

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

July 6, 2005

Mr. William P. Lovely, Jr. U.S. Environmental Protection Agency, Region 1 EPA – New England (MC HBO) One Congress Street, Suite 1100 Boston, MA 02114-2023

Re: Supplemental Building Material Characterization Report – Buildings 42, 43/43-A, 44 GE-Pittsfield/Housatonic River Site 40s Complex (GECD120)

Dear Mr. Lovely:

On August 4, 2004, the General Electric Company (GE) submitted a Proposal for Supplemental Building Material Characterization Activities – Buildings 42, 43/43-A, 44 (Supplemental Building Characterization Proposal) to the U.S. Environmental Protection Agency (EPA). That document provided a summary of various sampling and analysis activities that had been performed by GE to characterize the building materials from Buildings 42, 43/43-A, and 44, which are located within the 40s Complex Removal Action Area (RAA) at GE's facility in Pittsfield, Massachusetts (Figure 1), and to support the planning for and implementation of demolition activities (including the disposition of the demolition debris) from those buildings. That document also included an evaluation regarding the potential use of select building demolition debris as future subgrade materials within the 40s Complex and, based on the results of that evaluation, a proposal for the collection of additional building characterization data. Specifically, the Supplemental Building Characterization Proposal proposed the collection of 17 samples from the slabs and walls of Buildings 42, 43/43-A, and 44 for analysis of volatile organic compounds, semi-volatile organic compounds, and inorganic compounds listed in Appendix IX of 40 CFR Part 264 plus three additional constituents – benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3 VOCs, SVOCs, and inorganics).

In a letter dated June 7, 2005, EPA conditionally approved the Supplemental Building Characterization Proposal and the activities proposed therein. In that letter EPA also required that GE perform and report on the results of certain other activities, including: (1) collection of a composite sample from the 1st floor slab within Building 42 for analyses using the Toxicity Characteristic Leaching Procedure (TCLP); (2) development of a proposal for the temporary stockpiling of suitable, excess building demolition debris not otherwise used as part of the anticipated demolition and restoration activities, and (3) clarifications/revisions to certain information presented in the Supplemental Building Characterization Proposal. Finally, EPA's conditional approval letter provided direction to GE regarding the placement of building demolition debris within the original footprint of Buildings 42, 43/43-A, and 44 (to facilitate the demolition activities and provide structural support for Kellogg Street) and the subsequent restoration activities.

The remainder of this letter presents the results of the recent building material characterization activities conducted by GE, and summarizes the evaluations that have been performed to demonstrate that certain of the building demolition materials are suitable for use as backfill/grading material within the 40s Complex. This letter also provides the additional information requested by EPA in its June 7, 2005 conditional approval letter.

I. Supplemental Building Characterization Activities

As noted in the Supplemental Building Characterization Proposal, a sufficient amount of sampling data was available to characterize the various building materials associated with Buildings 42, 43/43-A, and 44 for PCBs. Further, an evaluation of that sampling data indicated that a large portion of the building demolition debris was suitable for future use as subgrade fill materials, similar to the manner in which building demolition debris associated with Buildings 33/34 was used within the 30s Complex RAA. However, the available building characterization data did not include sampling results for non-PCB constituents. Therefore, the Supplemental Building Characterization Proposal focused on the collection of samples for analysis of Appendix IX+3 VOCs, SVOCs, and inorganics to supplement the PCB sampling data and confirm that select building demolition debris is suitable for use as backfill/grading materials within the 40s Complex RAA.

Although the sampling and analysis activities proposed in the Supplemental Building Characterization Proposal (as conditionally approved by EPA) were performed between April 28 and May 2, 2005, which was prior to receipt of EPA's June 7, 2005 approval letter, the sampling was performed with EPA concurrence. (As discussed with EPA, it was necessary to perform the sampling activities prior to receipt of final EPA approval in order to coordinate those activities with ongoing building demolition activities.). In general, the building material sample locations were selected in accordance with the criteria identified in the Supplemental Building Characterization Proposal, with certain modifications discussed and agreed to between GE and EPA representatives during a pre-sampling field reconnaissance on April 25, 2005.

A total of 18 samples (including two sample duplicates) were collected from 16 locations and submitted to SGS Environmental Services, Inc. for analysis of Appendix IX+3 VOCs, SVOCs, and inorganics. In the Supplemental Building Characterization Proposal, GE had anticipated sampling the concrete roof of Building 44 as part of the supplemental building characterization activities. However, the roof of that building was inaccessible at the time of sampling due to demolition activities and it was deemed unsafe to access the structure. EPA concurred with the elimination of this area from further sampling. GE agreed to dispose of this material in the Hill 78 On-Plant Consolidation Area (OPCA). The data for the samples collected are provided in Table 1 and the sample locations are depicted on the figures provided in Attachment A.

In addition, in accordance with Comment No. 1 of EPA's conditional approval letter, five discrete grab samples were collected from the first floor slab within Building 42 and combined to form a single composite sample for TCLP analysis of VOCs, SVOCs, pesticides/herbicides, and inorganics. The data from these samples are provided in Table 2 and the sample locations are depicted on the figures provided in Attachment B.

The field investigation and analytical activities conducted by GE during the building characterization sampling activities were performed in accordance with GE's approved *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP). The analytical data for the characterization samples were reviewed in accordance with the data validation protocols included in the FSP/QAPP. The results of this review are summarized in Attachment C and confirm that the data are within acceptable data validation parameters.

II. Evaluation of Building Material Sampling Data

Since July 2002, GE has performed several investigations for the purpose of characterizing the demolition debris for Buildings 42, 43/43-A, and 44 for disposal and/or potential reuse as backfill/grading materials within the 40s Complex. Summaries of the evaluations performed for these data are provided in the following sections.

A. Evaluation of PCB Data

The Supplemental Building Characterization Proposal summarized and evaluated the available PCB building characterization sampling data to determine the suitability of select building demolition materials for use as backfill/grading materials within the 40s Complex RAA. Although no additional PCB data have been collected since that evaluation was presented, a summary of the available PCB data set and the prior evaluations is included in this report for completeness.

Between July 2002 and January 2004, GE collected samples for PCB analysis from concrete floors, blocks, and/or walls at 84 locations within Buildings 42, 43/43-A, and 44. PCBs were detected at levels ranging from non-detect to 7,500 ppm, with 77 of the 84 collected samples containing PCBs at concentrations less than 50 ppm (ranging from non-detect to a maximum of 44 ppm) and seven samples containing PCBs at concentrations ranging from 130 ppm to 7,500 ppm. The arithmetic average concentration of the 84 PCB sample results (including the seven samples with PCB concentrations greater than 50 ppm) is approximately 149 ppm. After identifying the portions of the buildings corresponding to the seven samples containing PCBs greater than 50 ppm, and therefore subject to segregation and consolidation at the Building 71 OPCA, a second arithmetic average was calculated for the remaining 77 samples with PCB levels less than 50 ppm. The average of those remaining samples is approximately 5.8 ppm.

Based on the aforementioned evaluation, the Supplemental Building Characterization Proposal indicated that the PCB sampling results associated with the remaining building materials (i.e., those materials not designated for disposal at the Building 71 OPCA) represented materials that could potentially be placed (following appropriate crushing and processing) as backfill/grading materials within the 40s Complex RAA. As such, the PCB building characterization sampling data were compared to the applicable, soil-related Performance Standards established in the October 2000 Consent Decree (CD) executed by GE, EPA, MDEP, and other governmental entities for the GE-Pittsfield/Housatonic River Site. Specifically, the maximum PCB concentration for the remaining samples (44 ppm) is less than the "not-to-exceed" concentration of 125 ppm for materials in the 0- to 1-foot depth increment. In addition, the arithmetic average PCB concentration of the building characterization data (5.8 ppm) is below the applicable Performance Standards for PCBs in soils for the 0- to 1-foot and 1- to 6-foot depth increments (25ppm and 200 ppm, respectively). Therefore, based on the available PCB data, the Supplemental Building Characterization Proposal concluded that re-use of the building demolition debris as backfill materials would not adversely impact the achievement of the PCB Performance Standards for the 0- to 1-foot are proposal concluded that re-use of the building demolition debris as backfill materials would not adversely impact the achievement of the PCB Performance Standards for the 0- to 1-foot or 1-foot depth increments for the 0- to 1-foot or 1-foot or 1-foot or 1-foot or 1-foot depth increments within the 40s Complex RAA.

B. Evaluation of Appendix IX+3 VOC, SVOC, and Inorganic Data

Regarding the Appendix IX+3 VOCs, SVOCs, and inorganics sample data, the possible use of the building demolition debris as backfill/grading materials within the 40s Complex RAA has been evaluated in light of the procedures described in Attachment F to the *Statement of Work for Removal Actions Outside the River* (SOW) (Protocols for the Evaluation of Non-PCB Constituents in Soil). A summary of the evaluation activities is provided below.

The first step in the evaluation of the Appendix IX data was the performance of a screening evaluation. In this step, the maximum concentrations of all detected constituents were compared to the EPA Region 9 PRGs set forth in Exhibit F-1 to Attachment F of the SOW, using the Industrial PRGs. However, for certain constituents, EPA Region 9 PRGs are not available. For some of these constituents, the SOW identifies surrogate PRGs that may be used for screening purposes. Specifically, for polycyclic aromatic hydrocarbons (PAHs) for which EPA Region 9 PRGs do not exist, the EPA Region 9 PRG for benzo(a)pyrene was used for carcinogenic PAHs and the EPA Region 9 PRG for naphthalene was used for non-carcinogenic PAHs. In addition, for certain other constituents that do not have EPA Region 9 PRGs, this screening step used the PRGs for the following surrogate compounds, which have previously been approved by EPA for use at other RAAs:

Constituent	Surrogate
2-Hexanone	Methyl isobutyl ketone
4-Methyl-2-pentanone	Methyl isobutyl ketone
2-Methylnapthalene	Napthalene
Benzo(g,h,i)perylene	Napthalene
Phenanthrene	Napthalene

The Region 9 PRGs and surrogate PRGs used in this step are jointly referred to herein as the "Screening PRGs."

Eighteen samples were collected from Buildings 42 and 43 (as previously indicated no samples were collected from Building 44) and analyzed for Appendix IX+3 VOCs, SVOCs, and inorganics. The maximum concentration for all of the detected constituents were below their respective PRGs, with the exception of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and arsenic. Table 3 provides the results of this screening step.

For all constituents that were not screened out in the preceding step, GE has performed two different evaluations. First, GE has compared the average concentration of each such constituent to its applicable Method 1 soil standard. For this comparison, consistent with the approach agreed upon by EPA (after consultation with MDEP) and GE for certain recently-evaluated areas under the CD, GE has used the draft "Wave 2" Method 1 soil standards proposed by the MDEP in September 2004, as partially modified in May 2005, rather than the current Method 1 soils standards -- which were used in similar non-PCB evaluations presented in the December 2001 *Conceptual Removal Design/Removal Action Work Plan for 20s, 30s, and 40s Complexes* [Conceptual Work Plan]). GE used the proposed Wave 2 Method 1 standards because it is anticipated that those Wave 2 standards will be finalized shortly, possibly before the completion of building demolition activities and prior to the use of the building demolition debris as backfill/grading materials within the 40s Complex.

To determine the type of Method 1 soil standard appropriate for use in non-PCB data evaluations for the 40s Complex (i.e., S-1, S-2, or S-3), GE used the same types of Method 1 standards as it used (and as EPA approved) in the Conceptual Work Plan. In the Conceptual Work Plan, Category S-2 soil standards were applied to the 0- to 1-foot depth increment and Category S-3 soil standards were applied to the 1- to 6-foot depth increment. These are the likely depth increments within which the building demolition materials characterized in this investigation would be placed as backfill and/or grading materials. The Conceptual Work Plan indicated that the applicable MCP groundwater categories for the 40s Complex are GW-2 or GW-3. Therefore, in the Conceptual Work Plan, the Method 1 soil standards used in the evaluations of the supplemental building characterization data were based on the lower of the GW-2 or GW-3 groundwater. As the S-2 soil standards are more conservative than the S-3 soil standards, GE has,

for purposes of this supplemental analysis of building demolition materials, elected to compare the average non-PCB constituent concentrations in the building materials to the S-2 standards, using the more stringent of the GW-2 or GW-3 standards. Table 4 presents the non-PCB evaluation for the supplemental building characterization data. As indicated therein, the arithmetic averages for all retained constituents are less than the proposed Method 1 Wave 2 Category S-2 soil standards.

As a second method of comparison, GE has considered the effect on overall risk levels of adding the building materials to the existing soils in the 40s Complex. The existing levels of risk at the 40s Complex calculated in the Revised Risk Evaluation of Appendix IX+3 Constituents in Soil (Revised Risk Evaluation), submitted on March 4, 2002, were well below the target risk benchmarks. Specifically, the cumulative Excess Lifetime Cancer Risk (ELCR) presented in the Revised Risk Evaluation was 3.3 x 10⁻⁶ for the 0- to 1-foot depth increment and 3.7×10^{-7} for the 1- to 6-foot depth increment, and the noncancer Hazard Index (HI) was 7.7 x 10^{-3} and 1.3 x 10^{-3} for these same increments, respectively. To evaluate the effect on risk levels of adding the building materials to the soils at the 40s Complex, GE has calculated combined (building materials and soil) Exposure Point Concentrations (EPCs) for the 0- to 1-foot and 1to 6-foot depth increments assuming very conservatively, for each increment, that all of the building demolition materials were added to each increment. The combined average concentrations were calculated as arithmetic rather than volumetric averages, which again is conservative, given the large number of samples in the building materials as compared to the number of samples from the soils in the 40s Complex (that is, the arithmetic average overstates the influence of the building materials in the average). The combined average concentrations in the 0- to 1-foot and 1- to 6-foot depth increments are shown on Tables 5 and 6, respectively. GE then asked its risk assessment consultants at AMEC Earth and Environmental to prepare revised risk calculations based on the revised EPCs, using the identical assumptions and procedures as in the Revised Risk Evaluation. Those revised calculations, presented in Attachment D, show that the risks presented by the combination of existing soil and building demolition materials remain well below the target risk benchmarks in both the 0- to 1-foot and 1- to 6-foot depth increments. Specifically, for the combination of soil and building materials, the ELCRs are 2.8 x 10⁻⁶ and 5.8 x 10^{-7} for the 0- to 1-foot and 1- to 6-foot depth increments, respectively, and the HIs are 5.1 x 10^{-3} and 9.2 x 10^{-4} for those same increments. As lead concentrations in the 40s Complex soils evaluated in the Conceptual Work Plan (274 ppm in the surface and 53.9 ppm in the 1- to 6-foot depth increment) were below risk-based levels and the maximum lead concentration in the building materials (70 ppm) was below screening levels, the combined lead concentrations also would be substantially below the riskbased concentration of 2,008 ppm used for risk assessments. Therefore, with the exception of those materials previously identified in the Supplemental Building Characterization Proposal for consolidation at the Building 71 OPCA, the processed building materials are acceptable for use as backfill/grading material within the 40s Complex.

C. TCLP Data

Comment No. 4 of EPA's June 7, 2005 conditional approval letter noted that the non-detect results for certain constituents (i.e., pesticides) in sample 44-1-TCLP-C1 (presented in Table 2 of that document) showed detection limits greater than the TCLP Regulatory Limit. As also indicated in the conditional approval letter, however, GE subsequently informed EPA that the final data report from the analytical laboratory confirmed that the detection limits in fact were below the applicable RCRA TCLP regulatory limits. As directed by EPA's conditional approval letter, GE has revised those detection limits, as presented in the revised Table 2 attached.

Table 2 reflects another change as well, pursuant to EPA's June 7, 2005 conditional approval letter. The Supplemental Building Characterization Proposal indicated that 11 samples had been collected as part of the previous building material characterization activities and provided an evaluation of those data. As

Mr. William P. Lovely, Jr. July 6, 2005 Page 6 of 7

indicated therein, none of the results from the 11 samples exceeded the respective RCRA TCLP regulatory limits. Those investigations included samples from the Building 43/43-A and 44 slabs. However, no TCLP samples had been collected from the Building 42 slab. As a result, Comment No. 1 of EPA's conditional approval letter required the collection one composite sample comprised from five discrete sample locations on the Building 42 slab. The results of the required composite sample, as compared to the RCRA TCLP regulatory limits, are included in the revised attached Table 2. As indicated in that table, all detected constituents were below the TCLP limits. The locations from which all TCLP samples were collected are depicted on the figures provided in Attachment B.

III. Re-Use of Building Demolition Materials

As indicated in Section II above and in the Supplemental Building Characterization Proposal, the data for the building demolition materials (excluding those materials proposed for consolidation at the Building 71 OPCA) satisfy the applicable Performance Standards specified in the SOW for PCBs and non-PCB constituents and are acceptable for rc-use as backfill/grading materials within the 40s Complex. The Supplemental Building Characterization Proposal indicated that approximately 19,000 cubic yards (cy) of the demolition debris will be generated for use as backfill/grading materials within the 40s Complex RAA and approximately 4,000 cy of building materials will be consolidated at the Building 71 OPCA. As indicated in Table 5 of the Supplemental Building Characterization of Building the demolition of Building 44. In accordance with Comment No. 5 of EPA's conditional approval letter, GE confirms that that steel material will be sent to the Hill 78 OPCA for consolidation/disposal and will not be included in the backfill/grading material. As indicated in the Supplemental Building Characterization Proposal, the approximate 100 cy of structural steel to be generated during the demolition of Building 43/43-A will be disposed of at the Building 71 OPCA.

As indicated in Comment No. 3 of EPA's June 7, 2005 conditional approval letter, a portion of the building demolition materials will be installed over the slabs of Buildings 42, 43/43-A, and 44 during building demolition activities for engineering purposes and to limit the potential for direct contact to the slabs. In addition, GE anticipates placing some of the building demolition debris as structural support for the portion of the northern wall for Buildings 42 and 43 located along the south side of Kellogg Street, which will remain in place following building demolition activities. Finally, since the remainder of the building demolition debris may be used as backfill/grading materials by the Pittsfield Economic Development Authority (PEDA) following transfer of the 40s Complex under the Definitive Economic Development Agreement (DEDA), Comment No. 3 also required a proposal for a temporary stockpile which would be located in the western portion of the 40s Complex. GE has developed the requested proposal, which is provided in Attachment E.

Please contact me with any questions regarding the information contained herein.

Sincerely,

John Norty / cat

John F. Novotny, P.E. Manager-Facilities and Brownfields Programs

Enclosures V/GE_Pinsfield_CD_20x30x40x/Reports and Presentations/40s Complex Building Mtls/42252196LtrRpt.doe

Mr. William P. Lovely, Jr. July 6, 2005 Page 7 of 7

cc: Dean Tagliaferro, EPA Sharon Hayes, EPA Tim Conway, EPA Rose Howell, EPA* Holly Inglis, EPA (hard copy & CD) K.C. Mitkevicius, USACE (CD) Linda Palmieri, Weston (hard copy & CD) Robert Bell, MDEP Susan Steenstrup, MDEP (2 copies) Anna Symington, MDEP* Mayor James Ruberto, City of Pittsfield Thomas Hickey, Director, PEDA Stephen Wilson, CHA Gerald Lee, President, Pittsfield City Council

Pittsfield Department of Health Jeffrey Bernstein, Bernstein, Cushner & Kimmel Theresa Bowers, Gradient Michael Carroll, GE* Rod McLaren, GE* Andrew Silfer, GE James Nuss, BBL James Bieke, Goodwin Procter Samuel Gutter, Sidley Austin Brown & Wood Public Information Repositories GE Internal Repository

*without attachments

Tables

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	42-2-CF-1A	42-2-CF-2A	42-3-CW-1A	42-3-CF-2A	42-4-CF-1A	42-4-CF-2A	42-R-C-1A
Parameter	Date Collected:	04/28/05	04/28/05	04/28/05	04/28/05	04/28/05	04/28/05	04/29/05
Volatile Organics		0.120.00	0.120,000	0.120,000	0.120,000	0.120.00	0.120.000	0.120700
4-Methyl-2-pentanon	ne -	ND(0.010)	ND(0.010)	ND(0.010)	0.0059 J	ND(0.010)	ND(0.025)	ND(0.025)
Acetone		ND(0.020)	ND(0.020)	0.075	0.031	ND(0.020)	0.66	ND(0.025)
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	0.013 J
Bromomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.017 J	ND(0.025)
Carbon Disulfide		ND(0.0050)	ND(0.0050)	0.0011 J	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.025)
Chloromethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.013 J	ND(0.025)
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	0.017 J
Methylene Chloride		ND(0.0050)	ND(0.0050)	0.0048 J	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.025)
Toluene		0.0039 J	0.0070	0.020	0.017	0.0045 J	0.034	0.19
Trichloroethene		ND(0.0050)	ND(0.0050)	0.0026 J	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.025)
Trichlorofluorometha	ine	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	0.060
Xylenes (total)		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0022 J	ND(0.025)	0.072
Semivolatile Organ	ics		(0.0000)			0.0012.0	112(01020)	01012
2-Methylnaphthalene		0.059 J	ND(0.33)	ND(0.33)	ND(3.3)	0.45 J	ND(0.33)	0.58 J
Acenaphthene	,	ND(0.33)	ND(0.33)	ND(0.33)	0.95 J	2.0 J	ND(0.33)	ND(3.3)
Anthracene		ND(0.33)	ND(0.33)	ND(0.33)	3.0 J	5.6	ND(0.33)	ND(3.3)
Benzo(a)anthracene		ND(0.33)	ND(0.33)	ND(0.33)	5.8	12	ND(0.33)	ND(3.3)
Benzo(a)pyrene		ND(0.33)	ND(0.33)	ND(0.33)	4.9	12	ND(0.33)	ND(3.3)
Benzo(b)fluoranthen	e	ND(0.33)	ND(0.33)	ND(0.33)	5.1	12	ND(0.33)	ND(3.3)
Benzo(g,h,i)perylene		ND(0.33)	ND(0.33)	ND(0.33)	2.6 J	6.0	ND(0.33)	ND(3.3)
Benzo(k)fluoranthen		ND(0.33)	ND(0.33)	ND(0.33)	6.1	13	ND(0.33)	ND(3.3)
bis(2-Ethylhexyl)phth		ND(0.33)	ND(0.33)	0.27 J	ND(1.7)	ND(1.7)	1.5	ND(1.7)
Butylbenzylphthalate		ND(0.33)	ND(0.33)	ND(0.33)	ND(3.3)	ND(3.3)	ND(0.33)	ND(3.3)
Chrysene	,	0.066 J	ND(0.33)	ND(0.33)	6.2	14	0.13 J	ND(3.3)
Dibenzofuran		0.62	0.068 J	ND(0.33)	1.6 J	2.7 J	ND(0.33)	0.30 J
Fluoranthene		0.97	ND(0.33)	ND(0.33)	19	36	0.30 J	ND(3.3)
Fluorene		ND(0.33)	ND(0.33)	ND(0.33)	0.48 J	2.0 J	ND(0.33)	ND(3.3)
Indeno(1,2,3-cd)pyre	ene	ND(0.33)	ND(0.33)	ND(0.33)	2.3 J	6.0	ND(0.33)	ND(3.3)
Isophorone		0.75	7.4 E	11 E	4.8	ND(3.3)	0.088 J	ND(3.3)
Naphthalene		ND(0.33)	ND(0.33)	ND(0.33)	ND(3.3)	ND(3.3)	ND(0.33)	5.6
Phenanthrene		3.0	0.12 J	0.056 J	25	43	0.33 J	0.74 J
Pyrene		0.31 J	ND(0.33)	ND(0.33)	14	29	0.097 J	ND(3.3)
Inorganics			()	(/		-		()
Antimony		2.10 B	1.90 B	1.70 B	2.20 B	1.80 B	2.10 B	ND(6.00)
Arsenic		2.30	3.30	2.30	7.80	4.90	4.50	4.40
Barium		47.0	38.0	38.0	90.0	110	140	120
Beryllium		0.170 B	0.210 B	0.280 B	0.350 B	0.230 B	0.290 B	0.640
Cadmium		ND(0.500)	ND(0.500)	ND(0.500)	ND(0.500)	0.100 B	ND(0.500)	0.410 B
Chromium		13.0	21.0	8.10	14.0	7.50	9.60	12.0
Cobalt		3.80 B	4.80 B	8.70	7.20	7.80	6.90	9.70
Copper		13.0	20.0	28.0	11.0	18.0	11.0	26.0
Lead		4.00	3.30	3.40	5.20	29.0	5.10	4.90
Mercury		ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	0.0390 B	ND(0.100)
Nickel		9.10	12.0	11.0	12.0	9.40	11.0	15.0
Selenium		ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)	1.40
Silver		ND(1.00)	ND(1.00)	ND(1.00)	0.220 B	ND(1.00)	ND(1.00)	0.160 B
Thallium		2.60	4.10	3.60	3.80	3.40	2.60	ND(1.00)
Tin		1.50 B	1.90 B	3.10 B	2.00 B	1.80 B	1.80 B	1.90 B
Vanadium		8.40	8.30	47.0	17.0	9.00	10.0	16.0
Zinc		29.0	23.0	28.0	35.0	42.0	37.0	25.0

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	43-2-CF-1A	43-2-CW-2A	43-3-CF-1A	43-3-CF-2A	43-4-CF-1A	43-4-CF-2A
Parameter	Date Collected:	05/02/05	05/02/05	04/29/05	05/02/05	04/29/05	05/02/05
Volatile Organics							
4-Methyl-2-pentan	one	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.025)	ND(0.010)
Acetone		ND(0.020) [ND(0.020)]	ND(0.020)	ND(0.020)	0.16	ND(0.025)	ND(0.020)
Benzene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.0050)
Bromomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.0050)
Carbon Disulfide		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.0050)
Chloromethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.0050)
Ethylbenzene		0.00055 J [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.014 J	ND(0.0050)
Methylene Chlorid	е	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.0050)
Toluene		0.017 [0.0049 J]	0.020	ND(0.0050)	0.0097	0.14	ND(0.0050)
Trichloroethene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	0.0035 J	0.58	ND(0.0050)
Trichlorofluoromet	hane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)	ND(0.0050)
Xylenes (total)		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	0.015	0.071	ND(0.0050)
Semivolatile Orga	anics		· · ·				
2-Methylnaphthale	ne	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	0.40 J	ND(3.3)	0.67 J
Acenaphthene		ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	ND(3.3)	2.2 J
Anthracene		ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	ND(3.3)	2.1 J
Benzo(a)anthrace	ne	ND(0.33) [ND(0.33)]	ND(0.33)	0.96 J	ND(3.3)	ND(3.3)	4.2
Benzo(a)pyrene		ND(0.33) [ND(0.33)]	ND(0.33)	0.81 J	ND(3.3)	ND(3.3)	3.6
Benzo(b)fluoranth	ene	ND(0.33) [ND(0.33)]	ND(0.33)	0.64 J	ND(3.3)	ND(3.3)	3.5
Benzo(g,h,i)peryle	ne	ND(0.33) [ND(0.33)]	ND(0.33)	0.45 J	ND(3.3)	ND(3.3)	1.9 J
Benzo(k)fluoranthe	ene	ND(0.33) [ND(0.33)]	ND(0.33)	1.2 J	ND(3.3)	ND(3.3)	3.7
bis(2-Ethylhexyl)pl	nthalate	ND(0.33) [ND(0.33)]	ND(0.33)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)
Butylbenzylphthala		0.28 J [0.32 J]	ND(0.33)	ND(3.3)	ND(3.3)	ND(3.3)	ND(3.3)
Chrysene		ND(0.33) [ND(0.33)]	ND(0.33)	1.1 J	0.50 J	ND(3.3)	4.1
Dibenzofuran		ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	ND(3.3)	2.7 J
Fluoranthene		ND(0.33) [ND(0.33)]	ND(0.33)	1.5 J	0.41 J	ND(3.3)	13
Fluorene		ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	ND(3.3)	0.94 J
Indeno(1,2,3-cd)p	/rene	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	ND(3.3)	1.6 J
Isophorone		3.8 [3.1]	1.5	ND(3.3)	ND(3.3)	ND(3.3)	ND(3.3)
Naphthalene		0.029 J [ND(0.33)]	ND(0.33)	ND(3.3)	0.49 J	ND(3.3)	0.41 J
Phenanthrene		ND(0.33) [ND(0.33)]	0.033 J	0.92 J	0.72 J	ND(3.3)	23
Pyrene		ND(0.33) [ND(0.33)]	ND(0.33)	1.5 J	0.34 J	ND(3.3)	10
Inorganics							
Antimony		2.50 B [2.40 B]	3.20 B	ND(6.00)	2.00 B	ND(6.00)	2.60 B
Arsenic		3.80 [3.70]	3.30	7.10	7.90	11.0	2.90
Barium		65.0 [47.0]	48.0	110	87.0	99.0	28.0
Beryllium		0.280 B [0.280 B]	0.280 B	0.420 B	0.400 B	0.440 B	0.210 B
Cadmium		0.0570 J [ND(0.500)]	ND(0.500)	0.440 B	ND(0.500)	0.490 B	ND(0.500)
Chromium		16.0 [16.0]	8.60	12.0	15.0	12.0	7.00
Cobalt		6.60 [6.30]	8.10	7.60	10.0	7.70	6.10
Copper		17.0 [17.0]	18.0	11.0	190	18.0	25.0
_ead		5.00 [5.00]	22.0	4.40	70.0	11.0	7.60
Mercury		0.670 [0.270]	ND(0.100)	0.0230 B	0.0340 B	ND(0.100)	0.0100 B
Nickel		9.50 [10.0]	10.0	13.0	19.0	13.0	11.0
Selenium		ND(1.00) [ND(1.00)]	ND(1.00)	1.40	ND(1.00)	1.90	ND(1.00)
Silver		ND(1.00) [ND(1.00)]	ND(1.00)	0.270 B	0.210 B	0.390 B	0.220 B
Thallium		2.30 [3.20]	3.10	ND(1.00)	5.20	ND(1.00)	3.20
Tin		2.30 B [2.30 B]	2.50 B	1.80 B	6.20 B	5.30 B	2.50 B
Vanadium		14.0 [17.0]	30.0	20.0	28.0	23.0	6.40
Zinc		33.0 [35.0]	46.0	34.0	190	44.0	64.0

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	43-5-CF-1A	43-5-CF-2A	43-R-C-1A
Parameter	Date Collected:	05/02/05	04/29/05	04/29/05
Volatile Organics		03/02/03	04/23/03	04/23/03
4-Methyl-2-pentan		ND(0.010)	ND(0.010) [ND(0.025)]	ND(0.025)
Acetone	lone	ND(0.010)		ND(0.025)
		· · · ·	ND(0.020) [ND(0.025)]	· · · ·
Benzene		ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Bromomethane Carbon Disulfide		ND(0.0050) ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
		(*****)	ND(0.0050) [ND(0.025)]	ND(0.025)
Chloromethane		ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Ethylbenzene	-	ND(0.0050)	ND(0.0050) [ND(0.025)]	0.012 J
Methylene Chlorid	e	ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Toluene		0.0091	0.014 [0.023 J]	0.15
Trichloroethene	h =	ND(0.0050)	0.0061 [0.034]	0.078
Trichlorofluoromet	nane	ND(0.0050)	ND(0.0050) [ND(0.025)]	0.042
Xylenes (total)		ND(0.0050)	ND(0.0050) [ND(0.025)]	0.11
Semivolatile Orga				
2-Methylnaphthale	ene	7.3 E	ND(3.3) [ND(3.3)]	ND(3.3)
Acenaphthene		0.10 J	ND(3.3) [ND(3.3)]	ND(3.3)
Anthracene		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(a)anthrace	ne	ND(0.33)	ND(3.3) [ND(3.3)]	0.33 J
Benzo(a)pyrene		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(b)fluoranthe		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(g,h,i)peryle		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(k)fluoranthe		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
bis(2-Ethylhexyl)pl		ND(0.33)	ND(1.7) [ND(1.7)]	ND(1.7)
Butylbenzylphthala	ate	0.27 J	ND(3.3) [ND(3.3)]	ND(3.3)
Chrysene		ND(0.33)	ND(3.3) [ND(3.3)]	0.52 J
Dibenzofuran		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Fluoranthene		ND(0.33)	ND(3.3) [ND(3.3)]	0.73 J
Fluorene		ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Indeno(1,2,3-cd)py	yrene	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Isophorone		0.82	ND(3.3) [ND(3.3)]	ND(3.3)
Naphthalene		1.2	ND(3.3) [ND(3.3)]	0.84 J
Phenanthrene		ND(0.33)	ND(3.3) [ND(3.3)]	1.2 J
Pyrene		ND(0.33)	ND(3.3) [ND(3.3)]	0.74 J
Inorganics				
Antimony		2.30 B	ND(6.00) [ND(6.00)]	ND(6.00)
Arsenic		2.90	8.20 [6.70]	4.90
Barium		100	82.0 [79.0]	52.0
Beryllium		0.290 B	0.440 B [0.430 B]	0.440 B
Cadmium		ND(0.500)	0.520 [0.500]	0.450 B
Chromium		12.0	12.0 [11.0]	11.0
Cobalt		5.90	12.0 [12.0]	31.0
Copper		10.0	16.0 [18.0]	59.0
Lead		4.20	4.60 [3.20]	5.00
Mercury		ND(0.100)	ND(0.100) [ND(0.100)]	ND(0.100)
Nickel		8.70	13.0 [14.0]	17.0
Selenium		ND(1.00)	1.60 [1.70]	1.90
Silver		ND(1.00)	0.260 B [0.270 B]	0.300 B
Thallium		2.50	ND(1.00) [ND(1.00)]	ND(1.00)
Tin		1.60 B	2.30 B [1.60 B]	2.10 B
Vanadium		8.00	24.0 [26.0]	36.0
Zinc		68.0	36.0 [34.0]	31.0
		-		-

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Notes:

1. Sample ID consists of Building Number-Floor Number (R for Roof)-Material Type-Sample Number.

- Material Type Designations: C Concrete CF Concrete Floor CW Concrete Wall
- 2. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles and metals.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. Only those constituents detected in one or more samples are summarized.
- 5. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles)

- E Analyte exceeded calibration range.
- J Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample		42-1-CF-COMP-1	42-2-CF-COMPOSITE-1	42-3-CF-COMPOSITE-1	
Parameter Date Collect	ted: Limits	5/2/2005	7/8/2002	7/9/2002	
Volatile Organics					
1,1-Dichloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)	
1,2-Dichloroethane	0.5	ND(0.10)	ND(0.10)	ND(0.10)	
2-Butanone	200	ND(0.20)	ND(0.20)	ND(0.20)	
Benzene	0.5	ND(0.10)	ND(0.10)	ND(0.10)	
Carbon Tetrachloride	0.5	ND(0.10)	ND(0.10)	ND(0.10)	
Chlorobenzene	100	0.088 J	ND(0.10)	ND(0.10)	
Chloroform	6	ND(0.10)	ND(0.10)	ND(0.10)	
Tetrachloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)	
Trichloroethene	0.5	ND(0.10)	ND(0.10)	ND(0.10)	
Vinyl Chloride	0.2	ND(0.10)	ND(0.10)	ND(0.10)	
Semivolatile Organics					
1,4-Dichlorobenzene	7.5	ND(0.050)	ND(0.050)	ND(0.050)	
2,4,5-Trichlorophenol	400	ND(0.050)	ND(0.050)	ND(0.050)	
2,4,6-Trichlorophenol	2	ND(0.050)	ND(0.050)	ND(0.050)	
2,4-Dinitrotoluene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	
Cresol	200	ND(0.050)	ND(0.050)	ND(0.050)	
Hexachlorobenzene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	
Hexachlorobutadiene	0.5	ND(0.050)	ND(0.050)	ND(0.050)	
Hexachloroethane	3	ND(0.050)	ND(0.050)	ND(0.050)	
Nitrobenzene	2	ND(0.050)	ND(0.050)	ND(0.050)	
Pentachlorophenol	100	ND(0.050)	ND(0.050)	ND(0.050)	
Pyridine	5	ND(0.050)	ND(0.050)	ND(0.050)	
Organochlorine Pesticides					
Endrin	0.02	NA	ND(0.0060)	ND(0.0060)	
Gamma-BHC (Lindane)	0.4	NA	ND(0.0030)	ND(0.0030)	
Heptachlor	0.008	NA	ND(0.0030)	ND(0.0030)	
Heptachlor Epoxide	0.008	NA	ND(0.0030)	ND(0.0030)	
Methoxychlor	10	NA	ND(0.040)	ND(0.040)	
Technical Chlordane	0.03	NA	ND(0.030)	ND(0.030)	
Toxaphene	0.5	NA	ND(0.050)	ND(0.050)	
Herbicides				()	
2,4,5-TP	1	NA	ND(0.010)	ND(0.010)	
2,4-D	10	NA	ND(0.010)	ND(0.010)	
Inorganics	10		112(0.010)	100(0.010)	
Arsenic	5	ND(0.100)	ND(0.100)	ND(0.100)	
Barium	100	0.440	0.530	0.200	
Cadmium	1	ND(0.0200)	ND(0.0200)	ND(0.0200)	
Chromium	5	0.00350 B	0.0110 B	0.0210 B	
Lead	5	0.00350 B	ND(0.100)	ND(0.100)	
Mercury	0.2	ND(0.00200)	ND(0.00200)	ND(0.100)	
Selenium	0.2	0.00770 B	0.00590 B	ND(0.00200) ND(0.200)	
Silver	5			ND(0.200)	
Silver	5	ND(0.0200)	ND(0.0200)	ND(0.0200)	

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

_	Sample ID:	TCLP Regulatory	42-4-CF-COMPOSITE-1	42-5-CF-COMPOSITE-1	43-1-TCLP-C1
	Date Collected:	Limits	7/9/2002	7/10/2002	12/30/2003
Volatile Organics	1	~ =			
1,1-Dichloroethene		0.7	ND(0.10)	ND(0.10)	ND(0.10)
,2-Dichloroethane		0.5	ND(0.10)	ND(0.10)	ND(0.10)
2-Butanone		200	ND(0.20)	ND(0.20)	ND(0.20)
Benzene		0.5	ND(0.10)	ND(0.10)	ND(0.10)
Carbon Tetrachloride		0.5	ND(0.10)	ND(0.10)	ND(0.10)
Chlorobenzene		100	ND(0.10)	ND(0.10)	ND(0.10)
Chloroform		6	ND(0.10)	ND(0.10)	ND(0.10)
Tetrachloroethene		0.7	ND(0.10)	ND(0.10)	ND(0.10)
Frichloroethene		0.5	ND(0.10)	ND(0.10)	ND(0.10)
/inyl Chloride		0.2	ND(0.10)	ND(0.10)	ND(0.10)
Semivolatile Organic	s				
,4-Dichlorobenzene		7.5	ND(0.050)	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol		400	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol		2	ND(0.050)	ND(0.050)	ND(0.050)
2.4-Dinitrotoluene		0.13	ND(0.050)	ND(0.050)	ND(0.050)
Cresol		200	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobenzene		0.13	ND(0.050)	ND(0.050)	ND(0.050)
lexachlorobutadiene		0.5	ND(0.050)	ND(0.050)	ND(0.050)
lexachloroethane		3	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene		2	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol		100	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine		5	ND(0.050)	ND(0.050)	ND(0.050)
Drganochlorine Pest	ioidoo	5	ND(0.050)	ND(0.050)	ND(0.050)
Endrin	licides	0.02	ND(0.0060)	ND(0.0060)	NA
Endrin Gamma-BHC (Lindan	-	0.02	ND(0.0080)	ND(0.0060) ND(0.0030)	NA NA
	e)				
leptachlor		0.008	ND(0.0030)	ND(0.0030)	NA
Heptachlor Epoxide		0.008	ND(0.0030)	ND(0.0030)	NA
Methoxychlor		10	ND(0.040)	ND(0.040)	NA
Technical Chlordane		0.03	ND(0.030)	ND(0.030)	NA
Foxaphene		0.5	ND(0.050)	ND(0.050)	NA
lerbicides					
2,4,5-TP		1	ND(0.010)	ND(0.010)	NA
2,4-D		10	ND(0.010)	ND(0.010)	NA
norganics					
Arsenic		5	ND(0.100)	ND(0.100)	ND(0.100)
Barium		100	0.200	0.580	0.160
Cadmium		1	ND(0.0200)	ND(0.0200)	ND(0.0200)
Chromium		5	0.0280 B	0.110	ND(0.0500)
ead		5	ND(0.100)	ND(0.100)	ND(0.100)
<i>Aercury</i>		0.2	ND(0.00200)	ND(0.00200)	ND(0.00200)
Selenium		1	ND(0.200)	ND(0.200)	ND(0.200)
Silver		5	ND(0.0200)	ND(0.0200)	ND(0.0200)

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample	TCLP ID: Regulatory	43-2-CF-COMPOSITE-1	43-3-CF-COMPOSITE-1	43-4-CF-COMPOSITE-1
Parameter Date Collect	ed: Limits	7/16/2002	7/16/2002	7/10/2002
Volatile Organics				
1,1-Dichloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)
1,2-Dichloroethane	0.5	ND(0.10)	ND(0.10)	ND(0.10)
2-Butanone	200	ND(0.20)	ND(0.20)	ND(0.20)
Benzene	0.5	ND(0.10)	ND(0.10)	ND(0.10)
Carbon Tetrachloride	0.5	ND(0.10)	ND(0.10)	ND(0.10)
Chlorobenzene	100	ND(0.10)	ND(0.10)	ND(0.10)
Chloroform	6	ND(0.10)	ND(0.10)	ND(0.10)
Tetrachloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)
Trichloroethene	0.5	ND(0.10)	ND(0.10)	ND(0.10)
Vinyl Chloride	0.2	ND(0.10)	ND(0.10)	ND(0.10)
Semivolatile Organics			()	
1,4-Dichlorobenzene	7.5	ND(0.050)	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol	400	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol	2	ND(0.050)	ND(0.050)	ND(0.050)
2.4-Dinitrotoluene	0.13	ND(0.050)	ND(0.050)	ND(0.050)
Cresol	200	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobenzene	0.13	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene	0.5	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane	3	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene	2	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol	100	ND(0.050)	ND(0.050)	ND(0.050)
Pvridine	5	ND(0.050)	ND(0.050)	ND(0.050)
Organochlorine Pesticides	Ŭ	112(0.000)	112(0.000)	(0.000)
Endrin	0.02	ND(0.0060)	ND(0.0060)	ND(0.0060)
Gamma-BHC (Lindane)	0.4	ND(0.0030)	ND(0.0030)	ND(0.0030)
Heptachlor	0.008	ND(0.0030)	ND(0.0030)	ND(0.0030)
Heptachlor Epoxide	0.008	ND(0.0030)	ND(0.0030)	ND(0.0030)
Methoxychlor	10	ND(0.040)	ND(0.040)	ND(0.040)
Technical Chlordane	0.03	ND(0.030)	ND(0.030)	ND(0.030)
Toxaphene	0.5	ND(0.050)	ND(0.050)	ND(0.050)
Herbicides	0.0			
2,4,5-TP	1	ND(0.010)	ND(0.010)	ND(0.010)
2,4-D	10	ND(0.010)	ND(0.010)	ND(0.010)
Inorganics	10	112(0.010)	112(0.010)	112(0.010)
Arsenic	5	ND(0.100)	ND(0.100)	ND(0.100)
Barium	100	0.170	0.230	0.200
Cadmium	1	ND(0.0200)	ND(0.0200)	ND(0.0200)
Chromium	5	ND(0.0500)	ND(0.0500)	0.0680
Lead	5	ND(0.100)	ND(0.100)	ND(0.100)
Mercury	0.2	ND(0.00200)	ND(0.00200)	ND(0.00200)
Selenium	1	ND(0.200)	ND(0.200)	ND(0.200)
Silver	5	ND(0.0200)	ND(0.0200)	ND(0.0200)
See Notes on Page /	5	100(0.0200)	100(0.0200)	110(0.0200)

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

		TCLP			
	Sample ID:	Regulatory	43-5-CF-COMPOSITE-1	43A-1-TCLP-C1	44-1-TCLP-C1
Parameter	Date Collected:	Limits	7/10/2002	12/30/2003	1/29/2004
Volatile Organics					
1,1-Dichloroethene		0.7	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
1,2-Dichloroethane		0.5	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
2-Butanone		200	ND(0.20) [ND(0.20)]	ND(0.20)	ND(0.20)
Benzene		0.5	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Carbon Tetrachloride		0.5	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Chlorobenzene		100	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Chloroform		6	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Tetrachloroethene		0.7	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Trichloroethene		0.5	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Vinyl Chloride		0.2	ND(0.10) [ND(0.10)]	ND(0.10)	ND(0.10)
Semivolatile Organic	S		· · · · · · · · ·		
1,4-Dichlorobenzene		7.5	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol		400	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol		2	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene		0.13	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Cresol		200	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Hexachlorobenzene		0.13	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Hexachlorobutadiene		0.5	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Hexachloroethane		3	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Nitrobenzene		2	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Pentachlorophenol		100	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Pyridine		5	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)
Organochlorine Pes	ticides		· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · ·
Endrin		0.02	ND(0.0060) [ND(0.0060)]	NA	ND(0.0015)
Gamma-BHC (Lindan	e)	0.4	ND(0.0030) [ND(0.0030)]	NA	ND(0.0025)
Heptachlor		0.008	ND(0.0030) [ND(0.0030)]	NA	ND(0.0020)
Heptachlor Epoxide		0.008	ND(0.0030) [ND(0.0030)]	NA	ND(0.0020)
Methoxychlor		10	ND(0.040) [ND(0.040)]	NA	ND(0.040)
Technical Chlordane		0.03	ND(0.030) [ND(0.030)]	NA	ND(0.0050)
Toxaphene		0.5	ND(0.050) [ND(0.050)]	NA	ND(0.050)
Herbicides			· · · · · · · · · ·		
2,4,5-TP		1	ND(0.010) [ND(0.010)]	NA	ND(0.010)
2,4-D		10	ND(0.010) [ND(0.010)]	NA	ND(0.010)
norganics					• • • •
Arsenic		5	ND(0.100) [ND(0.100)]	ND(0.100)	ND(0.100)
Barium		100	0.290 [0.220]	0.470	0.270
Cadmium		1	ND(0.0200) [ND(0.0200)]	ND(0.0200)	ND(0.0200)
Chromium		5	0.320 [0.290]	ND(0.0500)	0.0130 B
Lead		5	ND(0.100) [ND(0.100)]	ND(0.100)	ND(0.100)
Mercury		0.2	ND(0.00200) [ND(0.00200)]	ND(0.00200)	ND(0.00200)
Selenium		1	ND(0.200) [ND(0.200)]	ND(0.200)	0.00930 B
Silver		5	ND(0.0200) [ND(0.0200)]	ND(0.0200)	ND(0.0200)

Notes:

 Sample ID generally consists of Building Number-Floor Number-Material Type (C - Concrete, CF - Concrete Floor). COMP/COMPOSITE designation indicates that a minimum of five cores were collected and composited for the samples analyzed. For Building 43A and Building 44, two and seven concrete cores were collected from those two building, respectively, and composited for the samples analyzed.

- 2. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. NA Analyte was not analyzed.
- 5. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles, pesticides, herbicides)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 3 APPENDIX IX+3 DATA EVALUATION - COMPARISON TO SCREENING CRITERIA 40s COMPLEX

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	Maximum	EPA Region 9	Constituent Retained for
Parameter	Date Collected:	Detect	Industrial PRG	Further Evaluation?
Volatile Organics				
2-Hexanone		0.0034	2,800 *	No
4-Methyl-2-pentanone		0.0059	2,800 *	No
Acetone		0.6600	6,100	No
Benzene		0.0130	1.4	No
Bromomethane		0.0170	13	No
Carbon Disulfide		0.0011	1,200	No
Chlorobenzene		0.0610	180	No
Chloromethane		0.0130	2.6	No
Ethylbenzene		0.0170	230	No
Methylene Chloride		0.0048	20	No
Toluene		0.1900	520	No
Trichloroethene		0.5800	6.1	No
Trichlorofluoromethane	9	0.0600	1,300	No
Xylenes (total)		0.1100	210	No
Semivolatile Organics	S			
2-Methylnaphthalene		7.3	190 **	No
Acenaphthene		2.2	28,000	No
Anthracene		5.6	220,000	No
Benzo(a)anthracene		12	3.6	Yes
Benzo(a)pyrene		12	0.36	Yes
Benzo(b)fluoranthene		12	3.6	Yes
Benzo(g,h,i)perylene		6.0	190 **	No
Benzo(k)fluoranthene		13	36	No
Benzyl Alcohol		1.3	100,000	No
bis(2-Ethylhexyl)phthal	ate	1.5	210	No
Butylbenzylphthalate		0.28	930	No
Chrysene		14	360	No
Dibenzofuran		2.7	3,200	No
Fluoranthene		36	37,000	No
Fluorene		2.0	22,000	No
Indeno(1,2,3-cd)pyrene	Э	6.0	3.6	Yes
Isophorone		11	3,200	No
Naphthalene		5.6	190	No
Phenanthrene		43	190 **	No
Pyrene		29	26,000	No
Inorganics				
Antimony		3.2	750	No
Arsenic		11	3	Yes
Barium		140	100,000	No
Beryllium		0.64 0.52	3,400 930	No
Cadmium				No
Chromium		<u>21</u> 31	450	No No
Cobalt			29,000	
Copper		190	70,000	No No
Lead		70 0.67	1,000	
Mercury Nickel		19	560 37,000	No No
Selenium		1.9	9,400	No
Silver		0.39	9,400	No
Thallium		5.2	150 ***	No
Tin		6.2	100,000	No
Vanadium		47	13,000	No
		÷1	13,000	INU

Notes:

1. This table presents a comparison of the maximum detected concentrations of select non-PCB Appendix IX+3 constituents within the building materials being considered for reuse to the EPA Region 9 Preliminary Remediation Goals (PRGs) (or surrogate PRGs) for soil in industrial areas. The EPA Region 9 PRGs (or surrogate PRGs) are located in Attachment F to the *Statement of Work for Removal Actions Outside the River* (SOW).

2.* - No EPA Region 9 PRG exists for 2-Hexanone or 4-Methyl-2-pentanone. Methyl isobutyl ketone was used as the surrogate PRG.

3. ** - No EPA Region 9 PRG exists for 2-Methylnaphthalene, Benzo(g,h,i)perylene or Phenanthrene. Naphthalene was used as the surrogate PRG.

4. *** - Indicates that the most stringent PRG value was used for the 7 Thallium compounds listed in the EPA Region 9 PRG table.

TABLE 4 APPENDIX IX+3 DATA EVALUATION - RETAINED CONSTITUENTS 40s COMPLEX

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Parameter Semivolatile	Sample ID ⁽¹⁾ : Date Collected:	42-2-CF-1A 04/28/05	42-2-CF-2A 04/28/05	42-3-CF-2A 04/28/05	42-3-CW-1A 04/28/05	42-4-CF-1A 04/28/05	42-4-CF-2A 04/28/05	42-R-C-1A 04/29/05	43-2-CF-1A 05/02/05	43-2-CW-2A 05/02/05	43-3-CF-1A 04/29/05
Benzo(a)anth		0.17	0.17	5.8	0.17	12	0.17	1.7	0.17	0.17	0.96
Benzo(a)pyre		0.17	0.17	4.9	0.17	12	0.17	1.7	0.17	0.17	0.80
Benzo(b)fluor		0.17	0.17	5.1	0.17	12	0.17	1.7	0.17	0.17	0.64
Indeno(1,2,3-	cd)pyrene	0.17	0.17	2.3	0.17	6.0	0.17	1.7	0.17	0.17	1.7
Inorganics					·						
Arsenic		2.30	3.30	7.80	2.30	4.90	4.50	4.40	3.80	3.30	7.10

Parameter	Sample ID ⁽¹⁾ : Date Collected:	43-3-CF-2A 05/02/05	43-4-CF-1A 04/29/05	43-4-CF-2A 05/02/05	43-5-CF-1A 05/02/05	43-5-CF-2A 04/29/05	43-R-C-1A 04/29/05	Arithmetic Average Concentration	Proposed Wave 2 Method 1 Soil Standard S-2 (GW-2/GW-3)	Average Exceeds Proposed Wave 2 Soil Standards			
Semivolatile	Semivolatile Organics												
Benzo(a)anth	racene	1.7	1.7	4.2	0.17	1.7	0.33	1.97	40	No			
Benzo(a)pyre	ne	1.7	1.7	3.6	0.17	1.7	1.7	1.95	4	No			
Benzo(b)fluor	anthene	1.7	1.7	3.5	0.17	1.7	1.7	1.95	40	No			
Indeno(1,2,3-cd)pyrene		1.7	1.7	1.6	0.17	1.7	1.7	1.31	40	No			
Inorganics													
Arsenic		7.90	11.0	2.90	2.90	8.20	4.90	4.91	20	No			

Notes:

1. Sample ID consists of Building Number-Floor Number (R for Roof)-Material Type-Sample Number.

Material Type Designations: C - Concrete CF - Concrete Floor CW - Concrete Wall

2. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles and metals.

3. This table presents only those constituents that were detected in at least one building material sample which were retained following the comparison to screening criteria evaluation.

4. Bolded values indicate that the constituent was not detected in the corresponding sample. The value shown is one-half the detection limit and was included in calculating the arithmetic average concentration.

5. The values in the Proposed Wave 2 Method 1 Soil Standard column presents the lower of the Category S-2/GW-2 or S-2/GW-3 Soil Standards.

TABLE 5 APPENDIX IX+3 DATA EVALUATION - RETAINED CONSTITUENTS - (0- TO 1-FOOT DEPTH INCREMENT) 40s COMPLEX

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD. MASSACHUSETTS** (Results are presented in dry weight parts per million, ppm)

Parameter	Sample ID: Depth Interval: Date Collected:	0-1	PEDA-44-SB-1 0-1 02/20/01	PEDA-44-SB2 0-1 02/19/01	RAA1-1 0-1 01/04/01	RAA1-3 0-1 12/19/00	RAA1-4 0-1 01/02/01	RAA1-7 0-1 12/18/00	RAA1-10 0-1 12/21/00	RAA1-12 0-1 12/19/00	RAA1-13 0-1 12/21/00	RAA1-16 0-1 01/05/01
Semivolatile	Organics											
Benzo(a)anthr	racene	0.21	0.21	0.21	17	0.60	0.23	0.24	0.25	0.30	0.71	0.34
Benzo(a)pyrer	ne	0.24	0.21	0.21	18	0.68	0.23	0.24	0.25	0.30	0.50	0.34
Benzo(b)fluora	anthene	0.24	0.21	0.21	16	0.54	0.23	0.24	0.25	0.30	0.55	0.34
Indeno(1,2,3-c	cd)pyrene	0.43	0.41	0.41	16	0.45	0.45	0.49	0.50	0.60	0.45	0.70
Inorganics												
Arsenic		9.50	8.50	9.00	10.50	10.00	10.00	11.00	11.50	13.50	23.00	11.00

Parameter	Sample ID ⁽¹⁾ : Date Collected:	42-2-CF-1A 04/28/05	42-2-CF-2A 04/28/05	42-3-CF-2A 04/28/05	42-3-CW-1A 04/28/05	42-4-CF-1A 04/28/05	42-4-CF-2A 04/28/05	42-R-C-1A 04/29/05	43-2-CF-1A 05/02/05	43-2-CW-2A 05/02/05	43-3-CF-1A 04/29/05
Semivolatile	Organics										
Benzo(a)anth	iracene	0.17	0.17	5.8	0.17	12	0.17	1.7	0.17	0.17	0.96
Benzo(a)pyre	ene	0.17	0.17	4.9	0.17	12	0.17	1.7	0.17	0.17	0.81
Benzo(b)fluor	ranthene	0.17	0.17	5.1	0.17	12	0.17	1.7	0.17	0.17	0.64
Indeno(1,2,3-cd)pyrene		0.17	0.17	2.3	0.17	6.0	0.17	1.7	0.17	0.17	1.7
Inorganics											
Arsenic		2.30	3.30	7.80	2.30	4.90	4.50	4.40	3.80	3.30	7.10

Parameter	Sample ID ⁽¹⁾ : Date Collected:	43-3-CF-2A 05/02/05	43-4-CF-1A 04/29/05	43-4-CF-2A 05/02/05	43-5-CF-1A 05/02/05	43-5-CF-2A 04/29/05	43-R-C-1A 04/29/05	Arithmetic Average Concentration	Proposed Wave 2 Method 1 Soil Standard S-2 (GW-2/GW-3)	Average Exceeds Proposed Wave 2 Soil Standards
Semivolatile	Organics									
Benzo(a)anth	iracene	1.7	1.7	4.2	0.17	1.7	0.33	1.91	40	No
Benzo(a)pyre	ene	1.7	1.7	3.6	0.17	1.7	1.7	1.93	4	No
Benzo(b)fluor	ranthene	1.7	1.7	3.5	0.17	1.7	1.7	1.85	40	No
Indeno(1,2,3-	-cd)pyrene	1.7	1.7	1.6	0.17	1.7	1.7	1.56	40	No
Inorganics										
Arsenic		7.90	11.0	2.90	2.90	8.20	4.90	7.74	20	No

Notes:

1. Sample ID for building characterization samples consists of Building Number-Floor Number (R for Roof)-Material Type-Sample Number.
 Material Type Designations: C - Concrete CF - Concrete Floor CW - Concrete Wall

2. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles and metals.

3. This table presents only those constituents that were detected in at least one building material sample and which were retained following the comparison to screening criteria evaluation.

4. Bolded values indicate that the constituent was not detected in the corresponding sample. The value shown is one-half the detection limit and was included in calculating the arithmetic average concentration.

5. The values in the Proposed Wave 2 Method 1 Soil Standard column presents the lower of the Category S-2/GW-2 or S-2/GW-3 Soil Standards.

TABLE 6 APPENDIX IX+3 DATA EVALUATION - RETAINED CONSTITUENTS - (1- TO 6-FOOT DEPTH INCREMENT) 40s COMPLEX

SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in dry weight parts per million, ppm)

Parameter	Depth Interval: Date Collected:	1-6	40-BH000473-0-0010V 1-2 04/06/01	PEDA-42-SB3 1-6 02/19/01	PEDA-42-SB3 2-4 02/19/01	PEDA-43-SB-2 1-3 02/21/01	PEDA-43-SB-2 1-6 02/21/01	RAA1-5 1-6 01/04/01	RAA1-5 2-4 01/04/01	RAA1-8 1-2 12/18/00	RAA1-8 1-3 12/18/00	
Semivolatile Organics												
Benzo(a)an	Ithracene	0.20	NS	0.91	NS	NS	0.20	1.35	NS	NS	0.94	
Benzo(a)py	rene	0.19	NS	0.77	NS	NS	0.21	1.35	NS	NS	1.10	
Benzo(b)flu	oranthene	0.17	NS	0.64	NS	NS	0.21	1.35	NS	NS	0.82	
Indeno(1,2,	3-cd)pyrene	1.80	NS	0.42	NS	NS	0.43	2.70	NS	NS	0.50	
Inorganics												
Arsenic		7.00	NS	9.50	NS	NS	9.50	7.50	NS	NS	11.00	

Depth	ample ID: Interval: collected:	RAA1-9 1-2 12/21/00	RAA1-9 1-6 12/21/00	RAA1-11/40-BH000278-0-0010 1-4 01/05/01	RAA1-11 2-4 01/05/01	RAA1-14 1-6 12/18/00	RAA1-14 2-4 12/19/00	RAA1-15 1-6 12/29/00	RAA1-15 4-6 12/29/00	RAA1-17 1-6 12/21/00	RAA1-17 4-6 12/21/00		
Benzo(a)anthracene		NS	0.22	0.21	NS	0.22	NS	0.23	NS	0.22	NS		
Benzo(a)pyrene		NS	0.22	0.21	NS	0.22	NS	0.23	NS	0.22	NS		
Benzo(b)fluoranthene		NS	0.22	0.21	NS	0.22	NS	0.23	NS	0.22	NS		
Indeno(1,2,3-cd)pyrene	э	NS	0.45	0.33	NS	0.45	NS	0.45	NS	0.43	NS		
Inorganics													
Arsenic		NS	10.00	6.35	NS	10.00	NS	7.50	NS	9.50	NS		

_	Sample ID ⁽¹⁾ :	42-2-CF-1A	42-2-CF-2A	42-3-CF-2A	42-3-CW-1A	42-4-CF-1A	42-4-CF-2A	42-R-C-1A	43-2-CF-1A	43-2-CW-2A	43-3-CF-1A	
Parameter	Date Collected:	04/28/05	04/28/05	04/28/05	04/28/05	04/28/05	04/28/05	04/29/05	05/02/05	05/02/05	04/29/05	
Semivolatile Organics												
Benzo(a)anthi	racene	0.17	0.17	5.8	0.17	12	0.17	1.7	0.17	0.17	0.96	
Benzo(a)pyrei	ne	0.17	0.17	4.9	0.17	12	0.17	1.7	0.17	0.17	0.81	
Benzo(b)fluora	anthene	0.17	0.17	5.1	0.17	12	0.17	1.7	0.17	0.17	0.64	
Indeno(1,2,3-cd)pyrene		0.17	0.17	2.3	0.17	6.0	0.17	1.7	0.17	0.17	1.7	
Inorganics	Inorganics											
Arsenic		2.30	3.30	7.80	2.30	4.90	4.50	4.40	3.80	3.30	7.10	

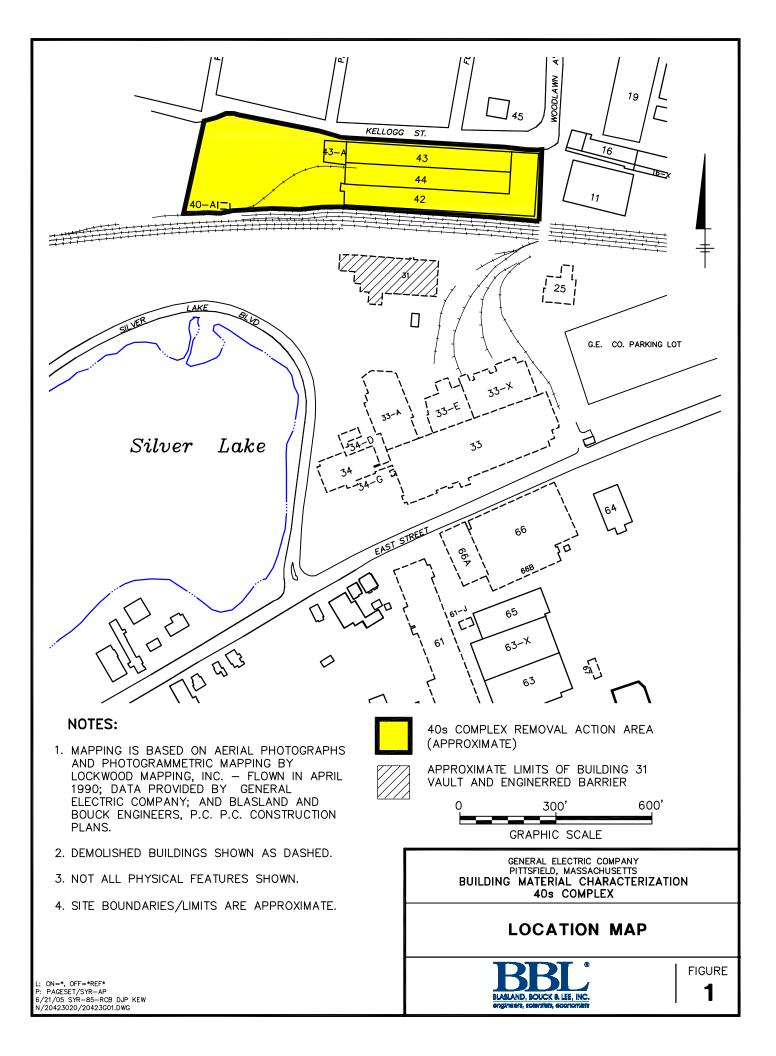
Parameter	Sample ID ⁽¹⁾ : Date Collected:	43-3-CF-2A 05/02/05	43-4-CF-1A 04/29/05	43-4-CF-2A 05/02/05	43-5-CF-1A 05/02/05	43-5-CF-2A 04/29/05	43-R-C-1A 04/29/05	Arithmetic Average Concentration	Proposed Wave 2 Method 1 Soil Standard S-2 (GW-2/GW-3)	Average Exceeds Proposed Wave 2 Soil Standards		
Semivolatile Organics												
Benzo(a)anthi	racene	1.7	1.7	4.2	0.17	1.7	0.33	1.38	300	No		
Benzo(a)pyrei	ne	1.7	1.7	3.6	0.17	1.7	1.7	1.37	30	No		
Benzo(b)fluora	anthene	1.7	1.7	3.5	0.17	1.7	1.7	1.35	300	No		
Indeno(1,2,3-0	cd)pyrene	1.7	1.7	1.6	0.17	1.7	1.7	1.12	300	No		
Inorganics	Inorganics											
Arsenic		7.90	11.0	2.90	2.90	8.20	4.90	6.51	20	No		

Notes:

1. Sample ID for building characterization samples consists of Building Number-Floor Number (R for Roof)-Material Type-Sample Number.
 Material Type Designations: C - Concrete CF - Concrete Floor CW - Concrete Wall

2. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles and metals.

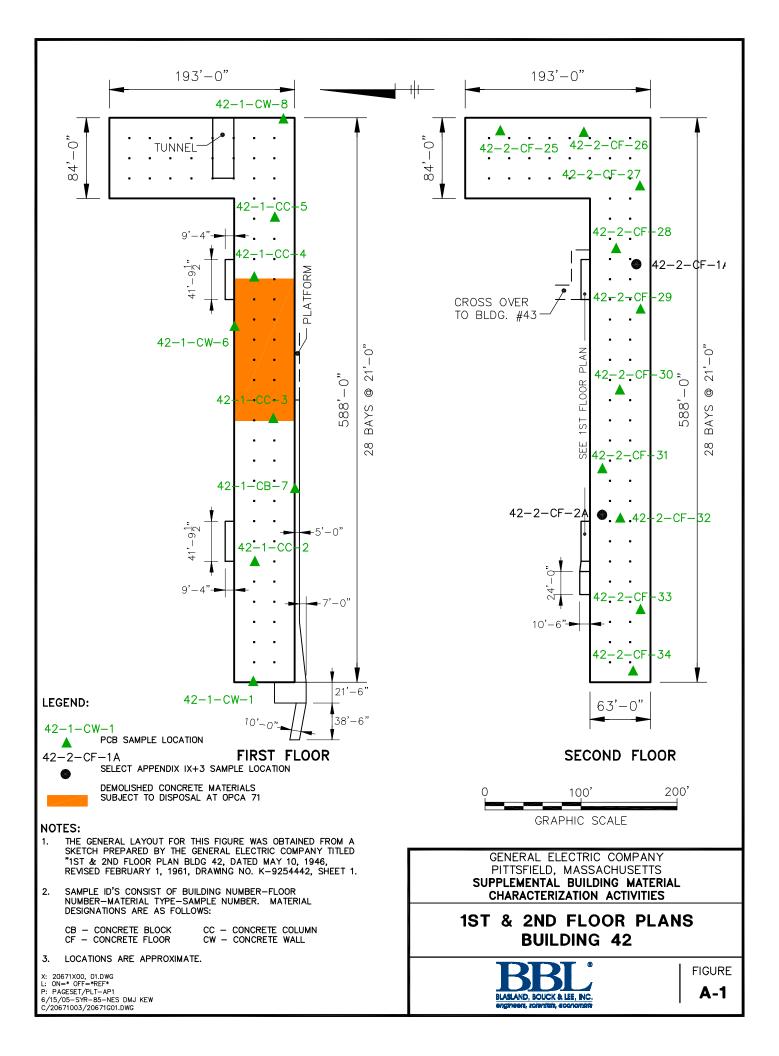
3. This table presents only those constituents that were detected in at least one building material sample and which were retained following the comparison to screening criteria evaluation.

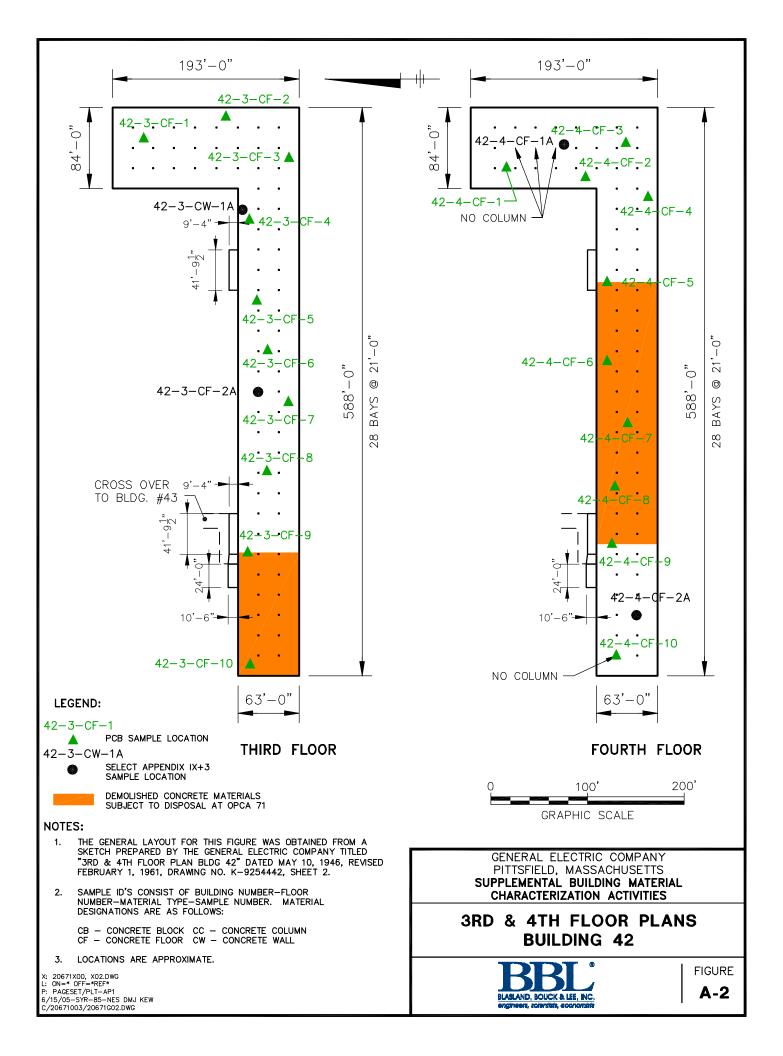

4. Bolded values indicate that the constituent was not detected in the corresponding sample. The value shown is one-half the detection limit and was included in calculating the arithmetic average concentration.

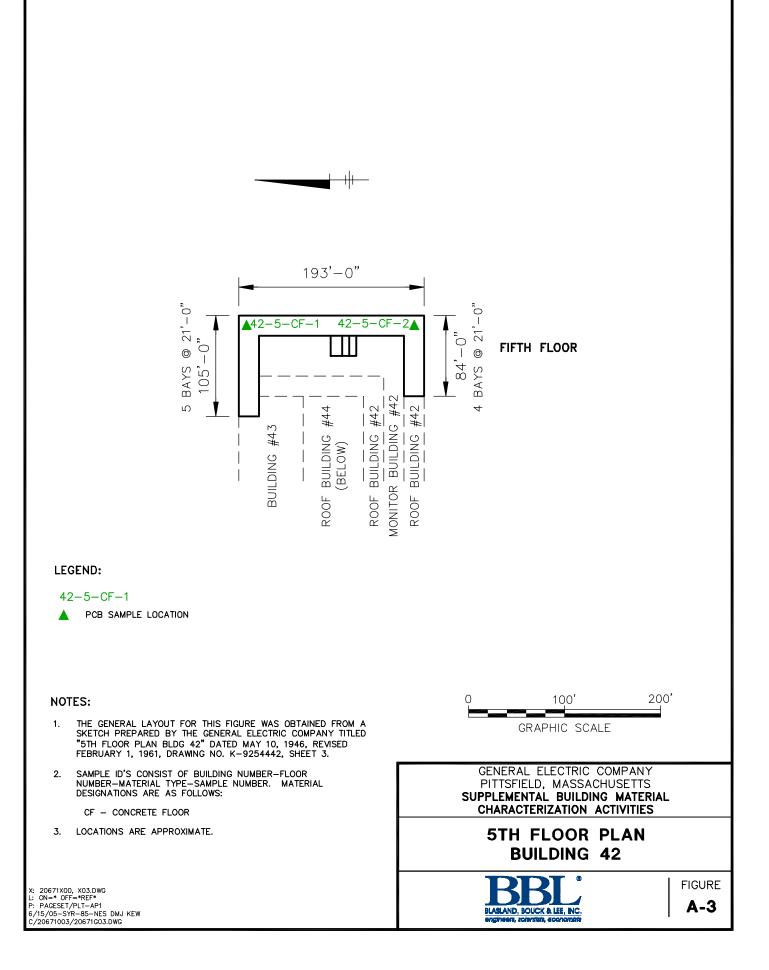
5. The values in the Proposed Wave 2 Method 1 Soil Standard column presents the lower of the Category S-2/GW-2 or S-2/GW-3 Soil Standards.

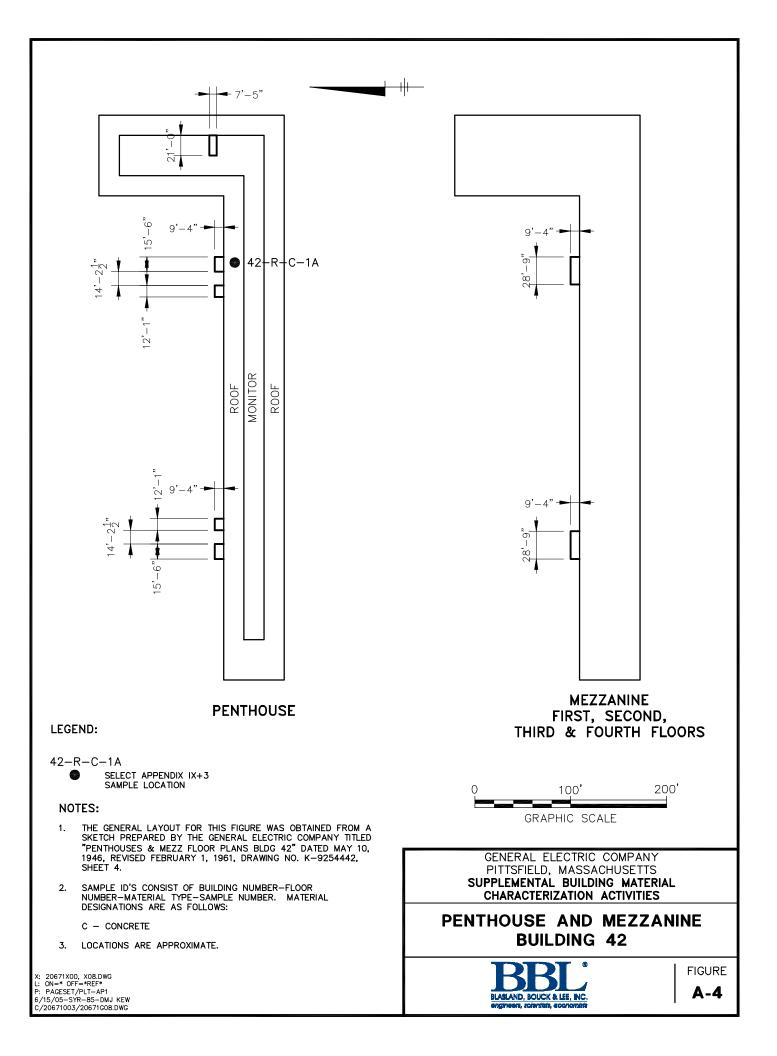
6. NS = Not Sampled.

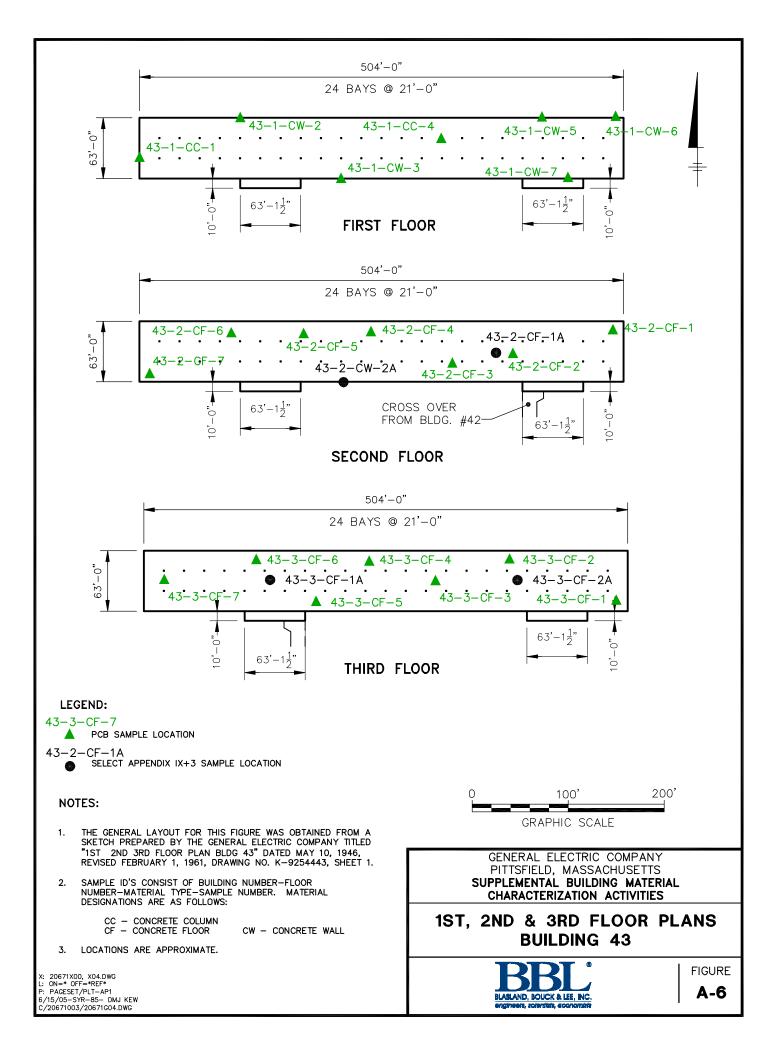
Figure

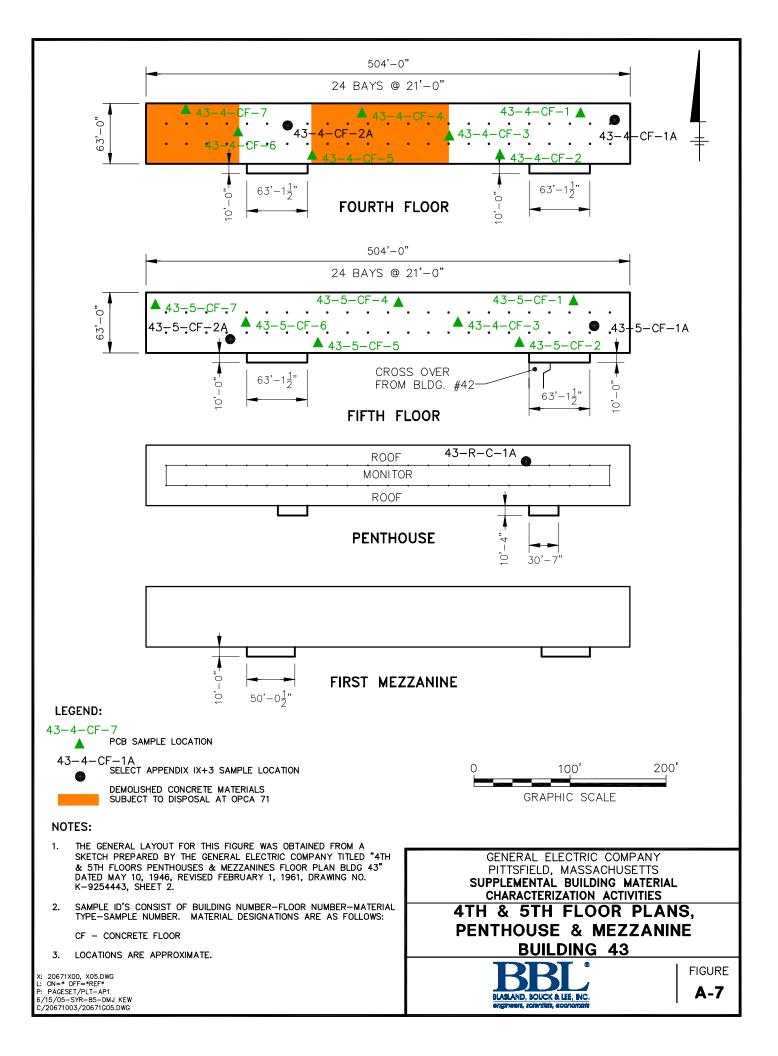

Attachments

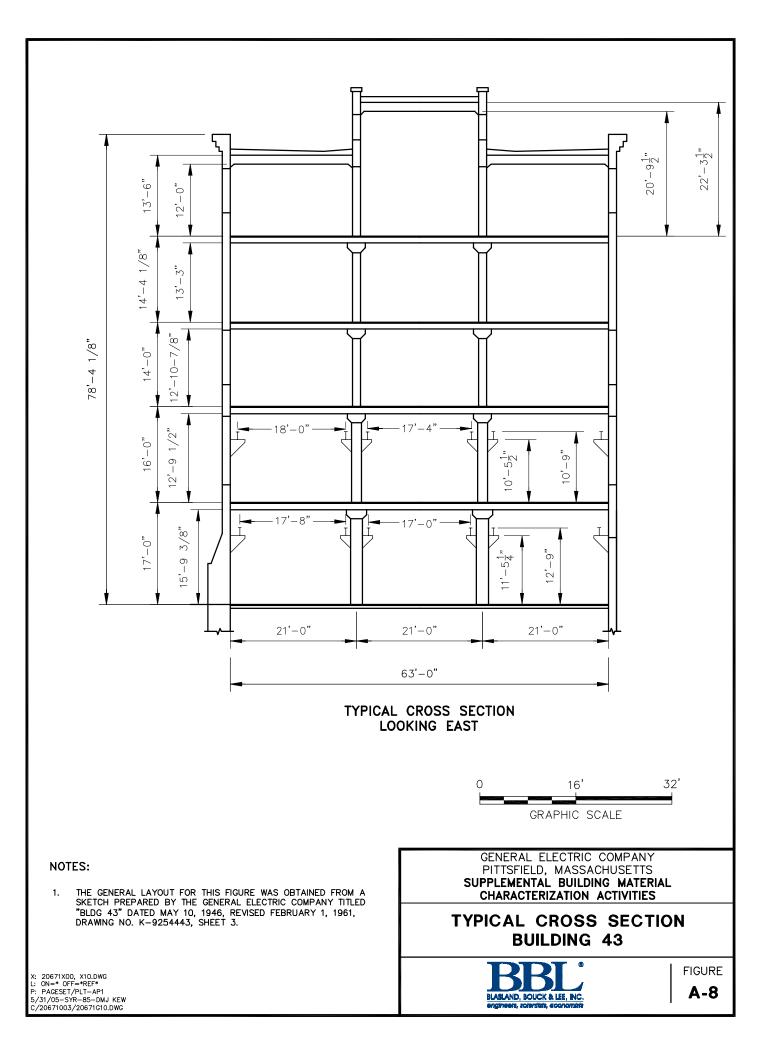


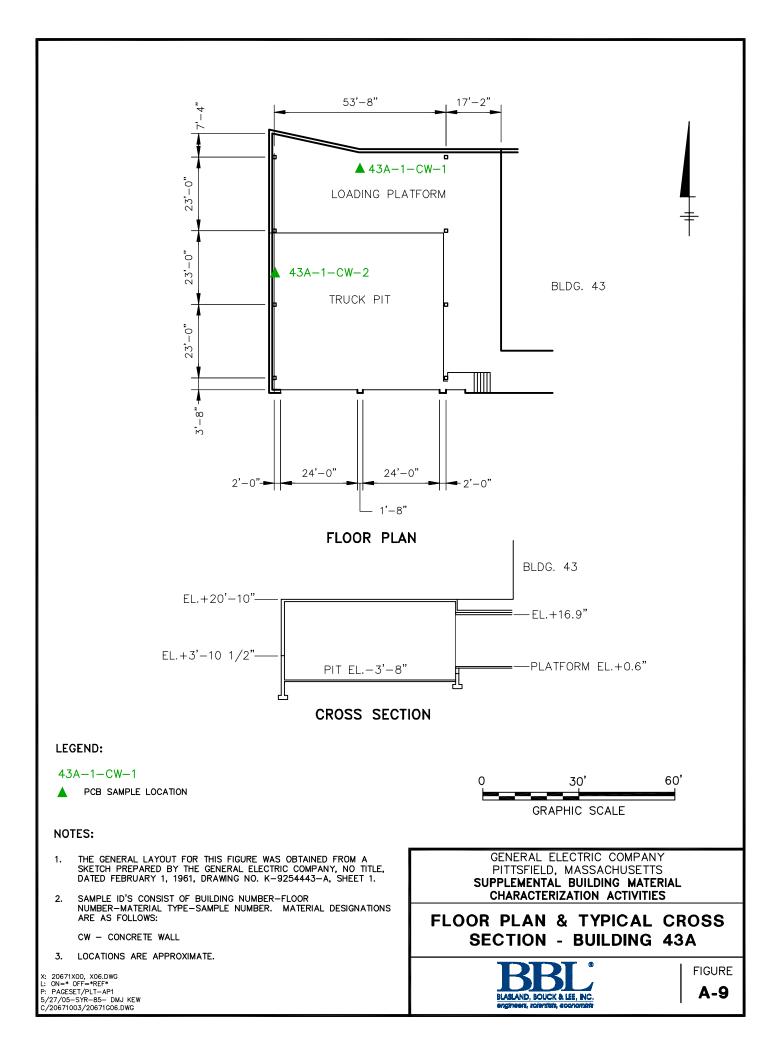

Attachment A

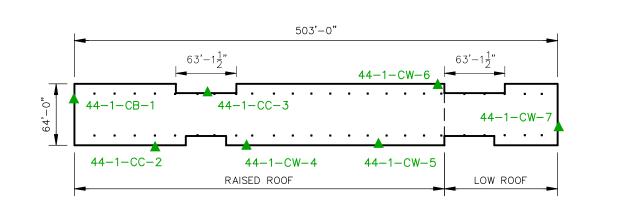

PCB & Select Appendix IX+3 Sample Location Figures






1/2" 1/2" 9თ | .9-11'-10" 22'-20'-Ĵ.J. 1/8" .0-12'-11 14'-64'-0" 17'-7" *"*∞ Τ .0-3/4" 5 6 | <u>ا</u>م ا 16, œ 4 ò -Ĺ, Τ Ľ 7 /8" Т .0-1 \sim -ີ່ມີ 21'-0" 21'-0" 21'-0" 63'-0" TYPICAL CROSS SECTION LOOKING WEST 32' 16' 0 GRAPHIC SCALE GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS NOTES: SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES THE GENERAL LAYOUT FOR THIS FIGURE WAS OBTAINED FROM A SKETCH PREPARED BY THE GENERAL ELECTRIC COMPANY TITLED "CROSS SECTION BLDG 42" DATED MAY 10, 1946, REVISED FEBRUARY 1, 1961, DRAWING NO. K-9254442, SHEET 5. 1. **TYPICAL CROSS SECTION BUILDING 42** FIGURE X: 20671X00, X09.DWG L: ON=* OFF=*REF* P: PAGESET/PLT-AP1 5/31/05-SYR-85-DMJ KEW C/20671003/20671G09.DWG A-5


BLASLAND, BOUCK & LEE, INC. ers, scientists, ecc


7-17

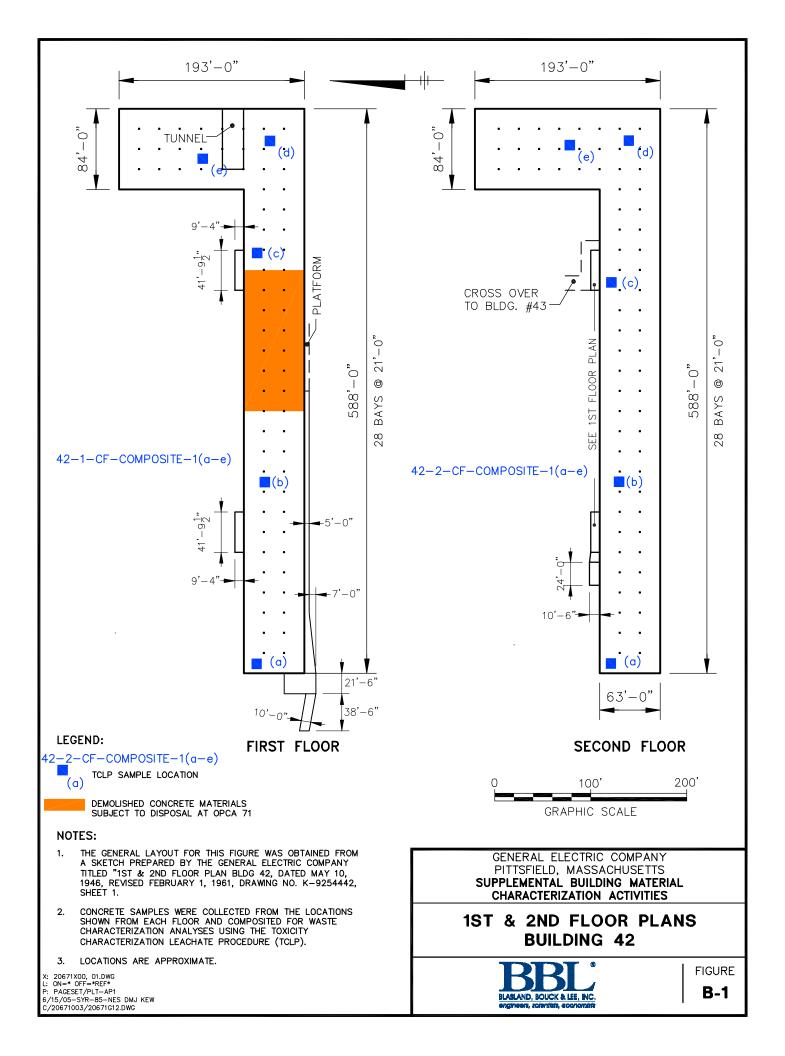
LEGEND:

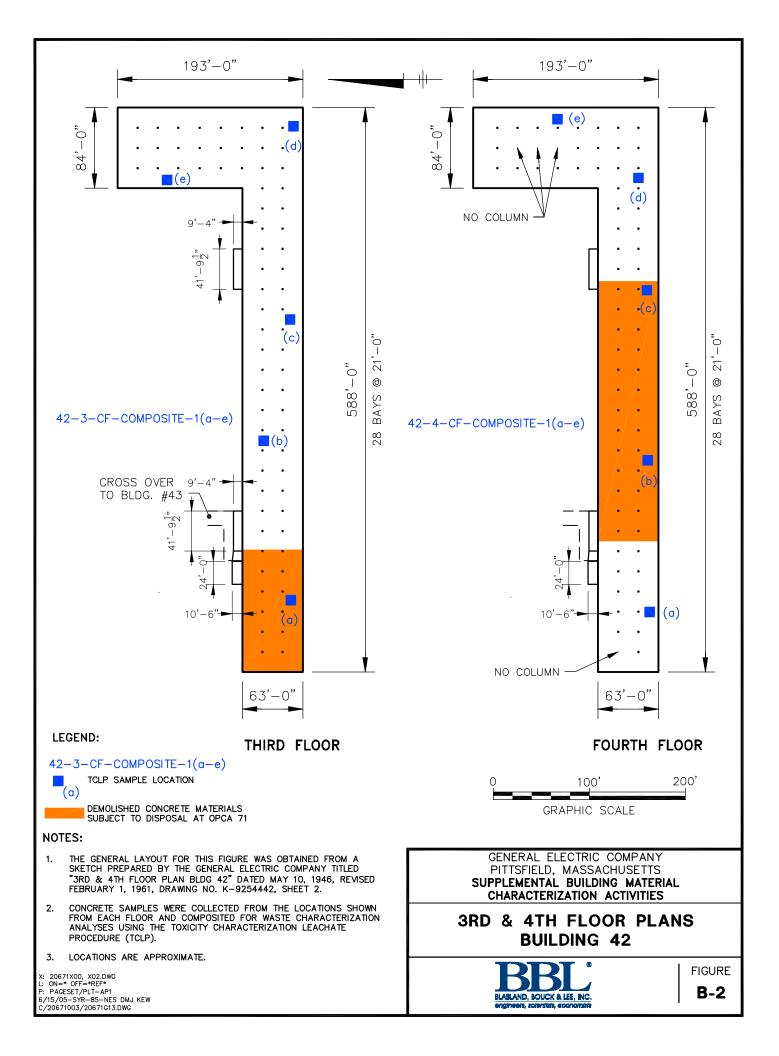
44-1-CB-1

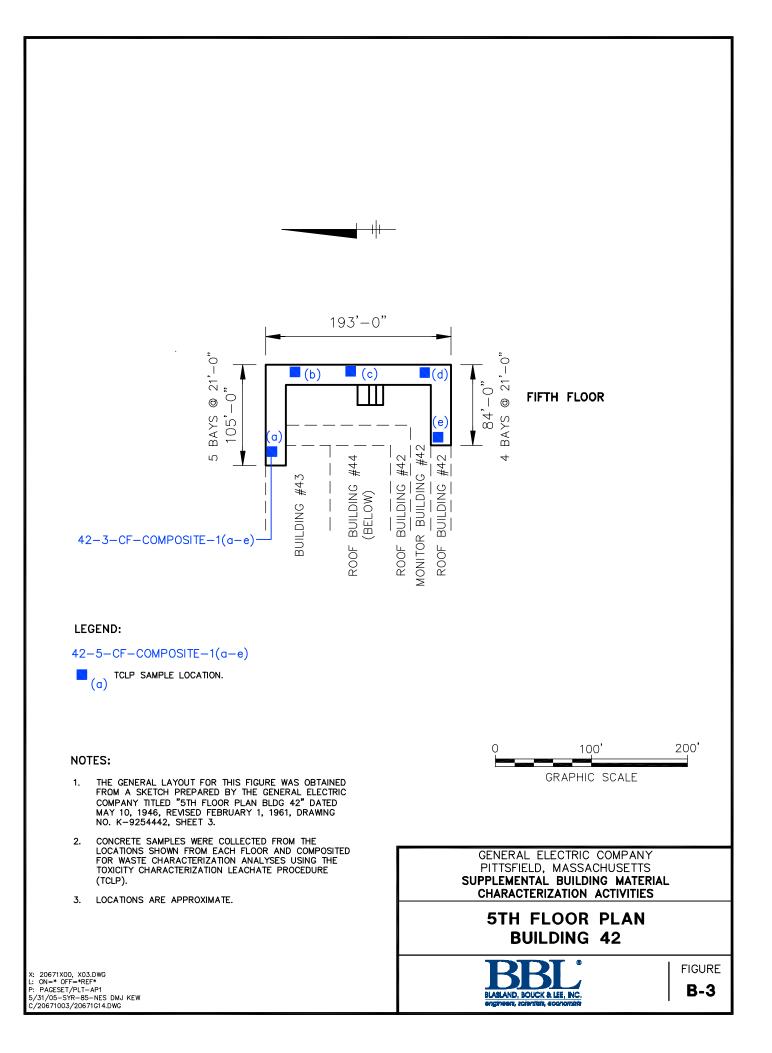
A PCB SAMPLE LOCATION

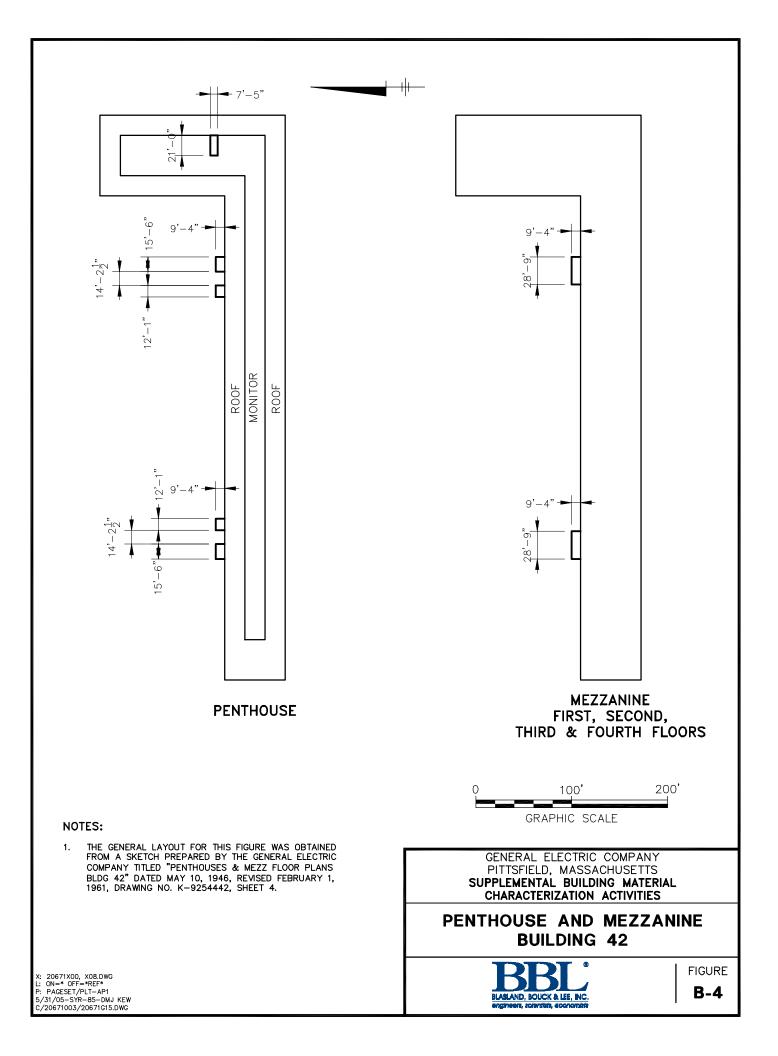
NOTES:

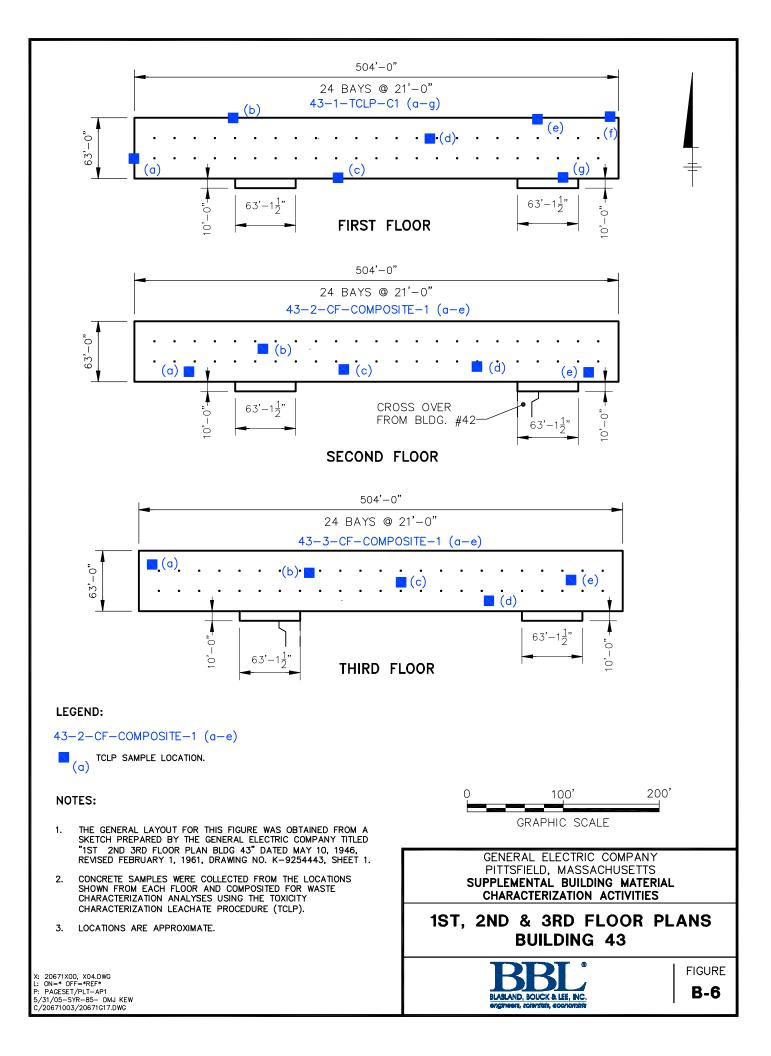
- 1. THE GENERAL LAYOUT FOR THIS FIGURE WAS OBTAINED FROM A SKETCH PREPARED BY THE GENERAL ELECTRIC COMPANY TITLED "FLOOR PLAN BLDG 44" DATED MAY 10, 1946, REVISED FEBRUARY 1, 1961, DRAWING NO. K-9254444, SHEET 1.
- 2. SAMPLE ID'S CONSIST OF BUILDING NUMBER-FLOOR NUMBER-MATERIAL TYPE-SAMPLE NUMBER. MATERIAL DESIGNATIONS ARE AS FOLLOWS:
 - CB CONCRETE BLOCK CC – CONCRETE COLUMN CW – CONCRETE WALL
- 3. LOCATIONS ARE APPROXIMATE.

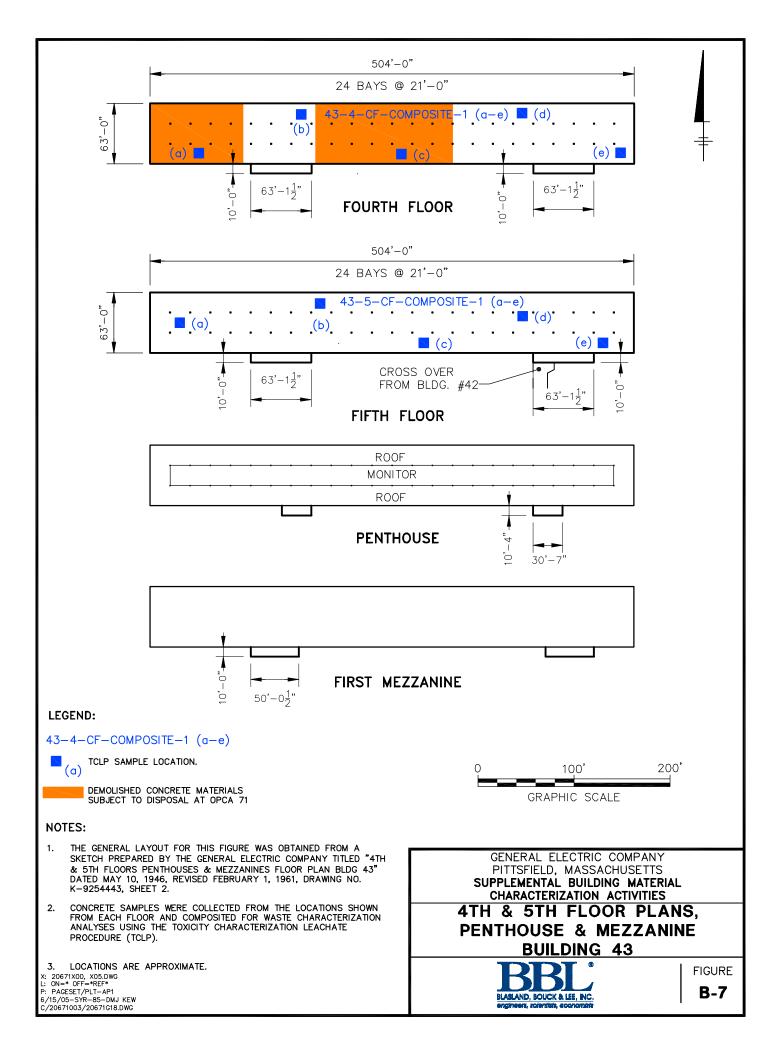

X: 20671X00, X07.DWG L: ON=* OFF=*REF* P: PAGESET/PLT-AP1 5/27/05-SYR-85-DMJ KEW C/20671003/20671G07.DWG R GRAPHIC SCALE GENERAL ELECTRIC COMPANY
PITTSFIELD, MASSACHUSETTS
SUPPLEMENTAL BUILDING MATERIAL
CHARACTERIZATION ACTIVITIES FLOOR PLAN
BUILDING 44 FIGURE
A-10

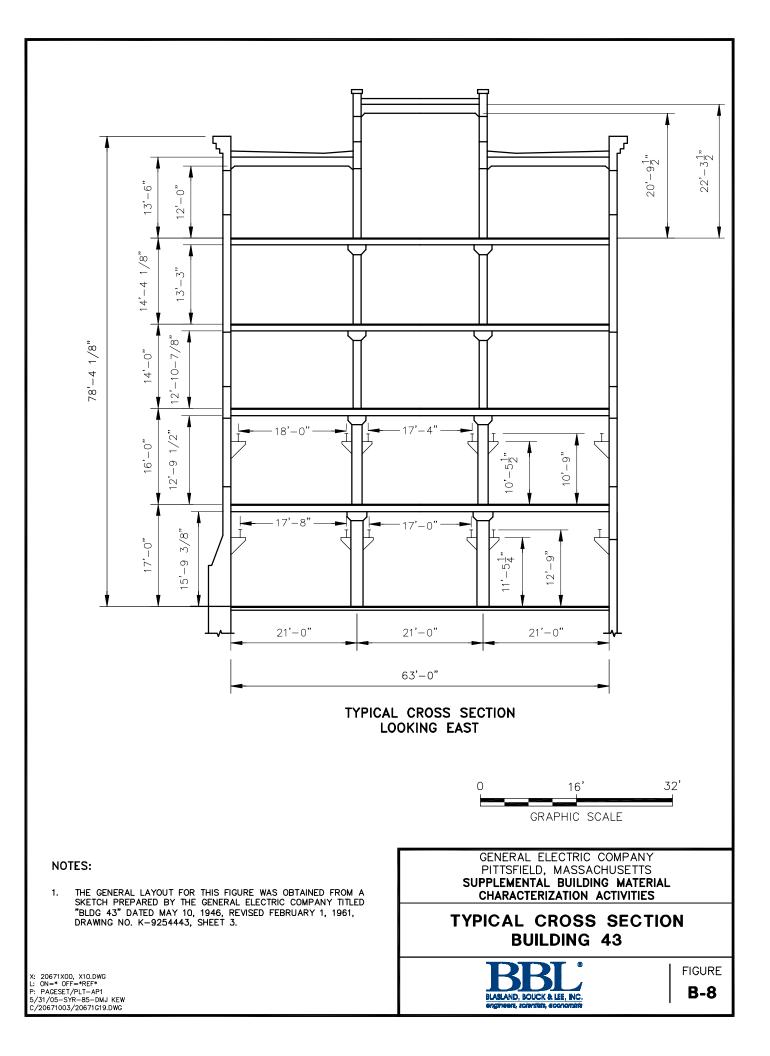

era, scientitais, eco

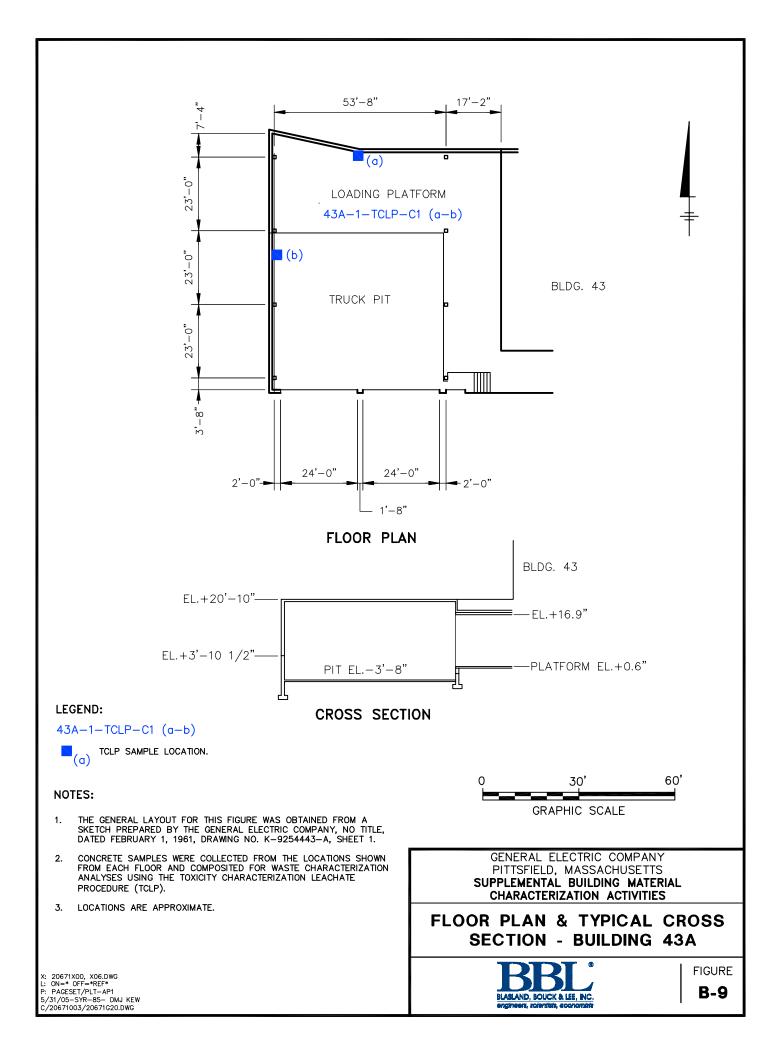

Attachment B

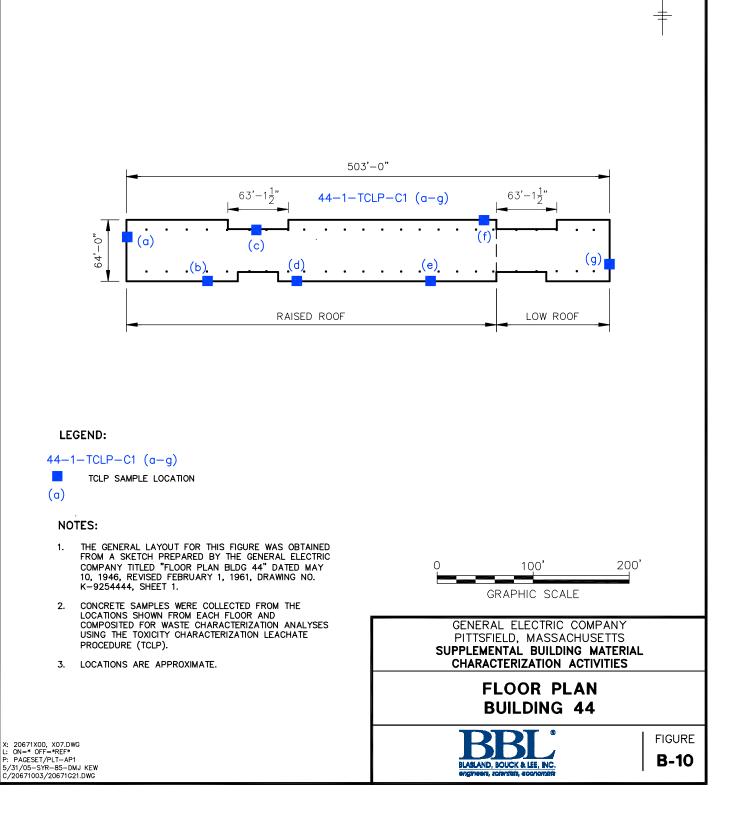

TCLP Sample Location Figures

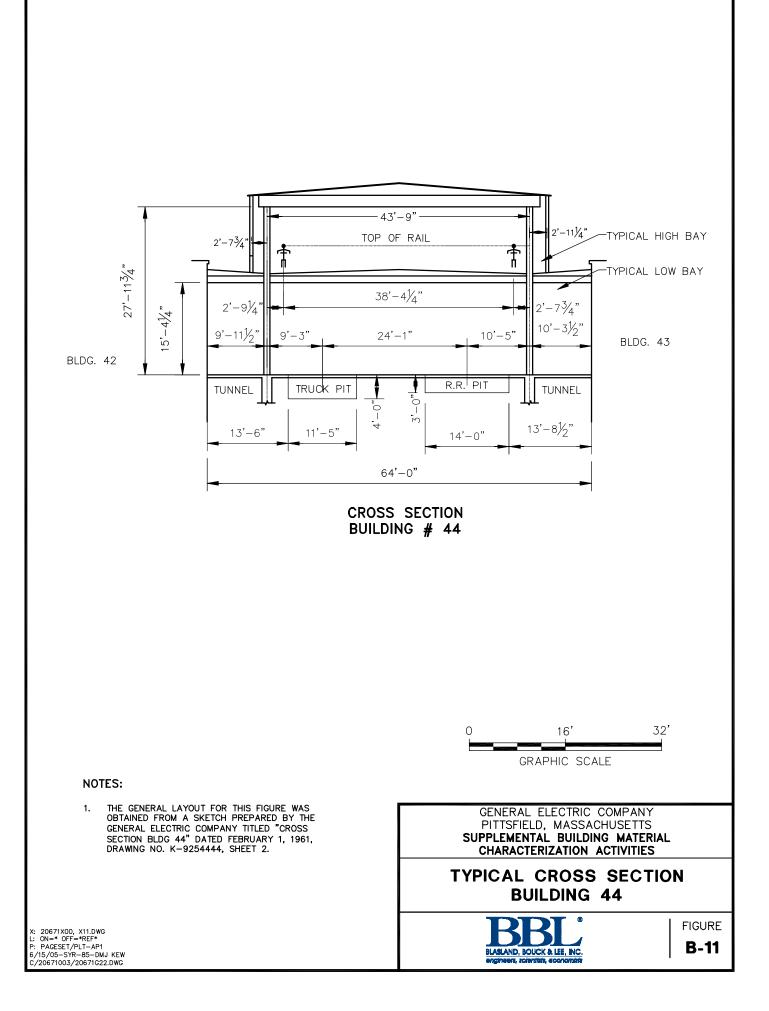



1/2" 1/2" 9 ရ 13'-6" 11'-10" 22'-20'-1 1/8" 14'-0" 12'-11 64'-0" 17'-7" ĥ 5/8" Τ T .0-3/4" -5, 14'-9 , 0 00 | ò ÷ Т Ι L õ .0- $\overline{}$ 15'-7 17 21'-0" 21'-0" 21' - 0''63'-0" TYPICAL CROSS SECTION LOOKING WEST 32' 0 16' GRAPHIC SCALE NOTES: THE GENERAL LAYOUT FOR THIS FIGURE WAS OBTAINED 1. FROM A SKETCH PREPARED BY THE GENERAL ELECTRIC COMPANY TITLED "CROSS SECTION BLDG 42" DATED MAY 10, 1946, REVISED FEBRUARY 1, 1961, DRAWING NO. K-9254442, SHEET 5. GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES **TYPICAL CROSS SECTION**


BUILDING 42


FIGURE


X: 20671X00, X09.DWG L: ON=* OFF=*REF* P: PAGESET/PLT-AP1 5/31/05-SYR-85-DMJ KEW C/20671003/20671G16.DWG



Attachment C

Data Validation Report

ATTACHMENT C DATA VALIDATION REPORT SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

1.0 General

This attachment summarizes the Tier I and Tier II data reviews performed for concrete and leachate samples collected during building material characterization activities conducted at the 40s Complex Removal Action Area (RAA) located in Pittsfield, Massachusetts. The samples were analyzed for polychlorinated biphenyls (PCBs) and/or various other constituents listed in Appendix IX of 40 CFR Part 264 by SGS Environmental Services, Inc. (formerly CT&E) of Charleston, West Virginia. Data validation was performed for the following quantities of concrete and leachate samples: 97 PCB samples, 22 volatile organic compound (VOC) samples, 16 TCLP VOC samples, 21 semi-volatile organic compound (SVOC) samples, 16 TCLP pesticide and herbicide samples, 21 metals samples, and 16 TCLP metals samples.

2.0 Data Evaluation Procedures

This attachment outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland, Bouck & Lee, Inc. (BBL; FSP/QAPP, approved May 25, 2004 and resubmitted June 15, 2004);
- Region I Tiered Organic and Inorganic Data Validation Guidelines, USEPA Region I (July 1, 1993);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, USEPA Region I (June 13, 1988) (Modified February 1989);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (February 1, 1988) (Modified November 1, 1988);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (Draft, December 1996); and
- National Functional Guidelines for Dioxin/Furan Data Validation, USEPA (Draft, January 1996).

A tabulated summary of the Tier I and Tier II data evaluations is presented in Table C-1. Each sample subjected to evaluation is listed in Table C-1 to document that data review was performed, as well as present the highest level of data validation (Tier I or Tier II) that was applied. Samples that required data qualification are listed separately for each parameter (compound or analyte) that required qualification.

The following data qualifiers were used in this data evaluation:

J The compound was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound is detected at an estimated concentration less than the corresponding practical quantitation limit (PQL).

- U The compound was analyzed for, but was not detected. The sample quantitation limit is presented and adjusted for dilution and (for solid samples only) percent moisture. Non-detect sample results are presented as ND(PQL) within this report and in Table C-1 for consistency with documents previously prepared for investigations conducted at this site.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is estimated and may or may not represent the actual level of quantitation. Non-detect sample results that required qualification are presented as ND(PQL) J within this report and in Table C-1 for consistency with documents previously prepared for this investigation.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purpose.

3.0 Data Validation Procedures

The FSP/QAPP provides (in Section 7.5) that all analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (USEPA guidelines). Accordingly, 100% of the analytical data for these investigations were subjected to Tier I review. The Tier I review consisted of a completeness evidence audit, as outlined in the *USEPA Region I CSF Completeness Evidence Audit Program* (USEPA Region I, 7/31/91), to ensure that all laboratory data and documentation were present. In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with the USEPA Region I Tier I data completeness requirements. A tabulated summary of the samples subjected to Tier I and Tier II data evaluation is presented in the following table.

		Tier I Only			Tier I & Tier	r II	
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
PCBs	18	1	1	63	8	6	97
VOCs	0	0	0	16	2	4	22
TCLP VOCs	1	0	0	11	1	3	16
SVOCs	0	0	0	16	2	3	21
TCLP SVOCs	1	0	0	11	1	3	16
TCLP Pesticides	1	0	0	8	1	3	13
TCLP Herbicides	1	0	0	8	1	3	13
Metals	0	0	0	16	2	3	21
TCLP Metals	1	0	0	14	0	1	16
Total	23	1	1	163	18	29	235

Summary of Samples Subjected to Tier I and Tier II Data Validation

As specified in the FSP/QAPP, approximately 25% of the laboratory sample delivery group packages were randomly chosen to be subjected to Tier II review. A Tier II review was also performed to resolve data usability limitations identified from laboratory qualification of the data during the Tier I data review. The Tier II data review consisted of a review of all data package summary forms for identification of quality assurance/quality control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. Due to the variable sizes of the data packages and the number of data qualification issues identified during the Tier I review, approximately 89% of the data were subjected to a Tier II review. The Tier II review resulted in the qualification of data for several samples due to minor QA/QC deficiencies. Additionally, all field duplicates were examined for relative percent difference (RPD) compliance with the criteria specified in the FSP/QAPP.

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in USEPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented below for each analytical method.

4.0 Data Review

The initial calibration criterion for organic analyses requires that the average relative response factor (RRF) has a value greater than 0.05. Sample results were qualified as estimated (J) when this criterion was not met. The compounds that did not meet the initial calibration criterion and the number of samples qualified are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	Isobutanol	8	J
TCLP VOCs	2-Butanone	4	J
SVOCs	Safrole	21	J

Compounds Qualified Due to Initial Calibration Deviations (RRF)

The continuing calibration criterion for VOCs requires that the continuing calibration RRF have a value greater than 0.05. Sample data for detect and non-detect compounds with RRF values greater than 0.05 were qualified as estimated (J). The compounds that did not meet the continuing calibration criterion and the number of samples qualified due to those exceedences are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,4-Dioxane	19	J
	Acetone	5	J
	Acetonitrile	16	J
	Acrolein	6	J
	Isobutanol	1	J
	Propionitrile	11	J

Compounds Qualified Due to Continuing Calibration Deviations (RRF)

Several of the organic compounds (including the compounds presented in the above tables detailing RRF deviations) exhibit instrument response factors (RFs) below the USEPA Region I minimum value of 0.05, but meet the analytical method criterion, which does not specify minimum RFs for these compounds. These compounds were analyzed by the laboratory at a higher concentration than the compounds that normally exhibit RFs greater than the USEPA Region I minimum value of 0.05 in an effort to demonstrate acceptable response. USEPA Region I guidelines state that non-detect compound results associated with a RF less than the minimum value of 0.05 are to be rejected (R). However, in the case of these select organic compounds, the RF is an inherent problem with the current analytical methodology; therefore, the non-detect sample results were qualified as estimated (J).

The initial calibration criterion requires that the percent relative standard deviation (%RSD) must be less than or equal to 30%. Sample data for detect and non-detect compounds with %RSD values greater than 30% were qualified as estimated (J). The compound that exceeded the initial calibration criterion and the number of samples qualified due to those deviations are presented in the following table.

Compound	Qualified	Due to Exceeder	nce of %RSD `	Values
----------	-----------	-----------------	---------------	--------

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs	Hexachlorophene	21	J

The initial calibration criterion for organic compounds requires that the correlation coefficient of the initial calibration must be greater than or equal to 0.99. Sample data for compounds associated with a correlation coefficient value less than 0.99 were qualified as estimated (J). The compound that exceeded the initial calibration criterion and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs	Benzidine	21	J

Compound Qualified Due to Initial Calibration Correlation Coefficients Deviations

The continuing calibration criterion requires that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF for VOCs and SVOCs be less than 25% and less than 15% for PCBs. Sample data for detected and non-detect compounds with %D values that were outside the continuing calibration criteria were qualified as estimated (J). A summary of the compounds that did not meet the continuing calibration criterion and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,1,2,2-Tetrachloroethane	1	J
	1,2,3-Trichloropropane	3	J
	1,4-Dioxane	1	J
	Acetone	2	J
	Acetonitrile	7	J
	Acrolein	7	J
	Bromomethane	1	J
	Chloroethane	3	J
	Dibromochloromethane	2	J
	Isobutanol	3	J
	Methyl Methacrylate	1	J
	Propionitrile	14	J
	Trichlorofluoromethane	2	J
	Vinyl Acetate	14	J
	Xylenes (total)	2	J
TCLP VOCs	Cresol, Total	1	J
	Tetrachloroethene	2	J
SVOCs	1,3,5-Trinitrobenzene	21	J
	1,4-Naphthoquinone	21	J
	4,6-Dinitro-2-methylphenol	2	J
	4-Nitrophenol	2	J
	4-Nitroquinoline-1-oxide	16	J
	a,a'-Dimethylphenethylamine	21	J

Compounds Qualified Due to Continuing Calibration of %D Values

Analysis	Compound	Number of Affected Samples	Qualification
SVOCs (continued)	Aniline	21	J
	Benzidine	21	J
	Benzo(k)fluoranthene	2	J
	Hexachlorocyclopentadiene	13	J
	Hexachlorophene	21	J
	Isosafrole	21	J
	Methapyrilene	21	J

Compounds Qualified Due to Continuing Calibration of %D Values

Contract required detection limit (CRDL) standards were analyzed to evaluate instrument performance at lowlevel concentrations that are near the analytical method PQL. These standards are required to have recoveries between 80% and 120% to verify that the analytical instrumentation was properly calibrated. When CRDL standard recoveries were outside the 80% to 120% control limits, the affected samples with detected results at or near the PQL concentration (i.e., less than three times the PQL) were qualified as estimated (J). The analytes that did not meet CRDL criteria and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Arsenic	1	J
	Lead	2	J
	Selenium	21	J
	Thallium	2	J
TCLP Inorganics	Lead	1	J
	Mercury	2	J
	Selenium	3	J

Analytes Qualified Due to CRDL Standard Recovery Deviations

Matrix spike/Matrix spike duplicate (MS/MSD) sample analysis recovery criteria for organics require that the MS/MSD recovery be within the laboratory-generated QC control limits specified on the MS reporting form and inorganics MS/MSD recoveries must be within 75% to 125%. Organic and inorganic sample results associated with MS/MSD recoveries less than the specified control limit but greater than 10% and 30% respectively were qualified as estimated (J). Organic and inorganic non-detect sample results associated with MS/MSD recoveries less than 10% and 30% respectively were qualified as rejected (R). The analytes/compounds that did not meet MS/MSD recovery criteria and the number of samples qualified due to those deviations are presented in the following table.

Allaly	Analytes/Compounds Quanted Due to MS/MSD Recovery Deviations				
Analysis	Analyte/Compound	Number of Affected Samples	Qualification		
PCBs	Aroclor-1016	1	J		
	Aroclor-1221	1	J		
	Aroclor-1232	1	J		
	Aroclor-1242	1	J		
	Aroclor-1248	1	J		
	Aroclor-1254	1	J		
	Aroclor-1260	1	J		
	Total PCBs	1	J		

Analytes/Compounds Qualified Due to MS/MSD Recovery Deviations

Analysis	Analyte/Compound	Number of Affected Samples	Qualification
Inorganics	Antimony	12	J
	Barium	6	J
	Mercury	5	R
SVOCs	1,4-Dichlorobenzene	1	R
	2,4-Dinitrotoluene	1	R
	N-Nitroso-di-n-propylamine	1	J
	Pyrene	1	J
TCLP Herbicides	2,4,5-TP	1	J
ICLI Herbicides	2,7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	R
	2,4-D	2	R

Analytes/Compounds Qualified Due to MS/MSD Recovery Deviations

MS/MSD sample analysis recovery criteria for organics require that the RPD between the MS and MSD samples be less than the laboratory-generated QC acceptance limits specified on the MS/MSD reporting form. The compounds that exceeded RPD limits and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
PCBs	Aroclor-1254	1	J
	Aroclor-1260	1	J
	Total PCBs	1	J
SVOCs	Pyrene	1	J

Compounds Qualified Due to MS/MSD RPD Deviations

Surrogate compounds are analyzed with every organic sample to aid in evaluation of the sample extraction efficiency. As specified in the FSP/QAPP, two of the three SVOC surrogate compounds within each fraction must be within the laboratory-specified control limits. Sample results were qualified as estimated (J) for all compounds when surrogate recovery criteria were outside control limits and were greater than 10%. Non-detect sample results associated with surrogate recoveries less than 10% were qualified as rejected (R). A summary of the compounds affected by surrogate recovery exceedences and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	Acetone	1	J
	Ethylbenzene	1	J
	Toluene	2	J
	Xylenes (total)	1	J
SVOCs	All acid compounds	17	R

Internal standard compounds for VOCs analysis are required to have area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts for the continuing calibration standard. VOCs sample results for the associated compounds were qualified as estimated (J) when the internal standard recovery was less than 50% but greater than 25%. Compounds associated with internal standards which were outside the recovery criteria and the number of samples qualified due to those deviations are presented in the following table.

Compounds Qualified Due to Internal Standard Re	covery Deviations
---	-------------------

Analysis	Compound	Number of Affected Samples	Qualification		
VOCs	All compounds	1	J		

Blank action levels for organic and inorganic analytes/compounds detected in the blanks were calculated at five times the blank concentrations (blank action levels were calculated at 10 times the blank concentration for common laboratory contaminants). Detected sample results that were below the blank action level were qualified with a "U." The analytes/compounds detected in method blanks which resulted in qualification of sample data, along with the number of affected samples, are presented in the following table.

Analysis	Analyte/Compound	Number of Affected Samples	Qualification
Inorganics	Beryllium	1	U
	Chromium	1	U
	Silver	6	U
	Tin	18	U
	Zinc	1	U
TCLP Inorganics	Barium	3	U
	Chromium	2	U
	Selenium	1	U
VOCs	Toluene	5	U

Analytes/Compounds Qualified Due to Blank Deviations

Field duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures. The RPD between field duplicate samples is required to be less than 50% for solid samples exhibiting concentrations greater than five times the PQL for organics. Sample results that exceeded these limits were qualified as estimated (J). The compounds that did not meet field duplicate RPD requirements and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification		
PCBs	Aroclor-1254	6	J		
	Aroclor-1260	2	J		
	Total PCBs	6	J		
SVOCs	Toluene	2	J		

Compounds Qualified Due to Field Duplicate Deviations

Laboratory duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures for inorganic analysis. The RPD between duplicate samples is required to be less than 35% for solid samples with analyte concentrations greater than five times the PQL. Detect sample results for analytes that exceeded these limits were qualified as estimated (J). The inorganic analytes that did not meet laboratory duplicate RPD criteria and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Barium	6	J
	Zinc	6	J

5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability for site characterization purposes. Data completeness is defined as the percentage of sample results that have been determined to be usable during the data validation process. The percent usability calculation included analyses evaluated under both the Tier I and Tier II data validation reviews. Data completeness with respect to usability was calculated separately for inorganic and each of the organic analysis. The percent usability calculation also includes quality control samples collected to aid in the evaluation of data usability. Therefore, field/equipment blank, trip blank, and field duplicate data determined to be unusable as a result of the validation process are represented in the percent usability value tabulated in the following table.

Data Usability								
Parameter	Percent Usability	Rejected Data						
Inorganics	100	None						
TCLP Inorganics	98.2	A total of 5 sample results were rejected due to MS/MSD recovery deviations.						
VOCs	100	None						
TCLP VOCs	100	None						
SVOCs	88.0	A total of 277 sample results were rejected due to surrogate recovery deviations and a total of 2 sample results were rejected due to MS/MSD recovery deviations.						
TCLP SVOCs	100	None						
PCBs	100	None						
TCLP Herbicides	96.2	A total of 2 sample results were rejected due to MS/MSD recovery deviations.						
TCLP Pesticides	100	None						

The data package completeness, as determined from the Tier I data review, was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between duplicate sample results. The duplicate samples used to evaluate precision included laboratory duplicates, field duplicates, MS/MSD samples, and ICP serial dilution samples. For this analytical program, 0.15% of the data required qualification due to laboratory duplicate RPD deviations, 0.20% of the data required qualification due to field duplicate RPD deviations and 0.07% of the data required qualification due to MS/MSD RPD deviations. None of the data required qualification due to ICP serial dilution deviations.

5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, internal standards, Laboratory Control Standards (LCSs), MS/MSD samples, CRDL samples, and surrogate compound recoveries. For this analytical program, 5.0% of the data required qualification due to instrument calibrations, 0.68% of the data required qualification due to internal standards deviations, 0.49% of the data required qualification due to MS/MSD recovery deviations, 3.6% of the data required qualification due to CRDL deviations. None of the data required qualification due to LCS recovery deviations.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter, which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in MDEP-approved work plans, and by following the procedures for sample collection/analyses that were described in the FSP/QAPP. Additionally, the analytical program used procedures consistent with USEPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical program, none of the data required qualification due to holding time requirements.

5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. The USEPA SW-846¹ analytical methods presented in the FSP/QAPP are updated on occasion by the USEPA to benefit from recent technological advancements in analytical chemistry and instrumentation. In most cases, the method upgrades include the incorporation of new technology that improves the sensitivity and stability of the instrumentation or allows the laboratory to increase throughput without hindering accuracy and precision. Overall, the analytical methods for this investigation have remained consistent in their general approach through continued use of the basic analytical techniques (e.g., sample extraction/preparation, instrument calibration, QA/QC procedures). Through this use of consistent base analytical procedures and by requiring that updated procedures meet the QA/QC criteria specified in the FSP/QAPP, the analytical data from past, present, and future sampling events will be comparable to allow for qualitative and quantitative assessment of site conditions.

¹ Test Methods for evaluating Solid Waste, SW-846, USEPA, Final Update III, December 1996.

5.5 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. The actual completeness of this analytical data set ranged from 96.2 to 100% for individual analytical parameters and had an overall usability of 98.0 %, which is greater than the minimum required usability of 90% as specified in the FSP/QAPP.

The rejected sample data for these investigations include sample analyses results associated with four TCLP herbicides, five inorganics and two SVOCs for sample locations 42-2-CF-COMPOSITE-1, 42-3-CF-COMPOSITE-1, 42-4-CF-COMPOSITE-1, RB-070902-2, RINSE BLANK-0708-1, 43-3-CF-1, 43-2-CF-COMPOSITE-1 and 43-3-CF-COMPOSITE-1 due to low MS/MSD recoveries. Resampling at these locations is not recommended since duplicate analysis of the MS has proven matrix interference and the same analytical performance limitations for the analysis could occur again.

The rejected sample data for these investigations include sample analyses results for 272 SVOCs acid compounds associated with sample locations 42-2-CF-2A, 42-3-CF-2A, 42-3-CW-1A, 42-4-CF-1A, 42-4-CF-1A, 43-4-CF-1A, 43-5-CF-2A, 43-DUP-1, 43-R-C-1A, 43-2-CF-1A, 43-2-CW-2A, 43-3-CF-2A, 43-5-CF-1A, 43-DUP-2 due to low surrogate recoveries. Due to low surrogate recoveries exhibited by the initial analysis of the sample locations, the laboratory re-extracted and re-analyzed the above reference sample locations. The re-extracted and re-analysis exhibited similar surrogate recoveries resulting in the rejection of associated data; therefore, resampling at these sample locations for this analysis is not recommended.

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample											
Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
PCBs						•					
	42-2-CF-26	7/8/2002	Concrete	Tier II	No						
	42-2-CF-27 42-2-CF-28	7/8/2002 7/8/2002	Concrete Concrete	Tier II Tier II	No No						
	42-2-CF-28 42-2-CF-29	7/8/2002	Concrete	Tier II	No						
	42-2-CF-30	7/8/2002	Concrete	Tier II	No						
	42-2-CF-31	7/8/2002	Concrete	Tier II	No						
	42-2-CF-32	7/8/2002	Concrete	Tier II	No						
	42-2-CF-33 42-2-CF-34	7/8/2002 7/8/2002	Concrete Concrete	Tier II Tier II	No No						
	42-3-CF-1	7/9/2002	Concrete	Tier II	No						
	42-3-CF-10	7/9/2002	Concrete	Tier II	No						
	42-3-CF-3	7/8/2002	Concrete	Tier II	No						
	42-3-CF-4	7/8/2002	Concrete	Tier II	No						
	42-3-CF-5 42-3-CF-6	7/8/2002 7/8/2002	Concrete Concrete	Tier II Tier II	No No						
	42-3-CF-7	7/9/2002	Concrete	Tier II	No						
	42-3-CF-8	7/9/2002	Concrete	Tier II	No						
	42-3-CF-9	7/9/2002	Concrete	Tier II	No						
	42-4-CF-1	7/9/2002	Concrete	Tier II	No No						
	42-4-CF-10 42-4-CF-2	7/9/2002 7/9/2002	Concrete Concrete	Tier II Tier II	No						
	42-4-CF-3	7/9/2002	Concrete	Tier II	No						
	42-4-CF-4	7/9/2002	Concrete	Tier II	No						
	42-4-CF-5	7/9/2002	Concrete	Tier II	No						
	42-4-CF-6	7/9/2002	Concrete	Tier II	No						
	42-4-CF-7 42-4-CF-8	7/9/2002 7/9/2002	Concrete Concrete	Tier II Tier II	No No						
	42-4-CF-9	7/9/2002	Concrete	Tier II	No						
	42-CF-DUP-1	7/8/2002	Concrete	Tier II	No						42-2-CF-31
	42-CF-DUP-2	7/9/2002	Concrete	Tier II	No						42-4-CF-7
	RB-070902-1	7/9/2002	Water	Tier II	No						
	RINSE BLANK-0708-1 43-4-CF-1	7/8/2002 7/10/2002	Water Solid	Tier II Tier II	No No						
	43-4-CF-2	7/10/2002	Solid	Tier II	No						
	43-4-CF-3	7/10/2002	Solid	Tier II	No						
	43-4-CF-4	7/10/2002	Solid	Tier II	No						
	43-4-CF-5 43-4-CF-6	7/10/2002 7/10/2002	Solid	Tier II Tier II	No No						
	43-4-CF-6 43-4-CF-7	7/10/2002	Solid Solid	Tier II	No						
	42-5-CF-1	7/10/2002	Solid	Tier I	No						
2G0P236 4	42-5-CF-2	7/10/2002	Solid	Tier I	No						
	42-3-CF-2	7/11/2002	Concrete	Tier I	No						
	43-5-CF-1 43-5-CF-2	7/11/2002 7/11/2002	Concrete	Tier I Tier I	No No						
	43-5-CF-2 43-5-CF-3	7/11/2002	Concrete Concrete	Tier I	No						
	43-5-CF-4	7/11/2002	Concrete	Tier I	No				<u> </u>		
	43-5-CF-5	7/11/2002	Concrete	Tier I	No						
	43-5-CF-6	7/11/2002	Concrete	Tier I	No						
	43-5-CF-7 43-3-CF-1	7/11/2002 7/12/2002	Concrete Concrete	Tier I Tier I	No No						
	43-3-CF-2	7/12/2002	Concrete	Tier I	No						
	RB-0713-1	7/12/2002	Water	Tier I	No						
	43-3-CF-3	7/15/2002	Concrete	Tier I	No						
	43-3-CF-4	7/15/2002	Concrete	Tier I	No						
	43-3-CF-5 43-3-CF-6	7/15/2002 7/15/2002	Concrete Concrete	Tier I Tier I	No No						
	43-3-CF-7	7/15/2002	Concrete	Tier I	No						
2G0P333 4	43-DUP-3	7/15/2002	Concrete	Tier I	No					<u> </u>	43-3-CF-5
	42-2-CF-25	7/16/2002	Concrete	Tier I	No						
	43-2-CF-1	7/16/2002	Concrete	Tier II	No						
	43-2-CF-2 43-2-CF-3	7/16/2002 7/16/2002	Concrete Concrete	Tier II Tier II	No Yes	Aroclor-1254	Field Duplicate RPD (Solid)	93.3%	<50%	2.8 J	
2001 000		7/10/2002	SUIGER	1161 11	100	Aroclor-1260	Field Duplicate RPD (Solid)	115.2%	<50%	0.70 J	
						Total PCBs	Field Duplicate RPD (Solid)	98.6%	<50%	3.5 J	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

2G0P350 43- 2G0P350 43- 2G0P350 43-	ed) 3-2-CF-4	7/16/2002	Concrete			Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
2G0P350 43- 2G0P350 43- 2G0P350 43-	3-2-CF-4	7/16/2002	Concrete				•				
2G0P350 43- 2G0P350 43-				Tier II	Yes	Aroclor-1016	MSD %R	25.2%	25% to 130%	ND(0.050) J	1
2G0P350 43- 2G0P350 43-						Aroclor-1221	MSD %R	25.2%	25% to 130%	ND(0.050) J	i
2G0P350 43- 2G0P350 43-						Aroclor-1232	MSD %R	25.2%	25% to 130%	ND(0.050) J	L
2G0P350 43- 2G0P350 43-						Aroclor-1242	MSD %R	25.2%	25% to 130%	ND(0.050) J	L
2G0P350 43- 2G0P350 43-						Aroclor-1248	MSD %R	25.2%	25% to 130%	ND(0.050) J	
2G0P350 43- 2G0P350 43-						Aroclor-1254	MSD %R	25.2%	25% to 130%	0.15 J	
2G0P350 43- 2G0P350 43-						Aroclor-1254	MS/MSD RPD	116.7%	<40%	0.15 J	l
2G0P350 43- 2G0P350 43-						Aroclor-1260 Aroclor-1260	MSD %R MS/MSD RPD	25.2% 116.7%	25% to 130% <40%	0.066 J 0.066 J	l
2G0P350 43- 2G0P350 43-						Total PCBs	MS/MSD RPD MSD %R	25.2%	25% to 130%	0.066 J	·
2G0P350 43- 2G0P350 43-						Total PCBs	MS/MSD RPD	116.7%	<40%	0.22 J	·
2G0P350 43- 2G0P350 43-	3-2-CF-5	7/16/2002	Concrete	Tier II	No	Total TOD3		110.7 /8	<4078	0.22 J	
2G0P350 43-	3-2-CF-6	7/16/2002	Concrete	Tier II	No						
	3-2-CF-7	7/16/2002	Concrete	Tier II	No						
2G0P350 43-	3-CF-DUP-4	7/16/2002	Concrete	Tier II	Yes	Aroclor-1254	Field Duplicate RPD (Solid)	93.3%	<50%	7.7 J	43-2-CF-3
1001 000 10		1710/2002	001101010		100	Aroclor-1260	Field Duplicate RPD (Solid)	115.2%	<50%	2.6 J	10 2 01 0
						Total PCBs	Field Duplicate RPD (Solid)	98.6%	<50%	10 J	í
2G0P350 RB	B-071602-1	7/16/2002	Water	Tier II	No						1
	3-1-CC-1	12/30/2003	Concrete	Tier II	No						1
	3-1-CC-4	12/30/2003	Concrete	Tier II	No						
	3-1-CW-2	12/30/2003	Concrete	Tier II	No						
	3-1-CW-3	12/30/2003	Concrete	Tier II	No						· · · · · · · · · · · · · · · · · · ·
	3-1-CW-5	12/30/2003	Concrete	Tier II	No						i
	3-1-CW-6	12/30/2003	Concrete	Tier II	No						1
	3-1-CW-7	12/30/2003	Concrete	Tier II	No						1
	3-1-DUP-1	12/30/2003	Concrete	Tier II	No						43-1-CC-1
	3A-1-CW-1	12/30/2003	Concrete	Tier II	No						L
	3A-1-CW-2	12/30/2003	Concrete	Tier II	No						L
	D-COMPLEX-1-RB-1	1/29/2004	Water	Tier II	No						l
	2-1-CC-2	1/29/2004	Concrete	Tier II	No						l
	2-1-CW-1	1/29/2004	Concrete	Tier II	No						
	4-1-CB-1	1/29/2004	Concrete	Tier II	No						
	4-1-CC-2	1/29/2004	Concrete	Tier II	No						I
	4-1-CC-3 4-1-CW-4	1/29/2004 1/29/2004	Concrete	Tier II Tier II	No Yes	Aroclor-1254	Field Duplicate RPD (Solid)	84.2%	<50%	5.4.1	
44-	4-1-6-00-4	1/29/2004	Concrete	Tier II	res	Total PCBs	Field Duplicate RPD (Solid)	84.2%	<50%	5.4 J 5.4 J	·
4A0P531 44-	4-1-CW-5	1/29/2004	Concrete	Tier II	No	Total PCBS	Field Duplicate RFD (Solid)	04.2 /0	<30 /8	0.4 J	
	4-1-CW-6	1/29/2004	Concrete	Tier II	No						
	4-1-CW-7	1/29/2004	Concrete	Tier II	No						
	4-1-DUP-1	1/29/2004	Concrete	Tier II	Yes	Aroclor-1254	Field Duplicate RPD (Solid)	84.2%	<50%	2.2 J	44-1-CW-4
		1/20/2001	001101010		100	Total PCBs	Field Duplicate RPD (Solid)	84.2%	<50%	2.2 J	
4A0P546 40-	0-COMPLEX-1-RB-2	1/30/2004	Water	Tier II	No						
	2-1-CB-7	1/30/2004	Concrete	Tier II	No	1					
	2-1-CC-3	1/30/2004	Concrete	Tier II	Yes	Aroclor-1254	Field Duplicate RPD (Solid)	173.0%	<50%	3.0 J	1
						Total PCBs	Field Duplicate RPD (Solid)	173.0%	<50%	3.0 J	ĺ
	2-1-CC-4	1/30/2004	Concrete	Tier II	No						İ
	2-1-CC-5	1/30/2004	Concrete	Tier II	No						· · · · · · · · · · · · · · · · · · ·
	2-1-CW-6	1/30/2004	Concrete	Tier II	No						·
	2-1-CW-8	1/30/2004	Concrete	Tier II	No						
4A0P546 42-	2-1-DUP-1	1/30/2004	Concrete	Tier II	Yes	Aroclor-1254	Field Duplicate RPD (Solid)	173.0%	<50%	42 J	42-1-CC-3
						Total PCBs	Field Duplicate RPD (Solid)	173.0%	<50%	42 J	
Metals											
5D0P574 42-	2-2-CF-1A	4/28/2005	Concrete	Tier II	Yes	Beryllium	Method Blank	-	-	ND(0.50)	
						Selenium	CRDL Standard %R	140.6%	80% to 120%	ND(1.00) J	
			-	_		Tin	Method Blank	-		ND(10.0)	·
5D0P574 42-	2-2-CF-2A	4/28/2005	Concrete	Tier II	Yes	Selenium	CRDL Standard %R	140.6%	80% to 120%	ND(1.00) J	
						Tin	Method Blank	-	-	ND(10.0)	l
5D0P574 42-	2-3-CF-2A	4/28/2005	Concrete	Tier II	Yes	Selenium	CRDL Standard %R	140.6%	80% to 120%	ND(1.00) J	l
			-	_		Tin	Method Blank	-	-	ND(10.0)	ł
5D0P574 42-	2-3-CW-1A	4/28/2005	Concrete	Tier II	Yes	Arsenic	CRDL Standard %R	74.9%	80% to 120%	2.30 J	l
						Selenium	CRDL Standard %R	140.6%	80% to 120%	ND(1.00) J	l
		4/00/0005	0	T :- 0	V	Tin	Method Blank	-	-	ND(10.0)	l
5D0P574 42-	2-4-CF-1A	4/28/2005	Concrete	Tier II	Yes	Selenium Tin	CRDL Standard %R Method Blank	140.6%	80% to 120%	ND(1.00) J ND(10.0)	i

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.		Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Aetals (con		4/00/0005	Ormanata	Ting U		Ostanium	ODDL Otra dand 0/D	4.40,0%	000/ 1- 4000/	ND(4.00)	1
D0P574	42-4-CF-2A	4/28/2005	Concrete	Tier II	Yes	Selenium Tin	CRDL Standard %R Method Blank	140.6%	80% to 120%	ND(1.00) J ND(10.0)	
D0P597	42-R-C-1A	4/29/2005	Concrete	Tier II	Yes	Antimony	MS %R	38.1%	- 75% to 125%	ND(6.00) J	
	2.00	1/20/2000	001101010		100	Selenium	CRDL Standard %R	144.9%	80% to 120%	1.40 J	
						Silver	Method Blank	-	-	ND(1.0)	
						Tin	Method Blank	-	-	ND(10.0)	
D0P597	43-3-CF-1A	4/29/2005	Concrete	Tier II	Yes	Antimony	MS %R CRDL Standard %R	38.1% 144.9%	75% to 125%	ND(6.00) J	
						Selenium Silver	Method Blank	144.9%	80% to 120%	1.40 J ND(1.0)	
						Tin	Method Blank		-	ND(10.0)	
D0P597	43-4-CF-1A	4/29/2005	Concrete	Tier II	Yes	Antimony	MS %R	38.1%	75% to 125%	ND(6.00) J	
						Selenium	CRDL Standard %R	144.9%	80% to 120%	1.90 J	
						Silver	Method Blank	-	-	ND(1.0)	
DODGOZ	40.5.05.04	4/00/0005	<u>O a a a a a a a a a a a a a a a a a a a</u>	Ti a a U		Tin	Method Blank	-	-	ND(10.0)	
D0P597	43-5-CF-2A	4/29/2005	Concrete	Tier II	Yes	Antimony Selenium	MS %R CRDL Standard %R	38.1% 144.9%	75% to 125% 80% to 120%	ND(6.00) J 1.60 J	
						Silver	Method Blank	-	-	ND(1.0)	
						Tin	Method Blank	-	-	ND(10.0)	
D0P597	43-DUP-1	4/29/2005	Concrete	Tier II	Yes	Antimony	MS %R	38.1%	75% to 125%		43-5-CF-2
						Selenium	CRDL Standard %R	144.9%	80% to 120%	1.70 J	
						Silver	Method Blank	-	-	ND(1.0)	
D0P597	43-R-C-1A	4/29/2005	Concrete	Tier II	Yes	Tin Antimony	Method Blank MS %R	- 38.1%	- 75% to 125%	ND(10.0) ND(6.00) J	
D0F397	43-N-C-TA	4/29/2003	Concrete	THEF II	165	Selenium	CRDL Standard %R	144.9%	80% to 120%	1.90 J	
						Silver	Method Blank	-	-	ND(1.0)	
						Tin	Method Blank	-	-	ND(10.0)	
D0P597	RB-042805-1	4/29/2005	Water	Tier II	Yes	Lead	CRDL Standard %R	141.0%	80% to 120%	ND(0.00300) J	
						Selenium	CRDL Standard %R	58.3%	80% to 120%	ND(0.00500) J	
						Thallium	CRDL Standard %R	69.7%	80% to 120%	ND(0.0100) J	
D0P597	RB-042905-1	4/29/2005	Water	Tier II	Yes	Lead	CRDL Standard %R	141.0% 58.3%	80% to 120% 80% to 120%	ND(0.00300) J ND(0.00500) J	
						Selenium Thallium	CRDL Standard %R CRDL Standard %R	58.3% 69.7%	80% to 120%	ND(0.00500) J	
E0P023	43-2-CF-1A	5/2/2005	Concrete	Tier II	Yes	Antimony	MS %R	43.2%	75% to 125%	2.50 J	
						Barium	MS %R	71.0%	75% to 125%	65.0 J	
						Barium	Laboratory Duplicate RPD (Solid)	41.1%	<35%	65.0 J	
						Selenium	CRDL Standard %R	130.3%	80% to 120%	ND(1.00) J	
						Tin	Method Blank	-	-	ND(10.0)	
E0D000	42.2.014/24	E/2/200E	Concrete	Tier II	Vee	Zinc	Laboratory Duplicate RPD (Solid)	51.1%	<35%	33.0 J	
E0P023	43-2-CW-2A	5/2/2005	Concrete	Tier II	Yes	Antimony Barium	MS %R MS %R	43.2% 71.0%	75% to 125% 75% to 125%	3.20 J 48.0 J	
						Barium	Laboratory Duplicate RPD (Solid)	41.1%	<35%	48.0 J	
						Selenium	CRDL Standard %R	127.6%	80% to 120%	ND(1.00) J	
						Tin	Method Blank	-	-	ND(10.0)	
						Zinc	Laboratory Duplicate RPD (Solid)	51.1%	<35%	46.0 J	
E0P023	43-3-CF-2A	5/2/2005	Concrete	Tier II	Yes	Antimony	MS %R	43.2%	75% to 125%	2.00 J	
						Barium Barium	MS %R	71.0%	75% to 125% <35%	87.0 J 87.0 J	
						Selenium	Laboratory Duplicate RPD (Solid) CRDL Standard %R	127.6%	<35% 80% to 120%	87.0 J ND(1.00) J	
						Tin	Method Blank	-	-	ND(10.0)	
						Zinc	Laboratory Duplicate RPD (Solid)	51.1%	<35%	190 J	
E0P023	43-4-CF-2A	5/2/2005	Concrete	Tier II	Yes	Antimony	MS %R	43.2%	75% to 125%	2.60 J	
		1				Barium	MS %R	71.0%	75% to 125%	28.0 J	
		1				Barium	Laboratory Duplicate RPD (Solid)	41.1%	<35%	28.0 J	
		1				Selenium	CRDL Standard %R	127.6%	80% to 120%	ND(1.00) J	
		1				Tin Zinc	Method Blank Laboratory Duplicate RPD (Solid)	- 51.1%	- <35%	ND(10.0) 64.0 J	
E0P023	43-5-CF-1A	5/2/2005	Concrete	Tier II	Yes	Antimony	MS %R	43.2%	<35% 75% to 125%	2.30 J	
101 023		3/2/2003	Concrete	ner n	162	Barium	MS %R	71.0%	75% to 125%	2.30 J 100 J	
		1				Barium	Laboratory Duplicate RPD (Solid)	41.1%	<35%	100 J	
		1				Selenium	CRDL Standard %R	127.6%	80% to 120%	ND(1.00) J	
		1				Tin	Method Blank	-	-	ND(10.0)	
	43-DUP-2					Zinc	Laboratory Duplicate RPD (Solid)	51.1%	<35%	68.0 J	
E0P023		5/2/2005	Concrete	Tier II	Yes	Antimony	MS %R	43.2%	75% to 125%	2.40 J	43-2-CF-1

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	. Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Metals (cor	ntinued)					•					
5E0P023	43-DUP-2	5/2/2005	Concrete	Tier II	Yes	Barium	Laboratory Duplicate RPD (Solid)	41.1%	<35%	47.0 J	
						Selenium	CRDL Standard %R	130.3%	80% to 120%	ND(1.00) J	
						Tin Zinc	Method Blank Laboratory Duplicate RPD (Solid)	- 51.1%	- <35%	ND(10.0) 35.0 J	
5E0P023	RB-050205-1	5/2/2005	Water	Tier II	Yes	Chromium	Method Blank	51.1%	<35%	35.0 J ND(0.01)	
JE01 025	110-030203-1	3/2/2003	water	i iei ii	163	Selenium	CRDL Standard %R	127.6%	80% to 120%	ND(0.00500) J	
						Zinc	Method Blank	-	-	ND(0.02)	
TCLP Meta											•
2G0P168	42-2-CF-COMPOSITE-1	7/8/2002	Leachate	Tier II	Yes	Barium	Method Blank	-	-	ND(0.53)	
2G0P168		7/0/0000	Lassbata	Tingu		Mercury	MS %R	1.8%	75% to 125%	R ND(0.00)	
2G0P168	42-3-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	Yes	Barium Mercury	Method Blank MS %R	- 1.8%	- 75% to 125%	ND(0.20) R	
2G0P168	42-4-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	Yes	Barium	Method Blank	-	-	ND(0.20)	
2001 100		110/2002	Louisnato		100	Mercury	MS %R	1.8%	75% to 125%	R	
2G0P168	RB-070902-2	7/9/2002	Water	Tier II	Yes	Mercury	MS %R	1.8%	75% to 125%	R	
2G0P168	RINSE BLANK-0708-1	7/8/2002	Water	Tier II	Yes	Mercury	MS %R	1.8%	75% to 125%	R	
2G0P212	43-4-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	No	+					
2G0P212 2G0P212	43-5-CF-COMPOSITE-1 CF-TCLP-DUP-1	7/10/2002	Leachate Leachate	Tier II Tier II	No No					_	43-5-CF-composite-1
2G0P212 2G0P236	42-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier I	NO	+				_ <u>_</u>	43-3-0F-composite-1
2G0P350	43-2-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	No						
2G0P350	43-3-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	No						
3L0P589	43-1-TCLP-C1	12/30/2003	Leachate	Tier II	Yes	Mercury	CRDL Standard %R	125.0%	80% to 120%	ND(0.00200) J	
L0P594	43A-1-TCLP-C1	12/30/2003	Leachate	Tier II	Yes	Lead	CRDL Standard %R	121.2%	80% to 120%	ND(0.100) J	
						Mercury	CRDL Standard %R CRDL Standard %R	125.0%	80% to 120%	ND(0.00200) J	
4A0P531	40-COMPLEX-1-RB-1	1/29/2004	Water	Tier II	Yes	Selenium Chromium	Method Blank	- 131.2%	80% to 120%	0.00820 J ND(0.05)	
4AUF 331	40-COMPLEX-1-RB-1	1/29/2004	water	THET II	165	Selenium	Method Blank	-		ND(0.20)	
						Selenium	CRDL Standard %R	67.8%	80% to 120%	ND(0.20) J	
4A0P531	44-1-TCLP-C1	1/29/2004	Leachate	Tier II	No						
5E0P024	42-1-CF-COMP-1	5/2/2005	Leachate	Tier II	Yes	Chromium	Method Blank	-	-	ND(0.05)	
						Selenium	CRDL Standard %R	138.0%	80% to 120%	0.00770 J	
VOCs	40.0.05.44	1/00/0005				1					
5D0P574 5D0P574	42-2-CF-1A 42-2-CF-2A	4/28/2005 4/28/2005	Concrete Concrete	Tier II Tier II	No Yes	1.4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	used original analysis
5D0P574	42-2-CF-2A	4/20/2005	Concrete	Tiel II	res	Acetone	CCAL RRF CCAL RRF	0.001	>0.05	ND(0.10) J	used original analysis
						Acetonitrile	CCAL %D	74.4%	<25%	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.005	>0.05		
								0.005	>0.00	ND(0.10) J	
						Ethylbenzene	Surrogate Recovery	140.0%	71% to 121%	0.0010 J	
						Ethylbenzene Propionitrile	Surrogate Recovery CCAL RRF	140.0% 0.010	71% to 121% >0.05	0.0010 J ND(0.010) J	
-DoD=-1	40.0.05.01	1/00/0005			X	Ethylbenzene Propionitrile Toluene	Surrogate Recovery CCAL RRF Surrogate Recovery	140.0% 0.010 140.0%	71% to 121% >0.05 71% to 121%	0.0010 J ND(0.010) J 0.0070 J	
5D0P574	42-3-CF-2A	4/28/2005	Concrete	Tier II	Yes	Ethylbenzene Propionitrile Toluene 1,4-Dioxane	Surrogate Recovery CCAL RRF Surrogate Recovery CCAL RRF	140.0% 0.010 140.0% 0.001	71% to 121% >0.05 71% to 121% >0.05	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J	
5D0P574	42-3-CF-2A	4/28/2005	Concrete	Tier II	Yes	Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetone	Surrogate Recovery CCAL RRF Surrogate Recovery CCAL RRF CCAL RRF	140.0% 0.010 140.0% 0.001 0.035	71% to 121% >0.05 71% to 121% >0.05 >0.05	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J 0.031 J	
5D0P574	42-3-CF-2A	4/28/2005	Concrete	Tier II	Yes	Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetone Acetonitrile	Surrogate Recovery CCAL RRF Surrogate Recovery CCAL RRF CCAL RRF CCAL %D	140.0% 0.010 140.0% 0.001 0.035 74.4%	71% to 121% >0.05 71% to 121% >0.05 >0.05 <25%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J 0.031 J ND(0.10) J	
5D0P574	42-3-CF-2A	4/28/2005	Concrete	Tier II	Yes	Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetone	Surrogate Recovery CCAL RRF Surrogate Recovery CCAL RRF CCAL RRF	140.0% 0.010 140.0% 0.001 0.035	71% to 121% >0.05 71% to 121% >0.05 >0.05	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J 0.031 J	
5D0P574 5D0P574	42-3-CF-2A 42-3-CW-1A	4/28/2005	Concrete	Tier II Tier II	Yes	Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetone Acetonitrile Acetonitrile	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5%	71% to 121% >0.05 71% to 121% >0.05 >0.05 <25% >0.05 >0.05 >0.05 >0.05	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J 0.031 J ND(0.10) J ND(0.10) J ND(0.01) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetone Acetonitrile Acetonitrile Propionitrile 1,1,1-Z-Tetrachloroethane 1,1,1-Tichloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL %D CCAL %D CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 <25% >0.05 >0.05 >0.05 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetonitrile Acetonitrile Propionitrile Propionitrile 1.1,1-Z-Tetrachloroethane 1.1,1.2-Tetrachloroethane 1.1,2.2-Tetrachloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene %R Internal Standard 1,2-Dichlorobenzene-d4 %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3%	71% to 121% >0.05 71% to 121% >0.05 >0.05 <25% >0.05 >0.05 >0.05 50% to 200% 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetonitrile Acetonitrile Propionitrile 1,1,12-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tichloroethane 1,1,2-Tichloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d5 %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5%	71% to 121% >0.05 71% to 121% >0.05 >0.05 <25% >0.05 >0.05 >0.05 50% to 200% 50% to 200% 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetone Acetonitrile Acetonitrile Acetonitrile Propionitrile 1.1.1.2-Tietrachloroethane 1.1.2-Tirchloroethane 1.1.2-Tirchloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL %D CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene-d5 %R Internal Standard fluorobenzene-d5 %R Internal Standard fluorobenzene-d5 %R Internal Standard Fluorobenzene-d5 %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 <25% >0.05 >0.05 >0.05 50% to 200% 50% to 200% 50% to 200% 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetonitrile Acetonitrile Propionitrile 1,1,2-Tetrachloroethane 1,1,2-Tritrachloroethane 1,1,2-Tritrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 41.5% 41.5% 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.05 >0.05 >0.05 50% to 200% 50% to 200% 50% to 200% 50% to 200% 50% to 200% 50% to 200%	0.0010 J ND(0.010) J 0.0070 J 0.031 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetonitrile Acetonitrile Propionitrile 1.1.1.2-Tetrachloroethane 1.1.2-Tetrachloroethane 1.1.2-Tichloroethane 1.1.2-Tichloroethane 1.1.2Dichloroethane 1.1.2Dichloroethane 1.2.3-Tichloroptopane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene-d4 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1% 48.1% 42.3%	71% to 121% >0.05 71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.06 <25% >0.05 >0.05 >0.05 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetonitrile Acetonitrile Propionitrile 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 41.5% 41.5% 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.05 >0.05 >0.05 50% to 200% 50% to 200% 50% to 200% 50% to 200% 50% to 200% 50% to 200%	0.0010 J ND(0.010) J 0.0070 J 0.031 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetonitrile Acetonitrile Acetonitrile Acetonitrile Propionitrile 1.1.1.2-Tietrachloroethane 1.1.2-Tirchloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.2-Jirchloropropane 1.2-Diromo-3-chloropropane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL %D CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard fluorobenzene-d4 %R Internal Standard fluorobenzene d4 %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1% 48.1% 42.3%	71% to 121% >0.05 71% to 121% >0.05 21% to 121% >0.05 >0.05 <25% >0.05 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetonitrile Acetonitrile Acetonitrile Acetonitrile Propionitrile 1.1.1.2-Tietrachloroethane 1.1.2-Tirchloroethane 1.1.2-Tirchloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dibromo-3-chloropropane 1.2-Dibromo-ethane 1.2-Dibromoethane 1.2-Dibromoethane 1.2-Dibromoethane 1.2-Dibromoethane 1.2-Dibromoethane 1.2-Dibromoethane	Surrogate Recovery CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard fluorobenzene-d4 %R Internal Standard fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene-d4 %R Internal Standard fluorobenzene-d4 %R Internal Standard fluorobenzene-d5 %R Internal Standard Chlorobenzene-d5 %R Internal Standard Chlorobenzene-d5 %R Internal Standard Chlorobenzene-d5 %R Internal Standard Chlorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1% 42.3% 42.3% 41.5% 48.1% 48.1%	71% to 121% >0.05 71% to 121% >0.05 71% to 121% >0.05 <0.05 <25% >0.05 >0.05 50% to 200%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetonitrile Acetonitrile Propionitrile 1.1,1,2-Tetrachloroethane 1.1,2-Tetrachloroethane 1.1,2-Trichloroethane 1.1-Dichloroethane 1.2-Dironoethane 1.2-Dironoethane 1.2-Dibromo-3-chloropropane 1.2-Dibromoethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene-d4 %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard Fluorobenzene %R Internal Sta	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1% 42.3% 41.5% 48.1% 48.1% 48.1% 0.001	71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.05 >0.05 50% to 200% 50% to 200%	0.0010 J ND(0.010 J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetonitrile Acetonitrile Acetonitrile Acetonitrile 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropthane 1,2-Dibromo-3-chloropropane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene-d4 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d5 %R Internal Standard 1,2-Dichlorobenzene-d6 %R Internal Standard Fluorobenzene-%R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1% 42.3% 41.5% 48.1% 42.3% 41.5% 48.1% 0.001 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.06 <25%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.0050) J ND(0.010) J ND(0.10) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1.4-Dioxane Acetonitrile Acetonitrile Propionitrile 1.1,1,2-Tetrachloroethane 1.1,2-Tetrachloroethane 1.1,2-Tritzachloroethane 1.1,2-Tritzachloroethane 1.1-Dichloroethane 1.2-Dibromoethane 1.2-	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard Chlorobenzene-d5 %R Internal Standard Chlorobenzene-d5 %R Internal Standard Chlorobenzene-%R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene-d6 %R Internal Standard Fluorobenzene %R CCAL RRF CCAL RRF Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 48.1% 48.1% 48.1% 48.1% 48.1% 48.1% 48.1% 48.1% 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.05 >0.05 >0.05 50% to 200% 50% to 200%	0.0010 J ND(0.010) J 0.0070 J 0.031 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.010) J ND(0.0050) J	used original analysis
						Ethylbenzene Propionitrile Toluene 1,4-Dioxane Acetonitrile Acetonitrile Acetonitrile Acetonitrile 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropthane 1,2-Dibromo-3-chloropropane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane	Surrogate Recovery CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF CCAL RRF Internal Standard Chlorobenzene-d5 %R Internal Standard Fluorobenzene-d4 %R Internal Standard Fluorobenzene-d5 %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d4 %R Internal Standard 1,2-Dichlorobenzene-d5 %R Internal Standard 1,2-Dichlorobenzene-d6 %R Internal Standard Fluorobenzene-%R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	140.0% 0.010 140.0% 0.001 0.035 74.4% 0.005 0.010 41.5% 48.1% 42.3% 41.5% 48.1% 42.3% 41.5% 48.1% 42.3% 41.5% 48.1% 0.001 48.1%	71% to 121% >0.05 71% to 121% >0.05 >0.05 >0.06 <25%	0.0010 J ND(0.010) J 0.0070 J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.10) J ND(0.0050) J ND(0.010) J ND(0.10) J	used original analysis

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No. VOCs (cont	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
5D0P574	42-3-CW-1A	4/28/2005	Concrete	Tier II	Yes	3-Chloropropene	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
0201011	20000	1/20/2000	001101010		100	4-Methyl-2-pentanone	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.010) J	
						Acetone	CCAL RRF	0.035	>0.05	0.075 J	
						Acetone	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	0.075 J	
						Acetonitrile	CCAL %D	74.4%	<25%	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.005	>0.05	ND(0.10) J	
						Acetonitrile	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.10) J	
						Acrolein Acrylonitrile	Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	48.1% 48.1%	50% to 200% 50% to 200%	ND(0.10) J ND(0.0050) J	
						Benzene	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Bromodichloromethane	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Bromoform	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						Bromomethane	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Carbon Disulfide	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	0.0011 J	
						Carbon Tetrachloride	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Chlorobenzene	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						Chloroethane	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Chloroform	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Chloromethane	Internal Standard Fluorobenzene %R	48.1% 48.1%	50% to 200%	ND(0.0050) J ND(0.0050) J	
						cis-1,3-Dichloropropene Dibromochloromethane	Internal Standard Fluorobenzene %R Internal Standard Chlorobenzene-d5 %R	40.1%	50% to 200% 50% to 200%	ND(0.0050) J	
						Dibromomethane	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Dichlorodifluoromethane	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Ethyl Methacrylate	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						Ethylbenzene	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						Iodomethane	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Isobutanol	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.10) J	
						Methacrylonitrile	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						Methyl Methacrylate Methylene Chloride	Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	48.1% 48.1%	50% to 200%	ND(0.0050) J 0.0048 J	
						Propionitrile	CCAL RRF	48.1%	50% to 200% >0.05	ND(0.010) J	
						Propionitrile	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.010) J	
						Styrene	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						Tetrachloroethene	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						Toluene	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	0.020 J	
						trans-1,2-Dichloroethene	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	ND(0.0050) J	
						trans-1,3-Dichloropropene	Internal Standard Chlorobenzene-d5 %R	41.5%	50% to 200%	ND(0.0050) J	
						trans-1,4-Dichloro-2-butene	Internal Standard 1,2-Dichlorobenzene-d4 %R	42.3%	50% to 200%	ND(0.0050) J	
						Trichloroethene	Internal Standard Fluorobenzene %R	48.1%	50% to 200%	0.0026 J	
						Trichlorofluoromethane	Internal Standard Fluorobenzene %R	48.1% 48.1%	50% to 200%	ND(0.0050) J ND(0.0050) J	
						Vinyl Acetate Vinyl Chloride	Internal Standard Fluorobenzene %R Internal Standard Fluorobenzene %R	48.1%	50% to 200% 50% to 200%	ND(0.0050) J ND(0.0050) J	
						Xylenes (total)	Internal Standard Chlorobenzene-d5 %R	40.1%	50% to 200%	ND(0.0050) J	
5D0P574	42-4-CF-1A	4/28/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
				-		Acetone	CCAL RRF	0.035	>0.05	0.0053 J	
						Acetone	Surrogate Recovery	140.0%	71% to 121%	0.0053 J	
						Acetonitrile	CCAL %D	74.4%	<25%	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.005	>0.05	ND(0.10) J	
						Propionitrile	CCAL RRF	0.010	>0.05	ND(0.010) J	
						Toluene	Surrogate Recovery	140.0%	71% to 121%	0.0045 J	
5D0P574	42-4-CF-2A	4/28/2005	Concrete	Tier II	No	Xylenes (total)	Surrogate Recovery	140.0%	71% to 121%	0.0022 J	used original analysis
5D0P574 5D0P597	42-R-C-1	4/29/2005	Concrete	Tier II	Yes	1.4-Dioxane	CCAL RRF	0.003	>0.05	ND(0.10) J	useu original analysis
						Acetonitrile	CCAL RRF	0.039	>0.05	ND(0.10) J	
						Acrolein	CCAL RRF	0.040	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0.031	>0.05	ND(0.10) J	
						Propionitrile	CCAL %D	66.8%	<25%	ND(0.025) J	
						Toluene	Rinse Blank	-	-	ND(0.19)	
L						Vinyl Acetate	CCAL %D	36.8%	<25%	ND(0.025) J	
5D0P597	43-3-CF-1A	4/29/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
						Acetonitrile	CCAL %D CCAL RRF	65.2%	<25%	ND(0.10) J ND(0.10) J	
						Acetonitrile Acrolein	CCAL RRF CCAL %D	0.013 61.5%	>0.05 <25%	ND(0.10) J ND(0.10) J	
						Acrolein	CCAL %D CCAL RRF	61.5% 0.006	<25%	ND(0.10) J ND(0.10) J	
<u> </u>	L	I				AGOIEITI		0.006	>0.05	ND(0.10) J	I

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (cont	inued)										
5D0P597	43-3-CF-1A	4/29/2005	Concrete	Tier II	Yes	Isobutanol	CCAL %D	35.6%	<25%	ND(0.10) J	
						Isobutanol	CCAL RRF	0.019	>0.05	ND(0.10) J	
						Propionitrile	CCAL RRF	0.011	>0.05	ND(0.010) J	
						Vinyl Acetate	CCAL %D	99.9%	<25%	ND(0.0050) J	
D0P597	43-4-CF-1A	4/29/2005	Concrete	Tier II	Yes	1,4-Dioxane Acetonitrile	CCAL RRF CCAL RRF	0.003	>0.05	ND(0.10) J ND(0.10) J	
						Acetonitrie	CCAL RRF	0.039	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0.040	>0.05	ND(0.10) J	
						Propionitrile	CCAL %D	66.8%	<25%	ND(0.025) J	
						Toluene	Rinse Blank	-	-	ND(0.14)	
						Vinyl Acetate	CCAL %D	36.8%	<25%	ND(0.025) J	
D0P597	43-5-CF-2A	4/29/2005	Concrete	Tier II	Yes	Toluene	Rinse Blank	-	-	ND(0.014)	
D0P597	43-DUP-1	4/29/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.003	>0.05		43-5-CF-2
						Acetonitrile	CCAL RRF CCAL RRF	0.039 0.040	>0.05 >0.05	ND(0.10) J ND(0.10) J	
						Acrolein Isobutanol	ICAL RRF	0.040	>0.05	ND(0.10) J	
						Propionitrile	CCAL %D	66.8%	<25%	ND(0.025) J	
						Toluene	Rinse Blank	-	-	ND(0.025)	
5D0P597 5D0P597						Vinyl Acetate	CCAL %D	36.8%	<25%	ND(0.025) J	
	43-R-C-1A	4/29/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.003	>0.05	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.039	>0.05	ND(0.10) J	
						Acrolein	CCAL RRF	0.040	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0.031	>0.05	ND(0.10) J	
						Propionitrile	CCAL %D Rinse Blank	66.8%	<25%	ND(0.025) J ND(0.15)	
						Toluene Vinyl Acetate	CCAL %D	36.8%		ND(0.15)	
	RB-042805-1	4/29/2005	Water	Tier II	Yes	1,2,3-Trichloropropane	CCAL %D	27.6%	<25%	ND(0.0050) J	
201 001	112 012000 1	1/20/2000	mator		100	1.4-Dioxane	CCAL RRF	0.002	>0.05	ND(0.20) J	
						Chloroethane	CCAL %D	38.4%	<25%	ND(0.0050) J	
						Isobutanol	ICAL RRF	0.031	>0.05	ND(0.10) J	
						Propionitrile	CCAL %D	69.6%	<25%	ND(0.010) J	
					N.	Vinyl Acetate	CCAL %D	46.0%	<25%	ND(0.0050) J	
5D0P597	RB-042905-1	4/29/2005	Water	Tier II	Yes	1,2,3-Trichloropropane	CCAL %D	27.6%	<25%	ND(0.0050) J	
						1,4-Dioxane Chloroethane	CCAL RRF CCAL %D	0.002 38.4%	>0.05 <25%	ND(0.20) J ND(0.0050) J	
						Isobutanol	ICAL RRF	0.031	>0.05	ND(0.0050) J	
						Propionitrile	CCAL %D	69.6%	<25%	ND(0.010) J	
						Vinyl Acetate	CCAL %D	46.0%	<25%	ND(0.0050) J	
D0P597	TRIP BLANK	4/29/2005	Water	Tier II	Yes	1,2,3-Trichloropropane	CCAL %D	27.6%	<25%	ND(0.0050) J	
						1,4-Dioxane	CCAL RRF	0.002	>0.05	ND(0.20) J	
						Chloroethane	CCAL %D	38.4%	<25%	ND(0.0050) J	
						Isobutanol	ICAL RRF	0.031	>0.05	ND(0.10) J	
						Propionitrile Vinyl Acetate	CCAL %D CCAL %D	69.6% 46.0%	<25% <25%	ND(0.010) J ND(0.0050) J	
E0P023	43-2-CF-1A	5/2/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL %D CCAL RRF	46.0%	<25%	ND(0.0050) J ND(0.10) J	
201 023	-0.2-01-1A	5/2/2003	Concrete	ner n	165	Acetone	CCAL RRF CCAL %D	75.2%	<pre>>0.05 <25%</pre>	ND(0.020) J	
						Acetonitrile	CCAL %D	29.2%	<25%	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.005	>0.05	ND(0.10) J	
						Acrolein	CCAL %D	33.5%	<25%	ND(0.10) J	
						Dibromochloromethane	CCAL %D	28.8%	<25%	ND(0.0050) J	
						Isobutanol	CCAL %D	85.3%	<25%	ND(0.10) J	
						Propionitrile	CCAL %D	99.9%	<25%	ND(0.010) J	
						Propionitrile Toluene	CCAL RRF Field Duplicate RPD (Solid)	0.009	>0.05 <50%	ND(0.010) J 0.017 J	
						Trichlorofluoromethane	CCAL %D	34.8%	<50%	ND(0.0050) J	
						Vinyl Acetate	CCAL %D	99.9%	<25%	ND(0.0050) J	
						Xylenes (total)	CCAL %D	34.7%	<25%	ND(0.0050) J	
E0P023	43-2-CW-2A	5/2/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
						Acetone	CCAL %D	75.2%	<25%	ND(0.020) J	
						Acetonitrile	CCAL %D	29.2%	<25%	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.005	>0.05	ND(0.10) J	
						Acrolein	CCAL %D	33.5%	<25%	ND(0.10) J	
	1					Dibromochloromethane	CCAL %D	28.8%	<25%	ND(0.0050) J	
-				1		Isobutanol	CCAL %D	85.3%	<25%	ND(0.10) J	L

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (cont		oonootou	matrix	20101	quamouton	oompound		Value	0011101 211110	qualities itobali	
5E0P023	43-2-CW-2A	5/2/2005	Concrete	Tier II	Yes	Propionitrile	CCAL %D	99.9%	<25%	ND(0.010) J	
						Propionitrile	CCAL RRF	0.009	>0.05	ND(0.010) J	
						Trichlorofluoromethane	CCAL %D	34.8%	<25%	ND(0.0050) J	
						Vinyl Acetate	CCAL %D	99.9%	<25%	ND(0.0050) J	
		5/0/0005	<u> </u>	T 11		Xylenes (total)	CCAL %D	34.7%	<25%	ND(0.0050) J	
5E0P023	43-3-CF-2A	5/2/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
						Acetonitrile Acrolein	CCAL RRF CCAL %D	0.005 38.5%	>0.05 <25%	ND(0.10) J ND(0.10) J	
						Propionitrile	CCAL %D	99.9%	<25%	ND(0.010) J	
						Propionitrile	CCAL RRF	0.009	>0.05	ND(0.010) J	
						Vinyl Acetate	CCAL %D	99.9%	<25%	ND(0.0050) J	
5E0P023	43-4-CF-2A	5/2/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
						Acetonitrile	CCAL RRF	0.005	>0.05	ND(0.10) J	
						Acrolein	CCAL %D	38.5%	<25%	ND(0.10) J	
						Propionitrile	CCAL %D	99.9%	<25%	ND(0.010) J	
						Propionitrile	CCAL RRF	0.009	>0.05	ND(0.010) J	
		- (- (Vinyl Acetate	CCAL %D	99.9%	<25%	ND(0.0050) J	
5E0P023	43-5-CF-1A	5/2/2005	Concrete	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
						Acetonitrile	CCAL RRF CCAL %D	0.005 38.5%	>0.05 <25%	ND(0.10) J ND(0.10) J	
						Acrolein Propionitrile	CCAL %D	38.5%	<25%	ND(0.10) J ND(0.010) J	
						Propionitrile	CCAL RRF	0.009	>0.05	ND(0.010) J	
						Vinvl Acetate	CCAL %D	99.9%	<25%	ND(0.0050) J	
5E0P023	43-DUP-2	5/2/2005	Concrete	Tier II	Yes	1,1,2,2-Tetrachloroethane	CCAL %D	89.6%	<25%	ND(0.0050) J	43-2-CF-1
0201 020	10 201 2	0/2/2000	001101010		100	1.4-Dioxane	CCAL %D	67.6%	<25%	ND(0.10) J	10 2 01 1
						1,4-Dioxane	CCAL RRF	0.001	>0.05	ND(0.10) J	
						Acetone	CCAL RRF	0.044	>0.05	ND(0.020) J	
						Acetonitrile	CCAL RRF	0.006	>0.05	ND(0.10) J	
						Acrolein	CCAL %D	69.6%	<25%	ND(0.10) J	
						Bromomethane	CCAL %D	31.2%	<25%	ND(0.0050) J	
						Methyl Methacrylate	CCAL %D	28.8%	<25%	ND(0.0050) J	
						Propionitrile	CCAL %D	63.8%	<25%	ND(0.010) J	
						Propionitrile Toluene	CCAL RRF Field Duplicate RPD (Solid)	0.014	>0.05 <50%	ND(0.010) J 0.0049 J	
5E0P023	RB-050205-1	5/2/2005	Water	Tier II	Yes	1,4-Dioxane	CCAL RRF	0.003	>0.05	ND(0.20) J	
3E0F023	RB-030205-1	5/2/2005	water	ner n	165	Acetonitrile	CCAL RRF	0.003	>0.05	ND(0.20) J	
						Acrolein	CCAL RRF	0.040	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0.031	>0.05	ND(0.10) J	
						Propionitrile	CCAL %D	66.8%	<25%	ND(0.010) J	
						Vinyl Acetate	CCAL %D	36.8%	<25%	ND(0.0050) J	
TCLP VOCs						-	•				•
2G0P168	42-2-CF-COMPOSITE-1	7/8/2002	Leachate	Tier II	No						
2G0P168	42-3-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	No						Used original analysis
2G0P168	42-4-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	No						
2G0P168	RB-070902-2	7/9/2002	Water	Tier II	No	l					
2G0P168 2G0P212	RINSE BLANK-0708-1 43-4-CF-COMPOSITE-1	7/8/2002	Water	Tier II	No No	l				_	
2G0P212 2G0P212	43-4-CF-COMPOSITE-1 43-5-CF-COMPOSITE-1	7/10/2002 7/10/2002	Leachate Leachate	Tier II Tier II	No No					-	
2G0P212 2G0P212	CF-TCLP-DUP-1	7/10/2002	Leachate	Tier II	No					-	43-5-CF-composite-1
2G0P212 2G0P236	42-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier I	No						-o o oi -composite" i
2G0P350	43-2-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	No						
2G0P350	43-3-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	No	1					
3L0P589	43-1-TCLP-C1	12/30/2003	Leachate	Tier II	Yes	2-Butanone	ICAL RRF	0.037	>0.05	ND(0.20) J	
						Tetrachloroethene	CCAL %D	36.4%	<25%	ND(0.10) J	
3L0P594	43A-1-TCLP-C1	12/30/2003	Leachate	Tier II	Yes	2-Butanone	ICAL RRF	0.037	>0.05	ND(0.20) J	
						Tetrachloroethene	CCAL %D	36.4%	<25%	ND(0.10) J	
4A0P531	40-COMPLEX-1-RB-1	1/29/2004	Leachate	Tier II	Yes	2-Butanone	ICAL RRF	0.033	>0.05	ND(0.20) J	
4A0P531	44-1-TCLP-C1	1/29/2004	Leachate	Tier II	Yes	2-Butanone	ICAL RRF	0.033	>0.05	ND(0.20) J	
5E0P024	42-1-CF-COMP-1	5/2/2005	Leachate	Tier II	No						
SVOCs	10.0.05.44	4/00/0005	0	Tingl				07.00/	05%	ND(0.00)	
5D0P574	42-2-CF-1A	4/28/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	27.6%	<25%	ND(0.33) J	
	1	1				1,4-Naphthoquinone	CCAL %D	41.2%	<25%	ND(0.67) J	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Order Order 1 Controls Ter II Yes Distribution Distribution <th< th=""><th>Sample Delivery Group No.</th><th>Sample ID</th><th>Date Collected</th><th>Matrix</th><th>Validation Level</th><th>Qualification</th><th>Compound</th><th>QA/QC Parameter</th><th>Value</th><th>Control Limits</th><th>Qualified Result</th><th>Notes</th></th<>	Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Part Part Part Part Part Par							· ·					
NPT 0.257-07.04 0.010 0.057 0.010	5D0P574	42-2-CF-1A	4/28/2005	Concrete	Tier II	Yes	2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%		R	
NP34 4-24-25-24 Additional processional 0.87, 0.07, 00 10.07, 10.07, 00.12, 00, 10.07, 00 10.07, 10.07							2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%		R	
North 420-07300 580% 0.250% 0.59% 0.250% 58.09% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,4,6-Trichlorophenol</td> <td>Surrogate Recovery Acid</td> <td>0.8%, 0.6%, 4.0%</td> <td></td> <td>R</td> <td></td>							2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%		R	
X8994 42-40-matrophenal Surrages Recovey Acd 0.9%, 0.9%, 4.0% 100% 0.120, 0%, 98 R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.9%, 4.0% 100% 0.120, 0%, 20% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 20% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 20% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 0% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 0% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 0% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 0% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0%, 0% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0% R 2.40-matrophenal Surrages Recovey Acd 0.9%, 0.0%, 4.0% 100% 0.120, 0% R 4.40-matrophenal							2,4-Dichlorophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%	19.0% to 122.0%, 25.0% to 121.0%,	R	
NPFA 42-5F2A 422020 Concete Stranget Recovery Add Diff. 00, 056, 400 190, 056, 200, 101, 100, 100, 100, 100, 200, 200							2,4-Dimethylphenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%	19.0% to 122.0%, 25.0% to 121.0%,	R	
							2,4-Dinitrophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%	19.0% to 122.0%, 25.0% to 121.0%,	R	
key							2,6-Dichlorophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%	19.0% to 122.0%, 25.0% to 121.0%,	R	
2*Adettyphend Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 0.2%, 20.7%, 20.7%, 07.4% R 2*Mettyphend Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, 10.0% R 2*Minghend Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 2*Mettyphend Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Lingthonol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Chero-3-Methyphenol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Chero-3-Methyphenol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Unicyhenol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Unicyhenol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Unicyhenol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%, 101.0%, R R 4*Unicyhenol Sungate Recovery Acid 0.9%, 0.6%, 4.0% 100% 102.0%, 25.0%							2-Chlorophenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%	19.0% to 122.0%, 25.0% to 121.0%,	R	
Participant Data										19.0% to 122.0%, 25.0% to 121.0%,		
30/974 422-CF-2A 4282005 Concest Territ Yes Surgate Recovery Acid 0.9%, 0.6%, 4.0% 190% to 122.0%, 20.5% 112.0%, 112.0%, R 30/974 422-CF-2A 4282005 112.0%, 112.0%, R R 120.5% 112.0%, 112.0%, R R 30/974 42-CF-2A 4282005 Concest 0.6%, 0.0%, 4.0% 190% to 122.0%, 20.5% R 120.5%										19.0% to 122.0%, 25.0% to 121.0%,		
VPS74 42-CF-2A 4282005 Concrete Terr II Yes Additional Surgate Recovery Acid 0.9%, 0.9%, 4.0% 190% 102.20%, 50.0% 107.10% R VPS74 42-CF-2A 4282005 Concrete Terr II Yes Additional Surgate Recovery Acid 0.9%, 0.9%, 4.0% 190% 102.20%, 50.0% 107.10% R VPS74 42-CR00-3-Methylphenelylamics CCAL %D 44-Mirophenel Surgate Recovery Acid 0.9%, 0.9%, 4.0% 190% 102.20%, 50.0% 107.10% R All Principal Concentration CCAL %D 44-Mirophenel Surgate Recovery Acid 0.9%, 0.9%, 4.0% 190% 102.0%, 50.0% 107.10% R All Principal Concentration CCAL %D 44-9% -20% NDIO.67) J - All Principal Concentration CCAL %D 44-9% -20% NDIO.67) J - All Principal Concentration CCAL %D 289.1% -20% NDIO.67) J - All Principal Concentration CCAL %D 289.1% -20% NDIO.67) J - All Principal Concentration CCAL %D 289.1% -20% NDIO.67) J												
horesteen en												
Portex 4/-Nitrogenerity-annu construction of the surrogate Recovery Acid 0.9%, 0.9%, 4.0%, 19.0%, 0.10.9%, 19.0%,								, , , , , , , , , , , , , , , , , , ,				
VP574 428/205 Concrete Ter II Yes Vector 0.075, 0.075, 4.075 Vector Vector NOIGOT J VP574 42-2CF-2A 428/2005 Concrete Ter II Yes Vector Vector NOIGOT J NOIGOT J VP574 42-2CF-2A 428/2005 Concrete Ter II Yes Vector Vector Vector NOIGOT J VP574 42-2CF-2A 428/2005 Concrete Ter II Yes Vector Vector NOIGOT J NOIGOT J VP574 42-2CF-2A 428/2005 Concrete Ter II Yes Vector Vector NOIGOT J NOIGOT J VP574 42-2CF-2A 428/2005 Concrete Ter II Yes Vector Cold SQD 68/1% 1.09% 10/20/20%, 52/5% 10/21/0% R VP574 42-2CF-2A 428/2005 Concrete Ter II Yes Vector Cold SQD 68/1% 1.09% 10/20/20%, 52/5% 10/21/0% R VP574 42-2CF-2A 42/82/2005												
VPF74 42-2CF-2A 4282005 Concrete Tier II Yes										24.0% to 113.0%		
hume CCAL %0 44.1% -22% ND(0.33) 1 Banzidne ICAL Linear Regression 0.412 -0.99 ND(0.67) 1 Banzidne ICAL SD 72.8% -22% ND(0.67) 1 Banzidne ICAL Ward Regression 0.412 -0.99 ND(0.67) 1 Hexachlorophene ICAL %8D 34.5% -23% ND(0.67) 1 Hexachlorophene ICAL %8D 91% -22% ND(0.67) 1 Mentagyriene CCAL %D 99.1% -22% ND(0.67) 1 Mentagyriene CCAL %D 0.8%, 0.6%, 4.0% 102.0%, 25.0% to 121.0%, ND(0.67) 1 Mentagyriene CCAL %D 0.8%, 0.6%, 4.0% 102.0%, 25.0% to 121.0%, ND(0.67) 1 Strolge Strolge CCAL %D 2.86 for 113.0%, R R 1.4.8.371 Strolge CCAL %D 2.86 for 113.0%, R R 2.4.6 for trachlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 12.0%, 25.0% to 121.0%, R 2.4.5 forticorphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 12.2.0%, 25.0% to 121.0%, R												
Press 4/28/2005 Concrete Tier II Yes Image: Finite Recovery Acid 0.412 >0.99 ND(0.67) J 00P574 4/28/2005 Concrete Tier II Yes CAL %0 99.9% -225% ND(0.67) J 00P574 4/28/2005 Concrete Tier II Yes Surgate Recovery Acid 0.8%, 0.6%, 4.0% 12.0%, 10.12.0%, 2.0% ND(0.67) J 00P574 4/28/2005 Concrete Tier II Yes Surgate Recovery Acid 0.8%, 0.6%, 4.0% 12.0%, 10.12.0%, 2.0% to 12.0%, R 00P574 4/28/2005 Concrete Tier II Yes Image: Recovery Acid 0.8%, 0.6%, 4.0% 12.0% to 12.0%, 2.0% to 12.0%, R 00P574 4/28/2005 Concrete Tier II Yes Image: Recovery Acid 0.8%, 0.6%, 4.0% 12.0%, 2.0% to 12.0%, R R 00P574 4/28/2005 Concrete Tier II Yes Yes 13.5 Timitrobinghonic CCAL %D 2.4% Timitrobinghonic R R 2.3.46 Friendinghonic Surgate Recovery Acid 12.%, 3.2% 19.0% to 12.0%, 2.0% to 12.												
Pertaining Pertaining												
Version Version 12%, 32% 19.0%, 102, 05%, 103, 05%,												
http://www.new.university.org Hexachlorophenol CCAL %D 99.1% -25% ND(0.67) J Methaprileno CCAL %D 99.9% -25% ND(0.67) J Methaprileno CCAL %D 58.1% -25% ND(0.67) J Pentachlorophenol Surrogate Recovery Acid 0.8%, 0.6%, 4.0% 12.0% to 122.0%, 25.0% to 12.0% R 00P574 42.2-CF-2A 4/28/2005 Concrete Ter II Yes 13.5-friniroberzene CCAL %D 0.4%, 0.6%, 4.0% 12.0% to 12.0%, 52.0% to 12.0% R 00P574 42.2-CF-2A 4/28/2005 Concrete Ter II Yes 13.5-friniroberzene CCAL %D 27.6% -2.2% ND(0.33) J used original sample 23.4.6 * fertaficipopenol Surogate Recovery Acid 12.%, 12.0% R -2.5% ND(0.33) J used original sample 24.4.6 Trichlorophenol Surogate Recovery Acid 12.%, 32.% 19.0% to 12.2.0%, 25.0% to 12.1.0% R -2.46/11.00% R -2.26% ND(0.33) J used original sample 24.6 Trichlorophenol Surogate Recovery Acid 12.%,												
http://winder.org/action/period/per												
Methapyrilene CCAL %D 58.1%												
Nome Pertachiorophenol Surrogate Recovery Acid 0.8%, 0.6%, 4.0% 19.0% to 122.0%, 0.102.% Pertachiorophenol Surrogate Recovery Acid 0.8%, 0.6%, 4.0% 19.0% to 122.0%, 0.50% to 121.0% R 00P574 42:2-CF-2A 4/28/2005 Concrete Tier II Yes 16.4L RRF 0.043 >0.05% ND(0.3) J 0.05% ND(0.3) J 0.05% ND(0.3) J 0.05% ND(0.3) J 0.05% ND(0.67) J 0.043 >0.05% ND(0.67) J 0.043 >0.05% ND(0.67) J 0.05% ND(0.												
Phenol Surrogate Recovery Acid 0.8%, 0.6%, 4.0% 19.0% to 12.0%, 2.0%, 10.10.0% R 00P574 4/28/2005 Concrete Tier II Yes 13.5°Tinitrobenzane CCAL %D 27.6% <25%										19.0% to 122.0%, 25.0% to 121.0%,		
Outperf 4/28/2005 Concrete Tier II Yes Saforle ICAL RRF 0.043 >0.05 ND(0.33) J 000P574 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 27.6% -22% ND(0.33) J used original sample 2.3.4 E-Trichlorophenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Trichlorophenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Trichlorophenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.0-Trichlorophenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimetry(phenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimetry(phenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimetry(phenol Surogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimetry(phenol Surogate Recovery Acid 1.2							Phenol	Surrogate Recovery Acid	0.8%, 0.6%, 4.0%	19.0% to 122.0%, 25.0% to 121.0%,	R	
42-2-CF-2A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitobenzene CCAL %D 21.6% <25% ND(0.33) J used original sample 2.4.5 Tetral Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.5-Trichiorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.5-Trichiorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.5-Trichiorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%							Safrala		0.042		ND(0.22) 1	
1.4-Naphthoquinone CCAL %D 41.2% -25% ND(0.67) J 2.3.4.6-Tetrachlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate	D0P574	42-2-CE-24	4/28/2005	Concrete	Tier II	Vec						used original sample
2.3.4.6 ⁻ Tetrachlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6 ⁻ Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6 ⁻ Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimethylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimethylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dintothylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R	001014		4/20/2000	Contracto	THOI II	105						used original sample
2.4.5-Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3.4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Din												
2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dimitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dimitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chicrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylp												
2,4-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dinterbylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dintrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dintrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrogu												
2,4-Dimethylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dimethylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitropationel Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Dinitro-3-Methylp												
2.4-Dinitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 38.4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R <												
2.6-Dichtorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitropunoline-1-oxide CCAL %D 4.8% X X ND(0.67) J A-Nitropunoline-1-oxide CCAL												
2-Chlorophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitroquinoline-1-oxide CCAL %D 48.7% <25%				1								
2-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 384-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitrophenolnet-t-oxide CCAL %D 48.7% <25%				1								
2-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitropunoline-1-oxide CCAL %D 48.7% <25%				1								
3&4-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chioro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Chioro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4.Nitropationoline-1-oxide CCAL SCD 48.7% <25%												-
4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitroguinoline-1-oxide CCAL %D 48.7% <25%				1								
4-Chloro-3-Methylphenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol CCAL %D 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R a, a'-Dimethylphenethylamine CCAL %D 48.7% <25%												
4-Nitrophenol Surrogate Recovery Acid 1.2%, 3.2% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol CCAL %D 48.7% <25%												
4-Nitroquinoline-1-oxide CCAL %D 48.7% <25% ND(0.67) J a,a'-Dimethylphenethylamine CCAL %D 40.4% <25%												-
a,a [:] Dimethylphenethylamine CCAL %D 40.4% <25% ND(0.67) J Aniline CCAL %D 48.1% <25%												
Aniline CCAL %D 48.1% <25% ND(0.33) J Benzidine ICAL Linear Regression 0.412 >0.99 ND(0.67) J Benzidine CCAL %D 72.8% <25%												-
Benzidine ICAL Linear Regression 0.412 >0.99 ND(0.67) J Benzidine CCAL %D 72.8% <25%				1								
Benzidine CCAL %D 72.8% <25% ND(0.67) J				1								
				1								
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J		

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Image: https://www.net.image: https://wwww.net.image: https://www.net.image: https://www.ne	Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
DDP#974 42-3CF-9A			4/20/200E	Concrete	Tios II	Vee	Heyeshlerenhene		00.19/	-259/		
Disperse Participation Particobind Particobind	3D0F374	42-2-0F-2A	4/20/2005	Concrete	ner n	165						
Subsection Participant Subsection 1298, 326 1298, 326, 1292, 320, 15 1220, 320, 15 1220, 320, 15 1220, 320, 15 1220, 320, 15 1220, 320, 15 1220, 320, 15 1220, 12000, 1200, 1200, 1200, 1200, 1200, 1200, 1200, 1200, 1200, 1200, 1												
BOURTY Result Services Services <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
SDB*71 R3-0F 2A 4/262005 Concrete Ter II Yes Similar DOL, BS7 DOL,												
Number of the second												
2.4.6.7 manutorephanel Surgate Recovery Acid 0.95, 0.07, 10.07	5D0P574	42-3-CF-2A	4/28/2005	Concrete	Tier II	Yes						used original sample
23.56-147 23.56-147 23.076 11.576 11.576 11.076 1							1,4-Naphthoquinone	CCAL %D	41.2%		ND(3.3) J	
24.5 (miningendand) Surgate Recovery Acid 0.0%, 0.0%, 10.0% 0.24.0%, 0.10.0% R 24.5 (miningendand) Surgate Recovery Acid 0.0%, 0.0%, 10.0% 10.0% 0.0%, 0.0%, 10.0% 10.0% R 24.5 (miningendand) Surgate Recovery Acid 0.0%, 0.0%, 10.0% 10.0% 10.0% 10.0% R 1 24.5 (miningendand) Surgate Recovery Acid 0.0%, 0.0%, 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% R 1 2.4.5 (miningendand) Surgate Recovery Acid 0.0%, 0.0%, 10.0% 10.0%							2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
							2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
							2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
 							2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
k 423-CW-1A 4/282005 Concrete K K K K K 2.6 Obcinanghenol Suragate Recovery Acid 0.0%, 0.0%, 15.0% 10.0%, 0.0%, 15.0% 24.0%, to 113.0%, R K 2.6 Obcinanghenol Suragate Recovery Acid 0.0%, 0.0%, 15.0% 10.0%, 0.0%, 15.0% 10.0%, 0.0%, 15.0% 10.0%, 0.0%, 15.0% 22.0%, 25.0%, to 113.0%, R K 2.0 Horophenol Suragate Recovery Acid 0.0%, 0.0%, 15.0% 10.0%, 10.0%, 10.0% 10.0%, 10.0%, 10.0% R K 2.4 Methylphenol Suragate Recovery Acid 0.0%, 0.0%, 15.0% 10.0%, 10.10%, K R K K 344-Methylphenol Suragate Recovery Acid 0.0%, 0.0%, 15.0% 10.0%, 10.10%, K R K							2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
k 42-0-001010p10eth0 Strongate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 2-Mitrylphenol Surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 2-Mitrylphenol/surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 1 2-Mitrylphenol/surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 1 2-Mitrylphenol/surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 1 2-Mitrylphenol/surogate Recovery Acid 0.0%, 0.0%, 1.5%, 12.0%, R 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2,4-Dinitrophenol</td><td>Surrogate Recovery Acid</td><td>0.0%, 0.0%, 15.0%</td><td>24.0% to 113.0%</td><td>R</td><td></td></td<>							2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
500P574 4282005 Concrete Terl II Yes 4282005 Concrete Terl II Yes 4282007 4282005 Concrete Terl II Yes 4282007 4282005 100% 1022.0%, 20% 1012.0%, 20% 1000,101.0%, 20% 1012.0%, 20% 1000,101.0%							2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
Storgate Recovery Acid 0.0%, 0.0%, 15.0% 24.0% to 11.30%, 12.0% R 24.1% (philos) 24.0% to 11.30%, 12.0% R 19.0% to 12.0%, 25.0% to 12.10%, R R 24.1% (philos) 3.4% (philos) 0.0%, 0.0%, 15.0% 19.0% to 12.0%, 25.0% to 12.10%, R R 24.1% (philos) 3.4% (philos) 3.4% (philos) 0.0%, 0.0%, 15.0% 19.0% to 12.0%, 25.0% to 12.10%, R R 24.1% (philos) 3.4% (philos) 3.4% (philos) 3.4% (philos) 0.0%, 0.0%, 15.0% 19.0% to 12.0%, 25.0% to 12.10%, R R 4.0% (philos) 3.4% (philos) 3.4% (philos) 3.4% (philos) 10.0%, 0.0%, 15.0% 10.0% (philos) 10.0% (p							2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%		R	
Subscription Subscripion Subscription Subscription </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2-Methylphenol</td> <td>Surrogate Recovery Acid</td> <td>0.0%, 0.0%, 15.0%</td> <td>24.0% to 113.0%</td> <td>R</td> <td></td>							2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
SDDP574 4/28/2005 Concrete Ter II Yes							2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%		R	
Key Kang Kang Kang Kang Kang Kang Kang Kang							3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
42-30-W-1A 4/28/2005 Concrete Tier II Yes 13.5-Trinitrobencal Surrogate Recovery Acid 0.0%, 0.0%, 10.50% 19.0% to 12.0%, 12.0% R 500P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 13.5-Trinitrobencal Surrogate Recovery Acid 0.0%, 0.0%, 10.50% 19.0% to 12.0%, 20.5% to 121.0%, 20.5% ND(3.3) J 500P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 13.5-Trinitrobence CAL %D 41.2%, 20%, 3.2% 19.0% to 12.0%, 20.5% to 121.0%, R R 24.0% - 11.0% R 12.5-Trinitrobence CAL %D 48.1% -25% ND(3.3) J 4-Nitroguinologinal CAL %D 99.1% -25% ND(3.3) J 8 CAL %D 99.1% -25% ND(3.3) J 9 Pintachiorophene CAL %D 99.1% -25% ND(3.3) J 9 Surrogate Recovery Acid 0.0%, 0.0%, 1.50% 19.0% to 12.0%, 2.60% to 12.0%, R 24.0% to 11.0% R 2000574 42-3-CW-1A 4/28/2005 Concrete Tier II <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>4,6-Dinitro-2-methylphenol</td><td>Surrogate Recovery Acid</td><td>0.0%, 0.0%, 15.0%</td><td></td><td>R</td><td></td></td<>							4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%		R	
500P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 0.0%, 0.0%, 15.0% 24.0% to 113.0%, K K 500P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 40.4% -25%, ND(3.3) J ND(3.3) J 500P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 40.4% -25%, ND(6.7) J 500P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 9.9.7% -225%, ND(6.7) J 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 9.9.7% -225%, ND(6.7) J 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 9.9.7% -225%, ND(6.3) J 1.3.6% 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1.3.5-Trinitrobenzene CCAL %D 9.0.7% 2.0.7%, Sc N% to 121.							4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 15.0%	24.0% to 113.0%	R	
SDDP574 4/28/2005 Concrete Tier II Yes Tier II Yes CAL %D 40.4% <25% ND(3.3) J 5D0P574 42.3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinktoophenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 12.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.3,4,6-Tetrachlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,6-Trinktroophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,0% to 113.0% Q A.4.5% 25% ND(6.7) J R 2.4,0% to 113.0% R 1.3,5-Trinktrobenenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,0% to 113.0% R 1.3,5-Trinktrobenenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,4-Trinktrophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,4-Tr										24.0% to 113.0%		
SD0P574 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 48.1% <25% ND(3.3) J End 5D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 12.%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R 2,4,6-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% ND(6.3) J use 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 0.0%, 0.0%, 15.0% 19.0% to 12.0%, 25.0% to 121.0%, Z4.0% to 113.0% 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 24.0% to 113.0% R 200P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 24.0% to 113.0% R 200P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,												
Berzidine ICAL Linear Regression 0.412 >0.99 ND[6,7] J I Benzidine CCAL %D 72.8% <25%												
Benzidine CCAL %D 72.8% <25% ND(6.7) J Hexachlorophene ICAL %RSD 34.5% <30%												
Hexachlorophene ICAL %RSD 34.5% -30% ND(6.7) J Hexachlorophene Hexachlorophene CCAL %D 99.1% <25%												
Barbon Hexachlorophene CCAL %D 99.1% <25% ND(6.7) J Isosafrole Bisosafrole CCAL %D 99.9% <25%												
Isosafrole CCAL %D 99.9% <25% ND(3.3) J Methapyrilene CCAL %D 58.1% <25%											ND(6.7) J	
Methapyrilene CCAL %D 58.1% <25% ND(3.3) J Pentachlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R SD0P574 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 20.0% 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R SD0P574 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% <25%												
Pentachlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 35D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% >225% ND(3.3) J used 35D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% >225% ND(3.3) J used 35D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% >25% ND(0.33) J used 35D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% >25% ND(0.67) J I 35D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 19.0% to 122.0%, 25.0% to 121.0%, 24.0% R 2,3,4,6-Tetrachlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 13.0%												
Phenol Surrogate Recovery Acid 0.0%, 0.0%, 15.0% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 550P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 21.6% 22.5% ND(0.33) J used 550P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% 225% ND(0.33) J used 1.4-Naphthoguinone CCAL %D 11.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 12.4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4,0ichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R										19.0% to 122.0%, 25.0% to 121.0%,	(
5D0P574 42-3-CW-1A 4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 27.6% <25% ND(0.33) J used 4.4/28/2005 Concrete Tier II Yes 1,3,5-Trinitrobenzene CCAL %D 41.2% <25%							Phenol		0.0%, 0.0%, 15.0%			
1,4-Naphthoquinone CCAL %D 41.2% <25% ND(0.67) J 2,3,4,6-Tetrachlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,5-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R R												
2,3,4,6-Tetrachlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,5-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4,0-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R	5D0P574	42-3-CW-1A	4/28/2005	Concrete	Tier II	Yes						used original sample
2,4,5-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 24.0% to 113.0% R 2,4,5-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R							1,4-Naphthoquinone	CCAL %D	41.2%		ND(0.67) J	
2,4,5-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 24.0% to 113.0% R 2,4,6-Trichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R 2.4.Dichlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, R							2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	24.0% to 113.0%	R	
2,4,5-1 richlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 24.0% to 113.0% R 2,4,0-1 richlorophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, Percent Acid							2,4,5-Trichlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	24.0% to 113.0%	R	
							2,4,6-Trichlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	24.0% to 113.0%	R	
24.0% to 113.0%							2,4-Dichlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	24.0% to 113.0%	R	
2,4-Dimethylphenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R							2,4-Dimethylphenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	24.0% to 113.0%	R	
2,4-Dinitrophenol Surrogate Recovery Acid 1.2%, 2.0%, 3.2% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R							2,4-Dinitrophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%		R	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (cont											
5D0P574	42-3-CW-1A	4/28/2005	Concrete	Tier II	Yes	2,6-Dichlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitroquinoline-1-oxide	CCAL %D	48.7%	<25%	ND(0.67) J	
						a,a'-Dimethylphenethylamine Aniline	CCAL %D CCAL %D	40.4% 48.1%	<25% <25%	ND(0.67) J ND(0.33) J	
						Benzidine	ICAL Linear Regression	0.412	<25%	ND(0.33) J	
						Benzidine	CCAL %D	72.8%	<25%	ND(0.67) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	99.1%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	58.1%	<25%	ND(0.67) J	
						Pentachlorophenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	1.2%, 2.0%, 3.2%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
5D0P574	42-4-CF-1A	4/28/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	27.6%	<25%		used original sample
						1,4-Naphthoquinone 2,3,4,6-Tetrachlorophenol	CCAL %D Surrogate Recovery Acid	41.2% 9.7%, 10.0%	<25%	ND(3.3) J	
						2,4,5-Trichlorophenol		9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0% 19.0% to 122.0%, 25.0% to 121.0%	R R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4-Nitroquinoline-1-oxide	CCAL %D	48.7%	<25%	ND(3.3) J	
						a,a'-Dimethylphenethylamine	CCAL %D	40.4%	<25%	ND(3.3) J	
						Aniline	CCAL %D	48.1%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression CCAL %D	0.412 72.8%	>0.99 <25%	ND(6.7) J ND(6.7) J	
						Benzidine Hexachlorophene	ICAL %D	34.5%	<25%	ND(6.7) J ND(6.7) J	
						Hexachlorophene	CCAL %D	99.1%	<30%	ND(6.7) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(3.3) J	
						Methapyrilene	CCAL %D	58.1%	<25%	ND(3.3) J	
						Pentachlorophenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						Phenol	Surrogate Recovery Acid	9.7%, 10.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
5D0P574	42-4-CF-2A	4/28/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	27.6%	<25%	ND(0.33) J	used original sample
						1,4-Naphthoquinone	CCAL %D	41.2%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Write feature Control Fri II Yes Add-Tobburghene Fri II Yes Add-Tobburghene International	Sample Delivery		Date		Validation							
Model Value Value <th< th=""><th>Group No.</th><th>Sample ID</th><th>Collected</th><th>Matrix</th><th>Level</th><th>Qualification</th><th>Compound</th><th>QA/QC Parameter</th><th>Value</th><th>Control Limits</th><th>Qualified Result</th><th>Notes</th></th<>	Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Part of the strength of the strengt of the strength of the strength of the strength of			4/28/2005	Concrete	Tier II	Yes	2,4,6-Trichlorophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%		R	
Normalian Normalian Standard							2,4-Dichlorophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%		R	
1000000000000000000000000000000000000							2,4-Dimethylphenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%		R	
							2,4-Dinitrophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
000% 428.2-1% 900% 1200% 000% 1200% 000% 1200% 000% 1200% 000%							2,6-Dichlorophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
00/97 4/8.C-1 4/82.00 1.2%, 2.1%, 6.0% 1.2%, 2.1%, 6.0% 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 20.1%, 0.1% R 0.1% 3.444ethylphenol Surrogate Recovery, Acid 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 20.0% R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R 1.2%, 2.1%, 6.0% 100% 19.20%, 22.0%, 10.1%, R R <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2-Chlorophenol</td><td>Surrogate Recovery Acid</td><td>1.2%, 2.1%, 6.8%</td><td>19.0% to 122.0%, 25.0% to 121.0%,</td><td>R</td><td></td></td<>							2-Chlorophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
S00F907 48.8-C-1 4282005 Concrete Terril Yea Autorighterior S00F907 48.8-C-1 12%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 10.0% 2.6%, 10.10% R 1 4-Ninophend Surogate Recovery Acid 1.2%, 2.1%, 6.2% 190/5 12.2%, 2.1%, 6.2% 10.0% 2.6% N0.0507/1 4-Ninophend Surogate Recovery Acid 1.2%, 2.1%, 6.2% 10.15% 10.0% <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2-Methylphenol</td><td>Surrogate Recovery Acid</td><td>1.2%, 2.1%, 6.8%</td><td></td><td>R</td><td></td></td<>							2-Methylphenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%		R	
324-Methylphend Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:20%, 10:40% R 4.6-Dinteo-2-methylphend Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:20%, 20.0% R 4.6-Dinteo-2-methylphend Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:20%, 20.0% R 4.10x0phm1 Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:21.0%, R R 4.10x0phm1 Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:21.0%, R R 4.10x0phm1 Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:21.0%, R R 4.10x0phm1 Sungate Recovery Acid 1,2%,2.1%, 6.0% 10% 10:20%, 20.0% 10:21.0%, R R 4.10x0phm1 Sungate Recovery Acid 12%,2.1%, 6.0% 10% 10:20%, 20.0% 10:21.0%, R R 4.10x0phm1 Sungate Recovery Acid 12%,2.1%, 6.0% ND0007.1 R 10x0000000 CA1% 10 CA1% 10 CA1% 10 CA1% 10 CA1% 10 10x00000000 CA1% 10 Sungate Recovery Acid 12%,2.1%,6.0% ND0007.1 R							2-Nitrophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
keb-11 eb-11 keb							3&4-Methylphenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
 							4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
No. 100 507 Concept No. 4 12%, 2.1%, 8.8 10% 10.20%, 2.0%, 10.12.0%, 2.0% NO.067.1 Automation CCA, SD 40.7% -0.25%, 2.0%, 10.12.0% NO.067.1 Automation CCA, SD 40.7% -0.25%, 10.02.0% NO.067.1 Bencicine CCA, SD 40.7% -0.25%, 10.02.0% NO.067.1 Bencicine CCA, SD 64.1% -25%, 10.02.0% NO.067.1 Bencicine CCA, SD 99.7% -25%, 10.02.0% NO.067.1 Bencicine CCA, SD 99.7% -25%, 10.02.07.1 NO.067.1 Bencicine CCA, SD 99.7% -25%, 10.02.7 NO.067.1 Bencicine CCA, SD 39.7 -25%, 10.02.7 NO.067.1 Bencicine CCA, SD 78.7 -25%, 10.02.7 NO.067.1 Benc							4-Chloro-3-Methylphenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
SD0P507 42.8-C-1 4282005 Concrete Ter II Yes 14.5472-0000 62.4.50 64.75 62.95 ND0.67) 1 SD0P507 42.8-C-1 4282005 Concrete CCAL.50 64.75 62.95 ND0.67) 1 SD0P507 42.8-C-1 4282005 Concrete CCAL.50 64.75 62.95 ND0.67) 1 SD0P507 42.8-C-1 4282005 Concrete CCAL.50 69.95 -2.55 ND0.67) 1 SD0P507 42.8-C-1 51.75 0.95.75 0.95.75 ND0.67) 1							4-Nitrophenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
Applicability of the second s							4-Nitroquinoline-1-oxide	CCAL %D	48.7%		ND(0.67) J	
sources 42.8 C-1 429/2005 Concrete Ter II Yes Francistic CAL Non-Regression 0.412 0.09.9 ND(67).1 SD0P597 42.8 C-1 429/2005 Concrete Ter II Yes Non-Regression 0.05.4 0.05.6 0.05.7 ND(67).1 SD0P597 42.8 C-1 429/2005 Concrete Ter II Yes Non-Regression 0.05.8 0.05.7 ND(67).1 0.05.7 1.05.7 ND(67).1 0.05.7 ND(67).1 0.05.7 1.05.7 ND(67).1 0.05.7 1.05.7 ND(67).1 0.05.7 1.05.7 1.05.7 1.05.7 1.05.7 ND(67).1 0.05.7 1.05.7 1.05.7 1.05.7 1.05.7 ND(67).1 0.05.7 1.05.7 1.05.7 1.05.7						a,a'-Dimethylphenethylamine	CCAL %D	40.4%		ND(0.67) J		
bit Second						Aniline	CCAL %D	48.1%	<25%	ND(0.33) J		
sources 42.8.C-1 42.92005 Concrete Tier II Yes 14.54500 99.1% -23% ND(67) J sources A2.8.C-1 42.92005 Concrete Tier II Yes 3arrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 12.0%, 25.0% to 121.0%, R R sources Sarrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 2.0%, 25.0% to 121.0%, R R sources Sarrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 2.0%, 25.0% to 121.0%, R R sources Sarrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 2.0%, 25.0% to 121.0%, R R sources Sarrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 2.0%, 25.0% to 121.0%, R R sources Sarrogate Recovery Acid 0.043 2.40.9% to 13.0%, R R sources Tier II Yes 13.45 frintroborateme CCAL %D 29.1%, 22.0%, 25.0% to 12.0%, R R sources Tier II Yes 13.45 frintroborateme CCAL %D 337.2%, 22.5%, 10.12.0%, R R sources Tier II Yes Sarrogate Reco							Benzidine	ICAL Linear Regression	0.412	>0.99	ND(0.67) J	
Note Percent of the second of th							Benzidine	CCAL %D	72.8%	<25%	ND(0.67) J	
Note Percent of the second of th							Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
key here key here losal/log CCAL %D 99.9% -22% ND(0.67) J 500P597 42-R-C-1 4292005 Concrete Terl II Yes Staffie CCAL %D 58.1% -22% ND(0.67) J 500P597 42-R-C-1 4292005 Concrete Terl II Yes 1.3.4 1.2%, 2.1%, 6.8% 100% to 12.2%, 2.5% to 12.0%, 2.0% to 13.0% R 500P597 42-R-C-1 4292005 Concrete Terl II Yes 1.3.5-Timitobenzene CCAL %D 23.1% 1.0.0% to 122.0%, 2.5% to 121.0%, NO (0.3) J 500P597 42-R-C-1 4292005 Concrete Terl II Yes 1.3.5-Timitobenzene CCAL %D 23.1% 1.0.0% to 122.0%, 2.5% to 121.0%, R R 50.0P597 42-R-C-1 4292005 Concrete Terl II Yes 1.3.5-Timitobenzene CCAL %D 23.1% to 12.0%, R ND(0.33) J Used original analysis 50.0P597 42-R-C-1 4292005 Concrete Terl II Yes 1.3.4-Kapithocynhonic Surogite Recovery Acid 0.0.6.4% 19.0% to												
Methagyriane CAL %D 58.1% -2.2% ND(0.67) I 500P597 42.R-C-1 4/29/2005 Concrete Terl II Yes Surrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% 107.0%, 012.0%, 25.0% to 121.0%, R R 500P597 42.R-C-1 4/29/2005 Concrete Terl II Yes 24.4% 0.00 22.0%, 25.0% to 121.0%, R ND(0.83.0) Image: ND(0.87.0) R 500P597 42.R-C-1 4/29/2005 Concrete Terl II Yes 24.4% 0.00 22.0%, 0.012.0%, 25.0% to 121.0%, ND(0.83.0) R 500P597 42.R-C-1 4/29/2005 Concrete Terl II Yes 24.4% 0.00 20.0%, 6.4%, 19.0% to 12.0%, 25.0% to 121.0%, R ND(0.83.0) Used original analysis 50.0P597 42.R-C-1 Ves 24.4% 0.00 Surrogate Recovery Acid 0.0%, 6.4%, 19.0% to 12.0%, 25.0% to 121.0%, R R 2.4.Dictiorphenol Surrogate Recovery Acid 0.0%, 6.4%, 19.0% to 12.20%, 25.0% to 121.0%, R R 24.0% 0.0%, 6.4%, 19.0% to 12.20%, 25.0% to 121.0%, R R 2.4.Dictiorphenol Surrogate Recovery Acid 0.0%, 6.4%, 19.0% t												
source Perturbiorophenol Surrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 122.0%, 25.0% to 121.0%, R 3500P597 42-R-C-1 4/29/2005 Concrete Tier II Yes 35.7 inititobenzene CCAL, RR 0.043 >.005 ND(0.3) J 3500P597 42-R-C-1 Yes 1.3.5 inititobenzene CCAL, RR 0.043 >.005 ND(0.3) J 3500P597 42-R-C-1 Yes 1.4.5 inititobenzene CCAL, RR 0.043 >.005 ND(0.3) J 3500P597 42-R-C-1 Yes 1.3.5 inititobenzene CCAL, %D 37.2% ND(3.5) J Used original analysis 3500P597 42-R-C-1 Yes 1.3.5 inititobenzene CCAL, %D 37.2% ND(3.5) J Used original analysis 3500P597 42-R-C-1 Yes 1.3.5 inititobenzene CCAL, %D 37.2% ND(3.5) J Used original analysis 3500P597 42-R-C-1 Yes 1.3.5 inititobenzene CCAL, %D 37.2% ND(3.5) J Used original analysis 3500P51210% R 2.4.5 inititobenzene<												
Phenol Surrogate Recovery Acid 1.2%, 2.1%, 6.8% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 121.0%, 25.0% to 121.0%, 24.0% to 121.0%, 25.0% to 121.0%, 24.0% to 121.0%, 25.0% to 121.0%, R SDDP597 42.R-C.1 4/29/2006 Ter II Ves Ter II Ves 1.4%apthrophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R 2.4.5.Trichlorophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4.0Finchlorophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4.0Finchlorophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4.0Finchlorophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4.0Finchlorophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4.0Finchlorophenol Surrogate Recovery Acid 0.0%, 64% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4.										19.0% to 122.0%, 25.0% to 121.0%,		
Schop597 42-R-C-1 Concrete Ter II Yes Safroig ICAL RRF 0.043 >0.05 ND(0.33) J DSD0P597 42-R-C-1 4/29/2005 Concrete Ter II Yes 1.3-STinitobanzane CCAL %D 29.1% -22% ND(3.3) J Use original analysis DSD0P597 42-R-C-1 4/29/2005 Concrete Ter II Yes 1.3-STinitobanzane CCAL %D 37.2% -22% ND(3.3) J Concrete Ter II Yes 1.3-Apritohophenol Surcagate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R -2.4-Dinethyphenol Surcagate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R -2.4-Dinethyphenol Surcagate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R -2.4-Dinethyphenol Surcagate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R -2.4-Dinethyphenol Surcagate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R -2.4-Dinethyphenol Surcagate Recovery Acid							Phenol	Surrogate Recovery Acid	1.2%, 2.1%, 6.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
SDDP597 42-R-C-1 4/29/2005 Concrete Tier II Yes 13.6-Trainticbenzane CCAL %D 29.1% < C25% ND(3.3)_J Used original analysis 23.4 6-Trichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 6-Trichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 6-Trichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 24.4 Dichtorophenol Surrogate Recovery Acid 0.0							Safrole	ICAL RRF	0.043		ND(0.33) J	
I 1.4.Asphthoquinone CCAL %D 37.2%	5D0P597	42-R-C-1	4/29/2005	Concrete	Tier II	Yes						Used original analysis
2.3.4.5 ⁻ Tetrachlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.5-Tichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Tichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinterhyphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinterhyphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Introphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Introphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Matrityphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R	0201001	2.1.0	1/20/2000	001101010		100						eeed enginal analysis
2.4.5-Trichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.6-Trichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.0-Trichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.0-Trichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4.0-Trichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Direthylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R												
2,4,6-Trichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dintorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dintorphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2,4-Dintorphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2,6-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2,6-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Mitriphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Mitriphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Mitriphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-6/EDIO-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-6/EDIO-3-Methylp												
2.4-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimethylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimethylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichtorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Introphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2Miethylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitropatienel Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrop												
2.4-Dimethylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Dimethylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Mitrylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.4-Mitrylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3.84-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R												
2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Mitorphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Mitorphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitorphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chitoro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chitoro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chitoro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R <t< td=""><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Chlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chioro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chioro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitroguinoline-1-oxide CCAL %D 38.5% <25.0% to 121.0%												
2-Chlorophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dintro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitroguinoline-1-oxide CCAL %D 939.5% -25% ND(3.3) J a.a^-Dimethylphenethylamine CCAL %D 38.4% <25%												
2-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 2-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3&-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitrophenethylphene												
2-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4,6-Dintro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R a.a' Dimethylphenethylamine CCAL %D 38.4% <25%												
3&4-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4Nitroptinoline-1-oxide CCAL %D 39.5% <25%												
4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chioro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Chioro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.9%, 6.4% 102.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.9%, 6.4% 102.0%, 25.0% to 121.0% R 4-Nitrophenol CCAL %D 39.5% -25% ND(3.3) J a,a'-Dimethylphenethylamine CCAL %D 38.4% -25% ND(3.3) J Aniline CCAL %D 51.9% -25% ND(6.7) J Benzidine ICAL Linear Regression 0.412 >0.99 ND(6.7) J Benzidine CCAL %D 32.0% -25% ND(6.7) J Hexachlorocylopentadiene ICAL %RSD 34.5% <30%												
4-Chloro-3-Methylphenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol CCAL %D 39.5% <25%												
4-Nitrophenol Surrogate Recovery Acid 0.0%, 6.4% 19.0% to 122.0%, 25.0% to 121.0% R 4-Nitrophenol CAL %D 39.5% <25%												
4-Nitroquinoline-1-oxide CCAL %D 39.5% <25% ND(3.3) J a,a'-Dimethylphenethylamine CCAL %D 38.4% <25%												
a,a'-Dimethylphenethylamine CCAL %D 38.4% <25% ND(3.3) J Aniline CCAL %D 51.9% <25%												
Aniline CCAL %D 51.9% <25% ND(3.3) J Benzidine ICAL Linear Regression 0.412 >0.99 ND(6.7) J Benzidine CCAL %D 69.6% <25%												
Benzidine ICAL Linear Regression 0.412 >0.99 ND(6.7) J Benzidine CCAL %D 69.6% <25%							a,a'-Dimethylphenethylamine		38.4%	<25%		
Benzidine ICAL Linear Regression 0.412 >0.99 ND(6.7) J Benzidine CCAL %D 69.6% <25%							Aniline	CCAL %D	51.9%	<25%		
Benzidine CCAL %D 69.6% <25% ND(6.7) J Hexachlorocyclopentadiene CCAL %D 32.0% <25%												İ.
Hexachlorocyclopentadiene CCAL %D 32.0% <25% ND(3.3) J Hexachlorophene ICAL %RSD 34.5% <30%												
Hexachlorophene ICAL %RSD 34.5% <30% ND(6.7) J Hexachlorophene CCAL %D 98.3% <25%												
Hexachlorophene CCAL %D 98.3% <25% ND(6.7) J Isosafrole CCAL %D 99.9% <25%											ND(6.7) J	
Isosafrole CCAL %D 99.9% <25% ND(3.3) J												
						Methapyrilene	CCAL %D	58.1%	<25%	ND(3.3) J	1	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No. SVOCs (cont	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
	42-R-C-1	4/29/2005	Concrete	Tier II	Yes	Pentachlorophenol	Surrogate Recovery Acid	0.0%, 6.4%	19.0% to 122.0%, 25.0% to 121.0%	R	
5001 557	42-10-0-1	4/23/2003	Concrete	THET II	163	Phenol	Surrogate Recovery Acid	0.0%, 6.4%	19.0% to 122.0%, 25.0% to 121.0%	R	
						Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
5D0P597	43-3-CF-1A	4/29/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	29.1%	<25%	ND(3.3) J	
0201001			001101010		100	1,4-Dichlorobenzene	MS/MSD %R	0.0%, 0.0%	30.0% to 130.0%, 30.0% to 130.0%	R	
						1,4-Naphthoguinone	CCAL %D	37.2%	<25%	ND(3.3) J	
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dinitrotoluene	MS/MSD %R	0.0%, 0.0%	30.0% to 85.0%, 30.0% to 85.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
					2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	30.0% to 115.0%, 23.0% to 120.0%, 18.0% to 137.0%	R		
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitroquinoline-1-oxide a.a'-Dimethylphenethylamine	CCAL %D CCAL %D	39.5% 38.4%	<25% <25%	ND(3.3) J ND(3.3) J	
						Aniline	CCAL %D	51.9%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(6.7) J	
						Benzidine	CCAL %D	69.6%	<25%	ND(6.7) J	
						Hexachlorocyclopentadiene	CCAL %D	32.0%	<25%	ND(3.3) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(6.7) J	
						Hexachlorophene	CCAL %D	98.3%	<25%	ND(6.7) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(3.3) J	
						Methapyrilene	CCAL %D	58.1%	<25%	ND(3.3) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	0.0%, 0.0%, 7.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Pyrene	MS/MSD %R	469.0%, 977.9%	35.0% to 140.0%, 35.0% to 140.0%	1.5 J	
						Pyrene	MS/MSD RPD	70.3%	<36%	1.5 J	
50005	10 1 05 11	4/00/2222	0			Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
5D0P597	43-4-CF-1A	4/29/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	29.1%	<25%	ND(3.3) J	Used original analysis
						1,4-Naphthoquinone 2,3,4,6-Tetrachlorophenol	CCAL %D Surrogate Recovery Acid	37.2% 0.0%, 0.0%, 8.3%	<25% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	ND(3.3) J R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (con	tinued)					•					
5D0P597	43-4-CF-1A	4/29/2005	Concrete	Tier II	Yes	2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	30.0% to 115.0%, 23.0% to 120.0%, 18.0% to 137.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
1						4-Nitroquinoline-1-oxide	CCAL %D	39.5%	<25%	ND(3.3) J	
						a,a'-Dimethylphenethylamine	CCAL %D	38.4%	<25%	ND(3.3) J	
						Aniline	CCAL %D	51.9%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(6.7) J	
						Benzidine	CCAL %D	69.6%	<25%	ND(6.7) J	
						Hexachlorocyclopentadiene	CCAL %D	32.0%	<25%	ND(3.3) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(6.7) J	
						Hexachlorophene	CCAL %D	98.3%	<25%	ND(6.7) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(3.3) J	
						Methapyrilene	CCAL %D	58.1%	<25% 19.0% to 122.0%, 25.0% to 121.0%,	ND(3.3) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	0.0%, 0.0%, 8.3%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
5000507		1/00/0005	a	T 11		Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
5D0P597	43-5-CF-2A	4/29/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	29.1%	<25%	ND(3.3) J	Used original analysis
						1,4-Naphthoquinone	CCAL %D	37.2%	<25%	ND(3.3) J	
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
1						2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	30.0% to 115.0%, 23.0% to 120.0%, 18.0% to 137.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
ł						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
					4-Nitroquinoline-1-oxide	CCAL %D	39.5%	<25%	ND(3.3) J		

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	inued) 13-5-CF-2A 13-DUP-1	4/29/2005 4/29/2005	Concrete	Tier II	Yes	a,a'-Dimethylphenethylamine Aniline Benzidine Hexachlorocyclopentadiene Hexachlorophene Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol Phenol	CCAL %D CCAL %D ICAL Linear Regression CCAL %D ICAL %RD CCAL %D CCAL %D CCAL %D CCAL %D CCAL %D CCAL %D CCAL %D	38.4% 51.9% 0.412 69.6% 32.0% 34.5% 99.3% 99.9% 58.1% 0.0%, 0.0%, 0.0%	<25% <25% >0.99 <25% <25% <30% <25% <25% <25% <25% <25% <25% <25% <19.0% to 122.0%, 25.0% to 121.0%,	ND(3.3) J ND(3.3) J ND(6.7) J ND(6.7) J ND(6.7) J ND(6.7) J ND(6.7) J ND(3.3) J ND(3.3) J	
					Yes	Aniline Benzidine Benzidine Hexachlorocyclopentadiene Hexachlorophene Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol	CCAL %D ICAL Linear Regression CCAL %D ICAL %D ICAL %RSD CCAL %D CCAL %D CCAL %D CCAL %D	51.9% 0.412 69.6% 32.0% 34.5% 98.3% 99.9% 58.1%	<25% >0.99 <25% <25% <30% <25% <30% <25% <25% <25%	ND(3.3) J ND(6.7) J ND(6.7) J ND(6.7) J ND(6.7) J ND(6.7) J ND(6.7) J ND(6.7) J ND(3.3) J ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete			Benzidine Benzidine Hexachlorocyclopentadiene Hexachlorophene Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol	ICAL Linear Regression CCAL %D CCAL %D ICAL %RSD CCAL %D CCAL %D CCAL %D	0.412 69.6% 32.0% 34.5% 98.3% 99.9% 58.1%	>0.99 <25% <25% <30% <25% <25% <25% <25%	ND(6.7) J ND(6.7) J ND(3.3) J ND(6.7) J ND(6.7) J ND(3.3) J ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete			Benzidine Hexachlorocyclopentadiene Hexachlorophene Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol	CCAL %D CCAL %D ICAL %RSD CCAL %D CCAL %D CCAL %D	69.6% 32.0% 34.5% 98.3% 99.9% 58.1%	<25% <25% <30% <25% <25% <25%	ND(6.7) J ND(3.3) J ND(6.7) J ND(6.7) J ND(3.3) J ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete	T 1		Hexachlorocyclopentadiene Hexachlorophene Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol	CCAL %D IICAL %RSD CCAL %D CCAL %D CCAL %D CCAL %D	32.0% 34.5% 98.3% 99.9% 58.1%	<25% <30% <25% <25% <25%	ND(3.3) J ND(6.7) J ND(6.7) J ND(3.3) J ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete			Hexachlorophene Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol	ICAL %RSD CCAL %D CCAL %D CCAL %D CCAL %D	34.5% 98.3% 99.9% 58.1%	<30% <25% <25% <25%	ND(6.7) J ND(6.7) J ND(3.3) J ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete	T		Hexachlorophene Isosafrole Methapyrilene Pentachlorophenol	CCAL %D CCAL %D CCAL %D	98.3% 99.9% 58.1%	<25% <25% <25%	ND(6.7) J ND(3.3) J ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete			Isosafrole Methapyrilene Pentachlorophenol	CCAL %D CCAL %D	99.9% 58.1%	<25% <25%	ND(3.3) J ND(3.3) J	
D0P597 4	13-DUP-1	4/29/2005	Concrete			Methapyrilene Pentachlorophenol	CCAL %D	58.1%	<25%	ND(3.3) J	
D0P597 4	43-DUP-1	4/29/2005	Concrete			Pentachlorophenol					
D0P597 4	43-DUP-1	4/29/2005	Concrete	-		Phenol			24.0% to 113.0%	R	
D0P597 4	43-DUP-1	4/29/2005	Concrete			1	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
D0P597 4	43-DUP-1	4/29/2005	Concrete			Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
				Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	29.1%	<25%		43-5-CF-2
						1,4-Naphthoquinone	CCAL %D	37.2%	<25%	ND(3.3) J	Used original analysis
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	30.0% to 115.0%, 23.0% to 120.0%, 18.0% to 137.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitroquinoline-1-oxide a,a'-Dimethylphenethylamine	CCAL %D CCAL %D	39.5% 38.4%	<25% <25%	ND(3.3) J ND(3.3) J	
						Aniline	CCAL %D	51.9%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(6.7) J	
						Benzidine	CCAL %D	69.6%	<25%	ND(6.7) J	
						Hexachlorocyclopentadiene	CCAL %D	32.0%	<25%	ND(3.3) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(6.7) J	
						Hexachlorophene	CCAL %D	98.3%	<25%	ND(6.7) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(3.3) J	
						Methapyrilene	CCAL %D	58.1%	<25%	ND(3.3) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
			-			Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
D0P597 4	43-R-C-1A	4/29/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	29.1%	<25%	ND(3.3) J	Used original analysis
						1,4-Naphthoquinone	CCAL %D	37.2%	<25%	ND(3.3) J	
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Surrogate Recovery Acid Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0% 19.0% to 122.0%, 25.0% to 121.0%	R	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (con 5D0P597		4/00/0005	Ormente	Ting U	Ma a	2.4-Dichlorophenol	Surrogate Recovery Acid	0.0%. 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
5D0P597	43-R-C-1A	4/29/2005	Concrete	Tier II	Yes	2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R	
						4-Nitroquinoline-1-oxide	CCAL %D	39.5%	<25%	ND(3.3) J	
						a,a'-Dimethylphenethylamine	CCAL %D	38.4%	<25%	ND(3.3) J	
						Aniline	CCAL %D	51.9%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(6.7) J	
						Benzidine	CCAL %D	69.6%	<25%	ND(6.7) J	
						Hexachlorocyclopentadiene	CCAL %D	32.0%	<25%	ND(3.3) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(6.7) J	
						Hexachlorophene	CCAL %D	98.3%	<25%	ND(6.7) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(3.3) J	
						Methapyrilene	CCAL %D	58.1%	<25%	ND(3.3) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	R R	
						Phenol	Surrogate Recovery Acid	0.0%, 0.0%	19.0% to 122.0%, 25.0% to 121.0%	ND(3.3) J	
5D0P597	RB-042805-1	4/29/2005	Water	Tier II	Yes	Safrole 1,3,5-Trinitrobenzene	ICAL RRF CCAL %D	0.043 31.5%	>0.05 <25%	ND(0.010) J	
500P597	RB-042805-1	4/29/2005	water	Tier II	res	1,4-Naphthoguinone	CCAL %D	40.5%	<25%	ND(0.010) J	
						4,6-Dinitro-2-methylphenol	CCAL %D	26.6%	<25%	ND(0.050) J	
						4-Nitrophenol	CCAL %D	99.9%	<25%	ND(0.050) J	
						4-Nitroguinoline-1-oxide	CCAL %D	45.8%	<25%	ND(0.010) J	
						a,a'-Dimethylphenethylamine	CCAL %D	34.7%	<25%	ND(0.010) J	
						Aniline	CCAL %D	54.8%	<25%	ND(0.010) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(0.020) J	
						Benzidine	CCAL %D	69.8%	<25%	ND(0.020) J	
						Benzo(k)fluoranthene	CCAL %D	99.9%	<25%	ND(0.010) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.020) J	
						Hexachlorophene	CCAL %D	99.0%	<25%	ND(0.020) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.010) J	
						Methapyrilene	CCAL %D	56.1%	<25%	ND(0.010) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.010) J	
5D0P597	RB-042905-1	4/29/2005	Water	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	31.5%	<25%	ND(0.010) J	
						1,4-Naphthoquinone	CCAL %D	40.5%	<25%	ND(0.010) J	
						4,6-Dinitro-2-methylphenol	CCAL %D	26.6%	<25%	ND(0.050) J	
						4-Nitrophenol	CCAL %D	99.9%	<25%	ND(0.050) J	
						4-Nitroquinoline-1-oxide	CCAL %D	45.8%	<25%	ND(0.010) J	
						a,a'-Dimethylphenethylamine Aniline	CCAL %D CCAL %D	34.7% 54.8%	<25% <25%	ND(0.010) J ND(0.010) J	
						Aniline Benzidine	ICAL %D	0.412	<25%	ND(0.010) J ND(0.020) J	
						Benzidine	CCAL %D	69.8%	>0.99 <25%	ND(0.020) J ND(0.020) J	
						Benzo(k)fluoranthene	CCAL %D	99.9%	<25%	ND(0.020) J ND(0.010) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.020) J	
						Hexachlorophene	CCAL %D	99.0%	<25%	ND(0.020) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.010) J	
						Methapyrilene	CCAL %D	56.1%	<25%	ND(0.010) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.010) J	
E0P023	43-2-CF-1A	5/2/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	34.5%	<25%		used original analysis
						1,4-Naphthoquinone	CCAL %D	44.8%	<25%	ND(0.67) J	
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	

TABLE C - 1 ANALYTICAL DATA VALIDATION SUMMAR \ SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Visite Normal Source The B Yes Sumption Sumption<	Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
			5/2/2005	Concrete	Tier II	Ves	1			19.0% to 122.0% 25.0% to 121.0%	1	
EPPU P3 CVX.24 P3	0201 020		0/2/2000	Contracto	THEF IT	105	2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%		R	
FMP 52/00/20 Format Formation 60%							2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%		R	
Life Life Life Life Life Life Life Life							2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
Part Part Part Part Part Part Part Part							2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
EMP2 52-0%-2X 52-0%-2X <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2-Methylphenol</td><td>Surrogate Recovery Acid</td><td>0.0%, 0.0%, 0.8%</td><td>19.0% to 122.0%, 25.0% to 121.0%,</td><td>R</td><td></td></td<>							2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
							2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
ERN0 62-0.003-04 0.076, 0.076, 0.07 10076 10220%, 250%, 02170%, P P A Chon-J-Aldinybernol Surragias Rescury Acid 0.076, 0.076, 0.07 10078 10220%, 250% 102170%, R P A Chon-J-Aldinybernol Surragias Rescury Acid 0.076, 0.076, 0.07 0.076, 0.076, 0.07 R P A Filinguinting-1-static CAL ND 262, 0.07 0.076, 0.076, 0.07 NOID 07.1 P A Filinguinting-1-static CAL ND 262, 0.07 0.076, 0.07, 0.07 NOID 07.1 P A Filinguinting-1-static CAL ND 262, 0.07, 0.07 NOID 07.1 P P NOID 07.1 P A Filinguinting-1-static CAL ND 262, 0.07, 0.07, 0.07 NOID 07.1 P P NOID 07.1 P P NOID 07.1 P P NOID 07.1 P NOID 07.1 P P NOID 07.1 P NOID 07.1 P P NOID 07.1 P NOID 07.1 P NOID 07.1 P NOID 07.1 NOID 07.1 NOID 07.1 NOID 07.1 NOID 07.1 NOID 07.1 NOID							3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
EPP02 \$2-CW-2A \$2-CW-2A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>4,6-Dinitro-2-methylphenol</td><td>Surrogate Recovery Acid</td><td>0.0%, 0.0%, 0.8%</td><td>19.0% to 122.0%, 25.0% to 121.0%,</td><td>R</td><td></td></t<>							4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
EPPC3 5220%2 Concept Terr Ferr							4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
EUPU23 6-2-CW-2A 5-22005 Concrete Terl Yes 1,41000001000 CCA, %0 0.074 0.075 0.075 NO0.067.0 1 EUPU23 4-3-CW-2A 5-22005 Concrete CCA, %0 0.072 0.073 0.075 NO0.067.0 1 0.075 0.075 0.075 NO0.067.0 1 0.075 <							4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
ERDP12 5-2-CW-2A 5-2/CW-2A 5							4-Nitroquinoline-1-oxide	CCAL %D	47.6%		ND(0.67) J	
EUPD23 522005 Concrete Terl II Yes Anime COAL, No.9 60.2%							a,a'-Dimethylphenethylamine	CCAL %D	38.9%	<25%		
Banchalma Cold, Linear Regression 0.412 -0.39 ND(67)_J Benchalma COL, Wo 007.1% -2.5% ND(67)_J Headelinopolania COL, Wo 007.7% -2.5% ND(67)_J Headelinopolania COL, Wo 007.7% -2.5% ND(67)_J Headelinopolania COL, Wo 007.5% -0.2% ND(67)_J Headelinopolania COL, Wo 007.5% -0.2% ND(67)_J Headelinopolania COL, Wo 005.07 0.2% ND(67)_J Headelinopolania Surgate Recovery Acid 0.0%							Aniline		50.2%	<25%	ND(0.33) J	
ECPO2 43-CW-2A 52/2005 Current First Indication CAL %0 67.7%							Benzidine	ICAL Linear Regression	0.412	>0.99		
Keep Part Solution							Benzidine		67.7%	<25%	ND(0.67) J	
keProve header between heade												
EUROP2 43-2-CW-2A 5/2/2005 Concrete Ter II Yes Yes </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND(0.67) J</td> <td></td>											ND(0.67) J	
kent kent <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
kent kent <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Key here Name												
EEP023 43-2-CW-2A 5/2/2005 Concrete Ter II Yes Image: Concrete Concrete Ter II Yes Image: Concrete Concrete Ter II Yes Image: Concrete Concrete Concrete Dots of 12,0%, 25,0% to 121,0%, 24,0% to 113,0%, R 2.4.5.7 trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9%, 0.9%, 0.9% to 122,0%, 25,0% to 121,0%, R 2.4.6.7 trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9%, 0.9% to 122,0%, 25,0% to 121,0%, R 2.4.6.7 trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9%, 0.9% to 122,0%, 25,0% to 121,0%, R 2.4.0.113,0% M R 24.0.113,0% M R 2.4.0.113,0% M R 24.0.113,0% M R 2.4.0.113,0% M R 24.0.113,0% M R 2.4.0.113,0% M R 24.0.113,0% M R 2.4.0.113,0% M R 24.0.113,0% M R <												
Phenol Surrogate Recovery Acid 0.0%, 0.0%, 0.8% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R iEOP023 43-2-CW-2A 5/2/2005 Concrete Tier II Yes 1.5.7.1initobenzene CCAL %D 30.04% 2.40% to 113.0%, 37.3% ND(0.33) J used original sample CCAL %D 30.4% 2.25%, 2.40% to 113.0%, 1.4.% Phintophenel Size Covery Acid 0.0%, 0.0%, 6.9%, 19.0% to 122.0%, 25.0% to 121.0%, ADD Size Covery Acid ND(0.67) J 2.3.4.6-Tetrachlorophenol Surogate Recovery Acid 0.0%, 0.0%, 6.9%, 19.0% to 122.0%, 25.0% to 121.0%, AL0% to 113.0%, 12.0%, 25.0% to 121.0%, 24.0% to 113.0%, 24.0% to 113.0%, R R 2.4.0Liolorophenol Surogate Recovery Acid 0.0%, 0.0%, 6.9%, 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%, R R 2.4.0Liolorophenol Surogate Recovery Acid 0.0%, 0.0%, 6.9%, 19.0% to 12.20%, 25.0% to 121.0%, R R 2.4.0Liolorophenol Surogate Recovery Acid 0.0%, 0.0%, 6.9%, 19.0% to 12.20%, 25.0% to 121.0%, R R 2.4.0Liolorophenol Surogate Recovery Acid 0.0%, 0.0%, 6.9%, 19.0% to 12.20%, 25.0% to 121.0%, R R 2.4.0Liolorophenol Surogate Recovery Acid 0.0%, 0.0%, 6.9%, 19.0% to 12.20%, 25.0% to 121.0%, R R 2.4.0Ditorophenol										19.0% to 122.0%, 25.0% to 121.0%,		
Exc PO23 45-2CW-2A 5/22005 Concrete Ter II Yes 13-5Trinitobenzane CCAL %D 30.4% <26% ND(0.33) J used original sample 1.4-Naphthoquinne CCAL %D 37.3% <25%							Phenol	Surrogate Recovery Acid	0.0%, 0.0%, 0.8%	19.0% to 122.0%, 25.0% to 121.0%,	R	
EGP023 43-2-CW-2A 5/2/2008 Concrete Tier II Yes 1.3.5-Trinklorophenol CCAL %D 30.4% -22% ND(0.53) used original sample 1.4-Naphthodumency CCAL %D 37.3% -22% ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.67) ND(0.70%, 6.9% 12.0%, 25.0% to 121.0%, 24.6-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 13.0% to 122.0%, 25.0% to 121.0%, R R 2.4.9 Chlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 13.0% to 122.0%, 25.0% to 121.0%, R R 2.4.Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 13.0% to 122.0%, 25.0% to 121.0%, R R 2.4.Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 13.0% to 122.0%, 25.0% to 121.0%, R R 2.4.Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 13.0% to 122.0%, 25.0% to 121.0%, R R 2.4.Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 13.0% to 122.0%, 25.0% to 121.0%, R R 2.2-Dichloroph							Cofrolo		0.042		ND(0.22)	
14-Haphthoguinone CCAL %D 37.3% c26% bit 220%, 25% ND(0.67) J 2.3,4.6-Tetachlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 24.0% R 2.4.5-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 25.0% R 2.4.6-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 25.0% R 2.4.6-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 25.0% R 2.4.0-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 20.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 20.0% R 2.4-Dinthyphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, 20.0% R 2.4-Dinthyphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, R R 2.4-Dinthyphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, R R 2.4-Dinthyphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 190% to 12.0%, R R		10.0.000	5/0/0005	0	T : 11	N/						
2,3,4,6-Tetrachlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9% 19.0% to 122.0%, 25.0% to 121.0%, R 2,4,5-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4,6-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4,6-Trichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2,6-Dichlo	5E0P023	43-2-CW-2A	5/2/2005	Concrete	lier II	Yes						used original sample
2,3,4,5-1etrachiorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 24.0% to 113.0%, 24.0% to 121.0%, 24.0% to 121.0%, 24.4,5-Trichiorophenol R 2,4,6-Trichiorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2,4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 113.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 113.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 113.0% R 2,6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9%							1,4-Naphthoquinone	CCAL %D	37.3%		ND(0.67) J	
2.4,5-11Childiophenol Sundgate Recovery Acid 0.0%, 0.0%, 0.9% 24.0% to 113.0% R 2.4,6-Trichiorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.4-Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2Dintrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2Nethylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2Nethylphenol							2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2.4.6-IntentiorOphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, R 2.4-Dimetrylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 113.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 12.0%, 25.0% to 121.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Methylphenol </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,4,5-Trichlorophenol</td> <td>Surrogate Recovery Acid</td> <td>0.0%, 0.0%, 6.9%</td> <td>24.0% to 113.0%</td> <td>R</td> <td></td>							2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
Provide Surrogate Recovery Acid 0.0%, 0.0%, 0.9% 24.0% to 113.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4-Dimethylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.4-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Chlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 384-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R <							2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2.4-Dimetrylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 24.0% to 113.0% R 2.4-Dimetrylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.Chlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2.Nitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 384-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R							2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2.4-Dinitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9% 24.0% to 113.0% R 2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Chlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Chlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R							2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2.6-Dichlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9% 24.0% to 113.0% R 2Chlorophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 2Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 113.0% R 2Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 113.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R							2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2-Chlorippinelia Suffagate Recovery Acid 0.0%, 0.0%, 0.5% 24.0% to 113.0% R 2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 2-Nitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R							2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 24.0% to 113.0% R 2-Nitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0% R							2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
2-Nitrophenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9% 24.0% to 113.0% R 3&4-Methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R R 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 112.0%, 25.0% to 121.0%, R R							2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
3&4-metry/prehoi Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 24.0% to 113.0% K 4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R 4.6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R							2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
4,6-Dinitro-2-methylphenol Surrogate Recovery Acid 0.0%, 0.0%, 0.9% 24.0% to 113.0% R 4-Chloro-3-Methylphenol Surrogate Recovery Acid 0.0% 0.0% 6.9% 19.0% to 122.0%, 25.0% to 121.0%, R							3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
							4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
							4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%		R	

TABLE C - 1 ANALYTICAL DATA VALIDATION SUMMAR) SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No. SVOCs (con	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
5E0P023	43-2-CW-2A	5/2/2005	Concrete	Tier II	Yes			0.00/ 0.00/ 0.00/	19.0% to 122.0%, 25.0% to 121.0%,		
						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	24.0% to 113.0%	R	
						a,a'-Dimethylphenethylamine	CCAL %D	36.7%	<25%	ND(0.67) J	
						Aniline	CCAL %D	48.9%	<25%	ND(0.33) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(0.67) J	
						Benzidine	CCAL %D CCAL %D	69.4% 35.7%	<25% <25%	ND(0.67) J ND(0.33) J	
						Hexachlorocyclopentadiene Hexachlorophene	ICAL %D	35.7%	<25%	ND(0.33) J ND(0.67) J	
						Hexachlorophene	CCAL %D	98.4%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	57.8%	<25%	ND(0.67) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	0.0%, 0.0%, 6.9%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
5E0P023	43-3-CF-2A	5/2/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	34.5%	<25%	ND(3.3) J	used original sample
			1			1,4-Naphthoquinone	CCAL %D	44.8%	<25%	ND(3.3) J	ļ]
1						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Surrogate Recovery Acid Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121% 19% to 122%, 25% to 121%	R R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R	
						4-Chloro-3-Methylphenol 4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121%	R R	
						4-Nitroquinoline-1-oxide	Surrogate Recovery Acid CCAL %D	47.6%	19% to 122%, 25% to 121% <25%	ND(3.3) J	
						a,a'-Dimethylphenethylamine	CCAL %D	38.9%	<25%	ND(3.3) J	
						Aniline	CCAL %D	50.2%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(6.7) J	
						Benzidine	CCAL %D	67.7%	<25%	ND(6.7) J	
						Hexachlorocyclopentadiene	CCAL %D	39.7%	<25%	ND(3.3) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(6.7) J	
						Hexachlorophene	CCAL %D	99.5%	<25%	ND(6.7) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(3.3) J	
1						Methapyrilene	CCAL %D Surrogate Recovery Acid	58.3% 0.0%, 0.0%	<25% 19% to 122%, 25% to 121%	ND(3.3) J R	
						Pentachlorophenol Phenol	Surrogate Recovery Acid	0.0%, 0.0%	19% to 122%, 25% to 121% 19% to 122%, 25% to 121%	R	
						Safrole	ICAL RRF	0.0%, 0.0%	>0.05	ND(3.3) J	
5E0P023	43-4-CF-2A	5/2/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	30.4%	<25%	ND(3.3) J	
1						1,4-Naphthoquinone	CCAL %D	37.3%	<25%	ND(3.3) J	
1						a,a'-Dimethylphenethylamine	CCAL %D	36.7%	<25%	ND(3.3) J	
1						Aniline	CCAL %D	48.9%	<25%	ND(3.3) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(6.7) J	
1						Benzidine	CCAL %D	69.4%	<25%	ND(6.7) J	
1						Hexachlorocyclopentadiene	CCAL %D	35.7%	<25%	ND(3.3) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(6.7) J	
						Hexachlorophene	CCAL %D CCAL %D	98.4% 99.9%	<25% <25%	ND(6.7) J	
						Isosafrole Methapyrilene	CCAL %D CCAL %D	99.9% 57.8%	<25%	ND(3.3) J ND(3.3) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(3.3) J	
5E0P023	43-5-CF-1A	5/2/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	30.4%	<25%	ND(0.33) J	used original sample
						1,4-Naphthoguinone	CCAL %D	37.3%	<25%	ND(0.67) J	and a sugar a sumpto
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	

TABLE C - 1 ANALYTICAL DATA VALIDATION SUMMAR) SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery	Quarada ID	Date	Martin	Validation	Qualification	0	0100 8	Mahar	Ounted Lineite	Quellifie d Describ	N
Group No. SVOCs (con	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
	43-5-CF-1A	5/2/2005	Concrete	Tier II	Yes	2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						a,a'-Dimethylphenethylamine	CCAL %D	36.7%	<25%	ND(0.67) J	
						Aniline	CCAL %D	48.9%	<25%	ND(0.33) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(0.67) J	
						Benzidine	CCAL %D	69.4%	<25%	ND(0.67) J	
						Hexachlorocyclopentadiene	CCAL %D	35.7%	<25%	ND(0.33) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.67) J	
						Hexachlorophene	CCAL %D	98.4%	<25%	ND(0.67) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	57.8%	<25%	ND(0.67) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	0.8%, 0.0%, 11.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
5E0P023	43-DUP-2	5/2/2005	Concrete	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	30.4%	<25%	ND(0.33) J	43-2-CF-1
0201 020	40 001 2	0/2/2000	Concrete	nor n	105	1.4-Naphthoguinone	CCAL %D	37.3%	<25%	ND(0.67) J	used original sample
						2,3,4,6-Tetrachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	used original sample
						2,4,5-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4,6-Trichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dimethylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,4-Dinitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2,6-Dichlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Chlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						2-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						3&4-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						4,6-Dinitro-2-methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	

TABLE C - 1 ANALYTICAL DATA VALIDATION SUMMAR \ SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs (cor 5E0P023	43-DUP-2	5/2/2005	Concrete	Tier II	Yes		· · ·		19.0% to 122.0%, 25.0% to 121.0%,	_	
0201 020	10 001 2	0,2,2000	001101010		100	4-Chloro-3-Methylphenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	24.0% to 113.0%	R	
						4-Nitrophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						a,a'-Dimethylphenethylamine	CCAL %D	36.7%	<25%	ND(0.67) J	
						Aniline	CCAL %D	48.9%	<25%	ND(0.33) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(0.67) J	
						Benzidine	CCAL %D	69.4%	<25%	ND(0.67) J	
						Hexachlorocyclopentadiene	CCAL %D	35.7%	<25%	ND(0.33) J	
						Hexachlorophene Hexachlorophene	ICAL %RSD CCAL %D	34.5% 98.4%	<30% <25%	ND(0.67) J ND(0.67) J	
						Isosafrole	CCAL %D	98.4%	<25%	ND(0.67) J	
						Methapyrilene	CCAL %D	57.8%	<25%	ND(0.67) J	
						Pentachlorophenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
						Phenol	Surrogate Recovery Acid	0.0%, 0.0%, 2.0%	19.0% to 122.0%, 25.0% to 121.0%, 24.0% to 113.0%	R	
550D000	DD offeeer (5/0/0005				Safrole	ICAL RRF	0.043	>0.05	ND(0.33) J	
5E0P023	RB-050205-1	5/2/2005	Water	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	30.4%	<25%	ND(0.010) J	
						1,4-Naphthoquinone a,a'-Dimethylphenethylamine	CCAL %D CCAL %D	37.3% 36.7%	<25% <25%	ND(0.010) J ND(0.010) J	
						Aniline	CCAL %D	48.9%	<25%	ND(0.010) J	
						Benzidine	ICAL Linear Regression	0.412	>0.99	ND(0.020) J	
						Benzidine	CCAL %D	69.4%	<25%	ND(0.020) J	
						Hexachlorocyclopentadiene	CCAL %D	35.7%	<25%	ND(0.010) J	
						Hexachlorophene	ICAL %RSD	34.5%	<30%	ND(0.020) J	
						Hexachlorophene	CCAL %D	98.4%	<25%	ND(0.020) J	
						Isosafrole	CCAL %D	99.9%	<25%	ND(0.010) J	
						Methapyrilene	CCAL %D	57.8%	<25%	ND(0.010) J	
						Safrole	ICAL RRF	0.043	>0.05	ND(0.010) J	
TCLP SVOC	42-2-CF-COMPOSITE-1	7/0/2002	Laashata	TionII	No		1		1	1	
2G0P168 2G0P168	42-3-CF-COMPOSITE-1	7/8/2002 7/9/2002	Leachate Leachate	Tier II Tier II	No Yes	Cresol	CCAL %D	93.0%	<25%	ND(0.050) J	
2G0P168	42-4-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	No	Clesol	COAL //D	33.078	\$2378	ND(0.050) 5	
2G0P168	RB-070902-2	7/9/2002	Water	Tier II	No						
2G0P168	RINSE BLANK-0708-1	7/8/2002	Water	Tier II	No						
2G0P212	43-4-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	No						
2G0P212	43-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	No						
2G0P212	CF-TCLP-DUP-1	7/10/2002	Leachate	Tier II	No						43-5-CF-composite-1
2G0P236	42-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier I	No						
2G0P350 2G0P350	43-2-CF-COMPOSITE-1 43-3-CF-COMPOSITE-1	7/16/2002 7/16/2002	Leachate Leachate	Tier II Tier II	No No						
3L0P589	43-1-TCLP-C1	12/30/2003	Leachate	Tier II	No	1		+	1		
3L0P594	43A-1-TCLP-C1	12/30/2003	Leachate	Tier II	No		1	1			
4A0P531	40-COMPLEX-1-RB-1	1/29/2004	Water	Tier II	No		1				
4A0P531	44-1-TCLP-C1	1/29/2004	Leachate	Tier II	No						
5E0P024	42-1-CF-COMP-1	5/2/2005	Leachate	Tier II	No						
TCLP Herbi							1	1		1	1
2G0P168	42-2-CF-COMPOSITE-1	7/8/2002	Leachate	Tier II	No	+					
2G0P168	42-3-CF-COMPOSITE-1 42-4-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	No			+			
2G0P168 2G0P168	42-4-CF-COMPOSITE-1 RB-070902-2	7/9/2002 7/9/2002	Leachate Water	Tier II Tier II	No No		+		l		
2G0P168 2G0P168	RB-070902-2 RINSE BLANK-0708-1	7/9/2002	Water	Tier II	NO	1	+	+	1		
2G0P212	43-4-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	Yes	2,4,5-TP	MS %R	20.6%	40% to 120%	ND(0.010) J	
2G0P212	43-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	No						
2G0P212	CF-TCLP-DUP-1	7/10/2002	Leachate	Tier II	No						43-5-CF-composite-1
2G0P236	42-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier I	No						
2G0P350	43-2-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	Yes	2,4,5-TP	MS/MSD %R	0.0%, 0.0%	40% to 120%	R	
	10.0.05.001/500/55	7/10/2222				2,4-D	MS/MSD %R	0.0%, 0.0%	40% to 120%	R	
2G0P350	43-3-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	Yes	2,4,5-TP	MS/MSD %R	0.0%, 0.0%	40% to 120%	R	
4A0P531	40-COMPLEX-1-RB-1	1/29/2004	Water	Tier II	No	2,4-D	MS/MSD %R	0.0%, 0.0%	40% to 120%	R	
	44-1-TCLP-C1	1/29/2004	Leachate	Tier II	No	1	1	+	1		
		1/20/2004	Louonald	1101 11		1		1	1		I

TABLE C - 1 ANALYTICAL DATA VALIDATION SUMMAR) SUPPLEMENTAL BUILDING MATERIAL CHARACTERIZATION ACTIVITIES

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery		Date		Validation							
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
TCLP Pestic	ides							•	•		
2G0P168	42-2-CF-COMPOSITE-1	7/8/2002	Leachate	Tier II	No						
2G0P168	42-3-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	No						
2G0P168	42-4-CF-COMPOSITE-1	7/9/2002	Leachate	Tier II	No						
2G0P168	RB-070902-2	7/9/2002	Water	Tier II	No						
2G0P168	RINSE BLANK-0708-1	7/8/2002	Water	Tier II	No						
	43-4-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	No						
2G0P212	43-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier II	No						
2G0P212	CF-TCLP-DUP-1	7/10/2002	Leachate	Tier II	No						43-5-CF-composite-1
2G0P236	42-5-CF-COMPOSITE-1	7/10/2002	Leachate	Tier I	No						
2G0P350	43-2-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	No						
2G0P350	43-3-CF-COMPOSITE-1	7/16/2002	Leachate	Tier II	No						
4A0P531	40-COMPLEX-1-RB-1	1/29/2004	Water	Tier II	No						
4A0P531	44-1-TCLP-C1	1/29/2004	Leachate	Tier II	No						

Attachment D

Revised Risk Calculations

Table D-1a - 40s Complex - Supplemental Building Material: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 1-Foot Soil

Pathway: Incidental Soil Ingestion Receptor: Groundskeeper

CARCINOGENIC CSF = CDI x CSF CDI = CS x IgR x OA x EF x ED x CF x 1/BW x 1/ATC

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI	CSF	Risk
	Soil	Ingestion	Oral	Exposure	Exposure	Conversion	Body	Averaging Time	Chronic	Cancer Slope	
Chemical	Concentration (mg/kg)	Rate (mg/d)	Absorption (unitless)	Frequency (d/yr)	Duration (yrs)	Factor (kg/mg)	Weight (kg)	Carcinogenic (days)	Daily Intake (mg/kg-d)	Factor (mg/kg-d)⁻¹	
Benzo(a)anthracene	1.91	50	1.0	84	25	1E-06	70	25550	1.1E-07	0.73	8.2E-08
Benzo(a)pyrene	1.93	50	1.0	84	25	1E-06	70	25550	1.1E-07	7.3	8.3E-07
Benzo(b)fluoranthene	1.85	50	1.0	84	25	1E-06	70	25550	1.1E-07	0.73	7.9E-08
ndeno(1,2,3-cd)pyrene	1.56	50	1.0	84	25	1E-06	70	25550	9.2E-08	0.73	6.7E-08
Arsenic	7.74	50	1.0	84	25	1E-06	70	25550	4.5E-07	1.5	6.8E-07
NONCARCINOGENIC HQ = CDI/RfD CDI = Cs x IgR x OA x EF x I	ED x CF x 1/BW x 1/A	Tnc								Total	1.7E-06
	Cs	lgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
	Soil	Ingestion	Oral	Exposure	Exposure	Conversion	Body	Averaging Time	Chronic	Reference	Hazaro
Chemical	Concentration	Rate	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Daily Intake	Dose	Quotier
	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Arsenic	7.74	50	1.0	84	25	1E-06	70	9,125	1.3E-06	0.0003	4.2E-03
										Total	4.2E-0

Table D-1b - 40s Complex - Supplemental Building Material: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 1-Foot Soil

Pathway: Dermal Contact Receptor: Groundskeeper CARCINOGENIC Risk = CDI x CSF CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atc

	Cs	DAF Dermal	SA	DA	EF	ED	CF	BW	ATc	CDI Chronic	CSF Cancer	Risk
Chemical	Soil Concentration (mg/kg)	Adherence Factor (mg/cm ²)	Surface Area Exposed (cm ² /day)	Dermal Absorption (unitless)	Exposure Frequency (d/yr)	Exposure Duration (yrs)	Conversion Factor (kg/mg)	Body Weight (kg)	Averaging Time Carcinogenic (days)	Daily Intake (mg/kg-d)	Slope Factor ^a (mg/kg-d) ⁻¹	
Benzo(a)anthracene	1.91	0.1	3,300	0.13	84	25	1E-06	70	25,550	9.6E-08	0.73	7.0E-08
Benzo(a)pyrene	1.93	0.1	3,300	0.13	84	25	1E-06	70	25,550	9.7E-08	7.3	7.1E-07
Benzo(b)fluoranthene	1.85	0.1	3,300	0.13	84	25	1E-06	70	25,550	9.3E-08	0.73	6.8E-08
Indeno(1,2,3-cd)pyrene	1.56	0.1	3,300	0.13	84	25	1E-06	70	25,550	7.9E-08	0.73	5.7E-08
Arsenic	7.74	0.1	3,300	0.03	84	25	1E-06	70	25,550	9.0E-08	1.5	1.3E-07
											Total	1.0E-06

NONCARCINOGENIC

		Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
			Dermal								Chronic		
		Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chem	ical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose ^b	Quotient
		(mg/kg)	(mg/cm ²)	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
rsenic		7.74	0.1	3,300	0.03	84	25	1E-06	70	9,125	2.5E-07	0.0003	8.4E-04

Total 8.4E-04

Total Carcinogenic Risk		Ingestion	Dermal	Total
	Benzo(a)anthracene	8.2E-08	7.0E-08	1.5E-07
	Benzo(a)pyrene	8.3E-07	7.1E-07	1.5E-06
	Benzo(b)fluoranthene	7.9E-08	6.8E-08	1.5E-07
	Indeno(1,2,3-cd)pyrene	6.7E-08	5.7E-08	1.2E-07
	Arsenic	6.8E-07	1.3E-07	8.2E-07
	Total	1.7E-06	1.0E-06	2.8E-06
Total Noncarcinogenic Haz	ard	Ingestion	Dermal	Total
_	Arsenic	4.2E-03	8.4E-04	5.1E-03
	Total	0.0042	0.00084	0.0051

Table D-2a - 40s Complex - Supplemental Building Material: Cancer and Non-Cancer Risks from Ingestion Exposure to 0- to 6-Foot Soil Pathway: Incidental Soil Ingestion

Receptor: Utility Worker CARCINOGENIC CSF = CDI x CSF CDI = Cs x IgR x OA x EF x ED x CF x 1/BW x 1/AT(

	Cs	lgR	OA	EF	ED	CF	BW	ATc	CDI Chronic	CSF	Risk
	Soil	Ingestion	Oral	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Cancer	
Chemical	Concentration	Rate	Absorption	Frequency	Duration	Factor	Weight	Carcinogenic	Intake	Slope Factor	
	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d) ⁻¹	
Benzo(a)anthracene	1.38	137	1.0	5	25	1E-06	70	25550	1.3E-08	0.73	9.6E-09
Benzo(a)pyrene	1.37	137	1.0	5	25	1E-06	70	25550	1.3E-08	7.3	9.6E-08
Benzo(b)fluoranthene	1.35	137	1.0	5	25	1E-06	70	25550	1.3E-08	0.73	9.4E-09
ndeno(1,2,3-cd)pyrene	1.12	137	1.0	5	25	1E-06	70	25550	1.1E-08	0.73	7.8E-09
Arsenic	6.51	137	1.0	5	25	1E-06	70	25550	6.2E-08	1.5	9.4E-08
NONCARCINOGENIC HQ = CDI/RfD CDI = Cs x IgR x OA x EF x	ED x CF x 1/BW x 1/	/ATn								Total	2.2E-07
*	Cs	lgR	OA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
									Chronic		
	Soil	Ingestion	Oral	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Rate	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose	Quotient
	(mg/kg)	(mg/d)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Arsenic	6.51	137	1.0	5	25	1E-06	70	9,125	1.7E-07	0.0003	5.8E-04
										Total	5 8E-04

Total 5.8E-04

Table D-2b - 40s Complex - Supplemental Building Material: Cancer and Non-Cancer Risks from Dermal Exposure to 0- to 6-Foot Soil Pathway: Dermal Contact

Receptor: Utility Worker CARCINOGENIC Risk = CDI x CSF CDI =CS x DAF x SA x DA x EF x ED x CF x 1/BW x 1/Atı

	Cs	DAF Dermal	SA	DA	EF	ED	CF	BW	ATc	CDI Chronic	CSF Cancer	Risk
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Slope	
Chemical	Concentration (mg/kg)	Factor (mg/cm ²)	Exposed (cm²/day)	Absorption (unitless)	Frequency (d/yr)	Duration (yrs)	Factor (kg/mg)	Weight (kg)	Carcinogenic (days)	Intake (mg/kg-d)	Factor ^a (mg/kg-d) ⁻¹	
Benzo(a)anthracene	1.38	0.8	3,300	0.13	5	25	1E-06	70	25,550	3.3E-08	0.73	2.4E-08
Benzo(a)pyrene	1.37	0.8	3,300	0.13	5	25	1E-06	70	25,550	3.3E-08	7.3	2.4E-07
Benzo(b)fluoranthene	1.35	0.8	3,300	0.13	5	25	1E-06	70	25,550	3.2E-08	0.73	2.4E-08
Indeno(1,2,3-cd)pyrene	1.12	0.8	3,300	0.13	5	25	1E-06	70	25,550	2.7E-08	0.73	2.0E-08
Arsenic	6.51	0.8	3,300	0.03	5	25	1E-06	70	25,550	3.6E-08	1.5	5.4E-08
											Total	3.6E-07

NONCARCINOGENIC HQ = CDI/RfD

CDI =Cs x DAF x SA x DA x EF x ED x CF x 1/BW x 1/ATn

	Cs	DAF	SA	DA	EF	ED	CF	BW	ATnc	CDI	RfD	HQ
		Dermal								Chronic		
	Soil	Adherence	Surface Area	Dermal	Exposure	Exposure	Conversion	Body	Averaging Time	Daily	Reference	Hazard
Chemical	Concentration	Factor	Exposed	Absorption	Frequency	Duration	Factor	Weight	Noncarcinogenic	Intake	Dose ^b	Quotient
	(mg/kg)	(mg/cm ²)	(cm²/day)	(unitless)	(d/yr)	(yrs)	(kg/mg)	(kg)	(days)	(mg/kg-d)	(mg/kg-d)	
Arsenic	6.51	0.8	3,300	0.03	5	25	1E-06	70	9,125	1.0E-07	0.0003	3.4E-04

Total 3.4E-04

Total Carcinogenic Risk		Ingestion	Dermal	Total
	Benzo(a)anthracene	9.6E-09	2.4E-08	3.4E-08
	Benzo(a)pyrene	9.6E-08	2.4E-07	3.4E-07
	Benzo(b)fluoranthene	9.4E-09	2.4E-08	3.3E-08
	Indeno(1,2,3-cd)pyrene	7.8E-09	2.0E-08	2.7E-08
	Arsenic	9.4E-08	5.4E-08	1.5E-07
	Total	2.2E-07	3.6E-07	5.8E-07
Total Noncarcinogenic Hazard		Ingestion	Dermal	Total
	Arsenic	5.8E-04	3.4E-04	9.2E-04
	Total	0.00058	0.00034	0.00092

Attachment E

Proposal for Stockpiling Processed Building Materials

ATTACHMENT E PROPOSAL FOR STOCKPILING PROCESSED BUILDING MATERIALS 40s COMPLEX

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

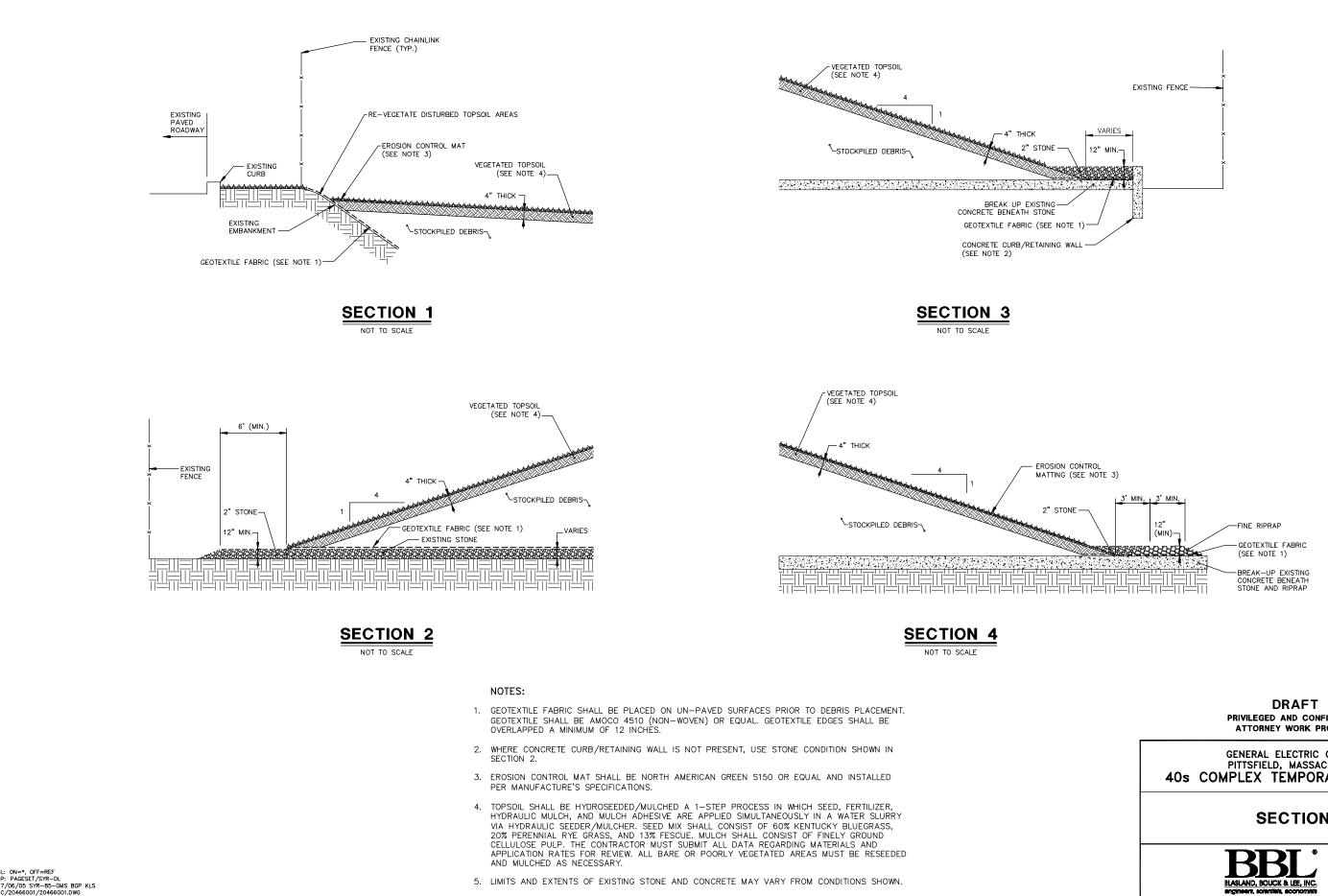
I. Introduction

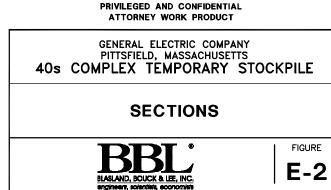
The General Electric Company (GE) is currently in the process of performing building demolition activities at Buildings 42, 43/43-A, and 44, which are part of the 40s Complex Removal Action Area (RAA) located in Pittsfield, Massachusetts. Prior to demolition of these buildings, characterization samples were collected to support the current demolition work and to identify and evaluate potential disposal/re-use options. The initial evaluations indicated that select materials would require consolidation at the Building 71 OPCA (due to polychlorinated biphenyl (PCB) concentrations exceeding the Toxic Substances Control Act [TSCA] regulatory limit of 50 ppm), while the majority of the demolition materials could be consolidated at the Hill 78 OPCA. However, the Pittsfield Economic Development Authority (PEDA) and GE expressed an interest in re-using select processed building demolition materials (e.g., crushed brick and concrete) for backfill/grading purposes within the 40s Complex RAA, provided that the appropriate Performance Standards specified in the October 27, 2002 Consent Decree (CD) and Statement of Work for Removal Actions Outside the River (SOW) were achieved. As a result of those discussions, GE initiated discussions with the U.S. Environmental Protection Agency (EPA) and the Massachusetts Department of Environmental Protection (MDEP) regarding the re-use of certain processed building demolition materials in the 40s Complex RAA. Those discussions resulted in the identification of additional characterization sampling and evaluation activities beyond those required to characterize the building demolition debris for consolidation at the OPCAs, as presented in GE's Proposal for Supplemental Building Material Characterization Activities - Buildings 42, 43/43-A, 44 (Supplemental Building Characterization Proposal), and as conditionally approved by EPA in a June 7, The results of that characterization and evaluation activity are presented in GE's 2005 letter. Supplemental Building Material Characterization Report – Buildings 42, 43/43-A, 44 (Supplemental Building Characterization Report).

The supplemental building material characterization activities were documented in Section I of the Supplemental Building Material Characterization Report, while Section II of that report provided an overview of the evaluations performed by GE to determine if the building demolition debris would be acceptable for use as backfill/grading materials within the 40s Complex. As indicated in Section II of that report, the data for the building demolition materials (excluding those materials proposed for consolidation at the Building 71 OPCA) satisfy the applicable Performance Standards specified in the SOW for PCBs and non-PCB constituents and are acceptable for re-use as backfill/grading materials within the 40s Complex. Since the PCB and Appendix IX+3 results indicate that the use of the building demolition debris as backfill/grading materials would not impact the achievement of the applicable Performance Standards for the 40s Complex, GE anticipates that the material will be used for this purpose. Prior to use, it is possible that the material will need to be stockpiled. Therefore, on the possibility that a stockpile will be necessary, GE has developed this proposal to stockpile a portion of the processed building demolition material (i.e., those materials that are not being consolidated at the Building 71 OPCA or used within the 40s Complex RAA for roadway support and building slab covers) in accordance with Comment No. 3 of EPA's June 7, 2005 conditional approval letter. That stockpile, if constructed, will be located in the western portion of the 40s Complex RAA, as depicted on Figure E-1, for re-use by PEDA during re-development of the 40s Complex RAA once a final grading plan has been established.

As indicated in Comment No. 3, the MDEP also reviewed the Supplemental Building Characterization Proposal to determine the appropriateness of using the processed building materials as backfill/grading materials (i.e., stockpiling processed materials, and re-use as grading materials upon PEDA's development of a final grading plan). In its review, as indicated in the EPA June 7, 2005 conditional approval letter, MDEP determined that the substantive requirements of MDEP's solid waste regulations (310 CMR 16.05), specifically the ABC Rubble Requirement, were met. The remainder of this attachment presents GE's proposal for the design, construction, and monitoring of a stockpile for the processed building demolition debris, if such a stockpile is needed.

II. Design, Construction, and Maintenance Criteria


In accordance with Comment No. 3 in EPA's June 7, 2005 conditional approval letter, any stockpile for the processed building materials generated from the demolition of Buildings 42, 43/43-A, and 44 will meet the following design/construction criteria:


- The limits of the stockpile have been identified on Figure E-1. Those limits are the maximum "buildout" limits and may be lessened (in vertical and/or horizontal directions) based upon the actual amount of material subject to placement in the stockpile.
- For portions where the existing ground cover under the future stockpile area are unpaved and/or consist of broken pavement with a consistency similar to the processed building materials (i.e., gravel), a physical barrier (e.g., non-woven permeable geotextile material) will be placed on the surface before placement of the demolition material to act as a demarcation between the existing ground surface and the processed building materials.
- As shown on Figures E-1 and E-2, the northern edge of the stockpile will be tapered into the existing grade along Kellogg Street with a proposed maximum elevation of approximately 1,019 feet above mean sea-level (amsl). The proposed elevations shown on Figure E-1 also include a 4-inch thick layer of topsoil that will be seeded with a grass seed mix. In addition to these features, an erosion control mat will also be installed along the northern edge and eastern slope of the stockpile to minimize erosion/formation of gullies as a result of runoff from storm events.
- Figures E-1 and E-2 also depict that the maximum slope along the eastern, southern and western sides of the proposed stockpile will be 25% (4 horizontal to 1 vertical) and the top of the proposed stockpile will be graded at approximately 1% sloping downward in an easterly direction. This grading scheme is designed to minimize erosion and transport of the stockpiled materials as well as to maintain drainage in the 40s Complex RAA. Other erosion control methods include the installation of rip-rap along the eastern edge and 2-inch stone along the southern and western edges of the toe-of-slope to dissipate storm water runoff from the stockpile (Figure E-2).
- Prior to placement, the building materials they will be processed (crushed) until the maximum particle size will pass through a 3 inch sieve (commonly referred to as 3-inch minus material). To meet this performance criterion, it may be necessary to process the building materials more than once.
- Once any portion of the building materials have been processed to meet the 3-inch minus performance criteria, that material will be placed within the stockpile area. It is anticipated that the processed material will be transported to the area in dump trucks and then spread using conventional construction equipment in 12- to 18-inch thick lifts, as this material is not being placed to meet the requirements of structural fill.

- After the processed material has been placed in the stockpile area in the appropriate lift thickness, it will be compacted with a vibratory roller, alternating the direction of travel on each lift (i.e., perpendicular to the previous lift), until the surface is hard and non-yielding or a minimum of four passes have been achieved, whichever occurs first.
- During placement of the processed building materials within the temporary stockpile GE shall implement dust suppression methods to minimize dust generation to a threshold of "no visible dust". These suppression methods will be conducted in accordance with those outlined in Section 7 of Attachment D to GE's Project Operations Plan (POP) and will be conducted, when necessary, until such time that a vegetative cover is fully established.
- After construction of the temporary stockpile is completed, GE will perform inspection activities consistent with those provided in Attachment J of the SOW. These activities will include an initial inspection of the vegetated soil covers within one month after completion, semi-annual inspections for the first year after construction (GE anticipates performing such inspections conducted in April and October), and annually thereafter. In addition to these scheduled inspections, GE will inspect the vegetated soil covers after severe storm events (those with 10- to 20-year return periods or greater) to verify that the cover systems have not sustained significant damage. The inspections and corrective actions will include the following:
 - Visually inspect the vegetated surfaces for evidence of topsoil erosion, damage to the synthetic components (e.g., erosion control mat, geotextile), uneven settlement relative to the surrounding/final topography, areas of bare or sparse vegetation, signs of ponding water from storm events, vehicle ruts and/or other visual abnormalities;
 - Visually compare the existing surface grades with the final grading plan prepared upon completion of stockpile construction;
 - If during the visual inspections, areas that are undisturbed (i.e., those areas not being used to obtain material for backfill/grading purposes) are identified to be deficient with components shown on Figures E-1 and/or E-2 or surface abnormalities are present, GE will repair those areas and if needed re-install topsoil and/or seed those areas that are bare or have sparse vegetation; and
 - Conduct periodic maintenance of the soil covered areas after vegetation has been established, which will include mowing once every two to three weeks (depending on growth) and, if necessary, watering to keep the vegetative layer from dying.
- Stockpiled materials that are not re-used within five years from the date of completion of the stockpile shall be removed and properly disposed, unless GE requests and EPA approves a proposal to extend the duration of time that the temporary stockpile can remain at the proposed location and/or EPA approves relocating some or all of the remaining material for potential re-use at another location covered by the CD. EPA may require the removal of the stockpile material if the preceding performance/design criteria are not met.

A proposed checklist for use during the inspection of the vegetated cover has been included with this proposal as Exhibit E-1. The completed checklists will be kept on file by GE.

EXHIBIT E-1				
STOCKPILE AREA INSPECTION CHECK LIST 40s COMPLEX RAA				
VISUAL ON-SITE INSPECTION				
Conducted By: Representing: Inspection Start Date:				
1. List other individuals and their company/agency that were present during the visual on-site inspection.				
 Is there any visual evidence that the soil cover has been altered since since the last inspection? 				
Yes - If yes, describe below and indicate on a copy of the topographic map.				
 3. Is there any visual evidence that the stockpile is being utilized as a source of backfill/grading material? No, (goto question 5) Yes - If yes, describe below and show the location(s) of such activity on a plan, also see question 4. 				
 4. Is the entity using the stockpile as a source of backfill/grading material following the general "house-keeping" practices by maintaining side slopes at a maximum of 25% (4 horizontal to 1 vertical), installation of soil erosion control measures (i.e., silt fence, hay bales), dust suppression measures, and/or other items necessary to control migration of materials from the stockpile? No - If no list diffecencies 				
Yes - If yes, describe below and show the location(s) of such activity on a plan.				
5. Is there any visual evidence of excessive soil erosion since the last inspection? No				
Yes - If yes, describe below and show the location(s) of such erosion on a plan.				

EXHIBIT E-1				
STOCKPILE AREA INSPECTION CHECK LIST				
40s COMPLEX RAA				
6. Is there any visual evidence of sparse and/or dead vegetation withing the stockpile area?				
No				
Yes - If yes, describe below and show the location(s) of such area(s) on a plan.				
7. If any of the conditions listed in the responses to Questions 2 through 6 appears to have altered the surface grade of the the property compared to the surface grade shown on the topographic survey map or the most current drawing of the stockpile area (if available), identify the approximate area/location of such grade change on a plan.				
8. Inspection Completed:				
FOLLOW-UP ITEMS				
If responses to any of Questions 2 through 6 above were Yes, indicate below the appropriate follow up activity, the entity who				
will conduct the follow up activity and an approximate schedule for completing each activity.				