Housatonic River Model Calibration

Public Meeting

Edward Garland HydroQual, Inc. January 5, 2005

HSPF Segmentation

nic River Project pg 3

HYDROLOGY - WATER BALANCE

Water balance equation \rightarrow

 $R = P - ET - IG - \mathcal{D}S$

where: R = Runoff

- P = Precipitation
- ET = Evapotranspiration
- IG = Deep/inactive groundwater
- $\mathcal{D}S =$ Change in soil storage

Inter-relationships between components

Variation of components with time

• consideration of soil condition, cover, antecedent conditions, land practices

Simulated Vs. Measured Flows

Model Grid

Governing Equations

• CONSERVATION OF MASS

- Change in Volume (Water Level) = Flow In Flow Out
- Change in Concentration*Volume = Mass In Mass Out

EFDC Components

- Hydrodynamics Movement of Water
- Sediment Transport Movement of Solids
- PCB Fate and Transport
 - Partitioning between dissolved and solid phases
 - Transport of dissolved and solid phases

Hydrodynamic Model Inputs

- Inflows
 - Upstream boundaries
 - Tributaries
 - Direct Runoff
- Elevation of river and floodplain
- Geometry of model grid
- Bottom Roughness
- Vegetation on Floodplain
- Macrophytes in river, backwaters, and Woods Pond
- Downstream boundary flow-stage relationship

River Flow During Calibration Period

1999

2000

EFDC Hydrodynamic Calibration

EFDC Hydrodynamic Calibration

May 19-21, 1999

Sediment Transport

Sediment Dynamics

- Cohesive
- Non Cohesive 1
- Non Cohesive 2

Sediment Transport Model Inputs

- Results of hydrodynamic modeling
- Inputs from:
 - Upstream boundaries
 - Tributaries
 - Direct Runoff
- Sediment and Floodplain soil properties
- Settling functions
- Resuspension functions
- Bedload transport functions

Governing Equation

$$\frac{\partial C_{k}}{\partial t} + \frac{\partial UC_{k}}{\partial x} + \frac{\partial VC_{k}}{\partial y} + \frac{\partial (W - W_{s,k})C_{k}}{\partial z}$$
$$= \frac{\partial}{\partial x} \left(A_{H} \frac{\partial C_{k}}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_{H} \frac{\partial C_{k}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{H} \frac{\partial C_{k}}{\partial z} \right)$$

Boundary conditions:

$$K_{\rm H} \frac{\partial C_k}{\partial z} = 0$$
 , $z \to \eta$

$$K_{H} \frac{\partial C_{k}}{\partial z} = E_{k} - D_{k} , \quad z \to -H$$

EFDC Sediment Transport Calibration

EFDC Sediment Transport Calibration

Storm Event 1, May 19 - 21, 1999

PCB Model Inputs

- Results of hydrodynamic and sediment transport modeling
- Inputs from:
 - Upstream boundaries
 - Tributaries
 - Direct Runoff
- PCB concentrations in sediment and floodplain soil
- Partitioning parameters
- Sediment-water diffusive transfer coefficient

PCB Transport - Sediment-Water

EFDC PCB Calibration – High Flow

Storm Event 1, May 19 - 21, 1999

27

EFDC PCB Calibration – Low Flow

TSS Data Analysis and Model Results

New Lenox Road

Confluence

- Model Performance Targets were achieved
- Exposure Concentrations Provided to FCM