

Corporate Environmental Programs SDMS 258052 General Electric Company 100 Woodlawn Avenue, Pittsheld, MA 01201

August 28, 2001

Bryan Olson EPA Project Coordinator U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re: GE-Pittsfield/Housatonic River Site 30s Complex (GECD120) Supplemental Information for the June 2001 Demolition/Consolidation Work Plan for Buildings 31, 31-J, and 31-P

Dear Mr. Olson:

Thank you for meeting with us on August 15, 2001 to discuss several topics related to the General Electric Company's (GE's) plans for the demolition of Building 31 at GE's facility in Pittsfield, Massachusetts. As you know, GE provided the U.S. Environmental Protection Agency (EPA) a document titled *Demolition/Consolidation Work Plan for Buildings 31, 31-J, and 31-P* (Work Plan) in June 2001. That Work Plan described the activities to be performed by GE to demolish Buildings 31, 31-J, and 31-P (collectively referred to as the Building 31 Complex), consolidate the demolition debris within the Building 31 foundation, and restore the affected areas. Subsequent to that submittal, EPA identified several comments and questions related to GE's proposed activities; these topics were discussed at the August 15th meeting and subsequent tour of the Building 31 Complex. As a follow-up to certain topics discussed during that meeting, this letter provides additional information (as a supplement to the Work Plan) for EPA's review and consideration during its further review of the Work Plan. The topics discussed in this letter are:

- TCLP Sample Locations;
- Presence of Mercury in Building 31;
- Presence of Coal Ash in Basement Tunnels; and
- Building 31 Basement/Groundwater Interaction.

TCLP Sample Locations

During the August 15th meeting, EPA requested that GE identify the locations of the Toxicity Characteristic Leaching Procedure (TCLP) samples that were collected in Building 31. Attachment D, Section 1 of the Work Plan provides a summary of the Building 31 characterization data collected by GE, including the results of TCLP sampling activities. Figures depicting the locations of those TCLP

sampling activities were inadvertently omitted from the Work Plan, but are included as Attachment A to this letter.

As indicated on the figures presented in Attachment A, the samples collected for TCLP analysis were composites of sampling media (concrete) obtained from the same locations on the basement and first floors of Building 31 where PCB sampling was conducted. Specifically, five TCLP samples were collected and composited from 14 locations. All sample results were non-detect for volatile organic compounds, semi-volatile organic compounds, and inorganic constituents. Also, other testing for hazardous waste characteristics (ignitability, reactive cyanide, reactive sulfide, and corrosivity) indicated that the material would <u>not</u> be classified as RCRA hazardous waste.

Presence of Mercury in Building 31

In communications with GE prior to the August 15th meeting, EPA requested certain information about the presence of mercury in Building 31. Specifically, EPA identified the collection of a sediment sample within an interior Building 31 sump, which had been collected on May 22, 1991, and found to contain 3,890 parts per million (ppm) total mercury, and it inquired as to the location of that sump. In addition, EPA inquired as to the presence of mercury previously noted on the Building 31 floor and exterior of the mercury reservoirs in metering closet #5. During the August 15th meeting and site visit, GE provided additional information related to the locations of the sump and metering closet #5 within Building 31. Attachment B to this letter provides an updated Figure 3 from Attachment D of the Work Plan showing the sump location.

GE has subsequently measured the thickness of the sediment in the sump. The measurements indicated a sediment thickness of approximately 1.1 feet within the approximately 6.5 feet by 2.5 feet by 4.7 feet deep sump. In light of our recent discussions, GE will remove the mechanical equipment (e.g., pumps, pipe, valves, etc.), water, and sediment from the sump, dispose of these materials off-site, and backfill the sump with concrete or grout prior to the building demolition and consolidation activities.

The mercury observed on the building floor and exterior of the mercury reservoirs in metering closet #5 was removed during the chemical inventory and removal activities performed by Chemcept in 1999 (summarized in Attachment D of the Work Plan). All other items containing mercury (e.g., lamps, thermostats, etc.) remaining in the building will be removed by the demolition contractor prior to the demolition activities and disposed of off-site, as discussed in Attachment A of the Work Plan.

Presence of Coal Ash in Basement Tunnels

During the August 15th meeting and site visit, EPA made inquiries regarding the amount of coal ash remaining in the ash tunnels beneath the Building 31 basement floor. EPA also requested results of any analytical testing performed on the coal ash. In response, GE indicated that the ash tunnels were partially drained and videotaped in 1999, and that the ash in the tunnels appears to have been removed. Certain representative portions of that videotape have been reproduced (in the form of still photos) and are included in Attachment C to this letter. As can be seen from the photos, there does not appear to be any residual ash remaining in the tunnels. Notwithstanding this visual confirmation, and as indicated in the Work Plan, GE will backfill the tunnels in their entirety with concrete or grout prior to demolition and consolidation activities.

Results of analytical testing performed for the coal ash are also included in Attachment C. The coal ash sample was collected in 1991 from the bottom of the former Building 31 smoke stack. The results of the testing indicate that the material exhibits the characteristic of toxicity for chromium. However, since the coal ash is derived from fossil fuel, it is considered a non-hazardous waste under 40 CFR 261.4(b)(4) and 310 CMR 30.104(9).

Potential Building 31/Groundwater Interaction

During the August 15th meeting and site visit, EPA acknowledged GE's language in the Work Plan regarding the potential for future interaction between local groundwater and the demolition materials consolidated within the Building 31 basement. EPA inquired as to the elevation of the Building 31 basement floor relative to the historical seasonal high groundwater levels in the area of Building 31.

Following the August 15th meeting, and as a supplement to the available survey information, GE collected survey measurements at various locations of the Building 31 basement floors, as well as the elevation of the water at the inlet of the ash tunnels (presumed to be groundwater). Those survey measurements were completed on August 21, 2001, and are provided in Attachment D to this letter. The survey indicated that the basement floor is generally at elevation 981 feet above mean sea level (amsl). The western portion of the basement floor is slightly higher, with elevations close to 982 feet amsl. A small isolated area of the floor near the center of the building drops in elevation to just under 981 feet amsl (specifically, 980.72 feet amsl at the lowest surveyed point).

GE also conducted water level measurements at seven watertable monitoring wells in the vicinity of the Building 31 Complex on August 17, 2001, to supplement the data collected from groundwater monitoring performed in Spring 2001. The well locations are illustrated on Figure 1 in Attachment D and corresponding water elevations measured in August 2001 are provided in Table 1 in Attachment D. In addition, GE has reviewed the historical seasonal high (spring) water elevation measurements from these wells, which in most cases date back to 1996. These data are presented in Table 2 in Attachment D.

Of these wells, the well that is closest to and thus most representative of groundwater conditions beneath Building 31 is well GMA1-1, located adjacent to the northwest corner of Building 31. Following installation of this well in Spring 2001 (as part of the GMA 1 well installation program), the measured seasonal high (spring) groundwater elevation was 979.43 feet amsl, which is more than a foot lower than the lowest elevation of the Building 31 basement floor. However, since this well was only recently installed, historical water level data do not exist for this location. As a result, GE has reviewed the historical seasonal high groundwater elevation data from the other wells in this vicinity for which such data do exist (five wells) (as shown in Table 2) to determine whether the Spring 2001 groundwater elevations for these wells are sometimes slightly higher and sometimes slightly lower than the maximum previously recorded spring groundwater elevations. On average, for these five wells, the Spring 2001 elevations are only approximately 0.62 feet lower than the maximum previously recorded elevations. Accordingly, to estimate the maximum seasonal high groundwater elevation for well GMA1-1, that difference was added to the Spring 2001 groundwater elevation for well GMA1-1 (979.43 feet amsl), which yields an estimated high groundwater elevation of approximately 980.05 feet amsl.

Further evidence that use of this adjusted Spring 2001 groundwater elevation at well GMA1-1 is conservative is provided by a comparison of the Spring 2001 elevation data with Spring 1994 elevation data for wells in this overall area that were in place and had water level measurements in 1994. This

comparison uses Spring 1994 data because, on a Plant-wide basis, Spring 1994 had the highest groundwater elevations recorded historically, but it requires use of wells further removed from Building 31 due to the absence of 1994 data from wells closer to that building. This comparison, presented in Table 3 of Attachment D, shows that, on average, the Spring 2001 elevations for the wells in this general area were 0.24 feet *higher* than the 1994 elevations.

Based on the above information (i.e., the surveyed basement floor elevations and the derived historical groundwater elevations near Building 31), it does not appear likely that groundwater will contact the demolition materials consolidated in the Building 31 basement. Nonetheless, GE will fill the large sump and elevator shaft located near the center of the building with concrete or grout to the surface of the basement floor. By backfilling this sump and elevator shaft (as well as the sump and ash tunnels discussed above) with such materials, the potential for groundwater contacting the demolition materials consolidated within the basement will be further reduced.

Additionally, as discussed in the Work Plan, GE will conduct groundwater monitoring at wells located near and downgradient of Building 31 as part of GE's groundwater monitoring program for GMA 1. To enhance the groundwater monitoring referenced in the Work Plan and currently performed as part of GMA 1 baseline activities, GE proposes to install an additional downgradient monitoring well near the southwest corner of Building 31 (identified as well GMA1-12 on Figure 1 in Attachment D). Upon EPA approval, GE will install that well. Once installed, this well will become part of the GMA 1 groundwater monitoring program. GE proposes to initially monitor groundwater elevations at this well on a monthly basis. In addition, GE proposes to utilize new well GMA1-12 in place of well GMA1-1 in its semi-annual groundwater quality sampling program.

We trust that the contents of this letter and the additional information provided in the attachments will be sufficient to address EPA's questions and comments concerning the Work Plan. We hope that EPA's review will be completed as expeditiously as possible to allow for demolition activities to begin in the middle of September 2001. Once the Work Plan is approved, GE will complete the contractor selection process and the pre-demolition activities. Should additional questions arise or if additional information is necessary, please contact me as soon as possible.

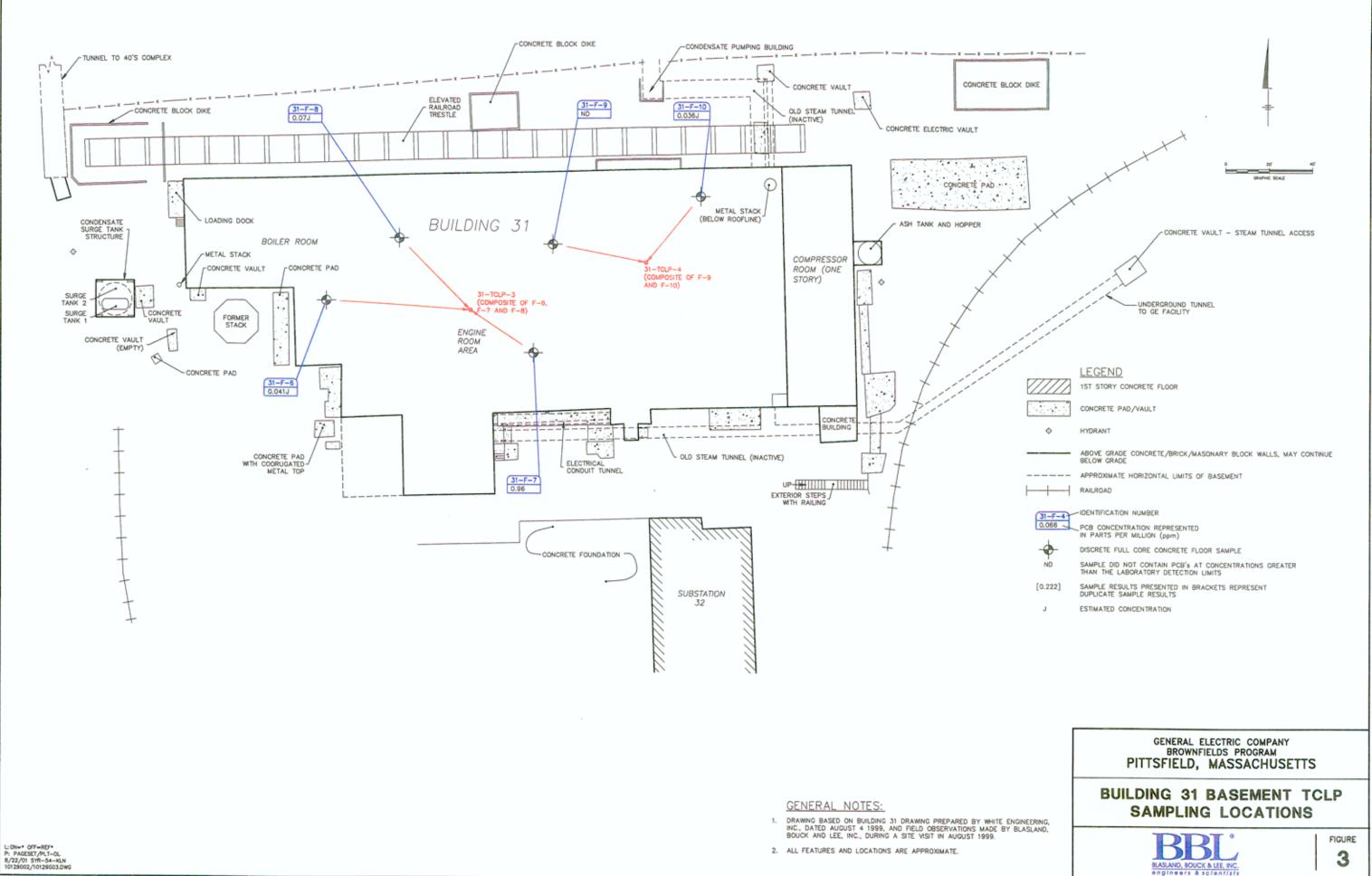
Sincerely,

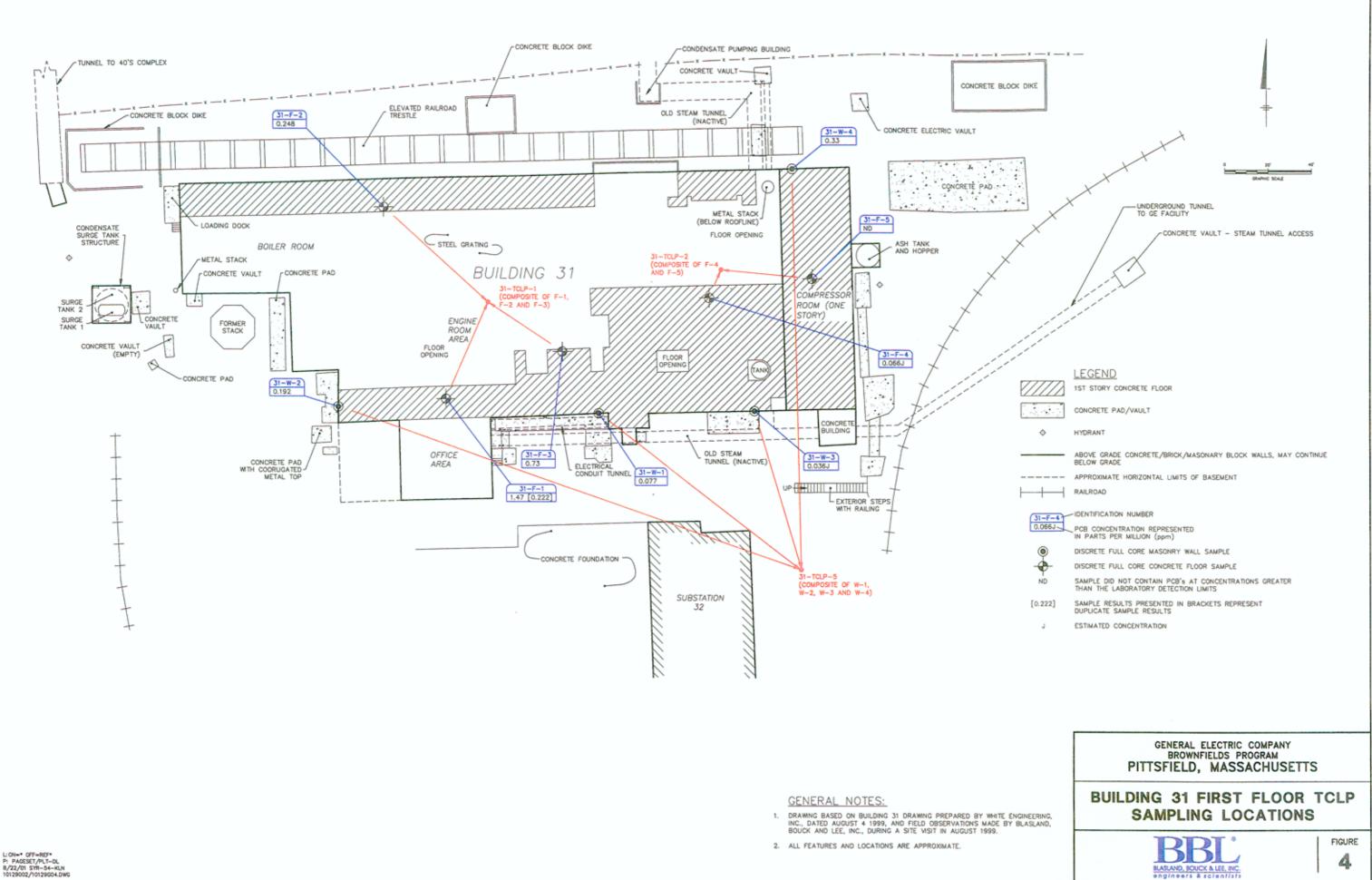
John F. Novotry / Junt

John F. Novotny, P.E. Manager - Facility and Brownfields Programs

Attachments

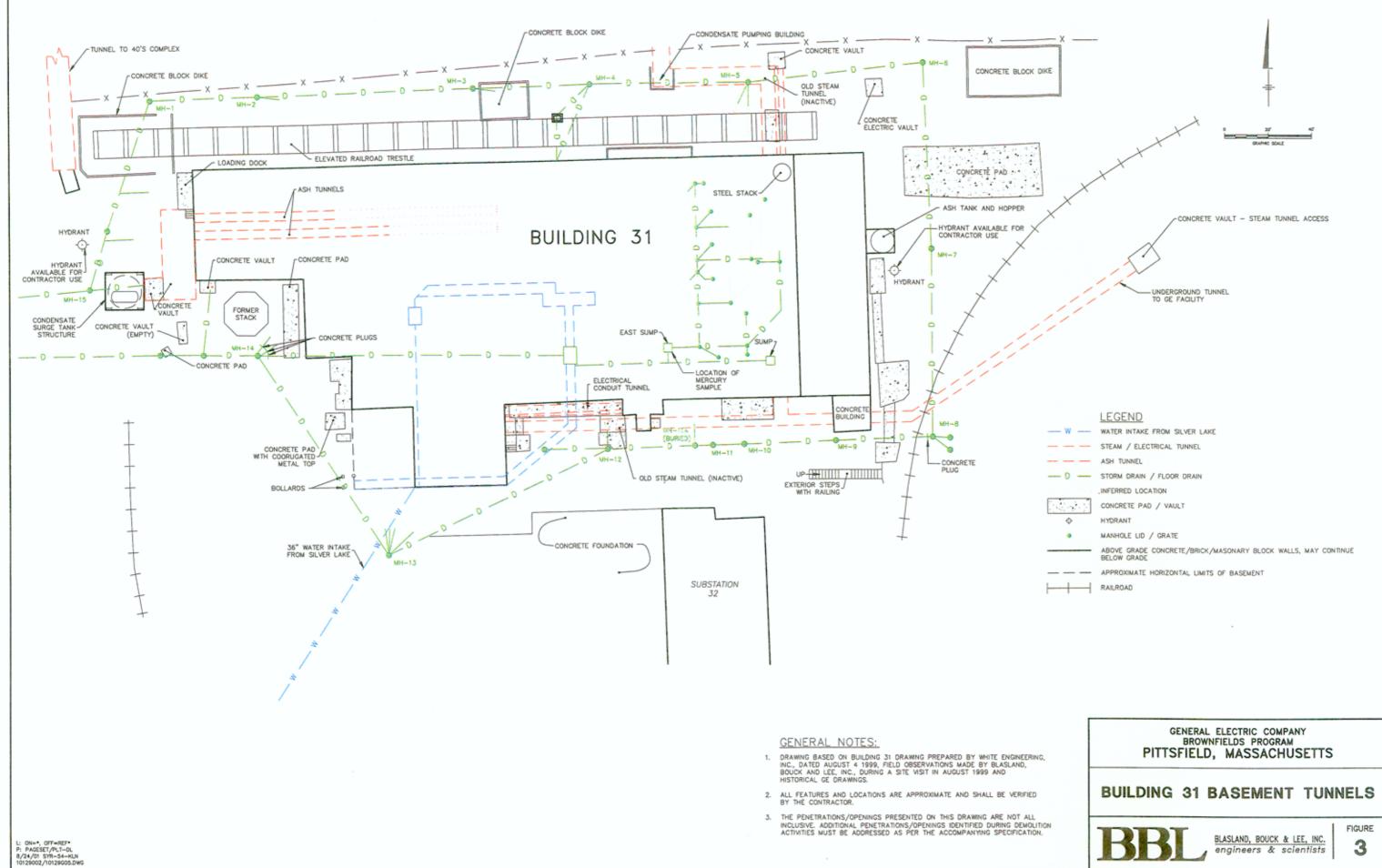
Bryan Olson August 28, 2001 Page 5 of 5


cc: Michael Nalipinski, EPA* Tim Conway, EPA Holly Inglis, EPA* K.C. Mitkevicius, USACE* Dawn Jamros, Weston* J. Lyn Cutler, MDEP (2 copies)* Alan Weinberg, MDEP Robert Bell, MDEP Susan Keydel, MDEP* Thomas Angus, MDEP Nancy E. Harper, MA AG Dale Young, MA EOEA Mayor Gerald Doyle, City of Pittsfield* Thomas Hickey, Director, PEDA* Jeffrey Bernstein, Bernstein, Cushner & Kimmell* Theresa Bowers, Gradient* Pittsfield Department of Health* Michael Carroll, GE Andrew Silfer, GE* Rod McLaren, GE* James Bieke, Shea & Gardner* Samuel Gutter, Sidley Austin Brown & Wood* James Nuss, BBL* Public Information Repositories

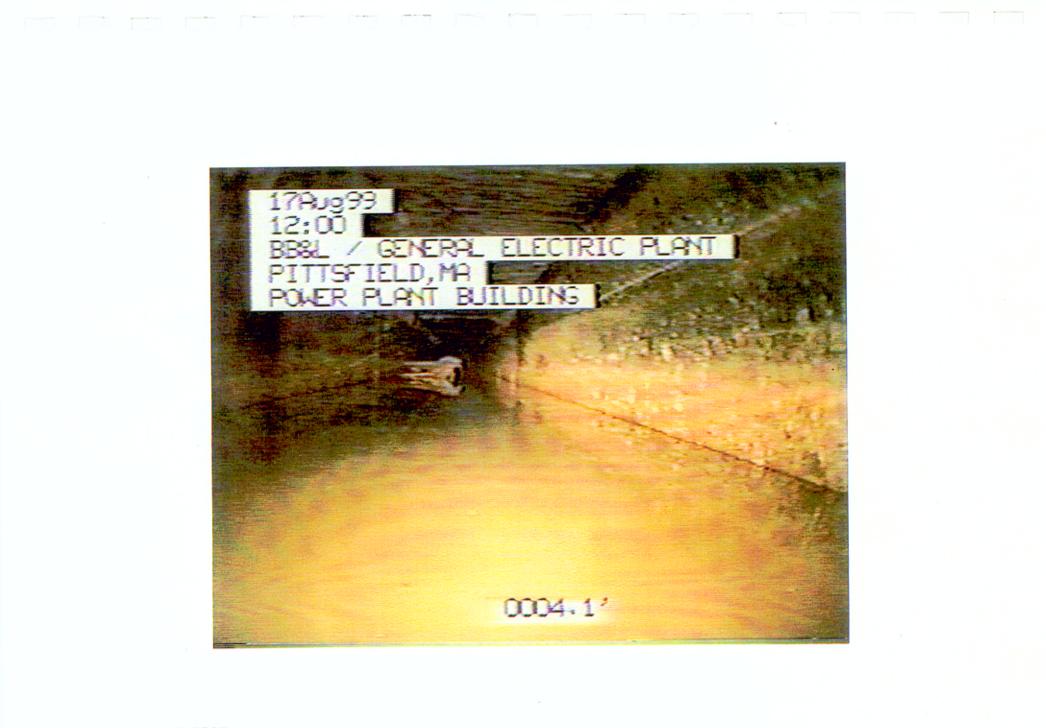

(* with attachments)

Attachment A

TCLP Sampling Locations


Building 31 Basement TCLP Sampling Locations

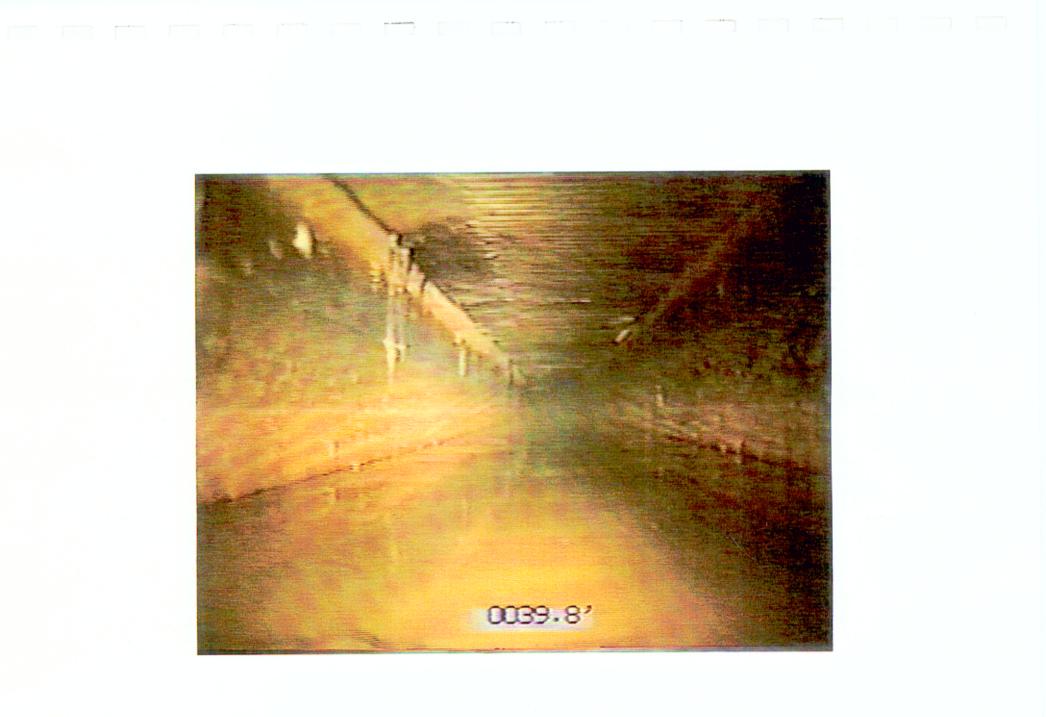
Attachment B


Basement Sump Location

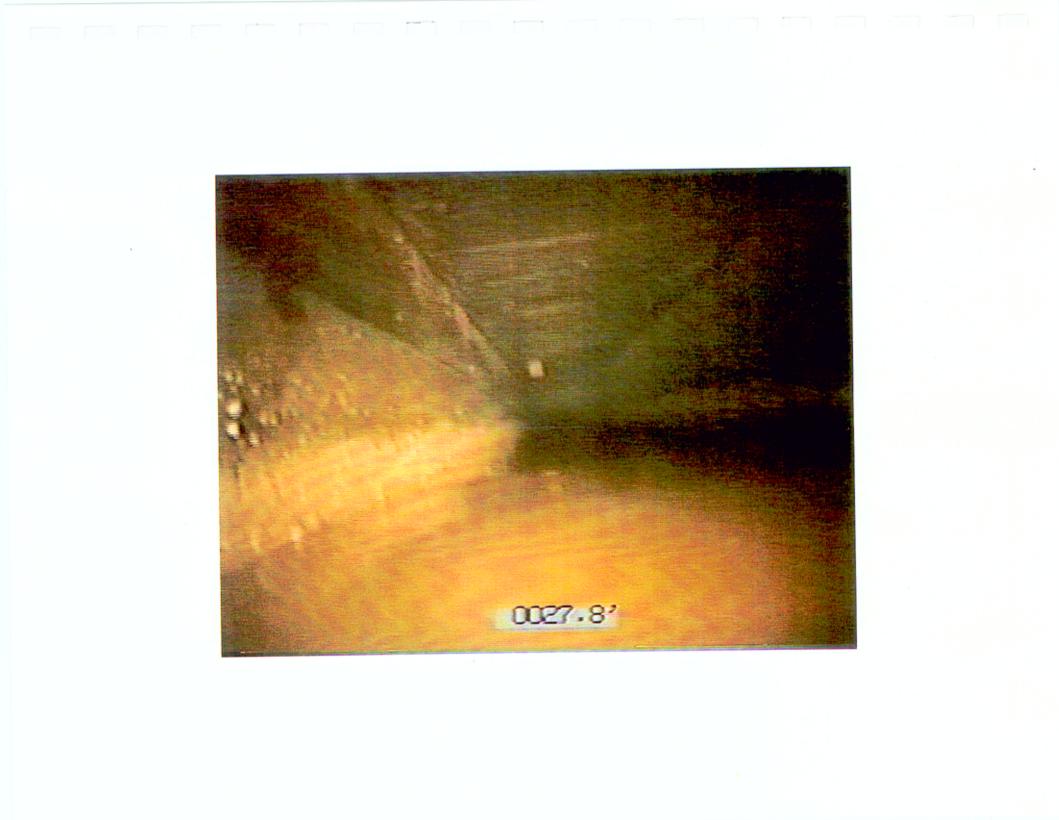
Attachment C

Photos of Ash Tunnels and Analytical Results for Coal Ash

Photographs of Ash Tunnels



08/23/01 D54-SYR-DJH 10129003/10129g01.cdr



TCLP Sample Results For Coal Ash

GENERAL ELECTRIC ENVIRONMENTAL LABORATORY

Test Report

Title:	TCL	P Analyses of Power House Stack Sample	Number: EL-91-027
(M +			Date: July 8, 1991
		Alpha Analytical	Requested by: D Martindale
Report	by:	WA Fessler	
			Approved: Manue

One sample of solid was sent to Alpha Analytical Laboratories for determination of toxicity characteristics listed in the Toxicity Characteristic Leaching Procedure (TCLP, 40CFR268, Appendix I). The results are summarized in the attached table. Parameters which exceeded the regulatory limits are identified by the comment 'EXCEED'.

Sample PH Stack 1A/1B shows the characteristic of toxicity due to the presence of chromium.

A copy of the report from Alpha is attached.

	Laboratory C23 11-250 11-250
--	------------------------------------

Cample ID PH Stack 1A/1	8	Result mg/L	Requia ma/L	torv lim
0. consis				
Arsenic Barium		2.89	5.000	OK
		.03	100.000	OK
Cadmium		.02	1.000	OK
Shromium		5.55	5.000	EXCEED
Lead		.15	5.000	GK
Mercury	,	.0021	.200	οκ
Selenium	Ś	.01	1.000	ΟK
Silver	<	.01	5.000	οκ
o-Cresol	<		200.000	ок
m-Cresol	<		200.000	οκ
o-Cresol	<		200.000	ок
Cresols	<	.029	200.000	ок
2.4-Dinitrotoluene	<	.015	.130	OK
Hexachlorobenzene	<	.011	.130	OK
Hexachlorobutadiene	<	.032	.500	OK
Hexachloroethane	<	.02	3.000	OK
Nitrobenzene	<	.0076	2.000	OK
Pentachlorophenol	<	.0368	100.000	OK
2.4.5-Trichlorophenol	<	.019	400.000	ОК
2.4.6-Trichlorophenol	<	.011	2.000	OK
Pyridine	<	.1	5.000	ок
Senzene	<	.005	.500	οκ
Carbon Tetrachloride	ć	.005	.500	OK
Chlorobenzene	Ż	.018	100.000	OK
Chlorof orm	è	.0075	6.000	OK
1.4-Dichlorobenzene	č	.05	7.500	OK
1.2-Dichloroethane	Ì	.0075	.500	OK
1.1-Dichloroethylene	Ì	.0075	.700	OK
Tetrachloroethylene	, ,	.0075	.700	OK
Trichloroethylene	Ì	.005	.500	OK
/invl Chloride	Ì.	.018	.200	OK
1ethyl Ethyl Ketone	Ì	.05	200.000	OK

.

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006

CERTIFICATE OF ANALYSIS

Client: General Electric Company

Laboratory Job Number: 913780

Address: 100 Woodlawn Avenue

Pittsfield, MA 01201

Attn: William Fessler

Client Designation: PO# A34-PX3021700

Invoice Number: 22217

Date Received: 06/18/91

Date Reported: 07/02/91

Delivery Method: Alpha Courier

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE	LOCATION
913780.1	PH Stack 1A, 1B	Power	House Bldg 31
913780.15	PH Stack 1A, 1B (Spike Recovery)	Power	House Bldg 31

Authorized by: James R. Roth - Laboratory Manager

mar

ALPHAANALYTICALLABORATORIESCERTIFICATEOFANALYSIS

MA 086 NH 198958-A CT PH-0574	NY 11148 NC 320	SC 88006
Laboratory Sample Number: 913780.1	Date Received:	06/18/91
Sample Matrix: Solid	Date Reported:	07/02/91
Condition of Samples: Satisfactory	Field Prep: None	2
Number & Type of Containers: Two glass jars	and three VOA vial	.s

Analysis Requested: Analysis as listed below

.

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD D	ATES	
						EXT/PREP	ANALYSIS
ICLP Extraction			* * *	13	1311	06/20/91	
RCRA 8 Metals				10	1911	00/20/91	
Arsenic	2.89	mg/L	0.10	1	6010	06/21/91	06/26/91
Barium	0.03	mg/L	0.05	1	6010	06/21/91	06/26/91
Cadmium	0.02	mg/L	0.01	1	6010	06/21/91	06/26/91
Chromium	5.55	mg/L	0.02	1	6010	06/21/91	06/26/91
Lead	0.15	mg/I.	0.10	1	6010	06/21/91	06/26/91
Mercury	0.0021		0.0005	1	7470	06/21/91	06/26/91
Selenium	ND	mg/L	0.01	1	7740	06/21/91	06/26/91
Silver	ND	mg/L	0.01	1	6010	06/21/91	06/26/91
cid/Base Neutral Extra	actables	0.			0010	00/21/01	00/20/91
Total cresol	ND	mg/L	0.029	1	8270	06/26/91	06/28/91
2,4-Dinitrotoluene	ND	mg/L	0.015	1	8270	06/26/91	06/28/91
Hexachlorobenzene	ND	mg/L	0.011	1	8270	06/26/91	06/28/91
Hexachloro-1,3-						00/20/71	00/20/71
butadiene	ND	mg/L	0.032	1	8270	06/26/91	06/28/91
Hexachloroethane	ND	mg/L	0.020	1	8270	06/26/91	06/28/91
Nitrobenzene	ND	mg/L	0.0076	1	8270	06/26/91	06/28/91
Pentachlorophenol	ND	mg/L	0.0368	1	8270	06/26/91	06/28/91
2,4,5-Trichlorophenol	ND	mg/L	0.019	1	8270	06/26/91	06/28/91
2,4,6-Trichlorophenol	ND	mg/L	0.011	1	8270	06/26/91	06/28/91
Pyridine	ND	mg/L	0.10	1	8270	06/26/91	06/28/91

Acid/Base/Neutral Extractables 2-Fluorophenol Phenol-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol 4-Terphenyl-d14	<pre>% Surrogate Recovery 14% 19% 70% 50% 92%</pre>
TCLP Metals - All results are sp	pike recovery corrected.
TCLP Organics - All results are	not spike recovery corrected.

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006

Condition of Samples: Satisfactory	Field Prep: None
Sample Matrix: Solid	Date Reported: 07/02/91
Laboratory Sample Number: 913780.1	Date Received: 06/18/91

Number & Type of Containers: Two glass jars and three VOA vials

Analysis Requested: Analysis as listed below

CONTINUED

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD DATES		TES
						EXT/PREP	ANALYSIS
TCLP Extraction				13	1311	06/21/91	
Volatile Organics				1.2	1711	00/21/91	
Benzene	ND	mg/L	0.005	1	8240		06/28/91
Carbon tetrachloride	ND	mg/L	0.005	1	8240		06/28/91
Chlorobenzene	ND	mg/L	0.018	1	8240		06/28/91
Chloroform	ND	mg/L	0.0075	1	8240		06/28/91
1,4-Dichlorobenzene	ND	mg/L	0.05	1	8240		06/28/91
1,2-Dichloroethane	ND	mg/L	0.0075	1	8240		06/28/91
1,1-Dichloroethene	ND	mg/L	0.0075	1	8240		06/28/91
Tetrachloroethene	ND	mg/L	0.0075	1	8240		06/28/91
Trichloroethene	ND	mg/L	0.005	1	8240		06/28/91
Vinyl chloride	ND	mg/L	0.018	1	8240		06/28/91
Methyl ethyl ketone	ND	mg/L	0.05	1	8240		06/28/91

Volatile Organics 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene % Surrogate Recovery 119% 105% 102%

TCLP Metals - All results are spike recovery corrected. TCLP Organics - All results are not spike recovery corrected.

ALPHAANALYTICALLABORATORIESCERTIFICATEOFANALYSIS

MA 086 NH 198958-A CT PH-0574	NY 11148 NC 320 SC 88006
Laboratory Sample Number: 913780.15	Date Received: 06/18/91
Sample Matrix: Solid	Date Reported: 07/02/91
Condition of Samples: Satisfactory	Field Prep: None
Number & Type of Containers: Two glass jars	s and three VOA vials
Analysis Requested: Analysis as listed belo	ow and the second se

PARAMETER	Z RECOVERY	
TCLP RCRA 8 Metals		
Arsenic	112%	
Barium	7%	
Cadmium	128%	
Chromium	1112	
Lead	52%	
Mercury	100%	
Selenium	21%	
Silver	100%	
TCLP Acid/Base Neutral Extrac	tables	
Total cresol	34%	
Hexachlorobenzene	88%	
Hexachloro-1,3-		
butadiene	38%	
Hexachloroethane	30 x	
Pentachlorophenol	57%	
2,4,5-Trichlorophenol	45%	
2,4,6-Trichlorophenol	46%	
Pyridine	6%	
cid/Base/Neutral Extractables	5 % Surrogate Recovery	
-Fluorophenol	12%	
henol-d5	16%	
-Fluorobiphenyl	62%	
,4,6-Tribromophenol	34%	
-Terphenyl-dl4	83%	
CLP Metals - All results are CLP Organics - All results ar	spike recovery corrected. The not spike recovery corrected.	

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006 Laboratory Sample Number: 913780.1S Date Received: 06/18/91 Sample Matrix: Solid Date Reported: 07/02/91 Condition of Samples: Satisfactory Field Prep: None Number & Type of Containers: Two glass jars and three VOA vials Analysis Requested: Analysis as listed below

PARAMETER	Z RECOVERY	
TCLP Volatile Organics		······································
8		
Benzene	98%	
Carbon tetrachloride	99%	
Chlorobenzene	107%	
Chloroform	104%	
l,4-Dichlorobenzene	106%	
1,2-Dichloroethane	113%	
1,1-Dichloroethene	115%	
Tetrachloroethene		
	109%	
Trichloroethene	120%	
Vinyl chloride	90%	
Methyl ethyl ketone	84%	

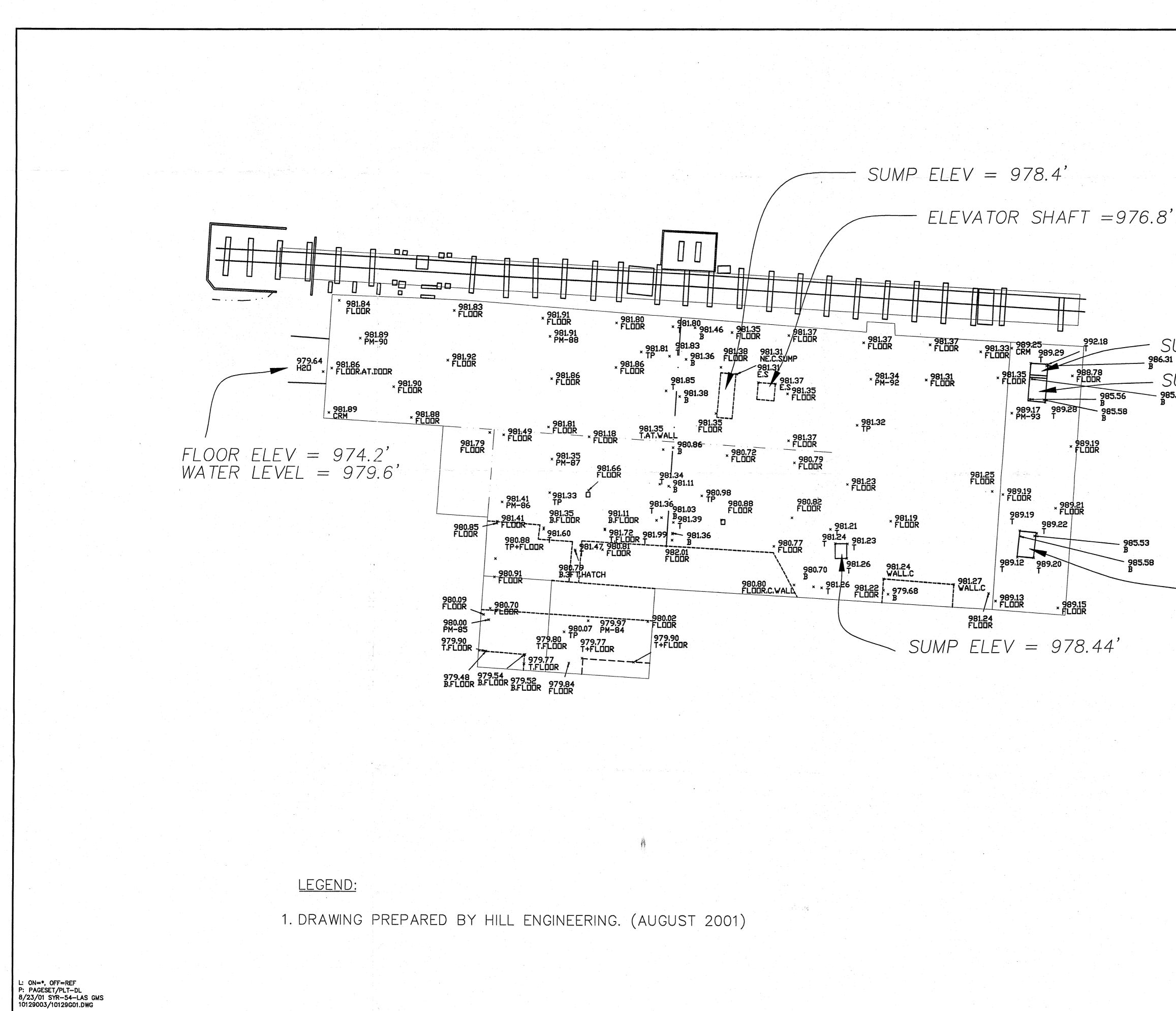
Volatile Organics	% Surrogate Recovery
1,2-Dichloroethane-d4	112%
Toluene-d8	101%
4-Bromofluorobenzene	104%

TCLP Metals - All results are spike recovery corrected. TCLP Organics - All results are not spike recovery corrected.

ALPHA ANALYTICAL LABORATORIES

ACCEPTABLE MATRIX SPIKE RECOVERY LIMITS

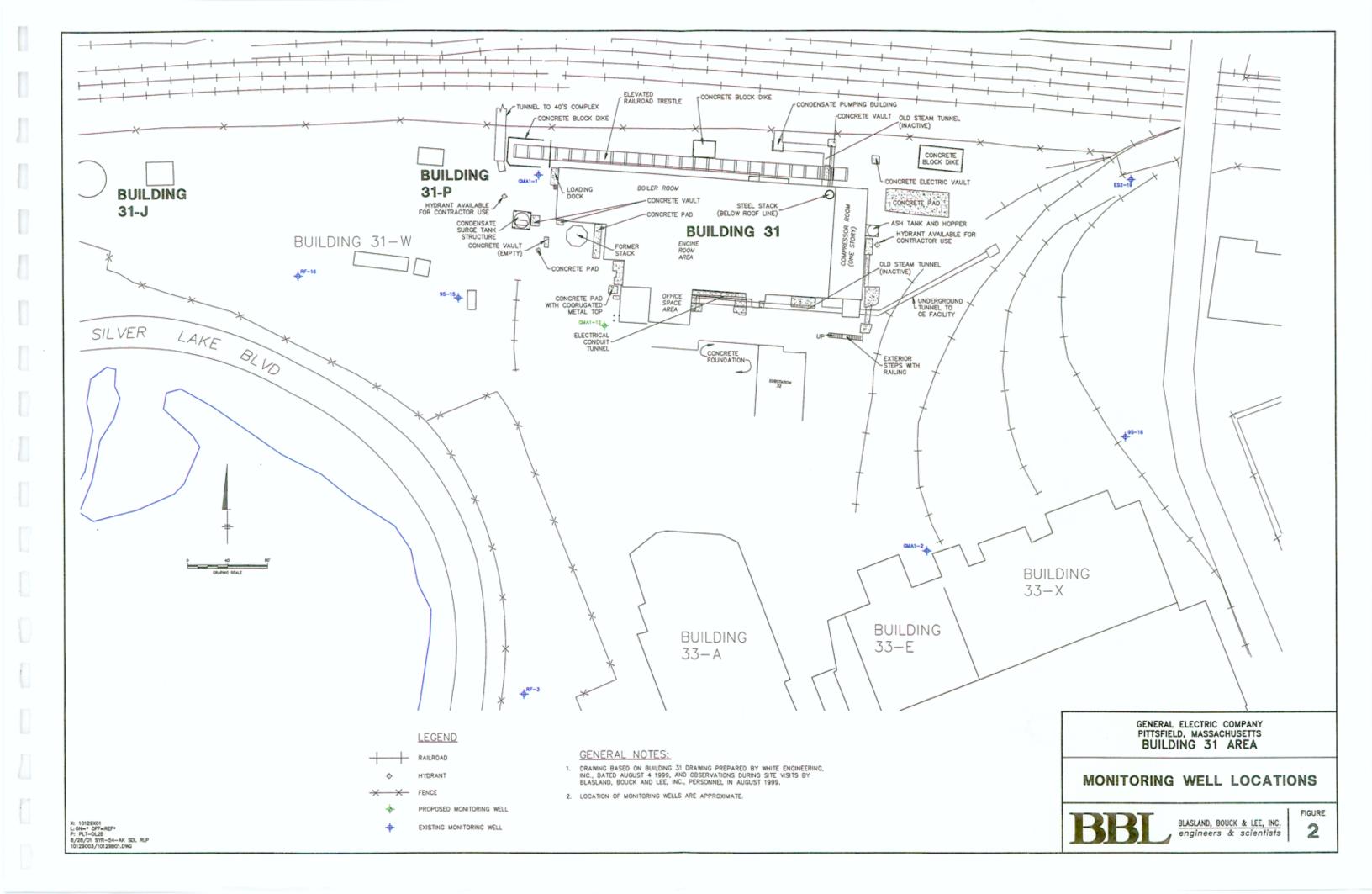
FOR INORGANICS


PARAMETER GROUP	WATER	SOIL
Metals	75-125 %	60-140 %
Wet Chemistry	70-130 %	N/A

Attachment D

Basement Floor Survey, Well Location Figure, and Groundwater Elevation Tables

Figures


·0*

- SUMP ELEV = 986.3' SUMP ELEV = 985.6'

SUMP ELEV = 985.6'

Tables

Table 1

General Electric Company Pittsfield, Massachusetts

Plant Site 1 Groundwater Management Area - 30s Complex Groundwater Elevations in Vicinity of Building 31

Well Name	Measuring Point Elev. (feet AMSL)	Sampling Date	Depth to Water (feet BMP)	Total Well Depth (feet BMP)	Corrected Water Elev. (feet AMSL)
95-15	986.38	8/17/01	9.76	16.70	976.62
95-16	1,007.65	8/17/01	15.85	22.82	991.80
ES2-19	1,007.22	8/17/01	13.58	18.68	993.64
GMA1-1	988.43	8/17/01	9.63	18.33	978.80
GMA1-2	1,006.75	8/17/01	16.13	16.22	990.62
RF-3	985.40	8/17/01	9.62	18.44	975.78
RF-16	987.91	8/17/01	9.64	20.77	978.27

Notes:

1. BMP: Below Measuring Point.

2. AMSL: Above Mean Sea Level.

Table 2

General Electric Company Pittsfield, Massachusetts

Plant Site 1 Groundwater Management Area - 30s Complex Average Spring Groundwater Elevations

		Corrected Water	Average Water	
Well Name	Sampling Date	Elev. (feet AMSL)	Elev. (feet AMSL)	
95-15	Spring 96	978.49		
	Spring 97	977.08		
	Spring 98	977.87	977.62	
	Spring 99	977.50	577.02	
	Spring 00	978.16		
	Spring 01	976.62		
	Spring 96	992.31		
	Spring 97	992.34		
95-16	Spring 98	992.27	992.16	
	Spring 99	992.11	//2.10	
	Spring 00	992.15		
	Spring 01	991.80		
	Spring 96	976.48		
	Spring 97	975.93		
RF-3	Spring 98	975.98	976.03	
IC D	Spring 99	975.81	>10.05	
	Spring 00	975.90		
	Spring 01	976.09		
	Spring 96	979.01		
	Spring 97	978.89		
RF-16	Spring 98	978.67	978.83	
NI -10	Spring 99	978.31	270000	
	Spring 00	978.83		
	Spring 01	979.29		
ES2-19	Spring 98	994.47		
	Spring 99	993.74	993.95	
	Spring 00	993.73		
	Spring 01	993.87		
GMA1-1	Spring 01	979.43	979.43	
GMA1-2	Spring 01	990.63	990.63	

Notes:

1. AMSL: Above Mean Sea Level.

Table 3

General Electric Company Pittsfield, Massachusetts

Building 31 Area Comparison of Spring 1994 and 2001 Groundwater Elevations

Well Name	Spring 2001 Groundwater Elevation (feet AMSL)	Spring 1994 Groundwater Elevation (feet AMSL)	Groundwater Elevation Change From 2001 to 1994 (feet)
II	984.15	984.00	-0.15
JJ	983.88	983.50	-0.38
КК	983.46	983.30	-0.16
N-R	983.35	983.21	-0.14
O-R	986.00	985.91	-0.09
UU-R	982.57	981.42	-1.15
Y	982.84	982.73	-0.11
U	982.46	980.87	-1.59
15R	976.22	973.80	-2.42
16R	977.59	976.50	-1.09
17R	976.38	974.91	-1.47
13	976.06	974.94	-1.12
14	976.53	975.24	-1.29
11R	976.11	977.11	1.00
65	977.87	978.09	0.22
ES2-10	978.80	979.49	0.69
ES2-9	978.16	979.57	1.41
6	979.50	979.49	-0.01
9-N	984.72	984.40	-0.32
20-N	984.11	984.24	0.13
19-N	983.63	983.88	0.25
11-N	983.42	983.76	0.34
17-N .	983.25	983.53	0.28
23-N	983.34	983.65	0.31
24-N	983.53	983.85	0.32
27-N	985.80	986.05	0.25
Average difference	e between 2001 and 1994 gro	undwater elevations	-0.24

Notes:

1. AMSL: Above Mean Sea Level.