	+	2	0.022	205.44	0.02	4.52
RAA6-C15	131	7,621	1		2	0.020	282.24	0.02	5.64
RAA6-C17	129	6,915	1		2	0.24	256.12	0.24	61.47
RAA6-D7	159	1,623	1	-	2	0.24	60.10	0.24	14.42
RAA6-D10	130	4,703	1	-	2	0.020	174.17	0.02	3.40
ES1-14	116	6,617	1	-	2	1.8	245.08	1.80	441.15
Totals:		42,154				++	1,561.28		627.79
							Volume Weigh	ted Average:	0.40

#### 1- TO 2-FOOT DEPTH INCREMENT

#### 2- TO 3-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	D	amp lept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	2	÷	3	0.019	3.79	0.02	0.07
RAA6-A11	141	1,082	2	-	3	0.12	40.09	0.12	4.81
RAA6-A13	120	1,622	2	~	3	1.03	60.06	1.03	61.86
RAA6-A15	119	6,323	2	-	3	0.13	234.18	0.13	30.44
RAA6-A17	118	5,547	2	~	3	0.022	205.44	0.02	4.52
RAA6-C15	131	7,621	2	-	3	0.020	282.24	0.02	5.64
RAA6-C17	129	6,915	2	\$	3	0.24	256.12	0.24	61.47
RAA6-D7	159	1.623	2	-	3	0.24	60.10	0.24	14.42
RAA6-D10	130	4,703	2	-	3	0.020	174.17	0.02	3.40
ES1-14	116	6,617	2	-	3	0.23	245.08	0.23	56.37
Totals:		42,154					1,561.28		243.01
							Volume Weigh	ted Average:	0.16

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	<u> </u>	amp )ept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	3		4	0.019	3.79	0.02	0.07
RAA6-A11	141	1,082	3	-	4	0.019	40.09	0.02	0.74
RAA6-A13	120	1,622	3	-	4	0.020	60.06	0.02	1.20
RAA6-A15	119	6,323	3	-	4	0.019	234.18	0.02	4.45
RAA6-A17	118	5,547	3	-	4	0.019	205.44	0.02	3.90
RAA6-C15	131	7,621	3	-	4	0.019	282.24	0.02	5.22
RAA6-C17	129	6,915	3	-	4	0.22	256.12	0.22	56.35
RAA6-D7	159	1,623	3	-	4	0.69	60.10	0.69	41.47
RAA6-D10	130	4,703	3	-	4	0.86	174.17	0.86	149.79
ES1-14	116	6,617	3	+	4	0.23	245.08	0.23	56.37
Totals:		42,154					1,561.28		319.56
							Volume Weigh	ted Average:	0.20

#### 3- TO 4-FOOT DEPTH INCREMENT

#### 4- TO 5-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	C	amp )ept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	4	-	5	0.019	3.79	0.02	0.07
RAA6-A11	141	1,082	4	-	5	0.019	40.09	0.02	0.74
RAA6-A13	120	1,622	4	-	5	0.020	60.06	0.02	1.20
RAA6-A15	119	6,323	4	-	5	0.019	234.18	0.02	4.45
RAA6-A17	118	5,547	4	~	5	0.019	205.44	0.02	3.90
RAA6-C15	131	7,621	4	-	5	0.019	282.24	0.02	5.22
RAA6-C17	129	6,915	4	-	5	0.22	256.12	0.22	56.35
RAA6-D7	159	1,623	4	-	5	0.69	60.10	0.69	41.47
RAA6-D10	130	4,703	4	-	5	0.86	174.17	0.86	149.79
ES1-14	116	6,617	4	-	5	0.039	245.08	0.04	9.56
Totals:		42,154				*-	1,561.28		272.75
							Volume Weigh	0.17	

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Ď	ımpl epti (ft.)		PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	135	102	5	-	6	0.019	3.79	0.02	0.07
RAA6-A11	137	1,082	5	-	6	0.019	40.09	0.02	0.74
RAA6-A13	118	1,622	5	-	6	0.020	60.06	0.02	1.20
RAA6-A15	117	6,323	5	-	6	0.019	234.18	0.02	4.45
RAA6-A17	116	5,547	5	-	6	0.019	205.44	0.02	3.90
RAA6-C15	128	7,621	5	-	6	0.019	282.24	0.02	5.22
RAA6-C17	126	6,915	5	~	6	0.22	256.12	0.22	56.35
RAA6-D7	155	1,623	5	-	6	0.69	60.10	0.69	41.47
RAA6-D10	127	4,703	5	-	6	0.86	174.17	0.86	149.79
ES1-14	114	6,617	5	-	6	0.039	245.08	0.04	9.56
Totals:		42,154					1,561.28		272.75
							Volume Weigh	ted Average:	0.17

#### 5- TO 6-FOOT DEPTH INCREMENT

#### SUMMARY 1- TO 6-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	integral states in the local states	Sample Depth (ft.)	PCB Conc. (ppm)	(cumulative)	Concentration	Average PCB Conc. TIMES Total Volume
Totals:		42,154			7,806.38	The set	1,735.86
					Volume Weigh	0.22	

Notes:

1. Polygon ID and area based on information shown on Figures B-1 through B-6.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### 0- TO 1- FOOT DEPTH INCREMENT (SEE TABLE B-5)

Sample ID (s)	Polygon		Depth	이 지나는 것이 중 가격한 것이	(cumulative)	Concentration	Average PCB Conc. TIMES Total Volume	
Totals:		42,154			1,561.28		551.04	
	Volume Weighted Average: 0.35							

#### 1- TO 6-FOOT DEPTH INCREMENT (SEE TABLE B-7)

Sample ID (s)	Polygon ID	哈哈斯 计算机分子	Sample Depth (ft.)	PCB Conc. (ppm)	(cumulative)	Concentration	Average PCB Conc. TIMES Total Volume
Totals:		42,154			7,806.38		1,735.86
					Volume Weigh	ted Average:	0.22

#### 6- TO 7-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	۵	amp lepti (ft.)	1 . 1 M	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	149	102	6	÷	7	0.019	3.79	0.02	0.07
RAA6-A11	151	1,082	6	-	7	0.019	40.09	0.02	0.74
RAA6-A13	127	1,622	6	-	7	0.020	60.06	0.02	1.17
RAA6-A15	126	6,323	6	-	7	0.019	234.18	0.02	4.33
RAA6-A17	125	5,547	6	-	7	0.020	205.44	0.02	4.01
RAA6-C15	140	7,621	6	-	7	0.020	282.24	0.02	5.50
RAA6-C17	138	6,915	6	-	7	0.078	256.12	0.08	19.98
RAA6-D7	172	1,623	6	~	7	0.38	60.10	0.38	22.84
RAA6-D10	139	4,703	6	-	7	0.83	174.17	0.83	144.56
ES1-14	123	6,617	6	+	7	0.039	245.08	0.04	9.56
Totals:		42,154	_				1,561.28		212.76
				*******		<b></b>	Volume Weigh	ted Average:	0.14

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc, (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	146	102	7 - 8	0.019	3.79	0.02	0.07
RAA6-A11	148	1,082	7 - 8	0.019	40.09	0.02	0.74
RAA6-A13	124	1,622	7 - 8	0.020	60.06	0.02	1.17
RAA6-A15	123	6,323	7 - 8	0.019	234.18	0.02	4.33
RAA6-A17	122	5,547	7 - 8	0.020	205.44	0.02	4.01
RAA6-C15	137	7,621	7 - 8	0.020	282.24	0.02	5.50
RAA6-C17	135	6,915	7 - 8	0.078	256.12	0.08	19.98
RAA6-D7	167	1,623	7 - 8	0.38	60.10	0.38	22.84
RAA6-D10	136	4,703	7 - 8	0.83	174.17	0.83	144,56
ES1-14	120	6,617	7 - 8	0.039	245.08	0.04	9.56
Totals:	ar -0.	42,154		*-	1,561.28		212.76
					Volume Weigh	ted Average:	0.14

#### 7- TO 8-FOOT DEPTH INCREMENT

#### 8- TO 10-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	8 - 10	0.019	7.58	0.02	0.14
RAA6-A11	141	1,082	8 - 10	0.019	80.17	0.02	1.48
RAA6-A13	117	1,622	8 - 10	0.020	120.12	0.02	2.34
RAA6-A15	116	6,323	8 - 10	0.019	468.36	0.02	8.66
RAA6-A17	115	5,547	8 - 10	0.020	410.89	0.02	8.01
RAA6-C15	130	7,621	8 - 10	0.020	564.49	0.02	11.01
RAA6-C17	128	6,915	8 - 10	0.078	512.23	0.08	39.95
RAA6-D7	159	1,623	8 - 10	0.38	120.20	0.38	45.67
RAA6-D10	129	4,703	8 - 10	0.83	348.34	0.83	289.13
ES1-14	114	6,617	8 - 10	5.0	490.17	5.00	2,450.85
Totals:		42,154			3,122.55		2,857.26
					Volume Weigh	ted Average:	0.92

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	139	102	10 - 12	0.019	7.58	0.02	0.14
RAA6-A11	141	1,082	10 - 12	0.019	80.17	0.02	1.48
RAA6-A13	117	1,622	10 - 12	0.020	120.12	0.02	2.34
RAA6-A15	116	6,323	10 - 12	0.019	468.36	0.02	8.66
RAA6-A17	115	5,547	10 - 12	0.020	410.89	0.02	8.01
RAA6-C15	130	7,621	10 - 12	0.020	564.49	0.02	11.01
RAA6-C17	128	6,915	10 - 12	0.078	512.23	0.08	39.95
RAA6-D7	159	1,623	10 - 12	0.38	120.20	0.38	45.67
RAA6-D10	129	4,703	10 - 12	0.83	348.34	0.83	289.13
ES1-14	114	6,617	10 - 12	0.060	490.17	0.06	29.41
Totals:		42,154			3,122.55		435.82
					Volume Weigh	ited Average:	0.14

#### 10- TO 12-FOOT DEPTH INCREMENT

#### 12- TO 14-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-B7	136	102	12 - 14	0.019	7.58	0.02	0.14
RAA6-A11	138	1,082	12 - 14	0.019	80.17	0.02	1.48
RAA6-A13	115	1,622	12 - 14	0.020	120.12	0.02	2.34
RAA6-A15	114	6,323	12 - 14	0.019	468.36	0.02	8.66
RAA6-A17	113	7,356	12 - 14	0.020	544.88	0.02	10.63
RAA6-C15	127	12,727	12 - 14	0.020	942.73	0.02	18.38
RAA6-D7	156	1,623	12 - 14	0.38	120.20	0.38	45.67
RAA6-D10	126	4,703	12 - 14	0.83	348.34	0.83	289.13
ES1-14	112	6,617	12 - 14	0.041	490.17	0.04	19.85
Totals:		42,154			3,122.55	ww.	396.29
		****			Volume Weigh	ted Average:	0.13

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume	
RAA6-B7	143	102	14 - 15	0.019	3.79	0.02	0.07	
RAA6-A11	145	1,082	14 - 15	0.019	40.09	0.02	0.74	
RAA6-A13	120	1,622	14 - 15	0.020	60.06	0.02	1.17	
RAA6-A15	119	6,323	14 - 15	0.019	234.18	0.02	4.33	
RAA6-A17	118	7,356	14 - 15	0.020	272.44	0.02	5.31	
RAA6-C15	132	12,727	14 - 15	0.020	471.37	0.02	9.19	
RAA6-D7	164	1,623	14 - 15	0.38	60.10	0.38	22.84	
RAA6-D10	131	4,703	14 - 15	0.83	174.17	0.83	144.56	
ES1-14	117	6,617	14 - 15	0.30	245.08	0.30	73.53	
Totals:		42,154	(		1,561.28		261.75	
					Volume Weighted Average: 0.17			

#### 14- TO 15-FOOT DEPTH INCREMENT

SUMMARY 0- TO 15-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID		Depth	(cumulative)	Average PCB Concentration Per Foot (ppm)	Conc. TIMES
Totals:	**	42,154		 23,419.14		6,663.54
				Volume Weigh	ted Average:	0.28

Notes:

1. Polygon ID and area based on information shown on Figures B-7 through B-12.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	228	1,176	0 - 0.5	1.9	21.78	2.05	89.29
			0.5 - 1	2.2	43.56		
RAA6-C2	227	1,367	0 - 1	2.0	50.61	2.00	101.23
ES1-7	226	1,534	0 - 0.5	0.45	28.42	0.93	52.57
			0.5 - 1	1.4	56.83		
RAA6-C4	225	1,411	0 - 1	0.70	52.27	0.70	36.59
RAA6-C5	224	1,900	0 - 1	0.49	70.36	0.49	34.47
RAA6-C6	223	379	0 - 1	0.019	14.05	0.02	0.27
RAA6-B7	221	2,808	0 - 1	0.137	104.00	0.14	14.25
RAA6-A11	198	2,370	0 - 1	0.77	87.76	0.77	67.58
RAA6-A13	220	1,004	0 - 1	0.048	37.17	0.05	1.78
RAA6-A14	219	677	0 - 1	0.021	25.07	0.02	0.53
RAA6-A15	218	641	0 - 1	0.102	23.74	0.10	2.42
RAA6-A16	217	595	0 - 1	0.25	22.02	0.25	5.50
RAA6-A17	216	545	0 - 1	0.049	20.17	0.05	0.99
Totals:		16,406			607.61	te ar	407,47
					Volume Weigh	ted Average:	0.67

#### Notes:

1. Polygon ID and area based on information shown on Figure B-1.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### 0- TO 1- FOOT DEPTH INCREMENT (SEE TABLE B-9)

Sample ID (s)	Polygon ID	A REAL PROPERTY AND A REAL	Sample Depth (ft.)	PCB Conc. (ppm)	(cumulative)	Average PCB Concentration Per Foot (ppm)	
Totals:		16,406			607.61		395.19

#### 1- TO 2-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	148	1,176	1 - 2	2.2	43.56	2.20	95.83
RAA6-C2	147	1,367	1 - 2	2.7	50.61	2.70	136.65
ES1-7	146	1,534	1 - 2	1.4	56.83	1.40	79.56
RAA6-C4	145	1,411	1 - 2	3.2	52.27	3.20	167.26
RAA6-C5	144	1,900	1 - 2	1.9	70.36	1.90	133.68
RAA6-C6	143	379	1 - 2	0.35	14.05	0.35	4.92
RAA6-B7	140	2,808	1 - 2	0.019	104.00	0.02	1.98
RAA6-A11	134	2,370	1 - 2	0.12	87.76	0.12	10.53
RAA6-A13	137	1,322	1 - 2	1.03	48.97	1.03	50.44
RAA6-A15	136	1,295	1 - 2	0.13	47.95	0.13	6.23
RAA6-A17	135	844	1 - 2	0.022	31.25	0.02	0.69
Totals:		16,406	4a - ar		607.61		687.78
	•				Volume Weigh	ited Average:	1.13

#### 2- TO 3-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	157	1,176	2 - 3	0.73	43.56	0.73	31.80
RAA6-C2	156	1,367	2 - 3	2.7	50.61	2.70	136.65
ES1-7	155	1,534	2 - 3	1.7	56.83	1.70	96.61
RAA6-C4	154	1,411	2 - 3	3.2	52.27	3.20	167.26
RAA6-C5	153	1,900	2 - 3	1.9	70.36	1.90	133.68
RAA6-C6	152	379	2 - 3	0.35	14.05	0.35	4.92
RAA6-B7	150	2,808	2 - 3	0.019	104.00	0.02	1.98
RAA6-A11	134	2,370	2 - 3	0.12	87.76	0.12	10.53
RAA6-A13	149	1,322	2 - 3	1.03	48.97	1.03	50.44
RAA6-A15	148	1,295	2 - 3	0.13	47.95	0.13	6.23
RAA6-A17	147	844	2 - 3	0.022	31.25	0.02	0.69
Totals:		16,406	- *	<b>1</b> - <b>1</b>	607.61		640.79
		A			Volume Weigh	ited Average:	1.05

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### SUMMARY 0- TO 3-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon		Sample Depth (ft.)	PCB Conc. (ppm)	(cumulative)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
Totals:		16,406			1,822.84		1,723.77
					Volume Weigh	ited Average:	0.95

Notes:

1. Polygon ID and area based on information shown on Figures B-1 through B-3.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	D	ample epth (ft.)	1.0	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	148	1,176	1	-	2	2.2	43.56	2.20	95.83
RAA6-C2	147	1,367	1		2	2.7	50.61	2.70	136.65
ES1-7	146	1,534	1	-	2	1.4	56.83	1.40	79.56
RAA6-C4	145	1,411	1	-	2	3.2	52.27	3.20	167.26
RAA6-C5	144	1,900	1	-	2	1.9	70.36	1.90	133.68
RAA6-C6	143	379	1	-	2	0.35	14.05	0.35	4.92
RAA6-B7	140	2,808	1	~	2	0.019	104.00	0.02	1.98
RAA6-A11	134	2,370	1	-	2	0.12	87.76	0.12	10.53
RAA6-A13	137	1,322	1	-	2	1.03	48.97	1.03	50.44
RAA6-A15	136	1,295	1	-	2	0.13	47.95	0.13	6.23
RAA6-A17	135	844	1	-	2	0.022	31.25	0.02	0.69
Totals:		16,406					607.61		687.78
								ted Average:	1.13

#### 1- TO 2-FOOT DEPTH INCREMENT

2- TO 3-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Γ	amp Dept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	157	1,176	2		3	0.73	43.56	0.73	31.80
RAA6-C2	156	1,367	2	-	3	2.7	50.61	2.70	136.65
ES1-7	155	1,534	2	-	3	1.7	56.83	1.70	96.61
RAA6-C4	154	1,411	2	-	3	3.2	52.27	3.20	167.26
RAA6-C5	153	1,900	2	-	3	1.9	70.36	1.90	133.68
RAA6-C6	152	379	2	-	3	0.35	14.05	0.35	4.92
RAA6-B7	150	2,808	2	-	3	0.019	104.00	0.02	1.98
RAA6-A11	134	2,370	2	-	3	0.12	87.76	0.12	10.53
RAA6-A13	149	1,322	2	+	3	1.03	48.97	1.03	50.44
RAA6-A15	148	1,295	2	-	3	0.13	47.95	0.13	6.23
RAA6-A17	147	844	2	-	3	0.022	31.25	0.02	0.69
Totals:		16,406					607.61		640.79
							Volume Weigh	ted Average:	1.05

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) .(cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume	
ES1-9	157	1,176	3 - 4	0.73	43.56	0.73	31.80	
RAA6-C2	156	1,367	3 - 4	2.7	50.61	2.70	136.65	
ES1-7	155	1,534	3 - 4	1.7	56.83	1.70	96.61	
RAA6-C4	154	1,411	3 - 4	3.2	52.27	3.20	167.26	
RAA6-C5	153	1,900	3 - 4	1.9	70.36	1.90	133.68	
RAA6-C6	152	379	3 - 4	0.35	14.05	0.35	4.92	
RAA6-B7	150	2,808	3 - 4	0.019	104.00	0.02	1.98	
RAA6-A11	134	2,370	3 - 4	0.020	87,76	0.02	1.71	
RAA6-A13	149	1,322	3 - 4	0.020	48.97	0.02	0.98	
RAA6-A15	148	1,295	3 - 4	0.019	47.95	0.02	0.91	
RAA6-A17	147	844	3 - 4	0.019	31.25	0.02	0.59	
Totals:		16,406			607.61		577.09	
					Volume Weighted Average: 0.95			

#### 3- TO 4-FOOT DEPTH INCREMENT

4- TO 5-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	C	amp Dept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	157	1,176	4	-	5	0.039	43.56	0.04	1.70
RAA6-C2	156	1,367	4	-	5	2.7	50.61	2.70	136.65
ES1-7	155	1,534	4	-	5	6.4	56.83	6.40	363.72
RAA6-C4	154	1,411	4	-	5	3.2	52.27	3.20	167.26
RAA6-C5	153	1,900	4	-	5	1.9	70.36	1.90	133.68
RAA6-C6	152	379	4	-	5	0.35	14.05	0.35	4.92
RAA6-B7	150	2,808	4	~	5	0.019	104.00	0.02	1.98
RAA6-A11	134	2,370	4		5	0.020	87.76	0.02	1.71
RAA6-A13	149	1,322	4	-	5	0.020	48.97	0.02	0.98
RAA6-A15	148	1,295	4	-	5	0.019	47.95	0.02	0.91
RAA6-A17	147	844	4	~	5	0.019	31.25	0.02	0.59
Totals:		16,406					607.61		814.10
							Volume Weigh	ited Average:	1.34

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	C	amp )ept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	153	805	5	-	6	0.039	29.80	0.04	1.16
GEI-106	152	729	5	-	6	0.5	26.99	0.50	13.49
RAA6-C2	150	1,009	5	-	6	2.7	37.38	2.70	100.93
ES1-7	149	1,534	5	-	6	6.4	56.83	6.40	363.72
RAA6-C4	148	1,411	5	*	6	3.2	52.27	3.20	167.26
RAA6-C5	147	2,046	5	-	6	1.9	75.78	1.90	143.98
RAA6-B7	146	3,041	5	-	6	0.019	112.63	0.02	2.14
RAA6-A11	131	2,370	5	-	6	0.020	87.76	0.02	1.71
RAA6-A13	145	1,322	5	-	6	0.020	48.97	0.02	0.98
RAA6-A15	144	1,295	5	-	6	0.019	47.95	0.02	0.91
RAA6-A17	143	844	5	-	6	0.019	31.25	0.02	0.59
Totals:		16,406					607.61		796.88
							Volume Weigh	ted Average:	1.31

#### 5- TO 6-FOOT DEPTH INCREMENT

#### SUMMARY 1- TO 6-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	(cumulative)	Average PCB Concentration Per Foot (ppm)	
Totals:		16,406			3,038.06		3,516.65
					Volume Weigh	ted Average:	1.16

#### Notes:

1. Polygon ID and area based on information shown on Figures B-1 through B-6.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

#### 0- TO 1- FOOT DEPTH INCREMENT (SEE TABLE B-9)

Sample ID (s)	Polygon	Polygon Area (sq. ft.)	Depth	Conc.	(cumulative)	Concentration	Average PCB Conc. TIMES Total Volume
Totals:		16,406			607.61		395.19
					Volume Weigh	ted Average:	0.66

#### 1- TO 6- FOOT DEPTH INCREMENT (SEE TABLE B-11)

Sample ID (s)	Polygon ID	ter en se 🖉 🗖 en ser	Sample Depth (ft.)	Conc.	(cumulative)	Concentration	Average PCB Conc. TIMES Total Volume
Totals:		16,406			3,038.06	** **	3,516.65
					Volume Weigh	ted Average:	1.16

#### 6- TO 7-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	D	mple epth ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
ES1-9	170	805	6	- 7	0.039	29.80	0.04	1.16
GEI-106	169	729	6	- 7	0.5	26.99	0.50	13.49
RAA6-C2	167	1,009	6	- 7	0.019	37.38	0.02	0.71
ES1-7	166	1,473	6	- 7	2.25	54.57	2.25	122.77
RAA6-C3	165	62	6	- 7	0.64	2.29	0.64	1.47
RAA6-C4	164	1,411	6	- 7	1.3	52.24	1.30	67.91
RAA6-C5	163	1,900	6	- 7	0.59	70.36	0.59	41.51
RAA6-C6	162	379	6	- 7	0.159	14.05	0.16	2.23
RAA6-B7	160	2,808	6	- 7	0.019	104.00	0.02	1.98
RAA6-A11	143	2,370	6	- 7	0.020	87.76	0.02	1.71
RAA6-A13	159	1,322	6	- 7	0.020	48.97	0.02	0.96
RAA6-A15	158	1,295	6	- 7	0.019	47.95	0.02	0.89
RAA6-A17	157	844	6	- 7	0.020	31.25	0.02	0.61
Totals:		16,406				607.61		257.40
							ited Average:	0.42

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	D	amp lept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume		
ES1-9	165	1,176	7	-	8	0.039	43.56	0.04	1.70		
RAA6-C2	164	1,367	7	-	8	0.019	50.61	0.02	0.96		
ES1-7	163	1,473	7	-	8	2.25	54.57	2.25	122.77		
RAA6-C3	162	62	7	-	8	0.64	2.29	0.64	1.47		
RAA6-C4	161	1,411	7		8	1.3	52.24	1.30	67.91		
RAA6-C5	160	1,900	7	-	8	0.59	70.36	0.59	41.51		
RAA6-C6	159	379	7	+	8	0.159	14.05	0.16	2.23		
RAA6-B7	157	2,808	7	-	8	0.019	104.00	0.02	1.98		
RAA6-A11	140	2,370	7	~	8	0.020	87.76	0.02	1.71		
RAA6-A13	156	1,322	7	-	8	0.020	48.97	0.02	0.96		
RAA6-A15	155	1,295	7	-	8	0.019	47.95	0.02	0.89		
RAA6-A17	154	844	7	-	8	0.020	31.25	0.02	0.61		
Totals:		16,406				**	607.61		244.69		
							Volume Weighted Average: 0.40				

#### 7- TO 8-FOOT DEPTH INCREMENT

8- TO 10-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	D	ept (ft.)	h	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-E1	157	869	8	-	10	0.14	64.39	0.14	9.01
RAA6-C2	156	1,690	8	-	10	0.019	125.19	0.02	2.38
RAA6-C3	155	1,518	8	-	10	0.64	112.45	0.64	71.96
RAA6-C4	154	1,410	8	-	10	1.3	104.45	1.30	135.79
RAA6-C5	153	1,900	8	-	10	0.59	140.71	0.59	83.02
RAA6-C6	152	379	8	-	10	0.159	28.10	0.16	4.45
RAA6-B7	150	2,808	8	-	10	0.019	208.00	0.02	3.95
RAA6-A11	133	2,370	8	-	10	0.020	175.52	0.02	3.42
RAA6-A13	149	1,322	8	-	10	0.020	97.95	0.02	1.91
RAA6-A15	148	1,295	8	~	10	0.019	95.90	0.02	1.77
RAA6-A17	147	844	8		10	0.020	62.50	0.02	1.22
Totals:		16,405				**	1,215.15		318.90
·····							Volume Weigh	0.26	

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-E1	157	869	10 - 12	0.14	64.39	0.14	9.01
RAA6-C2	156	1,690	10 - 12	0.019	125.19	0.02	2.38
RAA6-C3	155	1,518	10 - 12	0.64	112.45	0.64	71.96
RAA6-C4	154	1,411	10 - 12	1.3	104.53	1.30	135.88
RAA6-C5	153	1,900	10 - 12	0.59	140.71	0.59	83.02
RAA6-C6	152	379	10 - 12	0.159	28.10	0.16	4.45
RAA6-B7	150	2,808	10 - 12	0.019	208.00	0.02	3.95
RAA6-A11	133	2,370	10 - 12	0.020	175.52	0.02	3.42
RAA6-A13	149	1,322	10 - 12	0.020	97.95	0.02	1.91
RAA6-A15	148	1,295	10 - 12	0.019	95.90	0.02	1.77
RAA6-A17	147	844	10 - 12	0.020	62.50	0.02	1.22
Totals:		16,406			1,215.22		318.99
					Volume Weigh	ted Average:	0.26

#### **10- TO 12-FOOT DEPTH INCREMENT**

12- TO 14-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-E1	154	869	12 - 14	0.14	64.39	0.14	9.01
RAA6-C2	153	1,690	12 - 14	0.019	125.19	0.02	2.38
RAA6-C3	152	1,518	12 - 14	0.64	112.45	0.64	71.96
RAA6-C4	151	1,411	12 - 14	1.3	104.53	1.30	135.88
RAA6-C5	150	1,900	12 - 14	0.59	140.71	0.59	83.02
RAA6-C6	149	379	12 - 14	0.159	28.10	0.16	4.45
RAA6-B7	147	2,808	12 - 14	0.019	208.00	0.02	3.95
RAA6-A11	130	2,370	12 - 14	0.020	175.52	0.02	3.42
RAA6-A13	146	1,322	12 - 14	0.020	97.95	0.02	1.91
RAA6-A15	145	1,295	12 - 14	0.019	95.90	0.02	1.77
RAA6-A17	144	844	12 - 14	0.020	62.50	0.02	1.22
Totals:		16,406		er ve	1,215.22		318.99
					Volume Weigh	ted Average:	0.26

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID (s)	Polygon ID	Polygon Area (sq. ft.)	Sample Depth (ft.)	PCB Conc. (ppm)	Volume (cumulative) (cy)	Average PCB Concentration Per Foot (ppm)	Average PCB Conc. TIMES Total Volume
RAA6-E1	162	869	14 - 15	0.14	32.20	0.14	4.51
RAA6-C2	161	1,673	14 - 15	0.019	61.98	0.02	1.18
ES1-7	160	1,473	14 - 15	1.9	54.57	1.90	103.67
RAA6-C3	159	62	14 - 15	0.64	2.29	0.64	1.46
RAA6-C4	158	1,411	14 - 15	1.3	52.24	1.30	67.91
RAA6-C5	157	1,900	14 - 15	0.59	70.36	0.59	41.51
RAA6-C6	156	379	14 - 15	0.159	14.05	0.16	2.23
RAA6-B7	154	2,808	14 - 15	0.019	104.00	0.02	1.98
RAA6-A11	135	2,370	14 - 15	0.020	87.76	0.02	1.71
RAA6-A13	153	1,322	14 - 15	0.020	48.97	0.02	0.96
RAA6-A15	152	1,295	14 - 15	0.019	47.95	0.02	0.89
RAA6-A17	151	844	14 - 15	0.020	31.25	0.02	0.61
Totals:		16,405			607.60	<del>* ~</del>	228.61
					Volume Weigh	ted Average:	0.38

#### 14- TO 15-FOOT DEPTH INCREMENT

#### SUMMARY 0- TO 15-FOOT DEPTH INCREMENT

Sample ID (s)	Polygon ID	しんぶい ちにっしき	Depth	PCB Conc. (ppm)	(cumulative)	and the second	Average PCB Conc. TIMES Total Volume	
Totals:		16,406			9,114.10	***	5,599.42	
					Volume Weighted Average: 0.61			

#### Notes:

1. Polygon ID and area based on information shown on Figures B-7 through B-12.

2. Non-detectable PCBs included as 1/2 the detection limit in calculations and shown in bold.

3. For instances where a duplicate sample was available, the average of the samples was included in the table.

4. All calculations and rounding are performed by the computer software. Therefore, certain quantities in the table are displayed as rounded numbers for clarity.

### TABLE B-13 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR PCBs WITHIN UTILITY BANDS

#### REVISED CONCEPTUAL RD/RA WORK PLAN FOR EAST STREET AREA 1-NORTH REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Depth	Date								
Sample IO	(Faet)	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Arocior-1254	Aroclor-1260	Total PCBs
RAA6-C15	Q-1	1/7/03	NO(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.060	ND(0.037)	0.060
	1-3	1/7/03	ND(0.040) J [ND(0.040) J]	ND(0.040) J [ND(0.040) J]	ND(0.040) J [ND(0.040) J]	ND(0.040) J (ND(0.040) J]	ND(0.040) J [ND(0.040) J]			
	3-6	1/7/03	ND(0.037) J							
	6-15	1/7/03	ND(0.040) J							
RAA6-C16	0-1	1/2/03	ND(0.037)	NO(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.080	0.12	0.20
RAA6-D7	Q-1	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.84	C.78	1.62
	1-3	1/13/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.13	0.11	0.24
	3-6	1/13/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.32	0.37	0.69
1	6-15	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.38	0.38
RAA6-08	0.1	1/9/03	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.55	0.62	1.17
RAA6-010	0-1	1/13/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.052	0.061	0.113
	1-3	1/13/03	ND(0.039)							
	3-6	1/13/03	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	0.86	0.66
1	6-15	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.83 J	0.63 J
RAA6-D16	0-1	1/9/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.23	0.49	0.72
RAAG-E6	0.1	1/13/03	ND(0.039)	NO(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.44	0.94	1.38
	1-6	1/13/03	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.20	0.47	0.67
1	6-15	1/13/03	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.17	0.17

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of PCBs.

2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002).

3. ND - Analyte was not detected. The number in parentheses is the associated detection limit.

4. Field duplicate sample results are presented in brackets

#### Qata Qualifiers.

Organics

J - Indicates that the associated numerical value is an estimated concentration.

## Appendix C

## Risk Evaluation of Non-PCB Appendix IX+3 Constituents in Soils at East Street Area 1-North





### Revised Risk Evaluation of Non-PCB Appendix IX+3 Constituents in Soils at East Street Area 1-North

Appendix C

to

Revised Conceptual Removal Design/Removal Action Work Plan for East Street Area 1-North

# amec

#### APPENDIX C

#### Revised Risk Evaluation of Non-PCB Appendix IX+3 Constituents in Soils at East Street Area 1-North

#### 1.0 Introduction

A number of non-PCB constituents have been detected in the existing soils of properties located in the East Street Area 1-North portion of the GE-Pittsfield/Housatonic River Site. These constituents have been evaluated in accordance with the multi-step process established for non-PCB Appendix IX+3 constituents in the *Statement of Work for Removal Actions Outside the River* (SOW) (BBL, 1999). The steps in this process are described in the text of this Revised Conceptual RD/RA Work Plan. These steps included screening by comparison of the maximum detected concentrations of the constituents at each area to EPA's applicable Preliminary Remediation Goals (PRGs) for soil (or, in some cases, screening based on other considerations, such as low frequency of detection). Following this screening, the average concentrations of the remaining constituents in each relevant depth increment at each area were compared to the applicable Method 1 soil standards set out in the Massachusetts Contingency Plan (MCP).

As described in the text of this Work Plan, for three sections of East Street Area 1-North – the GE-owned area, Parcel K10-14-1, and the portion of Parcel K11-1-15 within East Street Area 1-North – one or more non-PCB constituents had existing average concentrations that exceeded the applicable Method 1 soil standards in at least one of the relevant depth increments. For each of these areas, GE requested AMEC Earth & Environmental (AMEC) to conduct area-specific risk evaluations of the non-PCB constituents under existing conditions. The risk evaluations were performed for all non-PCB constituents that were retained prior to the comparison to the Method 1 soil standards (except for dioxins/furans, which were evaluated separately in accordance with the procedures set forth in the SOW).

This Appendix describes and presents the results of the revised area-specific risk evaluations for the three above-listed areas at East Street Area 1-North. All three of these areas are considered commercial/industrial properties. In accordance with the SOW, these risk evaluations were based on: (a) the arithmetic average concentrations of the retained non-



PCB constituents for each area; (b) the same exposure scenarios, soil depth increments, and exposure assumptions used by EPA in developing the PCB Performance Standards for commercial/industrial areas (as described in EPA, 1999a); and (c) standard EPA toxicity values. As discussed below, for the areas and constituents evaluated, estimated cancer risks and non-cancer hazards fall below the acceptable benchmarks prescribed in the SOW.

#### 2.0 Constituents and Depth Increments Evaluated

In accordance with the protocols set forth in the SOW, the risk evaluations presented herein have considered all chemicals of potential concern (COPCs) that were retained for evaluation after the initial screening steps described in this Work Plan but before the comparison to MCP Method 1 standards, and have used the average concentrations of those constituents at each of the areas in question. The constituents evaluated, which vary somewhat from area to area, are shown in Table 1 and discussed in detail in the area-specific risk evaluations presented in Section 5. For each relevant area and COPC, average concentrations have been calculated for the same depth increments evaluated by EPA (1999a) in developing the PCB Performance Standards. For commercial/industrial properties, these increments are the 0-1 foot and the 1-6 foot depth increments, although average concentrations have also been calculated for the 0-3 foot depth increment for those commercial/industrial parcels that are subject to Conditional Solutions.

With the exception of lead, area-specific COPCs have been included in risk calculations for each area to determine whether cancer risks and non-cancer hazards fall within acceptable limits. (In accordance with the SOW, PCBs and dioxins/furans have not been included in these evaluations.) Since EPA has not developed standard toxicity values for lead, that constituent has been evaluated through the application of the EPA's adult lead model, as discussed below.

#### 3.0 Risk Evaluation Assumptions and Procedures (for All COPCs Except Lead)

In accordance with the SOW, the exposure scenarios that have been evaluated are the same exposure scenarios utilized by EPA (1999a) in supporting the PCB Performance Standards.



For commercial/industrial properties, these are the Commercial Groundskeeper scenario for surface soil (0-1 foot depth) and the Utility Worker scenario for subsurface soil (1-6 foot depth). In addition, for commercial/industrial parcels subject to Conditional Solutions, the Commercial Groundskeeper scenario has also been applied to the 0-3 foot depth increment.

The Commercial Groundskeeper scenario assumes that an adult is exposed to constituents in surficial soils 84 days per year for a period of 25 years. With the exception of chemicalspecific absorption criteria, all exposure assumptions used to evaluate this scenario were the same as those used by EPA (1999a). Exposure assumptions used in the evaluation of this scenario are provided in Table 2.

The Utility Worker scenario assumes that an adult is in contact with subsurface soils 5 days per year for 25 years. As with the Groundskeeper scenario, all exposure assumptions used in this scenario were the same as the assumptions used by EPA (1999a). These assumptions are also presented in Table 2.

With respect to absorption factors, EPA's dermal guidance document (EPA, 2001a) specifies oral absorption factors less than 100 percent for certain of the constituents evaluated (e.g., 89 percent for the carcinogenic polycyclic aromatic hydrocarbons [PAHs]), and notes that where such factors are greater than 50 percent, the toxicity factors do not need to be modified to represent the absorbed dose. Nevertheless, for purposes of the evaluations at these properties, we have conservatively assumed that the oral absorption of all chemicals evaluated is 100 percent. The dermal absorption factors used were taken from EPA's dermal guidance (EPA, 2001a), where available, or otherwise from Massachusetts DEP sources (MDEP, 1994). The specific absorption factors used in these evaluations are shown in Table 3.

The carcinogenic COPCs have been evaluated for potential carcinogenic risks, while the non-carcinogenic COPCs have been evaluated for potential non-cancer hazards. The toxicity values – i.e., Cancer Slope Factors (CSFs) and/or Reference Doses (RfDs) – used in the evaluations were those set forth on EPA's (2003a) Integrated Risk Information System (IRIS), when available. For the carcinogenic PAHs for which no specific toxicity information



is provided, relative potency factors (RPFs) recommended by EPA (1993) have been used to adjust the CSF values for these PAHs based on their assumed potency relative to benzo(a)pyrene. In addition, since EPA has not developed a CSF for n-nitrosopiperidine, the CSF for n-nitrosopyrrolidine, which is similar in molecular structure and size, has been used as a surrogate toxicity value to estimate potential carcinogenic risks associated with n-nitrosopiperidine, in accordance with EPA's (2003b) conditional approval letter for the Conceptual RD/RA Work previously submitted by GE. The specific toxicity values used in these evaluations are included in Table 3.

Based on these input values, predicted cancer risks and non-cancer hazards have been calculated for the COPCs at each area using standard risk assessment procedures. The results have been compared to the benchmarks set forth in the SOW (for constituents other than PCBs and dioxins/furans) of an Excess Lifetime Cancer Risk (ELCR) of 1 x 10⁻⁵ and a Hazard Index (HI) of 1.0 for non-cancer effects.

#### 4.0 Evaluation of Lead Exposures and Risks

Lead has been retained as a COPC at two of the areas evaluated (Parcel K10-14-1 and the portion of Parcel K11-1-15 within East Street Area 1-North). However, EPA has not developed toxicity criteria for lead (EPA, 2003a). Consequently, it is not possible to evaluate potential hazards associated with lead exposure in the same way that other COPCs are evaluated. Instead, EPA has established a "safe" fetal blood lead level of 10 µg/dL and has developed a model to evaluate adult exposures to lead, considering fetal blood levels as the critical endpoint.

For the adult who may be exposed to lead in a non-residential setting, EPA has developed the Adult Lead Methodology (ALM) (EPA, 1996, 1999b, 2001b). This methodology predicts the blood levels of lead that would likely occur in a pregnant woman and in her fetus after non-residential exposure to lead-contaminated soil and dust. The biokinetic ALM incorporates background blood lead levels as a starting concentration and predicts blood levels that will likely result after additional exposure to lead-contaminated soil occurs. The model also incorporates a geometric standard deviation (GSD) for background blood lead



levels to account for variability within an exposed population. The model then considers the ingestion of lead by adults in a non-residential setting, using a soil ingestion rate of 50 mg/day and an assumed exposure frequency of 219 days/year, based on occupational exposure. The oral absorption of lead after ingestion is assumed to be 12 percent. Using a starting soil concentration, the model is able to predict the 95th percentile blood lead concentration in the fetus of an exposed pregnant woman. If this concentration does not exceed the maximum allowable concentration of 10  $\mu$ g/dL, it is concluded that exposures result in no risk of harm.

The model assumes that there is adequate exposure to result in a steady-state blood lead concentration (EPA, 2001b) and assumes that exposure continues regularly and for an indefinite period of time. Thus, there is no exposure duration factor in the model. Instead, it assumes that exposure occurs 219 out of 365 days per year, for every year of exposure, and that steady state is reached.

To evaluate potential hazards associated with the presence of lead in soil at particular commercial/industrial areas at East Street Area 1-North, the ALM has been applied to "backcalculate" a soil lead concentration that could result in a 95th percentile fetal blood level of 10 µq/dL. This is the same methodology that was applied to evaluate lead in soil at commercial/industrial properties at Newell Street Area I, as described in Appendix F to the Conceptual RD/RA Work Plan Addendum for Newell Street Area I (BBL, 2003), which was approved by EPA. Based on discussions with EPA Region I risk assessors (McDonough, personal communication, 2/20/03), AMEC has used the higher end of the default range recommended by EPA for background blood lead level (1.8 µg/dL) and the low estimate of the GSD (1.9), as shown in Table 4. In addition, at EPA's request, AMEC has used an exposure frequency of 3 days and an averaging time of 7 days to represent that individuals are expected to be exposed three days per week throughout the exposure period, as was assumed by EPA (1999a) for the Groundskeeper scenario. These calculations result in a back-calculated PRG of 2,008 mg/kg (as shown in Table 4), which, for purposes of this evaluation, will be used as a Risk-Based Concentration (RBC) for lead under this scenario. This is the same RBC used for this scenario in the Conceptual RD/RA Work Plan Addendum for Newell Street Area I (BBL, 2003), as approved by EPA. This RBC has been applied to



evaluate lead exposures at Parcels K10-14-1 and K11-1-15 for the depth increments where the Groundskeeper scenario applies – i.e. the 0-1 foot and 0-3 foot depth increments. Where the average area-specific lead concentrations at those depth intervals are below the RBC, it is assumed that lead exposures will not result in adverse effects.

Because the ALM assumes that a steady-state blood lead concentration is reached, shortterm or intermittent exposures (such as those assumed to be experienced by the Utility Worker) would not be well represented by the model (EPA, 2001b). Accordingly, for the Utility Worker scenario, which is based on exposure only five days per year at a given area (see EPA, 1999a), the ALM has not been used. Instead, based on agreement between GE and EPA, and again consistent with the approach used in the EPA-approved *Conceptual RD/RA Work Plan Addendum for Newell Street Area I* (BBL, 2003), lead concentrations in the depth interval where the Utility Worker scenario would apply – i.e., the 1-6 foot depth interval – have been evaluated by comparing the average area-specific lead concentration for that depth interval to a default level equivalent to the Upper Concentration Limit (UCL) set forth in the MCP for lead, which is 6,000 mg/kg.

#### 5.0 Area-Specific Risk Evaluations

Area-specific risk evaluations were conducted for the three areas at which there were exceedances of the Method 1 soil standards after the screening process. Specific COPCs and depth increments evaluated for each area are described below along with the results of each risk evaluation. Spreadsheets showing pathway-specific and COPC-specific calculations are provided in Attachment A of this Appendix.

#### 5.1 GE-Owned Property

A portion of East Street Area 1-North consists of GE-owned parcels at which GE will execute Grants of Environmental Restrictions and Easements (EREs). An area-specific risk evaluation has been performed for this section of East Street Area 1-North based on the average concentrations of all constituents that were retained for evaluation prior to the comparison to the MCP Method 1 soil standards. The depth increments subject to risk

# amec

evaluation for this section are the 0-1 foot and 1-6 foot depth increments. The COPCs evaluated and their average existing concentrations are as follows:

	Avg. Conc. Per Depth Increment (mg/kg)			
COPCs	0-1 foot	1-6 foot		
Benzo(a)anthracene	0.44	1.62		
Benzo(a)pyrene	0.42	1.37		
Benzo(b)fluoranthene	0.50	1.51		
Dibenzo(a,h)anthracene	0.21	0.61		
Arsenic	6.20	5.92		

Consistent with the approach used by EPA in supporting the Performance Standards for PCBs, the Groundskeeper scenario has been used to evaluate risks for the 0-1 foot depth increment and the Utility Worker scenario has been used to evaluate risks for the 1-6 foot depth increment. The calculated total cancer risks and non-cancer hazards for all COPCs evaluated at the GE-owned area are as follows:

Scenario	ECLR	HI
Groundskeeper (0-1 foot)	1.2 x 10 ⁻⁶	0.0041
Utility Worker (1-6 foot)	7.0 x 10 ⁻⁷	0.00083

All these estimated risks and hazards are below the levels of concern specified in the SOW. Lead is not a COPC for this area and thus has not been evaluated.

#### 5.2 Parcel K10-14-1

Parcel K10-14-1 is a non-GE-owned commercial/industrial property for which GE will implement a Conditional Solution. A property-specific risk evaluation has been performed for this parcel based on the average concentrations of all constituents that were retained for evaluation prior to the comparison to the MCP Method 1 soil standards. The soil depths subject to risk evaluation for this parcel are the 0-1 foot, 0-3 foot, and 1-6 foot increments. The COPCs evaluated and their average concentrations are as follows:

# amec

	Avg. Conc. Per Depth Increment (mg/kg)					
COPCs	0-1 foot	0-3 foot	1-6 foot			
Benzo(a)pyrene	0.43	0.39	0.18			
Antimony	242	217.85	1.73			
Arsenic	9.4	8.7	5.4			
Lead	845	762.8	14.33			

Consistent with the approach used by EPA in supporting the Performance Standards for PCBs, the Groundskeeper scenario has been used to evaluate risks for the 0-1 foot depth increment, while the Utility Worker scenario has been used to evaluate risks for the 1-6 foot depth increment. The Groundskeeper scenario also has been used to evaluate risks for the 0-3 foot depth increment. The calculated total cancer risks and non-cancer hazards for all COPCs evaluated at Parcel K10-14-1 are as follows:

Scenario	ECLR	HI	
Groundskeeper (0-1 foot)	1.3 x 10 ⁻⁶	0.17	
Groundskeeper (0-3 foot)	1.2 x 10 ⁻⁶	0.15	
Utility Worker (1-6 foot)	1.7 x 10 ⁻⁷	0.0011	

All these estimated risks and hazards are well below the levels of concern specified in the SOW.

The average lead concentrations in the 0-1 and 0-3 foot soil increments, 845 and 762.8 mg/kg, respectively, are well below the calculated RBC of 2,008 mg/kg for lead in soil in such depths at commercial/industrial properties. The average concentration in the 1-6 foot increment, 14.33 mg/kg, is far below the UCL of 6,000 mg/kg. Thus, lead concentrations in the surface and subsurface soils of this parcel are below the benchmark levels of concern.

#### 5.3 Parcel K11-1-15 (portion)

Parcel K11-1-15 consists of a narrow strip of railroad-owned land, a portion of which lies within East Street Area 1-North. GE will implement a Conditional Solution for that portion. A property-specific risk evaluation has been performed for the portion of this parcel within East Street Area 1-North based on the average concentrations of all constituents that were retained for evaluation prior to the comparison to the MCP Method 1 soil standards. The depth increments subject to risk evaluation for this parcel are the 0-1 foot, 0-3 foot, and 1-6



foot depth increments. The COPCs evaluated and their average concentrations are as follows:

	Avg. Conc. Per Depth Increment (mg/kg)					
COPCs	0-1 foot	0-3 foot	1-6 foot			
Benzo(a)pyrene	0.69	0.48	0.55			
n-Nitrosopiperidine	0.27	0.72	1.27			
Antimony	356.5	249.34	21.37			
Arsenic	10.43	9.27	6.4			
Lead	1221.83	871	105.3			

Consistent with the approach used by EPA in supporting the Performance Standards for PCBs, the Groundskeeper scenario has been used to evaluate risks for the 0-1 foot increment, while the Utility Worker scenario has been used to evaluate risks for the 1-6 foot depth increment. The Groundskeeper scenario also has been used to evaluate risks for the 0-3 foot depth increment. The calculated total cancer risks and non-cancer hazards for all COPCs evaluated at Parcel K11-1-15 are as follows:

Scenario	ECLR	Н
Groundskeeper (0-1 foot)	1.7 x 10 ⁻⁶	0.25
Groundskeeper (0-3 foot)	1.5 x 10 ⁻⁶	0.18
Utility Worker (1-6 foot)	3.5 x 10 ⁻⁷	0.0051

All these estimated risks and hazards are well below the levels of concern specified in the SOW.

The average lead concentrations in the 0-1 foot and 0-3 foot soil increments, 1,221.83 and 871 mg/kg, respectively, are below the calculated Groundskeeper RBC of 2,008 mg/kg. The average concentration in the 1-6 foot increment, 105.3 mg/kg, is well below the UCL of 6,000 mg/kg. Thus, the lead concentrations in the soils of this parcel are below the benchmark levels of concern.

#### 6.0 Summary of Results of Area-Specific Risk Evaluations

The predicted cancer risks and non-cancer hazards for the non-PCB COPCs at each of the East Street Area 1-North areas evaluated are summarized in Table 5. That table shows the cancer risk and non-cancer hazard results for each exposure pathway and depth increment



evaluated at these areas. (Backup COPC-specific calculations are provided in Attachment A.) As shown in Table 5, total estimated cancer risks do not exceed the identified cancer risk benchmark of 1 x 10⁻⁵ for any depth increment at any of the areas evaluated. Similarly, non-cancer hazards resulting from exposures to surficial and subsurface soils do not exceed the target Hazard Index of 1.0 at any of these areas. Finally, as discussed above, none of the average lead concentrations at the areas where lead is a COPC exceeds the RBC for the Groundskeeper scenario or the UCL for the Utility Worker scenario. Thus, it can be concluded that, under current conditions, the soil concentrations for all such COPCs at the East Street Area 1-North areas would not present a risk of harm under the exposure scenarios evaluated.

#### References

BBL. 1999. Statement of Work for Removal Actions Outside the River. Appendix E to Consent Decree, Volume 1, United States et al. v. General Electric Company (D. Mass.). Blasland, Bouck & Lee, Syracuse, NY. October.

BBL. 2003. Conceptual Removal Design/Removal Action Work Plan Addendum for Newell Street Area I. Blasland, Bouck & Lee, Inc. Syracuse, NY. April 17.

EPA. 1993. *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons*. U.S. EPA, Office of Research and Development. EPA/600/R-93/089.

EPA. 1996. Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil. U.S. Environmental Protection Agency, Technical Review Workgroup for Lead. December.

EPA. 1999a. Protectiveness of Cleanup Levels for Removal Actions Outside the River – Protection of Human Health. Memorandum from Ann-Marie Burke, EPA Region 1 to Richard Cavagnero, EPA Region 1. U.S. Environmental Protection Agency, Region I. Attachment A to Appendix D to Consent Decree in United States et al. v. General Electric Company (D. Mass.). August 4.

EPA. 1999b. Use of the TRW Interim Adult Lead Methodology in Risk Assessment. Memorandum from P. Van Leeuwen, Region 5 Superfund Program to M. Maddaloni, TRW Adult Lead Subgroup. April 7.

EPA. 2001a. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E Supplemental Guidance for Dermal Risk Assessment) Interim (Review Draft). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington. September.



EPA. 2001b. Review of Adult Lead Models - Evaluation of Models for Assessing Human Health Risks Associated with Lead Exposures at Non-Residential Areas of Superfund and Other Hazardous Waste Sites. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA 9285.7-46. August.

EPA. 2003a. U.S. EPA Integrated Risk Information System (IRIS). http://www.epa.gov/iriswebp/iris/index.html

EPA. 2003b. Conditional Approval of General Electric's October 2003 Conceptual Removal Design/Removal Action Work Plan for East Street Area 1-North, GE-Pittsfield/Housatonic River Site, Pittsfield, Massachusetts. Letter from Michael Nalipinski, EPA Region 1, to Andrew Silfer, General Electric Company. November 26.

MDEP. 1994. *Background Documentation for the Development of the MCP Numerical Standards.* Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. April.

	GE-Owned			K10-14-1			K11-1-15		
Constituent	0-1 Foot	1-6 Foot	0-1 Foot	0-3 Foot	1-6 Foot	0-1 Foot	0-3 Foot	1-6 Foot	
Benzo(a)anthracene	0.44	1.62	NR	NR	NR	NR	NR	NR	
Benzo(a)pyrene	0.42	1.37	0.43	0.39	0.18	0.69	0.48	0.55	
Benzo(b)fluoranthene	0.50	1.51	NR	NR	NR	NR	NR	NR	
Dibenzo(a,h)anthracene	0.21	0.61	NR	NR	NR	NR	NR	NR	
n-Nitrosopiperidine	NR	NR	NR	NR	NR	0.27	0.72	1.27	
Antimony	NR	NR	242	217,85	1.73	356.5	249.34	21.37	
Arsenic	6.2	5.92	9.4	8.7	5.4	10,43	9.27	6.4	
Lead	NR	NR	845	762.8	14.33	1221.83	871	105.3	

Table 1. Parcel-Specific Arithmetic Mean Exposure Point Concentrations

NR = Not relevant; constituent is not a COPC for this parcel

	Val	-	
Parameter	Groundskeeper	Utility Worker	Basis
Soil Ingestion Rate	50 mg/day	137 mg/day	EPA, 1999a
Fraction from the Site	1.0	1.0	EPA, 1999a
Dermal Adherence Factor	0.1 mg/cm ²	0.8 mg/cm ²	EPA, 1999a
Skin Surface Area Exposed	3300 cm ²	3300 cm ²	EPA, 1999a
Exposure Frequency	84 days/year	5 days/year	EPA, 1999a
Exposure Duration	25 years	25 years	EPA, 1999a
Body Weight	70 kg	70 kg	EPA, 1999a
Carcinogenic Averaging Time	25,550 days	25,550 days	EPA, 1999a
Non-Carcinogenic Averaging Time	9125 days	9125 days	EPA, 1999a

### Table 2. Summary of Exposure Parameters for the Groundskeeper and Utility Worker Scenarios

Constituent	Oral Absorption Factor ¹	Dermal Absorption Factor ²	Cancer Slope Factor (mg/kg-day) ⁻¹	Reference Dose (mg/kg-day)
Benzo(a)anthracene	1	0.13	0.73 4	n manananan berara da kara deren mendada an dara da
Benzo(a)pyrene	1	0.13	7.3 ³	कर रहे का
Benzo(b)fluoranthene	1	0.13	0.73 4	Au, 100, 110,
Dibenz(a,h)anthracene	1	0.13	7.3 4	<b>M W 1</b>
n-Nitrosopiperidine	1	0.1	2.1 ⁵	
Antimony	1	0.1 ⁶		0.0004 3
Arsenic	1	0.03 6	1.5 ³	0.0003 ³
Lead ⁷	NA	NA	NA	NA

Notes:

1. Conservative default

2. From EPA Dermal Guidance Document (EPA, 2001a), except where noted.

3. From IRIS (EPA, 2003)

4. Derived through application of RPFs (EPA, 1993) to CSF for benzo(a)pyrene.

5. Cancer slope factor for the surrogate compound n-nitrosopyrrolidine.

6. MDEP (1994)

7. Lead evaluated using EPA's Adult Lead Methodology (see text).

Table 4. Calculation of Preliminary Remediation Goal (PRG) for Lead at Newell Street I for the Groundskeeper Scenario

## PRG Values for Non-Residential Exposure Scenario Exposure Equation¹ Using Equation 1 weer to the Variable 1* 2** Description of Exposure Variable Units GSDI = Hom PbB_{fctal, 0.95} Х 95th percentile PbB in fetus Х ug/dL 10 R_{fetal/maternal} Х Х Fetal/maternal PbB ratio 0.9 ---BKSF Х х **Biokinetic Slope Factor** ug/dL per ug/day 0.4 GSD_i Х Х Geometric standard deviation PbB 1.9 ----PbBo Х Х Baseline PbB ug/dL 1.8 $IR_S$ х Soil ingestion rate (including soil-derived indoor dust) g/day 0.050 IR_{S+D} Х Total ingestion rate of outdoor soil and indoor dust g/day -Ws Х Weighting factor; fraction of IR_{S+D} ingested as outdoor soil ---- $K_{SD}$ Х Mass fraction of soil in dust •• --- $AF_{S,D}$ Х Х Absorption fraction (same for soil and dust) 0.12 ---EF_{S. D} Х Х Exposure frequency (same for soil and dust) days/yr 3 AT_{S,D} Х Х Averaging time (same for soil and dust) days/yr 7 PRG Preliminary Remediation Goal 2,008 ppm

## U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee Version date 2/19/03

Equation 1 does not apportion exposure between soil and dust ingestion (excludes Ws, Ksp).

When  $IR_S = IR_{S+D}$  and  $W_S = 1.0$ , the equations yield the same PRG.

## *Equation 1, based on Eq. 4 in USEPA (1996).

PRG =	$([PbB_{95}feta]/(R*(GSD_i^{1.645})])-PbB_0)*AT_{S,D}$
	$BKSF^*(IR_{S^*D}^*AF_{S,D}^*EF_{S,D})$

Parcel	Exposure		Cancer Risk			Hazard Index	
Number	Pathway	0- to 1-foot	0- to 3-foot	1- to 6-foot	0- to 1-foot	0- to 3-foot	1- to 6-foot
GE-Owned	Soil Ingestion	8.6E-07	NR	2.5E-07	0.0034	NR	0.00053
Commercial	Dermal Exposure	3.7E-07	NR	4.5E-07	0.00067	NR	0.00031
	Total	1.2E-06	NR	7.0E-07	0.0041	NR	0.00083
K10-14-1	Soil Ingestion	1.0E-06	9.3E-07	9.0E-08	0.10	0.094	0.00060
Commercial	Dermal Exposure	3.2E-07	3.0E-07	7.6E-08	0.067	0.060	0.00050
	Total	1.3E-06	1.2E-06	1.7E-07	0.17	0.15	0.0011
K11-1-15	Soil Ingestion	1.2E-06	1.1E-06	1.6E-07	0.15	0.11	0.0020
Commercial	Dermal Exposure	4.6E-07	4.0E-07	2.0E-07	0.098	0.069	0.0031
	Total	1.7E-06	1.5E-06	3.5E-07	0.25	0.18	0.0051

## Table 5. Summary of Risks and Hazards at East Street Area 1 North Properties

NR = Not relevant for this property



Attachment A

Revised Risk Calculations for the East Street Area 1-North Site

ĺ



## **GE-Owned Area**

## Table A1a East Street Area 1 North - GE-Owned Area: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 1-Foot Soil Pathway: Incidental Soil Ingestion Receptor: Groundskeeper

CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

	Cs	lgR	ŌĂ	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Cancer Slope Factor (mg/kg-d) '	
Benzo(a)anthracene	0.44	50	1.0	84	25	1E-06	70	25,550	2.6E-08	0.73	1.95-08
Benzo(a)pyrene	0.42	50	1.0	84	25	1E-06	70	25,550	2.5E-08	7.3	1.8E-07
Benzo(b)fluoranthene	0.50	50	1.0	84	25	1E-06	70	25,550	2.9E-08	0.73	2.1E-08
Dibenzo(a,h)anthracene	0.21	50	1.0	84	25	1E-06	70	25,550	1.2E-08	7.3	9.0E-08
Arsenic	6.2	50	1.0	84	25	1E-06	70	25,550	3.6E-07	1.5	5.5E-07
NONCARCINOGENIC HQ = CDI/RtD CDI = Cs x IgR x OA x EF x B	ED x CF x 1/BW x 1/A	Tnc								Total	8.6E-07
utas una su una sense filles electricanada de un aparecenanya, señ el desenan hannar e papagagas e	Cs	lgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Noncarcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Reference Dose (mg/kg-d)	Hazard Quotient
Arsenic	6.2	50	1.0	84	25	1E-06	70	9,125	1.0E-06	0.0003	3.4E-03
										Total	3.4E-03

## Table A1b - East Street Area 1 North - GE-Owned Area: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 1-Foot Soil Pathway: Dermal Contact Receptor: Groundskeeper

CARCINOGENIC Risk = CDI x CSF CDI =CS x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

					ED	CF	BW	ATc	CDI	CSF	Risk
Soit	Dermal Adhererice	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Chrónic Daily	Cancer Stope	
oncentration (mg/kg)	Factor (mg/cm*)	Exposed (cm*/day)	Absorption (unilless)	Frequency (d/yr)	Duration (yrs)	Factor (kg/mg)	Weight (kg)	Carcinogenic (days)	Intake (mg/kg-d)	Factor ^a (mg/kg-d) '	
0.44	0.1	3,300	0.13	84	25	1E-06	70	25,550	2.2E-08	0.73	1.6E-08
0.42	0.1	3,300	0.13	84	25	1E-06	70	25,550	2.1E-08	7.3	1.5E-07
0.50	0.1	3,300	0.13	84	25	1E-06	70	25,550	2.5E-08	0.73	1.8E-08
0.21	0.1	3,300	0.13	84	25	1E-06	70	25,550	1.1E-08	7.3	7.7E-08
6.2	0.1	3,300	0.03	84	25	1E-06	70	25,550	7.2E-08	15	1.1E-07
								n den geboorde te geboorde de de la de		Total	3.7E-07
	oncentration (mg/kg) 0.44 0.42 0.50 0.21 6.2	oncentration (mg/kg)         Factor (mg/cm ^c )           0.44         0.1           0.42         0.1           0.50         0.1           0.21         0.1           6.2         0.1	Oncentration         Factor (mg/cm ⁴ )         Exposed (cm ⁴ /day)           0.44         0.1         3,300           0.42         0.1         3,300           0.50         0.1         3,300           0.21         0.1         3,300	Oncentration (mg/kg)         Factor (mg/cm ^c )         Exposed (cm ^c /day)         Absorption (unitless)           0.44         0.1         3,300         0.13           0.42         0.1         3,300         0.13           0.50         0.1         3,300         0.13           0.21         0.1         3,300         0.13           6.2         0.1         3,300         0.03	Oncentration (mg/kg)         Factor (mg/cm ² )         Exposed (cm ² /day)         Absorption (unitless)         Frequency (d/yr)           0.44         0.1         3,300         0.13         84           0.42         0.1         3,300         0.13         84           0.50         0.1         3,300         0.13         84           0.21         0.1         3,300         0.13         84           6.2         0.1         3,300         0.03         84	oncentration (mg/kg)         Factor (mg/cm ⁴ )         Exposed (cm ⁴ /day)         Absorption (unitless)         Frequency (d/yr)         Duration (yrs)           0.44         0.1         3,300         0.13         84         25           0.42         0.1         3,300         0.13         84         25           0.50         0.1         3,300         0.13         84         25           0.21         0.1         3,300         0.13         84         25           6.2         0.1         3,300         0.03         84         25	oncentration (mg/kg)         Factor (mg/cm ² )         Exposed (cm ² /day)         Absorption (unilless)         Frequency (d/yr)         Duration (yrs)         Factor (kg/mg)           0.44         0.1         3,300         0.13         84         25         1E-06           0.42         0.1         3,300         0.13         84         25         1E-06           0.50         0.1         3,300         0.13         84         25         1E-06           0.21         0.1         3,300         0.13         84         25         1E-06           6.2         0.1         3,300         0.03         84         25         1E-06	Oncentration (mg/kg)         Factor (mg/cm ² )         Exposed (cm ² /day)         Absorption (unitless)         Frequency (d/yr)         Duration (yrs)         Factor (kg/mg)         Weight (kg)           0.44         0.1         3,300         0.13         84         25         1E-06         70           0.42         0.1         3,300         0.13         84         25         1E-06         70           0.50         0.1         3,300         0.13         84         25         1E-06         70           0.21         0.1         3,300         0.13         84         25         1E-06         70           6.2         0.1         3,300         0.03         84         25         1E-06         70	Oncentration (mg/kg)         Factor (mg/cm ² )         Exposed (cm ² /day)         Absorption (unitless)         Frequency (d/yr)         Duration (yrs)         Factor (kg/mg)         Weight (kg)         Carcinogenic (days)           0.44         0.1         3,300         0.13         84         25         1E-06         70         25,550           0.42         0.1         3,300         0.13         84         25         1E-06         70         25,550           0.50         0.1         3,300         0.13         84         25         1E-06         70         25,550           0.21         0.1         3,300         0.13         84         25         1E-06         70         25,550           6.2         0.1         3,300         0.03         84         25         1E-06         70         25,550	Oncentration (mg/kg)         Factor (mg/cm ² )         Exposed (cm ² /day)         Absorption (unitless)         Frequency (d/yr)         Duration (yrs)         Factor (kg/mg)         Weight (kg)         Carcinogenic (days)         Intake (mg/kg-d)           0.44         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.2E-08           0.42         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.1E-08           0.50         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.5E-08           0.21         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.5E-08           6.2         0.1         3,300         0.03         84         25         1E-06         70         25,550         7.2E-08	Oncentration (mg/kg)         Factor (mg/kg)         Exposed (mg/kg)         Absorption (unitless)         Frequency (d/yr)         Duration (yrs)         Factor (kg/mg)         Weight (days)         Carcinogenic (mg/kg-d)         Intake (mg/kg-d)         Factor ³ (mg/kg-d)           0.44         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.2E-08         0.73           0.42         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.1E-08         7.3           0.50         0.1         3,300         0.13         84         25         1E-06         70         25,550         2.5E-08         0.73           0.21         0.1         3,300         0.13         84         25         1E-06         70         25,550         1.1E-08         7.3           6.2         0.1         3,300         0.03         84         25         1E-06         70         25,550         7.2E-08         1.5           Total

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
		Dermai								Chronic		-
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	$Dose^{\mathfrak{b}}$	Quotient
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(ma/ka-d)	
Arsenic	6.2	0.1	3,300	0.03	84	25	1E-06	70	9.125	2.0E-07	0.0003	6 7E-04

Total 6.7E-04

Total Carcinogenic Risk	an fan fer yn were an ferfange of diger ffen der an an de yn er gelyn er weren yn er yn ar yn ar yn ar yn gelyn	Ingestion	Dermal	Total
	Benzo(a)anthracene	1.9E-08	1.6E-08	3.5E-08
	Benzo(a)pyrene	1.8E-07	1.5E-07	3.3E-07
	Benzo(b)fluoranthene	2.1E-08	1.8E-08	4.0E-08
}	Dibenzo(a,h)anthracene	9.0E-08	7.7E-08	1 7E-07
	Arsenic	5.5E-07	1.1E-07	6.5E-07
	Total	8.6E-07	3.7E-07	1.2E-06
Total Noncarcinogenic Ha	zard	Ingestion	Dermal	Total
	Arsenic	3.4E-03	6.7E-04	4.1E-03
	Total	0.00340	0.00067	0.00407

## Table A1c- East Street Area 1 North - GE-Owned Parcel: Cancer and Non-Cancer Risks from Ingestion Exposure to 1- to 6-Foot SoilPathway: Incidental Soil IngestionReceptor: Utility Worker

Second const

CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/8W x 1/ATc

Section and Sector

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Cancer Slope Factor (mg/kg-d) ⁻⁺	
Benzo(a)anthracene	1.62	137	1.0	5	25	1E-06	70	25,550	1.6E-08	0.73	1.1E-08
Benzo(a)pyrene	1.37	137	1.0	5	25	1E-06	70	25,550	1.3E-08	7.3	9.6E-08
Benzo(b)fluoranthene	1.51	137	1.0	5	25	1E-06	70	25,550	1.4E-08	0.73	1.1E-08
Dibenzo(a,h)anthracene	0.61	137	1.0	5	25	1E-06	70	25,550	5.8E-09	7.3	4.3E-08
Arsenic	5.92	137	1.0	5	25	1E-06	70	25,550	5.7E-08	1.5	8.5E-08
NONCARCINOGENIC HQ = CDI/RID CDI = Cs x IgR x OA x EF x E	D 11 CC 11 11 10 11 11 11 11	Teo							annan ya na shi na shi	Total	2.5E-07
DU - CS XIGNX OA XEF XE	Cs	IgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Noncarcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Reference Dose (mg/kg-d)	Hazard Quotient
Arsenic	5.92	137	1.0	5	25	1E-06	70	9,125	1.6E-07	0.0003	5.3E-04
				·····		0 0					0.00.04

Total 5.3E-04

## Table A1d - East Street Area 1 North - GE-Owned Parcel: Cancer and Non-Cancer Risks from Dermal Exposure to 1- to 6-Foot Soil Pathway: Dermal Contact Receptor: Utility Worker

CARCINOGENIC Risk = CDI x CSF CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

	Ċs	DAF	SA	DA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
		Dermal								Chronic	Cancer	
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Slope	
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Carcinogenic	Intake	Factor ^a	
	(mg/kg)	(mg/cm²)	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d) ⁺⁺	
Benzo(a)anthracene	1.62	0.8	3,300	0.13	5	25	1E-06	70	25,550	3.9E-08	0 73	2.8E-08
Benzo(a)pyrene	1.37	0.8	3,300	0.13	5	25	1E-06	70	25,550	3.3E-08	7.3	2.4E-07
Benzo(b)fluoranthene	1.51	0.8	3,300	0.13	5	25	1E-06	70	25,550	3.6E-08	0.73	2.6E-08
Dibenzo(a,h)anthracene	0.61	0.8	3,300	0.13	5	25	1E-06	70	25,550	1.5E-08	7.3	1.1E-07
Arsenic	5.92	0.8	3,300	0.03	5	25	1E-06	70	25,550	3.3E-08	15	4.9E-08
				,,							Total	4.5E-07
NONCARCINOGENIC												
HQ = CDI/RfD												
CDI =Cs x DAF x SA x DA x				<b>P</b> 4			~-		A <b>T</b>		A(D	
	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ

	<u> </u>												í –
		Dermal								Chronic			
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard	Ĺ
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose ⁶	Quotient	
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)		
Arsenic	5.92	0.8	3,300	0.03	5	25	1E-06	70	9,125	9.2E-08	0.0003	3.1E-04	

3.1E-04 Total

Total Carcinogenic Risk		Ingestion	Dermal	Total
	Benzo(a)anthracene	1.1E-08	2.8E-08	4.0E-08
	Benzo(a)pyrene	9.6E-08	2.4E-07	3.4E-07
	Benzo(b)fluoranthene	1.1E-08	2.6E-08	3.7E-08
	Dibenzo(a,h)anthracene	4.3E-08	1.1E-07	1.5E-07
	Arsenic	8.5E-08	4.9E-08	1.3E-07
	Total	2.5E-07	4.5E-07	7.0E-07
Total Noncarcinogenic Haza	rd	Ingestion	Dermal	Total
	Arsenic	5.3E-04	3.1E-04	8.3E-04
	Total	0.00053	0.00031	0.00083



## Parcel K10-14-1

## Table A2a - East Street Area 1 North - Parcel K10-14-1: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 1-Foot Soil Pathway: Incidental Soil Ingestion Receptor: Groundskeeper

CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

	Cs	IgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Cancer Slope Factor (mg/kg-d) ⁺⁺	
Benzo(a)pyrene	0.43	50	1.0	84	25	1E-06	70	25,550	2.5E-08	7.3	1.8E-07
Arsenic	9.4	50	1.0	84	25	1E-06	70	25,550	5.5E-07	1.5	8.3E-07
NONCARCINOGENIC											
NONCARCINOGENIC HQ = CDI/RID CDI = Cs x IgR x OA x EF x E	ED x CF x 1/BW x 1/A Cs	The IgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
HQ = CDI/RID	Cs Soil Concentration	lgR Ingestion Rate	Oral Absorption	Exposure Frequency	Exposure Duration	Conversion Factor	Body Weight	Averaging Time Noncarcinogenic	Chronic Daily Intake	Reference Dose	HQ Hazard Quotien
HQ ≕ CDI/RID CDI ≕ Cs x IgR x OA x EF x E	Cs Soil	IgR Ingestion	Oral	Exposure	Exposure	Conversion	Body	Averaging Time	Chronic	Reference	Hazard

5.2E-03 1.0E-01 Total

## Table A2b - East Street Area 1 North - Parcel K10-14-1: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 1-Foot Soil Pathway: Dermal Contact Receptor: Groundskeeper

## CARCINOGENIC

Risk = CDLx CSF CDL = Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

	Cs	DAF Dermal	SA	DA	EF	ED	CF	BW	ATc	CDI Chronic	CSF Gancer	Risk
Chemical	Soil Concentration (mg/kg)	Adherence Factor (mg/cm ⁴ )	Surface Area Exposed (cm*/day)	Dermal Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Daily Intake (mg/kg-d)	Slope Factor ^a (mg/kg-d) 1	
Benzo(a)pyrene	0.43	0.1	3,300	0.13	84	25	1E-06	70	25,550	2.2E-08	7.3	1.65-07
Arsenic	9.4	0.1	3,300	0.03	84	25	1E-06	70	25,550	1 1E-07	1.5 Total	1.6E-07 3.2E-07

## NONCARCINOGENIC

HQ = CDI/RfD

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/AThc

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
		Dermal								Chronic		
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose ^b	Quotient
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony	242	0.1	3,300	0.1	84	25	1E-06	70	9,125	2.6E-05	0.0004	6 6E-02
Arsenic	9.4	0.1	3,300	0.03	84	25	1E-06	70	9,125	3.1E-07	0.0003	1.0E-03
											Total	6.7E-02

Total Carcinogenic Risk	5	Ingestion	Dermal	Total
1	Benzo(a)pyrene	1.8E-07	1.6E-07	3.4E-07
	Arsenic	8.3E-07	1.6E-07	9.9E-07
	Total	1.0E-06	3.2E-07	1.3E-06
Total Noncarcinogenic	Hazard	Ingestion	Dermal	Total
	Antimony	9.9E-02	6.6E-02	1.7E-01
	Arsenic	5.2E-03	1.0E-03	6.2E-03
	Total	0.10460	0.06666	0.17126

## Table A2c - East Street Area 1 North - Parcel K10-14-1: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 3-Foot Soil Pathway: Incidental Soil Ingestion Receptor: Groundskeeper

CARCINOGENIC Risk = CDL x CSF CDL = CS x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Cancer Slope Factor (mg/kg-d) ⁻¹	
Benzo(a)pyrene	0.39	50	1.0	84	25	1E-06	70	25,550	2.3E-08	73	1.78-07
Arsenic	8.7	50	1.0	84	25	1E-06	70	25,550	5.1E-07	1.5	7.7E-07
NONCARCINOGENIC											
tQ = CDI/RtD	ED x CF x 1/BW x 1/A Cs	Thc IgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
łQ ≈ CDI/RtD	and a second		OA Oral Absorption	EF Exposure Frequency	ED Exposure Duration	<b>CF</b> Conversion Factor	BW Body Weight	ATnc Averaging Time Noncarcinogenic	CDI Chronic Daily Intake	RfD Reference Dose	HQ Hazard Quotient
łQ ≈ CDI/RtD CDI ≈ Cs x IgR x OA x EF x I	Cs Soil Concentration (mg/kg)	IgR Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body	Averaging Time	Chronic	Reference	Hazard
HQ ≈ CDI/RtD CDI ≈ Cs x IgR x OA x EF x I	<b>Cs</b> Soil Concentration	IgR Ingestion Rate	Oral Absorption	Exposure Frequency	Exposure Duration	Conversion Factor	Body Weight	Averaging Time Noncarcinogenic	Chronic Daily Intake	Reference Dose	Hazard

Total 9.4E-02

## Table A2d - East Street Area 1 North - Parcel K10-14-1: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 3-Foot Soil Pathway: Dermal Contact Receptor: Groundskeeper

CARCINOGENIC Risk = CDI x CSF CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
		Dermal								Chronic	Cancer	
	Soil		Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Slope	
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Carcinogenic	Intake	Factor ^a	
	(mg/kg)	(mg/cm ⁴ )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d) ⁺	
Benzo(a)pyrene	0.39	0.1	3,300	0.13	84	25	1E-06	70	25,550	2.0E-08	7.3	1.4E-07
Arsenic	8.7	0.1	3,300	0.03	84	25	1E-06	70	25,550	1.0E-07	1.5	1.5E-07
											Total	3.0E-07

## NONCARCINOGENIC

HQ = CDI/RfD

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/ATnc

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
		Dermal								Chronic		
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Doseb	Quotient
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony	217.85	0.1	3,300	0.1	84	25	1E-06	70	9,125	2.4E-05	0.0004	5.9E-02
Arsenic	8.7	0.1	3,300	0.03	84	25	1E-06	70	9,125	2.8E-07	0.0003	9.4E-04
											Total	6.0E-02

Total Carcinogenic Risk		Ingestion	Dermal	Total
	Benzo(a)pyrene	1.7E-07	1.4E-07	3.1E-07
	Arsenic	7.7E-07	1.5E-07	9.2E-07
	Total	9.3E-07	3.0E-07	1.2E-06
Total Noncarcinogenic Ha	izard	Ingestion	Dermal	Total
	Antimony	9.0E-02	5.9E-02	1.5E-01
	Arsenic	4.8E-03	9.4E-04	5.7E-03

## Table A2e - East Street Area 1 North - Parcel K10-14-1: Cancer and Non-Cancer Risks from Ingestion Exposure to 1- to 6-Foot Soil Pathway: Incidental Soil Ingestion Pathway: Incidental Soil Ingestion Receptor: Utility Worker

CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)		Cancer Slope Factor (mg/kg-d) ⁻¹	
Benzo(a)pyrene	0.18	137	1.0	5	25	1E-06	70	25,550	1.7E-09	7.3	1.3E-08
Arsenic	5.4	137	1.0	5	25	1E-06	70	25,550	5.2E-08	1.5 Total	7.8E-08 9.0E-08

## NONCARCINOGENIC HQ = CDI/RID

CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATnc

	Cs	lgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
Chemical	Soil Concentration	Ingestion Rate	Oral Absorption	Exposure Frequency	Exposure Duration	Conversion Factor	Body Weight	Averaging Time Noncarcinogenic	Chronic Daily Intake	Reference Dose	Hazard Quotient
	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony	1.73	137	1.0	5	25	1E-06	70	9,125	4.6E-08	0.0004	1.2E-04
Arsenic	5.4	137	1.0	5	25	1E-06	70	9,125	1.4E-07	0.0003	4.8E-04
										Total	6.0E-04

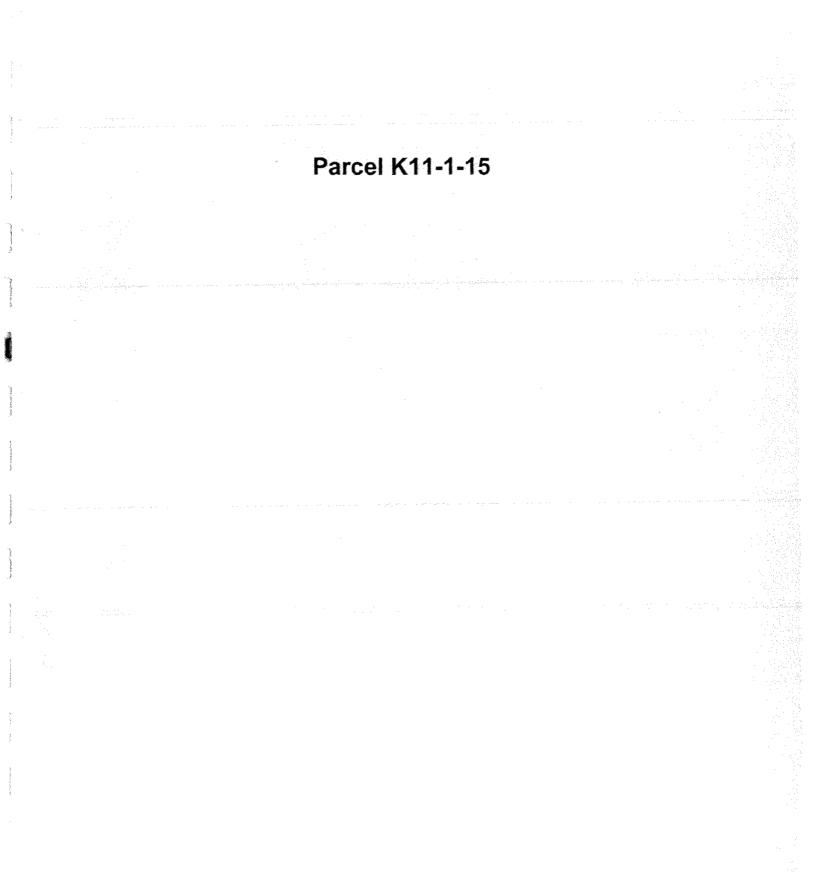
## Table A2f - East Street Area 1 North - Parcel K10-14-1: Cancer and Non-Cancer Risks from Dermal Exposure to 1- to 6-Foot Soil Pathway: Dermal Contact Receptor: Utility Worker

## CARCINOGENIC

Risk = CDLx CSF CDL = CS x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
		Dermal								Chronic	Cancer	
	Soit	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Slope	
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Carcinogenic	Intake	Factor ^a	
	(mg/kg)	(mg/cm*)	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Benzo(a)pyrene	0.18	0.8	3,300	0.13	5	25	1E-06	70	25,550	4.3E-09	7.3	3.2E-08
Arsenic	5.4	0.8	3,300	0.03	5	25	1E-06	70	25,550	3.0E-08	15	4.5E-08
**************************************	al analytic na Analytic Latera Analytic Control (Control and Control (Control (Contr										Total	7.6E-08

## NONCARCINOGENIC


HQ = CDI/RID

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/8W x 1/ATnc

φ(φ ₁ φ ₁ φ) (φ ₁ φ) (φ_1φ)	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RÍD	HQ
		Dermal								Chronic		
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	$Dose^{\mathfrak{b}}$	Quotient
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony	1.73	0.8	3,300	0.1	5	25	1E-06	70	9,125	8.9E-08	0.0004	2.2E-04
Arsenic	5.4	0.8	3,300	0.03	5	25	1E-06	70	9,125	8.4E-08	0.0003	2.8E-04
											Total	5.0E-04

Total Carcinogenic Risk	n and an	Ingestion	Dermal	Total
	Benzo(a)pyrene	1.3E-08	3.2E-08	4.4E-08
	Arsenic	7.8E-08	4.5E-08	1.2E-07
	Total	9.0E-08	7.6E-08	1.7E-07
Total Noncarcinogenic Hi	azard	Ingestion	Dermal	Total
	Antimony	1.2E-04	2.2E-04	3.4E-04
	Arsenic	4.8E-04	2.8E-04	7.6E-04
]	Total	0.00060	0.00050	0.00110





## Table A3a - East Street Area 1 North - Parcel K11-1-15: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 1-Foot Soil Pathway: Incidental Soli Ingestion Receptor: Groundskeeper CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

ifs and as where a weather of the interval and there are a "Free from a space sector sector and the advert about	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	Ċ\$F	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Cancer Slope Factor (mg/kg-d) *	
Benzo(a)pyrene	0.69	50	1.0	84	25	1E-06	70	25,550	4.1E-08	7.3	3.015-07
N-nitrosopiperidene	0.27	50	1.0	84	25	1E-06	70	25,550	1 6E-08	2.1	3.3E-08
Arsenic	10.43	50	1.0	84	25	1E-06	70	25,550	6.1E-07	15	9.2E-07
NONCARCINOGENIC HQ = CDI/RtD CDI = Cs x IgR x OA x EF x EI	D x CF x 1/8W x 1/A	The								Total	1.2E-06
	Cs	IgR	OA	EF	ED	CF	BW	ATnc	CDI	RÍD	HQ

Chemical	Soil Concentration	Ingestion Rate	Oral Absorption	Exposure Frequency	Exposure Duration	Conversion Factor	Body Weight	Averaging Time Noncarcinogenic	Chronic Daily Intake	Reference Dose	Hazard Quotient
	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony	356.5	50	1.0	84	25	1E-06	70	9,125	5.9E-05	0.0004	1.5F-01
Arsenic	10,43	50	1.0	84	25	1E-06	70	9,125	1.7E-06	0.0003	5.7E-03
										Total	1.5E-01

## Table A3b- East Street Area 1 North - Parcel K11-1-15: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 1-Foot SoilPathway: Dermal ContactReceptor:Groundskeeper

## CARCINOGENIC

## Risk = CDLx CSF

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

a na an an an an an ann an ann ann ann	Cs	DAF	SA	DA	EF	ED	CF	BW	AŤc	COI	CSF	Risk
		Dermal								Chronic	Cancer	
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Slope	
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Carcinogenic	Intake	Factor ^a	
	(mg/kg)	(mg/cm²)	(cm*/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Benzo(a)pyrene	0.69	0.1	3,300	0.13	84	25	1E-06	70	25,550	3.5£-08	7.3	2.5E-07
N-nitrosopiperidene	0.27	0.1	3,300	0.1	84	25	1E-06	70	25,550	1.0E-08	2.1	2.20-08
Arsenic	10.43	0.1	3,300	0.03	84	25	1E-06	70	25,550	1.2E-07	1.5	1.8E-07
										1	Total	4.6E-07

## NONCARCINOGENIC

HQ = CDI/RID

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/8W x 1/ATnc

Cs	DAF	SA	DA	EF	ED	ĊF	BW	ATnc	CDI	RfD	HQ
	Dermal								Chronic		
Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose ⁶	Quotient
(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
356.5	0.1	3,300	0.1	84	25	1E-06	70	9,125	3.9E-05	0.0004	9.7E-02
10.43	0.1	3,300	0.03	84	25	1E-06	70	9,125	3.4E-07	0.0003	1 1E-03
	Concentration (mg/kg) 356.5	Dermal           Soil         Adherence           Concentration         Factor           (mg/kg)         (mg/cm²)           356.5         0.1	Dermal           Soil         Adherence         Surface Area           Concentration         Factor         Exposed           (mg/kg)         (mg/cm²)         (cm²/day)           356.5         0.1         3,300	Dermal Soil Adherence Surface Area Dermal Concentration Factor Exposed Absorption (mg/kg) (mg/cm ² ) (cm ² /day) (unitless) 356.5 0.1 3,300 0.1	Dermal           Soil         Adherence         Surface Area         Dermal         Exposure           Concentration         Factor         Exposed         Absorption         Frequency           (mg/kg)         (mg/cm ² )         (cm ² /day)         (unitless)         (d/yr)           356.5         0.1         3,300         0.1         84	Dermal           Soil         Adherence Surface Area         Dermal         Exposure           Concentration         Factor         Exposed         Absorption         Frequency         Duration           (mg/kg)         (mg/cm²)         (cm²/day)         (unitless)         (d/yr)         (yrs)           356.5         0.1         3,300         0.1         84         25	DermalSoilAdherenceSurface AreaDermalExposureExposureConversionConcentrationFactorExposedAbsorptionFrequencyDurationFactor(mg/kg)(mg/cm²)(cm²/day)(unitless)(d/yr)(yrs)(kg/mg)356.50.13,3000.184251E-06	DermalSoilAdherenceSurface AreaDermalExposureExposureConversionBodyConcentrationFactorExposedAbsorptionFrequencyDurationFactorWeight(mg/kg)(mg/cm²)(cm²/day)(unitless)(d/yr)(yrs)(kg/mg)(kg)356.50.13,3000.184251E-0670	Dermal           Soil         Adherence         Surface Area         Dermal         Exposure         Exposure         Conversion         Body         Averaging Time           Concentration         Factor         Exposed         Absorption         Frequency         Duration         Factor         Weight         Noncarcinogenic           (mg/kg)         (mg/cm²)         (cm²/day)         (unitless)         (d/yr)         (yrs)         (kg/mg)         (kg)         (days)           356.5         0.1         3,300         0.1         84         25         1E-06         70         9,125	Dermal         Chronic           Soil         Adherence         Surface Area         Dermal         Exposure         Exposure         Conversion         Body         Averaging Time         Daily           Concentration         Factor         Exposed         Absorption         Frequency         Duration         Factor         Weight         Noncarcinogenic         Intake           (mg/kg)         (mg/cm ² )         (cm ² /day)         (unitless)         (d/yr)         (yrs)         (kg/mg)         (kg)         (days)         (mg/kg-d)           356.5         0.1         3,300         0.1         84         25         1E-06         70         9,125         3.9E-05	Dermal         Chronic           Soil         Adherence Surface Area         Dermal         Exposure         Exposure         Conversion         Body         Averaging Time         Daily         Reference           Concentration         Factor         Exposed         Absorption         Frequency         Duration         Factor         Weight         Noncarcinogenic         Intake         Dose ^b (mg/kg)         (mg/cm ² )         (cm ² /day)         (unitless)         (d/yr)         (yrs)         (kg/mg)         (kg)         (days)         (mg/kg-d)         (mg/kg-d)         3.9E-05         0.0004

Total 9.8E-02

Total Carcinogenic Risk		Ingestion	Dermal	Total
	Benzo(a)pyrene	3.0E-07	2.5E-07	5.5E-07
	N-nitrosopiperidene	3.3E-08	2.2E-08	5.5E-08
	Arsenic	9.2E-07	1.8E-07	1.1E-06
	Total	1.2E-06	4.6E-07	1.7E-06
Total Noncarcinogenic Ha	zard	Ingestion	Dermal	Total
	Antimony	1.5E-01	9.7E-02	2.4E-01
	Arsenic	5.7E-03	1.1E-03	6.8E-03
	Total	0.1522	0.0978	0.2500

وروانه ستمجمه جأبا

## Table A3c - East Street Area 1 North - Parcel K11-1-15: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 3-Foot Soil Pathway: Incidental Soil Ingestion Receptor: Groundskeeper

CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration (mg/kg)	Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Cancer Slope Factor (mg/kg-d) ⁻¹	
Benzo(a)pyrene	0.48	50	1.0	84	25	1E-06	70	25,550	2.8E-08	7.3	2.1E-07
N-nitrosopiperidene	0.72	50	1.0	84	25	1E-06	70	25,550	4.2E-08	2.1	8.9E-08
Arsenic	9.27	50	1.0	84	25	1E-06	70	25,550	5.4E-07	1.5	8.2E-07
NONCARCINOGENIC HQ = CDI/RfD CDI = Cs x IgR x OA x EF x I	ED x CF x 1/BW x 1/A	Tnc								Total	1.1E-06
	Cs	lgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
Chemical	Soil Concentration	Ingestion Rate	Oral Absorption	Exposure Frequency	Exposure Duration	Conversion Factor	Body Weight	Averaging Time Noncarcinogenic	Chronic Daily Intake	Reference Dose	Hazard Quotient
Antimony	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony Arconic	249.34	50	1.0	84	25	1E-06	70	9,125	4.1E-05	0.0004	1.0E-01
Arsenic	9.27	50	1.0	84	25	1E-06	70	9,125	1.5E-06	0.0003	5 1F-03

1.5E-06

5.1E-03 0.0003 Total 1.1E-01

## Table A3d - East Street Area 1 North - Parcel K11-1-15: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 3-Foot Soil Pathway: Dermal Contact Receptor: Groundskeeper

CARCINOGENIC Risk = CDI x CSF CDI =CS x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

and an analysis and the first of the state of the second second second second second second second second secon	Cs	DAF Dermal	SA	DA	EF	ED	CF	BW	ATc	CDI Chronic	CSF Cancer	Risk
		Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Slope	
Chemical	Soil Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Carcinogenic	Intake	Factor ^a	
	(mg/kg)	(mg/cm*)	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Benzo(a)pyrene	0.48	0.1	3,300	0.13	84	25	1E-06	70	25,550	2.4E-08	7.3	1.8E-07
N-nitrosopiperidene	0.72	0.1	3,300	0.1	84	25	1E-06	70	25,550	2.8E-08	2.1	5.9E-08
Arsenic	9.27	0.1	3,300	0.03	84	25	1E-06	70	25,650	1.1E-07	1.5	1 6E-07
an an an fairte an	//		······································							la de la construcción de la constru	Total	4.0E-07

أفرد بالمسرد بالمها

## NONCARCINOGENIC

HQ = CDI/RID

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/ATnc

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
		Dermal								Chronic		
		Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Soil Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose ^b	Quotient
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitiess)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Intimony	249.34	0.1	3,300	0.1	84	25	1E-06	70	9,125	2.7E-05	0.0004	6.8E-02
Arsenic	9.27	0.1	3,300	0.03	84	25	1E-06	70	9,125	3.0E-07	0.0003	1.0E-03
											Alle in the second seco	005 00

Total 6.9E-02

Total Carcinogenic Risk	Ingestion	Dermal	Total
Benzo(a)pyrene	2.1E-07	1.8E-07	3.8E-07
N-nitrosopiperidene	8.9E-08	5.9E-08	1.5E-07
Arsenic	8.2E-07	1.6E-07	9.8E-07
Total	1.1E-06	4.0E-07	1.5E-06
Total Noncarcinogenic Hazard	Ingestion	Dermal	Total
Antimony	1.0E-01	6.8E-02	1.7E-01
Arsenic	5.1E-03	1.0E-03	6.1E-03
Total	0.1075	0.0686	0.1762

una mad

# Table A3e - East Street Area 1 North - Parcel K11-1-15: Cancer and Non-Cancer Risks from Ingestion Exposure to 1- to 6-Foot Soil Pathway: Incidental Soil Ingestion Receptor: Utility Worker CARCINOGENIC Risk = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/ATc

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
Chemical	Soil Concentration	Ingestion Rate	Oral Absorption	Exposure Frequency	Exposure Duration	Conversion	Body	Averaging Time	Chronic	Cancer	
	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	Factor (kg/mg)	Weight (kg)	Carcinogenic (days)	Daily Intake (mg/kg-d)	Slope Factor (mg/kg-d) ⁻¹	
Benzo(a)pyrene	0.55	137	1.0	5	25	1E-06	70	25,550	5.3E-09	7.3	3.8E-0
4-nitrosopiperidene	1.27	137	1.0	5	25	1E-06	70	25,550	1.2E-08	2.1	2.6E-0
\rsenic	6.4	137	1.0	5	25	1E-06	70	25,550	6.1E-08	1.5	9.2E-0
NONCARCINOGENIC											1.6E-0
IQ = CDI/RID		have the horizon the contract of the second s		<b>Fee 24</b>					******		
IQ = CDI/RID	ED x CF x 1/BW x 1/A Cs	Tnc IgR	ΟΑ	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
IONCARCINOGENIC IQ = CDI/RID IDI = Cs x IgR x OA x EF x I Chemical		have the horizon the contract of the second s	OA Oral Absorption	EF Exposure Frequency	ED Exposure Duration	<b>CF</b> Conversion Factor	<b>BW</b> Body Weight	<b>ATnc</b> Averaging Time Noncarcinogenic	CDI Chronic Daily Intake	RfD Reference Dose	
IQ = CDI/RID CDI = Cs x IgR x OA x EF x I Chemical	Cs Soil Concentration (mg/kg)	IgR Ingestion Rate (mg/d)	Oral	Exposure	Exposure	Conversion	Body	Averaging Time	Chronic	Reference Dose	<b>HQ</b> Hazari
IQ = CDI/RID DI = Cs x IgR x OA x EF x I Chemical	Cs Soil Concentration (mg/kg) 21.37	IgR Ingestion Rate (mg/d) 137	Oral Absorption (unitless) 1.0	Exposure Frequency	Exposure Duration	Conversion Factor	Body Weight	Averaging Time Noncarcinogenic	Chronic Daily Intake	Reference	HQ Hazar
IQ = CDI/RtD DI = Cs x IgR x OA x EF x I Chemical	Cs Soil Concentration (mg/kg)	IgR Ingestion Rate (mg/d)	Oral Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Noncarcinogenic (days)	Chronic Daily Intake (mg/kg-d)	Reference Dose (mg/kg-d)	<b>HQ</b> Hazar Quotie

## Table A3f - East Street Area 1 North - Parcel K11-1-15: Cancer and Non-Cancer Risks from Dermal Exposure to 1- to 6-Foot Soil Pathway: Dermal Contact Receptor: Utility Worker

## CARCINOGENIC

Risk = CDLx CSF CDL = CS x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

	Cs	DAF Dermal	SA	DA	EF	ED	CF	BW	ATc	CDI Chronic	CSF Cancer	Risk
Chemical	Soil Concentration (mg/kg)	Adherence Factor (mg/cm [*] )	Surface Area Exposed (cm ² /day)	Dermal Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Daily Intake (mg/kg-d)	Slope Factor ^a (mg/kg-d)`'	
Benzo(a)pyrene	0.55	0.8	3,300	0.13	5	25	1E-06	70	25,550	1.3E-08	7.3	9.6E-08
N-nitrosopiperidene	1.27	0.8	3,300	0.1	5	25	1E-06	70	25,550	2.3E-08	2.1	4.98-08
Arsenic	6,4	0.8	3,300	0.03	5	25	1E-06	70	25,550	3.5E-08	1.5	5 3E-08
NONCARCINOCENIC											Total	2.0E-07

## NONCARCINOGENIC

HQ = CDI/RfD

CDI #Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/ATric

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
		Dermal								Chronic		
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	intake	Dose ^b	Quotient
	(mg/kg)	(mg/cm ² )	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Antimony	21.37	0.8	3,300	0.1	5	25	1E-06	70	9,125	1.1E-06	0.0004	2.812-03
Arsenic	6.4	0.8	3,300	0.03	5	25	1E-06	70	9,125	9.9E-08	0.0003	3.3E-04

Total 3.1E-03

Total Carcinogenic Risk		Ingestion	Dermal	Total
	Benzo(a)pyrene	3.8E-08	9.6E-08	1.3E-07
	N-nitrosopiperidene	2.6E-08	4.9E-08	7.5E-08
	Arsenic	9.2E-08	5.3E-08	1.5E-07
	Total	1.6E-07	2.0E-07	3.5E-07
Total Noncarcinogenic Ha	izard	Ingestion	Dermal	Total
	Antimony	1.4E-03	2.8E-03	4.2E-03
	Arsenic	5.7E-04	3.3E-04	9.0E-04
	Total	0.0020	0.0031	0.0051