

Catalog of World-wide Test Sites for Sensor Characterization

JACIE 2008 Workshop

March 26-28, 2008

Gyanesh Chander

Science Applications International Corporation (SAIC)*, contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD *Work performed under USGS contract 03CRCN0001

Telephone: 605-594-2554, E-mail: gchander@usgs.gov

U.S. Department of the Interior

U.S. Geological Survey

Outline

- Introduction
- Site Selection Criteria
- Online Test Site catalog
- Provisional Calibration Site Categorizations
- Summary
- Proposed Future Plans

Context

- With television, weather channels, Google MapsTM mapping service, and other day-to-day uses, satellite imagery has clearly become part of mainstream information society
- Nevertheless, for most operational remote sensing applications, critical issues remain with respect to the:
 - Reliability of supply
 - Consistent data quality
 - Plug-and-play capability
- Consistent data quality implies the adherence of data to appropriate standards of fidelity to the underlying physical quantities (reflectance, temperature, etc.) that they measure
- These well-calibrated data then assure the accuracy and enhance the intercomparability that enables the use of advanced Earth observation technologies to address societal benefits

Scope of test sites

- Test sites are core to any future QA/QC strategy
- Test sites provide a convenient means of obtaining information to verify sensor performance
- Test sites are the only practical means of deriving knowledge on biases between sensors
- Test sites allow, at some level, a means of bridging anticipated data gaps caused by lack of measurement continuity, due to lack of co-existent in-flight sensors

Need for a Global, Integrated Network of Calibration Sites

- User communities increasingly rely on information products from multiple satellite sensors
- Better calibration can result from more postlaunch calibration, involving standardized measurement protocols, instrumentation, and processing
- Field measurements remain resource-intensive activities
- Less expensive complementary approaches can provide more frequent calibration updates and enable the monitoring of sensor performance trends, even without surface measurements
- Future global monitoring systems, using increasingly complex constellations of satellites with multiple sensors, such as the Global Earth Observation System of Systems (GEOSS), will amplify the need for this initiative to address global societal benefits

Characteristics of sensors which can benefit from test sites

- Gain
- Linearity
- Stability
- MTF
- Uniformity (Flat field)
- Stray light (Adjacency effects)
- Polarization
- Spectral
- SNR
- Algorithms

- Geo location
- Camera model
- Band-to-band

Test site as a reference standard!

- For example in the context of radiometric gain: Internal Calibrator, Solar Diffuser, Rayleigh scattering, clouds, sun-glint are all equally applicable methods
 - Test sites and their use is really a methodology which in turn is one of many potential methods
- In that context, test sites become a means to achieve an objective and should really be defined as "reference standards" to facilitate an activity

Prime Candidate Earth Target Types

- Including only playa (dry lakebed), salt flat, and desert sand sites
- Snow fields are excluded primarily because high surface reflectances are more sensitive to variations in atmospheric particle size distribution and because they are usually located at latitudes characterized by high solar zenith angles
- Vegetation targets are excluded because they are subject to phenological changes as well as strong reflectance anisotropy effects
- Water targets are excluded because low surface reflectances are more sensitive to atmospheric path radiance and because of sun glint
- Other target types (uniform cloud cover, atmospheric scattering, ocean glint) are excluded because more specialized analysis is required, not in keeping with operational use of benchmark test sites

Well-Established Site Selection Criteria

- High spatial uniformity over a large area (within 3 %)
 - Minimize misregistration and adjacency effects
- Surface reflectance greater than 0.3
 - To provide higher SNR and reduce uncertainty due to atmosphere
- Flat spectral reflectance
 - Reduce uncertainties due to different RSR
- Temporally invariant surface properties (within 2 %)
 - To reduce BRDF, spectral, surface reflectance effects
- Horizontal surface with nearly lambertian reflectance
 - Minimize uncertainty due to different solar illumination and observation geometry
- At high altitude, far from ocean, urban, and industrial areas
 - Minimize aerosol loading and atmospheric water vapor
- In arid regions with low probability of cloud cover
 - Minimize precipitation that could change soil moisture

Initial List of 36 Test Sites for Consideration

- 1) Algeria 3
- 2) Algeria 5
- 3) Amburla
- 4) Arabia 1
- 5) Arabia 2
- 6) Barreal Blanco
- 7) Bonneville Salt Flats
- 8) Dunhuang
- 9) Dunrobin
- 10) Egypt 1
- 11) **Egypt 2**
- 12) Ivanpah Playa

- 13) La Crau
- 14) Lake Frome
- 15) Libya 1
- 16) Libya 2
- 17) Libya 4
- 18) Lunar Lake Playa
- 19) Mali 1
- 20) Mauritania 1
- 21) Namib Desert 1
- 22) Namib Desert 2
- 23) Niger 1
- 24) **Niger 2**

- 25) Railroad Valley Playa
- 26) Rogers Dry Lake
- 27) Sechura Desert
- 28) Sonoran Desert
- 29) Sudan 1
- 30) Taklamakan Desert
- 31) Tinga Tingana
- 32) Uyuni Salt Flats
- 33) Warrabin
- 34) White Sands
- 35) Winton
- 36) Yemen Desert 1

Distribution of 36 Radiometric Sites

Online test site catalog

The layout is set up to help the user quickly locate the needed information available on the site

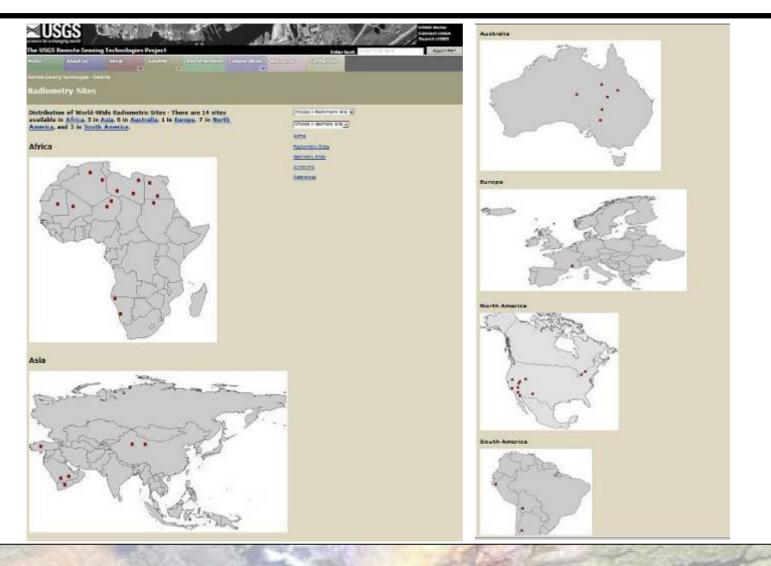
- Drop-down menus list locations so the user may go straight to a specific site
- A map with clickable links provides another way to go to sites
- The maps include a world map, where the user selects a continent, and a map of each major continent

Each of the calibration site pages contains the same fields for easy review

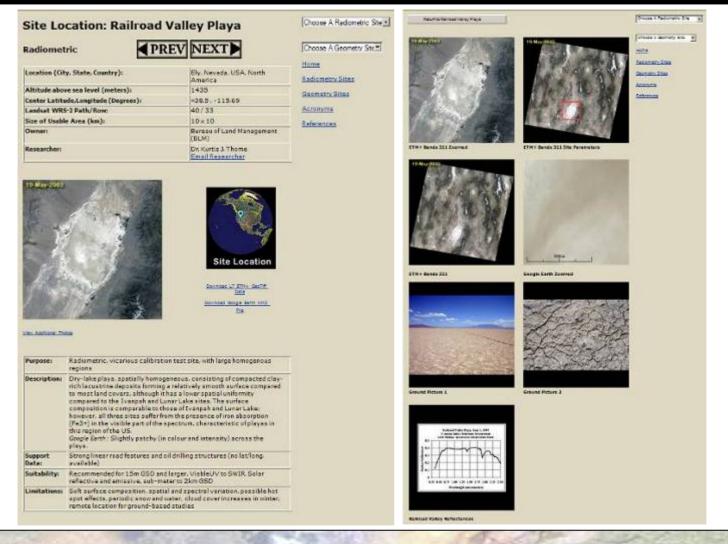
 These fields include location, terrain elevation, center latitude/longitude, WRS-2 path/row, size of usable area, owner, researcher, purpose, description, support data, suitability, and limitations

Other features include

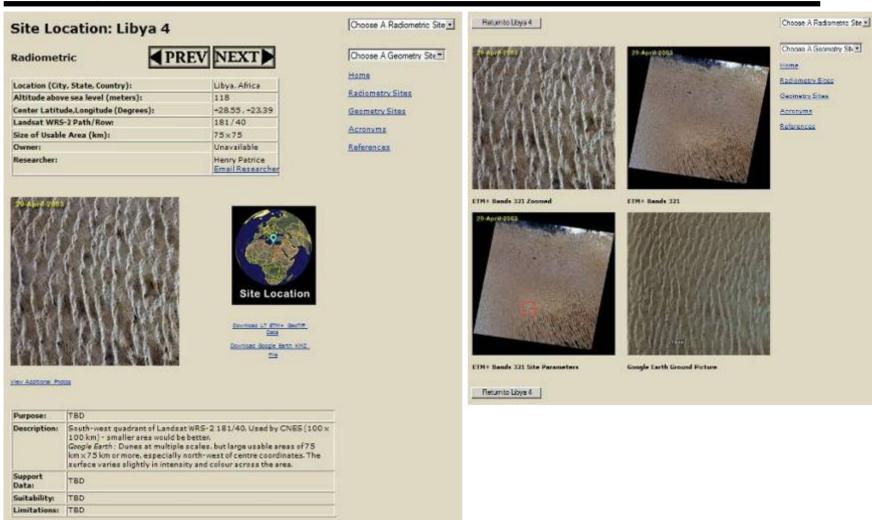
- a small image of the globe depicting the position of the site
- satellite images of the test site
- previous/next button
- sample Landsat images and Google KMZ files



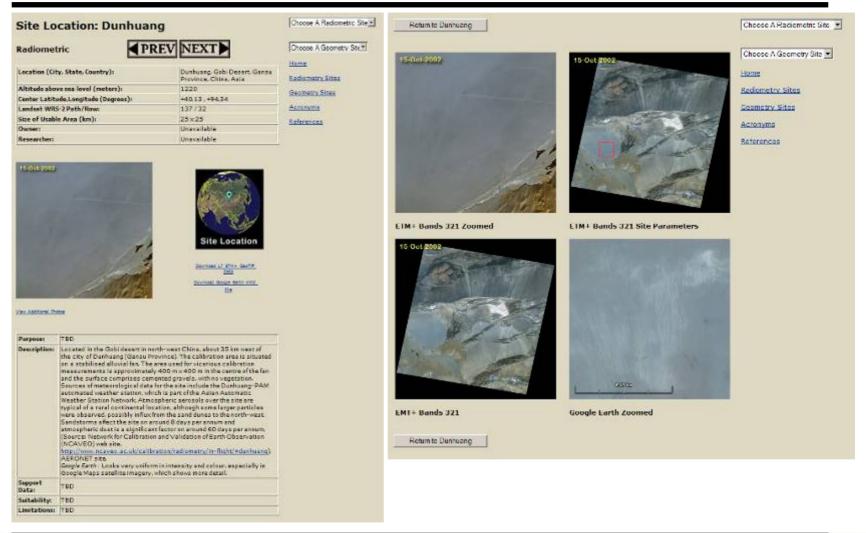
http://calval.cr.usgs.gov/sites_catalog_map.php



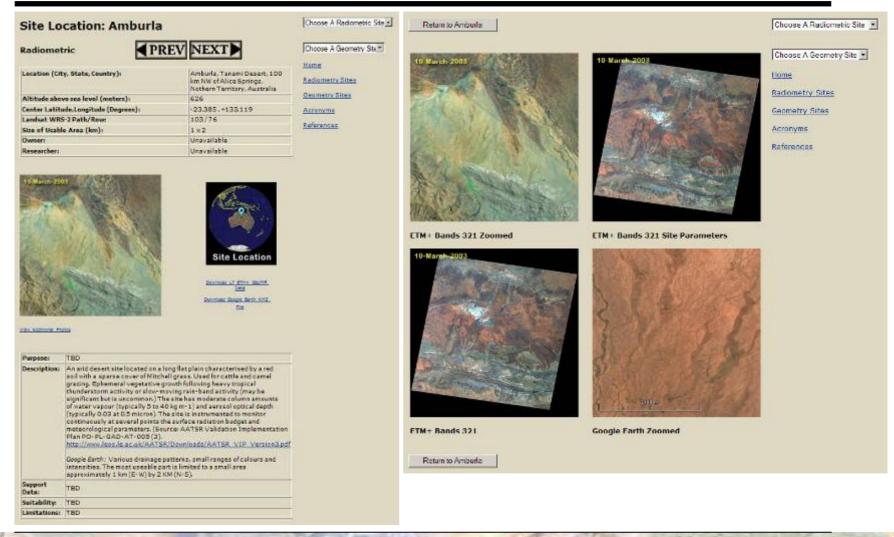
Radiometry Sites



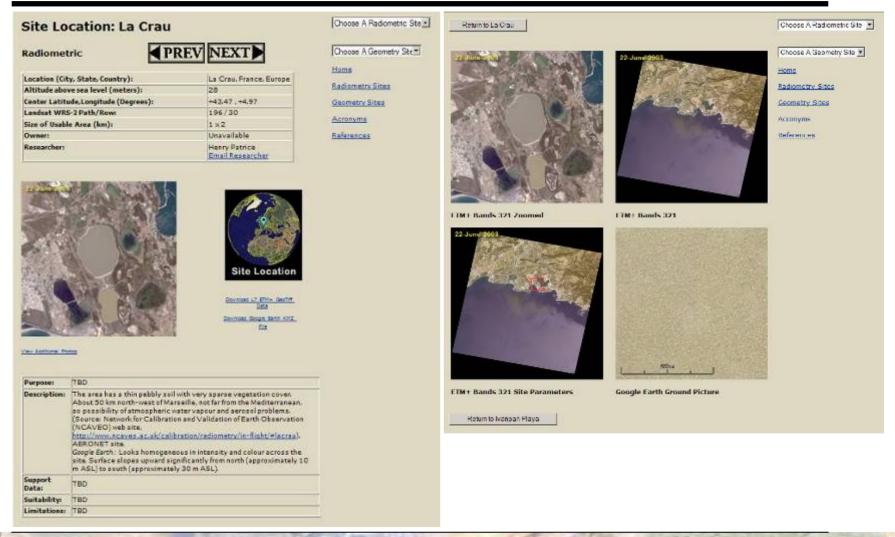
Online Catalogue Example: Railroad Valley Playa, North America



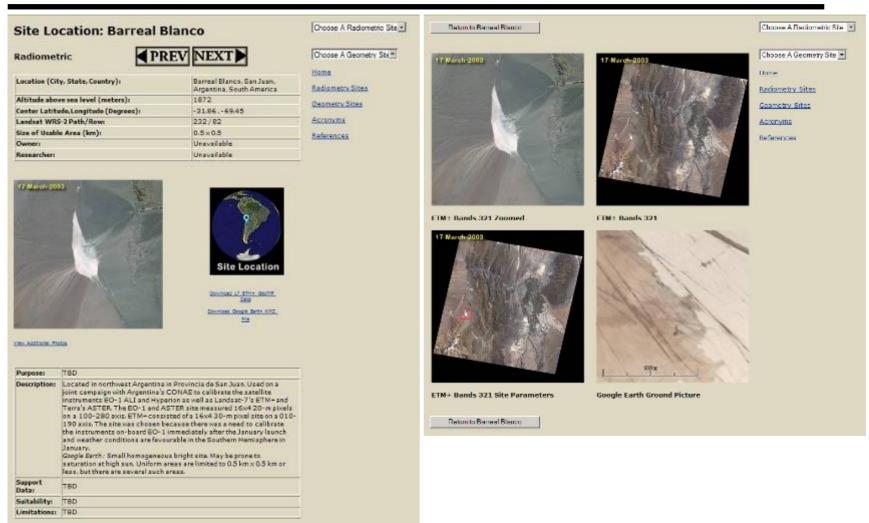
Online Catalogue Example: Libya 4, Africa



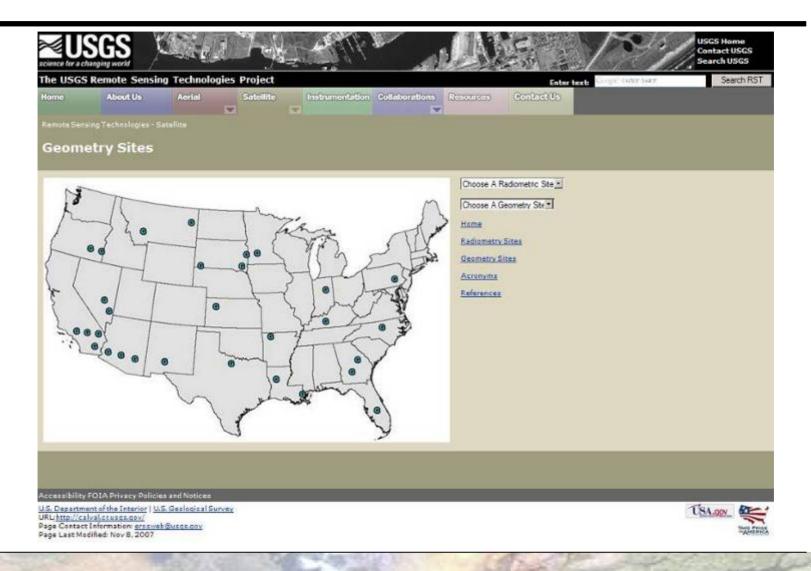
Online Catalogue Example: Dunhuang, Asia



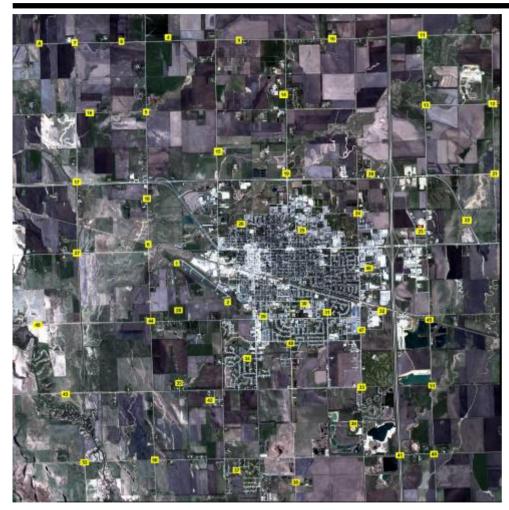
Online Catalogue Example: Amburla, Australia



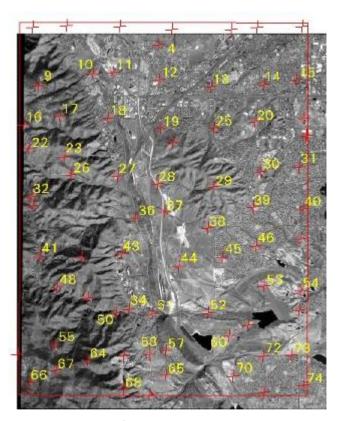
Online Catalogue Example: La Crau, Europe



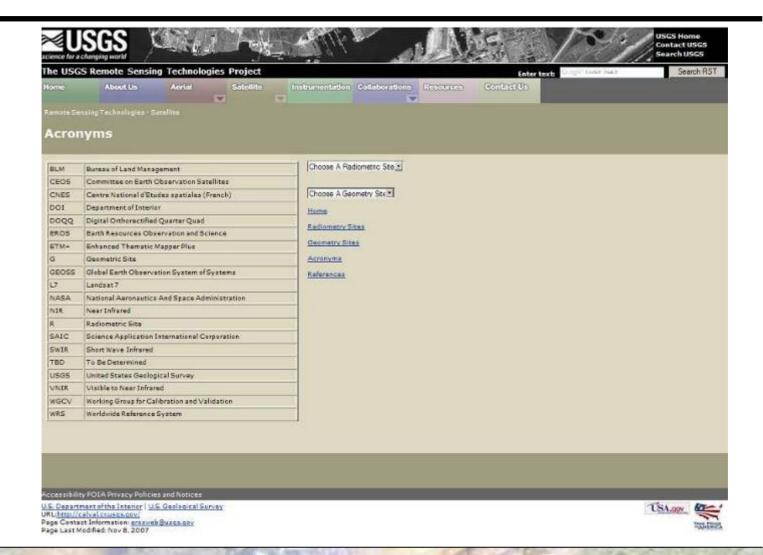
Online Catalogue Example: Barreal Blanco, South America



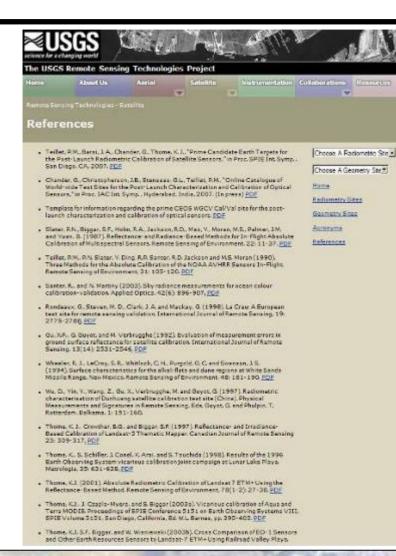
Geometry Sites



GCPs


51 GCPs selected over Brookings, SD area

72 GCPs selected over Morrison, CO area



Acronyms

References

- Thoma, K.J., J. Capila: Myers, and S. Rigger (2003a). Viscrines salitation of Aqua and Terra MCDES. Proceedings of 5918 Cardwonce 5151 on Earth Disease-roles Systems VIII, 5918 Volume 5153, 566 Degs, California, Ed. Mt. Bernes, pp. 393–403. PDF
- Thome, K.J.S.F. Bigger, and W. Misniewski (2003b). Cross Companion of EO-1 Sensors and Other Earth Resources Sensors to Landson-7 ETM-1 Using Relitod Valley Flava. IEEE Transactions on Geoscience and Remote Sensing. 4): 1180-1188. PLANSACTION (1998).
- Biggar, S.F., K.3. Thoma, and W. Wildnievski (2003) Micarlous Radiometric Calibratism of BO - I Sensors by Reference to High-Reflectance Ground Targets. IEEE Transactions on Geoscience and Remote Sensing. 41(6), 17.4-17.5, 205
- Rao, C.R. N. and Chen, J. (1995). Inter-satellite cellbration linkages for the visible and near-inferred channels of the Advanced Very High Resolution Redirector on the NCAA-7. 9, and -11 spectraft. International Journal of Remote Serving, 15: 1931-1942.
- Ray, C.R. N., and Chen, J. (1999). Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVVIII) and the NOAA-14 spacecraft, International Journal of Remote Sensing 20, 3485–3491. PDF
- Cosnefrey, H. M. Lercy, and X. Briottet (1996). Selection and characterization of Sabaran and Arabian Depart sites for the calibration of optical satellite sensors. Remote Sensing of Environment, 59(1), 101-114, 202.
- Cabot, P., O. Hagolle, C. Roffet, and P. Henry (1999). Use of remote sensing data repository for in-light calibration of optical sensors overtex resorbit targets. Proceedings of SPIE Conference 3750 on Earth Observing Systems IV. Denver, Colorado, pp. 534-523, 20F.
- Cabet, F., Hagella, O., and Heary, P. (2000). Relative and multi-temperal calibration of AVIOR. Seawild, and Vegetation using POLDER characterization of depart sites.
 Proceedings of the International Generatine and Remote Departing Symposium (IGARDS).
 2180-2190, PDF
- Rao, CR.N., Cos. C., and Zhang, N. (2003). Inter-calibration of the Moderate-Resolution transping Sectorizedometer and the Along-Track Scanning Radiometer-2. International Journal of Ramoos Sensing, 24(5): 1913-1924, DDE
- Losb, N.O (1997). In-flight calibration of NOAA AVMRR visible and near-IR bands over Orientand and Antarctica. International Journal of Remote Sensing, 18: 477-490. PDF
- Table, W. S., and Coakley, J. A. (2001). Updated calibration coefficients for NOAA-14.
 AVHSR checoals 1 and 2. leterastional Journal of Remote Sensing, 22(15):3053-3057.
 DDE
- Nieke, J. T. Aok, T. Tatikava, N. Motoyoshi, and M. Hon (2004). A satellite crosscalibration experiment IEEE Geoscience and Kemate Sensing Letters, 1(3): 213-213.
- Six, D. M. Filly, S. Alvain, P. Henry, and J.-P. Benoist (2004), Surface Characterisation of the Doma Concordia Area (Ascarctics) as a Pstential Satelline Calibration Site, Using SPOT 4/VEGETATION Instrument, Remote Sensing of Empiricament, 89: 82-94, 2005
- Tufflet, R.M., Q. Fedorejava, and R.P. Quebling (1996). Operational Redormatic Calibration of Broads ale Satelline Sensors Using Hyperspectral Athorne Remote Sensing of Prairie Rangeland Front Trais. Methologie, 35:633-643, 201
- Tellet, R.N., G. Fedosepova, R.P. Gruthier, R.T. Shin, N.T. O'Well, K.J. Thome, S.F. Biggar, H. Ripley, and A. Meygret (1999). Radiometric calibration of multiple Earth observation sensors using unborne hyperspectral data at the Navell County rengaland text atta. Proceedings of the SPLE Conference on Earth Observing Systems IV. SPLE Volume 3750. Deriver, Colorada, pp. 470–481, <u>FCEP</u>
- Black, S.B. DL. Helder, and S.J. Schiller (2003). Irradiance-based cross-calibration of Landsar-5 and Landsar-7 Thermatic Mapper sensors. International Journal of Remote Sensing, 24(2): 287–304. EDF
- Schiller, S.1 (2003) Technique for estimating encertainties in top-of-atmosphere restrances derived by visioniese actionation. Proceedings of SPIE Centerens SIS1 on Earth Observing Systems VIII, SPIE Volume SIS1, San Ovego, California, Ed. W.L. Barner, pp. 302–316, FDI

Calibration Site Categorizations

- Absolute Calibration (A) An absolute calibration site is a location where in situ ground measurements of key physical parameters are acquired by calibrated ground instruments, allowing a detailed comparison of the ground instrument results to those of an orbiting sensor
- Pseudo-Invariant Calibration (I) A pseudo-invariant site is a location on the Earth's surface that is very stable both temporally and spatially over long periods of time and over significant spatial extent. These sites are typically located in desert regions that receive little rainfall and have few surface features
- Cross-Calibration (X) A cross-calibration site is a location on the Earth's surface that contains large homogeneous regions that are viewable by two or more satellite sensors within a relatively short time period

Provisional Calibration Site Categorizations A=Absolute I=Pseudo-Invariant X=Cross-Calibration

#	Site Name	WRS-2 Path	WRS-2 Row	Absolute Calibration (A)	Pseudo- Invariant Calibration (I)	Cross- Calibration (X)
1	Algeria 3	192	39		I	X
2	Algeria 5	195	39		I	X
3	Amburla	103	76	Α		X
4	Arabia 1	164	47		I	X
5	Arabia 2	162	46		I	X
6	Barreal Blanco	232	82	Α		X
7	Bonneville Salt Flats	39	32			X
8	Dunhuang	137	32	Α		Х
9	Dunrobin	94	76	Α		X
10	Egypt 1	179	41			X
11	Egypt 2	177	44			X
12	Ivanpah Playa	39	35	Α		X
13	La Crau	196	30	Α		X
14	Lake Frome	97	81			X
15	Libya 1	187	43			X
16	Libya 2	182	43		I	X
17	Libya 4	181	40			X
18	Lunar Lake Playa	40	33	Α		X
19	Mali 1	198	47			X
20	Mauritania 1	201	47			X
21	Namib Desert 1	179	77			X
22	Namib Desert 2	182	72			X
23	Niger I	189	46			X
24	Niger 2	188	45			X
25	Railroad Valley Playa	40	33	Α		X
26	Rogers Dry Lake	41	36	А		X
27	Sechura Desert	10	64		I	X
28	Sonoran Desert	38	38			X
29	Sudan 1	177	45			X
30	Taklamakan Desert	146	32		I	X
31	Tinga Tingana	97	80	А		X
32	Uyuni Salt Flats	233	74			X
33	Warrabin	95	78	Α		Х
34	White Sands	33	37	Α		X
35	Winton	96	76	А		X
36	Yemen Desert 1	164	48		l	Х

CEOS WGCV Subgroups

WGCV Chair: Dr. Changyong Cao (NOAA/NESDIS)

Infrared and Visible
Optical Systems (IVOS)
Dr. Nigel Fox (NPL)

Terrain Mapping (TMSG)
Prof. Jan-Peter Muller (UCL)

Synthetic Aperture Radar (SAR) Dr. Satish Srivastava (CSA) Microwave Sensors (MSSG)
Christopher Buck (ESA)

Land Product Validation (LPV)
Dr. Fred Baret (CNES)

Atmospheric Chemistry (AC)
Dr. Bojan Bojkov (UMBC/NASA)

CEOS IVOS-19 Test sites Discussion Summary

Two sets of test sites

- Core "instrumented" sites
- 2. "Invariant" sites

Special Methods

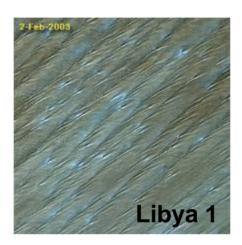
- Extraterrestrial (moon, stars)
- Rayleigh Scattering
- Sun Glint
- Clouds

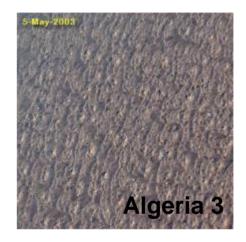
#	Site Name	Path	Row	Center Latitdue	Center Longitude
1	Algeria 3	192	39	30.32	7.66
2	Algeria 5	195	39	31.02	2.23
3	Amburla	103	76	-23.39	133.12
4	Arabia 1	164	47	18.88	46.76
5	Arabia 2	162	46	20.13	50.96
6	Barreal Blanco	232	82	-31.86	-69.45
7	Bonneville Salt Flats	39	32	41.00	-113.57
8	Dunhuang	137	32	40.13	94.34
9	Dunrobin	94	76	-22.67	146.13
10	Egypt 1	179	41	27.12	26.10
11	Egypt 2	177	44	22.94	28.79
12	Ivanpah Playa	39	35	35.57	-115.40
13	La Crau	196	30	43.47	4.97
14	Lake Frome	97	81	-30.85	139.67
15	Libya 1	187	43	24.42	13.35
16	Libya 1	182	43	25.05	20.48
17	Libya 2 Libya 4	181	40	28.55	20.46
18	Libya 4 Lunar Lake Playa		33		
		40		38.40	-115.99
19	Mali 1	198	47	19.12	-4.85
20	Mauritania 1	201	47	19.40	-9.30
21	Namib Desert 1	179	77	-24.98	15.27
22	Namib Desert 2	182	72	-17.33	12.05
23	Niger I	189	46	19.67	9.81
24	Niger 2	188	45	21.37	10.59
25	Railroad Valley Playa	40	33	38.50	-115.69
26	Rogers Dry Lake	41	36	34.96	-117.86
27	Sechura Desert	10	64	-5.90	-80.43
28	Sonoran Desert	38	38	32.35	-114.65
29	Sudan 1	177	45	21.74	28.22
30	Taklamakan Desert	146	32	39.83	80.17
31	Tinga Tingana	97	80	-29.00	139.86
32	Uvuni Salt Flats	233	74	-20.38	-66.95
33	Warrabin	95	78	-26.28	143.65
34	White Sands	33	37	32.92	-106.35
35	Winton	96	76	-22.52	142.94
36	Yemen Desert 1	164	48	16.87	47.55
30	Tellieli Deselt I	104	40	10.07	47.33
#	Site Name	Path	Row	Center Latitude	Center Longitude
37	Dome C	89	113	-74.50	123.00
38	Tuz Golu	177	33	-74.50 38.83	33.33
			44		
39 40	Algeria_1	196		23.80	-0.40
	Algeria_2	197	42	26.09	-1.38
41	Algeria_4	193	39	30.04	5.59
42	Niger_3	190	45	21.57	7.96
43	Libya_3	180	44	23.15	23.10
44	Mauritania_2	201	46	20.85	-8.78
45	Lspec Frenchman Flat	40	34	36.81	-115.93
46	Negev, Southern Israel	174	39	30.11	35.01
THE	RMAL CALIBRATION SITE	S			
#	Site Name	Path	Row		
1	Lake Ontario	16	30		
2	Lake Ontario	17	30		
3	Lake Erie	18	30		
4	Lake Tahoe	43	33		
5	Salton Sea	39	37		
- 3	Daltoli Dea	- 33	1 5	1	

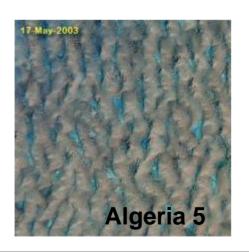
Core "Instrumented" IVOS Sites (Total=8)

- 1. Railroad Valley Playa, NV, USA, North America
 - Dr. Kurtis J. Thome (kthome@email.arizona.edu) University of Arizona, USA
- 2. Ivanpah, NV/CA, USA, North America
 - Dr. Kurtis J. Thome (kthome@email.arizona.edu) University of Arizona, USA
- 3. Lspec Frenchman Flat, NV, USA, North America
 - Mark C. Helmlinger (<u>mark.helmlinger@ngc.com</u>) NGST, USA
- 4. La Crau, France, Europe
 - Patrice Henry (<u>patrice.henry@cnes.fr</u>) CNES, France
- 5. Dunhuang, Gobi Desert, Gansu Province, China, Asia
 - Fu Qiaoyan (<u>fqy@cresda.com</u>) CRESDA, China
- 6. Negev, Southern Israel, Asia
 - Arnon Karnieli (<u>karnieli@bgu.ac.il</u>) Ben Gurion University, Israël
- 7. Tuz Golu, Central Anatolia, Turkey, Asia
 - Selime Gurol (<u>selime.gurol@uzay.tubitak.gov.tr</u>) TUBITAK UZAY, Turkey
- 8. Dome C, Antartica
 - Dr. Stephen Warren (<u>sgw@atmos.washington.edu</u>) University of Washington, USA

Core "Instrumented" IVOS Sites (Total=8)

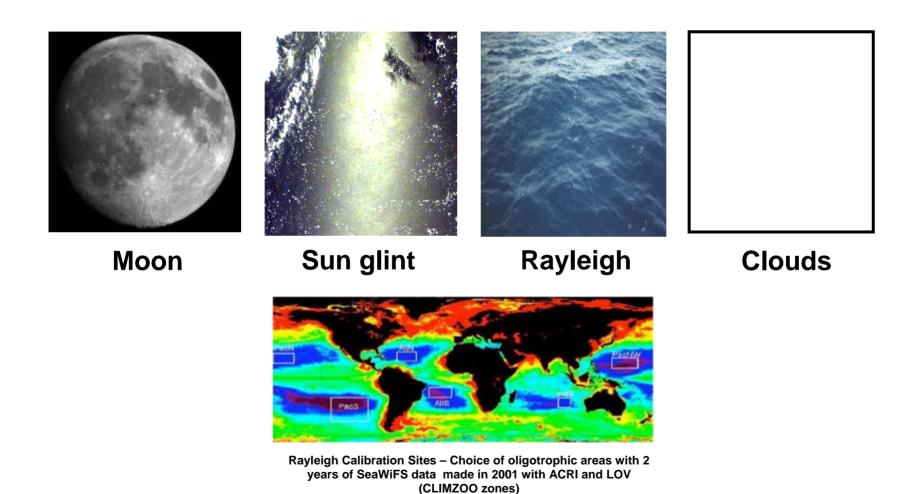



25-Dec-1999



"Invariant" IVOS Sites (Total=5)

- Libya 1
- Algeria 3
- Algeria 5
- Mauritania 2
- Libya 4



Special Methods

Terrain Mapping Subgroup (TMSG)

Montagne Sainte-Victoire

- France referred to as Aix-en-Provence
- 5.528-5.685°E, 43.502-43.560°N
- mixed arable, forest, limestone

Barcelona, Spain

- 1.5-2.75°E, 41.25-41.82°N
- urban, mixed arable, forest

• North Wales,

- UK3-5°W, 52-53.5°N
- urban, pasture, forest

• Three Gorges, China

- 108.252-111.302°E, 30.638-31.229°N
- forest, arable, limstone shales

Puget Sound, WA, USA

- -121.397 to -123.897°W, 46.364-48.864°N
- forest, urban, wetlands

Microwave Sensors Subgroup (MSSG)

Sandy desert (e.g. Sahara)

 Deep penetration depth, temporal stability of the Tb, underground structure TBD

Rocky/mixed desert (e.g. Gobi)

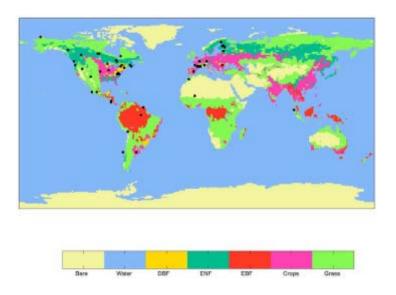
Shallow penetration depth, azimuthal effects and vegetation

Rainforest (Amazon)

 Volume scatter, effects of rain cells on the canopy equivalent moisture TBD

Stable ocean areas

Effects of the wind/salinity at L-band TBD


Antarctica

 Dry atmosphere, large penetration depth & temporally stable, low azimuthal anisotropy

Land Product Validation (LPV)

- CEOS Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP)
- http://lpvs.gsfc.nasa.gov/

 Map of sites covered by the groups represented in this paper (given on a global map of dominant surface types in each 1 x 1 cell (bare soil, water bodies, deciduous broadleaf forest, evergreen needleleaf forest, evergreen broadleaf forest, crops, grass)

Synthetic Aperture Radar (SAR)

International Amazon Rainforest Site

- A CEOS radiometric calibration reference site
- Data routinely collected and analyzed for calibratio satellites including RADARSATs
- Radiometry of the site remains stable
- Canadian Boreal Forest Site
 - Radiometric characterization completed at C-band data
 - Site seasonally dependent
 - Can be used as a complimentary site to the Amazon radiometric accuracy

 Transponder
- Calibration Transponder Sites

Summary

- The test site catalog provides a comprehensive list of prime candidate terrestrial targets for consideration as benchmark sites for the postlaunch radiometric calibration of space-based optical sensors
- The online test site catalog provides easy public Web site access to this vital information for the global community
- The incompleteness of available information on even these prime test sites is an indication that much more coordination and documentation are still needed to facilitate the wider use of calibration test sites in remote sensing

Proposed Future Plans

- Refine the selection of recommended primary sites
 - Gather complete site characterization data and information
 - Define core measurements (eg. Instruments)
 - Develop protocols and fund pilot projects
 - Create a "calnet" or "landnet"
- Agencies should acquire and archive imagery of all primary sites
 - Develop online calibration data access infrastructure
 - Create tools to identify the potential co-incident image pairs
- Extend the list to include snow fields, vegetation targets and water targets
- Integrate the catalog into the CEOS EO Cal/Val portal
- Establish traceability chain for primary site data

