

01-0759

Corporate Environmental Programs General Electric Company 100 Woodlawn Avenue, Pittsfield, MA 01201

SDMS 210673

Transmitted via Overnight Delivery

June 7, 2004

Mr. Michael Nalipinski U.S. Environmental Protection Agency, Region 1 One Congress Street, Mail Code HBT Boston, MA 02203-2201

Re: GE-Pittsfield/Housatonic River Site 30s Complex (GECD120) Additional Soil Investigation Results and Data Evaluation

Dear Mr. Nalipinski:

Over the last few years, the General Electric Company (GE) has performed several soil investigation and evaluation activities related to the 30s Complex Removal Action Area (RAA) located at GE's Pittsfield, Massachusetts facility (Figure 1). This area will eventually be transferred to the Pittsfield Economic Development Authority (PEDA) under the Definitive Economic Development Agreement executed between GE and PEDA. These activities, conducted in accordance with the requirements of the October 2000 Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site and the *Statement of Work for Removal Actions Outside the River* (SOW), have resulted in the determination that current conditions at the 30s Complex achieve the applicable soil-related Performance Standards established in the CD and SOW, such that no remediation actions for soils are necessary.

This determination was initially presented in a document titled *Conceptual Removal Design/Removal Action Work Plan for the 20s, 30s, and 40s Complexes* (Blasland, Bouck & Lee, Inc. (BBL), December 2001). That document was subsequently supplemented by three additional submittals: (1) a February 7, 2002 submittal titled *Revised PCB Spatial Averaging Tables*; (2) a February 15, 2002 submittal titled *Addendum to Conceptual RD/RA Work Plan* (which presented the results of supplemental sampling for, and an evaluation of, certain volatile and semi-volatile organic constituents that had not been detected but had elevated detection limits); and (3) a March 4, 2002 submittal titled *Revised Risk Evaluation of Appendix IX+3 Constituents in Soils*. These four documents are collectively referred to herein as the "Conceptual Work Plan." The U.S. Environmental Protection Agency (EPA) conditionally approved the Conceptual Work Plan by letter dated March 19, 2002, indicating its concurrence with the conclusion that no soil-related remediation was necessary at the 30s Complex.

Following submittal of the Conceptual Work Plan, GE performed two additional evaluations related to the soils within the 30s Complex, in response to the receipt of additional sampling data. The first was performed in conjunction with the removal of a former fuel storage tank (as part of the Building 31 Powerhouse demolition project) where soil data collected as part of that activity were evaluated. A summary of that evaluation was presented in an October 8, 2002 letter to EPA (approved by EPA by letter dated November 7, 2002). The second evaluation was conducted to assess additional soil data collected as part of the demolition of Buildings 33, 33-A, 33-E, 33-X, and 34 (Building 33/34 Area) to support PEDA in its plans for redevelopment of that area. The results of that evaluation were summarized in an April 11, 2003 letter from GE to EPA (approved by EPA by letter dated April 24, 2003). Both of these evaluations confirmed the determination presented in the Conceptual Work Plan that no soil-related

remediation actions are needed at the 30s Complex to achieve the applicable Performance Standards established in the CD and SOW.

Nevertheless, to facilitate future planning and re-development of the 30s Complex by PEDA and to support certain provisions of the anticipated Grant of Environmental Restriction and Easement (ERE) for that area, GE submitted a proposal to EPA on March 3, 2004 for additional soil sampling and analysis to further characterize certain soils within the 30s Complex. The investigations proposed in that letter were conditionally approved by EPA in a letter dated March 9, 2004. This letter report summarizes the scope and results of these additional soil investigations and evaluates these new data in the context of previous Removal Design/Removal Action (RD/RA) evaluations of the 30s Complex and the applicable Performance Standards.

I. ADDITIONAL SOIL INVESTIGATIONS

As described in GE's March 3, 2004 letter, the additional investigations were intended to supplement the existing data set by further characterizing the uppermost 6 feet of soil for polychlorinated biphenyls (PCBs) and other constituents listed in Appendix IX of 40 CFR Part 264 (excluding pesticides and herbicides), plus three additional constituents – benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3). The scope of the additional soil sampling was developed under the conservative assumption that all surfaces within the 30s Complex would be unpaved (with the exception of the former Building 31 Powerhouse foundation). Under this assumed future condition, the additional investigations were identified to be consistent with the pre-design investigation requirements for unpaved areas within the GE Plant Area, as established in the SOW.

The pre-design soil investigations specified in the SOW for unpaved areas within the GE Plant Area generally involve the collection of soil samples on an approximate 100-foot sampling grid. Samples are collected at each grid node from the 0- to 1-foot, 1- to 6-foot, and 6- to 15-foot depth increments for analysis of PCBs. The SOW also requires the collection of additional samples for analysis of non-PCB Appendix IX+3 constituents. The number of required Appendix IX+3 samples is approximately equal to one-third the total number of samples requiring analysis of PCBs, approximately evenly distributed between surface (0- to 1-foot depth) and subsurface depth increments. However, as described in GE's March 3, 2004 letter, the additional investigations pertain only to the uppermost 6 feet of soil. To determine the scope of additional sampling activities for the uppermost 6 feet of soil in the 30s Complex, the 100-foot sampling grid established as part of the prior pre-design investigations was extended across the entire 30s Complex. The existing PCB soil sample data set was then reviewed to determine where the existing data could be used to satisfy the sampling requirements for the 0- to 1-foot and 1- to 6-foot depth increments at each grid node. Where the existing PCB data were not sufficient to satisfy the various sampling grids, additional investigations were identified. A similar evaluation of the existing Appendix IX+3 data was performed to assess the need for and locations/depths of additional sampling. In summary, GE's March 3, 2004 letter proposed the collection of 41 samples for analysis of PCBs and 10 samples for analyses of other Appendix IX+3 constituents.

EPA's conditional approval of the proposed investigations required that GE collect additional PCB samples from the 0- to 1-foot and 1- to 6-foot depth increments at grid node H8 on the western side of the 30s Complex (since grid line 8 already existed on the east side of the RAA, this sample was subsequently identified as RAA2-H9W). Further, EPA requested that GE relocate the Appendix IX+3 sample proposed for the 1- to 6-foot depth increment at grid node H2 to grid node H1. In subsequent discussions, GE pointed out that an Appendix IX+3 sample had already been proposed for the 1- to 6-foot depth increment at grid node H1. Consequently, EPA agreed that no modification to the Appendix IX+3 sampling proposal was necessary.

Between March 15 and 19, 2004, a total of 46 PCB soil samples (including three duplicates) and 11 Appendix IX+3 soil samples (including one duplicate) were collected from 26 locations within the 30s Complex. Figures 2 through 4 identify the March 2004 (and prior) sample locations. The samples were analyzed by CT&E Environmental Services, Inc. (CT&E) for PCBs and/or other Appendix IX+3 constituents. The PCB and Appendix IX+3 soil sample data from the additional soil investigations are presented in Tables 1 and 2, respectively.

The soil sampling data collected in March 2004 have been reviewed in accordance with the data validation protocols included in GE's approved *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP). The results of this review (summarized in Attachment A) confirm that the data are within acceptable data validation parameters.

II. EVALUATION OF SAMPLE RESULTS

GE's March 3, 2004 submittal outlined the process by which the soil data obtained from the additional investigations would be evaluated, initially involving a screening-level review of the sample results. If such a screening-level review indicated that the findings of the prior RD/RA evaluations remained unchanged (i.e., that existing conditions would still achieve the applicable soil-related Performance Standards), then further and more detailed evaluations would not be required. In contrast, if the new data, when combined with the prior data from the 30s Complex, indicated that overall concentrations of PCBs or other Appendix IX+3 constituents in soils may approach or exceed the applicable Performance Standards, GE would revise its RD/RA evaluations for the entire 30s Complex using both new and existing data. As discussed below, screening-level assessments of the recent data were sufficient to confirm that the findings of the prior evaluations remain unchanged.

PCB Soil Evaluations

The RD/RA evaluations presented in the Conceptual Work Plan (as well as the subsequent, smaller-scale evaluations mentioned earlier in this letter) indicated that PCB concentrations in soils within the 30s Complex are well below the applicable Performance Standards. Therefore, for the purposes of a screening-level evaluation, if it can be demonstrated that the recent PCB data do not result in a significant change to the previously calculated PCB concentrations in soil at the appropriate depth increments, it can be concluded the findings of the prior evaluations remain valid.

For the 46 samples (including three duplicates) analyzed for PCBs, a maximum concentration of 38 ppm was detected (0- to 1-foot depth increment at RAA2-J5). This concentration is well below the maximum (i.e., "not-to-exceed") level established in the SOW for PCBs in the top foot of unpaved soils – 125 ppm. With the exception of this one sample, each of the remaining PCB results is below the most stringent soil-related Performance Standard for the 30s Complex – i.e., a spatial average concentration of 25 ppm for the top foot of soil. Further, as summarized in the following table, the arithmetic average of the recent sample results for each relevant depth increment is lower than the spatial average PCB concentration presented in the Conceptual Work Plan.

	Ac	Iditional Soil Dat:	ı (March 2004)	Previous Soil Data		
Depth Increment (ft)	No. of Samples	Maximum PCB Result (ppm)	Arithmetic Average PCB Concentration (ppm)	Previously Calculated Spatial Average PCB Concentration (ppm)	Applicable Performance Standard (ppm)	
0 to 1	19	38	3.63	7.31 (overall area) 12.39 (unpaved areas)	25	
1 to 6	27	6.4	0.69	2.64	200	

Since the arithmetic averages of the recent PCB sample data for both depth increments are well below the previously calculated spatial average PCB concentrations presented in the Conceptual Work Plan, it can be concluded that the recent data would not result in an increase in the revised spatial average PCB concentrations. Therefore, it is also concluded that existing PCB conditions continue to achieve the applicable Performance Standard, and that no soil-related response actions are necessary to address PCBs.

Evaluation for Other Appendix IX+3 Constituents

As indicated in GE's March 3, 2004 submittal, the scope of additional Appendix IX+3 soil sampling activities was determined by reviewing the existing data set and comparing those data against the predesign investigation requirements specified in the SOW. When compared against such requirements, it was concluded in that submittal that no additional soil samples were required from the 0- to 1-foot depth increment. Therefore, the following evaluations apply only to the 1- to 6-foot depth increment at the 30s Complex.

For the additional soil samples collected and analyzed for Appendix IX+3 constituents, the screeninglevel evaluation involved comparison of the maximum concentrations of all detected constituents – except for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), discussed below – to the corresponding EPA Region 9 Preliminary Remediation Goals (PRGs) for industrial areas, as specified in Attachment F of the SOW. For constituents where a Region 9 PRG does not exist, surrogate PRGs (based on Region 9 PRGs for similar chemicals and as proposed in EPA-approved Conceptual RD/RA Work Plans for other RAAs) were used.

The results of this comparison are presented in Table 3. As shown in Table 3, the maximum concentrations of all detected Appendix IX+3 constituents are below the applicable PRGs, with the exception of arsenic. For those constituents retained after the PRG screening step, the SOW requires that the arithmetic average concentrations for the depth increments subject to evaluation be compared to the applicable Method 1 soil standards specified in the Massachusetts Contingency Plan (MCP). In this case, however, the maximum detected concentration of arsenic in the samples collected in March 2004 as part of the additional soil investigations (14 ppm from RAA2-G4, 1- to 6-foot depth increment) is well below the applicable MCP Method 1/S-2 soil standard of 30 ppm for arsenic. This maximum concentration is also below the average arsenic concentration (19.3 ppm) presented in the Conceptual Work Plan for the 1- to 6-foot depth increment. Since the maximum arsenic concentration is below the average concentration presented in the Conceptual Work Plan, the recent data would not result in an increase in the average concentration of arsenic.

Regarding PCDDs and PCDFs, a total Toxicity Equivalency Quotient (TEQ) concentration was calculated for each sample using the Toxicity Equivalency Factors (TEFs) published by the World Health Organization (WHO). The maximum total TEQ concentration from the recent data set was compared to the PRG established in the CD for the PCDD/PCDF TEQs in the greater than 1 foot depth increment at industrial/commercial areas – i.e., 20 ppb. None of the recent PCDD/PCDF data had discrete TEQ concentrations greater than the PRG of 20 ppb.

Based on the results of the evaluations presented above, it is concluded that the existing Appendix IX+3 conditions continue to achieve the applicable Performance Standards, and that no soil-related response actions are necessary to address those constituents in the 30s Complex. For these reasons, no revisions to the Appendix IX+3 evaluations presented in the Conceptual Work Plan are required.

III. SUMMARY

Based on the evaluations summarized in Section II above, the conclusion presented in the Conceptual Work Plan (and subsequent evaluations) that no soil-related removal actions are necessary at this RAA remains unchanged.

Please contact me with any questions or comments regarding the information presented herein.

Sincerely,

John Phovotry (min)

John F. Novotny, P.E. Manager-Facilities and Brownfields Programs

Enclosure V:\GE_Pittsfield_CD_20s30s40s\Reports and Presentations\Bldg33-34\37342196.doc

cc: Dean Tagliaferro, EPA Tim Conway, EPA Holly Inglis, EPA Rose Howell, EPA K.C. Mitkevicius, USACE Susan Steenstrup, MDEP Anna Symington, MDEP Robert Bell, MDEP Tom Angus, MDEP Dawn Jamros, Weston Mayor James Ruberto, City of Pittsfield Thomas Hickey, Director, PEDA Gerald Lee, President, Pittsfield City Council Pittsfield Department of Health Jeffrey Bernstein, Bernstein, Cushner & Kimmel Elizabeth Goodman, Bernstein, Cushner & Kimmel Teresa Bowers, Gradient Michael Carroll, GE Rod McLaren, GE Andrew Silfer, GE James Nuss, BBL James Bieke, Shea & Gardner Samuel Gutter, Sidley Austin Brown & Wood Public Information Repositories GE Internal Repository

Tables

TABLE 1 SUMMARY OF PCB SOIL SAMPLE DATA

ADDITIONAL SOIL INVESTIGATION - 30S COMPLEX 20s, 30s, 40S COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

		Date		and the second second						
Sample ID	Depth(Feet)	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA2-A1	0-1	3/15/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.049	0.048	0.097
	1-6	3/15/2004	ND(0.039)							
RAA2-B1	1-6	3/18/2004	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.78	0.41	1,19
RAA2-B2	0-1	3/17/2004	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	0.14	0.25	0.39
	1-6	3/17/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.071	0.050	0.121
RAA2-B8	1-6	3/19/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.051	0,061	0.112
RAA2-E1	0-1	3/18/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	1.5	1.5
	1-6	3/18/2004	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	0.017 J	0.017 J
RAA2-E3	0-1	3/18/2004	ND(0.036)							
	1-6	3/18/2004	ND(0.038)							
RAA2-G5	1-6	3/18/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.24	0.19	0,43
RAA2-H1	0-1	3/16/2004	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.45	0.91	1.36
	1-6	3/16/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	1.1	1.1
RAA2-H2	0-1	3/16/2004	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.18	0.18
	1-6	3/16/2004	ND(0.039) [ND(0.039)]	ND(0.039) [ND(0.039)]	ND(0.039) [ND(0.039)]		0.38 [0.29]	1.2 [0.67]	1.3 [1.0]	2.88 [1.96]
RAA2-H3	0-1	3/16/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	1.5	0.58	2.08
	1-6	3/16/2004	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.051	0.020 J	0.071
RAA2-H4	0-1	3/16/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.041	0.16	0.201
	1-6	3/16/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.014 J	0.014 J
RAA2-H9W	0-1	3/17/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.30	0.60	0.90
	1-6	3/17/2004	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.41	0.54	0.95
RAA2-H10	0-1	3/17/2004	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	2.6	1.8	4.4
	1-6	3/17/2004	ND(0.038) [ND(0.038)]							
RAA2-H12	1-6	3/17/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.25	0.30	0.55
RAA2-I1	0-1	3/17/2004	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	0.032 J	0.032 J
	1-6	3/17/2004	ND(0.042)							
RAA2-13	0-1	3/16/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.027 J	0.013 J	0.040 J
	1-6	3/16/2004	ND(0.039)							
RAA2-15	0-1	3/18/2004	ND(1,9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	7.0	8.4	15.4
	1-6	3/18/2004	ND(0.037) [ND(0.19)]	1.5 [2.7]	0.31 [0.73]	1.81 [3.43]				
RAA2-112	0-1	3/17/2004	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.051	0.11	0.161
	1-6	3/17/2004	ND(0.036)							
RAA2-J1	0-1	3/15/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.18	0.23	0.41
	1-6	3/15/2004	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	ND(0.039)	0.013 J	0.018 J	0.031 J
RAA2-J2	0-1	3/17/2004	ND(0.038)							
	1-6	3/17/2004	ND(0.042)							
RAA2-J4	0-1	3/16/2004	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)	0.30	0.32	0.62
-	1-6	3/16/2004	ND(0.036)							
RAA2-J5	0-1	3/19/2004	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	17	21	38
	1-6	3/19/2004	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.18	0.23	0.41
RAA2-J6	0-1	3/19/2004	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	1.3	1.9	3.2
	1-6	3/19/2004	ND(0.037)							
RAA2-J7	1-6	3/19/2004	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	2.7	3.7	6.4

Notes:

1. Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of PCBs.

2. ND - Analyte was not detected. The number in parentheses is the associated detection limit.

3. Duplicate sample results are presented in brackets.

Data Qualifiers;

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Sample ID:	RAA2-B1	RAA2-B1	RAA2-E1	RAA2-E1	RAA2-G4
Sample Depth(Feet):	1-6	4-6	1-6	4-6	1-6
Parameter Date Collected:	03/18/04	03/18/04	03/18/04	03/18/04	03/16/04
Volatile Organics					
Tetrachloroethene	NA	ND(0.0055)	NA	ND(0.0065)	NA
Trichloroethene	NA	ND(0.0055)	NA	ND(0.0065)	NA
Semivolatile Organics			A	£	
1.2.4-Trichlorobenzene	ND(0.36)	NA	ND(0.42)	NA	0.28 J [ND(0.40)]
2-Methylnaphthalene	ND(0.36)	NA	ND(0.42)	NA	ND(0.40) [ND(0.40)]
Acenaphthylene	ND(0.36)	NA	ND(0.42)	NA	0.11 J [ND(0.40)]
Anthracene	ND(0.36)	NA	ND(0.42)	NA	0.17 J [0.10 J]
Benzo(a)anthracene	0.37	NA	ND(0.42)	NA	0.35 J [0.21 J]
Benzo(a)pyrene	0.19 J	NA	ND(0.42)	NA	0.17 J [0.081 J]
Benzo(b)fluoranthene	0.18 J	NA	ND(0.42)	NA	0.20 J [0.099 J]
Benzo(g,h,i)perylene	0.12 J	NA	ND(0.42)	NA	0.16 J [ND(0.40)]
Benzo(k)fluoranthene	0.20 J	NA	ND(0.42)	NA	0.21 J [0.093 J]
Chrysene	0.42	NA	ND(0.42)	NA	0.52 [0.31 J]
Dibenzofuran	ND(0.36)	NA	ND(0.42)	NA	0.13 J [ND(0.40)]
Fluoranthene	0.71	NA	ND(0.42)	NA	0.72 [0.57]
Fluorene	ND(0.36)	NA	ND(0.42)	NA	ND(0.40) [ND(0.40)]
Indeno(1,2,3-cd)pyrene	0.098 J	NA	ND(0.42)	NA	0.11 J [ND(0.40)]
Naphthalene	ND(0.36)	NA	ND(0.42)	NA	0.25 J [0.27 J]
Phenanthrene	0.47	NA	ND(0.42)	NA	0.65 [0.54]
Pyrene	0.77	NA	ND(0.42)	NA	0.72 [0.56]
Furans					
2,3,7,8-TCDF	0.000021 Y	NA	ND(0.00000013)	NA	0.000085 Y [0.00014 Y]
TCDFs (total)	0.00017 I	NA	ND(0.00000013)	NA	0.00050 I [0.0013 I]
1,2,3,7,8-PeCDF	0.0000051	NA	ND(0.00000015)	NA	0.000027 [0.000037]
2,3,4,7,8-PeCDF	0.0000092	NA	ND(0.00000011)	NA	0.000049 [0.000072]
PeCDFs (total)	0.00016 I	NA	ND(0.00000015)	NA	0.00041 [0.0015]
1,2,3,4,7,8-HxCDF	0.0000073	NA	ND(0.00000014)	NA	0.000037 [0.000053]
1,2,3,6,7,8-HxCDF	0.0000066 I	NA	ND(0.00000014)	NA	0.000039 [0.000072 1]
1,2,3,7,8,9-HxCDF	ND(0.0000028)	NA	ND(0.00000017)	NA	0.0000024 [0.0000022]
2,3,4,6,7,8-HxCDF	0.000062	NA	ND(0.00000015)	NA	0.000034 [0.00010]
HxCDFs (total)	0.000101	NA	0.0000191	NA	0.00094 I [0.0016 I]
1,2,3,4,6,7,8-HpCDF	0.000021	NA	0.000014	NA	0.00013 [0.00019]
1,2,3,4,7,8,9-HpCDF	0.000028	NA	ND(0.00000044)	NA	0.000013 [0.000021]
HpCDFs (total)	0.000052	NA	0.000071	NA	0.00041 [0.00047]
OCDF	0.000020	NA	0.000025	NA	0.000057 [0.00011]
Dioxins					
2,3,7,8-TCDD	ND(0.00000094)	NA	ND(0.00000011)	NA	ND(0.00000010) [0.0000014]
TCDDs (total)	ND(0.00000094)	NA	ND(0.0000011)	NA	ND(0.0000010) [0.000017]
1,2,3,7,8-PeCDD	ND(0.0000033)	NA	ND(0.00000014)	NA	ND(0.0000034) [ND(0.0000092)]
PeCDDs (total)	ND(0.0000033)	NA	ND(0.0000014)	NA	ND(0.00000034) [ND(0.00000092)]
1,2,3,4,7,8-HxCDD	ND(0.0000019)	NA	ND(0.0000026)	NA	0.0000018 [0.0000029]
1,2,3,6,7,8-HxCDD	ND(0.0000019)	NA	ND(0.0000025)	NA	0.0000026 [ND(0.00000034)]
1,2,3,7,8,9-HxCDD	ND(0.0000019)	NA	ND(0.0000026)	NA	0.0000024 [ND(0.00000035)]
HxCDDs (total)	0.0000058	NA	0.0000049	NA	0.000027 [0.000046]
1,2,3,4,6,7,8-HpCDD	0.000015	NA	0.000040	NA	0.000018 [0.000033]
HpCDDs (total)	0.000024	NA	0.000049	NA	0.000035 [0.000062]
OCDD	0.000091 B	NA	0.000027 B	NA	0.000080 B [0.00010]
Total TEQs (WHO TEFs)	0.000096	NA	0.0000078	NA	0.000048 [0.000079]

Sample ID: Sample Depth(Feet):	RAA2-B1 1-6	RAA2-B1 4-6	RAA2-E1 1-6	RAA2-E1 4-6	RAA2-G4 1-6
Parameter Date Collected:	03/18/04	03/18/04	03/18/04	03/18/04	03/16/04
Inorganics					
Antimony	ND(6.00)	NA	ND(6.00)	NA	ND(6.00) [ND(6.00)]
Arsenic	6.50	NA	2.90	NA	14.0 [9.80]
Barium	42.0	NA	34.0	NA	44.0 [37.0]
Beryllium	0.210 B	NA	0.420 B	NA	0.230 B [0.170 B]
Cadmium	0.540	NA	0.460 B	NA	0.460 B [0.400 B]
Chromium	6.80	NA	8.40	NA	6.30 [5.20]
Cobalt	7.10	NA	10.0	NA	5.30 [5.30]
Copper	58.0	NA	16.0	NA	50.0 [37.0]
Cyanide	0.120 B	NA	ND(0.130)	NA	0.620 [0.550]
Lead	44.0	NA	7.70	NA	51.0 [41.0]
Mercury	1.10	NA	ND(0.130)	NA	300 [230]
Nickel	12.0	NA	18.0	NA	51.0 [66.0]
Selenium	1.30	NA	ND(1.00)	NA	2.00 [1.40]
Silver	ND(1.00)	NA	ND(1.00)	NA	ND(1.00) [0.120 B]
Sulfide	47.0	NA	10.0	NA	48.0 [36.0]
Thallium	ND(1.10)	NA	ND(1.30)	NA	ND(1.20) [ND(1.20)]
Tin	5.00 B	NA	2.10 B	NA	5.40 B [4.60 B]
Vanadium	7.00	NA	9.80	NA	22.0 [17.0]
Zinc	88.0	NA	44.0	NA	77.0 [58.0]

Sample ID:	RAA2-G4	RAA2-G9	RAA2-G9	RAA2-H1	RAA2-H1	RAA2-H3
Sample Depth(Feet):	4-6	1-6	4-6	1-6	4-6	1-6
Parameter Date Collected:	03/16/04	03/17/04	03/17/04	03/16/04	03/16/04	03/16/04
Volatile Organics						
Tetrachloroethene	0.022 [0.011]	NA	0.0038 J	NA	ND(0.0059)	NA
Trichloroethene	0.042 [0.024]	NA	ND(0.0056)	NA	ND(0.0059)	NA
Semivolatile Organics			*****		********	***************************************
1,2,4-Trichlorobenzene	NA	0.096 J	NA	0.12 J	NA	ND(0.36)
2-Methylnaphthalene	NA	ND(0.37)	NA	ND(0.38)	NA	ND(0.36)
Acenaphthylene	NA	ND(0.37)	NA	0.099 J	NA	ND(0.36)
Anthracene	NA	ND(0.37)	NA	0.15 J	NA	ND(0.36)
Benzo(a)anthracene	NA	ND(0.37)	NA	0.29 J	NA	ND(0.36)
Benzo(a)pyrene	NA	ND(0.37)	NA	0.13 J	NA	ND(0.36)
Benzo(b)fluoranthene	NA	ND(0.37)	NA	0.12 J	NA	ND(0.36)
Benzo(g,h,i)perylene	NA	ND(0.37)	NA	0.079 J	NA	ND(0.36)
Benzo(k)fluoranthene	NA	ND(0.37)	NA	0.13 J	NA	ND(0.36)
Chrysene	NA	ND(0.37)	NA	0.34 J	NA	ND(0.36)
Dibenzofuran	NA	ND(0.37)	NA	ND(0.38)	NA	ND(0.36)
Fluoranthene	NA	ND(0.37)	NA	0.48	NA	0.11 J
Fluorene	NA	ND(0.37)	NA	ND(0.38)	NA	ND(0.36)
Indeno(1,2,3-cd)pyrene	NA	ND(0.37)	NA	ND(0.38)	NA	ND(0.36)
Naphthalene	NA	ND(0.37)	NA	ND(0.38)	NA	ND(0.36)
Phenanthrene	NA	ND(0.37)	NA	0.41	NA	0.089 J
Pyrene	NA	ND(0.37)	NA	0.55	NA	0.14 J
Furans						
2,3,7,8-TCDF	NA	0.000015 Y	NA	0.0000032 Y	NA	ND(0.00000072)
TCDFs (total)	NA	0.000621	NA	0.0000531	NA	ND(0.00000072)
1,2,3,7,8-PeCDF	NA	0.0000056	NA	ND(0.00000027)	NA	ND(0.00000010)
2,3,4,7,8-PeCDF	NA	0.00012	NA	0.0000034	NA	ND(0.00000011)
PeCDFs (total)	NA	0.0016	NA	0.00013	NA	ND(0.00000011)
1,2,3,4,7,8-HxCDF	NA	0.000034	NA	0.0000044	NA	ND(0.000000070)
1,2,3,6,7,8-HxCDF	NA	0.0000361	NA	0.00000661	NA	ND(0.00000074)
1,2,3,7,8,9-HxCDF	NA	0.0000069	NA	ND(0.0000038)	NA	ND(0.00000010)
2,3,4,6,7,8-HxCDF	NA	0.000038	NA	0.0000053	NA	ND(0.000000070)
HxCDFs (total)	NA	0.00121	NA	0.0000961	NA	0.0000064
1,2,3,4,6,7,8-HpCDF	NA	0.000081	NA	0.000012	NA	ND(0.00000072)
1,2,3,4,7,8,9-HpCDF	NA	0.000013	NA	ND(0.0000035)	NA	ND(0.00000013)
HpCDFs (total)	NA	0.00021	NA	0.000036	NA	ND(0.00000013)
OCDF	NA	0.000059	NA	0.000021	NA	ND(0.0000035)
Dioxins						
2,3,7,8-TCDD	NA	ND(0.00000012)	NA	ND(0.00000012)	NA	ND(0.000000044)
TCDDs (total)	NA	0.000063	NA	ND(0.00000012)	NA	ND(0.00000044)
1,2,3,7,8-PeCDD	NA	ND(0.0000016) X	NA	ND(0.0000010)	NA	ND(0.00000015)
PeCDDs (total)	NA	ND(0.0000016)	NA	ND(0.0000010)	NA	ND(0.00000015)
1,2,3,4,7,8-HxCDD	NA	0.0000010	NA	ND(0.0000063)	NA	ND(0.00000061)
1,2,3,6,7,8-HxCDD	NA	0.0000039	NA	ND(0.00000058)	NA	ND(0.00000059)
1,2,3,7,8,9-HxCDD	NA	0.0000017	NA	ND(0.00000061)	NA	ND(0.00000061)
HxCDDs (total)	NA	0.000014	NA	ND(0.0000063)	NA	ND(0.000000061)
1,2,3,4,6,7,8-HpCDD	NA	0.000026	NA	0.000028	NA	ND(0.00000085)
HpCDDs (total)	NA	0.000052	NA	0.000043	NA	ND(0.00000085)
OCDD	NA	0.00025 B	NA	0.000097	NA	ND(0.00000018)
Total TEQs (WHO TEFs)	NA	0.000076	NA	0.0000047	NA	0.00000016

Sample ID: Sample Depth(Feet): Parameter Date Collected:	RAA2-G4 4-6 03/16/04	RAA2-G9 1-6 03/17/04	RAA2-G9 4-6 03/17/04	RAA2-H1 1-6 03/16/04	RAA2-H1 4-6 03/16/04	RAA2-H3 1-6 03/16/04
Inorganics			1 000000			00.10/04
Antimony	NA	ND(6.00)	NA	ND(6.00)	NA	ND(6.00)
Arsenic	NA	6.30	NA	6.50	NA	4.30
Barium	NA	47.0	NA	32.0	NA	21.0
Beryllium	NA	0.240 B	NA	0.160 B	NA	0.150 B
Cadmium	NA	0.340 B	NA	0.350 B	NA	0.310 B
Chromium	NA	5.20	NA	3.50	NA	5.10
Cobalt	NA	3.80 B	NA	2.70 B	NA	6.10
Copper	NA	26.0	NA	19.0	NA	19.0
Cyanide	NA	ND(0.560)	NA	0.0940 B	NA	ND(0.110)
Lead	NA	25.0	NA	16.0	NA	16.0
Mercury	NA	0.250	NA	0.560	NA	0.0850 B
Nickel	NA	8.00	NA	6.30	NA	11.0
Selenium	NA	0.860 B	NA	0.860 B	NA	0.770 B
Silver	NA	0.210 B	NA	ND(1.00)	NA	ND(1.00)
Sulfide	NA	23.0	NA	17.0	NA	10.0
Thallium	NA	ND(1.10)	NA	ND(1.20)	NA	ND(1.10)
Tin	NA	2.80 B	NA	4.00 B	NA	2.10 B
Vanadium	NA	6.40	NA	8.00	NA	5.00
Zinc	NA	36.0	NA	62.0	NA	33.0

Sample ID:	RAA2-H3	RAA2-112	RAA2-112	RAA2-J1	RAA2-J1	RAA2-J5
Sample Depth(Feet):	4-6	1-6	4-6	1-6	4-6	1-3
Parameter Date Collected:	03/16/04	03/17/04	03/17/04	03/15/04	03/15/04	03/19/04
Volatile Organics						
Tetrachloroethene	ND(0.0054)	NA	ND(0.0055)	NA	ND(0.0054)	ND(0.0059)
Trichloroethene	ND(0.0054)	NA	ND(0.0055)	NA	ND(0.0054)	ND(0.0059)
Semivolatile Organics			*			
1.2.4-Trichlorobenzene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
2-Methylnaphthalene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Acenaphthylene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Anthracene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Benzo(a)anthracene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Benzo(a)pyrene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Benzo(b)fluoranthene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Benzo(g,h,i)perylene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Benzo(k)fluoranthene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Chrysene	NA	ND(0.36)	NA	0.079 J	NA	NA
Dibenzofuran	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Fluoranthene	NA	ND(0.36)	NA	0.11 J	NA	NA
Fluorene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Indeno(1,2,3-cd)pyrene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Naphthalene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Phenanthrene	NA	ND(0.36)	NA	ND(0.39)	NA	NA
Pyrene	NA	ND(0.36)	NA	0.12 J	NA	NA
Furans						
2.3.7,8-TCDF	NA	ND(0.00000074)	NA	ND(0.000000077)	NA	NA
TCDFs (total)	NA	ND(0.00000074)	NA	0.0000046	NA	NA
1,2,3,7,8-PeCDF	NA	ND(0.00000010)	NA	0.0000012	NA	NA
2.3.4,7,8-PeCDF	NA	ND(0.00000076)	NA	ND(0.00000094)	NA	NA
PeCDFs (total)	NA	ND(0.00000010)	NA	0.0000022	NA	NA
1.2.3.4.7.8-HxCDF	NA	ND(0.000000072)	NA	0.00000072	NA	NA
1,2,3,6,7,8-HxCDF	NA	ND(0.00000072)	NA	0.00000051	NA	NA
1,2,3,7,8,9-HxCDF	NA	ND(0.00000080)	NA	ND(0.00000026)	NA	NA
2,3,4,6,7,8-HxCDF	NA	ND(0.00000082)	NA	ND(0.00000028)	NA	NA
HxCDFs (total)	NA	0.0000056	NA	0.0000042	NA	NA
1,2,3,4,6,7,8-HpCDF	NA	0.0000047	NA	0.0000033	NA	NA
1,2,3,4,7,8,9-HpCDF	NA	ND(0.00000018)	NA	ND(0.00000082) X	NA	NA
HpCDFs (total)	NA	0.000016	NA	0.000014	NA	NA
OCDF	NA	0.000012	NA	0.0000075	NA	NA
Dioxins						
2,3,7,8-TCDD	NA	ND(0.00000068)	NA	ND(0.000000077)	NA	NA
TCDDs (total)	NA	ND(0.00000068)	NA	0.0000019	NA	NA
1,2,3,7,8-PeCDD	NA	ND(0.00000082)	NA	ND(0.00000094)	NA	NA
PeCDDs (total)	NA	ND(0.00000082)	NA	0.0000048	NA	NA
1,2,3,4,7,8-HxCDD	NA	ND(0.00000011)	NA	0.00000024	NA	NA
1,2,3,6,7,8-HxCDD	NA	ND(0.00000010)	NA	0.0000068	NA	NA
1,2,3,7,8,9-HxCDD	NA	ND(0.00000011)	NA	0.0000032	NA	NA
HxCDDs (total)	NA	ND(0.00000011)	NA	0.000011	NA	NA
1,2,3,4,6,7,8-HpCDD	NA	0.000010	NA	0.000022	NA	NA
HpCDDs (total)	NA	0.000016	NA	0.000081	NA	NA
OCDD	NA	0.000045 B	NA	0.00024	NA	NA
Total TEQs (WHO TEFs)	NA	0.0000029	NA	0.0000070	NA	NA

Sample ID: Sample Depth(Feet): Parameter Date Collected:	RAA2-H3 4-6 03/16/04	RAA2-112 1-6 03/17/04	RAA2-I12 4-6 03/17/04	RAA2-J1 1-6 03/15/04	RAA2-J1 4-6 03/15/04	RAA2-J5 1-3 03/19/04
Inorganics						
Antimony	NA	ND(6.00)	NA	1.40 B	NA	NA
Arsenic	NA	3.30	NA	8.40	NA	NA
Barium	NA	20.0	NA	30.0	NA	NA
Beryllium	NA	0.220 B	NA	0.360 B	NA	NA
Cadmium	NA	0.380 B	NA	0.350 B	NA	NA
Chromium	NA	4.70	NA	5.00	NA	NA
Cobalt	NA	5.10	NA	4.90 B	NA	NA
Copper	NA	10.0	NA	25.0	NA	NA
Cyanide	NA	ND(0.540)	NA	0.0760 B	NA	NA
Lead	NA	5.20	NA	16.0	NA	NA
Mercury	NA	ND(0.110)	NA	0.0130 B	NA	NA
Nickel	NA	8.60	NA	7.90	NA	NA
Selenium	NA	0.760 B	NA	ND(1.00)	NA	NA
Silver	NA	0.200 B	NA	0.230 B	NA	NA
Sulfide	NA	10.0	NA	24.0	NA	NA
Thallium	NA	ND(1.10)	NA	ND(1.20)	NA	NA
Tin	NA	2.00 B	NA	2.70 B	NA	NA
Vanadium	NA	5.40	NA	6.20	NA	NA
Zinc	NA	25.0	NA	29.0	NA	NA

Sample ID:	RAA2-J5	RAA2-J7	RAA2-J7
Sample Depth(Feet):	1-6	1-6	4-6
Parameter Date Collected:	03/19/04	03/19/04	03/19/04
Volatile Organics			
Tetrachloroethene	NA	NA	ND(0.0068)
Trichloroethene	NA	NA	ND(0.0068)
Semivolatile Organics			
1.2.4-Trichlorobenzene	ND(0.37)	ND(0.89)	NA
2-Methylnaphthalene	ND(0.37)	0.66 J	NA
Acenaphthylene	ND(0.37)	ND(0.89)	NA
Anthracene	ND(0.37)	0.28 J	NA
Benzo(a)anthracene	ND(0.37)	0.34 J	NA
Benzo(a)pyrene	ND(0.37)	ND(0.89)	NA
Benzo(b)fluoranthene	ND(0.37)	ND(0.89)	NA
Benzo(g,h,i)perylene	ND(0.37)	ND(0.89)	NA
Benzo(k)fluoranthene	ND(0.37)	ND(0.89)	NA
Chrysene	ND(0.37)	0.28 J	NA
Dibenzofuran	ND(0.37)	0.54 J	NA
Fluoranthene	0.091 J	1.6	NA
Fluorene	ND(0.37)	0.65 J	NA
Indeno(1,2,3-cd)pyrene	ND(0.37)	ND(0.89)	NA
Naphthalene	ND(0.37)	0.51 J	NA
Phenanthrene	ND(0.37)	2.0	NA
Pyrene	0.097 J	1.5	NA
Furans		1	
2,3,7,8-TCDF	0.0000035 Y	0.0000014 J	NA
TCDFs (total)	0.000018	0.000015	NA
1.2.3.7.8-PeCDF	0.0000012 J	0.00000053 J	NA
2,3,4,7,8-PeCDF	0.0000034 J	0.0000042 J	NA
PeCDFs (total)	0.000038	0.000067	NA
1,2,3,4,7,8-HxCDF	0.0000021 J	0.0000028 J	NA
1,2,3,6,7,8-HxCDF	0.0000016 J	0.0000032 J	NA
1,2,3,7,8,9-HxCDF	ND(0.00000070)	0.00000091 J	NA
2,3,4,6,7,8-HxCDF	0.0000035 J	0.000011	NA
HxCDFs (total)	0.000045	0.00015	NA
1,2,3,4,6,7,8-HpCDF	0.0000053 J	0.000021	NA
1,2,3,4,7,8,9-HpCDF	0.00000086 J	0.0000021	NA
HpCDFs (total)	0.000012	0.000042	NA
OCDF	0.0000043 J	0.0000042	NA
Dioxins	0.0000040.0	0.00000000	
			NA
2,3,7,8-TCDD	ND(0.0000023)	ND(0.0000033) ND(0.0000080)	NA NA
TCDDs (total)	ND(0.00000056) ND(0.00000042) X	ND(0.0000080) ND(0.00000065)	NA NA
1,2,3,7,8-PeCDD	in the second	terror and the second	
PeCDDs (total)	0.0000060	ND(0.0000012)	NA
1,2,3,4,7,8-HxCDD	ND(0.00000056)	ND(0.0000065)	NA
1,2,3,6,7,8-HxCDD	ND(0.0000032) X	ND(0.00000041) X	NA
1,2,3,7,8,9-HxCDD	ND(0.0000036) X	ND(0.0000065)	NA
HxCDDs (total)	0.0000088	0.00000052	NA
1,2,3,4,6,7,8-HpCDD	0.000020 J	0.0000016 J	NA
HpCDDs (total)	0.0000042	0.0000031	NA
OCDD	0.000017	0.000010 J	NA
Total TEQs (WHO TEFs)	0.0000033	0.0000049	NA

Sample ID: Sample Depth(Feet): Parameter Date Collected:	RAA2-J5 1-6 03/19/04	RAA2-J7 1-6 03/19/04	RAA2-J7 4-6 03/19/04
Inorganics			
Antimony	0.880 B	ND(6.00)	NA
Arsenic	7.20	6.80	NA
Barium	25.0	28.0	NA
Beryllium	0.210 B	0.290 B	NA
Cadmium	0.160 B	0.260 B	NA
Chromium	10.0	12.0	NA
Cobalt	9.10	13.0	NA
Copper	57.0	40.0	NA
Cyanide	0.100 B	0.150	NA
Lead	27.0	11.0	NA
Mercury	0.0150 B	ND(0.130)	NA
Nickel	17.0	24.0	NA
Selenium	1.50	1.60	NA
Silver	ND(1.00)	ND(1.00)	NA
Sulfide	11.0	14.0	NA
Thallium	ND(1.10)	1.20 B	NA
Tin	6.40 B	3.40 B	NA
Vanadium	8.20	11.0	NA
Zinc	65.0	91.0	NA

TABLE 2

SUMMARY OF APPENDIX IX+3 SOIL SAMPLE DATA

ADDITIONAL SOIL INVESTIGATION - 30s COMPLEX 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Notes:

- 1. Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of Appendix IX+3 constituents.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December
- 5. 1998.
- 6. With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles, dioxin/furans)

- B Analyte was also detected in the associated method blank.
- J Indicates an estimated value less than the practical quantitation limit (PQL).
- I Polychlorinated Diphenyl Ether (PCDPE) Interference.
- X Estimated maximum possible concentration.
- Y 2,3,7,8-TCDF results have been confirmed on a DB-225 column.

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 3 COMPARISON OF DETECTED APPENDIX IX+3 CONSTITUENTS TO INDUSTRIAL SCREENING PRGs

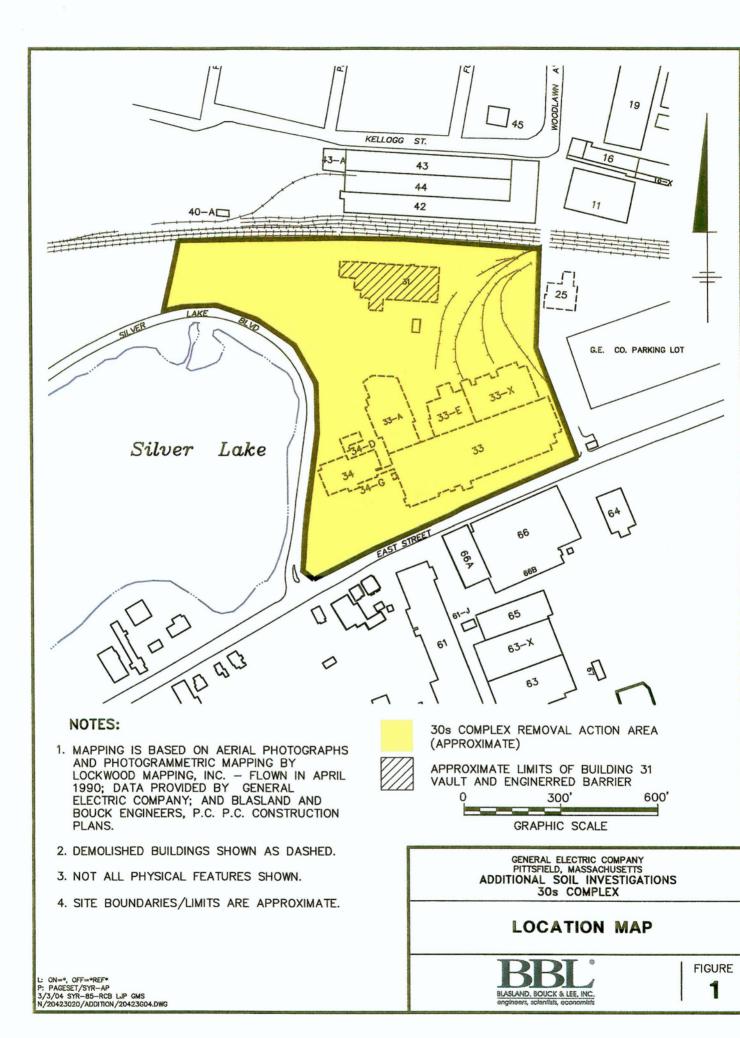
ADDITIONAL SOIL INVESTIGATION - 30s COMPLEX 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

		UNLIA	Constituent Retained
	Maximum	Region 9	for Further Evaluation?
Analytical Parameter	Detect	Industrial PRGs (See Note 3)	(See Note 4)
Volatile Organics			
Tetrachloroethene	0.022	16	No
Trichloroethene	0.042	6.1	No
Semivolatile Organics			
1,2,4-Trichlorobenzene	0.28	1,700	No
2-Methylnaphthalene	0.66	190	No
Acenaphthylene	0.11	190	No
Anthracene	0.28	220,000	No
Benzo(a)anthracene	0.37	3.6	No
Benzo(a)pyrene	0.19	0.36	No
Benzo(b)fluoranthene	0.2	3.6	No
Benzo(g,h,i)perylene	0.16	190	No
Benzo(k)fluoranthene	0.21	3.6	No
Chrysene	0.52	360	No
Dibenzofuran	0.54	3,200	No
Fluoranthene	1.6	37,000	No
Fluorene	0.65	22,000	No
Indeno(1,2,3-cd)pyrene	0.11	3.6	No
Naphthalene	0.51	190	No
Phenanthrene	2	190	No
Pyrene	1.5	26,000	No
Inorganics			
Antimony	1.4	750	No
Arsenic	14	3	Yes
Barium	47	100,000	No
Beryllium	0.42	3,400	No
Cadmium	0.54	930	No
Chromium	12	450	No
Cobalt	13	29,000	No
Copper	58	70,000	No
Cyanide	0.62	35	No
Lead	51	1,000	No
Mercury	300	560	No
Nickel	66	37,000	No
Selenium	2	9,400	No
Silver	0.23	9,400	No
Sulfide	48	1,200	No
Thallium	1.2	150	No
Tin	6.4	100,000	No
Vanadium	22	13,000	No
Zinc	91	100,000	No

Notes:

1. PRG = Preliminary Remediation Goal.

2. Per Attachment F to Statement of Work for Removal Actions Outside the River (SOW), comparison to PRGs is required for all detected Appendix IX+3 constituents except PCBs, dioxins, and furans.


 Screening PRGs include EPA Region 9 Industrial PRGs or, for certain constituents, surrogate PRGs based on the following: Attachment F, #3b of the SOW (certain PAHs); Section 4.3.2 of the Conceptual RD/RA Work Plan for Newell Street Area I (cyanide/xylenes); or Condition 14 of EPA's May 24, 2002 comment letter regarding the Newell Street Area I RAA (sulfide).

4. Constituent is retained for further evaluation if its maximum detected concentration exceeds its corresponding PRG.

Figures

ļ

APPROXIMATE LIMITS OF BUILDING 31 VAULT VIIIA AND ENGINEERED BARRIER

NOTES:

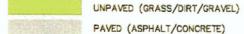
E

- 1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. -FLOWN IN APRIL 1990; DATA PROVIDED BY GENERAL ELECTRIC COMPANY, AND BLASLAND AND BOUCK ENGINEERS, P.C. CONSTRUCTION PLANS.
- 2. NOT ALL PHYSICAL FEATURES SHOWN.
- 3. SITE BOUNDARY IS APPROXIMATE.
- 4. ALL SAMPLING LOCATIONS ARE APPROXIMATE.
- 5. EXTENT OF VARIOUS SURFACE COVERS IS APPROXIMATE.
- 6. 100-YEAR FLOODPLAIN BOUNDARY IS BASED ON ELEVATIONS PUBLISHED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY: "FLOOD INSURANCE STUDY" - CITY OF PITTSFIELD, MASSACHUSETTS" JANUARY 16, 1987; AND "FLOOD INSURANCE RATE MAP - CITY OF PITTSFIELD, MASSACHUSETTS" (PANELS 250037 0010C AND 25037 0020C), FEBRUARY 19, 1982, AND TWO-FOOT CONTOUR TOPOGRAPHIC MAPPING GENERATED PHOTOGRAMETRICALLY IN 1990 AT A BASE SCALE OF 1:2,400.

0	200'	400	·
	APPROXIMATE SCA	E	
PITTS	RAL ELECTRIC C SFIELD, MASSACH NAL SOIL INVE 30s COMPLI	USETTS STIGATIONS	
XISTING AN Sam	ID PROPO PLE LOCA		B SOIL
B	BL		FIGURE

BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists

2

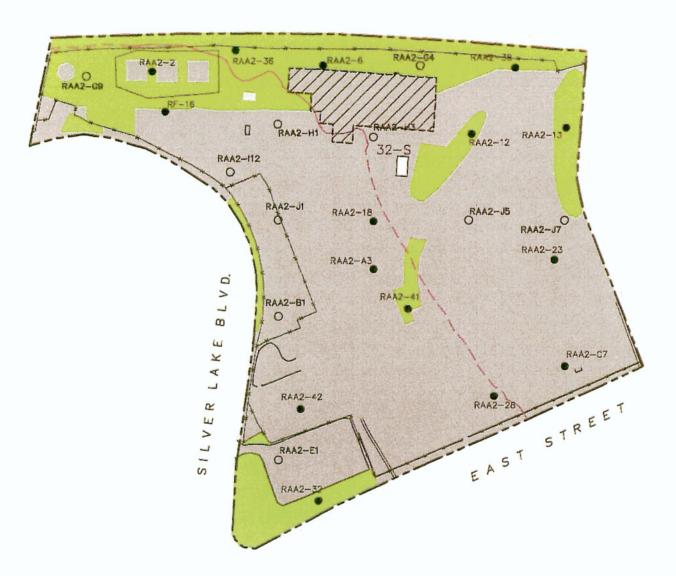

LEGEND:

APPROXIMATE LIMITS OF 30'S COMPLEX

FENCE

APPROXIMATE 100-YEAR FLOODPLAIN BOUNDARY (DASHED WHERE INFERRED)

EXISTING MONITORING WELL AND CORRESPONDING SOIL SAMPLING LOCATION


- EXISTING SURFACE SOIL SAMPLING LOCATION
- EXISTING SOIL BORING LOCATION

APPROXIMATE LIMITS OF BUILDING 31 VAULT AND ENGINEERED BARRIER

NOTES:

- 1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. -FLOWN IN APRIL 1990; DATA PROVIDED BY GENERAL ELECTRIC COMPANY, AND BLASLAND AND BOUCK ENGINEERS, P.C. CONSTRUCTION PLANS.
- 2. NOT ALL PHYSICAL FEATURES SHOWN.
- 3. SITE BOUNDARY IS APPROXIMATE.
- 4. ALL SAMPLING LOCATIONS ARE APPROXIMATE.
- 5. EXTENT OF VARIOUS SURFACE COVERS IS APPROXIMATE.
- 6. 100-YEAR FLOODPLAIN BOUNDARY IS BASED ON ELEVATIONS PUBLISHED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY: "FLOOD INSURANCE STUDY" - CITY OF PITTSFIELD, MASSACHUSETTS" JANUARY 16, 1987; AND "FLOOD INSURANCE RATE MAP - CITY OF PITTSFIELD, MASSACHUSETTS" (PANELS 250037 0010C AND 25037 0020C), FEBRUARY 19, 1982, AND TWO-FOOT CONTOUR TOPOGRAPHIC MAPPING GENERATED PHOTOGRAMETRICALLY IN 1990 AT A BASE SCALE OF 1:2,400.

0	200'	400'
	APPROXIMATE SCALE	
	ERAL ELECTRIC CO SFIELD, MASSACHU NAL SOIL INVES 30s COMPLE	JSETTS TIGATIONS X
SAM	APPENDIX IPLE LOCA 1-FOOT IN	
BASLA	BBL ND. BOUCK & LEE. INC.	FIGURE

LEGEND:

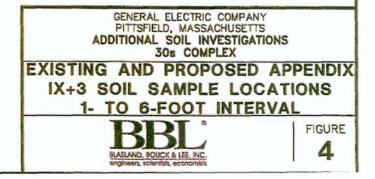
APPROXIMATE LIMITS OF 30'S COMPLEX

APPROXIMATE 100-YEAR FLOODPLAIN BOUNDARY (DASHED WHERE INFERRED)

UNPAVED (GRASS/DIRT/GRAVEL)

PAVED (ASPHALT/CONCRETE)

EXISTING SOIL BORING LOCATION


PROPOSED SOIL BORING LOCATION

APPROXIMATE LIMITS OF BUILDING 31 VAULT AND ENGINEERED BARRIER

NOTES:

- 1. MAPPING IS BASED ON AERIAL PHOTOGRAPHS AND PHOTOGRAMMETRIC MAPPING BY LOCKWOOD MAPPING, INC. -FLOWN IN APRIL 1990; DATA PROVIDED BY GENERAL ELECTRIC COMPANY, AND BLASLAND AND BOUCK ENGINEERS, P.C. CONSTRUCTION PLANS.
- 2. NOT ALL PHYSICAL FEATURES SHOWN.
- 3. SITE BOUNDARY IS APPROXIMATE.
- 4. ALL SAMPLING LOCATIONS ARE APPROXIMATE.
- 5. EXTENT OF VARIOUS SURFACE COVERS IS APPROXIMATE.
- 6. 100-YEAR FLOODPLAIN BOUNDARY IS BASED ON ELEVATIONS PUBLISHED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY: "FLOOD INSURANCE STUDY" - CITY OF PITTSFIELD, MASSACHUSETTS" JANUARY 16, 1987; AND "FLOOD INSURANCE RATE MAP - CITY OF PITTSFIELD, MASSACHUSETTS" (PANELS 250037 0010C AND 25037 0020C), FEBRUARY 19, 1982, AND TWO-FOOT CONTOUR TOPOGRAPHIC MAPPING GENERATED PHOTOGRAMETRICALLY IN 1990 AT A BASE SCALE OF 1:2,400.

0	200'	400'
	APPROXIMATE SCALE	

Attachment A

and the second second

ATTACHMENT A DATA VALIDATION REPORT 30s COMPLEX – ADDITIONAL SOIL INVESTIGATION

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

1.0 General

This attachment summarizes the Tier I and Tier II data reviews performed for soil samples collected as part of the Additional Soil Investigation at the 30s Complex, located in Pittsfield, Massachusetts. The samples were analyzed for various constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents - benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine (hereafter referred to as Appendix IX+3), excluding pesticides and herbicides, by SGS Environmental Services, Inc. of Charleston, West Virginia. Data validation was performed for 49 polychlorinated biphenyl (PCB) samples, 16 volatile organic compound (VOC) samples, 12 semi-volatile organic compound (SVOC) samples, 12 polychlorinated dibenzo-p-dioxin (PCDD)/polychlorinated dibenzofuran (PCDF) samples, 12 metals samples, and 12 cyanide/sulfide samples.

2.0 Data Evaluation Procedures

This attachment outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland, Bouck & Lee, Inc. ([BBL]; FSP/QAPP, approved November 4, 2002 and resubmitted December 10, 2002);
- Region I Tiered Organic and Inorganic Data Validation Guidelines, USEPA Region I (July 1, 1993);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, USEPA Region I (June 13, 1988) (Modified February 1989);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (February 1, 1988) (Modified November 1, 1988);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (Draft, December 1996); and
- National Functional Guidelines for Dioxin/Furan Data Validation, USEPA (Draft, January 1996).

A tabulated summary of the Tier I and Tier II data evaluations is presented in Table 1. Each sample subjected to evaluation is listed in Table 1 to document that data review was performed, as well as present the highest level of data validation (Tier I or Tier II) that was applied. Samples that required data qualification are listed separately for each parameter (compound or analyte) that required qualification.

The following data qualifiers were used in this data evaluation:

- J The compound or analyte was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound or analyte is detected at an estimated concentration less than the corresponding practical quantitation limit (PQL).
- U The compound or analyte was analyzed for, but was not detected. The sample quantitation limit is presented and adjusted for dilution and (for solid samples only) percent moisture. Non-detect sample results are presented as ND(PQL) within this report and in Table 1 for consistency with previous documents prepared for this investigation.
- UJ The compound or analyte was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual level of quantitation. Non-detect sample results that required qualification are presented as ND(PQL) J within this report and in Table 1 for consistency with previous documents prepared for this investigation.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purpose.

3.0 Data Validation Procedures

Section 7.5 of the FSP/QAPP provides that all analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (USEPA guidelines). Accordingly, 100% of the analytical data for these investigations were subjected to Tier I review. The Tier I review consisted of a completeness evidence audit, as outlined in the *USEPA Region I CSF Completeness Evidence Audit Program* (USEPA Region I, 7/31/91), to ensure that all laboratory data and documentation were present. In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with USEPA Region I Tier I data completeness requirements.

A Tier II review was performed to resolve data usability limitations identified from laboratory qualification of the data during the Tier I data review. The Tier II data review consisted of a review of all data package summary forms for identification of Quality Assurance/Quality Control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. Tier II review was performed on 100% of the data. The Tier II review resulted in the qualification of data for several samples due to minor QA/QC deficiencies.

A tabulated summary of the samples subjected to Tier I and Tier II data evaluation is presented in the following table.

	Tier I Only		Tier I & Tier II			a 1	
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
PCBs	0	0	0	43	3	3	49
VOCs	0	0	0	10	1	5	16
SVOCs	0	0	0	10	1	1	12
PCDDs/PCDFs	0	0	0	10	1	1	12
Metals	0	0	0	10	1	1	12

Summary of Samples Subjected to Tier I and Tier II Data Validation

V:\GE_Pittsfield_General\Reports and Presentations\Validation Final\Commercial\37342196AttA.doc

		Tier I Only		Т	ier I &Tier II		Testal
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
Cyanide/Sulfide	0	0	0	10	1	1	12
Total	0	0	0	93	8	12	113

Summary of Samples Subjected to Tier I and Tier II Data Validation

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in USEPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented in the following table for each analytical method.

4.0 Data Review

The initial calibration criterion for organic analyses requires that the average relative response factor (RRF) has a value greater than 0.05. Sample results were qualified as estimated (J) when this criterion was not met. The compounds that did not meet the initial calibration criterion and the number of samples qualified are presented in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,4-Dioxane	12	J
	2-Butanone	5	J
	Acetone	5	J
	Acetonitrile	16	J
	Acrolein	16	J
	Isobutanol	16	J
	Propionitrile	16	J
SVOCs	4-Nitroquinoline-1-oxide	12	J

Compounds Qualified Due to Initial Calibration Deviations

Several of the organic compounds (including the compounds presented in the above table detailing RRF deviations) exhibit instrument response factors (RFs) below the USEPA Region I minimum value of 0.05, but meet the analytical method criterion which does not specify minimum RFs for these compounds. These compounds were analyzed by the laboratory at a higher concentration than the compounds that normally exhibit RFs greater than the USEPA Region I minimum value of 0.05 in an effort to demonstrate acceptable response. USEPA Region I guidelines state that non-detect compound results associated with a RF less than the minimum value of 0.05 are to be rejected (R). However, in the case of these select organic compounds, the RF is an inherent problem with the current analytical methodology; therefore, the non-detect sample results were qualified as estimated (J).

The initial calibration criterion for SVOCs requires that the percent relative standard deviation (%RSD) must be less than or equal to 30%. Sample data for detected and non-detected compounds with %RSD values greater than 30% were qualified as estimated (J). The compounds that exceeded the initial calibration criterion and the number of samples qualified due those exceeded are identified in the following table.

and a state of the	Analysis	Compound	Number of Affected Samples	Qualification
	SVOCs	4-Nitrophenol	12	J

Compounds Qualified Due to Initial Calibration %RSD Deviations

The continuing calibration criterion requires that the %D between the initial calibration RRF and the continuing calibration RRF for VOCs and SVOCs be less than 25% and for PCDDs/PCDFs be less than 35%. Sample data for detected and non-detected compounds with %D values that exceeded the continuing calibration criterion were qualified as estimated (J). A summary of the compounds that exceeded continuing calibration criterion and the number of samples qualified due to those deviations are identified in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,1,1,2-Tetrachloroethane	3	J
	1,1,2,2-Tetrachloroethane	3	J
	1,2-Dibromo-3-chloropropane	2	J
	1,4-Dioxane	4	J
	2-Hexanone	5	J
	Bromomethane	11	J
	Carbon Tetrachloride	3	J
	Chloroethane	2	J
	Dichlorodifluoromethane	3	J
	Iodomethane	8	J
SVOCs	1,3,5-Trinitrobenzene	8	J
	2,4-Dinitrophenol	5	J
	2-Acetylaminofluorene	5	J
	2-Nitroaniline	8	J
	3,3'-Dichlorobenzidine	5	J
	3,3'-Dimethylbenzidine	2	J
	3-Nitroaniline	5	J
	4-Phenylenediamine	8	J
	Aramite	7	J
	Benzidine	8	J
	Benzyl Alcohol	1	J
	Hexachlorophene	5	J
	Methapyrilene	4	J
	Methyl Methanesulfonate	5	J
	N-Nitrosomorpholine	4	J

Contract required detection limit (CRDL) standards were analyzed to evaluate instrument performance at lowlevel concentrations that are near the analytical method PQL. These standards are required to have recoveries between 80 and 120% to verify that the analytical instrumentation was properly calibrated. When CRDL standard recoveries exceeded the 80 to 120% control limits, the affected samples with detected results at or near the PQL concentration (less than three times the PQL) were qualified as estimated (J). The analytes that exceeded CRDL criteria and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Lead	4	J
	Selenium	8	J
	Thallium	8	J

Analytes Qualified Due to CRDL Standard Recovery Deviations

Field, laboratory, and method blanks were analyzed to evaluate whether field sampling equipment or laboratory background contamination may have contributed to the reported sample results. When detected analytes were identified in a blank sample, blank action levels were calculated at five times the blank concentration for all detected analytes. Detected sample results that were below the blank action level were qualified as "U." The analyte detected in the method blanks and which resulted in qualification of sample data is presented in the following table.

Analyte	Qualified	Due to	Blank	Deviations

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Tin	11	U

Surrogate compounds are analyzed with every organic sample to aid in evaluation of the sample extraction efficiency. As specified in the FSP/QAPP all surrogate compounds must have a recovery between the laboratory-specified control limits for VOCs sample analysis. Sample data for detect and non-detect compounds with surrogate recoveries that exceeded the surrogate recovery criteria and exhibited recoveries greater than 10% were qualified as estimated (J). A summary of the compounds affected by surrogate recovery deviations and the number of samples qualified due to those deviations are shown in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	Tetrachloroethene	3	J
	Trichloroethene	3	J

Compounds Qualified Due to Surrogate Recovery Deviations

Field duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures. The RPD between duplicate samples is required to be less than 50% for soil sample values greater than five times the PQL. Sample results for analytes that did not meet these limits were qualified as estimated (J). The analytes/compounds that did not meet field duplicate RPD requirements and the number of samples qualified due to those deviations are presented in the following table.

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Chromium	4	J
	Cobalt	4	J
	Vanadium	4	J

Analytes Qualified Due to Field Duplicate Deviations

Internal standard compounds for VOCs analysis are required to have area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts for the continuing calibration standard. VOCs sample results for the associated compounds were qualified as estimated (J) when the internal standard recovery was less than 50%, but greater than 25%. Compounds associated with internal standards which exceeded the recovery criteria and the numbers of samples qualified due to those deviations are identified in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,1,2,2-Tetrachloroethane	3	J
	1,2,3-Trichloropropane	3	J
	1,2-Dibromo-3-chloropropane	J	
	trans-1,4-Dichloro-2-butene	3	J
	1,1,1,2-Tetrachloroethane	1	J
	1,1,2-Trichloroethane	1	J
	1,2-Dibromoethane	1	J
	2-Hexanone	1	J
	Bromoform	1	J
	Chlorobenzene	1	J
	Dibromochloromethane	1	J
	Ethyl Methacrylate	1	J
	Ethylbenzene	1	J
	Styrene	1	J
	Tetrachloroethene	1	J
	Toluene 1		J
	trans-1,3-Dichloropropene	1	J
	Xylenes (total)	1	J

Compounds Qualified Due to Internal Standard Recovery Deviations

The analytical laboratory is required to analyze one sample per analytical batch using a five-fold dilution to evaluate matrix interferences. Analytes with results greater than 50 times the IDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted sample and results for the same sample analyzed with a five-fold dilution. Detected results that were greater than 50 times the IDL were qualified as estimated (J) for analytes with a %D greater than 10%. The inorganic analytes that did not meet ICP serial dilution requirements and the number of samples qualified due to those requirements are presented in the following table.

Analytes	Oualified	Due to	ICP	Serial	Dilution	Deviations
----------	-----------	--------	-----	--------	----------	------------

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Barium	4	J
	Copper	4	J
	Nickel	4	J
	Zinc	4	J

Aroclor identification criteria require that the Aroclor pattern resemble the pattern established throughout the analysis of the standards of the target Aroclors. Sample data that did not match Aroclor patterns that were established through the analysis of target Aroclor standards were qualified with a "U" and the Total PCB content was adjusted to reflect the qualification of Aroclor-1248 as non-detect. The PCB compound that did not meet Aroclor identification criteria and the number of samples qualified due to those deviations are identified in the following table.

Analysis	Compound	Number of Affected Samples	Qualification
PCBs	Aroclor-1248	2	U

Compound Qualified Due to Identification Deviations

5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability for site characterization purposes. Data completeness is defined as the percentage of sample results determined to be usable during the data validation process. Data completeness with respect to usability was calculated separately for inorganic and each of the organic analyses. The percent usability calculation included analyses evaluated under both the Tier I and Tier II data validation reviews. The percent usability calculation also includes quality control samples collected to aid in the evaluation of data usability. Therefore, field/equipment blank, trip blank, and field duplicate data determined to be unusable as a result of the validation process are represented in the percent usability value tabulated in the following table.

	Data Usability										
Parameter	Percent Usability	Rejected Data									
Inorganics	100	None									
Cyanide and Sulfide	100	None									
VOCs	100	None									
SVOCs	100	None									
PCBs	100	None									
PCDDs/PCDFs	100	None									

The data package completeness as determined from the Tier I data review was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between duplicate sample results. The duplicate samples used to evaluate precision included laboratory duplicates, field duplicates, MS/MSD samples, and ICP serial dilution samples. For this analytical program 0.48% of the data required qualification for ICP

serial dilution deviations. None of the data required qualification for MS/MSD RPD deviations, field duplicate RPD deviations and laboratory duplicate RPD deviations.

5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, internal standards, Laboratory Control Standards (LCSs), MS/MSD samples, CRDL samples, and surrogate compound recoveries. For this analytical program, 6.9% of the data required qualification for calibration deviations, 0.59% required qualification for CRDL standard recoveries, 0.77% required qualification for internal standard required qualification for MS/MSD recoveries and LCS recovery deviations.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in Agency-approved work plans and by following the procedures for sample collection/analyses described in the FSP/QAPP. Additionally, the analytical program used procedures that were consistent with USEPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical program, none of the data required qualification for exceeding holding time requirements.

5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. The USEPA SW-846¹ analytical methods presented in the FSP/QAPP are updated on occasion by the USEPA to benefit from recent technological advancements in analytical chemistry and instrumentation. In most cases, the method upgrades include the incorporation of new technology that improves the sensitivity and stability of the instrumentation or allows the laboratory to increase throughput without hindering accuracy and precision. Overall, the analytical methods for this investigation have remained consistent in their general approach through continued use of the basic analytical techniques (e.g., sample extraction/preparation, instrument calibration, QA/QC procedures). Through this use of consistent base analytical procedures and by requiring that updated procedures meet the QA/QC criteria specified in the FSP/QAPP, the analytical data from past, present, and future sampling events will be comparable to allow for qualitative and quantitative assessment of site conditions.

¹ Test Methods for evaluating Solid Waste, SW-846, USEPA, Final Update III, December 1996.

5.5 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. The actual completeness of this analytical data for individual analytical parameters and overall usability of this data set is 100%.

TABLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

\$02/02/02/02/02/02/05

000200223

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

A Stan Street	for the second second	and the second						1	Series Addition		And the second second
Sample				and a second second second	Distantia di seconda	the second second second second second		State And States			
Delivery	A State of the State	Date		Validation	Sector Sector					O HE HOLD H	
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
PCBs	1	0.118.18.1	0.11	1	L No	r	T	T	·	r	I
4C0P393	RAA2-A1 (0 - 1)	3/15/04	Soil	Tier II	No No				+		
4C0P393	RAA2-A1 (1 - 6)	3/15/04	Soil	Tier II	No						
4C0P393 4C0P393	RAA2-J1 (0 - 1) RAA2-J1 (1 - 6)	3/15/04 3/15/04	Soil Soil	Tier II Tier II	No						
4C0P393 4C0P444	RAA2-DUP-3 (1 - 6)	3/15/04	Soil	Tier II	Yes	Aroclor-1248	Incorrect Identification	0.29	-	ND(0.039)	RAA2-H2
4001444	10002-D0F-5 (1+0)	3/10/04	001	1011	100	Total PCBs	Incorrect Identification	2.0	*	1.7	
4C0P444	RAA2-H1 (0 - 1)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-H1 (1 - 6)	3/16/04	Soil	Tier II	No			1			
4C0P444	RAA2-H2 (0 - 1)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-H2 (1 - 6)	3/16/04	Soil	Tier II	Yes	Aroclor-1248	Incorrect Identification	0.38	*	ND(0.039)	
						Total PCBs	Incorrect Identification	2.9	-	2.5	
4C0P444	RAA2-H3 (0 - 1)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-H3 (1 - 6)	3/16/04	Soil	Tier II	No			I			1
4C0P444	RAA2-H4 (0 - 1)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-H4 (1 - 6)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-13 (0 - 1)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-13 (1 - 6)	3/16/04	Soil	Tier II	No						1
4C0P444	RAA2-J4 (0 - 1)	3/16/04	Soil	Tier II	No		······································				
4C0P444	RAA2-J4 (1 - 6)	3/16/04	Soil	Tier II	No						
4C0P444	RB-031604-1 (0 - 0)	3/16/04	Water	Tier II	No						
4C0P459	RAA2-B2 (0 - 1)	3/17/04	Soil	Tier II	No						
4C0P459	RAA2-B2 (1 - 6)	3/17/04	Soil	Tier II	No						
4C0P459	RAA2-DUP-4 (1 - 6)	3/17/04	Soil	Tier II	No						RAA2-H10
4C0P459	RAA2-H10 (0 - 1)	3/17/04	Soil	Tier II	No					······································	
4C0P459	RAA2-H10 (1 - 6)	3/17/04	Soil	Tier II	No						
4C0P459	RAA2-H12 (1 - 6)	3/17/04	Soil	Tier II	No						
4C0P459 4C0P459	RAA2-H9W (0 - 1)	3/17/04	Soil	Tier II	No No						
4C0P459	RAA2-H9W (1 - 6) RAA2-I1 (0 - 1)	3/17/04 3/17/04	Soil Soil	Tier II Tier II	No						
4C0P459	RAA2-11 (0 - 1) RAA2-11 (1 - 6)	3/17/04	Soil	Tier II	No						
4C0P459	RAA2-112 (0 - 1)	3/17/04	Soil	Tier II	No						
4C0P459	RAA2-112 (1 - 6)	3/17/04	Soil	Tier II	No	<u> </u>					
4C0P459	RAA2-J2 (0 - 1)	3/17/04	Soil	Tier II	No				+		
4C0P459	RAA2-J2 (1 - 6)	3/17/04	Soil	Tier II	No			+			
4C0P459	RB-031704-1 (0 - 0)	3/17/04	Water	Tier II	No				1	1	· · · · · · · · · · · · · · · · · · ·
4C0P485	RAA2-B1 (1 - 6)	3/18/04	Soil	Tier II	No	1			1		
4C0P485	RAA2-DUP-5 (1 - 6)	3/18/04	Soil	Tier II	No						RAA2-15
4C0P485	RAA2-E1 (0 - 1)	3/18/04	Soil	Tier II	No			1	1		
4C0P485	RAA2-E1 (1 - 6)	3/18/04	Soil	Tier II	No	·			1		1
4C0P485	RAA2-E3 (0 - 1)	3/18/04	Soll	Tier II	No						[
4C0P485	RAA2-E3 (1 - 6)	3/18/04	Soil	Tier II	No			[
4C0P485	RAA2-G5 (1 - 6)	3/18/04	Soil	Tier II	No						
4C0P485	RAA2-15 (0 - 1)	3/18/04	Soil	Tier II	No						
4C0P485	RAA2-15 (1 - 6)	3/18/04	Soil	Tier II	No						
4C0P485	RB-031804-1 (0 - 0)	3/18/04	Water	Tier II	No		L				
4C0P520	RAA2-B8 (1 - 6)	3/19/04	Soil	Tier II	No						
4C0P520	RAA2-J5 (0 - 1)	3/19/04	Soil	Tier II	No						
4C0P520	RAA2-J5 (1 - 6)	3/19/04	Soil	Tier II	No						
4C0P520	RAA2-J6 (0 - 1)	3/19/04	Soil	Tier II	No			.			
4C0P520	RAA2-J6 (1 - 6)	3/19/04	Soil	Tier II	No			L			
4C0P520	RAA2-J7 (1 - 6)	3/19/04	Soil	Tier II	No	L	<u> </u>	<u> </u>	L	L	L

I ADLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

CONTRACTOR OF

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

.

	and the second second second	and the second	State State	The left of the	and the second		· · · · · · · · · · · · · · · · · · ·	947 (Sec. 1997)		and the second second	
Sample			- Provide State		a series and series as		a second second second second second second		A STATE OF A		
Delivery		Date		Validation					57 12	The second second second	and the second
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Metals			.,	.		- <u>Fic</u>					*****
4C0P393	RAA2-J1 (1 - 6)	3/15/04	Soil	Tier II	Yes	Tin	Method Blank		-	ND (10)	
4C0P444	RAA2-DUP-1 (1 - 6)	3/16/04	Soil	Tier II	Yes	Barium	Serial Dilution	80.4%	<10%	37.0 J	RAA2-G4
						Chromium	Laboratory Duplicate RPD (Soil)	43.2%	<35%	5.20 J	
1						Cobalt	Laboratory Duplicate RPD (Soil)	44.0%	<35%	5.30 J	
						Copper	Serial Dilution	80.4%	<10%	37.0 J	
						Lead	CRDL Standard %R	135.8%	80% to 120%	41.0 J	
						Nickel	Serial Dilution	79.8%	<10%	66.0 J	
						Selenium	CRDL Standard %R	144.2%	80% to 120%	1.40 J	
						Thallium	CRDL Standard %R	125.2%	80% to 120%	ND(1.20) J	
						Tin	Method Blank		•	ND (10)	
						Vanadium	Laboratory Duplicate RPD (Soil)	37.8%	<35%	17.0 J	
4C0P444	D'MAD OL (M. O)	3/16/04			Yes	Zinc Barium	Serial Dilution Serial Dilution	79.4%	<10%	58.0 J	
4007444	RAA2-G4 (1 - 6)	3/16/04	Soil	Tier II	res	Chromium		80.4%	<10%	44.0 J	
							Laboratory Duplicate RPD (Soil)	43.2%	<35%	6.30 J	
						Cobalt	Laboratory Duplicate RPD (Soil)	44.0%	<35%	5.30 J	
						Copper	Serial Dilution	80.4%	<10%	50.0 J	
						Lead Nickel	CRDL Standard %R Serial Dilution	135.8%	80% to 120%	51.0 J	
								79.8%	<10%	51.0 J	
1						Selenium Thallium	CRDL Standard %R	144.2%	80% to 120%	2.00 J	
						Tin	CRDL Standard %R Method Blank	125.2%	80% to 120%	ND(1.20) J	
						Vanadium		-	-	ND (10)	
						Zinc	Laboratory Duplicate RPD (Soil)	37.8%	<35%	22.0 J	
4C0P444	DAA0 44 /4	3/16/04	Soil	Tion	Yes	Barium	Serial Dilution Serial Dilution	79.4%	<10%	77.0 J	
4007444	RAA2-H1 (1 - 6)	3/16/04	501	Tier II	res	Chromium		80.4%	<10%	32.0 J	
1						Cobalt	Laboratory Duplicate RPD (Soil) Laboratory Duplicate RPD (Soil)	43.2%	<35%	3.50 J	1
						Copper	Serial Dilution	44.0%	<35%	2.70 B J	
						Lead	CRDL Standard %R	135.8%	<10% 80% to 120%	19.0 J 16.0 J	
			1			Nickel	Serial Dilution	79.8%	<10%	6.30 J	
						Selenium	CRDL Standard %R	144.2%	80% to 120%	0.860 B J	
						Thailium	CRDL Standard %R	125.2%	80% to 120%	ND(1.20) J	
						Tin	Method Blank	123.276	00% 10 120%	ND (10)	
					1	Vanadium	Laboratory Duplicate RPD (Soil)	37.8%	<35%	8.00 J	
						Zinc	Serial Dilution	79.4%	<10%	62.0 J	
4C0P444	RAA2-H3 (1 - 6)	3/16/04	Soil	Tier II	Yes	Barium	Serial Dilution	80.4%	<10%	21.0 J	
			00"	1 1.51 11		Chromium	Laboratory Duplicate RPD (Soil)	43.2%	<35%	5.10 J	
1						Cobalt	Laboratory Duplicate RPD (Soil)	44.0%	<35%	6.10 J	
						Copper	Serial Dilution	80,4%	<10%	19.0 J	
						Lead	CRDL Standard %R	135.8%	80% to 120%	16.0 J	
			1			Nickel	Serial Dilution	79.8%	<10%	11.0 J	
			1			Selenium	CRDL Standard %R	144.2%	80% to 120%	0.770 B J	
			1			Thallium	CRDL Standard %R	125.2%	80% to 120%	ND(1.10) J	
						Tin	Method Blank			ND (10)	
				1		Vanadium	Laboratory Duplicate RPD (Soil)	37.8%	<35%	5.00 J	
			1			Zinc	Serial Dilution	79,4%	<10%	33.0 J	
4C0P444	RB-031604-1 (0 - 0)	3/16/04	Water	Tier II	No	-			-1070	00.00	
4C0P459	RAA2-G9 (1 - 6)	3/17/04	Soil	Tier II	Yes	Selenium	CRDL Standard %R	132.5%	80% to 120%	0.860 J	
						Thallium	CRDL Standard %R	121.5%	80% to 120%	ND(1.10) J	
1						Tin	Method Blank		0070 00 12070	ND (10) 3	
4C0P459	RAA2-112 (1 - 6)	3/17/04	Soil	Tier II	Yes	Selenium	CRDL Standard %R	132.5%	80% to 120%	0.760 J	
						Thallium	CRDL Standard %R	121.5%	80% to 120%	ND(1.10) J	
1						Tin		121.070		ND (10)	
				L		- Linii in an ann an a			L		[

I ABLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

n Alta		A starting to a		State State of the	And the second second	and the second	and the second of the second second	and the second	State State of State		and the second second second
Sample		and the state of the				and the second second			the set of the set	and Marine and A	and the second
Delivery		Date		Validation				1.1.1.	and the second	Outsildiant Descuta	Natas
Group No.		Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	notes
Metals (coi						16.1.1	CRDL Standard %R	132.5%	80% to 120%	1,30 J	1
4C0P485	RAA2-B1 (1 - 6)	3/18/04	Soil	Tier II	Yes	Selenium	CRDL Standard %R	121.5%	80% to 120%	ND(1,10) J	
						Thallium	Method Blank	- 121.376	00761012076	ND (10)	
						Tin	CRDL Standard %R	132.5%	80% to 120%	ND(1.00) J	······································
4C0P485	RAA2-E1 (1 - 6)	3/18/04	Soil	Tier II	Yes	Selenium Thallium	CRDL Standard %R	121.5%	80% to 120%	ND(1.30) J	
						Tin	Method Blank	121.376	00701012070	ND (10)	
		0//0/04			Yes	Tin	Method Blank	-	<u>+</u>	ND (10)	
4C0P520	RAA2-J5 (1 - 6)	3/19/04	Soil	Tier II	Yes	Tin	Method Blank			ND (10)	
4C0P520	RAA2-J7 (1 - 6)	3/19/04	Soil	Tier II	1 165	1 111	Method Diank		1	no (10)	1
VOCs	RAA2-J1 (4 - 6)	3/15/04	Soil	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.010	>0.05	ND(0,11) J	T
4C0P393	RAA2-J1 (4 - 0)	3/15/04	501	illerii	165	Acetonitrile	ICAL RRF	0.030	>0.05	ND(0.11) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.11) J	
						Bromomethane	ICAL NR	27.2%	<25%	ND(0.0054) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.11) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.011) J	
4C0P444	RAA2-DUP-2 (4 - 6)	3/16/04	Soil	Tier II	Yes	1,1,1,2-Tetrachloroethane	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	RAA2-G4 - use reanalysis
100r 444	MM2-DUF-2 (4 - 0)	3/10/04	301	nern	165	1,1,2,2-Tetrachloroethane	ICCAL %D	36.0%	<25%	ND(0.0058) J	rowz-04 - use reanalysis
		l				1,1,2,2-Tetrachloroethane	Internal Standard 1,2-Dichlorobenzene-d4	34.6%	50% to 200%	ND(0.0058) J	
		1				1,1,2-Trichloroethane	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						1,2,3-Trichloropropane	Internal Standard 1,2-Dichlorobenzene-d4	34.6%	50% to 200%	ND(0.0058) J	
							1,2-Dibromo-3-chloropropane		34.6%	50% to 200%	ND(0.0058) J
						1.2-Dibromoethane	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						1.4-Dioxane	ICAL RRF	0.01	>0.05	ND(0.12) J	
						2-Hexanone	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.012) J	
						Acetonitrile	ICAL RRF	0,03	>0.05	ND(0.12) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.12) J	
						Bromoform	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0058) J	
						Carbon Tetrachloride	CCAL %D	27.2%	<25%	ND(0.0058) J	
						Chlorobenzene	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						Dibromochloromethane	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						Ethyl Methacrylate	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						Ethylbenzene	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						lodomethane	CCAL %D	34.4%	<25%	ND(0.0058) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.12) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.012) J	
						Styrene	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
			1			Tetrachloroethene	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	0.0099 J	
						Tetrachloroethene	Surrogate Recovery Toluene-D8	131.0%	81.0% to 117.0%	0.0099 J	
						Toluene	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
						trans-1,3-Dichloropropene	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
		1				trans-1,4-Dichloro-2-butene	Internal Standard Chloroberizene-d3 78K	34.6%	50% to 200%	ND(0.0058) J	
	-					Trichloroethene	Surrogate Recovery Toluene-D8	131.0%	81.0% to 117.0%	0.020 J	
						Xylenes (total)	Internal Standard Chlorobenzene-d5 %R	42.5%	50% to 200%	ND(0.0058) J	
		1	1	1	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Internet orandare oniorobencene-do /or		1 00/0 10 200/0	110(0.0000) 3	I

I ABLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

			1		1			Page 1	States and the second	al water and the second second	
	We also have been	3/ 10 10	NT ALCON	A. 1987.		a har a start a	and the second states and the second states and the			and the second second	
Sample		A Street Street		10 A 10 A	-1. 1. 2. mar 1. 1. p	all and the second second second	and the second	State of the	and the second second	and the second second	
Delivery	2000 C	Date	States States	Validation		6	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	WAVQO Farameter	Value	Contra Lanta		1/10/00
VOCs	•		A 11		Yes	1.1.1.2-Tetrachloroethane	CCAL %D	50,8%	<25%	ND(0.0056) J	use reanalysis
4C0P444	RAA2-G4 (4 - 6)	3/16/04	Soil	Tier II	res	1,1,2,2-Tetrachloroethane	Internal Standard 1,2-Dichlorobenzene-d4	45.0%	50% to 200%	ND(0.0056) J	
						1,2,3-Trichloropropane	Internal Standard 1.2-Dichlorobenzene-d4	45.0%	50% to 200%	ND(0.0056) J	
						1.2-Dibromo-3-chloropropane	Internal Standard 1,2-Dichlorobenzene-d4	45.0%	50% to 200%	ND(0.0056) J	
						1.4-Dioxane	ICAL RRF	0,01	>0.05	ND(0.11) J	
						Acetonitrile	ICAL RRF	0.03	>0.05	ND(0.11) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.11) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0056) J	
						lodomethane	ICCAL %D	27.6%	<25%	ND(0.0056) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.11) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.011) J	
						Tetrachloroethene	Surrogate Recovery Toluene-D8	131.0%	81.0% to 117.0%	0.011 J	
						trans-1,4-Dichloro-2-butene	Internal Standard 1,2-Dichlorobenzene-d4	45.0%	50% to 200%	ND(0.0056) J	
						Trichloroethene	Surrogate Recovery Toluene-D8	131,0%	81.0% to 117.0%	0.032 J	
4C0P444	RAA2-H1 (4 - 6)	3/16/04	Soil	Tier II	Yes	1,1,2,2-Tetrachloroethane	CCAL %D	36,0%	<25%	ND(0.0059) J	
4001444	100012-111 (4 - 0)	0/10/04	00	110117	1	1.4-Dioxane	ICAL RRF	0.01	>0.05	ND(0.12) J	
						Acetonitrile	ICAL RRF	0.03	>0.05	ND(0.12) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.12) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0059) J	
						Carbon Tetrachloride	CCAL %D	27.2%	<25%	ND(0.0059) J	
						lodomethane	CCAL %D	34.4%	<25%	ND(0.0059) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.12) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.012) J	
4C0P444	RAA2-H3 (4 - 6)	3/16/04	Soil	Tier II	Yes	1.4-Dioxane	ICAL RRF	0.01	>0.05	ND(0.11) J	
100, 117	100000000					Acetonitrile	ICAL RRF	0.03	>0.05	ND(0.11) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.11) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0054) J	
						Chloroethane	CCAL %D	30,8%	<25%	ND(0.0054) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.11) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.011) J	
4C0P444	RB-031604-1 (0 - 0)	3/16/04	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	CCAL %D	29.2%	<25%	ND(0.0050) J	
						1,4-Dioxane	CCAL %D	27.2%	<25%	ND(0.20) J	
			{			2-Butanone	ICAL RRF	0.037	>0.05	ND(0.010) J	
	1					2-Hexanone	CCAL %D	38.4%	<25%	ND(0.010) J	
						Acetone	ICAL RRF	0.049	>0.05	ND(0.010) J	
					1	Acetonitrile	ICAL RRF	0.037	>0.05	ND(0.10) J	
						Acrolein	ICAL RRF	0.001	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0.011	>0.05	ND(0.10) J	
		1				Propionitrile	ICAL RRF	0.018	>0.05	ND(0.010) J	
4C0P444	TRIP BLANK	3/16/04	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	CCAL %D	29.2%	<25%	ND(0.0050) J	
			1	1		1,4-Dioxane	CCAL %D	27.2%	<25%	ND(0.20) J	
		1	1	1	1	2-Butanone	ICAL RRF	0,037	>0.05	ND(0.010) J	
	1	1		1		2-Hexanone	CCAL %D	38.4%	<25%	ND(0.010) J	
				1		Acetone	ICAL RRF	0.049	>0.05	ND(0.010) J	
		1			l.	Acetonitrile	ICAL RRF	0.037	>0.05	ND(0.10) J	
						Acrolein	ICAL RRF	0.001	>0.05	ND(0.10) J	
						Isobutanol	ICAL RRF	0,011	>0,05	ND(0.10) J	
				1		Propionitrile	ICAL RRF	0.018	>0.05	ND(0.010) J	

I ABLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Delivery		Date		Validation						-	
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (cont											•
4C0P459	RAA2-G9 (4 - 6)	3/17/04	Soil	Tier II	Yes	1,1,2,2-Tetrachloroethane	CCAL %D	36.0%	<25%	ND(0.0056) J	use reanalysis
						1,1,2,2-Tetrachloroethane	Internal Standard 1,2-Dichlorobenzene-d4	40.0%	50% to 200%	ND(0.0056) J	
						1,2,3-Trichloropropane	Internal Standard 1,2-Dichlorobenzene-d4	40.0%	50% to 200%	ND(0.0056) J	
						1,2-Dibromo-3-chloropropane	Internal Standard 1,2-Dichlorobenzene-d4	40.0%	50% to 200%	ND(0.0056) J	
						1,4-Dioxane	ICAL RRF	0.01	>0.05	ND(0.11) J	
						Acetonitrile	ICAL RRF	0.03	>0.05	ND(0.11) J	
1						Acrolein	ICAL RRF	0.005	>0.05	ND(0.11) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0056) J	
1						Carbon Tetrachloride	CCAL %D	27.2%	<25%	ND(0.0056) J	
						lodomethane	CCAL %D	34.4%	<25%	ND(0.0056) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.11) J	
1						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.011) J	
						Tetrachloroethene	Surrogate Recovery Toluene-D8	124.0%	81.0% to 117.0%	0.0041 J	
						trans-1,4-Dichloro-2-butene	Internal Standard 1,2-Dichlorobenzene-d4	40.0%	50% to 200%	ND(0.0056) J	
						Trichloroethene	Surrogate Recovery Toluene-D8	124.0%	81.0% to 117.0%	ND(0.0056) J	
4C0P459	RAA2-112 (4 - 6)	3/17/04	Soil	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.01	>0.05	ND(0.11) J	use reanalysis
			1			Acetonitrile	ICAL RRF	0.03	>0.05	ND(0.11) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.11) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0056) J	
]			1			Chloroethane	CCAL %D	30.8%	<25%	ND(0.0056) J	
						Isobutanol	ICAL RRF	0.014	>0,05	ND(0.11) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.011) J	
4C0P459	TRIP BLANK	3/17/04	Water	Tier II	Yes	1,4-Dioxane	CCAL %D	30.2%	<25%	ND(0.20) J	
			1.1.0.			2-Butanone	ICAL RRF	0.037	>0.05	ND(0.010) J	
						2-Hexanone	CCAL %D	28.4%	<25%	ND(0.010) J	
						Acetone	ICAL RRF	0.049	>0.05	ND(0.010) J	
			1			Acetonitrile	ICAL RRF	0.037	>0.05	ND(0.10) J	
						Acrolein	ICAL RRF	0.001	>0.05	ND(0.10) J	
						Dichlorodifluoromethane	CCAL %D	43.2%	<25%	ND(0.0050) J	
						Isobutanol	ICAL RRF	0.011	>0.05	ND(0.10) J	
			1			Propionitrile	ICAL RRF	0.018	>0.05	ND(0.010) J	
4C0P485	RAA2-B1 (4 - 6)	3/18/04	Soil	Tier II	Yes	1,1,1,2-Tetrachloroethane	CCAL %D	50.8%	<25%	ND(0.0055) J	
			1			1.4-Dioxane	ICAL RRF	0.010	>0.05	ND(0.11) J	
		1	1			Acetonitrile	ICAL RRF	0.030	>0.05	ND(0.11) J	
		1				Acrolein	ICAL RRF	0.005	>0.05	ND(0.11) J	
		1	1			Bromomethane	CCAL %D	27.2%	<25%	ND(0.0055) J	
			1			lodomethane	CCAL %D	27.6%	<25%	ND(0.0055) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.0033) J	
			1			Propionitrile	ICAL RRF	0.014	>0.05	ND(0.011) J	
4C0P485	RAA2-E1 (4 - 6)	3/18/04	Soil	Tier II	Yes	1,1,1,2-Tetrachloroethane	CCAL %D	50.8%	<25%	ND(0.0065) J	
	1.0.4. (4 - 0)	0/10/04	000	i nei ii	105	1,4-Dioxane	ICAL %D	0.010	>0.05	ND(0.0065) J ND(0.13) J	
						Acetonitrile	ICAL RRF	0.030	>0.05		-
						Acetonitrie	ICAL RRF	0.030	>0.05	ND(0.13) J	
						and the second				ND(0.13) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0065) J	
		1				lodomethane		27.6%	<25%	ND(0.0065) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.13) J	
L	1	1	1	L		Propionitrile	ICAL RRF	0,043	>0.05	ND(0.013) J	1

TABLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

REFERENCE

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

										-14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	
Sample	States and the second	1.	A line of						40	ALL CAR	
Delivery		Date	Sec. 2.	Validation			S CARLES STREET	1 × 1 1		- Western Street	
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (con	and second standard and second and second and second second second second second second second second second s								1	11512 2011	Y
4C0P485	TRIP BLANK	3/18/04	Water	Tier II	Yes	1,4-Dioxane	CCAL %D	47.2%	<25%	ND(0.20) J	
						2-Butanone	ICAL RRF	0.037	>0.05	ND(0.010) J	
						2-Hexanone	CCAL %D	38.4%	<25%	ND(0.010) J	
						Acetone	ICAL RRF	0.049	>0.05	ND(0.010) J	
						Acetonitrile	ICAL RRF	0.037	>0.05	ND(0.10) J	
						Acrolein	ICAL RRF	0.001	>0.05	ND(0.10) J	
						Dichlorodifluoromethane	CCAL %D	40.8%	<25%	ND(0.0050) J	
						Isobutanol	ICAL RRF	0.011	>0.05	ND(0.10) J	
						Propionitrile	ICAL RRF	0.018	>0.05	ND(0.010) J	
4C0P520	RAA2-J5 (1 - 3)	3/19/04	Soil	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.010	>0.05	ND(0.12) J	
1						Acetonitrile	ICAL RRF	0.030	>0.05	ND(0.12) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.12) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0059) J	
						lodomethane	CCAL %D	26.8%	<25%	ND(0.0059) J	
				1		Isobutanol	ICAL RRF	0.014	>0.05	ND(0.12) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.012) J	
4C0P520	RAA2-J7 (4 - 6)	3/19/04	Soil	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.010	>0.05	ND(0.14) J	
1						Acetonitrile	ICAL RRF	0.030	>0.05	ND(0.14) J	
						Acrolein	ICAL RRF	0.005	>0.05	ND(0.14) J	
						Bromomethane	CCAL %D	27.2%	<25%	ND(0.0068) J	
						lodomethane	CCAL %D	26.8%	<25%	ND(0.0068) J	
						Isobutanol	ICAL RRF	0.014	>0.05	ND(0.14) J	
						Propionitrile	ICAL RRF	0.043	>0.05	ND(0.014) J	
4C0P520	TRIP BLANK	3/19/04	Water	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.20) J	
						2-Butanone	ICAL RRF	0.037	>0.05	ND(0.010) J	
						2-Hexanone	CCAL %D	30.4%	<25%	ND(0.010) J	
						Acetone	ICAL RRF	0.049	>0.05	ND(0.010) J	
						Acetonitrile	ICAL RRF	0.037	>0.05	ND(0.10) J	
						Acrolein	ICAL RRF	0.001	>0.05	ND(0.10) J	T
						Dichlorodifluoromethane	CCAL %D	30.0%	<25%	ND(0.0050) J	T
						Isobutanol	ICAL RRF	0.011	>0.05	ND(0.10) J	
						Proplonitrile	ICAL RRF	0.018	>0.05	ND(0.010) J	

TABLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample		to a start of the				and the second				2. 2	
Delivery	States and States	Date	1.4	Validation	Alexander and			1941 - 1950 -	The second state of the		A second second second by the second s
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs	valopic io			1							•
4C0P393	RAA2-J1 (1 - 6)	3/15/04	Soil	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	31.1%	<25%	ND(0.39) J	
						2-Nitroaniline	CCAL %D	41.9%	<25%	ND(2.0) J	
						4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(2.0) J	
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.78) J	
						4-Phenylenediamine	CCAL %D	31.1%	<25%	ND(0.78) J	
1						Benzidine	CCAL %D	37.9%	<25%	ND(0.78) J	
						Benzyl Alcohol	CCAL %D	31.0%	<25%	ND(0.78) J	
						Hexachlorophene	CCAL %D	32.5%	<25%	ND(0,78) J	
4C0P444	RAA2-DUP-1 (1 - 6)	3/16/04	Soil	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	31.8%	<25%	ND(0.40) J	RAA2-G4
			i			2,4-Dinitrophenol	CCAL %D	29.4%	<25%	ND(2.0) J	
						2-Acetylaminofluorene	CCAL %D	46.7%	<25%	ND(0.80) J	
						2-Nitroaniline	CCAL %D	72.9%	<25%	ND(2.0) J	
						3,3'-Dichlorobenzidine	CCAL %D	25.8%	<25%	ND(0.80) J	
						3-Nitroaniline	CCAL %D	33.1%	<25%	ND(2.0) J	
						4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(2.0) J	
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.80) J	
						4-Phenylenediamine	CCAL %D	30.1%	<25%	ND(0.80) J	
						Aramite	CCAL %D	44.6%	<25%	ND(0.80) J	
		0//0/0/				Benzidine	CCAL %D	29.4%	<25%	ND(0.80) J	
						Methyl Methanesulfonate	CCAL %D	38.7%	<25%	ND(0.40) J	
4C0P444	RAA2-G4 (1 - 6)	3/16/04	Soil	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	31.8%	<25%	ND(0.40) J	
						2,4-Dinitrophenol	CCAL %D	29.4%	<25%	ND(2.0) J	
						2-Acetylaminofluorene	CCAL %D	46.7%	<25%	ND(0.80) J	
						2-Nitroaniline	CCAL %D	72.9%	<25%	ND(2.0) J	
						3,3'-Dichlorobenzidine	CCAL %D	25.8%	<25%	ND(0.80) J	
1						3-Nitroaniline	CCAL %D	33.1%	<25%	ND(2.0) J	
						4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(2.0) J	
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.80) J	
						4-Phenylenediamine	CCAL %D	30.1%	<25%	ND(0.80) J	
1						Aramite	CCAL %D	44.6%	<25%	ND(0.80) J	
						Benzidine	CCAL %D	29.4%	<25%	ND(0.80) J	
4C0P444	RAA2-H1 (1 - 6)	3/16/04			No.	Methyl Methanesulfonate	CCAL %D	38.7%	<25%	ND(0.40) J	
400#444	MAA2-11(1-0)	3/16/04	Soil	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	31.8%	<25%	ND(0.38) J	
		1				2,4-Dinitrophenol	CCAL %D	29.4%	<25%	ND(2.0) J	
						2-Acetylaminofluorene 2-Nitroaniline	CCAL %D	46.7%	<25%	ND(0.78) J	
							CCAL %D	72.9%	<25%	ND(2.0) J	
						3,3'-Dichlorobenzidine	CCAL %D	25.8%	<25%	ND(0.78) J	
						3-Nitroaniline	CCAL %D	33.1%	<25%	ND(2.0) J	
						4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(2.0) J	
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.78) J	
	-					4-Phenylenediamine	CCAL %D	30.1%	<25%	ND(0.78) J	
						Aramite	CCAL %D	44.6%	<25%	ND(0.78) J	
						Benzidine	CCAL %D	29.4%	<25%	ND(0.78) J	
L	1	L	L	1	l	Methyl Methanesulfonate	CCAL %D	38.7%	<25%	ND(0.38) J	1

ا ہول E 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

		ALC: NOT A	a seatter and		- 64 T		a - and p	Sec. Sec.	Star Letter	A CONTRACT OF A
Sample		A Charles				 A sector of the s		and the second		
Delivery	and the second second	Date		Validation	e de la compañía de l	and the second	A second s	the second second second	Control Limits	Qualified Result Notes
Group No.	Sample ID	Collected	Matrix .	Level	Qualification	n Compound	QA/QC Parameter	Value	Control Limits	Qualified Result [Notes
SVOCs (cor	tinued)							31.8%	<25%	ND(0.36) J
4C0P444	RAA2-H3 (1 - 6)	3/16/04	Soil	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	29.4%	<25%	ND(1.9) J
						2,4-Dinitrophenol	CCAL %D	46.7%	<25%	ND(0.73) J
						2-Acetylaminofluorene	CCAL %D	72.9%	<25%	ND(1.9) J
						2-Nitroaniline	CCAL %D	25.8%	<25%	ND(0.73) J
						3,3'-Dichlorobenzidine 3-Nitroaniline	CCAL %D	33.1%	<25%	ND(1.9) J
						4-Nitrophenol	ICAL %B	37.0%	>30%	ND(1.9) J
						4-Nitroguinoline-1-oxide	ICAL %RSD	0.034	>0.05	ND(0.73) J
1						4-Phenylenediamine	CCAL %D	30.1%	<25%	ND(0.73) J
						Aramite	CCAL %D	44.6%	<25%	ND(0.73) J
						Benzidine	CCAL %D	29.4%	<25%	ND(0.73) J
						Methyl Methanesulfonate	CCAL %D	38.7%	<25%	ND(0.36) J
10000444	DD 024604 4 (0 0)	3/16/04	Call	Ting	Yes	1.3,5-Trinitrobenzene	ICCAL %D	31.8%	<25%	ND(0.010) J
4C0P444	RB-031604-1 (0 - 0)	3/16/04	Soil	Tier II	res	2,4-Dinitrophenol	CCAL %D	29.4%	<25%	ND(0.050) J
						2-Acetylaminofluorene	CCAL %D	46.7%	<25%	ND(0.010) J
						2-Nitroaniline	CCAL %D	72.9%	<25%	ND(0.050) J
						3.3'-Dichlorobenzidine	CCAL %D	25.8%	<25%	ND(0.020) J
						3-Nitroaniline	CCAL %D	33.1%	<25%	ND(0.050) J
						4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(0.050) J
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.010) J
						4-Phenylenediamine	ICCAL %D	30.1%	<25%	ND(0.010) J
						Aramite	CCAL %D	44.6%	<25%	ND(0.010) J
						Benzidine	ICCAL %D	29.4%	<25%	ND(0.020) J
						Methyl Methanesulfonate	CCAL %D	38.7%	<25%	ND(0.010) J
4C0P459	RAA2-G9 (1 - 6)	3/17/04	Soil	Tier II	Yes	1.3.5-Trinitrobenzene	ICCAL %D	33.3%	<25%	ND(0.37) J
400-409	10002-09(1-0)	3/1//04	301	116111	163	2-Nitroaniline	CCAL %D	65.9%	<25%	ND(1.9) J
			1			3,3'-Dimethylbenzidine	CCAL %D	43.6%	<25%	ND(0.37) J
						4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(1.9) J
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.74) J
						4-Phenylenediamine	CCAL %D	28.6%	<25%	ND(0.74) J
						Aramite	CCAL %D	50.6%	<25%	ND(0.74) J
			l			Benzidine	CCAL %D	36.1%	<25%	ND(0.74) J
4C0P459	RAA2-112 (1 - 6)	3/17/04	Soil	Tier II	Yes	1,3,5-Trinitrobenzene	CCAL %D	33.3%	<25%	ND(0.36) J
1			1 300	1		2-Nitroaniline	CCAL %D	65.9%	<25%	ND(1.8) J
1						3.3'-Dimethylbenzidine	CCAL %D	43.6%	<25%	ND(0.36) J
			1			4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(1.8) J
						4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.73) J
			1			4-Phenylenediamine	CCAL %D	28.6%	<25%	ND(0.73) J
			1			Aramite	CCAL %D	50.6%	<25%	ND(0.73) J
						Benzidine	CCAL %D	36.1%	<25%	ND(0.73) J
4C0P485	RAA2-B1 (1 - 6)	3/18/04	Soil	Tier II	Yes	4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(1.9) J
			1			4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.73) J
						Hexachlorophene	CCAL %D	28.8%	<25%	ND(0.73) J
						Methapyrilene	CCAL %D	27.5%	<25%	ND(0.73) J
						N-Nitrosomorpholine	CCAL %D	30.0%	<25%	ND(0.36) J
4C0P485	RAA2-E1 (1 - 6)	3/18/04	Soil	Tier II	Yes	4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(2.1) J
	. ,					4-Nitroquinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.84) J
	1		1			Hexachlorophene	CCAL %D	28.8%	<25%	ND(0.84) J
						Methapyrilene	CCAL %D	27.5%	<25%	ND(0.84) J
						N-Nitrosomorpholine	CCAL %D	30.0%	<25%	ND(0.42) J

TÁBLE 1 30s COMPLEX - ADDITIONAL SOIL SAMPLING

ANALYTICAL DATA VALIDATION SUMMARY GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

a constant						Sector of the sector					
Sample							and the provider of the				
Delivery		Date	175	Validation			QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
Group No.	Sample ID	Collected	Matrix	Level	Qualification	Compound	WAVQG Parameter	value	Condor Linnes	wuanneu wesun	Holes
SVOCs (cor		0140/04	1 0.1	7 (1 - 1)	Vaa	4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(1.9) J	r
4C0P520	RAA2-J5 (1 - 6)	3/19/04	Soil	Tier II	Yes	4-Nitroguinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.75) J	
						Hexachlorophene	CCAL %D	28.8%	<25%	ND(0.75) J	
						Methapyrilene	CCAL %D	27.5%	<25%	ND(0.75) J	
						N-Nitrosomorpholine	CCAL %D	30.0%	<25%	ND(0.37) J	
4C0P520	RAA2-J7 (1 - 6)	3/19/04	Soil	Tier II	Yes	4-Nitrophenol	ICAL %RSD	37.0%	>30%	ND(4.5) J	
4000020	RAA2-J/(1-0)	3/18/04	501	i ler li	165	4-Nitroguinoline-1-oxide	ICAL RRF	0.034	>0.05	ND(0.89) J	
						Hexachlorophene	CCAL %D	28.8%	<25%	ND(1.8) J	
						Methapyrilene	CCAL %D	27.5%	<25%	ND(0.89) J	
						N-Nitrosomorpholine	ICCAL %D	30.0%	<25%	ND(0.89) J	
0000.000			1	1	1	IN-Microsomol prionne	COAL /8D	1 30.0 %	~2.576	1 110(0.03) 5	1
PCDDs/PCI 4C0P393	JFS [RAA2-J1 (1 - 6)]	3/15/04	Soil	Tier II	No	T	T	7	1	r	T
4C0P444	RAA2-DUP-1 (1 - 6)	3/16/04	Soil	Tier II	No			+			RAA2-G4
4C0P444	RAA2-G4 (1 - 6)	3/16/04	Soil	Tier II	No	1					IVYX 94
4C0P444	RAA2-H1 (1 - 6)	3/16/04	Soil	Tier II	No		· · · · · · · · · · · · · · · · · · ·				
4C0P444	RAA2-H3 (1 - 6)	3/16/04	Soll	Tier II	No						
4C0P444	RB-031604-1 (0 - 0)	3/16/04	Water	Tier II	No			-			
4C0P459	RAA2-G9 (1 - 6)	3/17/04	Soil	Tier II	No			1			
4C0P459	RAA2-112 (1 - 6)	3/17/04	Soil	Tier II	No			1			
4C0P485	RAA2-B1 (1 - 6)	3/18/04	Soil	Tier II	No						
4C0P485	RAA2-E1 (1 - 6)	3/18/04	Soil	Tier II	No						
4C0P520	RAA2-J5 (1 - 6)	3/19/04	Soil	Tier II	No			1	······	a de la construit de construit de la construit	
4C0P520	RAA2-J7 (1 - 6)	3/19/04	Soil	Tier II	No						
Sulfide and	Cyanide			1							
4C0P393	RAA2-J1 (1 - 6)	3/15/04	Soil	Tier II	No			1			1
4C0P444	RAA2-DUP-1 (1 - 6)	3/16/04	Soil	Tier II	No						RAA2-G4
4C0P444	RAA2-G4 (1 - 6)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-H1 (1 - 6)	3/16/04	Soil	Tier II	No						
4C0P444	RAA2-H3 (1 - 6)	3/16/04	Soil	Tier II	No						
4C0P444	RB-031604-1 (0 - 0)	3/16/04	Water	Tier II	No		T	1			1
4C0P459	RAA2-G9 (1 - 6)	3/17/04	Soil	Tier II	No	1		1			T
4C0P459	RAA2-112 (1 - 6)	3/17/04	Soil	Tier II	No		I		I		
4C0P485	RAA2-B1 (1 - 6)	3/18/04	Soil	Tier II	No		T	1			
4C0P485	RAA2-E1 (1 - 6)	3/18/04	Soil	Tier II	No	1	1				
4C0P520	RAA2-J5 (1 - 6)	3/19/04	Soil	Tier II	No				1		
4C0P520	RAA2-J7 (1 - 6)	3/19/04	Soil	Tier II	No						