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Disclaimer
The opinions expressed within the workshop summaries do 
not necessarily represent the views of the EPA. Mention of 

trade names or commercial products does not constitute 
endorsement or recommendation for use.
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Executive Summary
Introduction
The U.S. Environmental Protection Agency’s (EPA’s) National 
Homeland Security Research Center (NHSRC) and National 
Risk Management Research Laboratory (NRMRL) conducted 
a QSAR/VFAR Workshop, on June 20 – 21, 2006 in 
Cincinnati, OH. The workshop’s main purpose was to explore 
the application of Quantitative Structure-Activity Relationship 
(QSAR) and Virulence Factor-Activity Relationship (VFAR) 
concepts to the risk assessment process in situations where 
chemical- or biological-specific empirical data are either 
inadequate or lacking. 

The mission of both NHSRC and NRMRL is related to 
assessment of public health and environmental risk from 
harmful chemicals. Parts of the Office of Research and 
Development (ORD), NHSRC and NRMRL manage and 
support a variety of research and technical assistance 
efforts. NHSRC focuses on enhancing the ability to detect, 
contain, mitigate the effects of, and clean up after significant 
emergency events, terrorist attacks, or natural disasters. 
NHSRC scientists and engineers seek to identify or develop 
affordable, effective technologies and methods for addressing 
the risks posed by chemical, biological, and radiological 
agents. NRMRL’s mission is to develop ways to prevent 
and reduce pollution of air, land, and water. This mission 
plays a critical role in EPA’s goal of achieving sustainability; 
several methodologies have been developed within NRMRL 
to quantify the potential environmental harm of chemical 
releases. 

The overarching goal of this workshop was to evaluate the 
potential uses of QSAR and VFAR to advance the rapid and 
efficient evaluation of chemicals and microbes of potential 
concern. To achieve this goal, the QSAR/VFAR workshop 
convened toxicologists, microbiologists, chemists, engineers, 
biostatisticians, pharmacologists, biochemists, and risk 
assessment scientists to discuss the state of the science, 
opportunities for advancement, and practical applications. 
Expert panel members included researchers with expertise 
ranging from microbial genomics to computational toxicology 
and risk assessment. The workshop also included EPA 
scientists with expertise in the development and application of 
QSAR and VFAR. To facilitate discussion at the workshop, a 
list of charge questions was made available to the expert panel 
and the workshop participants.

Specific Workshop Goals
NRMRL
NRMRL will use the outcome of the QSAR/VFAR Workshop 
to inform its research in developing QSARs in a number 
of ways: validating the importance of QSAR research, 
providing guidance for QSAR development, and providing 
a vision for the future role of QSAR in a regulatory context. 
The diverse group of participants and panel members 
that attended the workshop, which included researchers 
from EPA Program Offices, the European Unions’ (EU) 

Commission involved with the Registration, Evaluation, 
and Authorisation of Chemicals (REACH), other federal 
agencies, nongovernmental organizations, industry, and 
academia, validate the importance of continuing with QSAR 
research. Based on discussions at the workshop, it is apparent 
that QSAR has an important role in the future of chemical 
regulation and industry both here in the U.S. and in the 
EU. With development of new technological areas, such as 
bioinformatics (which includes genomics, proteomics, and 
metabonomics), there has been some question as to whether  
or not QSAR research has a useful future. 

NHSRC
NHSRC will use the outcome of the QSAR/VFAR workshop 
to streamline its current QSAR research and to initiate its 
VFAR research. Currently, the Center is developing several 
QSAR models for predicting acute, subacute, and subchronic 
benchmarks to address exposure durations that are of key 
importance during an emergency event, terrorist attack, or 
natural disaster. The VFAR method is being explored to 
determine the hazards associated with exposure to highly 
potent pathogens. Since little is known about the VFAR 
methodology, this workshop will allow the Center to define 
VFAR and to assess the state of the science. To aid the 
discussion process, the Center, in collaboration with NRMRL, 
developed a set of strategically and technically sound charge 
questions aimed at key aspects of QSAR and VFAR methods. 
The discussions on these charge questions will set the  
stage for future QSAR and VFAR research at NHSRC  
and NRMRL.

Background
It has long been recognized that chemical substances with 
sufficiently similar structures and chemical activities exert 
similar qualitative toxicities with differing magnitudes  
(Ashby and Tennant 1988; DHHS 1980; Gray and Ostby 
1993; Harada et al. 1992; Lewis et al. 1993; Lowell et al. 
1989; Rosenkranz and Klopman 1989; Weisburger 1979; 
Weisburger and Fiala 1979). Thus, analysis of molecular 
structures and physicochemical properties of chemical 
substances can provide a rapid means of predicting and 
quantifying the toxicity of minimally tested chemicals. 
This fundamental observation is the basis for the qualitative 
structure-activity relationship (QSAR) method of toxicity 
analysis. The QSAR method of toxicity analysis assumes  
that a sufficiently strong structure-activity relationship 
of chemical substances is indicative of qualitative and 
quantitative similarity in toxicity (EPA  1994, 1992, 1989). 
Consequently, the long-term toxicities of minimally tested 
congeners of a chemical series or type can be estimated  
from those of better-known congeners on the basis of 
available information (EPA 1989, 1992; Rosenkranz and 
Klopman 1989; Weisburger and Fiala 1978). Hence, the 
QSAR method provides a means by which the toxicity of a 
candidate chemical substance, for which adequate toxicity 
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data for risk assessment is not available, can be reasonable 
inferred from those of a toxicologically better-known 
structurally and chemically related surrogate chemical 
substance or congener. This method of analysis is intended  
to establish a qualitative and quantitative association between 
the structure-activity and toxicity of a candidate chemical 
substance and that of the surrogate chemical substance to 
enable quantitative estimates of the toxicity of the  
minimally tested candidate chemical substance. 

QSAR estimates allow for the prioritization of such 
chemical substances for more costly and time-consuming 
toxicological testing or for setting cleanup or media health-
based limits in the regulation of minimally tested chemical 
substances. This method of toxicity assessment is especially 
useful for many environmental toxicants for which there 
is a critical lack of adequate toxicity and pharmacokinetics 
data for risk assessment. The use of the QSAR method for 
the evaluation and establishment of interim or provisional 
toxicity references for chemical substances for which there 
are inadequate toxicity data for use in risk assessment is an 
EPA-approved practice and the basis of the data found in the 
EPA’s Assessment Tools for the Evaluation of Risk (ASTER) 
(EPA 1994). This method has also been used by EPA and 
internationally (under the auspices of the North Atlantic 
Treaty Organization’s Committee on Challenges of Modern 
Society [NATO/CCMS]) to develop toxicity equivalency 
factors (TEF) for chlorinated dibenzo-p-dioxins and -
dibenzofurans (CDDs and CDFs) (EPA-TEF/87, I-TEF/89), 
wherein the toxicity of 2,3,7,8-tetrachloro-dibenzo-p-dioxin 
(2,3,7,8-TCDD) is used as the central reference with which 
the toxicity of all the other CDDs and CDFs are qualitatively 
and quantitatively related (EPA 1989). EPA has proposed a 
similar QSAR approach for polycyclic aromatic hydrocarbons 
(PAHs) for which there is inadequate toxicity information as 
described by EPA (1992).

With thousands of chemicals representing potential 
environmental contaminants, the need for a framework of 
effective prioritization for regulatory development and risk 
characterization is vital. EPA’s Contaminant Candidate List 
(CCL) for drinking water contaminants represents one type of 
framework, though the selection of chemicals for the CCL has 
remained problematic due to the large number of chemicals 
that must be evaluated. Similar challenges are posed by 
microbes of potential concern. Methods to identify and 
prioritize these microbes in anticipation of potential health 
threats from environmental and intentional releases remains a 
critical unresolved dilemma. 

QSARs are based on the relationship between the structure of 
chemicals and their interaction with biological tissues, leading 
to adverse effects, whereas VFARs extend this concept to 
microbial contaminants, suggesting that the pathogenicity 
of a microbial agent is directly related to the architectural 
and biochemical components found in that organism. Both 
QSAR and VFAR have the potential not only to facilitate the 
prioritization of chemicals and microbes of potential concern, 
but also to inform the subsequent risk assessment and risk 
management process. 

The practice of risk assessment, which is composed of hazard 
identification, exposure assessment, dose response or toxicity 
assessment, and risk characterization generally integrates 
data from in vivo, in vitro, and epidemiological studies in the 
characterization of human health risk assessment. However, 
as previously mentioned, the chemical universe is large with  
the majority of these chemicals lacking traditional toxicity 
measurements. In such instances, risk characterization can 
integrate data from in silico methods in combination with 
in vitro, in vivo, and epidemiological studies to develop the 
weight of evidence (WOE) in the characterization for human 
health risk assessment. Thus, the theme that was advanced 
during the workshop was that additional useful evidence can 
be provided to enhance the overall hazard identification and 
toxicity assessment based on QSAR and VFAR methodology. 
Additionally, the analysis of microbial virulence factors 
can provide critical information for identifying sources of 
biological exposure and contamination. 

Major Themes Discussed
Throughout the workshop, the following themes were 
discussed by experts in the VFAR and QSAR fields. The 
QSAR concept, used for chemical toxicity prediction, is 
more mature than the VFAR concept, which may be used for 
assessing hazard from exposure to microorganisms. In an 
introductory presentation on VFARs, Dr. Gerard Stelma of the 
National Exposure Research Laboratory (NERL) explained 
that the VFAR concept  is related to the architectural and 
biochemical components of microorganisms that are defined 
by both genes and proteins. These components are related 
to pathogenicity and human health risks as presented in 
a series of National Research Council (NRC) meetings 
(1999, 2001). As indicated by Dr. Joan Rose, Michigan 
State University, and Principal Investigator of EPA and the 
Department of Homeland Security (DHS)-funded Center 
for Advancing Microbial Risk Assessment (CAMRA), the 
challenges of integrating potential applications of VFAR 
into the risk assessment framework is under intense scrutiny. 
Dr. Syed Hashsham, Associate Professor in the Department 
of Civil and Environmental Engineering and the Center for 
Microbial Ecology at Michigan State University, explained 
how descriptors for the microbial genome and proteome can 
be applied to evaluate the impact of variability on microbial 
virulence, broadly defined as the ability of a microbial agent 
to infect its human host, reproduce, and/or cause disease. 
Dr. R. Paul Schaudies of Science Applications International 
Corporation (SAIC) then described a rapid technique for 
identifying variability in the microbial genome. The technique 
can be readily used for identification and hazard assessment.

Although the science of QSAR is more mature than that of 
VFAR, there remain important challenges in the application 
of QSAR to the risk assessment paradigm. One of these 
challenges is the determination of how mode of action (MOA) 
data can be employed more fully to improve prediction 
of toxicity benchmarks using QSAR. Dr. Mark Cronin, 
Professor of Predictive Toxicology, Liverpool John Moores 
University, addressed a challenge that has puzzled researchers 
for years: the identification of a method for quantifying the 
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structure-activity relationship of highly reactive electrophiles. 
Dr. Kannan Krishnan, Director of the Human Toxicology 
Research Group at the Université de Montréal, described 
a model that integrates QSAR with physiologically based 
pharmacokinetic (PBPK) modeling to derive extrapolation 
capabilities. This model can be adjusted for variations in 
exposure route, rate, duration, and other factors. Dr. Andrew 
Maier, Associate Director of Toxicology Excellence for 
Risk Assessment (TERA), discussed how QSAR could 
provide critical information in risk characterization based 
on the WOE approach. In his talk, Dr. Maier emphasized 
that an understanding of the chemical MOA can enhance the 
applicability of QSAR in risk assessment. Dr. William Welsh, 
Department of Pharmacology, University of Medicine & 
Dentistry of New Jersey (UMDNJ), discussed the assemblage 
of a wide variety of computational toxicology tools, including 
QSAR-based methodologies that are applicable to risk 
assessment. Dr. Andrew Worth, leader of the QSAR Project, 
European Chemicals Bureau, Institute for Health & Consumer 
Protection, Joint Research Centre, European Commission, 
described how the new REACH legislation, which 
incorporates a preference for alternatives to animal testing, is 
serving to promote QSAR research and applications. 

Charge to the Expert Panel 
Following the presentations by the expert panels, a number of 
questions charged to the panel were discussed. Each charge 
question under VFAR and QSAR, given below, is followed by 
highlights of considerations by the panel members.

VFAR 
Identify selection criteria for virulence factors that should 
be considered in the VFAR approach. Should certain 
classes of virulence factors be excluded?

The initial development of VFAR methodology and 
technology allows for a very broad array of gene 
identification. Thus, there is no need to omit any classes 
of virulence factors (VFs) from consideration and no 
reason to rule out anything until it can be demonstrated 
that it is not relevant. The presence of a VF may be 
necessary but not sufficient for the development of 
pathogenicity. Other factors, such as those that permit 
the expression of VFs, the survival and persistence of 
the microbes, or even a particular array of microbes in 
the environment, are needed to permit the development 
of pathogenicity or the occurrence of disease. There is 
also an urgent need to characterize background levels of 
common VFs in organisms to better recognize a change 
in conditions that may pose a human health risk. 

Compare and contrast the VFAR and QSAR approaches. 
Considering the similarities to QSAR, should the VFAR 
approach work with biotoxins? Viruses? Spores? Cysts? 
What are the strengths of the VFAR concept?

Host-specific factors  (e.g., individual variability in 
metabolism, sensitive subpopulations, the immune 
response of the host) alter the dose-response relationship 
in all traditional toxicity testing protocols. Therefore, 

1.

2.

there will always be uncertainty associated with such 
factors, which will be extended to QSAR and VFAR 
modeling efforts. Due to the variability of individual 
immune system function, host-specific factors are more 
important for microbial agents than for chemical agents. 
However, these limitations should not be a deterrent 
for using these approaches in the evaluation of the 
universe of chemical and microbial agents that need 
to be assessed using nontraditional methods. Because 
of some commonalities between biotoxins, viruses, 
spores and cysts, the VFAR approach may be useful in 
assessing the hazards associated with these different 
forms of biological agents. For the initial prioritization 
of chemicals or microbial agents, when toxicological 
or empirical data are lacking, QSAR and VFAR can be 
particularly useful. 

The data being collected and models under development 
could be critical to facilitating a rapid response in the 
event of an intentional attack. Available empirical data 
could be linked to predictions regarding virulence 
and potential adverse outcomes. QSAR and VFAR 
can provide critical information regarding alerts to 
human health concerns, and chemical and biological 
plausibility in terms of potential human health effects, 
particularly as an input to comprehensive WOE 
approaches.

Discuss how VFARs can be used in the detection of 
recognized biothreat agents, newly emerging pathogens, 
and bioengineered pathogens.

It is unlikely that VFs will be the focus of genetic 
engineering for the purpose of bioweapon development. 
However, the analysis of VFs can provide information 
regarding genetic engineering for both bioweapons and 
natural evolution. In addition, it should be noted that 
other characteristics, such as factors that enhance gene 
expression or environmental persistence, will also play 
a role in exposure and risk.

Describe technology available for examining virulence 
factors. How can we determine the presence of such 
virulence factors in water or air?

There are many tools and technologies available for 
examining virulence factors, including genomics and 
gene arrays, polymerase chain reaction (PCR), and 
proteomics for the analysis of protein products. These 
technologies are all under development in terms of 
applicability to VFARs, but there are current limitations 
in terms of the identification and characterization of 
VFs that have a hazard associated with them and the 
background occurrence of VFs. Difficulties in sample 
collection and processing still exist and must be 
addressed before these technologies can be applied to 
surveillance in water or air. 

3.

4.
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Discuss the positive and negative applications of using 
VFARs in bioengineering. Discuss the construction 
of highly potent pathogens inserting single gene or 
combinations of virulence genes into commensal 
organisms. Do certain classes of virulence genes lend 
themselves to genetic engineering?

The genetic changes that occur naturally are an excellent 
example of the ingenuity of the microbial genome. Most 
notably, microbes can transfer plasmids, resulting in the 
rapid exchange of genetic material. Because virulence 
mechanisms are not completely understood, there is a 
need to look for unusual combinations of genes, as well 
as other factors, such as gene arrays and genes that are 
either up- or down-regulated. In general, a change in 
potency is accompanied by a string of changes, not just 
a single change.

How can VFARs be used to determine the human toxicity 
potential of the virulent genes? Is it possible to obtain 
a quantitative estimate of the virulence along with a 
qualitative estimate?

For the purposes of public health protection, the goal  
is to be able to use VFARs to aid in the:

Identification of the presence of microbes of concern

Identification of accessory genes necessary for virulence

Identification of environmental conditions necessary  
for virulence

Extrapolation from virulence gene expression to 
virulence protein expression

Prediction of the magnitude of the health hazard it  
represents

Determination of the infectivity or dose-response 
relationships to gauge the response needed to prevent  
or mitigate an outbreak 

These characterizations and predictions would provide 
information critical to an understanding of the magnitude of 
the public health risk associated with a natural or intentional 
exposure event. 

Can a virulence gene be altered so that it is still active but 
no longer detectable by the gene probes that are typically 
used?

The current state of knowledge is focused on the 
identification of virulence factors and how the virulence 
factors function in the microbe to express virulence. 
The capability does not yet exist to link this information 
to health outcomes, though the potential clearly exists. 
Due to the degeneracy of the genetic code, alterations in 
the gene might not result in a change in the synthesized 
protein. Constant changes in the microbial genome 
necessitate surveillance for these genetic mutations and 
evaluation of how virulence is affected. 

5.

6.

•

•

•

•

•

•

•

7.

QSAR
In light of emerging technologies (e.g., genomics, 
proteomics, and bioinformatics), what role will QSAR 
methods play in the future with regard to EPA’s risk 
assessment/risk management process? 

For the purposes of regulatory prioritization and the 
development of remedial action strategies, the universe 
of chemicals must be characterized and reduced to 
assess the chemical threats to human health. Also, in 
order for chemical characterization to be most effective, 
mechanisms of toxicity or MOA must be determined. 
This is an essential component of expert system based 
structure-activity relationships where the aspect of the 
structure of the chemical that results in a particular 
effect or outcome must be determined. This concept 
can greatly enhance QSAR model development and 
interpretation. 

How can genomic, proteomic, and bioinformatic data be 
used in QSAR models? Are there examples where the 
“-omics” technologies in combination with QSAR models 
have proven to be able to predict, both qualitatively and 
quantitatively, acute/chronic toxicity across multiple 
chemical classes?

In terms of the role of -omics and QSARs in EPA’s 
framework for risk assessment, any useful and valid 
information will help decrease uncertainty in the context 
of the overall weight of evidence. Some technologies 
may be better for screening than for regulatory decision 
making in that these technologies may not be fully 
validated or accepted. -Omics technologies and QSARs 
fit into this category. Currently, -omics technologies 
serve primarily as hazard identification tools by 
providing insight into the chemical’s potential MOA. 
Such knowledge can provide informed interpretation 
of QSARs. The integration of QSARs with -omics 
technologies may allow these complementary 
technologies to reinforce each other. Computational 
toxicologists are working on this integration.

Can QSAR methods be used to reduce the uncertainty in 
extrapolating from acute and short-term benchmarks (such 
as median lethal dose [LD

50
]) to subchronic and chronic 

lowest observed adverse effect levels (LOAELs)?  What 
are the issues that must be dealt with in order to do this?

There are distinct challenges in using QSARs to 
inform the extrapolation from acute to chronic effects 
because the critical endpoints are different. If there is 
knowledge about the critical effects and MOA, then 
it may be possible to use QSARs to extrapolate and 
reduce uncertainty. It is possible that there are cases in 
which the critical effects and MOA are the same, such 
that extrapolation using QSARs may be helpful. If 
there is commonality in MOA, then extrapolation from 
acute to chronic is more reasonable, but the rationale 
and the uncertainties must be discussed explicitly.
Discriminators also can be segregated by MOA. 

1.

2.

3.
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Participants acknowledged that many approaches have 
been suggested for evaluation of chemicals that lack 
toxicity data. Some indicated it was possible to take 
the LD

50
 and divide by several uncertainty factors and 

use this derived dose as a substitute for chronic effects. 
Others assert that since the MOA for acute effects 
is generally different from that of chronic effects, it 
is inappropriate to extrapolate from acute to chronic 
effects for most chemicals. 

4. Since rule-based and expert models are based on 
congeneric groupings of chemicals (i.e., the training set is 
a congeneric data set), how can statistical models, which 
are generally based on non-congeneric training sets, be 
improved? Can such models incorporate MOA data if 
available? Can such statistical models provide some insight 
regarding MOA for a chemical query? 

There are several opportunities to combine QSARs and 
MOA information to better inform risk assessment, 
and the panel noted that routine acceptance of QSAR 
predictions will likely require that they be derived 
with an underlying mechanistic understanding. As 
models become more sophisticated, they will further 
incorporate structural features and property features 
and therefore allow for fuller evaluation of chemicals 
through the consideration of MOA data. Several 
examples of developments in this area were described. 
The integration of QSARs with PBPK modeling 
was discussed, where MOA considerations (e.g., 
identification of appropriate dose metrics based on 
chemical metabolism prediction) are factored into the 
PBPK model. Growing use of tools in bioinformatics 
(e.g., protein structure prediction and libraries) have 
allowed for the use of shape signatures based on the 
comparison of surface features to integrate MOA (e.g., 
receptor binding) into QSAR methodology. MOA 
data can be applied to large groups of chemicals to 
identify clusters of closely related chemicals. This is 
the conceptual basis for decision tree and regression 
tree approaches. QSAR models can be tailored via 
selection of descriptors for each cluster to provide more 
uniform training sets for QSAR development or to aid 
in interpreting global QSAR predictions. 

5. The toxicity of a chemical for any given health endpoint 
is in general due to an adverse interaction between the 
chemical and/or its metabolite and the tissue/organ/DNA 
associated with the endpoint. In developing statistically 
based QSAR models for chemicals with different modes 
of action, the descriptor pool contains descriptors that are 
chemical specific (i.e., they depend on the structure of the 
chemical alone). Are there any descriptors that can describe 
the tissue/organ/DNA characteristics and its interaction 
with a chemical and/or its metabolites?

The focus of QSARs is on describing the potential 
interaction between chemicals and biological molecules. 
There are two basic types of chemical-biological 
interactions. Receptor-based interactions often are the 

basis of endocrine disruption effects, and covalent 
interactions occur with nonspecific macromolecular 
binding. Mechanistic QSARs for predicting receptor-
based interactions are commonly used in drug 
development and are increasingly being used for 
toxicity prediction. Nevertheless, many chemicals act 
via relatively nonspecific covalent interactions, which 
can be quite complex even within a chemical class, as 
was highlighted in the context of phenolic electrophiles. 
To be most useful, QSARs need to account for this 
complexity more fully. While mechanistic QSARs 
are preferred, an intermediate step in this direction is 
to focus efforts on endpoint-specific QSARs, since 
the specificity of target organs can arise based on 
local metabolism or the nature of cell/tissue response 
(toxicodynamics). 

6. Current methodology on the statistically based QSAR 
development for toxicity prediction calls for the inclusion 
of as many (classes of) descriptors in the descriptor 
pool as possible to explain the variance in the dependent 
variables (some measure of toxicity). In developing these 
QSARs, are there any (class of) descriptors that one should 
definitely include in the potential descriptor pool (e.g., 
partition coefficients to account for transfer from blood to 
tissue)?

Although certain descriptors (i.e., molecular size 
or hydrophobicity) are more commonly used, the 
mechanistic context must be used as a starting point 
for the selection of descriptors. Since the mechanistic 
context varies based on chemical class, it is not possible 
to make blanket statements regarding the selection 
of descriptors. Examples of descriptors based on 
chemical mechanisms are those descriptors that describe 
accumulation or penetration through membranes, 
reactivity with macromolecules, receptor binding with 
critical targets, and others. 

7. Qualitative SAR models (i.e., models yielding 
dichotomous or graded responses such as yes/no or 
low/med/high) do not provide a quantitative measure 
of a chemical’s toxicity while quantitative SAR models 
(i.e., models yielding numerical potency estimates) do 
not provide a qualitative measure of the activity of a 
chemical for any given health endpoint. How does the 
panel view the feasibility of applying hybrid QSAR models 
(i.e., capitalizing on the benefits of SAR and QSAR by 
minimizing the disadvantage, if any, of each approach) 
for toxicity prediction? If feasible, how does the panel 
envision EPA applying such models?

Several approaches for hybrid SAR/QSAR analyses 
were discussed. Approaches ranged from using 
MOA descriptors as a screening step for the initial 
classification of chemicals to help in interpreting  
global QSARs to direct use of MOA descriptors in 
developing quantitative endpoint-specific logistic 
regression models. Semiquantitative QSARs methods 
include decision trees or modifications of this concept 
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that use parallel sets of decision trees to improve 
predictability. Binned chemicals identified through  
these tools could serve as endpoint-specific QSAR 
training sets or be used to identify characteristics 
associated with potency levels for risk assessment 
using threshold-of-concern approaches. For chemical 
risk assessment, there is often a need to extrapolate 
from dose-response data based on exposure durations 
of less than a lifetime to estimate the effects of lifelong 
exposure. Traditionally, for EPA risk assessments, a 
default factor of 10 is applied to adjust adverse effect 
levels from subchronic (i.e., exposure for roughly 
10 percent of the lifetime) to chronic exposure 
conditions. This default factor of 10 can be useful for 
the extrapolation of subchronic to chronic toxicity; 
however, it may be inappropriate for the extrapolation 
from acute to chronic exposure because the critical 
endpoints are often different and the MOA is different 
between acute and chronic exposure. The panel 
noted that several correlation approaches have been 
developed to address this situation – but these are not 
necessarily QSARs. While QSARs may fully address 
this application directly, they can also provide very 
important insights that are used in decisions regarding 
such extrapolations. For example, they are used 
to predict toxicokinetic parameters (e.g., partition 
coefficients or metabolism parameters) that impact 
decisions regarding the potential for increased body 
burden with longer-duration exposures. Furthermore, 
QSARs can provide understanding of both acute 
and chronic toxicity mechanisms — which impact 
considerations of potential for accumulation of tissue 
damage with increased exposure duration. 

Recommendations
Several recommendations of near-term applications of VFAR/
QSAR models were discussed by the panel. These include:

To advance the applicability of VFAR in real-world 
situations, it is critical to facilitate the characterization of 
samples collected during natural outbreaks of microbial 
diseases. This will permit the identification of background 
levels of VFs and advance understanding of the natural 
evolution of VFs in addition to providing the framework 
to test hypotheses pertaining to the dose-response 
relationships of VFAR. 

Another potential opportunity for the advancement of 
VFAR research involves the BioWatch Program, which 
consists of continuous sampling at locations across the 
country. This would be an opportunity for researchers to 
obtain material for the characterization of background 
levels of VFs in urban environments in addition to testing 
hypotheses. 

The state of the science regarding QSAR modeling 
is considerably more advanced than that of VFAR 
modeling; therefore, the key recommendation for near-
term applications focused on the integration of MOA 
and PBPK with QSAR models to enhance biological 
applicability.

For both VFAR and QSAR, host-specific factors alter 
the dose-response relationship (e.g., human variability in 
metabolism, sensitive subpopulations, immune response 
of the host); therefore, there will always be uncertainty 
in the ability to model host factors. Due to the variability 
in human immune system function, host-specific factors 
are important considerations when evaluating responses 
to microbiological agents. However, these limitations 
should not be a deterrent for using these approaches in the 
evaluation of the vast universe of chemicals and microbes 
that require attention. For the initial prioritization of 
chemicals or microbes, when toxicological data are 
lacking, QSAR and VFAR can be particularly useful. 

The data being collected and models under development 
could be critical to facilitating a rapid response in the 
event of an intentional attack by linking field data to 
predictions regarding virulence and potential adverse 
outcomes. QSAR and VFAR can provide critical 
information regarding alerts to human health concern, 
and chemical and biological plausibility in terms of 
potential human health effects—particularly as an input 
to comprehensive WOE approaches.

•

•

•

•

•
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1.0 
Introduction

1.1  Background
The U.S. Environmental Protection Agency’s (EPA’s) 
National Homeland Security Research Center (NHSRC) and 
National Risk Management Research Laboratory (NRMRL) 
convened this workshop on June 20–21, 2006, to explore 
the development and application of Quantitative Structure-
Activity Relationship (QSAR) and Virulence Factor-Activity 
Relationship (VFAR) models in the risk assessment process, 
specifically as they relate to homeland security needs 
and contamination associated with natural disasters and 
accidental or intentional releases. To this end, the workshop 
convened toxicologists, microbiologists, chemists, engineers, 
biostatisticians, pharmacologists, biochemists, and risk 
assessment specialists to address the goals of the workshop. 
These goals included the identification of data needs for the 
development of quantitative noncancer and cancer models, 
that are capable of predicting commonly used toxicity 
benchmarks, such as the lowest observed adverse effect level 
(LOAEL), LD

50
, and benchmark dose (BMD), for various 

exposure durations. Of particular importance is the prediction 
of benchmarks and health effects associated with acute 
and short-term exposure to chemical and biological agents. 
The workshop explored the development and application 
of VFAR models to estimate the human health effects of 
microorganisms and their biological toxins. The workshop 
also focused on approaches for incorporating mode of action 
(MOA) data in the development or refinement of such 
models, including the incorporation of genomic, proteomic, 
and metabolomic data. In addition, the workshop addressed 
computational and data mining approaches, such as various 
regression methods, neural networks, and expert systems for 
improving QSAR and VFAR development. 

The risk assessment process involves four steps as defined by 
the National Academy of Sciences, National Research Council 
(NRC, 1983): hazard identification, dose response or toxicity 
assessment, exposure assessment, and risk characterization. 
Risk management integrates the results of the risk assessment 
with other considerations, such as economic or legal concerns, 
to reach decisions regarding the need for and practicality 
of implementing various risk reduction activities. NHSRC 
and NRMRL, both part of EPA’s the Office of Research and 
Development (ORD), are primarily involved in dose response 
or toxicity assessment, and in developing guidance for risk 
management. Under these processes, an attempt is made to 
understand the toxic properties of individual chemicals as well 
as mixtures of chemicals, and develop appropriate guidance 
documents. An important goal of research in toxicology is 
the prediction of the toxic potential of chemicals from acute 
short-term and long-term chronic exposures.

Globally, the chemical industry and regulatory agencies such 
as EPA spend millions of dollars on testing and assessing the 
health risks associated with chemicals. For most chemicals, 

the risk assessment process is conducted using limited 
experimental data. In such instances, the ability to rapidly 
and accurately predict potential health hazards from chemical 
exposures is needed. One approach to meeting this need is 
the use of nonempirical parameters, which can be calculated 
directly from a chemical structure. This can be achieved by 
the application of computational toxicology or QSAR models, 
which have proven to be both appropriate and useful for many 
chemicals. Similar computational toxicology approaches are 
also being employed to enhance risk assessment processes 
for exposure to microorganisms and their toxins. This field, 
involving the methodologies for deriving VFAR, is emerging 
to estimate the health hazards posed by biological agents 
via the characterization of proteins, which convey toxicity, 
infectivity, pathogenicity and/or virulence. The concept 
of VFAR was developed as a way to relate the structural, 
architectural, and biochemical components (such as biotoxins) 
of a microorganism to its potential to cause human disease.

1.2  Purpose and Goals of the Workshop
The workshop was conducted to explore the application 
of these techniques to the risk assessment (RA) process in 
situations where chemical-specific empirical data are either 
inadequate or lacking.

The following list details the goals and objectives of the 
workshop:

Identification of data needs for the development of 
quantitative noncancer and cancer models, including 
models that are capable of predicting benchmarks such 
as LOAEL, LD

50
, median lethal concentration (LC

50
), 

BMD, and benchmark concentration (BMC) for various 
exposure durations. 

Prediction of benchmarks and health effects associated 
with acute and short-term exposure to chemical and 
biological agents. 

Exploration of the feasibility of developing and 
applying hybrid QSAR models. 

Exploration of the development and application of 
VFAR models to estimate the activity of microbial 
agents. 

Exploration of the incorporation of genomic,  
proteomic, and metabolomic data into QSARs in  
order to incorporate the MOA into QSAR models. 

Assessment of the development of models for 
predicting the relative toxicity of the parent  
compound and metabolites for identification  
of the ultimate chemical effectors. 

•

•

•

•

•

•
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Discussion of computational approaches, such 
as various regression methods, genetic algorithm 
descriptor selection techniques, data clustering methods, 
neural networks, and expert systems. 

1.3  Charge to the Expert Panel
Following the presentations by the expert panels, the 
following questions were discussed:

VFAR 
Identify selection criteria for virulence factors that should 
be considered in the VFAR approach. Should certain 
classes of virulence factors be excluded?

Compare and contrast the VFAR and QSAR approaches. 
Considering the similarities to QSAR, should the VFAR 
approach work with biotoxins? Viruses? Spores? Cysts? 
What are the strengths of the VFAR concept?

Discuss how VFARs can be used in the detection of 
recognized biothreat agents, newly emerging pathogens, 
and bioengineered pathogens?

Describe technology available for examining virulence 
factors. How can we determine the presence of such 
virulence factors in water or air?

Discuss the positive and negative applications of using 
VFARs in bioengineering. Discuss the construction 
of highly potent pathogens inserting single genes 
or combinations of virulence genes into commensal 
organisms. Do certain classes of virulence genes lend 
themselves to genetic engineering?

How can VFARs be used to determine the human toxicity 
potential of the virulent genes? Is it possible to obtain 
a quantitative estimate of the virulence along with a 
qualitative estimate?

Can a virulence gene be altered so that it is still active but 
no longer detectable by the gene probes that are typically 
used?

QSAR
In light of emerging technologies (e.g., genomics, 
proteomics, and bioinformatics), what role will QSAR 
methods play in the future with regard to EPA’s risk 
assessment/risk management process? 

How can genomic, proteomic, and bioinformatics data 
be used in QSAR models? Are there examples where the 
“-omics” technologies in combination with QSAR models 
have proven to be able to predict, both qualitatively and 
quantitatively, acute/chronic toxicity across multiple 
chemical classes?

Can QSAR methods be used to reduce the uncertainty in 
extrapolating from acute and short-term benchmarks (such 
as LD

50
) to subchronic and chronic LOAELs?  What are 

the issues that must be addressed in order to do this?

Since rule-based and expert models are based on 
congeneric groupings of chemicals (i.e., the training set 
is a congeneric data set), how can statistical models that 

•

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

are generally based on noncongeneric training sets be 
improved? Can such models incorporate MOA data if 
available? Can such statistical models provide some  
insight regarding MOA for a chemical query? 

The toxicity of a chemical for any given health endpoint 
is, in general, due to an adverse interaction between the 
chemical and/or its metabolite and the tissue/organ/DNA 
associated with the endpoint. In developing statistically 
based QSAR models for chemicals with different modes 
of action, the descriptor pool contains descriptors that are 
chemical specific (i.e., they depend on the structure of the 
chemical alone). Are there any descriptors that can describe 
the tissue/organ/DNA characteristics and its interaction 
with a chemical and/or its metabolites?

Current methodology on the statistically based QSAR 
development for toxicity prediction calls for the inclusion 
of as many (classes of) descriptors in the descriptor pool as 
possible to explain the variance in the dependent variables 
(some measure of toxicity). In developing these QSARs, 
are there any (classes of) descriptors that one should 
definitely include in the potential descriptor pool (e.g., 
partition coefficients to account for transfer from blood to 
tissue)?.

Qualitative SAR models (i.e., models yielding 
dichotomous or graded responses such as yes/no or 
low/med/high) do not provide a quantitative measure 
of a chemical’s toxicity while quantitative SAR models 
(i.e., models yielding numerical potency estimates) do 
not provide a qualitative measure of the activity of a 
chemical for any given health endpoint. How does the 
panel view the feasibility of applying hybrid QSAR models 
(i.e., capitalizing on the benefits of SAR and QSAR by 
minimizing the disadvantage, if any, of each approach) 
for toxicity prediction? If feasible, how does the panel 
envision EPA applying such models?

1.4  Organization of This Report
The remainder of this report is organized as follows:

Chapter 2 presents the background of the workshop’s 
sponsoring organizations, NHSRC and NRMRL.

Chapter 3 provides summaries of the VFAR 
presentations made by expert panelists, including 
ensuing discussions from panelists and other workshop 
participants.

Chapter 4 provides summaries of discussion based on 
charge questions related to the VFAR concept posed to 
the expert panel.

Chapter 5 provides summaries of the QSAR 
presentations made by expert panelists, including 
ensuing discussions from panelists and other workshop 
participants.

Chapter 6 provides summaries of discussion based on 
charge questions related to the QSAR concept posed to 
the expert panel.

5.

6.

7.

•

•

•

•

•



3

• Chapter 7 includes major considerations to which 
discussions of the charge questions gave rise.

• Chapter 8 provides references mentioned during 
presentations on the QSAR and VFAR concepts.

• Appendix A presents a list of workshop speakers.

• Appendix B provides “biosketches” of the speakers and 
expert panelists.

• Appendix C contains a copy of the workshop agenda,  
as well as the EPA-distributed flyer for the workshop.

• Appendix D provides a list of all workshop attendees.

• Appendix E includes copies of all presentation materials 
in Microsoft PowerPoint slides.
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2.0 
Background and Opening Remarks

This section summarizes the background of the workshop’s 
sponsors, National Homeland Security Research Center 
(NHSRC) and National Risk Management Research 
Laboratory (NRMRL). Three main speakers from these two 
ORD entities set the stage for the workshop discussions, and 
their presentations are synopsized.

2.1  NHSRC and NRMRL 
NHSRC, headquartered in Cincinnati, Ohio, was formed 
in  2002. It manages, coordinates, and supports a variety of 
research and technical assistance efforts and develops and 
delivers reliable, responsive expertise and products based on 
scientific research and evaluations of technology. NHSRC’s  
expertise and products are widely used to prevent, prepare 
for, and recover from public health and environmental 
emergencies arising from terrorist threats and incidents. The 
center provides a management structure that ensures effective 
design and oversight of research and facilitates interaction 
with EPA program offices and regions, other federal agencies, 
the private sector, and research partners. NHSRC’s team of 
scientists and engineers are dedicated to understanding the 
terrorist threat, communicating the risks, and mitigating the 
results of attacks. Guided by the roadmap set forth in EPA’s 
Strategic Plan for Homeland Security, NHSRC ensures rapid 
production and distribution of security-related products. 
These products include methodologies and tools to support 
contaminant detection and characterization, treatment 
and decontamination, physical security enhancement, risk 
assessment and communication, as well as numerous papers 
and technical briefs covering a variety of topics.

The mission of NRMRL is to develop ways to prevent and 
reduce pollution of air, land, and water. With headquarters 
in Cincinnati, Ohio, and divisions in North Carolina, 
Oklahoma, and New Jersey, NRMRLs several hundred 
scientists and engineers share the mission to solve a wide 
range of environmental challenges in seven research areas: 
drinking water protection, air pollution control, contaminated 
media remediation, watershed management and protection, 
environmental technology verification, technology transfer, 
and technology support.

2.2  Opening Presentations
NHSRC and the Workshop Goals   
Andy Avel, Assistant Center Director, NHSRC
Mr. Avel stated that in the event of a terrorist attack, both 
EPA and the Department of Homeland Security will have 
responsibility for cleanup. However, after first responders 
leave, EPA will have the primary responsibility for remedial 
activities. Since the September 11, 2001, terrorist attacks, 
EPA, under a series of Homeland Security Presidential 

Directives (HSPDs), has been given specific roles, including 
decontamination of buildings, public infrastructure, and public 
areas in the event of biological, chemical, or radiological 
terror attacks, and protection of the drinking water 
infrastructure. NHSRC is organized to address chemical, 
biological, and radiological weapons of mass destruction 
targeted toward water and the environment. Its primary 
focuses include:

Developing detection methods to identify an attack

Developing risk assessment methodologies to assess, 
characterize risks, and provide guidance for cleanup and 
reentry

Understanding and anticipating chemical and biological 
warfare agents

Incorporating the radiological component

Mr. Avel went on to discuss the need to build on what 
has already been done, particularly in terms of cleanup 
management. Once contamination occurs, he said, impact 
has to be minimized via containment. Once contained, 
impacted media must be assessed for potential human 
exposure and health risk and must be handled to remove/
reduce contamination. Once decontaminated, the removed 
hazardous materials or residues must be disposed of, using 
the best available control technology (e.g., landfill, thermal 
destruction), according to local, state, and federal regulations. 

NHSRC has developed a technology verification program 
to test claims made by industry regarding the technologies 
for managing chemical, biological, or radiological agents. 
NHRSC also is expanding its capability for the analysis of 
these chemicals and agents and increasing lab capacity in 
general. NHSRC is currently collaborating with other parts 
of EPA including the Office of Solid Waste and Emergency 
Response (OSWER), the National Center for Computational 
Toxicology (NCCT), the National Center for Environmental 
Assessment (NCEA), the National Exposure Research 
Laboratory (NERL), and NRMRL.

Cindy Sonich-Mullin, NHSRC, Director of Threat and 
Consequence Assessment Division (TCAD) 
Ms. Sonich-Mullin discussed the mission of TCAD’s research 
program: to become better prepared to respond to threats and 
emergency incidents. She stressed the need for rapid response 
to specific threats and risks from terrorism. Among TCAD’s 
goals are:

Adapting and developing risk assessment methods for 
homeland security

Developing tools for responders to access information

Developing cleanup advisory levels and methods for 
achieving cleanup goals or levels

•

•

•

•

•

•

•

http://www.epa.gov/homelandsecurity/htm/ohs-sp.htm
http://www.epa.gov/homelandsecurity/htm/ohs-sp.htm
http://www.epa.gov/appcdwww/index.html
http://www.epa.gov/ada/
http://www.epa.gov/ednnrmrl/
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Exposure timeframes ranging from 24 hours, to 30 days, to 2 
years are the focus of TCAD’s risk assessment efforts. This 
is in contrast to acute exposure levels (< 24 hrs) and chronic 
exposure levels, which are traditionally based on reference 
doses (RfDs) and reference concentrations (RfCs), and are 
the traditional focus of the Agency. TCAD envisions that 
QSARs will play a significant role in filling data gaps for 
this timeframe. There is a need for risk assessment methods 
for different exposure scenarios, higher concentrations, 
and unknown agents. With very little data and capability, 
innovative techniques and approaches are required to develop 
a credible risk assessment.

The charge questions are the key to the success for facilitating 
development of TCAD’s risk assessment capability. The focus 
is on short-term exposures, and TCAD is developing and 
using QSARs and VFARs to:

Extrapolate from either acute or chronic exposures 

Decrease default uncertainty, traditionally applied in  
the risk assessment process 

Develop credible or sound cleanup level estimates 
for emerging chemical and biological agents, in an 
emergency

Make these efforts transparent and rapid

•

•

•

•

NRMRL and the Workshop Goals  
Subhas Sikdar, Acting Associate Deputy Director for Health, 
NRMRL
Dr. Sikdar noted that NRMRL has been involved with the 
computational toxicology initiative and QSAR methodology 
from the beginning, which led to the establishment of the 
National Center for Computational Toxicology (NCCT). 
NRMRL’s goal for QSAR methods research is to predict 
the environmental outcomes of new chemicals throughout 
their life cycles, while working with the NCCT to develop 
analytical, computer-based models that decrease the need 
for animal testing. Dr. Sikdar reiterated that the goal of 
this workshop is to enhance QSAR and VFAR activities by 
bringing together experts in the field to discuss progress and 
the path forward.

Doug Young, Clean Processes Branch Chief, NRMRL
Dr. Young indicated that NRMRL’s computational toxicology 
program was involved in the original development of QSARs 
and has representation on the current steering committee 
for NCCT. The NRMRL engineering lab is working to 
develop risk management solutions, including alternative 
solutions such as Life Cycle Assessment and environmental 
impact tools. Other categories of interest include quantifying 
impacts on human and ecological health by developing/using 
toxicological values as indicators. For example, given 2,000 
chemicals to rank and prioritize while lacking toxicological 
values, new tools and techniques, such as QSARs and 
bioinformatics, are necessary to reduce the uncertainty of 
estimations. NRMRL is in the early stages of using VFARs 
and has a particular interest in having the Water Supply and 
Water Resources Division develop VFAR tools to evaluate 
recreational and drinking-water quality and potential risks.
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The following summarizes the presentations made for the 
VFAR concept, its use in a risk assessment framework, VFAR 
factors related to genomic variability, and a bioinformatics 
approach to VFAR. The discussion following each 
presentation is also summarized.

3.1  Introduction to the VFAR Concept 
Gerard Stelma, Senior Science Advisor, NERL

Summary
The VFAR concept, as Dr. Stelma noted, originated during 
a National Research Council (NRC, 2001) meeting. The 
resultant report recommended the further development of 
the concept with a specific challenge to incorporate it into 
the drinking water program. NRC recommended the concept 
of VFARs to assist in the development of the Contaminant 
Candidate List (CCL) under the Safe Drinking Water 
Act (SDWA), as amended in 1996. SDWA requires that 
unregulated contaminants in drinking water be identified, 
prioritized, and reviewed by EPA as candidates for regulation. 
At the time of SDWA’s reauthorization in 1996, there were no 
methods for CCL development and prioritization. The NRC 
subsequently developed a framework for the selection of both  
CCL and pre-CCL chemicals (2001). 

Dr. Stelma stated that because priority chemicals must be 
identified to meet SDWA requirements, there is a basic 
need to prioritize the universe of unregulated chemical and 
biological contaminants. For biological contaminants, the 
goal is to explore the feasibility of using VFARs to evaluate 
microbes and develop a system that would parallel the 
QSAR approach for chemicals. The VFAR approach would 
emphasize emerging pathogens by building on evidence 
from previous research and developing a list of descriptors 
tied to pathogenicity. The idea is to focus on elements tied to 
virulence. 

Dr. Stelma said that if the possibility exists to characterize 
the descriptors (i.e., genes, surface proteins, etc.), then the 
descriptors could be used to predict pathogens present in 
water. However, as pathogens are dynamic, gene arrays 
associated with pathogenic virulence may change over time. 
Thus, the use of VFARs for pathogen indication/identification 
may require constant updating to keep up with pathogen 
evolution. Additionally, there are virulence genes, such as 
hemolysins, that are necessary but not sufficient for virulence. 
Therefore, assaying multiple genes using a gene array may 
be important in determining virulence. The applicability of 
VFARs may be limited because the current methodology does 
not incorporate host susceptibility, the role of unexpressed 
virulence genes, and the effect of virulence factors from dead 
cells. Despite these limitations, VFARs can be an important 
tool in the pathogenicity assessment toolbox. 

Discussion
Following Dr. Stelma’s presentation, it was noted that an 
array of genes is often needed for the evaluation of potential 
virulence, which is a significant challenge. A workshop 
attendee went on to discuss another source of uncertainty of 
communal pathogenicity, that essentially some microbes may 
require the presence of other microbes to express their own 
virulence. 

3.2  Using VFAR in a Risk Assessment  
 Framework 
Joan Rose, Homer Nowlin Endowed Chair for Water 
Research, Michigan State University

Summary
Dr. Rose began by discussing risk assessment as a method 
to qualitatively or quantitatively evaluate the potential for 
harm from exposure to contaminants or specific hazards. 
There are four components to risk assessment: hazard 
identification, dose response, exposure assessment, and 
risk characterization. Risk assessment principles can be 
applied to microbes not only to address natural outbreaks, 
but also to address the needs of homeland security. Hazard 
identification is the process of identifying the microbe, source 
of exposure, and the associated virulence. Microbial genetics 
is key to this process. For exposure assessment, the goal is 
to quantify exposure concentration, duration, and frequency, 
though source identification is also important. Genetic 
elements provide information regarding persistence both in 
the environment and during disinfection. Monitoring data, 
indicators, and models can also be used to estimate exposure 
concentrations.

Dr. Rose stressed the difficulty posed by obtaining dose-
response information for microbial agents. Quantification is 
important, she said, as is the need to extrapolate from less 
pathogenic to more pathogenic strains, from healthy adults 
to sensitive populations, and from high dose to low dose. It 
is necessary to measure data in the same units as they are 
measured in the environment. Infectivity, the number of 
microbes needed to trigger infection, is another important 
characteristic that must be quantified. Infectivity may be 
related to virulence, though this is not known for certain. The 
process of risk characterization is the combination of all data 
to evaluate health risks. It is in dose response that uncertainty 
comes to the forefront. 

Dr. Rose noted the need to characterize the background rate 
of gene occurrence. For example, to assess biohazards, the 
following must be understood: 

Why the genome of some microbes are conserved, 
while others are variable 

Why some genomes are host-specific and others are not

•

•
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Why some microbes cause chronic diseases and others 
do not 

Other important factors are what controls occurrence, 
survival, regrowth, accumulation, attenuation, etc. Dr. Rose 
concluded her remarks by suggesting that the focus needs to 
be on future applications, though there will be uncertainty, and 
the applications may not be appropriate for all microbes.

Discussion
The ensuing discussion focused on the difficulty in 
characterizing host-organism interactions. There is a need 
to focus on the mechanisms that drive differential responses 
in microorganism-related host response. In the past it has 
been assumed that differential response was driven by host 
variables, although now the focus has been extended to 
pathogen factors as well. For example, characteristics such as 
the presence of housekeeping genes that enhance persistence, 
the expression of specific receptors, or the production of 
toxins will become the focus of classification as these 
characteristics determine virulence. It also may be necessary 
to categorize characteristics in different ways, such as lump 
and split techniques, based on health effects. 

It was also suggested that the uncertainty.that is inherent 
to the current application of VFAR might be difficult to 
accept. There is a need for qualitative and quantitative 
characterization of uncertainty. The understanding of 
variables that contribute to persistence, what allows a given 
microbe or family of microbes to survive and thrive in certain 
environmental conditions, is limited. One meeting participant 
noted that the Office of Water has an interest in the rapid 
identification of biological contaminants and questioned the 
application of the VFAR methodology for rapid screening 
since there are inherent uncertainties associated with the 
method (as discussed above). The panelists also indicated that 
identifying management strategies is essential and ties in with 
pathogen discovery and subsequent application of the VFAR 
method for hazard identification purposes. The potential exists 
to use well-studied pathogens as a starting point for a rapid 
identification tool. A dual-pronged approach, which focuses 
on reducing uncertainty while simultaneously developing 
monitoring/identification concepts, may be important for tool 
development and refinement. 

3.3  VFAR Factors Related to Genomic  
 Variability
Syed Hashsham, Associate Professor, Department of Civil 
and Environmental Engineering and Center for Microbial 
Ecology, Michigan State University

Summary
Dr. Hashsham began with a discussion of how the genome, 
proteins, and toxins of microbes can all be characterized via 
descriptors and how it is possible to use these descriptors 
for ranking and uncertainty analysis today. Virulence genes 
are associated with function (e.g., antibiotic resistance, 
virulence), and not necessarily microbial identity. Depending 
on the genome, variability can range from 1.6 percent to 20 
percent. There are variable genes and variable effects, but 

• in general, there are correlations between specific genes and 
adverse health effects that are worth exploiting. The actual 
link between health effects and gene variability is undefined. 
There is a need to develop gene-family training sets, which 
are groups of related virulence factors (VFs). Training sets can 
be used to demonstrate the applicability of models defining 
VFAR, drawing from large data sets of virulence and marker  
genes (VMG) that are under development. However, the 
link between health effects and gene variability and the 
quantification of health effects are key to VMG rankings 
and eventual pathogen prioritization. A possible approach to 
defining this link may involve tying species and genomic data 
to known outbreaks using historical outbreak data.

Dr. Hashsham noted that it is possible to look at rankings 
based on variability within species, length of gene, and 
number of virulence genes, to determine whether a gene is 
a potential marker. Some genes are better markers because 
they are more specific than others. Dr. Hashsham explained 
that the capacity to map the genome of different strains exists 
and common and variable regions can currently be identified. 
Genes that are constantly changing are more likely to be on 
plasmids. Fewer changes are found on certain parts of the 
chromosome. This information can be used to understand 
which genes are associated with virulence and pathogenicity. 
However, all of these changes in descriptors ultimately must 
be related to response. Data related to response as a function 
of differences in descriptors are deficient and require the 
most attention. For the purposes of monitoring, gene chips 
have been developed that contain the simultaneous genomic 
sequences of up to 20 pathogens. It is possible to conduct a 
high-throughput real-time polymerase chain reaction (PCR) 
to amplify any number of genes of interest, using multiple 
probes to ensure that specific virulence markers are identified, 
in a manner that is economical. This technology is useful for 
monitoring and identifying pathogens because it can target 
multiple VFs from each pathogen for enhanced reliability.

Discussion
One meeting participant noted that the small volumes used 
in chip development can be a problem; when only picoliter 
sample volumes are used for the chip, not all representative 
organisms will be in that small sample. More work is needed 
in terms of sample processing to ensure that the samples are 
adequately representative.  

3.4  A Bioinformatic Approach to VFAR  
 Analysis and Characterization 
R. Paul  Schaudies, SAIC

Summary
Dr. Schaudies stressed that the significant challenge in 
microbial risk is the rapid characterization of the microbe. 
The software program Fast Identification of Genomic Unique 
Regions (FIGUR) was developed to characterize microbes 
within hours by identifying unique elements within the entire 
chromosome. Using DNA microarray technologies, a pattern 
can be obtained for an organism that can subsequently be 
compared to other organisms in established databases for 
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the purposes of identification. If the pattern is not present 
in the databases, it is possible to determine whether the 
pattern is similar to known strains. From there it is possible 
to accomplish empirical generation of a library of these 
near-neighbor patterns. In contrast to PCR, amplification 
via microarray technology is random (using random 
primers, rather than gene-specific primers), which broadens 
applicability. 

The results, generated by computer software, are color coded 
to identify unique and conserved sequences. Hybridizations 
on the chip can be included to demonstrate that there is no 
cross reactivity between genes. Data also can be filtered by 
hybridization cutoffs to focus attention on genes that represent 
an appropriate level of similarity. 

Dr. Schaudies presented an example of three different species 
of Yersinia that are associated with the disease plague. Though 
all three species are 95 percent similar at the genomic level, 
the VFs differ among the three strains. Thus, it is possible 
to begin to develop profiles of VFs that define a species. 
Using VF profiles as a filter increases the chance of finding 

specific strains. One key feature of this approach is that it 
does not require the whole genome, but a part of the genome 
(e.g., 1Kb). The data can be analyzed serially to refine the 
comparisons, and common factors in each subsequent analysis 
can be removed to identify what is unique.

Discussion
This technology may be helpful in understanding the 
association between VF and pathogenicity. The identification 
of genes that are present within a broad array of genes can 
be accomplished within hours rather than days. Predictive 
capacity is not currently programmed into this tool; its 
development was not funded in the current application.

The discussion focused on the need to test this application 
in both clinical and environmental settings to help determine 
research needs. Validation is needed for VFAR in strains 
with known differences in virulence. A panelist noted that it 
would be interesting to compare Bacillus cereus strains, which 
exhibit variability in pathogenicity (as demonstrated by Dr. 
Schaudies), with anthracis strains, which exhibit very little 
variability. 
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4.0 
VFAR Charge Questions

The following summarizes the discussions on charge 
questions related to VFAR. Discussion under each charge 
question is summarized as themes discussed related to the 
question. Each theme is a bullet point under the charge 
question followed by the summary discussion of the theme.

4.1  Summary of VFAR Charge  
 Questions Discussion

Identify selection criteria for virulence factors that should 
be considered in the VFAR approach. Should certain 
classes of virulence factors be excluded?

No virulence factor, or selection criteria, omissions 
should be made at this point in the development of 
the VFAR approach.

Participants noted that the VFAR concept is still in the initial 
stages of its scientific development and it is important to 
collect as much data as technologically feasible (within the 
economy of scale) as it may not be possible to go back and 
retrieve that data later (e.g., following an outbreak or event). 
Selection criteria should not be reduced, particularly at the 
outset. 

In the initial development of the VFAR methodology, 
there is no need to omit any known or potential VFs from 
consideration. Technology allows for a very broad array 
of gene identification, which is relatively simple and 
inexpensive. The challenge is in determining which genes 
represent critical VFs. A single virulence factor may require 
the expression of multiple genes to be effective. The capacity 
to make these types of determinations will come only from 
the collection of a large quantity of data pertaining to the 
existence and ecology of the VFs. Currently, the library of 
known virulence sequences is limited; hence, there is no need 
to limit the collection of VF data. 

If VFARs are thought to be analogous to QSARs, where 
VFARs explore whether specific microbes cause disease, then 
tools that are developed should include, to the extent possible, 
all known VFARs associated with disease. Subsequently, a 
host of microbes can then be prioritized, although the process 
of identifying and characterizing VFARs is ongoing and 
remains far from the threshold of utility. To develop predictive 
capabilities for EPA, Food and Drug Administration (FDA), 
and other agencies, there is a need to take theoretical, 
empirical, and Bayesian approaches to the analysis of VFAR-
related data, in conjunction with other predictive techniques. 
At this time, the parameter sensitivities of VFARs are not 
known.

It was pointed out that the fate of accumulated data might 
depend upon the questions that are asked. Are the questions 
related to basic monitoring or source identification?  
Development of a database that will aid in the identification 
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of sources of microbes would facilitate understanding of how 
genes combine from different populations (e.g., Zoonotic 
transmission) and how this can lead to virulence. Ultimately, 
such database development can aid in the prediction of 
outcomes and the development of management options.

Data gaps on background occurrence of VFARs are 
a current challenge.

If a background sample from the natural environment is 
analyzed for the presence of genes representing candidate 
VFs, VFs will be found to be present. Therefore, background 
conditions need to be better characterized and understood. 
Similarly, when the genetic signatures of an organism of 
interest are characterized, these sequences will also be found 
in background samples.  To interpret the significance of these 
genetic signatures, it will be necessary to sample and analyze 
the background environment to see how those known genes 
correlate. This will help to develop the database using a more 
focused approach.

Another consideration raised is that any of the most deadly 
bacterial toxins can be engineered into multiple species; 
this actually occurs in nature in cases where certain toxins 
transcend species. The categorization of microbes may have 
to be rethought. As one attendee asked, is the concern over 
species identification, or should the species be characterized 
based on potential health effects? For example, if symptoms 
characteristic of plague were encountered, would one first 
look for toxins associated with the plague? 

In VFAR development, proteomics can be used to 
inform genomics.

Proteins are less conserved for screening, but it may be useful 
to start with proteins and work back toward the genes. VFARs 
are based on the understanding that function follows structure. 
There is an obvious role for proteomics in VFAR analysis. 
This approach has been used with viruses, where proteins 
were characterized first and then characterization moved back 
toward the genome. Though protein is less conserved for 
screening technologies, collection of more data to identify and 
characterize VFs will result in a better understanding of the 
protein structures to enable their direct use. 

A dual-pronged approach, combining short-term 
practical applications using the current knowledge 
base with ongoing research, development, and 
refinement of the methodologies, may work best to 
advance the science of VFARs.

Another consideration raised was the need for short-,  
mid-, and long-term goals and approaches. In order to  
achieve long-term goals, all approaches to develop VFARs 
should be considered. However, in the short term, with limited 
knowledge and limited research funding, it may be helpful 
to select a group of genes that are known to be associated 

•

•

•
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with pathogenicity and focus on them during development of 
limited monitoring and assessment tools. For example, it may 
be necessary to focus on a subset of data collected to achieve 
specific short-term goals such as development of monitoring 
or screening tools.  While work proceeds toward short-term 
goals, mid- and long-term research can be planned and means 
to reduce uncertainty, expand capability and capacity, and 
increase applicability can be laid out. 

In the short term, one approach is to use what is known to 
develop and demonstrate concepts. In the mid-term, data can 
be collected to add to what is known and to determine what 
works for predictability. Such approaches can be applied or 
tested on the growing body of data.

Compare and contrast the VFAR and QSAR approaches. 
Considering the similarities to QSAR, should the VFAR 
approach work with biotoxins? Viruses? Spores? Cysts? 
What are the strengths of the VFAR concept?

There are several common factors for the use of VFARs and 
QSARs in risk assessment. For both chemical and biological 
threats to human health, the chemical and microbial universes 
need to be characterized and reduced. 

For both approaches to be most effective, mechanisms of 
toxicity or modes of action must be determined. This is 
an essential component of expert system based structure-
activity relationships, where the aspect of the structure of the 
chemical that results in a particular effect or outcome must 
be determined. This concept can greatly enhance QSAR and 
VFAR model development and interpretation. In the case 
of microbial virulence, the structure may refer to a physical 
structure resulting from protein expression and subsequent 
processing, carbohydrate metabolism, or genetic coding.

Unlike chemicals, microbes are dynamic. Chemicals may 
exhibit different properties in different environments and can 
be metabolized in the body, producing a range of metabolites 
that may or may not be toxic. Microbes, as living organisms, 
can exhibit rapid evolution. The flexibility of microbes and 
viruses, which refers to their ability to transfer genes on 
plasmids or into the bacterial chromosome, as well as their 
rapid evolution over short periods of time, present unique 
challenges to the development of a VFAR methodology.

It is challenging to use VFARs and QSARs in dose-response 
determinations as they require large quantities of data derived 
from multiple testing approaches. In the near term, it may 
be easier to predict hazards by identifying the potential for 
adverse health outcomes and looking to VFARs and QSARs 
as more robust tools for screening.

There is a deficiency of tools for rapid or instantaneous 
identification of biological organisms for use in emergency 
situations. The available tools, which use culture methods 
and genetic techniques to identify microbes that are present, 
can be used to determine whether illnesses are caused 
by intentional events (e.g., Salmonella in the salad bar). 
However, these techniques take time. There may be other 
characteristics in addition to VFARs, such as factors that 
enhance gene expression or environmental persistence, that 
indicate the presence of weaponized forms of biological 
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species or an intentional exposure event. The application 
of molecular techniques is likely to be the most sensitive, 
specific, and rapid approach.

There are several analogous short-, mid-, and long-
term goals. 

Panelists discussed that in regard to long-term goals, the 
current state of VFARs is analogous to that of QSARs 
many years ago. VFAR tools for identification are under 
development; however, it is possible that scientists are 
spending too much time on tool components and not enough 
on tool composition. In regard to VFARs in particular, it 
is necessary to move beyond the academic arena and test 
hypotheses to reveal data gaps. 

In the short term, the goal may be to construct a framework 
for VFAR analysis rather than to focus on details. Mid- and 
long-term goals could focus on details and, using an iterative 
approach, make updates and modifications to the framework 
of analysis as more data are collected. 

It is important to articulate the questions that need to be 
answered. For example, the question of whether the intended 
purpose of a VFAR tool development is monitoring, 
classification, screening, or risk assessment should be 
determined up front. Answering these questions may require 
different levels of detail, and different techniques may be 
more or less appropriate. It was suggested that proteomics 
might be particularly useful for screening, followed by a 
search for different genetic signatures that give analogous 
structures. Bioinformatics tools can be used to solve the 
question of the relevancy of genes and to predict structure-
activity relationships.

There is an advantage in trying to develop these frameworks 
now to identify areas that require research. These concepts 
should work for viruses and other organisms. In fact, it 
may be advantageous to work with viruses because they are 
simpler organisms.

EPA emergency management staff are interested in the 
practical applications of these tools and, in particular, in 
opportunities for quick detection in the field, especially for 
engineered organisms. There is also a need for the scientific 
community to evaluate persistence to determine appropriate 
decontamination methods and develop cleanup levels.

As first conceived by the NRC, these questions define the 
framework for decision making, particularly with respect to 
weaponized agents, which are very different from naturally 
occurring agents. Naturally occurring microbes may or may 
not aerosolize, while weaponized agents, such as the agent 
used in the U.S. Senate anthrax event, are readily aerosolized. 

EPA’s Office of Water also is particularly interested in the 
rapid detection of microbes of concern. It is a challenging 
problem that needs a solution. From a public health 
standpoint, as one panelist illustrated, the search for a probe 
capable of identifying a contaminant and signaling an alarm 
prior to consumption of the water would potentially save lives 
by eliminating the time lapse required by current detection 
technology.

•
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Discuss how VFARs can be used in the detection of  
recognized biothreat agents, newly emerging  
pathogens, and bioengineered pathogens.

Analysis of VFs may indicate bioengineering, but 
may not be the sole indicator or focus of engineering.

The analysis of VFs can provide information regarding 
genetic engineering for both bioweaponization and for 
naturally occurring genetic evolution. However, VFs may 
not be the focus of genetic engineering for the purpose of 
bioweapon development; there may be other characteristics 
that are altered to increase exposure and risk. For example, a 
gene or genes may be altered in a way that allows a microbe 
to persist in an environment, which will result in higher 
human exposures and lead to increased risk of disease. 
Persistence factors traditionally are not considered VFs. 

VFARs can be used to identify biothreat agents, newly 
emerging pathogens, and bioengineered pathogens when 
applied to a surveillance system. However, it may be difficult 
to determine whether an agent was bioengineered based on 
VFARs alone. The approach for determining whether an agent 
has been bioengineered is classified, although, as panelists 
discussed, the approach goes beyond virulence factors to look 
at survival, the degree to which the agent can be cultured or 
stored, and other nongenetic factors. Genes are only one part 
of the equation.

The tools in use for bioengineering may have nothing to do 
with virulence; for instance, the bioengineering process may 
entail gene manipulation for eliciting a protein. 

Similarly, bioengineering is not necessary for an intentional 
attack. For example in 1984, Salmonella was found in a salad 
bar in Oregon. It was a commercially available American 
Type Culture Collection (ATCC) strain, and initial efforts 
focused on determining whether the contamination was 
intentional. The use of VFARs or another genetic approach 
would not necessarily help in this type of investigation. 

To use VFARs, the question needs to be defined — is 
it for detection or risk characterization?

Discussion focused on the applicability of VFARs to detection 
and risk characterization as well as the overlap between the 
two. The emphasis on which elements are most important may 
be slightly different. Specifically, for applications pertaining 
to the detection of pathogens in the environment, the key 
factors of interest may be the array of VFs that are present. 
Other factors that may not be directly related to virulence are 
necessary for identification of pathogenic strains or species, 
based on their association with those strains or species. For 
quantitative risk assessment, one participant noted the need 
for a more rigorous definition of the relationship between 
the VFs and health effects. For qualitative applications in 
risk characterization, it may be possible to glean significant 
information based on the presence of VFs in the sample.

VFARs can be useful for the BioWatch program, which uses 
a series of pathogen detectors co-located with EPA air quality 
monitors. Currently, the BioWatch program is based on the 
collection of airborne particles on filters, which are removed 
and tested using PCR for the presence of select pathogens 

3.
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(Shea and Lister, 2003). The development of libraries of 
VF markers, coupled with more rapid and economical 
technologies, could facilitate the rapid identification of 
airborne pathogens of concern. Part of this surveillance 
could potentially be used to look for VFs as markers of 
bioengineering.  The application of gene array technologies, 
rather than PCR, could yield test results within hours or, 
possibly, minutes. This type of technology transfer could 
fit into the surveillance and characterization of background 
conditions and for BioWatch applications.

Perhaps the most important role of VFARs, as has been 
identified by the NRC, is to characterize microbes that 
cannot be cultured and/or are novel to assess the potential for 
pathogenicity. New technologies discussed in this workshop 
can aid in the early detection of the presence of pathogenic 
microbes. 

Bioengineering vs. Nature

The explanation of engineered pathogens is complicated by 
the natural rapid changes that occur in the microbial genome. 
Rapid changes in this genome can come about via the transfer 
of plasmids. However, in terms of genetic engineering, the 
challenge is to get the specific proteins expressed, which 
involves the coordination of multiple genes, and is therefore 
a very complicated process. VFARs may have greatest 
applicability in developing an approach to screening genes 
associated with potential health effects. 

What is the definition of the “VFAR Approach”?

There was additional discussion regarding the meaning of the 
“VFAR approach” and whether there was a consensus as to 
its exact meaning. The VFAR approach, in its broadest sense, 
implies the creation of a database of VFs (descriptors), related 
health effects (response), and data analysis tools that relate 
and rank the pathogens (mathematical models for VFAR). 
Many different tools are being used to construct this database, 
though the VFAR approach should not, at this time, be 
limited to one technology, such as PCR or gene arrays. This 
will allow maximum flexibility for developing applications 
of VFARs, in terms of structure-activity relationships, that 
are parallel to those used in QSARs. While clearly the major 
goal is to use the structural relationship to identify and 
characterize pathogenicity and subsequent health effects (e.g., 
develop dose-response scenarios), VFARs can also be used 
for detection and hazard assessment through the identification 
of microbes that pose a potential health risk based on VF 
presence.

Can “most important” VFs be defined?

VFs can provide critical information about a pathogen. 
However, given the limited knowledge available to the 
scientific community today and in light of data gaps, it is still 
a challenge to state what the “most important” VFs might be. 

As with QSARs, application to dose-response assessment 
is still a major challenge. Based on what the scientific 
community knows about VFs, one participant encouraged 
testing hypotheses of VFAR application to various elements 
of the risk assessment paradigm. The participant presented 
a current example of the challenges inherent in monitoring 

•
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the risks associated with the evolving strains of bird flu. 
The participant asked how VFARs can be used as a tool for 
understanding the way risks change with the evolution of the 
virus. For example, despite all of the research on the Spanish 
flu of 1918, few clear-cut answers for explaining its virulence 
exist. 

Another participant stressed the scientific community’s need 
to know the biological characteristics that make organisms 
virulent. This likely involves VFs in conjunction with other 
factors, such as accessory genes and housekeeping genes. 
Once the characteristics of virulence are known, technologies 
can be developed for an early warning system that could be 
applied to both natural and terrorist events. 

Describe technology available for examining  
virulence factors. How can the presence of such  
virulence factors in water or air be determined?

Focus on technologies for identification and detection 

Tools and technologies available for examining virulence 
factors include genomics and gene arrays, high-throughput 
real-time PCR, and proteomics for the analysis of protein 
products. These technologies are constantly under 
development. All may be applicable to VFARs, but currently 
there are limitations in terms of sample collection and 
processing. Limitations include low concentrations in the 
environment, sample processing losses, and  minimum 
detection limits associated with the molecular technologies. 
Such issues must be addressed before these technologies can 
be applied to surveillance in water or air. 

Media-specific sampling issues

There are media-specific problems with extraction of 
microbial material for the purpose of analysis and detection. 
Samples need to be processed, prepared, and concentrated. 
Water may be the simplest media with which to work. The 
greatest challenge is extracting the sample from the media 
for analysis. The amount of the sample must be sufficient 
for biological and statistical analysis. One panelist stressed 
that the scientific community ideally needs to be able to 
identify the biological agent in any given volume. To improve 
analyses, the sample may be concentrated or subjected to 
processing, depending upon the media from which it is taken. 
For drinking water, concentration typically is required. For 
surface water, some processing is needed in addition to 
concentration. Other media samples could require additional 
processing due to interference by other media constituents. 

The closer the scientific community gets to the source of 
contamination, the easier it is to use molecular methods. 
Quantitative or reverse transcriptase PCR gives robust 
quantification capacity. It is useful for analyzing the presence 
of microbes in sewage and ground water, particularly 
those that are nonculturable. However, it requires prior 
knowledge of which VFs might be present so that appropriate 
oligonucleotide primers will be selected. It is important to 
solve sampling issues or look for targeted, specific genes 
or organisms. Sensitivity is improved if targeting specific 
organisms, but concentration or enrichment is often needed.

4.
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As with chemical contaminants, it is difficult to determine 
transport, fate, and exposure concentrations. Furthermore, 
background levels of genes are not well characterized and will 
likely continue to be a problem until better data are available. 
Background occurrence of VFs can provide an important 
perspective on what constitutes a change in occurrence that 
signals the presence of a potential hazard.

Once it is understood what makes organisms unique to 
specific environments, it will be possible to target specific 
VFs within the organisms to determine whether exposure is 
occurring. Additional research and discovery is required to 
target for occurrence and exposure. 

Use of -omics technologies in VFAR development

The current focus in VFAR development is on genomics 
because of its sensitivity. Sometimes genomics is overly 
sensitive as the gene may be present, but not expressed. 
However, if the gene is not available, neither will be the 
message or protein. 

It may be possible to use proteomics. Proteomics represents a 
complementary approach that can be initiated with the protein 
product, followed by an examination of the structural features 
of importance. Researchers can then work backwards, mining 
the genome for similar genes. With current technologies, 
proteomics may be more costly and time-consuming than 
other –omics technologies. In addition, there may be limited 
database availability for comparing and identifying proteins.

VF ranking and application in prioritization and risk 
assessment

Although VFARs may be used in the prioritization of 
microbes and in microbial risk assessment, the databases 
to support such applications are still being developed. At 
the current time, it is not clear how VFs will be used to 
rank microbes and for application to risk assessment or 
prioritization.

Discuss the positive and negative applications of using 
VFARs in bioengineering. Discuss the construction 
of highly potent pathogens inserting single gene or 
combinations of virulence genes into commensal 
organisms. Do certain classes of virulence genes lend 
themselves to genetic engineering?

Bioengineering vs. Nature revisited

The changes that occur in the natural environment are an 
excellent example of how genetic factors change; however, 
genetic engineering is delicate. There are many examples in 
which genetic engineering resulted in unanticipated results. 
Most notably, microbes can transfer plasmids resulting in the 
rapid exchange of genetic material. The growing presence 
of antibiotic-resistant bacterial strains is an example. Also, 
some members of Burkholderia (earlier grouped under 
Pseudomonads that are generally known to be benign) are 
now of major concern to cystic fibrosis patients. 

It has been demonstrated that Pseudomonads can be altered 
in the laboratory for various engineering applications. The 
simplest approach may be to co-culture organisms to facilitate 
the transfer of plasmids. The presence of genetic material 

•
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does not guarantee that it will be expressed. Additional steps, 
whether bioengineered or inherent to the microorganism, 
are required to translate the genetic code into proteins, and 
further modification may be required to ensure that the protein 
is functional. One participant recommended caution, citing 
an example in which genes were inserted into mouse pox 
with the intention of making a better vaccine; however, the 
resulting product was lethal.

Factors that change/increase potency

Increases in potency are not always understood. In general, 
a change in potency is accompanied by a string of changes, 
not just a single change. It might not just be VFs that change 
to increase potency. There is a need to look for unusual 
combinations of genes, as well as other factors. 

Host-specific effects

Although extrapolation from animal studies introduces 
uncertainty, animal studies are, and will continue to be, an 
important avenue of research to identify potential human 
health risks. For some pathogens, outbreaks in other hosts 
precede infectivity in humans. Therefore, there needs to be an 
understanding of specific activity changes both in animals and 
in humans. These changes could occur on either the genotypic 
or phenotypic level. More importantly, the process of infecting 
a host can induce changes in the microbe. For example, in 
laboratory studies, passage through mice is frequently used to 
increase potency. In laboratory studies, passage through the 
animal is sometimes needed to identify new genes.

How can VFARs be used to determine the human  
toxicity potential of the virulent genes? Is it possible to 
obtain a quantitative estimate of the virulence along with 
a qualitative estimate?

The predictive capability comes from 
characterization and linkage to known health effects.

Although it may currently be possible to begin to rank gene 
sequences, the capacity to link gene sequences to health 
effects is still being developed. For the purposes of public 
health protection, where it is necessary to gauge the response 
needed to prevent or mitigate an outbreak or reduce endemic 
disease, the goal is to be able to use VFARs to aid in the 
identification of the presence of microbes of concern, the 
prediction of the magnitude of the health hazard represented, 
and the determination of the infectivity or dose-response 
relationships. The scientific community needs to be able to 
answer questions such as, “How many people are likely to be 
affected?” 

The current state of knowledge is focused on the identification 
of virulence factors, and how these virulence factors function 
in the microbe to explain virulence. As one panelist noted, the 
scientific community does not yet have the capacity to link 
this information to health outcomes, however the potential 
clearly exists. 

An example of how these connections can be made is 
Escherichia coli. The 0157:H7 strain carries Shigella toxin 
and is much more virulent than other E. coli strains. By 
analyzing the genetics of this strain and comparing it to 
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other E. Coli strains that lack Shigella toxin, the basis for 
strain potency can be developed. The characterization of 
these associations will drive the development of hypotheses 
regarding VF-activity linkages.

Virulence of organisms, not just genes

It is not solely the virulence of genes that is important, but 
also the virulence of organisms (i.e., the genes need to be 
understood within the context of the organism). This is how 
VFs are tied to dose response. There is clearly a relationship 
between VF and dose response; however, dose response is 
more highly variable for biological agents than for chemicals.

Factors that contribute to the definition of the dose response  
of microbes include:  

Factors that control infectivity

The evasion of the host immune system 

The ability to colonize within the host 

The initiation of the disease process

For example, poliovirus, in comparison to other disease 
viruses, requires high concentrations of the virus to initiate 
infectivity. In the case of poliovirus, the disease is not 
perpetuated at the site of infection, as may be the case with 
other viruses. The scientific community needs to understand 
the relationship between what happens at the site of infection 
and where the microbe exerts its health effects. 

There are genetic factors that control all of these processes. 
The goal is to illustrate the relationship between VFs and dose 
response, recognize the complexity in this relationship among 
different organisms, and use the relationship as a proxy for the 
virulence of the organisms. 

As with chemical exposures, variability of individual factors 
such as sex, age, and the presence or absence of chronic 
conditions, can be an important factor in host response. 
Furthermore, the genetic diversity of the immune system 
among individuals, which involves somatic mutations in 
the development of the specific immune response, increases 
the variability. Therefore, individual variability in terms of 
host response to biological agents is much broader and more 
challenging to characterize than it is for chemical agents.

The process of weaponization can be targeted at altering 
factors controlling dose response, including infectivity, 
evasion strategies, colonization, and pathogenicity. Successful 
bioengineering is not just a matter of altering genes alone. 
Gene expression and protein synthesis within the context of 
the organism are critical challenges.

Importance of exposure pathway and the 
relationship between exposure pathway and .
dose response

As with chemicals, the exposure pathway is an important 
determinant of potential health effects. Anthrax exposure 
pathways, for example, include dermal absorption,  
ingestion, and inhalation, the last of which is the most  
potent. However, there is insufficient information on dose-
response relationships via direct dermal and ingestion routes 
to determine the health impacts of anthrax via these routes.  

•
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Due to the lack of such dose-response data, anthrax inhalation 
dose-response relationship data are extrapolated to produce 
estimates for dermal and ingestion exposures. In addition to 
naturally pathogenic microorganisms, weaponized forms of 
microbes have the potential to alter exposure pathways and 
the associated dose-related response. 

Pathogenicity is based on a complex set of factors, 
some related to the microbe, some related to the host. 

One panelist raised the need to define VFs more broadly 
because of related factors that confer or enhance virulence, 
pathogenicity, and persistence.

Further discussion from participants included several 
examples that provide insight into dose-response 
relationships, though it was acknowledged that in each 
case critical information was missing. For the anthrax 
contamination that occurred at the Washington, D.C., post 
office in 2001, the mortality rate was 1/20,000 (based on the 
exposed population), and only a small number of individuals 
became ill. Many of those exposed were treated prior to 
showing signs of infection, so it is not possible to measure 
infectivity. In Boca Raton, Florida, in 2001, many locations 
within a building tested positive for anthrax. One person died; 
however, no one else became ill even though the anthrax 
spores were presumed to have been present for many days. 
One woman in Connecticut died from exposure to anthrax-
contaminated mail. In Philadelphia (1976), Legionnaires’ 
disease was spread through the ventilation system and many 
people died. 

In summary, the relationship between the organism and the 
host is extremely complex. As with chemical contaminants, 
there may be a threshold below which infectivity does not 
occur, while for others the threshold may be so low that it is 
negligible. In general, there is a lack of dose-response data; 
hence it is difficult to predict dose response, particularly at 
low-level exposures. 

Can a virulence gene be altered so that it is still active but 
no longer detectable by the gene probes that are typically 
used?

VFs can be altered, but expression is not always 
predictable.

It is possible for VFs to be altered so that they are still active 
but no longer detectable; however, oligonucleotide primers 
can be made for PCR and microarrays when alterations cannot 
be made without changing function.

Because of the degeneracy of the genetic code, alterations 
in the gene may be possible while preserving activity. With 
constant changes in the microbial genome, it is necessary to 
maintain surveillance for these changes and determine how 
they will affect virulence. 

It is also possible that subtle changes over time will eventually 
affect the protein. The point at which activity actually changes 
depends on the organism, the protein, the specific function of 
the protein, and its biological interaction. 

•
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Specific tools have advantages and disadvantages in 
the identification of VFs.  

With carefully designed gene arrays using large numbers 
of probes, it may be easy to detect changes in the genome. 
Because microarray technology allows for multiple markers 
and probes, the probability of detecting genetic changes is 
increased as compared to PCR, which normally detects one 
gene target at a time.

To advance the use of VFs in the evaluation of health risks, 
discussion indicated the need for multiple VF descriptors. 
Gene occurrence and expression should be the initial 
descriptor. In addition, participants pointed out a need to 
characterize exposure routes (i.e., ingestion, inhalation, and 
dermal contact), survival and persistence, and attenuation 
in the environment. In addition, algorithms that relate genes 
to function need to be developed. With an initial focus on 
the use of VFARs to conduct quick screening, available 
data can be used to test the applicability of known VFs. 
However, researchers will need to develop computer models 
to determine the sensitivity of specific descriptors and the 
correlation of the descriptors to endpoints of concern.

It is possible that the scientific community has sufficient 
data to begin to develop a proof of concept that would take 
available data and demonstrate its applicability to detection, 
hazard identification, dose-response assessment, and risk 
characterization. For detection, a collection of VFs could be 
applied to predict the presence of pathogenic organisms in 
unknown samples. The analysis could also include predictions 
regarding potential sources. For risk assessment, the VFs 
could be used to qualitatively predict pathogenicity or health 
effects from the unknown samples. Although the results may 
not be fully accurate, these types of exercises could identify 
data gaps and help prioritize research to advance the field.

4.2  VFAR Closing Remarks 
Factors that relate the virulence of microbes to adverse 
health effects should be determined. There are factors that 
control the ability of the microorganism to persist in a given 
environment, infect a host, evade the host’s immune system, 
colonize within the host, and then initiate the disease process. 
These factors should be characterized. Factors may include 
receptor proteins, binding proteins, invasion capability, or 
toxin production. They may include components that aid in 
survival under different circumstances (e.g., in the presence 
of ultraviolet light or commonly used disinfectants such as 
chlorine). Many tools are available to characterize these 
factors, though more exist in the area of genomics than in 
proteomics.

The challenge lies in evaluating genes and proteins within 
the context of the organisms and their ecology. There are 
also important considerations regarding the manipulation of 
genes for the purposes of bioterrorism. In developing this 
understanding, the scientific community will be better able 
to identify and prioritize microbes to ensure the protection of 
human health.

•
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VFARs also have the potential to provide important 
information for risk assessment. The identification of  
factors, genes, or proteins that confer an advantage to 
the microbe, which impacts pathogenicity, can assist with 
hazard identification and priority ranking, as well as the 
characterization of dose-response relationships under  
different exposure scenarios. Although panel members 
presented impressive current advances, there is a need to 
collect more data and develop analytical algorithms as the 
concept moves forward.

To advance the understanding of VFARs within the  
context of the microbes’ ecology, researchers need to  
make an attempt to collect data during outbreak conditions. 
Doing so will help identify factors that were important in the 
outbreak, who will be affected by illness and why, the dose-
response relationship, etc. 

Given what is known now, there are opportunities to begin to 
test the concept of VFAR application. Although initial efforts 

will be challenging, they will help to identify critical data 
gaps for a more comprehensive study. Future efforts should 
begin with a broad definition of VFARs as factors that confer 
an advantage to organisms for their survival and success, 
identify background levels of known VFs, and track changes 
in the microbial community.

The focus should continue to be on the development of 
a set of tools, based on molecular techniques that can be 
used in the short- or medium-term to facilitate scanning for 
VFs. The level of stringency can be varied to collect a large 
amount of information in a short period of time, resulting in 
algorithm generation and analysis of the data to understand 
pathogenicity.

While it is expected that VFARs can help to prioritize 
microbes for the CCL, the existing datasets are not sufficiently 
robust for this application at the present time. However, since 
the concept is sound, development and testing of hypotheses 
to advance the science should be initiated.
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The following summarizes the presentations made for 
the QSAR concept. These include the integration of 
physiologically based pharmacokinetic (PBPK) modeling  
with QSAR models to reduce uncertainties in the chemical 
risk assessment process, the use of MOA and WOE in 
predictive toxicity, the application of reactivity as a  
descriptor in the development of more accurate QSAR 
models, a discussion of innovative and varied approaches 
to QSAR model development, and the role of a regulatory 
agency in advancing the development and implementation  
of QSARs. The discussion following each presentation is  
also summarized at the end of each presentation summary.

5.1  From Reactivity to Regulation: Integrating  
 Alternative Techniques to Predict Toxicity 
Mark Cronin, Professor of Predictive Toxicology, Liverpool 
John Moores University 

Summary
Dr. Cronin began by describing the challenge reactive 
electrophilic compounds have posed to toxicologists in 
terms of identifying descriptors that accurately define their 
parameters and quantify their characteristics. Electrophilic 
chemicals are highly reactive and extremely toxic. 
Conventional QSAR methods consistently under-predict 
toxicity  for this group of chemicals. Dr. Cronin stated that 
by using an enzyme assay, it is now possible to quantify 
electrophilicity to predict reactivity in biological systems. 
The assay is based on the chemical reaction with glutathione 
(GSH). There is a strong correlation between cytotoxicity and 
GSH reactivity. Quantification is based on the measurement 
of the reactivity index. Reactivity works well as a descriptor 
to rank a group of related chemicals based on this mode of 
action, however, it is still a challenge to translate this into 
a usable tool. As there is a spectrum of electrophiles, the 
first step is to define the domain, correlate it with toxicity, 
and model it. Dr. Cronin said that this process is expected 
to be particularly valuable under REACH and has direct 
application to regulatory issues. However, it will still require 
the use of multiple tools to characterize risk, and as with 
all chemicals, Dr. Cronin conceded, it is still a challenge to 
quantify uncertainty. The initial focus in the development of 
this process is to develop a model for fish toxicity and skin 
sensitization.

Discussion
It was noted that reactivity works well as a descriptor in 
ranking a group of related chemicals based on this MOA,  
but challenges remain to translate this into a usable tool.  
Other chemicals with different modes of action will require 
different descriptors.

Reactive chemicals may be metabolites, although, as 
workshop participants discussed, this is not currently the 
focus of the research. It should be possible to include a model 
of metabolism prior to GSH reaction. 

5.2  Integrated QSAR – PBPK Modeling for  
 Risk Assessment 
Kannan Krishnan, Director of the Human Toxicology 
Research Group (TOXHUM), Université de Montréal.

Summary
Dr. Krishnan stated that based on the risk assessment 
paradigm, animal toxicity testing is evaluated to determine no 
observed adverse effect levels (NOAELs) for the derivation 
of risk-based criteria. QSARs can be used to predict the 
differential responses based on variation of chemical 
substitutents, but they are context specific and dependent 
on exposure route, rate, duration, etc. When conditions are 
varied, different QSARs need to be derived or extrapolations 
need to be made. The goal is improving derivation or 
extrapolation capabilities, and as Dr. Krishnan emphasized, 
integrating QSARs with PBPK modeling can do just that. 
PBPK models facilitate extrapolations of one of the two 
key components for the exposure-response relationship: 
pharmacokinetics (PK), representing external dose to internal 
dose; and pharmacodynamics (PD), representing tissue 
dose to effect. As components of dose response, PK and 
PD both can be related to QSARs to enhance extrapolation 
capability. Since there are more data available for PK, the 
focus of Dr. Krishnan’s research is on the development of  
QSARs for PK profiles that change as a function of species, 
exposure route, dose, and duration. In the QSAR, given a set 
of related chemicals, the model begins with an administered 
dose and calculates changes in blood concentrations with 
chemical substituent changes. The model uses an easy-to-
use spreadsheet to test how kinetics change with the related 
class of chemicals (using VOCs as a test case). The user 
enters chemical structure and duration of exposure into the 
spreadsheet to estimate tissue exposures, which will aid 
in the estimation of toxicity. The program will also allow 
modifications of exposure concentrations, routes, and 
exposure scenarios to evaluate how these changes impact 
tissue dose. 

Discussion
Following Dr. Krishnan’s presentation, discussion focused 
on the development of the PD component that incorporates 
MOA, which is in the early development stage. With the 
inclusion of MOA, prediction of effects should be possible. 
Gene microarray data, or other data relating to gene 
expression, cannot yet be incorporated. 

5.0 
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For the physiological component the input variables are 
volumes, only. Partition coefficients in various tissues have 
been derived via in vitro testing. Tissue cultures, such as 
data from a liver slice can be used for QSAR development, 
though the scale of tissue levels must be increased for dose 
considerations.

5.3  Weight of Evidence and Mode of Action  
 in Predictive Toxicology 
Andrew Maier, Associate Director, TERA

Summary
Dr. Maier began by stating that the importance of QSARs 
is growing, in part, due to the incorporation of the concept 
into risk assessment methods using a WOE approach. 
WOE emphasizes decision making based on the totality of 
toxicological evidence. The WOE concept is being driven 
by improved biological understanding, such as knowledge 
of MOA, the increasing sophistication and validation of 
alternative study designs, and several quantitative tools, 
including SARs and QSARs. In the QSAR field, the 
consensus modeling concept embodies WOE principles. 
While WOE approaches use QSARs as an input for decision 
making, application of the results of the WOE can also be 
used as feedback in an iterative way to enhance the SAR and 
QSAR models. Another possibility for enhancing the QSAR 
concept is to link SARs and QSARs via the integration of 
MOA data. For many chemicals, the detailed mechanism of 
toxicity is not known, though the MOA data are available 
for a number of chemical classes. In lieu of waiting for a full 
mechanistic understanding, which will rarely be available, 
research should capitalize on the degree of biological 
understanding available to refine QSAR approaches. Several 
approaches for accomplishing this objective are available. On 
the simplest level, MOA data (including -omics data) provide 
a tool for interpreting the outputs of global QSAR methods.  
In addition, MOA data can be used to separate chemical 
groups using qualitative or quantitative decision-analysis 
approaches as an initial step in developing endpoint (or MOA-
specific) QSAR models. MOA parameters can be used as 
chemical descriptors in building logistic regression models. 

Discussion
Participants concluded that there is a need to consolidate what 
is known about chemical MOA to allow researchers to rank 
and prioritize their ability to integrate biology with QSAR. 
Biomarkers, particularly early effect biomarkers, can be useful 
in understanding the MOA for enhancing QSAR development. 
Both genomics and proteomics can be used as tools for MOA 
identification to aid in QSAR development or interpretation. 
These -omics technologies are also complementary with 
SARs and QSARs for reaching WOE conclusions for risk 
assessment.

5.4  Novel Approaches to QSAR and  
 VFAR Modeling
William Welsh, Norman H. Edelman Professor in 
Bioinformatics and Computer-Aided Molecular Design, 
Department of Pharmacology, University of Medicine & 
Dentistry of New Jersey (UMDNJ)

Summary
Dr. Welsh stated that no one QSAR fits all, and that one 
way of dealing with this is by integrating consensus 
modeling, experimental data, bioinformatics, and -omics 
into WOE decision making. The New Jersey Environmental 
Bioinformatics and Computational Toxicology Center 
is developing computational toxicology tools such as 
Dose-Response Information Analysis System (DORIAN). 
There also are numerous chemical toxicology tools under 
development, including the following QSAR-based 
approaches:  

Decision forest, which makes predictions and evaluates 
prediction confidence

Shape signatures, used for large-scale screening based 
on similarity in three-dimensional shape and bio-
relevant surface properties 

Polynomial Neural Network (PNN), developing  
linear and nonlinear QSAR models 

Virtual High-Throughput Screening (VHTS) to assess 
the binding affinity of small-molecule compounds inside 
the positive binding pocket of protein receptors

The goal is to develop new methods that work in concert 
with established ones, while developing a hierarchy of 
strategies. The hierarchy will begin with fast, easy-to-use 
tools, such as structural filters and alerts, and then proceed to 
more computationally demanding tools such as classification 
models, followed by segregation using chemical activity. If 
the compounds are active, they will be selected for additional 
study. For example, within the decision forest, each tree 
includes a series of descriptors that segregate chemicals 
into active or inactive compounds. As the descriptors are 
independent, this results in consensus predictions. Each 
branch of the decision tree represents an “if-then” formatted 
query, thereby allowing for rapid evaluation. The shape-
signature model begins with the molecule or receptor pocket. 
Shape and biorelevant features are converted into compact 
shape signatures for comparison. A data bank containing the 
shape signatures of greater than 5 million small-molecule 
compounds is then used to compare and contrast these 
features. A separate data bank for screening contains the  
shape signatures of more than 5,000 ligands extracted from 
the high-resolution X-ray crystal structures of proteins found 
in the publicly available protein data bank (PDB). The data 
bank is a repository for protein crystalline structures, and 
there is a library for screening. This process allows for the 
explanation of mechanistic clues of a molecule with an 
unknown MOA through comparison with chemicals in this 
PDB-extracted data bank of protein ligands. In theory, this 
process can also be applied to chemicals or proteins from 
bacteria of interest, such as Escherichia coli.

•
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Discussion
The challenge is to move from structure to function. The next 
generation of shape signatures will tackle this problem, for 
example, distinguishing a receptor antagonist from an agonist. 

The traditional application of three-dimensional QSARs 
requires subjective molecular alignment for the comparison 
of structures. With the new shape signatures program, 
the comparison is rotationally invariant, which removes 
subjectivity. 

Other properties besides shape that can be used in the 
comparison include surface charge, polarity, hydrogen 
bonding capability, or any property that is mappable on the 
external structure of a molecule. Shape coupled with polarity 
has proven to work well.

In this schematic, there is a conformation generator and 
clustering tool that can generate multiple conformers and 
compare them using shape signatures. It may be more efficient 
to compare the shape signatures of clusters of conformers for 
a single molecule with multiple degrees of freedom. Shape 
signature works for a wide variety of molecular entities, 
including organic, inorganic, and organometallic molecules; 
neutral or charged species; proteins; and even nanoparticles.

5.5  Role of the European Chemicals  
 Bureau in Promoting the Regulatory  
 Implementation of Estimation Methods 
Andrew Worth, European Chemicals Bureau, Institute for 
Health & Consumer Protection, Joint Research Centre, 
European Commission

Summary
The implementation of REACH legislation will depend on  
the efficient evaluation of chemicals of concern, using QSARs 
and methods for grouping chemicals. Authorities require that 
companies demonstrate the safe use of their chemicals. The 
WOE approach is needed, and animal testing is used only as 
a last resort. The focus is on developing the WOE approach 

by means of integrated testing strategies. If the model is 
scientifically validated and applicable to substances of 
interest, QSARs can be used for the purposes of classification 
and labeling and/or risk assessment, provided there is 
adequate and reliable documentation. The category approach 
can be used to group chemicals according to chemical 
similarity (e.g., structural properties, three-dimensional 
structure) to avoid the need to test every member of the group 
for every endpoint. Certain conditions apply; if categories 
are too large, it may not be applicable for every chemical, 
but the concept of subcategories is foreseen. The European 
Chemicals Bureau (ECB) is currently developing a guidance 
document on the use of grouping methods, including insights 
from the current practices of EU regulators, and introducing 
new approaches, such as computational toxicology and other 
new methods. All of the ECB’s guidance development (which 
includes many other guidance documents for REACH) is 
conducted to be transparent to regulated industry, thereby 
permitting access to and use of the most advanced state of the 
science in preparing submissions for new chemicals. ECB is 
also building an online inventory of publicly available models, 
intended to be useful to EU industry and the future Chemicals 
Agency. The current emphasis is on model validation, 
documentation, consensus building, and capacity building.

Discussion
The adaptation of standard information requirements and the 
replacement of traditional test data using QSARs, reactivity 
data, -omics, etc. is a priority under REACH as a means of 
reducing animal testing. Integrated testing strategies based  
on a WOE approach will be used to combine the use of 
multiple approaches. Gaining consensus among industry 
organizations and 25 EU members on methods and 
approaches for risk assessment is extremely challenging. 

To this end, QSARs must be scientifically validated and 
applicable to substance(s) of interest for the purposes  
of classification and labeling and/or risk assessment. In  
addition, adequate and reliable documentation must exist.
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6.0 
QSAR Charge Questions

The following summarizes the discussions on charge 
questions given to the expert panel. Discussion under each 
charge question is summarized as themes related to the 
question. Each theme is a bullet point under the charge 
question, followed by the summary discussion of the theme.

6.1  Summary of QSAR Charge Questions  
 Discussions

In light of emerging technologies (e.g., genomics, 
proteomics, and bioinformatics), what role will QSAR 
methods play in the future with regard to EPA’s risk 
assessment/risk management process? 

It is important to have multiple tools for the 
evaluation of chemical toxicity.  

Participants expressed that any useful and valid information 
obtained through the application of emerging technologies 
will help to decrease uncertainty in the context of the overall 
weight of evidence. Genomics can aid in the identification 
of the MOA. For chemical reactivity, it is useful to have a 
genomic and proteomic fingerprint of the chemical since 
the genomic fingerprint may offer insight into a chemical’s 
MOA. Some technologies may be better for screening than for 
regulatory decision making because they may be more readily 
validated, accepted, etc. Currently, the integration of QSARs 
with -omics technologies will result in an iterative approach, 
whereby these complementary technologies reinforce each 
other. Computational toxicologists are working on this 
integration to serve primarily as a hazard identification tool 
by providing insight into the potential chemical’s MOA. Such 
knowledge can provide informed interpretation of QSARs. 

There are several opportunities to combine QSARs and 
MOA information to better inform risk assessment, and 
members of the panel noted that routine acceptance of QSAR 
predictions will likely require that they be derived with an 
underlying mechanistic understanding. As models become 
more sophisticated, they will incorporate nontraditional 
structural features and property features and, therefore, allow 
for evaluating chemicals completely through the consideration 
of MOA data. Several examples of developments in this 
area were described. The integration of QSARs with PBPK 
modeling was discussed, wherein MOA considerations (e.g., 
identification of appropriate dose metrics based on chemical 
metabolism prediction) are factored into the PBPK model. 
The growing use of tools in bioinformatics (e.g., protein 
structure prediction and libraries) has allowed for the use 
of shape signatures based on the comparison of surface 
features to integrate MOA (e.g., receptor binding) into QSAR 
methodology. MOA data can be applied to larger groups 
of chemicals to identify clusters of more closely related 
chemicals. This is the conceptual basis for decision tree and 
regression tree approaches. QSAR models can be tailored 
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via selection of descriptors for each cluster to provide more 
uniform training sets for QSAR development or aid in 
interpreting global QSAR predictions. 

It was noted that -omics data have been applied in 
pharmacology and toxicology for the purposes of drug 
discovery, prognostic and diagnostic methods, biological 
pharmacological activity, and the toxicity-based landmark 
studies of John Weinstein (e.g., Bussey et al. 2006, Nishizuka 
et al. 2003, Blower et al. 2002). The foundation paper on this 
subject (Blower et al. 2002) reviewed the linkage between 
chemical and -omics technologies. However, there are 
inherent uncertainties in -omics technologies as well, in terms 
of interlaboratory variability and chip-to-chip errors. Judicious 
interpretation remains important in the use of -omics data 
as a supplement to or as an input into QSAR development. 
The field of single nucleotide polymorphisms (SNPs) is an 
exciting area of development that could provide information 
for QSARs. QSARs can also be used to understand -omics 
and focus on critical variables. This would, in turn, promote 
development of QSARs for critical molecules.

Currently, -omics data are not used directly as the primary 
basis for EPA risk assessment decisions, though they can lend 
support to the overall descriptions of toxicity mechanisms and 
are part of the Agency’s risk assessment documents. In the 
EU, there is a placeholder in REACH legislation for the use of 
alternative methods, such as -omics technologies, either alone 
or in combination with other methods. -Omics approaches 
have yet to be standardized so that they are reproducible, and 
the need exists currently to categorize, document, and define 
these approaches. 

One size does not fit all.

Although the identification of a single technology for all 
chemical evaluation would greatly streamline the risk 
assessment process, no single technology can provide the 
necessary information for all chemicals. REACH requires 
consensus building and acceptance among industry and 
regulators. Toxicologists are often in a position in which 
they must explain that although QSARs may be easy to use, 
expertise and judgment are needed in the interpretation of the 
results. Increasingly, the concepts of consensus modeling and 
WOE are being incorporated into risk assessment guidance in 
recognition that no single technology is likely to provide all 
the answers.

Although QSARs can play an important role in risk 
assessment, there is a need to consider the WOE to 
evaluate chemicals.

Panelists noted that the reliability of nontraditional risk 
assessment methods needs to be quantified. Even with 
95 percent accuracy, the consequence of using incorrect 
predictions needs to be carefully assessed considering the 

•
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large number of chemicals that must be evaluated. When 
applied to human health outcomes, tolerance for uncertainty 
is very small and accuracy must increase to higher levels, 
such as >99 percent. All technologies have limitations, and 
no single method will provide all the data needed. With 
-omics, as with QSARs, there are layers of uncertainty — 
measurement error, unexpected patterns — and it may be very 
difficult to interpret the results. Altered gene expression does 
not necessarily mean that there is an effect. Most up and down 
regulated changes in genes are attributable to housekeeping 
genes. A fusion of technologies is needed and is occurring. 
Another panelist stressed the need to work together, maintain 
skepticism for all technologies, and verify the results, by 
considering the WOE, rather than focusing on one technology. 
There is a need to be transparent when communicating 
how the conclusions of a hazard/risk assessment depend on 
underlying results and the methods used to generate those 
results.

How can genomics, proteomics, and bioinformatics data 
be used in QSAR models? Are there examples where the 
-omics technologies in combination with QSAR models 
have proven to be able to predict, both qualitatively and 
quantitatively, acute/chronic toxicity across multiple 
chemical classes?

QSARs and -omics technologies are complementary 
and can be used to reinforce or refine estimates of 
toxicity.

It was reiterated that -omics data have been applied along 
with QSARs in pharmacology and toxicology for the purposes 
of drug discovery, prognostic and diagnostic methods, 
biological pharmacological activity, and toxicity assessment 
for many years. The integration of QSARs with -omics 
technologies will result in an iterative approach, whereby 
these complementary technologies reinforce each other. 
Computational toxicologists are working on this integration.  

One example of such iterative use of these technologies is 
that -omics data can help explain MOA and mechanisms of 
toxicity, which can then serve as inputs for defining QSAR 
parameters, building more closely aligned training sets or 
explaining variability in model predictions. Furthermore, data 
from -omics can be used as descriptors in QSARs. In theory, 
it should be both possible and useful to use data from -omics 
research as descriptors in QSARs. MOA descriptors may be 
informed by genomics and proteomics. Caution is needed in 
the use of genomics because genes that are transcribed may 
not necessarily be translated into functional proteins (e.g., 
post-translational modification). Proteomics data may provide 
more directly relevant information, but the experimental 
methods are more cumbersome. Metabolomics may fit more 
readily with the use of QSARs, but this growing area has not 
yet been fully explored in the context of QSAR application.  

QSARs and -omics technologies can be particularly 
useful for hazard assessment.  

QSAR models can more readily predict a potential toxic 
outcome, which is equivalent to predicting hazard. If 
researchers are trying to develop correlations between 
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exposure and hazard using -omics as an endpoint or outcome, 
this is a feasible approach. In other words, -omics can be 
used as biomarkers of exposure to identify hazard, which will 
feed into other elements of the risk assessment paradigm. A 
recent publication (Ekins et al. 2005), reviewed the use of 
Absorption, Distribution, Metabolism, and Excretion (ADME) 
and drug metabolism software to build in toxicogenomics, 
proteomics, metabonomics, and pharmacogenomics, using a 
systems biology approach. This is an example of integration 
that may work for chemical toxicology hazard assessment. To 
date, potency estimates (i.e., dose-response estimates) based 
on -omics have not yet been defined; hence, they have not 
been widely used in QSARs. -Omics data, therefore, remain 
largely a tool for MOA or hazard identification.

Since rule-based and expert models are based on 
congeneric groupings of chemicals (i.e., the training set  
is a congeneric data set), how can statistical models, 
which are generally based on noncongeneric training set, 
be improved? Can such models incorporate MOA data 
if available? Can such statistical models provide some 
insight regarding MOA for a chemical query? 

Examples where MOA can be integrated into QSARs

Panelists noted that, as discussed in an earlier presentation, 
QSARs can be integrated with PBPK modeling, where MOA 
is factored into the PBPK model. In addition, the use of shape 
signatures allows for the comparison of surface features and 
integrates MOA (e.g., receptor binding) into the methodology. 

QSAR models are sophisticated, incorporating structural 
and property features. However, they should be sufficiently 
flexible to add MOA considerations directly into the model 
for chemical evaluation. Alternatively, given a large group 
of chemicals, one approach is to develop and apply MOA-
based tools to subdivide chemicals into clusters. Global 
QSAR models can be developed for a variety of chemicals, 
or QSAR models can be tailored via selection of chemical 
clusters belonging to a certain chemical classification. 
Expertise is needed to make these decisions. For developing 
class- or cluster-based models, strict descriptor definitions 
are required for that class or cluster. A mechanism or MOA-
based approach can be used to define these descriptors, 
but this can be challenging. Nevertheless, this approach 
has been successfully applied. For example, Knaak et al. 
(2004) integrated physicochemical and biological data for 
the development of predictive QSARs and PBPK models 
for organophosphate pesticides. In ecotoxicology, there have 
been examples where mechanisms of toxicity were generated 
from QSAR data. In addition, work has been published on 
the cytotoxicity of phenols, assigning modes of action and 
mechanisms of toxicity on the basis of QSARs (Schultz et al. 
1997, Cronin et al. 2002). 

QSARs for ecotoxicology are more widely accepted 
than in human health.  

It is easier to validate QSAR descriptors by experimentation 
in ecotoxicology than in human toxicology. There are existing 
databases (e.g., from studies in the EPA laboratories in 
Duluth) that facilitate QSAR development for aquatic toxicity 
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endpoints. Comparable databases for prediction of human 
health effects are sparse and not readily available. In addition, 
there is a lack of mechanistic data for the often more complex 
human health endpoints than for ecotoxicology endpoints. 
This is due, in part, to the existence of more mechanisms of 
action in human health endpoints. In the EU, an attempt was 
made to use a simpler classification of chemicals based on 17 
different modes of action; however, the classification proved 
to be quite complex.

Development of appropriate and meaningful 
chemical grouping techniques requires knowledge .
of the model’s purpose.  

There are thousands of descriptors available for each 
chemical. These descriptors, such as molecular weight and 
number of carbon atoms, can be physically meaningful or they 
can be physically uninterpretable constructs based on graph 
theory. To enhance the biological meaning for analysis, it is 
important to select methods that identify descriptors that are 
biologically meaningful and defensible. Developing QSARs 
based solely on statistical identification carries the potential 
risk of developing circumstantial correlations that may be 
highly predictive but biologically meaningless. 

With the advent of toxicogenomics, the transfer of 
this technology to computational toxicology should 
help us understand the potential effects of chemicals 
on sensitive populations.  

Efforts are under way in pharmacology and toxicology to 
understand the interaction between variations in the human 
genome and variability in response to understanding how 
individual variability impacts chemical toxicity and risk 
assessment. Mechanistic QSARs can help define variations in 
chemical structure or properties that impact interactions with 
polymorphic receptors or xenobiotic metabolizing enzymes.

The toxicity of a chemical for any given health endpoint 
is, in general, due to an adverse interaction between the 
chemical and/or its metabolite and the tissue/organ/DNA 
associated with the endpoint. In developing statistically 
based QSAR models for chemicals with different modes 
of action, the descriptor pool contains descriptors that 
are chemical specific (i.e., they depend on the structure 
of the chemical alone). Are there any descriptors that 
can describe the tissue/organ/DNA characteristics and its 
interaction with a chemical and/or its metabolites?

QSARs focus on describing the potential interaction 
between chemicals and biological molecules.

There are two basic types of chemical-biological interactions. 
Receptor-based interactions often are the basis of endocrine 
disruption effects, and covalent interactions occur with 
nonspecific macromolecular binding. The latter are relatively 
nonspecific, but it is useful to focus on covalent interactions 
and characterize their diversity. This illustrates why endpoint-
specific QSARs are useful. The specificity of target organs, 
where metabolism generally occurs, or the nature of cell/tissue 
type, provokes a reaction. Tissues introduce repair capacity, 
buffer capacity, etc., which modulates effects.

•
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Metabolism is one of the keys to predictive success.  

Ideally, descriptors should relate to the toxic moiety (parent or 
metabolite). In cases where the toxic moiety is a metabolite, 
consideration of tissue characteristics related to metabolism 
(e.g., the presence of relevant metabolizing enzymes) can 
enhance model predictivity. For most endpoints, descriptors 
are not available to include relevant tissue characteristics. 
Statistical QSARs may implicitly include metabolism; 
however, metabolism will be correlated to various structural 
features. Software has been developed (Madden and Cronin, 
in press) to aid in the prediction of metabolites, although 
there are limitations inherent in the software. However, when 
applying such metabolism prediction models, biological 
understanding is still required to identify the metabolites 
associated with toxicity. 

Complementary Ligand Based Receptor Interaction is a 
type of descriptor that considers the ligand and the receptor 
docking or binding. Researchers can use this descriptor and 
then screen potential ligands against known ligands. There are 
also models that account for the electron properties that map 
to the surface of DNA to model the binding of transcription 
factors to DNA. 

Advancement of models that incorporate MOA and 
health effects data

Although the pharmaceutical industry has been using 
mechanistic QSARs for years, these often have limited 
applicability outside the specific receptor or molecular 
endpoint being studied. Furthermore, much of the advanced 
work is proprietary. In terms of global QSARs, commercial 
software is available, but in many cases the underlying 
algorithms or databases are not transparent. Currently, there 
are research initiatives in chemical informatics (e.g., at 
Rensselaer University) to improve public domain data and 
modeling as well as software techniques. There are also 
nonpharmaceutical industry models available. Therefore, 
alternative approaches are needed to advance QSAR model 
applications that incorporate MOA and health effects data. 

There are published examples of QSAR development in the 
literature pertaining to organic chemicals and human health. 
(Beliveau et al. 2005, Béliveau and Krishnan 2003, Waller et 
al. 1996). There are also examples in ecotoxicology; however, 
the endpoints are not likely to be highly relevant to human 
health (e.g., lethality).

Tissue microarrays are used in medical diagnostics to 
determine anticancer therapies and in the testing of drug 
cocktails, and these data are transferable to toxicological 
applications. Access to tissues from repositories would be 
required to generate experimental data from which QSAR 
models could be developed. 

Physical and chemical descriptors can be used to predict 
interactions with a biological target as a  pharmacodynamic 
(PD) approach. The scientific community needs to identify 
additional PD descriptors, although they may already be 
correlated, resulting in unnecessary redundancy. For example, 
given a QSAR model for breast cancer, researchers can add 
PD factors, including endocrine receptor (ER) binding and 

•

•



26

prolactin release. The goal, essentially, is to model a series  
of steps that define a complex event. 

Ratio of descriptors to compounds

As a rule of thumb, the number of descriptors should be 
limited to 1 descriptor for 5 compounds. Thus, given 40 
compounds, there should be no more than 8 descriptors. In 
the selection of descriptors, less is better. The QSAR equation 
describes a mathematical relationship that maps the target 
based on the descriptors. Descriptors may be correlated to the 
endpoint being predicted, but this does not indicate a causal 
relationship. In other words, a statistically derived QSAR may 
not be related to the pertinent MOA but may still accurately 
describe the relationship. To derive meaning from these types 
of descriptors may result in over-interpreting the model. In 
addition, since the QSAR models are mathematical equations 
— regardless of the chemical structure — the equations will 
predict some response. This is inconsistent with biological 
knowledge, where many chemicals will have no meaningful 
effect on certain endpoints. To overcome these problems 
in model parameter definition, approaches for selecting a 
few descriptors that may be most relevant from the MOA 
standpoint have been suggested. 

Current methodology on the statistically based QSAR 
development for toxicity prediction calls for the inclusion 
of as many (classes of) descriptors in the descriptor pool 
as possible to explain the variance in the dependent 
variables (some measure of toxicity). In developing these 
QSARs, are there any (classes of) descriptors that one 
should definitely include in the potential descriptor pool 
(e.g., partition coefficients to account for transfer from 
blood to tissue)?

When selecting descriptors, start with the 
mechanistic context.

Although certain descriptors are commonly used, the use of 
the mechanistic context as a starting point for the selection of 
descriptors is advisable. Since the mechanistic context varies 
based on chemical class, it is not possible to make blanket 
statements regarding the selection of descriptors. Examples 
of descriptors based on chemical mechanisms are factors that 
describe accumulation in a certain tissue (hydrophobicity), 
reactivity, receptor binding, etc. As described in an earlier 
presentation, modeling reactivity is difficult, and it is easy 
to miss subtleties. For example, given a reactive group on 
an aliphatic compound, if a stearic group is added near 
the reactive site, there will be stearic hindrance that is not 
captured using conventional descriptors. However, novel 
types of descriptors (e.g., atom-based fragments and certain 
fingerprint-based descriptors) may capture this information. 
To develop QSAR models, branching of groups that 
incorporate mechanistic-based descriptors may be needed 
to ensure that the molecule geometry has been adequately 
interpreted. 

Graph theory as an alternative to define QSARs

The use of graph theory to define QSAR descriptors is an 
important alternative when information about a chemical 
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is lacking. These descriptors are easy to compute and are 
not subject to variability. One of the attractions in the use 
of descriptors derived from graph theory is that they are not 
conformation dependent, so researchers do not need to know 
anything about the conformation. However, these descriptors 
may not have any obvious mechanistic interpretation. 

Integration of ligand-receptor interactions in QSAR 
models 

A recent evaluation of ligand-receptor interactions found 
significant differences in the properties of ligands. A recent 
article in the Journal of Medicinal Chemistry (Vol. 49, 
3451–3453 [2006]) by a group of researchers from Ely-Lilly 
evaluated ligands that bind to different classes of proteins, 
such as kinases, nuclear receptors, and G protein-coupled 
receptors (GPCRs). They found differences in the properties 
of ligands. It would be interesting if the query were posed, 
“What is the target tissue?” and then have the software 
determine what descriptors have been successful for similar 
applications. There are instances where compounds were run 
against a panel of receptor proteins at single concentrations, 
creating a biospectrum of binding affinity. This can be used to 
characterize ligands.

Another option is to develop LOAEL models that are specific 
for specific endpoints, leading to the development of a suite of 
QSARs based on mechanistic considerations. 

What is the status of the QSARs field (exploration 
vs. comparability and refinement)?

Panelists noted that the answer to this question depends on 
where the researcher is in the life cycle of a given QSAR 
model. In regard to the development of QSARs, the initial 
stage can be characterized as exploratory — the gathering of 
data to develop correlations between chemical structure and 
outcome. As the field matures, models that are developed 
for different sets of related chemicals can be compared and 
refined. Most of the available models are in the comparability/
refinement stage. As the available models continue to be 
advanced, the expectations for QSARs are very high. As more 
ideas are developed, models will be able to incorporate more 
complex biological considerations. 

Qualitative SAR models (i.e., models yielding 
dichotomous or graded responses such as yes/no or 
low/med/high) do not provide a quantitative measure 
of a chemical’s toxicity while quantitative SAR models 
(i.e., models yielding numerical potency estimates) do not 
provide a qualitative measure of the activity of a chemical 
for any given health endpoint. How does the panel 
view the feasibility of applying hybrid QSAR models 
(i.e., capitalizing on the benefits of SAR and QSAR by 
minimizing the disadvantage, if any, of each approach) 
for toxicity prediction? If feasible, how does the panel 
envision EPA applying such models?

Qualitative analyses can be useful for the purpose of 
comparing chemicals. 

Qualitative SAR comparisons may be useful for the hazard 
identification of chemicals with very little toxicity data. 
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Other qualitative analyses of SARs require the subjective 
classification of toxicity (e.g., low, medium, high), and 
there may be no biological significance. The context must 
be considered. It is better to have biologically meaningful 
classifications based on measurable biological events.

Hybrid analyses can also be applied; one type of hybrid 
analysis could begin with the initial classification based on 
MOA, followed by the application of the QSAR model. 
Semiquantitative QSARs can take the form of regression 
trees, using decision logic to inform the interpretation, such as 
binning or identifying the threshold of concern. There are also 
models based on quantitative relationships. 

As experimental techniques improve, very low levels 
of toxicity (e.g., ER activity) can be measured. In some 
instances, QSARs are expected to quantify activity at such a 
low level that it is beyond the sensitivity of the model. 

Can QSAR methods be used to reduce the uncertainty 
in extrapolating from acute and short-term benchmarks 
(such as LD

50
) to subchronic and chronic LOAELs?  

What are the issues that must be addressed in order to do 
this?

There are distinct challenges in using QSARs to 
inform the extrapolation from acute to chronic 
effects because the critical endpoints are different.

The extrapolation of subchronic to chronic exposure 
is frequently based on Haber’s law, which states that 
concentration times duration is a constant, and this gives 
a ratio of exposure duration of about 10 (e.g., in rodents 
800 days/90 days, which provides a rational definition for 
the extrapolation value of 10). This can be useful for the 
extrapolation of subchronic to chronic toxicity; however, it 
is inappropriate for the extrapolation from acute to chronic 
exposure because the critical endpoints are often different. 
Also, the MOA is different between acute and chronic 
exposure. 

If there is knowledge about the critical effects, and 
MOA, then it may be possible to use QSARs for 
extrapolation and reducing uncertainty.

It is possible that there are cases where the critical effects 
and MOA are the same, such that extrapolation using 
QSARs may be helpful. If there is commonality in MOA, 
then extrapolation from acute to chronic is more reasonable, 
but the rationale and the uncertainties must be discussed 
explicitly. Discriminators also can be segregated by MOA. 

In particular, this may work for noncumulative reversible 
effects. If the target tissue and MOA are the same, this forms 
a basis to build an extrapolation algorithm. This information 
can also help decrease uncertainty. For instance, the default 
duration uncertainty factor in the EU is 100 (whereas it is 
10 in the U.S.). Information from QSARs has been used to 
decrease the uncertainty factor. In other cases, it has been 
found that a safety factor of 100 is not adequately protective 
(research by Jan Ahlers, German Environmental Protection 
Agency). 
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There have been attempts to build models for PCBs,  
which tend to bioaccumulate, and the model incorporates  
the accelerating effects of the chemical over time. These 
models have had mixed success.

Ultimately, extrapolating data may be more of a science 
policy decision. Health Canada will not use acute data to 
derive subchronic or chronic values.  

There is a critical need to evaluate thousands of 
chemicals that have no toxicity data, and all options 
should be evaluated.

Participants acknowledged that many approaches have been 
suggested for evaluation of chemicals that lack toxicity 
data. Some think it is possible to take LD

50
s and divide by 

some number and use this derived dose as a substitute for 
chronic effects. Others assert that since the MOA for acute 
effect is generally different from that of chronic effects, it is 
inappropriate to extrapolate from acute to chronic effects for 
most chemicals. In addition, communicating risk to the public 
can be challenging when acute to chronic extrapolations are 
performed. 

The process of determining which chemicals should be on 
the CCL requires consideration of not only potency, but 
also severity. Using LD

50
s does not seem to fit well into this 

paradigm.

Correlations have been done using regression analysis, 
primarily as a first-tier approach. This must be followed by  
an assessment of what is known about the chemical of interest 
and whether there are characteristics that can be used to make 
predictions. In short, expert judgment is required. 

Regardless of the methods used, transparency, communication 
of assumptions, domain of applicability, and communication 
of uncertainties are critical components of any risk 
characterization. 

The probabilistic derivation of QSARs could make 
better use of the available data.

The application of probabilistic techniques for QSARs  
is feasible, using a range of data for each input. This may 
actually represent the best use of the available data. Monte 
Carlo approaches can then be used to generate a range of 
QSARs. 

Also, in some databases, there are a number of measurements 
for any given endpoint. To develop a QSAR, decisions must 
be made on the selection of input values. Some may take the 
most conservative value, while other approaches will consider 
using the average. Guidance is extremely limited, and 
transparency is critical.

6.2  QSAR Closing Remarks
It is important to have multiple tools to use for the evaluation 
of chemical toxicity. The characterization of MOA can 
provide critical information regarding chemical toxicity. For 
chemical reactivity or cytotoxicity, it can be useful to have 
a genomic fingerprint of the response to the chemical to 
determine whether the observed effects represent different 
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gene-based responses. Some technologies may be better for 
screening than for regulatory decision making because they 
may be more readily validated, accepted, etc. An iterative 
approach between QSARs and -omic technologies can be 
used to reduce the uncertainties in each. In effect, a validated 
QSAR can be used to reduce uncertainty in -omic approaches 
and vice versa.

In theory, it should be possible to use -omics research data 
as descriptors in QSARs. MOA descriptors may be informed 
by genomics and proteomics. Caution is needed in the use of 
genomics because upregulated genes may not be expressed 
or functional (e.g., post-translational modification, etc.). 
Proteomics may provide more relevant information, and 
metabolomics may fit more readily with QSARs, but this has 
not yet been attempted. In addition, participants pointed out a 
need to consider dosing issues.

The integration of QSARs with PBPK modeling, in which 
MOA is factored into the overall framework, is possible and 
useful. The use of shape signatures allows for the comparison 
of surface features and integrates MOA (e.g., receptor 
binding) into the methodology. Models are much more 
sophisticated, incorporating structural features and property 
features; therefore, they should allow for more flexibility in 
evaluating chemicals by adding MOA considerations. A large 
group of chemicals can be subdivided into clusters. QSAR 
models can be developed globally for all chemicals in all 
clusters, or they can be tailored via selection of descriptors for 
each cluster. 

The QSAR equation describes a mathematical relationship 
that maps the health endpoint to descriptors. Descriptors may 
be circumstantial. They may not be related to MOA, but they 
may be able accurately describe the relationship between 
a chemical structure and health endpoint. The use of graph 
theory, which is not dependent on conformation or biological 

interactions, to define QSAR descriptors is an important 
alternative when MOA information about the chemical is 
lacking. Nonmechanistic descriptors allow the problem of 
data gaps to be bypassed. However, to derive MOA meaning 
from these types of descriptors is to risk over-interpreting the 
model.

In some instances, the toxicity of metabolites has been 
incorporated in the original development of the equation. 
Although certain descriptors are more commonly used, a 
mechanistic context, if known, must be used as a starting 
point for the selection of descriptors. Since the mechanistic 
context varies based on chemical class, it is not possible 
to make blanket statements regarding the selection of 
descriptors. 

A panelist pointed out that a few descriptors could be selected 
that may be most relevant from the MOA standpoint. Tissue 
characteristics, essentially static or defined, can be built in as 
a constant. These descriptors should relate to the metabolite, 
and tissue characteristics can be an important factor, 
particularly in terms of the concentrations of metabolizing 
enzymes, etc. For most endpoints, descriptors are not 
yet available to build in tissue characteristics, although 
some approaches do implicitly include metabolism. The 
pharmacology industry must routinely make predictions 
about metabolism in order to predict toxicity and the possible 
cellular targets (i.e., DNA, protein, etc.) when selecting 
descriptors. 

Qualitative applications of QSAR analysis are possible and 
can provide important information for hazard identification. 
One type of hybrid analysis could be the initial classification 
based on MOA, followed by the application of a QSAR 
model. Semiquantitative QSARs can take the form 
of regression trees, using decision logic to inform the 
interpretation, such as binning and identifying the threshold  
of concern. 
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�.0 
Major Considerations and Recommendations

Discussion of the VFAR and QSAR charge questions gave 
rise to the following major considerations:

Because technology allows for a very broad array of 
gene identification, there is no need to omit any classes 
of VFs from consideration in the initial development 
of VFAR methodology. Such elimination should 
occur only when the irrelevance of the VF can be 
demonstrated. In addition, the presence of a VF may 
be necessary but not sufficient for the development 
of pathogenicity. There are other factors, such as 
those that permit the expression of VFs, the survival 
and persistence of the microbes, or even a particular 
array of microbes in the environment, that permit the 
development of pathogenicity. There also is an urgent 
need to characterize background levels of VFs in the 
environment to better recognize a change in conditions 
that may pose a human health risk. 

The analysis of VFs can provide information regarding 
genetic engineering for changes occurring due to both 
bioweapons and naturally occurring genetic evolution. 
However, VFs may not be the focus of genetic 
engineering for the purpose of bioweapon development. 
There may be other characteristics that are altered to 
increase exposure and risk.

There are many tools and technologies available for 
examining VFs, including genomics and gene arrays, 
PCR, and proteomics for the analysis of protein 
products. These technologies are all under development 
in terms of their applicability to VFARs, but there are 
limitations due to sample collection and processing 
issues that must be addressed before these technologies 
can be applied to surveillance in water or air. 

Genetic changes that occur naturally are an excellent 
example of the flexibility of the microbial genome. 
Most notably, microbes can transfer plasmids, resulting 
in the rapid exchange of genetic material. Increases in 
potency are not always understood. There is a need to 
look for unusual combinations of genes as well as other 
factors. In general, a change in potency is accompanied 
by a string of changes, not just a single change.

For the purposes of public health protection, the goal is 
to be able to use VFARs to aid in the:

Identification of the presence of microbes of concern 

Identification of accessory genes necessary for 
virulence

Identification of environmental conditions necessary 
for virulence

Extrapolation from virulence gene expression to 
virulence protein expression

•
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Prediction of the magnitude of the health hazard 
represented

Determination of the infectivity or dose-response 
relationships to gauge the response needed to prevent 
or mitigate an outbreak 

These characterizations and predictions would provide 
information critical to understanding the magnitude of the 
public health risk associated with a natural or intentional 
exposure event. 

The current state of knowledge is focused on the 
identification of VFs and how these VFs function in the 
microbe to express virulence. The scientific community 
does not yet have the capability to link VF information 
to health outcomes, though the potential exists. Because 
of the degeneracy of the genetic code, it is possible 
for there to be alterations in the gene while its activity 
is preserved. With constant changes in the microbial 
genome, it is necessary to maintain surveillance for 
these changes and evaluate how they affect virulence. 
It is possible to make primers for areas where changes 
cannot be made without changing function, thereby 
minimizing the chance of missing known VFs.

For both chemical and biological threats to human 
health, the universe of microbes and chemicals needs 
to be characterized and narrowed for the purposes of 
regulatory prioritization and development of remedial 
action strategies. Also, for both approaches to be 
effective, either the MOA or mechanism of toxicity 
must be determined. This is an essential component 
of expert system based structure-activity relationships 
where the aspect of the structure of the chemical 
that results in a particular effect or outcome must be 
determined. This concept can greatly enhance QSAR 
model development and interpretation. 

In terms of the role of -omics and QSARs in EPA’s 
framework for risk assessment, any useful and valid 
information will help decrease uncertainty in the context 
of the overall WOE. Some technologies may be better 
for screening than for regulatory decision making 
because they may not be fully validated or  accepted. 
QSARs and -omics technologies fit into this category. 
Currently, genomics technologies primarily serve as 
hazard identification tools by providing insight into the 
potential MOA by which a chemical is acting. Such 
knowledge can inform the interpretation of QSARs. The 
integration of QSARs with -omics technologies may 
allow these complementary technologies to reinforce 
each other. Computational toxicologists are working on 
this integration.

º

º
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• There are several opportunities to combine QSARs and 
MOA information to better inform risk assessment, 
and the panel noted that routine acceptance of QSAR 
predictions will likely require that they be derived 
with an underlying mechanistic understanding. As 
models become more sophisticated, they will further 
incorporate structural features and property features 
to allow for evaluating chemicals more fully through 
the consideration of MOA data. Several examples of 
developments in this area were described. Dr. Kannan 
Krishnan discussed the integration of QSARs with 
PBPK modeling, where MOA considerations (e.g., 
identification of appropriate dose metrics based on 
chemical metabolism prediction) are factored into the 
PBPK model. Dr. Welsh discussed the growing use of 
tools in bioinformatics (e.g., protein structure prediction 
and libraries). Such tools have allowed for the use of 
shape signatures based on the comparison of surface 
features to integrate MOA (e.g., receptor binding) into 
QSAR methodology. MOA data can be applied to larger 
groups of chemicals to identify clusters of more closely 
related chemicals — this is the conceptual basis for 
decision tree and regression tree approaches. QSAR 
models can be tailored via selection of descriptors for 
each cluster to provide more uniform training sets for 
QSAR development or aid in interpreting global QSAR 
predictions. 

• The focus of QSAR is on describing the potential 
interaction between chemical and biological molecules. 
There are two basic types of chemical-biological 
interactions. Receptor-based interactions often are the 
basis of endocrine disruption effects, and covalent 
interactions occur with nonspecific macromolecular 
binding. Mechanistic QSARs for predicting receptor-
based interactions are commonly used in drug 
development and are increasingly being used for 
toxicity prediction. Nevertheless, many chemicals 
act via the disruption of membranes. The latter are 
relatively nonspecific, but it is useful to focus on 
covalent interactions, which can be quite complex, 
even within a chemical class, as was highlighted in the 
context of phenolic electrophiles. To be most useful, 
QSARs need to account for this complexity more 
fully. While mechanistic QSARs are preferred, an 
intermediate step in this direction is to focus efforts on 
endpoint-specific QSARs since the specificity of target 
organs can arise based on adsorption and distribution 
(toxicokientics) or the nature of cell/tissue response 
(toxicodynamics). 

• Although certain descriptors (i.e., molecular size 
and hydrophobicity) are more commonly used, the 
mechanistic context must be used as a starting point 
for the selection of descriptors. Since the mechanistic 
context varies based on chemical class, it is not possible 
to make blanket statements regarding the selection 
of descriptors. Examples of descriptors based on 
chemical mechanisms are those descriptors that describe 
accumulation at or penetration through the membrane, 

reactivity toward cellular macromolecules, or receptor 
binding with critical targets, and others. 

Several approaches for hybrid SAR/QSAR analyses 
were discussed. Approaches ranged from using 
MOA descriptors as a screening step for the initial 
classification of chemicals to help in interpreting global 
QSARs to direct use of MOA descriptors in developing 
quantitative endpoint-specific logistic regression 
models. Semiquantitative QSAR methods included 
decision trees or modifications of this concept that use 
parallel sets of decision trees to improve predictability. 
Binned chemicals identified through these tools could 
serve as endpoint-specific QSAR training sets or be 
used to identify characteristics associated with potency 
categories for risk assessment using threshold of 
concern approaches. 

For chemical risk assessment, there is often a need to 
extrapolate from dose-response data based on exposure 
durations of less than a lifetime to estimate the effects 
of lifelong exposure. Traditionally, for EPA risk 
assessments, a default factor of 10 is applied to adjust 
adverse effect levels from subchronic (i.e., exposure for 
roughly 10 percent of the lifetime) to chronic exposure 
conditions. This can be useful for the extrapolation 
of subchronic to chronic toxicity; however, it is 
inappropriate for the extrapolation from acute to chronic 
exposure because the critical endpoints are often 
different and the MOA is different between acute and 
chronic exposure. The panel noted that while several 
correlation approaches have been developed to address 
this situation, these are not QSARs per se. While 
QSARs may address this application directly, they can 
provide important insights. For example, QSARs are 
used to predict toxicokinetic parameters (e.g., partition 
coefficients or metabolism parameters) that impact 
decisions regarding the potential for increased body 
burden with longer-duration exposures. Furthermore, 
QSARs can provide information pertaining to both 
acute and chronic toxicity mechanisms, which impacts 
considerations of potential for accumulation of tissue 
damage with increased exposure duration.

From the discussion of these charge questions came  
the following major recommendations:

Several recommendations on near-term applications of 
VFAR/QSAR models were discussed. To advance the 
applicability of VFARs in real-world situations, it is critical 
to facilitate the analysis of samples collected during natural 
outbreaks of microbial diseases. This will permit the 
identification of background levels of VFs and advance the 
understanding of the natural evolution of VFs in addition 
to providing the framework to test predictions of VFARs. 
Another potential opportunity for the advancement of 
VFAR research involves the BioWatch Program, which 
consists of continuous sampling at locations across the 
country. This would be an opportunity for researchers to 
obtain material for the characterization of background 
levels of VFARs in urban environments, in addition to 

•

•

1.
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testing hypotheses. The state of the science regarding 
QSAR modeling is considerably more advanced than that 
of VFARs, therefore the key recommendation for near-term 
applications focused on the integration of MOA and PBPK 
with QSAR models to enhance biological applicability.

2. For both VFARs and QSARs, host-specific factors alter 
the dose-response relationship (e.g., individual variability 
in metabolism, sensitive subpopulations, and host immune 
response); therefore, there will always be uncertainty in 
the ability to model host factors. These limitations should 
not be a deterrent from using these approaches in the 
evaluation of the universe of chemicals and microbes that 
require attention. For the initial prioritization of chemicals 
or microbes, when toxicological data are lacking, QSARs 
and VFARs can be particularly useful. Similarly, the 
databases and models under development could be critical 
to facilitating a rapid response in the event of an intentional 
attack. QSARs and VFARs can provide critical information 
regarding alerts to human health concerns, and chemical 
and biological plausibility in terms of potential human 
health effects, particularly as input to comprehensive  
WOE approaches.

3. For the initial prioritization of chemicals or microbes, 
when toxicological data are lacking, QSARs and VFARs  
can be extremely useful. Similarly, the databases and 
models under development could be critical to facilitating 
a rapid response in the event of an intentional attack. 

However, as noted by the expert speakers, these metho
may not be sufficient for all chemicals or all microbes. 
One panelist charged that all the tools available should 
be used to begin to address these urgent public health 
concerns. QSARs and VFARs can be important tools in
characterizing human health risks based on the weight 
of the evidence. Both QSARs and VFARs can be used t
advance understanding of potential human health effect
as well as in the regulatory context to help prioritize 
chemicals of concern. How EPA applies those concepts
will likely vary by EPA division. A similar process is 
occurring in the EU.

4. Other panelists urged that to move this discipline 
forward, single QSAR or VFAR predictions should not 
be considered an answer. Rather, consensus or WOE 
approaches result in a more robust analysis. It is critical
to be able to demonstrate how QSAR and VFAR tools 
contribute to an understanding of health risks by provid
information on hazard assessment and dose-response 
relationships.

5. As a result of the discussions, participants noted  
the creation of more questions. It is becoming more  
common to develop handbooks and guidelines to deriv
the necessary components. The field is very dynamic 
and needs virtual and enhanced screening in addition to
genomics. QSARs and VFARS are, and will always be,
two tools among many..
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Email: hashsham@egr.msu.edu
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Center Director  
U.S. EPA, Office of Research and Development  
National Homeland Security Research Center 
26 West Martin Luther King Drive (MS 163) 
Cincinnati, OH  45268-1320 
Phone: 513-569-7839 
Email: herrmann.jonathan@epa.gov

Kannan Krishnan, Ph.D. 
Professeur titulaire et Directeur TOXHUM 
Université de Montréal 
2375 Cote Ste. Catherine, Room 4105 
Montreal, PQ, Canada, H3T 1A8 
Phone: 514-343-6581 
FAX: 514-343-2200 
Email: kannan.krishnan@umontreal.ca

Andrew Maier, Ph.D., CIH, DABT  
Associate Director  
Toxicology Excellence for Risk Assessment  
2300 Montana Avenue, Suite 409  
Cincinnati, OH 45211  
Phone: 513-542-7475 x23  
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Email: maier@tera.org

Chandrika Moudgal, M.S. 
U.S. EPA, Office of Research and Development  
National Homeland Security Research Center  
Threat and Consequence Assessment Division 
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FAX: 503-326-4005 
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Homer Nowlin Chair in Water Research 
Department of Fisheries and Wildlife 
Michigan State University 
13 Natural Resources 
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Phone: 517-432-4412 
Fax: 517-432-1699 
Email: rosejo@msu.edu
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Assistant Vice President 
Science Applications International Corporation  
Biological and Chemical Defense 
9700 Great Seneca Highway, Suite 220 
Rockville, MD 20850 
Phone: 240-453-6312 
FAX: 240-453-6208  
Email: schaudiesr@saic.com
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Appendix B 
Biosketches of Speakers and Panelist

Mr. Andy Avel started his career in 1972 as an engineering 
geologist for the U.S. Tennessee Valley Authority and 
over the following ten years was assigned in Chattanooga, 
Kingsport, and Knoxville, TN. He joined the Clinch River 
Breeder Reactor Plant Project in Oak Ridge, TN, in 1982, as 
a geotechnical engineer. Upon cancellation of the Breeder 
Reactor, Andy moved to the Department of Energy’s Office  
of Civilian Radioactive Waste Management in Columbus, 
OH, where he served as a licensing engineer. He returned to 
Oak Ridge as a project manager in the Formerly Utilized Sites 
Remedial Action Program and then moved to the Fernald 
Feed Materials Production Plant, near Cincinnati, where he 
managed the CERCLA cleanup program.

Mr. Avel joined ORD in 1991 as the Director of the Office of 
the Senior Official in Cincinnati. Following the reorganization 
of 1996, he was assigned as special assistant to the Director 
of NRMRL and then as the Acting Lab Director (ALD) for 
Pesticides and Toxic Substances. In November of 2002, Andy 
joined the National Homeland Security Research Center as the 
Deputy Director for Management. In January 2005, he was 
named Acting Director of NHSRC.

Dr. Mark Cronin is Professor of Predictive Toxicology in the 
School of Pharmacy and Chemistry at Liverpool John Moores 
University, England. He was previously a lecturer (from 1994) 
and reader (from 2001) in that department. In addition to a 
full teaching load on the Master of Pharmacy degree course, 
he maintains an active research focus on the development of 
computational methods to predict toxicity. Particular emphasis 
at the moment is on the prediction of reactive toxicity (e.g., 
skin sensitization) and the use of quantitative structure-
activity relationships (QSARs) for regulatory purposes. He 
has over 150 publications in these areas and has co-organized 
a number of conferences in predictive toxicology. Mark 
obtained his degree in Biology and Ph.D. in ecotoxicological 
QSAR from Liverpool Polytechnic.

Dr. Syed A. Hashsham is Edwin Willits Associate Professor 
of Civil and Environmental Engineering at Michigan State 
University (MSU). He is also a Co-Principal Investigator (PI) 
in the Center for Microbial Ecology and CAMRA, the U.S. 
EPA/DHS Center for Advancing Microbial Risks Assessment. 
Syed’s expertise is in the area of environmental genomics 
and modeling of molecular data with a focus on microbial 
issues related to drinking water and wastewater. His research 
work is sponsored by the NIH, EPA, DHS, DoD, NSF, and 
state agencies. He has published on DNA biochip-based 
parallel microbial detection (Biosensors & Bioelectronics, 
2004), VFAR (Water Science and Technology, 2004), 
microbial community dynamics (Applied and Environmental 
Microbiology, 2000), probe design (Nucleic Acids Research, 
2006) and dehalo-respiration (Science, 2002). Syed earned his 

Ph.D. in Environmental Engineering and Science from  
the University of Illinois at Urbana-Champaign and conducted 
post-doctoral research at the Center for Microbial Ecology at 
MSU and Stanford University.

Mr. Jonathan Herrmann has been with EPA since 1975.  
He first worked in the Agency’s Region VIII office in Denver, 
Colorado. He came to the EPA’s Office of Research and 
Development (ORD) in 1978 and, except for a brief time in 
the private sector in the early 1980s, has been with ORD in 
Cincinnati, OH. Mr. Herrmann holds a Bachelor’s Degree 
in Civil Engineering from Youngstown State University and 
a Master’s Degree in Business Administration from Xavier 
University. He is a Registered Professional in Engineering in 
the State of Ohio. He is a member of the American Society 
of Civil Engineers, the American Academy of Environmental 
Engineers, and the American Water Works Association. 

Mr. Herrmann’s career has spanned many areas. He 
has worked in mined land reclamation, Superfund site 
remediation, land disposal of hazardous and household 
wastes, and environmental technology testing and evaluation. 
In the mid-1990s he was a strategic planner for the National 
Risk Management Research Laboratory and lead the 
development of ORD’s Pollution Prevention Research 
Strategy and Mercury Research Strategy. 

Mr. Herrmann joined NHSRC in September 2002 as the 
Water Security Team Leader and with a group of scientists 
and engineers developed the Water Security Research and 
Technical Support Action Plan in cooperation with the 
Agency’s Office of Water (OW). He is currently serving as  
the Center Director for NHSRC. As such, he is responsible 
for the day-to-day personnel, funding, and product delivery 
aspects of the Center.

Dr. Kannan Krishnan received his Ph.D. in Public Health 
from Université de Montréal, Canada, and postdoctoral 
training from the Chemical Industry Institute of Toxicology 
(CIIT), Research Triangle Park, North Carolina. He is 
currently Professor of Occupational and Environmental Health 
and Director of the Human Toxicology Research Group 
(TOXHUM) at Université de Montréal. He has been the 
leader of the risk assessment methodologies theme team of the 
Canadian Network of Toxicology Centers (1994–2001), and 
Vice President of the Biological Modeling Specialty Section 
of the Society of Toxicology (2001–2002).  He has also 
been a member of the U.S. National Academy of Sciences 
(NAS) Sub-committee on Acute Exposure Guideline Levels 
(2001–2004), member of the U.S. EPA’s Human Studies 
Review Board (2006–), president of the Risk Assessment 
Specialty Section of the Society of Toxicology (2005–2006), 
and a temporary advisor for the World Health Organization 
for developing a scientific document on the principles for 
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evaluating health risks in children associated with chemical 
exposures.  His expertise is in the areas of mixture toxicology, 
health risk assessment methods, and the development of 
quantitative structure-pharmacokinetic relationships. He 
has been a peer reviewer of several IRIS updates, risk 
assessments, mixture risk assessment supplemental guidance, 
and efforts on interactions for U.S. EPA.  He has also been 
actively involved as a reviewer of ATSDR documents on 
toxicological profiles and interaction profiles.  He has been on 
the editorial boards of Toxicological Sciences, the International 
Journal of Toxicology, the Journal of Applied Toxicology 
and the Journal of Child Health.  An author of a textbook 
on environmental pollution, Dr. Krishnan has authored or 
coauthored over 100 full-length publications and 250 abstracts 
in the general areas of toxicology, PBPK modeling, QSARs, 
and risk assessment.  His research team received the Best 
paper award (2003) from the Board of Publications of the 
Society of Toxicology (U.S.A.) for a publication on a novel 
risk assessment methodology (Haddad S, Béliveau M, Tardif 
R, and Krishnan K. [2001]) and a PBPK model-based approach 
for the risk assessment of chemical mixtures (Toxicological 
Sciences 63: 125–135) and more recently received recognition 
for a publication on QSAR modeling (Béliveau M, Lipscomb 
J, Tardif R, and Krishnan K [2005]), Quantitative structure-
property relationships for interspecies extrapolation of the 
inhalation pharmacokinetics of organic chemicals (Chemical 
Research in Toxicology 18: 475–485) was part of a “top ten” 
list of publications advancing the Science of Risk Assessment. 
Dr. Krishnan was honored with the Veylian Henderson Award 
in 2000 by the Society of Toxicology of Canada for significant 
contributions to the field of toxicology.

Dr. Andrew Maier currently serves as the Associate Director 
for the nonprofit organization Toxicology Excellence for Risk 
Assessment (TERA). In his capacity as a toxicologist and risk 
assessor, he has coauthored technical reports, human health 
risk assessment documents, and toxicity summaries covering 
more than 100 individual substances for government and 
private sponsors. He has led a variety of efforts for developing 
and applying methods in preventive toxicology and hazard 
screening that make use of QSAR approaches. Dr. Maier 
completed his M.S. in industrial health at the University 
of Michigan and his Ph.D. in toxicology at the University 
of Cincinnati. He has research interests in the molecular 
mechanisms of toxicity and has conducted basic research 
in the areas of metal and polycyclic aromatic hydrocarbon 
mixtures, environmentally relevant genetic polymorphisms, 
and risk assessment methods. His recent research efforts 
have focused on using early biological effect markers and 
MOA information to reduce uncertainties in chemical risk 
assessment. Dr. Maier remains active in communicating his 
findings through participation in professional societies such as 
the Society of Toxicology. He is a Diplomate of the American 
Board of Toxicology. 

Ms. Chandrika Moudgal is currently PI and technical lead 
on four projects related to the development of end point-
specific QSAR models, PI and technical lead to explore 
the state of VFAR science and develop a case study using 

cyanotoxins, and PI and technical lead on a project to  
develop a Web-based “Data Dictionary” for agents of  
concern to NHSRC. In addition, she supports TCAD’s 
Provisional Advisory Level (PAL) guidance documents.  
She also lends support to other NHSRC divisions by 
reviewing technical documents.

Chandrika earned her M.S. in Toxicology from the University 
of Cincinnati and her B.S. in Chemistry from the University 
of Gujarat in Ahmadabad, India. She has also completed 
course work for an M.S. in Environmental Science at the 
Ohio State University. Prior to joining NHSRC, Ms. Moudgal 
served as an environmental health scientist at the National 
Center for Environmental Assessment (NCEA), ORD, U.S. 
EPA for approximately seven years. In this position she gained 
experience and expertise in the development and application 
of QSARs to fill experimental data gaps and expertise in the 
application of the Agency’s risk assessment methodology. She 
also served as chemical manager and reviewer of documents 
for the IRIS database. Additional previous experience includes 
serving as an Organic Chemistry Section Supervisor with 
R.D. Zande & Associates in Columbus for seven years; 
working as a water research analyst for the City of Columbus, 
drinking water treatment plant for one year; and working 
as a laboratory scientist for the State of New Hampshire for 
three years. Chandrika has published several papers related 
to QSAR research and has presented various papers both 
nationally and internationally on the topic.

Dr. Joan Rose serves as the Homer Nowlin Chair in Water 
Research at Michigan State University and is currently 
Director of the Center for Water Sciences. Dr. Rose received 
her Ph.D. in Microbiology from the University of Arizona 
in 1985. She served as a Professor in the College of Marine 
Science, University of South Florida (USF) from 1998 to 
2002. 

Dr. Rose’s professional experience includes environmental 
virology, environmental parasitology, drinking water 
treatment and disinfection, microbial risk assessment, 
wastewater treatment and reuse, water pollution microbiology, 
mycology, and food microbiology. Dr. Rose is an international 
expert in water microbiology, water quality, and public 
health safety, publishing more than 200 manuscripts. She has 
been involved in the investigation of numerous waterborne 
outbreaks worldwide. Her work has examined new molecular 
methods for waterborne pathogens and zoonotic agents 
such as Cryptosporidium and enteric viruses and source 
tracking techniques. She has been involved in the study of 
water supplies, water used for food production, and coastal 
environments as well as water treatment, wastewater treatment, 
reclaimed water and water reuse, and quantitative microbial risk 
assessment. She is specifically interested in microbial pathogen 
transport in coastal systems and has studied the impact of 
wastewater discharges and climate on water quality. She was 
named as one of the 21 most influential people in water in the 
21st Century by Water Technology Magazine (2000) and won 
the Clarke Water Prize (one of five international awards for 
contributions to water science and technology). 
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Current service on advisory committees includes Chair of the 
Drinking Water Committee for the Science Advisory Board 
for the U.S. Environmental Protection Agency; the Science 
Advisory Board of the International Commission of the Great 
Lakes, 2003–08; Vice-Chair of USA National Committee for 
the International Water Association (IWA), 2002–06, Member 
of the Strategic Council for IWA 2005–08, Chair of the 
Specialist Group Health-Related Water Microbiology (IWA) 
2004–07; Research Advisory Board, National Water Research 
Institute, 2002–06, and Council Policy Committee for the 
American Society of Microbiology, 2001–06. 

Sources of recent grant and/or contract support include 
NOAA, U.S. EPA, Water Environmental Research 
Foundation, NSF, and AWWARF. She was recently  
awarded as PI as $10 million grant for directing the Center  
for Advancing Microbial Risk Assessment funded by EPA  
and the U.S. Department of Homeland Security. 

Dr. R. Paul Schaudies, Assistant VP at Science Applications 
International corporation (SAIC), heads a diverse team of 
technologists who conduct contract biomedical research, 
scientific analyses, and technical support. Dr. Schaudies is an 
internationally recognized expert in the fields of biological 
and chemical warfare defense. He served as a primary Science 
and Technology Consultant to the Incident Commander, 
Sergeants-at-Arms for the House and Senate, and U.S. EPA 
On-Scene Coordinator in response to the October 2001 
anthrax incident in Washington D.C. He has served on five 
National Academy committees in the areas of biological 
defense and nanotechnology. He has served on numerous 
national level advisory panels for the Defense Intelligence 
Agency, the Defense Advanced Research Projects Agency, 
and the Department of Energy. Dr. Schaudies served 12 years 
as a U.S. Army officer. While on active duty, Dr. Schaudies 
served as Chief of the General Support Laboratory in the 
Department of Clinical Investigation at Walter Reed Army 
Medical Center, a Senior Researcher at the Walter Reed Army 
Institute for Research, and a Program Manager for Biological 
and Chemical Defense Research at the Central Measurement 
and Signature Intelligence Office at the Defense Intelligence 
Agency. Dr. Schaudies received his Bachelor’s degree in 
Chemistry from Wake Forest University and his doctoral 
degree in Biochemistry from Temple University School of 
Medicine.

Ms. Cynthia Sonich-Mullin is the Director of the Threat and 
Consequence Assessment Division (TCAD) at the National 
Homeland Security Research Center. She has provided 
program leadership, focusing on rapid risk assessment and 
support to the entire NHSRC team and ORD, since March 
2003.

Prior to this assignment, Ms. Sonich-Mullin worked in the 
National Center for Environmental Assessment in a number of 
capacities. Most recently, she served concurrent details as the 
Acting Deputy Director, Cincinnati Division, and the Acting 
Center Director for Human Health Research.

Since 1993, Ms. Sonich-Mullin has worked on behalf of the 
International Programme on Chemical Safety (IPCS), a joint 
program of the World Health Organization (WHO), United 
Nations Environment Programme, and the International 
Labour Organization. In October 1993, Ms. Sonich-
Mullin worked with IPCS to initiate the IPCS Project:  
Harmonization of Approaches to the Assessment of Risk 
from Exposure to Chemicals, on behalf of the WHO. In 
this capacity, she worked as an IPCS/WHO staff member in 
Geneva, Switzerland for three years. Upon returning to the 
U.S., Ms. Sonich-Mullin (as part of U.S. EPA’s contribution 
to the WHO) has continued to work on various aspects of the 
Harmonization Project.

Prior to the detail, Ms. Sonich-Mullin was a scientist with 
U.S. EPA’s Environmental Criteria and Assessment Office 
(now the National Center for Environmental Assessment), 
serving a number of roles including:

Acting Deputy Director, Cincinnati Division

Chief, Chemical Mixtures Assessment Branch

Chief, Systemic Toxicants Assessment Branch

In these capacities, she led and participated in projects 
related to the assessment of chemicals in air, drinking water 
and ambient water, municipal solid waste disposal options, 
and on issues related to Superfund sites. She worked on 
the development of Agency risk assessment guidelines and 
served on numerous task groups and research committees 
including the Agency’s Water Research Committee, Air Risk 
Information Support Center, and as Director of the Superfund 
Technical Support Center, a center designed to provide 
risk assessment support, guidance, and advice on issues 
specifically pertaining to Superfund sites. In a concurrent 
assignment, she was selected to serve on Vice President Al 
Gore’s Commission to Reinvent Government.

Ms. Sonich-Mullin began her career at EPA working as 
an environmental health scientist with the Health Effects 
Research Laboratory. In this capacity, she designed 
and conducted epidemiological studies related to water 
contamination and has published in this area. Some specific 
issues studied included the health effects associated with 
drinking water chlorination, health effects of sodium 
in drinking water, and the health effects of the carbon 
tetrachloride spill into the Ohio River in the late 1970s. 

Ms. Sonich-Mullin holds a Master of Environmental Sciences 
degree, specializing in Applied Biology/Zoology from the 
Institute of Environmental Sciences, Miami University, 
Oxford, Ohio. She has also completed doctoral course 
work in Epidemiology and Biostatistics at the University of 
Cincinnati, College of Medicine, Cincinnati, Ohio.

Dr. Gerard N. Stelma Jr. is a Senior Science Advisor for 
the Microbiological and Chemical Exposure Assessment 
Research Division (MCEARD) of the National Exposure 
Research Laboratory (NERL), which is part of U.S. EPA’s 
Office of Research and Development. In this role, he provides 
expert advice regarding microbiological issues, principally 

•

•

•



B-4

those pertaining to bacterial pathogens, to the division’s 
microbiologists and to various EPA program offices. Dr. 
Stelma served as the Chief of MCEARD’s Microbial 
Exposure Research Branch for 13 years and as Acting 
Director of MCEARD for nearly 3 years. Prior to his arrival at 
EPA, Dr. Stelma was a research microbiologist for the FDA. 
He holds a B.S. in Biology from the University of Michigan 
and a Ph.D. in Microbiology from Michigan State University.

Dr. Subhas K. Sikdar is the Acting Associate Director 
for Health for NRMRL. As the Director of the Sustainable 
Technology Division until Jan 9, 2004, he was the primary 
spokesman for U.S. EPA’s R&D on clean technologies and 
pollution prevention. He directed research, both intramural 
and extramural, on tools and methods for pollution 
prevention, cleaner process technologies, and demonstration 
and verification of cleaner technologies. Before joining EPA 
in 1990, Dr. Sikdar held managerial positions at the National 
Institute of Standards and Technology in Boulder, Colorado, 
and General Electric Corporate Research & Development 
Center in Schenectady, New York. He began his professional 
career as a Senior Research Engineer with Occidental 
Research Corporation in Irvine, California, in 1975. Dr. 
Sikdar earned his B.S. in Chemistry, a B.Tech in Chemical 
Engineering, and an M.Tech in Polymer Science from 
Calcutta University in India. He received his M.S. and Ph.D. 
in Chemical Engineering from the University of Arizona. 
Dr. Sikdar is a Fellow of the American Association for the 
Advancement of Science (AAAS), Fellow of the American 
Institute of Chemical Engineers, Honorary Fellow of the 
Indian Institute of Chemical Engineers, winner of three EPA 
bronze medals, an R&D 100 award (1990), AIChE’s Larry 
Cecil Award for Environmental Chemical Engineering (2002), 
and University of Arizona’s Distinguished Engineering 
Alumnus Award (2003). In the past he was a member of the 
Vision 2020 Steering Committee for the chemical industry, 
an action network leader of the Council for Chemical 
Research. He is a member of the Board of Governors of the 
Council for Chemical Research (CCR) and of the Green 
Chemistry Institute, a member of AIChE’s Research and New 
Technology Committee, and the Chair of the Sustainable 
Engineering Forum. For some years he has been championing 
the concepts and methods for clean products and processes 
through a NATO pilot project, two NATO workshops, and 
an Engineering Foundation conference. He is a current 
member of the Industrial Advisory Board of the University 
of Arizona’s College of Engineering and of the Department 
of Chemical and Environmental Engineering, and of the 
Department of Chemical and Environmental Engineering of 
the Illinois Institute of Technology. Dr. Sikdar is the leader 
of the technical expert group for the Center of Excellence on 
Environmental Engineering and Hazardous Wastes, which 
is composed of several universities in Thailand. He is the 
founder and co-Editor-in-Chief of the international journal, 
Clean Technologies and Environmental Policy, published 
quarterly by Springer Verlag of Germany. Dr. Sikdar has 
published more than 60 technical papers in reputed journals, 
holds 22 U.S. patents, and has edited 13 books.

Dr. Sikdar was instrumental in developing the highly 
successful Occidental Hemihydrate process for phosphoric 
acid manufacture. His other technical achievements include 
developing several membrane processes for pervaporative 
separation of VOCs from aqueous effluents and for highly 
selective sorption of heavy metals, masterminding the 
development of a waste reduction algorithm for process 
design (the WAR algorithm), a solvent design algorithm 
(PARIS II), and a data portal for life cycle assessment 
(LCAccess).

Dr. William J. (Bill) Welsh holds the Norman H. Edelman 
Professorship in Bioinformatics and Computer-Aided 
Molecular Design in the Department of Pharmacology at 
the Robert Wood Johnson Medical School (RWJMS) in 
Piscataway NJ, University of Medicine and Dentistry of New 
Jersey (UMDNJ). Concurrently, he serves as Director of the 
UMDNJ Informatics Institute (http://informatics.umdnj.edu) 
that coordinates university-wide initiatives in bioinformatics, 
clinical informatics, and computer-aided molecular design. 
He is also PI and Director of the EPA-supported New Jersey 
Research Center for Environmental Bioinformatics and 
Computational Predictive Toxicology, the first of its kind in 
the nation. He is a member of various centers and institutes 
of excellence at UMDNJ and Rutgers University, including 
the Cancer Institute of New Jersey, the New Jersey Center for 
Biomaterials, Rutgers University School of Pharmacy, and 
the Environmental & Occupational Health Sciences Institute 
(EOHSI).

Dr. Welsh earned a B.S. degree (magna cum laude) in 
Chemistry from St. Joseph’s University (Philadelphia, 
PA) and a Ph.D. degree in Theoretical Physical Chemistry 
from the University of Pennsylvania (Philadelphia, PA). 
He conducted postdoctoral research in the laboratory of Dr. 
James E. Mark, Distinguished Professor of Polymer Science 
at the University of Cincinnati (Cincinnati, OH). In 1985, 
Dr. Welsh joined the University of Missouri (St. Louis) as 
an Associate Professor of Chemistry and rose through the 
ranks to Distinguished Professor in 1998. During this period 
he was appointed Director, Laboratory for Computer-Aided 
Molecular Design, at the University of Missouri. In 2001, Dr. 
Welsh joined UMDNJ-Robert Wood Johnson Medical School 
to assume his present role.

Dr. Welsh’s laboratory specializes in the development and 
application of computational tools for drug discovery. 
Promising candidates emanating from these rational 
design approaches are synthesized and tested as potential 
therapeutic or diagnostic agents. His laboratory is widely 
reputed for its innovation, such as the development of the 
Shape Signatures tool and the discovery of potential drug 
candidates for the treatment of cancer, severe and chronic 
pain, neurodegenerative diseases, and heart conditions. 
Dr. Welsh’s publication record includes over 350 articles 
in peer-reviewed books and journals, 600 abstracts from 
presentations at professional scientific meetings, and several 
patents and patent applications. He is the recipient of 
numerous awards and honors, including the Teacher of the 
Year Award (1983 and 1985), the St. Louis Research Award 

http://informatics.umdnj.edu
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(1998), the University of Missouri-St. Louis Chancellor’s 
Research and Creativity Award (2001), the University of 
Missouri Entrepreneur of the Year Award (2001), the Norman 
H. Edelman Endowed Professorship in Bioinformatics at 
UMDNJ-RWJMS (2003), and most recently the John C. 
Krantz, Jr. Award (2004). He serves on the advisory boards 
of several scientific journals. Spanning the last twenty years, 
over 125 students (postgraduate and graduate students, 
undergraduates, and research associates) have trained in his 
laboratory. 

Dr. Andrew Worth works at the European Chemicals Bureau 
(ECB) within the European Commission’s Joint Research 
Centre (JRC) in Italy. He joined the JRC with degrees in 
Physiological Sciences and Linguistics from the University 
of Oxford (UK) and with post-graduate experience in the 
fields of biochemistry and toxicology. He subsequently 
gained a Ph.D in Computational Toxicology from Liverpool 
John Moores University (UK). His research interests have 
focused on the development of QSAR models and methods 
and on the development of Integrated Testing Strategies for 
chemical toxicity based on the use of physicochemical and 
in vitro data. Since 2003 he has been leading the JRC Project 
on Computational Toxicology. In addition to coordinating 
QSAR-related work within the JRC, Dr. Worth also chairs the 
EU Working Group on QSARs and represents the European 
Commission in several OECD working groups. 

Dr. Douglas Young leads the Clean Processes Branch (CPB) 
that resides in the Sustainable Technology Division (STD) in 
the Office of Research and Development within EPA. STD 
is home to EPA’s in-house research in the areas of Green 
Chemistry and Sustainability. Dr. Young’s research is in the 
areas of environmental impact assessment as it pertains to 
the chemical processing industry and the estimation of acute 
toxicity measurements. He has been intimately involved in the 
creation of the Computational Toxicology Research Program 
and the National Center for Computational Toxicology 
within the EPA. He was instrumental in the development 
and commercialization of the generalized Waste Reduction 
(WAR) algorithm. Dr. Young received his Ph.D. from the 
University of Arizona where his dissertation focused on the 
bioremediation of high-energy explosive waste generated at 
the Los Alamos National Laboratory. He received his M.S. 
from the University of Notre Dame and his B.S. from the 
University of Michigan. All three of Dr. Young’s degrees are 
in Chemical Engineering.
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Appendix C 
Workshop Agenda

Tuesday, June 20, 2006
8:00 am Welcome (Chandrika Moudgal, NHSRC) 

8:10 am Opening remarks (Andy Avel, NHSRC; Jonathan Herrmann, NHSRC; Subhas Sikdar, NRMRL)

8:30 am Background on NHSRC and NRMRL (Cindy Sonich-Mullin, NHSRC; Douglas Young, NRMRL) and 
 introduction of expert panel members

8:50 am QSAR/VFAR program and charge to expert panel members (Chandrika Moudgal, NHSRC)

9:00 am Introduction to the VFAR concept (Dr. Gerald Stelma, NERL)

9:20 am Using VFAR in the Risk Assessment Framework (Dr. Joan Rose, MSU)

9:50 am VFAR: factors related to genomic variabilities (Dr. Syed Hashsham, MSU)

10:20 am Break

10:50 am A bioinformatic approach to VFAR analysis and characterization (Dr. Paul Schaudies, SAIC)

11:20 am VFAR charge questions 1 and 2 (Discussion)

12:00 pm Lunch

1:00 pm VFAR charge questions 3 and 4 (Discussion)

3:00 pm Break

3:30 pm VFAR charge questions 5, 6, and 7 (Discussion)

5:00 pm VFAR closing remarks from panel and EPA

Wednesday, June 21, 2006
8:00 am  From reactivity to regulation: integrating alternative techniques to predict toxicity  
 (Dr. Mark Cronin, TOXHUM)

8:20 am Integrated QSAR-PBPK modeling for risk assessment applications (Dr. Kannan Krishnan, TOXHUM)

8:40 am Integration of MOA and WOE concepts in predictive toxicology (Dr. Andrew Maier, TERA)

9:00 am Activities at the new UMDNJ Computational Toxicology Center: advanced QSAR-based methods of  
 rapid hazard identification, prediction, and characterization (Dr. William Welsh, RWJMS)

9:20 am The role of the European Chemicals Bureau in promoting the regulatory implementation of   
 estimation methods (Dr. Andrew Worth, JRC)

9:40 am  Break

10:10 am QSAR charge questions 1, 2, and 3 (Discussion)

12:00 pm Lunch

1:00 pm QSAR charge questions 4 and 5 (Discussion)

3:00 pm Break

3:30 pm QSAR charge questions 6 and 7 (Discussion)

4:30 pm Workshop closing remarks (Panel, NHSRC and NRMRL management,  
 Douglas Young, Chandrika Moudgal)

5:00 pm  Adjourn
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Appendix D 
List of Attendees

Femi Adeshina, Ph.D..
1200 Pennsylvania Avenue, NW (8801R) 
Washington, DC 20460 
Phone: 202-564-1539   
Email: adeshina.femi@epa.gov

Caroline Baier-Anderson, Ph.D..
EnDyna, Inc. 
7925 Jones Branch Drive, Suite 5300 
McLean, VA 22102 
Phone: 410-610-1737 
FAX: 703-873-4372 
Email: canderson@endyna.com

Irv Baumel, Ph.D..
USEPA/NHSRC/TCAD 
Phone: 202-564-2338 
Email: baumel.irwin@epa.gov

Dominic L. Boccelli, Ph.D..
Environmental Engineer 
USEPA/ORD/NHSRC/WIPD 
26 West Martin Luther King Drive (MS 163) 
Cincinnati, OH  45268-1320 
Phone: 513-569-7654 
FAX: 513-487-2555 
Email: boccelli.dominic@epa.gov

Kathyrn Boyle.
Chemist 
USEPA/OPP 
1200 Pennsylvania Avenue, NW (7506P) 
Washington, DC 20460 
Phone: 703-305-6304 
Email: boyle.kathryn@epa.gov

Nichole Brinkman.
Biologist 
USEPA/NERL 
26 West Martin Luther King Drive (MS 320) 
Cincinnati, OH 45268 
Phone: 513-569-7315 
FAX: 513-569-7117  
Email: brinkman.nichole@epa.gov

Karen Burgan.
Senior Policy Advisory 
USEPA/OSWER/OEM/NPPD 
1200 Pennsylvania Avenue, NW (5104A) 
Washington, DC 20460 
Phone: 202-564-1978 
FAX: 202-564-2620 
Email: burgan.karen@epa.gov

Dan Chappie.
Battelle 
10300 Alliance Road, Suite 155 
Cincinnati, OH 45242 
Phone: 513-362-2600 
FAX:  513-362-2610

Kathy Clayton.
USEPA/ORD/NHSRC 
26 West Martin Luther King Drive (MS 163) 
Cincinnati, OH 45268-1320 
Phone: 513-569-7046 
Email: clayton.kathy-ci@epa.gov

Maura J. Donohue, Ph.D..
Chemist 
USEPA/ORD/NERL/MCEARD/CERB 
26 West Martin Luther King Drive 
Cincinnati, OH 45268 
Phone: 513-569-7634 
FAX: 513-569-7757 
Email: donohue.maura@epa.gov

Anthony Fristachi, M.S..
Exposure Analyst 
USEPA/ORD/NCEA 
26 West Martin Luther King Drive  (MS A110) 
Cincinnati, OH 45268 
Phone: 513-569-7144 
FAX: 513-487-2539 
Email: fristachi.anthony@epa.gov

Bernard Gadagbui, Ph.D..
Toxicology Excellence for Risk Assessment 
2300 Montana Avenue, Suite 409 
Cincinnati, OH 45211 
Phone: 513-542-7475 ext. 27 
FAX: 513-542-7487 
Email: bgadagbui@tera.org

Robert Goble, Ph.D..
Research Professor and Director 
George Perkins Marsh Institute, Clark University 
950 Main Street 
Worcester, MA 01610 
Phone: 508-751-4612 
FAX: 508-751-4600 
Email: rgoble@clarku.edu
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Paul Harten, Ph.D..
Physical Scientist 
USEPA/ORD/NRMRL 
26 West Martin Luther King Drive 
Cincinnati, OH 45268 
Phone: 513-569-7045 
Email: harten.paul@epa.gov

Stephanie Hines.
OSU Extension - Clermont County 
1000 Locust Street, P.O. Box 670 
Owensville, OH 45160 
Phone: 513-732-7070 
Email: hines.180@osu.edu

Sheldon Jobe.
EnDyna, Inc. 
7925 Jones Branch Drive 
Suite 5300 
McLean, VA 22102 
Phone: 703-873-4367 
FAX: 703-873-4372 
Email: sjobe@endyna.com

Barbara Klieforth.
Biologist 
USEPA/ORD/OSA 
1300 Pennsylvania Avenue, NW RM B26J 
Washington, DC 20004 
Phone: 202-564-6787 
FAX: 202-565-2431 
Email: klieforth.barbara@epa.gov

Steven S. Kueberuwa, Ph.D..
Toxicologist 
USEPA/OW/OST/HECD 
1200 Pennsylvania Avenue, NW 
Washington, DC 20460 
Phone: 202-566-0233 
FAX: 202-566-1139 
Email: kueberuwa.steven@epa.gov

Jason C. Lambert, Ph.D..
ORISE Fellow 
USEPA/ORD/NCEA 
26 West Martin Luther King Drive (MS A110) 
Cincinnati, OH 45268-1320 
Phone: 513-569-7078 
Email: lambert.jason@epa.gov

Josh Larson.
Biosecurity Analyst 
Sandia National Laboratories 
P.O. Box 5800 MS 1371 
Albuquerque, NM 87185 
Phone: 505-844-0357 
FAX: 505-284-8870 
Email: jjlarso@sandia.gov

Todd Martin, Ph.D..
Research Chemical Engineer 
USEPA/NRMRL/CPB 
26 West Martin Luther King Drive (MS 443) 
Cincinnati, OH 45268 
Phone: 513-569-7682 
Email: martin.todd@epa.gov

Deborah McKean, Ph.D..
Toxicologist 
USEPA/OSWER/OEM/NDT 
26 West Martin Luther King Drive 
Cincinnati, OH 45268 
Phone: 513-487-2435 
FAX: 513-487-2537 
Email: mckean.deborah@epa.gov

Leroy Michelsen.
Engineer 
OSWER/OEM/NDT 
26 West Martin Luther King Drive 
Cincinnati, OH 45268-1320 
Phone: 513-487-2431 
FAX: 513-487-2537 
Email: mickelsen.leroy@epa.gov

Matthew D. Miller, Ph.D..
Post-doctoral research associate 
University of Missouri – Kansas City 
7543 Terrace Street 
Kansas City, MO 64114-1637 
Phone: 816-277-8264 
FAX: 816-235-6543 
Email: mdma95@umkc.edu

H.A. Minnigh.
RCAP Solutions, Inc./CECIA, UIPR 
P.O. Box 48 
Lajas, PR 00667 
Phone: 787-392-7186 
FAX: 787-892-2089 
Email: hminnigh@compuserve.com

Vlasta Molak, Ph.D. 
President and CEO 
GAIA Foundation, Inc. 
8987 Cotillion Drive 
Cincinnati, OH 45231 
Phone: 513-521-9321 
Email: drmolak@gmail.com

Tonya Nichols, Ph.D..
USEPA 
26 West Martin Luther King Drive (MS 163) 
Cincinnati, OH 45268-1320 
Phone: 513-569-7805 
Email: nichols.tonya@epa.gov
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Appendix E 
Workshop Presentation Materials

Jerry Stelma
June 20, 2006

Introduction to The
VFARs Concept

Although this work was reviewed by EPA and approved for
presentation, it may not necessarily reflect official Agency policy

Research and
Development at EPA

• 1,950 employees

• $700 million budget

• $100 million extramural
research grant program

• 13 lab or research facilities
across the U.S.

• Credible, relevant and timely
research results and
technical support that inform
EPA policy decisions

Making decisions with sound science
requires..

Relevant, high quality, cutting-edge research in
human health, ecology, pollution control and
prevention, economics and decision sciences

Proper characterization of scientific findings

Appropriate use of science in the decision
process

Research and development
contribute uniquely to..

Health and ecological research, as well as
research in pollution prevention and new
technology

In-house research and an external grants
program

Problem-driven and core research

• Human Health

• Particulate Matter

• Drinking Water

• Clean Water

• Global Change

• Endocrine Disruptors

• Ecological Risk

• Pollution Prevention

• Homeland Security

High Priority Research Areas

The Contaminant
Candidate List(CCL)

• Developed as a result of the 1996
amendments to SDWA

EPA must periodically develop a list
of currently unregulated
contaminants

EPA must select 5 contaminants for
regulatory decisions per 5 years

The Contaminant
Candidate List(CCL)

• Method for developing the lists
not specified by SDWA

• Methods for selecting the five or
more contaminants not specified
by SDWA
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NRC Workshop Results

• “Identifying future Drinking Water
Contaminants” Recommendations

A process was developed to narrow,
focus and prioritize contaminants.

Explore the feasibility of using
virulence factor activity relationships
(VFARs) for microbial contaminants

Origin of the concept

• Structural activity relationships (SARs)
found in chemicals

• Compares newly identified chemical
structures to known chemical structures

• Toxicity is predicted by the
comparisons

Premise

Architectural and biochemical components
of microorganisms that cause disease are
also structurally related

Central Concept

• Ability to predict virulence by
microbial characteristics

Microbial VFARs should function much
the same as QSARs do in chemistry

Research has shown certain common
characteristics among pathogens

“Descriptors” have been tied to specific
genes

Why would we expect
structural relationships

among genes?

• Parallel evolution

• Horizontal gene exchange
Common occurrence within a genus

Has been observed beyond genus
boundaries

• Genetic engineering

Examples of Descriptors

• Genetic elements

• Surface proteins

• Toxins

• Attachment Factors

• Metabolic pathways

• Invasion factors

Current Challenges to use
of VFARs/Microarrays

• QSARs vs VFARs:  Does the
biological universe parallel the
chemical universe?

Chemicals are static

Microbes are dynamic

Examples of parallel VFs
• Cholera toxin and E. coli LT

• Pyrogenic toxins of Strep. and Staph.
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Current Challenges to use
of VFARs/Microarrays

Examples of parallel VFs
• Cholera toxin and E. coli LT

• Pyrogenic toxins of Strep. and Staph.

Examples of unique VFs
• Salmonella invA gene

• Legionella mip gene

Current Challenges to use
of VFARs/Microarrays

• Too many unknown virulence genes

Individual virulence genes are necessary for virulence

Individual virulence genes are not sufficient for virulence

Entire arrays of virulence genes are needed

Current Challenges to use
of VFARs/Microarrays

• Host susceptibility factors and dosages

• DNA Variability among structural genes

• Effect of unexpressed virulence genes?
Genes can be present but not expressed

• Are VFARs valid for viruses and protozoa?
All are obligate parasites
Factors leading to species specificity?

• Effect of  DNA from dead cells

Current Challenges to use
of VFARs/Microarrays

• "The message is that there are known knowns
- there are things that we know that we know.
There are known unknowns - that is to say,
there are things that we now know we don't
know. But there are also unknown unknowns -
there are things we do not know we don't
know. And each day we discover a few more
of those unknown unknowns”.

• Rumsfeld 2003
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Using VFAR in a
Risk Assessment Framework

Joan B. Rose

rosejo@msu.edu

Homer Nowlin Endowed Chair for Water Research

Definitions used in risk analysis

The communication of risks to managers,
stakeholders, public officials, and the public,
includes public perception and ability to exchange
scientific information.

Risk
communication

The process for controlling risks, weighing
alternatives, selecting appropriate action, taking into
account risk assessment, values, engineering,
economics, legal and political issues.

Risk
management

The qualitative or quantitative characterization and
estimation of potential adverse health effects
associated with exposure of individuals or
populations to hazards (materials or situations,
physical, chemical and or microbial agents.)

Risk

assessment

Risk assessment is a method to
examine qualitatively or

quantitatively the potential for
harm from exposure to

contaminants or specific hazards.

• Monitoring and data are some of the keys to
establishing risks and therefore safety goals.

Quantitative Risk Assessment
QRA

Tool used to estimate adverse health effects
associated with specific hazards.

Elicits a statistical estimate or probability of
harm.

Used for risk management decisions.

NATIONAL ACADEMY OF SCIENCES
RISK ASSESSMENT PARADIGM

HAZARD IDENTIFICATION

Types of microorganisms and disease end-points

DOSE-RESPONSE

Human feeding studies, clinical studies, less

virulent microbes and health adults

EXPOSURE

Monitoring data, indicators and modeling used to

address exposure

RISK CHARACTERIZATION

Magnitude of the risk, uncertainty and variability

Evolution of QMRA

<1980
Indicator approaches used

Suggesting that some level of

contamination below which one is safe

1980’s Initial Dose Response Concepts

Application in development of EPA Rules

1988 Dose-response for Giardia, viruses in Water. 

2000’s
Air and Home Land Security applications

Reg framework development

Population sensitivities

1990

Adoption for food safety

WHO food and water consultations

Dynamic model applications

ILSI framework documents
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RISK CHARACTERIZATION

CHARACTERIZATION

of Exposure of Human
Health Effects

ANALYSIS

PROBLEM FORMULATION

RISK MANAGEMENT OPTIONS Exposure
Profile

Host Pathogen 
Profile

ANALYSIS PHASE

Exposure
Analysis

Pathogen
Occurrence

Health
Effects

Dose-Response

Exposure
Profile

Host Pathogen
Profile

ANALYSIS PHASE

Exposure
Analysis

Pathogen
Occurrence
(detection/survival
and spread)

Health
Effects
Disease
Severity
Secondary spread

Dose-Response

Relationship of MRA to VFAR

Hazard ID Source; Identification;
virulence; potential for severe 
outcomes

Dose-response Potency

Exposure Source; persistence  
(in nature, during 
disinfection)

Characterization Sensitive populations 
(receptors); Evolution of Pathogens

The HAZARDS

Pathogen Discovery in Intestinal
Tract and in Sewage Through 
Genomics

Microarray for Virus Discovery from Sewage  (Mark Wong, MSU)

·
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Biological Hazards
• Viruses, prions, bacteria, and protozoa are more likely than fungi

or helminths to be associated with emerging infections.

• Zoonotic pathogens comprise 75% of emerging infectious
diseases.

• Pathogens which are subject to relatively frequent mutation or
genomic reassortment events (e.g. RNA viruses and viruses with
segmented genomes) are more likely to emerge.

• Pathogens which infect multiple hosts or pathogens that infect
species that can harbour multiply closely related agents providing
an opportunity for reassortment or recombination (e.g. SARS in
cats) are likely to emerge.

• Agents transmissible by more than one route or by indirect
contact, e.g. water, food, environmental contamination, vectors,
etc, are likely to emerge.

Acute and Chronic Outcome Associated with
Microbial infections

Mental retardation, dementia,
seizures

Newborn syndrome,
hearing and visual loss

Toxoplama

Failure to thrive, lactose
intolerance, chronic joint pain

DiarrheaGiardia

Diabetes

Myocarditis

Obesity

Encephalitis, aseptic
Meningitis, diarrhea,
respiratory disease

Coxsackievirus B

Adenoviruses

Reactive arthrititisDiarrheaSalmonella,

Shigella, & Yersinia

Ulcers and stomach cancerGastritisHelicobacter

Hemolytic uremic syndromeDiarrheaE. Coli 015H7

Gullain-Barre’ syndromeDiarrheaCampylobacter

OutcomesOutcomesMicroorganism

Chronic diseaseAcute disease

Morbidity and Mortality greater in the Sensitive Populations
30% of our populations Fall into one of the Sensitive Populations 
at any one time.

ZOONOTIC
AGENTS
OPPORTUNISTIC
AGENTS
EFFECT
THIS
GROUP

DOSE-RESPONSE
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Human volunteers,

C. parvum,

DuPont et al.

(1995)

Okhuysen et al.

(1999)

Strain Differences

Potential for probabilistic

modeling of inter-strain

variability (Teunis and

colleagues)
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EXPOSURE ASSESSMENT

• Route of Exposure
• Duration of exposure

– Seconds, hours, minutes

• Number of exposures
– How many times in a day, month, year

• Degree of exposure
– Liters of water ingested
– Liters of air inhaled
– Grams of food ingested

Microbial Source Tracking

•Tools are now available
to determine the
molecular fingerprint of
the fecal pollution.
•Health risks
•Remediation
•Prioritization
•Responsibility
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Host Specific Markers are Key to
Source Tracking Future

• Bacteroides (genetic approaches PCR)
• 4/4 sewage; 4/4 human; 4/5 cow (lowest concentration

missed) 4/4 dogs however no marker for Birds:  Missed
2 samples with dog and 2 with cow that were mixed.

• E.coli Toxin genes able to detect sewage (4/4).

• Enteroviruses and Adenoviruses found in 3 of 4 sewage
samples.

• Enterococci ESP marker found in 109 human sewage
water samples and zero of 80 animal samples.

EXPOSURE ASSESSMENT

• Occurrence
• Survival
• Regrowth
• Accumulation
• Transport

Surrounding environment

4) Humidity, pH
5) Air temperature

UV exposure
Microbes present

Virus properties

1) type & strain
2) Initial titer of inoculum
3) Suspending medium

6) Porous or nonporous
State of cleanliness
Frequency of use
Moisture present

Fomite/surface properties

Virus survival on
 fomite

Inactivation Rates on Fomites
(Gerba and Boone, Univ Arizona)

0.0278 0.0417
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0.2

0.5

0.625
0.667

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
flu

en
za

 A
 

In
flu

en
za

 B
 

Cor
on

av
iru

s -
-2

29
E 

Rhin
ov

iru
s 1

4*
*

Par
ain

flu
en

za
 v

iru
s 2

Res
pira

to
ry

 sy
ncy

tia
l v

iru
s 

Cor
on

av
iru

s -
 O

C43

L
og

10
 r

ed
uc

ti
on

 p
er

 h
ou

r

Inactivation on Fomites
(Gerba and Boone, Univ. of Arizona

0.0021
0.00278 0.00278

0.0059

0.011

0

0.002

0.004

0.006

0.008

0.01

0.012

Astrovirus (serotype
4)

Hepatitis A virus Rotavirus p13 Calicivirus (fe line
strain F9)

Adenovirus 40
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Genetic
information

KNOWN
GENE  FUNCTIONS

(certainty of knowledge)

Unknown
Gene

Functions

VIRULENCE

(factor that has been
involved in or enhanced
the disease process)

OCCURRENCE

(factor that has been
used in the detection of
the organism)KNOWN

WATERBORNE
AGENTS

PRIMER SETS AND PROBES

WATERBORNE OUTBREAKS

New Tools and Data bases for
Assessing Occurrence and Safety

Understanding
Genetic
Detection in 
Water

Which sequence
For disinfection?
Removal capabilities

QPCR

QSARs
• Quantitative Structure-Activity Relationship used by EPA for

over 13 years for hazard risk evaluation of chemicals part of the
new chemicals program.

• First explored in 1950s by Hansch to correlate the molecular
structure to biological activity.

• 4500 citations
• Software program (PBT profiler) developed just released 10

years in the making. (enter by drawing the structure, entering the
identifying # or written chemical linear structure.

• Persistence (1/2 lives predicted ambient conditions.
• Bioaccumulation
• Toxicity (acute and chronic fish toxicity)
• Predictive, some uncertainty, limitations (does not do metals,

endocrines).
• Can place them into chemical categories.
• Defines high, medium and low risk.

WATERBORNE DISEASE
GENOMICS PROGRAM

A Long-term Commitment to Developing the Data,
the Technology, Supporting Analyses,
Algorithms and Research projects including a
Program in Functional Genomics is necessary.

Recognition that this is a predictive approach to
examining risk and uncertainty will be part of
the program.

May not work for all classes of Microbes equally.

to develop models, tools and information

that will be used in a credible risk

assessment framework to reduce or eliminate

health impacts from deliberate use of

biological agents of concern in the indoor

and outdoor environment.

to build a national network for microbial risk

knowledge management, learning and

transfer, for the community of scientists, and

students via educational programs and

community of professionals in the eld and

in our communities.

CAMRA

THANK YOU

Science for

Societal Benefits.
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VFAR: Factors Related to Genomic Variabilities

Syed A. HashshamSyed A. Hashsham

June 20, 2006June 20, 2006
9:50 AM9:50 AM

Associate Professor

Department of Civil and Environmental Engineering and
Center for Microbial Ecology

US EPA QSAR/VFAR Workshop
Cincinnati, OH

FACTORS RELATED TO DEVELOPMENTFACTORS RELATED TO DEVELOPMENT

The Overall ConceptThe Overall Concept
Tourlousse et al., Water Environment Research, 79 (2007)

Rotavirus
Hepatitis A

Norwalk virus

Cryptosporidium
Giardia

Yersinia enterocolitica
Campylobacter

Listeria monocytogenes
Salmonella

Pathogenic vibrios
Shigella

-
-
-
-

Escherichia coli

Depth: Strain

B
re

ad
th

:
V

ar
io

us
 A

ge
nt

s

Virulence Genes: 
antibiotic 

res
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nce,
 viru

len
ce

E. coli K
12

E. coli O
157:H7

E. coli O
26:H11

E. coli O
111:H8

E. coli O
121:H19

Viruses

Protozoa

Assumptions!Assumptions!

Bacteria

Tourlousse et al., 2006. Water Environment Research, Special Issue (Accepted)

Variable Virulence Factors- Variable EffectsVariable Virulence Factors- Variable Effects

 AB029904
 AB029903
 AB029905
 AB029906
 AB029911
 AB029912
 AB029913
 AB063111
 AB063112
 AB063113
 BA000031

 AB029915
 AB029907

 AB029909
 AB029908

 AY527397
 AY527396

 L11929
 AY527395

 AB029914
 AB029910

 AF532269
 AF532266
 AE017324

 AF532268
 AF532274

 AF532273
 AF532281

 AF532262
 AF532282
 AF532280

 AF532279
 AF532300

 AF532290
 AF532287
 AF532263
 AF532295

 AF532298
 AF532232

 AF532297
 AF532233

 AF532238
 AF532241

 AF532240
 AF532239

 AF532235
 AF532302

 AL591975
 AF532254

 AF532251
 AF532248
 AF532250
 AF532249

 AJ271407 zeta
 AF449416 zeta

 M58154
 AJ744865 alpha2

 AJ705050 nu
 AJ876647 omicron
 AJ748082 rho

 AJ308551 jota
 AF530553 jota2

 AF530557 lambda
 AF530554 epsilon2
 AJ705052 pi
 AJ879899 eta2

 AJ308550 eta
 AJ876651 epsilon4
 AJ303141 epsilon
 AJ876649 epsilon3
 AJ705051 xi

 AF081184 gamma
 BA000007 gamma
 AJ705049 mu

 AJ781125 sigma
 AF449415 theta
 AF253561 gamma

 AJ308552 kappa
 AJ875027 delta
 AJ715407 beta2

 AB040740
 AJ876653 beta3
 AF253560 beta
 AF081186 beta
 AY255520

A B C

Tourlousse et al., 2006. Water Environment Research, Special Issue (Accepted)

Specific ExamplesSpecific Examples

toxR of V. parahaemolyticus iap of L. monocytogenes eae of E. coli
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Tourlousse et al., 2006. Water Environment Research, Special Issue (Accepted)

Wide (and Dynamic) RangeWide (and Dynamic) Range of  of Genetic VariabilityGenetic Variability

Dynamic: Changes as the database grows!

Ranking the Marker Genes Specificity: Ranking the Marker Genes Specificity: FunGeneFunGene Pipeline Pipeline

Hundreds of genomes are now available!Hundreds of genomes are now available! Activities (as in VFAR) are not always available!Activities (as in VFAR) are not always available!

Virulence and Marker Genes (VMG) Database: DynamicVirulence and Marker Genes (VMG) Database: Dynamic CCL Organisms Compared to the VMG DatabaseCCL Organisms Compared to the VMG Database

Tourlousse et al., Water Environment Research, 79 (2007)
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FACTORS RELATED TO MONITORINGFACTORS RELATED TO MONITORING

1. Aeromonas hydrophila

2. Burkholderia pseudomallei, mallei

3. Campylobacter jejuni

4. Clostridium perfringens

5. Enterococcus faecalis, faecium

6. Escherichia coli, Shigella

7. Helicobacter pylori

8. Klebsiella pneumoniae

9. Legionella pneumophila

10. Leptospira interrogans

11. Listeria monocytogenes

12. Mycobacterium avium, paratuberculosis, tuberculosis, leprae

13. Pseudomonas aeruginosa

14. Salmonella typhimurium DT104

15. Staphylococcus aureus

16. Vibrio cholerae, mimicus, vulnificus

17. Vibrio parahaemolyticus

18. Yersinia enterocolitica, pestis, pseudotuberculosis

19. Cryptosporidium parvum, hominis
20. Giardia lamblia, intestinalis

Micro-Micro-fuidicfuidic Chip for 20 Waterborne Pathogens Chip for 20 Waterborne Pathogens

Probe  Resolution

“Functional”
genes

IG Spacer
region

16 S rRNA gene

G
en

et
ic

 v
ar

ia
ti

on

Ease of Universal Amplification

16S & 23S 16S & 23S rRNAsrRNAs vs. VMGs vs. VMGs

Multiplex PCR-amplification Multiplex PCR-amplification followed byfollowed by DNAchip-based amplicon identification DNAchip-based amplicon identification

DNA

multiplex PCR-amplification

up to 30 amplicons

in 1 reaction

mixture of amplicons

labeling of amplicons

identification of amplicons using DNAchip

Multiplex Amplification- A Must!

Without Multiplex Amplification With Multiplex Amplification

0.01 to 0.0001%~1 % of the population

Limits of Hybridization: 18-mer ProbeLimits of Hybridization: 18-mer Probe

Wick et al., 2006
Sample Size vs Signal Strength
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Screening for All Known VMGs

Tourlousse et al., Water Environment Research, 79 (2007)

Post-doctoral Associates:

Lukas Wick E. coli chip, Protocols
Jean Marie Rouillard Probe design
Yongmei Xia Target synthesis
Trinh Pham Goal Labeling

Doctoral candidates:
Robert Stedtfeld Pathogen chip/
Sam Baushke Bioinformatics/PCR-chip
Dieter Tourlousse Functional genes
Ruifang Xu Protocol optimization
Yu Yang Target gene
Munir Ahsan Chip modeling

Research Associates/MS:
Sarah Miller Time optimization
Vidya Srinivasan Gold laebeling

Undergraduates:
Amanda Herzog Hybridization

PIs:
James Tiedje Syed Hashsham  Erdogan Gulari
James Cole Joan Rose Thomas Whittam

CHIP
TEAM

National Institutes of Health-NCRR
Michigan economic Development Corporation

MSU Foundation
Department of Defense

Funding
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SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

1

SAIC Proprietary Information

R. Paul Schaudies, Ph.D.
schaudiesr@saic.com

EPA QSAR/VFAR Workshop
20-21 June 2006

A Bioinformatic Approach
to VFAR Analysis and

Characterization

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

2

SAIC Proprietary Information

Molecular RadarTM Biological
Identification Technology

• Highly multiplexed nucleic acid
hybridization based approach

• Target unique and virulence related
genetic regions

• Microarray format allows for
identification of tens of thousands
of individual sequences in parallel

• “Complete” genetic
characterization within 4-24 hours

• Customizable levels of resolution

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

3

SAIC Proprietary Information

Capabilities Offered
• Simultaneously identify multiple pathogens
• Strain level resolution
• Identify signs of genetic engineering
• Characterize unknown organisms
• Virulence factors and antibiotic resistance

characterization
• Functional equivalent of a 10,000-fold

multiplexed PCR reaction
• Technology is adaptable to multiple

platforms and applications

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

4

SAIC Proprietary Information

System Concept

• Computer
identification of
informative
DNA/RNA
sequences

• Identification of
candidate
oligonucleotides

• On-chip synthesis
of oligos

• Whole-genome
amplification with
label incorporation

• Hybridization on
chip

• Spot profile
identifies
sequences present
in original sample

Assay Development Routine Sample Analysis

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

5

SAIC Proprietary Information

Unique Sequences Generated by
FIGUR Software

Accession Number Organism Distirbution of Unique Sequences Unique Bases % Unique

NC_003997 Bacillus anthracis  chromosomal 232331/5227293 4.44%

NC_001496 pXO1 plasmid 62372/181654 34.34%

NC_007323 pXO2 plasmid 48345/94829 50.98%

NC_003909 Bacillus cereus  chromosomal 584913/5224283 11.20%

NC_005707      pBC10987 plasmid 91907/208369 44.11%

NC_004721      pClin15 plasmid 12095/15100 80.10%

NC_005957 Bacillus thuringiensis  chromosomal 159941/5237680 3.05%

AL_731825      pBToxis plasmid 48871/127923 38.20%

NC_005567      pGI3 plasmid 8365/11365 73.60%

NC_003143 Yersinia pestis  chromosomal 96032/4653728 2.06%

NC_002144      pYC plasmid 4475/5919 75.60%

NC_003132      pPCP1 plasmid 4764/9612 49.56%

NC_004835      pMT1 plasmid 26492/100984 26.23%

NC_006155 Yersinia pseudotuberculosis  chromosomal 261660/4744671 5.51%

*      pYPtb32953 plasmid 22572/27702 81.48%

* Yersinia enterocolitica  chromosomal 108867/4615899 2.36%

NC_005017      pYVe8081 plasmid 8802/67720 13.00%

NC_006570 Francisella tularensis 1304572/1895998 68.81%

* C botulinum 1370214/3886916 35 25%

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

6

SAIC Proprietary Information

SAIC VER 1 Pathogen Array

• Sequences selected following
initial screening arrays with
SAIC funding

• Organisms arrayed in groups to
aid rapid visual analysis

• Bioinformatics required for
detailed strain level analysis
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SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

7

SAIC Proprietary Information

B anthracis Sterne B anthracis Ames

PurpleControls

RedGenomic

YellowpXO2

BluepXO1

Spot ColorID

Bacillus anthracis Ames vs
Sterne on SAIC VER 1 Array

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

8

SAIC Proprietary Information

SAIC VER1 Array Hybridizations

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

9

SAIC Proprietary Information

Array Design Array Name Array Content # oligos
1672 Bacillus B. anthracis 2000

Array B. thuringiensis 1123
B. cereus 2000
Bacillus  Plasmids 621
Virulence Genes 60
Antibiotic Resistance Genes 196

1683/84/85 Mixed Bacterial F. tularensis 4544
Array Brucella suis 144

Brucella melitensis 167
Brucella abortus 176
Burkholderia mallei 4122
Burkholderia psuedomallei 4537
Escherichia coli  k12 343
Escherichia coli O157:h7 421
Escherichia coli  plasmids 46

1692/93 Clostridium Clostridium botulinum 4256
Array Clostridium tetani 1226

Clostridium perfringens 4532
Clostridium  plasmids 167

1644/45 Yersinia Yersinia pestis 1822
Array Yersinia pseudotuberculosis 4127

Yersinia enterocolitica 2127
Yersinia  plasmids 2473

1682 Mixed Virus Variola and 4 related species 41
Array Ebola 1198

Dengue Fever 762
Marburg 678
Lassa Fever 504
Rift Valley Fever 718
Machupo 502
CCHF 974
HIV 878
West Nile 558
Adenovirus 1012
Japanese Encephalitis 716
Norwalk 62

Examples of
Available
Arrays

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

10

SAIC Proprietary Information

Screening Array Ames vs Sterne

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

11

SAIC Proprietary Information

Species Level Differentiation for Yersinia

SAIC Proprietary Information

Y. pestis 966 oligos

Y. psuedotub. 347 oligos

Y. enterocolitica 834 oligos

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

12

SAIC Proprietary Information

Y. pestis CO92

Y. enterocolitica 9610Y. pseudotuberculosis 11960

# of Spots
16 Virulence 
10 Genomic

# of Spots
6 Virulence
14 pCD1
92 Genomic

Virulence Factors for Yersinia
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SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

13

SAIC Proprietary Information

Bacillus Differentiation Presented in 3-D
Format

SAIC Proprietary Information

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

14

SAIC Proprietary Information

B. anthracis Ames

B. cereus G9421
B. thuringiensis 97-27

# of Spots
16 Virulence 
313 pX01
47 Genomic

# of Spots
2 Virulence 

# of Spots
10 Virulence 
2 mRNA
2 Genomic

# of Spots
17 Genomic 

Virulence Factors for Bacillus

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

15

SAIC Proprietary Information

850Shigella flexneri

850Salmonella enterica

850Rickettsia conorii

850Pseudomonas aeruginosa

40Norwalk Virus

750Listeria monocytogenes

25Hepatitis D

750Helicobater pylori

750E. coli O157:H7

734E. coli K12

750Coxiella burnetii

750Clostridium botulinum

750Camphylobacter jejuni

148Calicivirus

750Burkholderia pseudomallei

750Burkholderia mallei

500Brucella melitensis

125Brucella abortus

467Aeromonas punctata plasmid pFBAOT6

560Aeromonas hydrophila

# oligosFood/Water Testing Array Content

Microarray Design For 
Various Pathogens

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

16

SAIC Proprietary Information

E. coli K12 vs E. coli O157:H7

SAIC ProprietarrySAIC Proprietary –
Competition Sensitive

17

SAIC Proprietary Information

Summary

• Molecular RadarTM provides high fidelity
identification and virulence factor
characterization of microorganisms

• We have achieved resolution down to
the level of strain for pathogens and
near-neighbor organisms

• We can design and validate arrays for
any DNA or RNA containing organism
at desired level of resolution

• Array can be tailored to different levels
of fidelity

• Capability exists today to analyze
samples
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From Reactivity to Regulation:
Integrating Alternative

Techniques to Predict Toxicity

Mark Cronin

School of Pharmacy and Chemistry
Liverpool John Moores University

England

Models

Mechanisms

Modes

Madness

Cytotoxicity vs Hydrophobicity for
Approximately 500 Chemicals
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An Unspecific Mechanism (Non-
Polar Narcosis) is Easily Predicted

6543210-1-2
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Unspecific Bioreactive Compounds

Toxicity = 0.65 log Kow – 0.34 Elumo – 1.11
n = 353   r2 = 0.86   s = 0.35

Toxicity of Specifically Acting
Electrophiles is Underpredicted
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The Toxicity of Specifically Acting
Electrophiles is Poorly Modelled by

QSAR Approaches

we are not very good at
parametrising

reactivity quantification of
reactivity is difficult

reactivity is poorly
quantified

reactivity is not
well parametrised

Quantitative Assessment of Reactivity:
Glutathione Reactivity Assay

• An olefin conjugated to a carbonyl group, is
inherently electrophilic

• Potential to act by Michael-type nucleophilic
addition to macromolecules

• Measured GSH reactivity is related directly to
cytotoxicity

log Toxicity = 0.95  log GSHreactivity + 0.54
n= 46      r2 = 0.91   s = 0.27   F = 460

Schultz TW et al (2005) SAR QSAR Environ. Res. 16: 313–322

Reactive Mechanistic Domains:
Electrophiles in Toxicology

• Michael acceptor
• SNAr
• SN2
• Schiff base
• Acyl transfer
• Metabolically activated compounds

In Chemico Assays for Reactivity:
Spanning the Electrophilic Mechanisms

Other Toxicity Endpoints with
Electrophilic Mechanisms

• Skin sensitisation
• Respiratory sensitisation
• Carcinogenicity/ mutagenicity
• Skin irritation
• Inhalation irritation
• Liver toxicity
• Idiosyncratic drug toxicity

Are they the Same Mechanisms?

• Chemically the mechanisms are the
same, the target and endpoint differ

• Useful information may be obtained if
we can extrapolate this information
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Application to Regulatory Problems

• New chemicals legislation will require
– Increased risk assessment
– Potential increase in animal testing
– Increase in cost

• There is an incentive for the greater
use of alternative methods

• We know we have a problem
predicting “reactive toxicity”

• How can we implement our
knowledge of reactive toxicity across
endpoints

Alternative Methods:
Integrated Testing Strategy

Existing Data for the Compound
or Similar Compounds

Computational Methods
QSAR, In Silico

Reactivity Data
In Chemico

In Vitro

Further Assessment

Risk
Assessment

Prediction Models for Reactive Toxicity:Prediction Models for Reactive Toxicity:
Application of Application of inin ChemicoChemico MeasurementMeasurement

Using gutathione reactivity as a model soft nucleophile:

• If Michael addend,  pIGC50 = 1.01 pEC50(GSH) + 0.57
Schultz TW et al (2005) SAR QSAR Environ. Res. 16: 313-322

• If R(GSH) > -0.55, chemicals are Skin Sensitisers
Aptula AO et al (2006) Toxicol. in Vitro 20: 239-247

Can we go in chemico to in silico?

Defra LINK Project:
Work Plan

WP1
Data

WP2
In Silico

WP3
In Vitro

WP4
Reactive

Mechanisms

WP5
Tools

WP6
ITS

WP7
Dissemination

WP8
Management

Conclusions

• Specific reactivity is poorly
parametrised in toxicology, but
underpins many endpoints

• Measuring reactivity in chemico has
been shown to assist in predicting
reactive toxicity better

• Needs for more reactivity data,
computational capability and
strategies for implementation
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Kannan Krishnan
Université de Montréal, Canada

Integrated QSAR-PBPK 
modeling for risk assessment

Outline
Introduction
QSAR-PBPK: Development
Risk assessment applications
Conclusion

QSARs – Current Paradigm

NOAELs vs chemical structure or props.

Context-specific QSAR

Duration of exposure (short-term)
Oral route
Species of interest (Rat)
For a different route, species & duration

Develop new sets of QSARs

Develop `extrapolable` QSARs

DOSE EFFECT

QSAR

QSARs – An alternative paradigm

Tissue dose
or Blood

Conc.QSAR QSAR

PK PD

• Relative contribution of the TK and TD processes
• Extrapolations based on TK determinants

QSAR: PK-TK

QSAR models are based on response-
specific dose level for each species

No efforts on the relationship between 
structure and internal dose

Can we develop QSARs for pharmacokinetic 
profiles ? (changing as a function of route, 
dose and species)

Inhalation, steady-state, rats…

Blood Concentration at Steady-state

C

t

[Steady-state]

CH3-CH2-X

CH3-X
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Blood concentration vs structure

H2 C5H9 CH3

(2.4)

H2 C5H9 C2H5

(2.8)

H2 C5H9 C3H7

(3.9)

H2 C5H9 C4H9

(4.0)

(CH3)2 C5H9 C2H5

(3.3)

(CH3)2 C5H9 C3H7

(5.8)

(CH3)2 C5H9 CH3

(3.1)

CH2 C5H9 C2H5

(11.7)

C5H9 C3H7

(15.0)

CH2 C5H9 C4H9

(16.3)

CH2

Structure vs Blood concentration

H2 C5H9 CH3

[ 2 x –3.25 ] + [1 x 6.8] + [ 1 x –1.2 ]C  = 

3.25 M=

PBPK Models

Physiology, partition coefficients, metabolic clearance

QSARs for PBPK Parameters

Fragment constant approach
Ppbpk = nf·Cf

Multilinear regression (SPSS®)

46 VOCs, Fragments: CH3, CH2, CH, C, C=C, 
H, Cl, Br, F, B-ring, 2 E1 substrates

Cross-validation, external validation

QSAR-PBPK Modeling

Parameters

Equations
Tissu adipeux

Foie

Tissu pauvrement perfusé

Tissu richement perfusé

Poumons ou branchies

Sang artériel Sa
ng

 v
ei

ne
ux

 

Ca, QcCv, Qc

Cex, Qv Cin, Qv 

Km, Vmax Métabolisme

CvL QL

QS

QR

QF

CvS

CvR

CvF

Physiology

Simulations Temps

C
on

ce
nt

ra
tio

n

Rat

Toluene DCM

Methyl chloroform Trichloroethylene

QSAR/PBPK modeling - Rat
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Chemicals in the application domain

Trifluoromethane
Dichlorofluoromethane
Bromodichloromethane
Bromoform
Dibromofluoromethane
Bromoethane
1,1,1-Tribromoethane
2,2-Dichloro-1,1,1-trifluoroethane
1,2-Dibromo-1,1,2-trifluoroethane
1-Chloropropene
1,2-Dichloropropene
1,3-Dichloropropene
1,1-Dibromopropene
1-Bromo-2-chloropropene

Pentane
Tribromoethylene
Tetrabromoethylene
1-Bromo-2-chloroethylene
m-Dichlorobenzene
Propylbenzene
1,2,4-trimethylbenzene
m-chloromethylbenzene
Ethyl benzene

Structure Input
@Chemical

Exposure Condition

Yellow Indicates User Input

QSAR/PBPK model – Ethyl benzene QSAR/PBPK model:Dichloromethane

Risk Assessment

Risk = q* d

Exposure
(d)

Toxicity
(q*)RISK
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Risk Assessment

dtissue = Human PBPK model

q* = Animal PBPK model

Tissue exposure
(dtissue)

Toxicity
(q*tissue)

RISK

QSAR-PBPK Models in 
risk assessment

QSAR-PBPK models facilitate internal dose based
risk assessment (lethal and non-lethal effects)

Influence of exposure concentrations, routes and 
scenarios can be examined

Effects on specific sub-populations can be
evaluated

Modeling of multiroute exposures for risk
assessment applications 

Frågor ?
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 Weight of Evidence Weight of Evidence
and Mode of Actionand Mode of Action

in Predictive Toxicologyin Predictive Toxicology

Dr. Andrew MaierDr. Andrew Maier

andand

Dr. Raghu VenkatapathyDr. Raghu Venkatapathy

June 21, 2006June 21, 2006

Weight of Evidence (WOE)Weight of Evidence (WOE)
in Risk Assessmentin Risk Assessment

• Risk Assessment Initiatives
- U.S. EPA Cancer risk assessment – requires addition of

a “weight of evidence narrative”
- Increasingly used in Hazard Screening Algorithms

(e.g., Health Canada ComHaz tool)
- Weight of evidence characterized by use of “totality of

the evidence” in making decisions about causality
- Emphasis on “Totality” has opened door for

predictive toxicity tools

• Evolving concept driven by
- Improved biology understanding (understanding of the

mode of action  or MOA)
- Increased sophistication and validation of alternative

study designs and consideration of study design (e.g.,
gene knock-outs)

- Improved quantitative tools (including toxicogenomics
and QSAR)

Role of Predictive ToxicityRole of Predictive Toxicity

Resolve

Conflict

Collect

Data

Characterize
Risk

Collect

Data

C
on

si
st

en
cy

Empirical Data Confidence
Inadequate Adequate

N
o

Y
es

= Candidates for Predictive Toxicity

WOE and QSARWOE and QSAR

Toxicology
WOE

Epidemiology

Animal

Toxicology

Toxicokinetics

Mechanistic Studies

QSAR

Tools for Evaluating WOETools for Evaluating WOE

• Hill criteria for causality
• Expert judgment

- Peer review/consultation
- Expert elicitation techniques

• Survey approaches
• Software tools

• Quantitative tools
- Decision and Uncertainty Analysis
- Bayesian Analysis

Biology understanding is needed forBiology understanding is needed for
interpreting resultsinterpreting results

?

Yes

Yes

Yes

Yes

Yes

Mouse
Lymphoma

NoYesAneuploidy

NoYes
Large
Chromosome
alteration

No?
Small
Chromosome
alteration

NoNoAllele Loss

YesNo
Oligonucleotide
insertion or
deletion

YesNoPoint mutation

Ames Bacterial
Mutagenicity

Chromosome

Aberrations in
CHO cells

Type of Damage

Genotoxicity QSAR Modules

Adapted from M. Moore (2004)
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Biological UnderstandingBiological Understanding

• Our level of understanding of the underlying
biological basis of toxic responses represents a
continuum.

• For risk assessment we often distinguish between
knowing the mechanism of toxicity versus the mode
of action.

• Mechanism of toxicity refers to a detailed
understanding to the cellular and subcellular level of
the basis for toxicity.

• Mode of action refers to a less detailed level of
understanding, but ability to identify key precursor
steps in the pathway to toxic response.

Defining Mode of ActionDefining Mode of Action

• A critical challenge in integrating mode of
action data in global QSARs is defining
appropriate predictors:

• What does mode of action mean?
- Target organ? (liver toxicity)

- General cellular response (necrosis)

- Subcellular target (ATP synthesis disruption)

- Potential presence of reactive moiety
(electrophiles, oxygen radicals)

Problem StatementProblem Statement

• Currently SARs and QSARs are often used as
independent tools, a practice that does not
optimize what can be learned when the
varying approaches are used in a coordinated
manner.

• Approaches for developing consensus
modeling approaches that use biology
understanding ( MOA) for integrating SAR
and QSAR models are needed.

Goal - Maximizing Use of BiologyGoal - Maximizing Use of Biology

• Mechanism of action known. Develop
mechanistic QSARs – excellent
predictivity – but limited applicability

• Biology unknown – use global statistical
QSAR – decreased predictivity – but
broad applicability

• Mode of action data available. develop
hybrid or MOA-informed QSAR –
balance of predictivity with applicability

Using MOA to Refine StatisticalUsing MOA to Refine Statistical
QSARsQSARs

Basic principles would indicate that correlations of similar
chemicals would improve prediction.

MOA in Logistic RegressionMOA in Logistic Regression

• Endpoint specific SAR models are often
designed as either expert system-based
models or statistical models

• A hybrid approach that uses logistic
regression analysis with a dummy dependent
variable coded 0 and 1 (for negatives and
positives, respectively) can allow the input of
key data derived from MOA decision rules.

• Probability of end point toxicity is:

1
log = bo + b1x1 + b2x2 + …. + bmxm
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UsingUsing ““OmicsOmics”” for Binning for Binning

• Toxicogenomics,
proteomics,
metabonomics already in
use for hazard
identification

• Used to identify MOA for
hypothesis testing

• Public databases will be
increasingly populated for
data mining

• These data can serve as
sorting variables to
enhance QSAR
development

Regression Tree ApproachRegression Tree Approach

Role of MOA based hybridsRole of MOA based hybrids
• Inform the interpretation of global QSARs -

e.g., identifying critical endpoints.

• Serve as sorting variables to bin chemicals for
development endpoint or MOA-specific
QSARs.

• If MOA biomarkers are used as dependent
variable, then serve as QSAR endpoint
verifiable by relatively non-invasive tests.

• Binned (or nodes) can be used for assigning
potency using group average or “Threshold of
Concern” approach.

ConclusionsConclusions
• WOE evaluation represents a maturation in

chemical risk assessment
• Critical use in resolving conflicting data – are

assays or predictive tools testing the same
thing? Can differences be explained by the
MOA understanding?

• Advances in basic biology (molecular and
cellular biology), chemistry (computational
chemistry), and mathematics (better statistical
and dose-response tools) should be used by
the risk assessment community

• Tool developers should make full use of our
mode of action understanding
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Novel Approaches toNovel Approaches to
QSAR & VFAR ModelingQSAR & VFAR Modeling

William (Bill) Welsh

UMDNJUMDNJ CompToxCompTox Center Center

welshwj@umdnj.edu

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 2

New JerseyNew Jersey Environmental BioinformaticsEnvironmental Bioinformatics

& Computational Toxicology Center& Computational Toxicology Center

Funded with support from the

U.S. EPA, National Center for Environmental Research
Science to Achieve Results (STAR) Program

William Welsh, Center Director

http://http://www.ebCTC.orgwww.ebCTC.org

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 3

Major Research Thrusts
• DORIAN Computational Toxicology System that spans the Source->Dose->Outcome continuum

• The Environmental Bioinformatics Knowledge Base (ebKB)

• ebTrack, a toxicological bioinformatics platform to process genomics, proteomics and

metabonomics data

• Hepatocyte Metabolic Model for Xenobiotics

• ChemTox, a suite of chem-informatics tools for toxicant identification, prioritization,

characterization

Consortium MembersConsortium Members

Center for Toxicoinformatics, NCTR

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 4

The environmental
bioinformatics Knowledge
Base (ebKB) serves as a
comprehensive
compendium of tools,
databases, and literature

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 5

ebTrackebTrack System: Extension of  System: Extension of Array TrackArray Track
- Bioinformatics Analysis of Microarray Data -

Apply to

Apply to

Significant genes can be identified based on:
• Cut-off of p-value (with or without Banferroni

correction), fold-change, intensity or combinations
thereof

• Volcano Plot (considering both p and fold-change
• P-value Plot (considering false positives/negatives)

Data uploading and QC

Expression pattern using
the bar chart plot

Scatter Plot

2-way HCA

PCA

Pathway analysis

Gene Ontology analysis

Individual gene analysis

Four normalization methods, including LOWESS

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 6

Overview of QSAR-based ApproachesOverview of QSAR-based Approaches

• Decision Forest (DF)

– fast consensus modeling technique that quantifies prediction confidence

• Shape Signatures

– enables fast large-scale screening of query chemicals against databases

    based on similarity in shape and other biorelevant molecular features

• Polynomial Neural Network (PNN)

– generates optimal linear or nonlinear QSAR models in parametric form

• Virtual High-Throughput Screening (vHTS)

– predict & quantify ligand binding affinity to proteins

– provide insights into mechanism of action (toxicity pathways)

– assess validity of cross-species extrapolation (e.g., rat vs. human)
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  Integrated Approach  Integrated Approach
Receptor-based Approaches

Ligand-based Approaches

Virtual Screening

PredictivePredictive
MolecularMolecular
ToxicologyToxicology

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati

Computational Screening ParadigmComputational Screening Paradigm

- Priority Setting -- Priority Setting -

untested
chemicals

Screening
Structural

Filters/Alerts
Hits

Active
Classification

Models

Inactive

QSAR
Models

overview

Tier I

Tier II

Tier III

Tier IV

- MW

- Structural properties

- Structural alerts

- Pharmacophores

- Decision Forest
- Shape Signatures

- PLS QSAR models

- PNN QSAR model
– Virtual HTS

- Other priority setting factors

- Modifying Tiers I, II, III

- Human expert knowledge

Rejection Filters

Active / Inactive Assignment

Quantitative Predictions

Knowledge-Base Approach

Schematic of Hierarchical Screening FrameworkSchematic of Hierarchical Screening Framework

- addresses the need to minimize false negatives and uncertainties -

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 10

Decision Forest (DF)Decision Forest (DF)

Tree 1 Tree 4Tree 3Tree 2

Input

Consensus
Prediction

- improve classification by combining individual models -

Key Features
• Combining several independent yet predictive trees improves performance
• DF structure permits assessment of prediction confidence, reduces uncertainty
• Each tree consists of simple 'If-Then' branches, hence the DF is extremely fast

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7
Number of trees

Misclassification

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 11

Schematic of Hierarchical FrameworkSchematic of Hierarchical Framework
- based on USFDA’s EDKB -

Tier I

Tier II

Tier III

Tier IV

- MW

- Structural properties

- Structural alerts

- Pharmacophores

- Decision Forest
- Shape Signatures

- PLS QSAR models

- PNN QSAR model

- Other priority setting factors

- Modifying Tiers I, II, III

- Human expert knowledge

Rejection Filters

Active / Inactive Assignment

Quantitative Predictions

Knowledge-Base Approach

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 12

Shape Signatures ToolShape Signatures Tool
START

OH

OH

Small molecule or
Protein binding pocket

PROCESSING

Ray tracing to
generate the raw data

OUTPUT

1D and 2D
Shape Signatures

Shape (1D)

Shape + Charge (2D)
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Shape Signatures Shape Signatures ToolTool
molecules are compared by subtracting their histograms

OH

OH

Diff = 0.082

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
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0.08

0.1
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0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

DES

17 -estradiol

Small Diff  value means that two molecules have similar shape and polarity

OH

OH
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Flowchart

   Shape Signature Databases
• General Database >4 million chemicals
• Kinase, GPCR, NR ligand databases
• PDB-extracted ligand database
• Receptor binding sites of 30,000 proteins (BWAs)
• Hazardous Chemicals (EDCs, H2O CCLs, DSSTox,
CWAs)

Filters

Chemical Database

Filtered Database

Calculate & Store
Shape Signatures

conformer & 
stereoisomer
generation

1D Shape Sig
Database

2D Shape Sig
Database

cluster

Molecular Sketcher

Molecular Viewer

Database Searching

Shape Signatures User Interface

Query

Analysis

Ray Tracing

Histogram

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 15

ChemicalChemical  Target Protein  Target Protein  Mechanisms Mechanisms

Shape Signatures of PDB-extracted ligands

Species/Protein FamilySpecies/Protein Family

Protein StructureProtein Structure

Protein Data Bank (PDB): World Repository of ~35,000
Protein-Ligand Crystal Structures (http://www.rcsb.org/pdb/)

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 16

Molecules       Target Protein        MechanismMolecules       Target Protein        Mechanism
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Query
Molecule

Matching 
PDB Ligands

Target
Proteins

Shape Sigs PDB Ligands Protein’s Binding Site

Public Databases

Links to 
Biological
Pathways
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Identifying Problem ChemicalsIdentifying Problem Chemicals
& Possible Surrogates& Possible Surrogates

"red flag" 
chemicals

surrogate
chemicals QUERY CHEMICAL

EPA
Databases

EDCs, CWAs, 
CCLs

pharmaceuticals
 & their biproducts

commercial
chemicals

Shape Signatures Libraries

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 18

Discovery of Previously Unrecognized EDCSDiscovery of Previously Unrecognized EDCS

Tamoxifen
(query)
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Shape Signatures: Discovery of Anthrax LF InhibitorsShape Signatures: Discovery of Anthrax LF Inhibitors

9736Maybridge--

9836Bionet--

98+38Asinex--

98+42Aldrich--

-39Merck

QUERY
LFI

(known
inhibitor)

9533NIH-NCI

QUERY
NSC 12155

(known
inhibitor)

%
InhibitionDocking

ScoreSourceStructureID

N
N
H

O

HO

NH2 N N

N
S

N
H

O

O
O

O

H
N

O

O

OH

HN

N
N

N

N

N

NH2
H
N

O

H
N

N

N H2

O
H
N

O NH

OH

S

O

OF

S503428 docked in the
ligand binding pocket of anthrax LF.

HIS686

ASP735

S503428

SER655
Zn

HIS686

ASP735

S503428

SER655
Zn
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Key Features of Key Features of Shape SignaturesShape Signatures
Innovative: Encodes molecular shape and other biorelevant features in a
single entity

Non-congeneric: Finds hits missed by techniques that search on chemical

    (sub)structure

User Oriented: fast, simple, expandable

Versatile: works for any number or type of molecular species (organics,
organometallics, ions, etc.)

Applicable in ligand-based mode (ligand-ligand similarity) and receptor-
based mode (ligand-receptor complementarity)

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 21

Schematic of Hierarchical FrameworkSchematic of Hierarchical Framework
- based on USFDA’s EDKB -

Tier I

Tier II

Tier III

Tier IV

- MW

- Structural properties

- Structural alerts

- Pharmacophores

- Decision Forest
- Shape Signatures

- PLS QSAR models

- PNN QSAR model

- Other priority setting factors

- Modifying Tiers I, II, III

- Human expert knowledge

Rejection Filters

Active / Inactive Assignment

Quantitative Predictions

Knowledge-Base Approach

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 22

•  Produces linear or non-linear
   QSAR models in parametric form

•  User control of model complexity

•  Insensitive to irrelevant variables
   and outliers

•  Yields predictive models, even for
    sparse or noisy data sets

•  Trains rapidly, thus amenable to
    large data sets

•  Automatically selects best indep.
   variables; no preprocessing required

•  Customizable to fit user's needs

Polynomial Neural Network (PNN)Polynomial Neural Network (PNN)
- combines the parametric form of PLS and the nonlinearity of ANNs -

Polynomial Neural NetworkPolynomial Neural Network

WW

Input layer Hidden layer Output layer

WW

Input layer Hidden layer Output layer

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 23

Biological Data Biological Data VFAR Databases & ModelsVFAR Databases & Models

Biological Input Data
• Regulated species
• Virulence factors (VF)

• Sequences
• Structures

Knowledge Base
• Candidate species

• Taxonomy
•  Ecology

• Candidate data
• DNA Sequences
• Translated Protein
   Sequences
• Structures

VFAR Models
• VF input sequence

and structures
• Virtual Screening

• Sequences (BLASTP)
• Domains (BLINK)
• Structures (VAST)

• Dynamic Updating

June 20-21, 2006 QSAR/VFAR Workshop, EPA-Cincinnati 24

BacteriumBacterium  VF  VF  VF Structure  VF Structure  Candidate Structure Candidate Structure

E coli  Cytotoxic 
Necrotizing Factor 

Type 1 (1HQ0)

Conserved hypothetical protein
from Caulobacter crescentus 

NCBI VAST tool

Vector alignment of 
the two structures

Vector-aligned Domains:
• Red - identical AAs
• Blue - non-identical AAs

Picking one 
E coli VF
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ThankThank You! You!

welshwj@umdnj.eduwelshwj@umdnj.edu
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Role of the European Chemicals Bureau in Promoting
the Regulatory Implementation of Estimation Methods

US EPA QSAR / VFAR Workshop, 21 June 2006

Andrew Worth

European Chemicals Bureau
Institute for Health & Consumer Protection (IHCP)

Joint Research Centre (JRC), European Commission
21020 Ispra (Va), Italy

http://ecb.jrc.it/QSAR E-mail: andrew.worth@jrc.it

Outline

1. The Joint Research Centre (JRC) & the European
Chemicals Bureau (ECB)

2. Use of estimation methods under REACH

3. ECB research in computational toxicology

4. ECB assessment of methods and models

5. Promoting (regulatory) acceptance and implementation

6. Training & capacity building

The European Commission’s Joint Research
Centre

Directorates-General

European Commission

Directorates or Institutes

Units European Chemicals Bureau (ECB)

European Centre for the Validation of Alternative Methods (ECVAM)

Physical & Chemical Exposure (PCE) Unit

JRC

Computational
Toxicology

Development, validation,
acceptance and implementation
of estimation methods

REACH Support
Guidance & tools for industry
& authorities

REACH IT &
Informatics

REACH-IT for Chemicals
Agency
IUCLID 5

The European Chemicals Bureau: http://ecb.jrc.it

Assessment of
chemicals

Existing Substances
New Substances
Biocides
Export / Import

Information requirements under REACH

Standard information requirements for chemicals are largely
tonnage dependent, however:

• Annex VI Specific requirements are context-dependent

• Annexes VII-X Standard information requirements

• Annex XI “Adaptation” of standard information requirements:
- replacing traditional test data with predictions or equivalent data
- providing standard information at lower or higher tonnages
- exposure-based waiving (Annexes VII & VIII, 100 tonnes)

- providing additional information (if necessary)

“Intelligent” rather than box-ticking approach to information gathering

Integrated Testing Strategies (ITS)

Endpoint-specific
 strategy

(Q)SARs
Chemical groups

non-animal
tests

Exposure
scenario

Other existing
information

C&L, risk assessment, PBT (vPvB) assessment

safe use of
 chemicals ?

 read-across

in vivo tests  Risk management 
measures
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Results obtained from valid qualitative or quantitative structure-
activity relationship models ((Q)SARs) may indicate the presence or
absence of a certain dangerous property. Results of (Q)SARs may be
used instead of testing when the following conditions are met:

Annex XI of REACH – (Q)SARs

• results are derived from a (Q)SAR model whose scientific validity
has been established

• the substance falls within the applicability domain of the (Q)SAR
model

• results are adequate for the purpose of classification and labelling
and/or risk assessment, and

• adequate and reliable documentation of the applied method is
provided

Substances whose physicochemical, toxicological and
ecotoxicological properties are likely to be similar or follow a regular
pattern as a result of structural similarity may be considered as a
group or “category” of substances.

Application of the group concept requires that physicochemical
properties, human health effects and environmental effects or
environmental fate may be predicted from data for a reference
substance within the group by interpolation to other substances in the
group (read-across approach). This avoids the need to test every
substance for every endpoint.

… If the group concept is applied, substances shall be classified and
labelled on this basis.

Annex XI of REACH – Categories (1)

In all cases results should:

• be adequate for the purpose of classification and labeling and/or
risk assessment

• have adequate and reliable coverage of the key parameters
addressed in the corresponding test method referred to in Article
12(2)

• cover an exposure duration comparable to or longer than the
corresponding test method referred to in Article 12(2) if exposure
duration is a relevant parameter, and

• adequate and reliable documentation of the applied method
shall be provided

Annex XI of REACH – Categories (2) Chemical category – administrative view

Activity 4

Activity 3

Activity 2

Activity 1

Property 4

Property 3

Property 2

Property 1

Chemical 4Chemical 3Chemical 2Chemical 1

reliable data point

missing data point

SAR / read-
acrossinterpolation

extrapolation

QSAR

Chemical category – QSAR
view

Score plot on connectivity and information indices
Cum E.V.(%)=71.6
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PC 1 (E.V.%=57.3)
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ECB research on computational toxicology (1)

1. QSARs for aquatic toxicity (& modes of action)

2. QSARs for bioaccumulation

3. QSARs for sensitisation

4. QSARs for endocrine disruption

Experimental log BCF
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LogBCF = 1.06 + 0.64 LogKow - 0.11 DMax_max - 0.20 ELUMO_min

ECB research on computational toxicology (2)

5. Methods for chemical similarity analysis and grouping
ECB workshop on TTC and grouping methods (Nov 05)

EU / OECD Guidance on grouping

6. Methods for descriptor-based ranking of chemicals
Workshop on Ranking Methods with Italian Chemometrics Society &
Milan Bicocca University (2-4 October 06)

7. Methods for defining (Q)SAR applicability domains

8. Weight-of-evidence in hazard & risk assessment

ECB workshop on consensus modeling (Sept 05)

9. Computational nanotoxicology

Chemometric Ranking Tools (1)
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Chemometric Ranking Tools (2)
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profile

1. QSAR validation studies (2005-2006)

Acute fish toxicity, skin penetration, skin sensitisation, steroid
hormone receptor binding

2. Validation of BfR rulebases

Skin and eye irritation / corrosion

Eye irritation

3. Validation of TerraQSARTM FHM model

4. Beta testing of AIM

5. Beta testing of AMBIT software for QSAR applications

http://ambit.acad.bg

ECB assessment of methods and models
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Promoting (regulatory) acceptance

1. EU Working Group on QSARs

Capacity building among regulators and industry

Scientific & technical preparations for REACH

2. OECD ad hoc Group on QSARs

Principles for QSAR validation (adopted)

Practical guidance on QSAR validation (under review)

Case studies on regulatory acceptance (completed)

ECB hosted meeting on 8-9 June 06, Stresa, Italy

3. OECD Validation Management Group for Non-Animal
Methods

ECB coordinates QSAR Task Group
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Promoting implementation: ECB QSAR Inventory

• ECB is designing a QSAR
Inventory

• Oracle database
• Will be available via ECB

Website
• Integration with ESIS

(European chemical
Substances Information
System)

• Uploading of models via
ECB website
(QSAR Reporting Formats)

• Quality check of models by
ECB

Structure-searchable Interface to ESIS and QSAR
Inventory

Structure- searchable
interface

H

H

H

H

O

O

O

O
R

R

Promoting implementation: Estimation tools

• ToxTree estimates toxic hazard by
applying the Cramer classification
scheme (33 structural rules)

• Groups chemicals according to
structure for Threshold of
Toxicological Concern estimation

• Developed by Nina Jeliazkova
(Ideaconsult Ltd, Sofia, Bulgaria)
(http://ambit.acad.bg) under ECB
contract

• Flexible – can be adapted to
encode different structural rules

• Freely available from ECB website

Where to find ECB QSAR tools: http://ecb.jrc.it/QSAR

Capacity building

1. Training on (Q)SARs for regulatory and industry end-users
1st ECB course: 19-21 October 2005. Sofia, Bulgaria
2nd ECB course: 24-25 July. Ispra, Italy

2. Training on decision analysis
ECB / INERIS workshop planned
(Nov-Dec 06)

3. Information tools via ECB website
Danish QSAR database

Challenges for the future

1. Need for capacity building (stepping stone to acceptance)
Training courses, workshops, learning by doing

2. Establishing the basis for REACH-implementation
Chemical databases and tools for property estimation
Guidance and criteria for use of (Q)SARs and grouping methods:
“Manual of Experience”

3. Research to fill the information gaps
ITS and its component parts, e.g.  new, tailor-made (Q)SARs
New methods for applicability domain assessment and chemical
similarity analysis
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The ECB QSAR Team
Arianna Bassan

Chemoinformatics, QSAR tools, computational nanotoxicology
Ana Gallegos Saliner

Chemical similarity, skin irritation
Tatiana Netzeva

Environmental QSAR, consensus modeling, training and enlargement
Grace Patlewicz

Human health QSAR, decision analysis
Manuela Pavan

Ranking methods, environmental QSAR
Ivanka Tsakovska

3D QSAR modeling, eye irritation
Andrew Worth

Human health QSAR, Integrated Testing, regulatory applications
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