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Chapter 2    Direct Simulation of Ground-Water Age

2.1  Introduction

The age of water in a groundwater system is useful for quantitative analysis.

Various environmental tracers can be used to estimate the time since recharge for

groundwater samples collected from various locations.  These age data can be used in

turn to constrain the parameters of models of flow and transport.  Isotopic information is

typically interpreted by using a travel time approach, simulating groundwater movement

as ‘piston’ flow.  Reilly and others (1994) show that an advective model of groundwater

age, simulated by numerical particle tracking, is consistent with the distribution of

chlorofluorocarbons and tritium observed in a shallow sand and gravel aquifer.  In the

advective model, the age is determined by the travel time of water, computed from

Darcy's law.  However, isotope transport in groundwater is often not by advection alone.

Several studies have indicated that estimates of groundwater travel time can be in

error if the effects of dispersion and mixing on isotope concentrations are ignored.

Plummer and others (1993, p. 287) give an overview of current methods for age-dating

groundwater, and point out, as have many others, that “Because environmental tracers are

dissolved solutes which are transported along with the ground water, it is usually

necessary to consider effects of hydrodynamic dispersion on the modeled age.”  Walker

and Cook (1991, p. 41) “show how neglecting diffusion can lead to serious

underestimates of groundwater ages in unconfined aquifers where recharge rates are

similarly low” when using the isotope carbon-14.  Maloszewski and Zuber (1991)

demonstrate the effects of matrix diffusion and exchange reactions on carbon-14

movement in fractured rocks and on groundwater age.  Geyh and Backhaus (1978)
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examine the effects of diffusion and mixing during pumping on carbon-14 distribution

and age.  The diffusion of carbon-14 from a confined aquifer into adjacent aquitards, and

the resulting effect on interpreted ages, is quantified by Sudicky and Frind (1981).  In

their review, Mazor and Nativ (1992, p. 211) identify “problem areas” in the

interpretation of groundwater age, including “lack of single recharge and discharge areas;

. . . entrapment of ground water in ‘dead’ volumes . . .; (and) mixing of ground water of

various ages.”

Incorporation of the effects of transport processes other than advection allows

additional information to be extracted from tracer distributions.  For example, Torgersen

and others (1978) estimate vertical diffusivity from observed tritium/helium-3

distributions in lakes.  Weeks and others (1982) used fluorocarbon distribution in the

unsaturated zone to estimate soil diffusion coefficients.  A model of age that incorporates

dispersion can be helpful in identifying the dispersive properties of the groundwater

system (Robinson and Tester, 1984), in addition to the mean flow properties.  Egboka

and others (1983) estimate longitudinal dispersivity from the observed tritium distribution

by fitting a one-dimensional model of tritium transport.  Musgrove and Banner (1993)

use isotopic information to help quantify mixing of distinct saline waters in a regional

scale flow system.

The effects of diffusion, dispersion, and mixing can be incorporated in a transport

simulation of the tracer or tracers of interest, for example tritium (Nir, 1964; Simpkins

and Bradbury, 1992; Solomon, et al., 1993).  Tritium is an isotope of hydrogen that is

incorporated in water molecules.  Simulation of tritium transport by use of a model that

accounts for dispersion and diffusion reflects the underlying dispersion and diffusion of

water molecules, and these water molecules have different ages.  Thus, the age of the

water itself is affected by diffusion, dispersion, and other hydrodynamic processes.

In the same way that particle tracking is used to generate groundwater age for the

case of advection alone, simulation of groundwater age as affected by dispersion and
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mixing, without resort to separate models for separate tracers, can be useful.  Such an

analysis complements, but does not replace, simulation of transport of the tracer of

interest, which can be affected by processes, such as sorption and chemical exchange

(Fritz et al. 1979), that do not affect the water.

The concept of a residence-time distribution has been used for many years to

describe the statistics of the lifetimes of components in a flowing reactor (MacMullin and

Weber, 1935; Danckwerts, 1953).  This approach is chosen because molecules do not

behave identically, rather mixing, diffusion, and variability in flow conditions result in

different paths and residence times for different molecules.  Residence-time distributions

have been widely applied to the analysis of chemical reaction systems (Levenspiel,

1972).  Eriksson (1958), Bolin and Rodhe (1973), and Nir and Lewis (1975) discuss the

application of residence-time-distribution theory to steady and transient geophysical

systems.  Robinson and Tester (1984) use residence-time distributions determined from

tracer tests to analyze dispersion in a fractured geothermal reservoir.  Campana and

Simpson (1984) apply some of these concepts to isotopic age dating of groundwater with

a discrete-state (as opposed to continuous-state) compartment model in which separate

areas of the groundwater system are treated as mixed reservoirs.

The underlying connection between the residence-time distribution and transport

of an ideal tracer can be exploited to develop residence-time distributions corresponding

to solutions of the advection-dispersion transport equation (Danckwerts, 1953; Wen and

Fan, 1975; Nauman, 1981; Zuber, 1986).  Danckwerts (1953) describes how the

residence-time distribution can be determined experimentally from the outflow

concentration of a nonreactive tracer.  In this context, the mean age at a point, determined

from temporal integrals of the concentration (described below), is affected by all of the

processes accounted for in the solute-transport equation, including dispersion and mixing.

The connection between resident concentration and probabilistic travel-time approaches

to simulating groundwater transport is described by Shapiro and Cvetkovic (1988) and by
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Dagan and Nguyen (1989), who discuss advantages of the travel-time approach for some

analyses.  Recently, Harvey and Gorelick (1995) present a general framework for

application of temporal moment-generating equations to reactive transport.

It is shown in this chapter that the distribution of groundwater age obeys a special

form of the solute-transport equation.  The mean age can be simulated directly in an

analytical or numerical transport model and the result of the simulation—that is, the

predicted ‘concentration’—is the mean age.  This spatial age distribution is obtained

directly, without further manipulation external to the transport simulation.  For steady-

state flow conditions, the age transport equation is derived from previous results on the

residence-time distribution in systems governed by the advection-dispersion equation.

This form has been presented previously for analysis of mean or ‘local’ age of air in a

room during ventilation (Sandberg, 1981).  A more general derivation here for transient

flow conditions is based on the assumption of conservation of imaginary ‘age mass.’

This derivation also incorporates exchange processes; this framework is used to examine

the impact of matrix diffusion on steady-state age.  The method is illustrated by several

example simulations, including cases representative of mildly-heterogeneous porous

media and highly-heterogeneous fractured rock.
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2.2  Derivation of Mean-Age Transport Equation

2.2.1  Residence-Time Distribution

Danckwerts (1953) defined a function C(t) to characterize the residence-time

distribution for molecules in a chemical reactor.  This function corresponds to the

concentration at the reactor exit of a solute that is injected as an impulse (unit mass in an

infinitely small time period) at the reactor entrance at time zero.  For one-dimensional

piston flow (advection only) conditions, the function C(t) is zero except at the time equal

to the advective travel time of the system, at which time the function is a Dirac delta.  In

the case of complete mixing, C(t) is an exponentially decaying function; the outflow

concentration is equal to the uniform concentration within the reservoir, which decreases

because of the addition of tracer-free fluid at the inflow.  For transport in porous media,

the function C is analogous to the outflow mass flux (mass per unit time) of a column,

that is c, the concentration measured in flux (Kreft and Zuber, 1978).  In multi-

dimensional systems, the mass injected on all inflow boundaries is proportional to the

fluid flux across the boundary.  Levenspiel (1972) and Wen and Fan (1975) present

several models for transport in flowing reactors and their respective C functions.

The mean residence time in a steady-flow domain can be determined from the

concentration of a tracer injected as an impulse at time zero as:

A  =  

t c dt
0

∞

c dt
0

∞
   =   E

M
(2.1)

where A is the mean residence time, or the mean age of molecules, in the reactor

(Spalding, 1958). The numerator of (2.1) is a concentration-weighted average time,
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which I will denote as E.  This form is similar to the expectation of a random variable t

with probability density function c.  The denominator normalizes the numerator such that

c divided by the time integral of c has the properties of a probability density function.

This integral, which is constant and uniform for steady flow (Spalding, 1958), will be

denoted as M.  This term is uniform for multi-dimensional systems provided the mass

injected on inflow boundaries is proportional to fluid flux across the boundary (see

Harvey and Gorelick, 1995).

For transport by advection and dispersion in a constant-density fluid, the

concentration satisfies

∂ cθ
∂t

  =  ∇•θD•∇c - ∇•qc (2.2)

where θ is the moisture content (porosity for saturated flow); D is the dispersion tensor;

and q is the specific-discharge vector.  A standard model of dispersion in groundwater is

assumed such that the product of moisture content and the dispersion tensor, D, is given

by

θDij   =  θDm + αTq δij  + αL - αT  
qiqj
q (2.3)

where Dm is the diffusion coefficient; the Kronecker delta is δij = 1 if i=j and δij = 0 if

i≠j; αL and αT are, respectively, the longitudinal and transverse dispersivities; qi is a

component of the specific discharge vector; and q is the magnitude of specific discharge.

Multiplying (2.2) by time and integrating through all time gives (Spalding, 1958):

- θM  =  ∇•θD•∇E  -  ∇•qE    . (2.4)
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The left side of (2.4) is obtained through integration by parts of the time derivative term.

Dividing by M, which is uniform and can be brought inside the spatial derivatives, and

assuming porosity is also uniform, gives

∇•D•∇A  -  1
θ

 ∇•qA  +  1  =  0 (2.5)

where the defined mean age A = E / M has been substituted (see Sandberg, 1981, for

comparison).  Thus, the mean age at a point satisfies a steady-state advection-dispersion

transport equation with an internal source of unit (1) strength.  A more general form of

(2.5) is derived in the next section by assuming that age is conserved under mixing.  This

derivation also leads to natural choices for boundary conditions for (2.5) to complete the

mathematical framework.

Computing age by particle tracking corresponds to solution of (2.5) without the

dispersion term.  In this case, particle paths are defined by the characteristics of the

governing equation and the increasing travel time corresponds to the unit source in (2.5).

Equation (2.1) can be used to calculate mean age within a small volume from a particle

tracking analysis to include, for example, the mixing induced by sampling.  The methods

presented here for age simulation also may be useful in accounting for the effects of

dispersion and mixing on other analyses involving groundwater and travel time such as

contamination from landfills (Lee and Kitanidis, 1993) and time-dependent capture zones

(Bair et al., 1990).

2.2.2  Conservation of Age Mass

In this section, a more general form of the age transport equation is derived from

mass-conservation principles.  Assuming that the mean age of mixed waters is a mass-

weighted average, then the mean age is analogous to a conservative solute concentration.

Although age is not a directly-measurable physical property, and thus this assumption
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cannot be verified experimentally, it seems suitable for our conceptual model that when

two water masses are mixed, the mean age of the mixture is the mass-weighted average

age of the mixed components.  It may be possible to experimentally verify this

assumption using a tracer that has an input function that varies linearly with time.  A

given mass of water with a mean age A can be assumed to be characterized by its ‘age

mass,’ the product of the mean age and the water mass, A ρ V, where ρ is water density

and V is water volume.  Assuming that the density of the water is constant, the mean age

of a two-component mixture is a volume-weighted average:

A  =  A1 V1 + A2 V2
V1 + V2

(2.6)

where the subscripts distinguish the components.  This is completely analogous to the

concentration of a conservative solute under mixing in constant-density water.  This

analog can be exploited to derive a governing transport equation for mean age.

A governing equation for age-mass transport can be derived from a simple box

balance similar to the derivation of the mass-transport equation by Konikow and Grove

(1977; see also Bear, 1979).  Consider conservation of age mass in a control volume

(dimensions ∆x by ∆y by ∆z) of aquifer material.  The age mass within the control

volume is the product of the age (A) and the mass of water, θ ρ ∆x ∆y ∆z.  The age-mass

flux (per unit area) across the boundaries of the control volume is designated J, with

components Jx, Jy, and Jz, and includes advection with the water as well as dispersive

flux.  Over a time step of length ∆t, the age mass of the water initially in the control

volume increases by the product of ∆t and the mass of water.  Additionally, an internal

net source of age mass of rate F is included to account for, for example, net exchange of

age mass with separate phases.  Physical processes included in F are described below.

Assuming that the age mass is conserved, a difference form of a conservation equation is



13

A(t + ∆t) θ ρ ∆x ∆y ∆z  =  A(t) θ ρ ∆x ∆y ∆z +  ∆t θ ρ ∆x ∆y ∆z  +

∆t  ∆y ∆z Jx(-∆x/2) - Jx(+∆x/2)   +∆x ∆z Jy(-∆y/2) - Jy(+∆y/2)   + (2.7)

 ∆x ∆y Jz(-∆z/2) - Jz(+∆z/2)    +  F ∆t ∆x ∆y ∆z    .

Dividing by the volume and the time-step length, and allowing the size of the control

volume and the time-step length to go to zero in the limit gives the governing partial

differential equation for mean-age transport:

∂ Aθρ

∂t
  = θρ -  

∂ Jx

∂x
  -  

∂ Jy

∂y
  -  

∂ Jz

∂z
  + F

 
 
= θρ -  ∇•J  + F     .

(2.8)

This form of the mean-age transport equation is more general than (2.5) in that the

water density is allowed to vary, the model of dispersive flux is not specified, and the

equation is transient.  The mean age spatial distribution can be determined from (2.8)

even for aquifer systems with unsteady flow, provided the flow history is known.  The

ability to simulate the transient evolution of groundwater age may be useful, for example,

in assessing the impact of climate change on large aquifer systems.

To complete the governing equation, a description of dispersive age-mass flux in

terms of age, or its gradient, is needed.  Here, I adopt the standard model of mass flux

such that J is composed of advection, diffusion, and dispersion modeled as Fickian

diffusion.  That is, J in (2.8) is replaced by

J  ≈  A ρ q - θρD•∇A (2.9)
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where D is the dispersion tensor and includes a diffusion term.  By substitution, the

governing equation becomes

   ∂ Aθρ
∂t

= θρ - ∇•Aρq + ∇•θρD•∇A + F    . (2.10)

If the porosity and density are constant in time and uniform in space, (2.10) becomes

∂ A

∂t
  = 1 - ∇•A 

q

θ
  + ∇•D•∇A  + F

θρ
    . (2.11)

Under steady flow conditions the time derivative in (2.11) (or (2.10)) can be set to zero to

derive a governing equation for steady-state mean-age spatial distribution.  A steady-state

age distribution does not exist if both q and D are zero.  The steady-state equation

derived from (2.11) is the same as (2.5) derived above from residence-time distribution

theory, with an additional source term F, which is discussed below.  Initial and boundary

conditions for the mean-age transport equation can be specified from the control-volume

balance.

2.2.3  Boundary and initial conditions

The age of groundwater is relative to the time at which the water entered the

system.  That is, recharge to the system is assumed to have age zero.  From the definition

of age mass, the age-mass flux, the product of age and water-mass flux, is also zero at all

inflow boundaries.  Furthermore, the age-mass flux across all no flow boundaries is also

zero.  These conditions can be written as:

J  Γ1
 • n  =  0 (2.12)
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where Γ1 is a noflow or inflow boundary and n is its unit outward normal.  Note that

(2.12) uses the previous notation for total age-mass flux, J, which includes dispersion as

well as advection.  Thus, no dispersion is assumed to occur upstream across the boundary

against the direction of the incoming flow.

The boundary condition on outflow boundaries depends on the physical situation.

A common assumption, which I will adopt here, is that mass flux across an outflow

boundary occurs only by advection.  This condition of no dispersion across the boundary

can be written

D ∇A  Γ2 • n  =  0 (2.13)

where Γ2 is the outflow boundary.  This condition probably is most appropriate for

discharge to surface-water bodies.  Alternate boundary conditions for other physical

situations, such as advection and dispersion into a separate aquifer outside of the

simulation domain, also can be formulated, but they are not pursued here.

The general form of the governing equation for mean age transport is transient.  If

the flow field is steady, then the steady distribution of mean age is determined by solution

of the steady-state form of the governing equation, similar to (2.5).  In this case, an initial

condition is not required.  If the flow field is not steady, then the transient form of the

governing equation for age transport must be used and an initial condition is required.

That is, the initial mean age at every point within the aquifer system must be specified.

For simulation times that are very long, relative to the rate of advection through the

aquifer system, the groundwater age is insensitive to the initial age distribution, although

the initial age is required mathematically to yield a solution.
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2.2.4  Internal source of age mass

The internal net source of age mass, F, can account for several processes.  Many

aquifer systems are modeled in only the horizontal dimensions because vertical head

gradients and flow rates are assumed to be small.  A governing equation for this case can

be obtained from (2.5) or (2.11) by vertical integration across the saturated thickness.  In

the resulting two-dimensional model, F could include the age-mass flux due to inflow

from an underlying hydrogeologic unit.  For example, for the case of leakage through an

aquitard, F would be the product of the leakage water mass flux rate and the age of the

leakage, and would be positive for the case of inflow to the aquifer of interest.  Similarly,

evapotranspiration from a two-dimensional horizontal model would be treated as a net

sink of age mass and F would be negative.

The internal sink/source term F could represent age-mass exchange between

phases, for exmaple during unsaturated flow through partially frozen soil.  In this case,

some of the flowing water may freeze, acting as a sink for age mass, or stationary ice of a

different age may melt, acting as a source of age mass for the flow system.  Of course, as

with the other examples, for the case of age-mass sources such as melting ice, the age of

the source water must be specified or determined from a separate, possibly coupled,

mathematical model.

For the general three-dimensional model, F could represent sources and sinks of

age mass due to multi-continua exchange.  For example, flow in fractured rock can be

modeled as a two-domain system, with separate transport equations for high-permeability

fractures and for the rock matrix.  Exchange of water between the fractures and the rock

matrix would include an exchange of age mass.  For the fracture domain, F would be the

product of the rate of water-mass inflow from the matrix and the age of that water.  The F

term for the rock-matrix equation would be of equal magnitude but opposite in sign.

Low-flow or stagnant zones are not necessarily included in this internal source

term, but can be handled directly in the governing equation.  In such zones, the advective
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flux is small and the groundwater age is determined primarily by diffusion, which is

included in the dispersion tensor D.  In the absence of diffusion, the age of water at a

stagnation point in a steady flow field is by definition infinite.  However, this infinite age

applies only to a point which has infinitesimally small fluid volume.

2.2.5  Effect of matrix diffusion at steady state

The age-mass concept can be used to evaluate the effect of matrix diffusion on

steady-state age distribution.  Consider age-mass transport in a fractured rock system

which is modeled as advection and dispersion in a continuum of connected fractures,

coupled with diffusion to and from the rock matrix.  In this case, F represents the rate of

age-mass transfer between the rock matrix and the fractures.  Hence, F appears as the

boundary flux for an equation governing age-mass transport within the rock matrix.  In

general, the solution of this problem would require solution of two coupled transport

equations.  However, for the case of steady-state age distribution, F can be computed

directly.

Under steady-state conditions, an integrated age-mass conservation equation for

the rock matrix has only three components: (1) accumulation of age-mass (zero for steady

state), (2) boundary flux, and (3) production of age-mass by aging.  Because (1) is zero in

steady state, (2) and (3) must balance.  Hence, the net boundary flux F of age-mass out of

the rock matrix into the fracture is equal to the total age-mass production rate in the

matrix, which is the product of the rock porosity and the water density in the rock matrix

Hence, at steady state (2.10) can be written

   0 = θρ - ∇•Aρq + ∇•θρD•∇A + θmρm    , (2.14)

where θm is the bulk porosity of the rock matrix and ρm is the density of water in the

matrix.  In this case, the porosity of fracture system (θ) is the bulk fracture porosity: the
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total volume of the fractures per unit volume of aquifer.  Assuming that the density of

water is constant, and that both fracture and rock porosities are uniform, (2.14) can be

simplified to:

   
0 =1 - ∇•A

q
θ + θm

+
1

θ + θm
∇•θD•∇A

    . (2.15)

Thus, the age distribution is identical to that of a single continuum system in which the

porosity is the sum of the fracture and rock matrix porosities.  The apparent velocity is

'retarded' compared to the velocity of water in the fractures alone, and the rate of

dispersive spreading is likewise reduced by the total porosity.  Of course, this analysis

assumes that the age distribution is in steady state.  Because of the slow rate of diffusion

in rock, disequilibrium between the age-mass production in the rock and diffusion out

into the fracture may exist for millions of years.
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2.3  Examples

2.3.1  Regional Flow in Cross Section

The mathematical theory for simulation of groundwater age developed in the

previous section is applied to a regional model of groundwater flow and transport in

cross-section.  This application demonstrates the practical simulation of groundwater age

distribution using the age transport equation, both with and without dispersion.  The

impact of heterogeneous hydraulic conductivity and porosity, and of matrix diffusion on

age distributions are illustrated.  Six hypothetical aquifer systems are considered:

• uniform aquifer with homogeneous hydraulic conductivity and porosity;

• layered aquifer in which a high-permeability layer exists at depth;

• discontinuous layered aquifer in which a high permeability layer at the aquifer

bottom is discontinuous; in this case, the permeability contrast is 100:1;

• stratified heterogeneous aquifer in which several discontinuous horizontal high-

permeability (100:1) zones occur at different depths; results are presented for uniform

porosity and nonuniform porosity.

The uniform and layered configurations are similar to those analyzed by Freeze

and Witherspoon (1967) in a landmark series of papers in which they used numerical

flow models to study the characteristics of regional groundwater flow.  The flow equation

is solved using a block-centered finite-difference flow model, MODFLOW (McDonald

and Harbaugh, 1988).  A three-dimensional method-of-characteristics solute transport

model, MOC3D (Goode and Konikow, 1991; Konikow and others, 1996), is modified to

solve the age transport equation, including the zero-order source term for age in equation

(2.10).  In contrast to finite-difference or finite-element numerical solutions of the

transport equation, MOC3D is well suited to the case of advection alone, D=0.

The domain geometry and boundary conditions are identical for the six

hypothetical regional aquifers considered.  The domain is 1 km long and 100 m thick.
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Except where noted, this spatial domain is discretized by 10 rows in the vertical direction,

each 10 m thick, and 50 columns in the horizontal direction, each 20 m long.  Noflow

boundary conditions are specified on the left, right, and bottom boundaries.  The top

boundary represents the water table and is modeled here with a combination of specified-

flux and specified-head conditions.  The change in the position of the domain boundary

due to movement of the water table is considered to be a minor effect, and is ignored

here.

The uniform and layered regional flow systems modeled here are similar to those

considered by Freeze and Witherspoon (1967), but a different water-table boundary

condition is used.  Freeze and Witherspoon (1967) used numerical flow models to study

the effects of nonuniform hydraulic conductivity on regional groundwater flow.  As

previously noted by Freeze and Cherry (1979, p. 204), the results obtained by Freeze and

Witherspoon (1967) were affected by the choice of specified-head boundary conditions

along the entire water table, the top boundary of the flow domain.  With this approach,

variations in subsurface permeability lead to significant changes in recharge magnitude

and distribution, without affecting water-table altitudes.  For the simulations here, I

choose boundary conditions at the opposite extreme, where the recharge is modeled as a

specified-flux boundary condition (fig. 2-1).  In reality, both water-table altitudes and net

groundwater recharge are sensitive to subsurface permeability.  Specified-head conditions

similar to those of Freeze and Witherspoon (1967) are used at discharge locations.  Thus,

water-table altitudes are free to change in response to various hydraulic-conductivity

configurations, but the recharge distribution is identical in both cases.  These simulations

yield greater changes in hydraulic heads but smaller changes in flow rates compared to

the simulations of Freeze and Witherspoon (1967).

The first two cases are identical except that in the layered case a high-

permeability layer occurs at the aquifer bottom.  The isotropic hydraulic conductivity of

the homogeneous aquifer is K1 = 10-6 m/s and its porosity is 0.2.  The hydraulic
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Figure 2-1  Flow boundary conditions on top of cross-sectional model of regional aquifer

system showing specified-flux values for recharge nodes and specified-head values

for discharge nodes.

conductivity of the layered aquifer system is the same in the upper 70 m of the system,

but is ten times greater, K2 = 10 x K1 = 10-5 m/s, in the lower 30 m .  The porosity is the

same for both layers, 0.2.

Figures 2-2a and 2-3a show the head distribution and groundwater-flow velocities

for steady-state conditions, and figures 2-2b and 2-3b show corresponding streamlines for

the uniform and layered cases.  The imposed boundary conditions and uniform

properties lead to a smooth distribution of head and gradual variations in velocity for the

uniform aquifer (fig. 2-2a).  In the layered case, most flow occurs through the deep layer ,

where the hydraulic conductivity is greater (fig. 2-3a).  Because the transmissivity is

greater, water-table altitudes are lower in the layered than in the uniform case.  Velocity

changes abruptly at the interface in the layered case, yielding refracting streamlines (fig.

2-3b), that contrast with the smooth streamlines throughout the uniform aquifer (fig. 2-

2b).
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Figure 2-2  Results of direct simulation of groundwater age in a uniform regional aquifer

system in which the hydraulic conductivity is 10-6 m/s:  (a) Cross-sectional domain

with hydraulic-head contours (0.4 m interval) and velocity vectors.  Vertical

exaggeration is 2X and the 10 row by 50 column finite-difference grid used for the

numerical flow and transport solutions is indicated by the small ticks on each axis.

(b) Streamlines from recharge to discharge locations.  (c) Contours of simulated

groundwater age for advection only (Dm = αL = αT = 0).  Contour interval 10 years.

(d) Contours of simulated groundwater age for advection and dispersion using Dm =

1.16 x 10-8 m2/s, αL = 6 m, and αT = 0.6 m.  Contour interval 10 years.
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Figure 2-3  Results of direct simulation of groundwater age in a cross-section through a

layered regional aquifer system in which the bottom layer is 30 m thick with

hydraulic conductivity 10-5 m/s, and the overlying layer is 70 m thick with hydraulic

conductivity 10-6 m/s:  (a) Cross-sectional domain with hydraulic-head contours (0.2

m interval) and velocity vectors.  Vertical exaggeration is 2X and the 10 row by 50

column finite-difference grid used for the numerical flow and transport solutions is

indicated by the small ticks on each axis.  (b) Streamlines from recharge to discharge

locations.  (c) Contours of simulated groundwater age for advection only (Dm = αL =

αT = 0).  Contour interval 10 years.  (d) Contours of simulated groundwater age for

advection and dispersion using Dm = 1.16 x 10-8 m2/s, αL = 6 m, and αT = 0.6 m.

Contour interval 10 years.
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The groundwater age throughout the aquifer is readily simulated by solving the

advection transport equation with the zero-order source term that accounts for aging (figs.

2-2c and 2-3c).  For the uniform case, velocities are lowest along the no-flow boundaries

on the left, bottom, and right.  Along the right boundary, ages are the greatest at the

bottom and decrease toward the discharge boundary at the top.  Ages might be expected

to increase continually toward the top of the right boundary, and this in fact occurs on

individual streamlines.  But the ages portrayed in Figures 2-2c and 2-3c are volume

averages over 10 x 20 m cells.  These cell-averaged values do not increase because

converging streamlines near the discharge boundary bring younger water into the cells

along the right boundary.  That is, the maximum age at a point is at the top right corner of

the domain, but the average age for the cell containing this point is less because of the

convergence of streamlines in the cell.

The age distribution in the layered case is nonuniform and ages are greatest in the

central part of the system, away from the boundaries (fig. 2-3c).  Because the

permeability of the lower layer is higher, the lowest velocities do not occur along the

bottom of the system, but along the bottom of the upper layer.  As with the homogeneous

case, volume-averaged ages decrease toward the discharge boundary because the

streamlines converge.  The maximum water age in the layered aquifer system is about 90

years, whereas the maximum age in the uniform case is about 180 years.  As discussed

above, the total discharge through the aquifers is identical as a result of the specified-flux

boundary conditions for recharge to the water table.

This result of greater maximum ages in the uniform case is highly dependent on

aquifer structure and boundary-condition configuration.  Simulation of a layered aquifer

system identical to that shown here, but with the hydraulic conductivity of the lower layer

decreased to 10-7 m/s, yields very different results.  In this case, the upper portion of the

system is more conductive than the lower and ages in the upper layer are similar to those

in the homogeneous case.  In the lower layer, however, flux and velocity are significantly
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reduced because of the low permeability, and very old water is present, especially

towards the right side of the domain.  Maximum volume-average ages for this case, with

advection alone, are more than 1,000 years.

The effect of dispersion on the groundwater age distribution is easily obtained by

re-solving the transport equation and including dispersivities of αL = 6 m and αT = 0.6 m

for the longitudinal and transverse components, respectively.  In addition, a diffusion

coefficient of Dm = 1.16 x 10-8 m2/s is added to the dispersion tensor.  This diffusion

coefficient is about ten times higher than realistically expected values, and is used to

illustrate the maximum likely effect of diffusion in these hypothetical aquifer systems.

The effect of this diffusion alone is examined below.

Dispersive and diffusive mixing of water of different ages tends to limit the

maximum ages (figs. 2-2d and 2-3d).  Solute dispersive flux occurs, according to the

generally accepted Fick's law model, in the direction of decreasing concentration.  In

complete analogy, the dispersive flux of age mass occurs in the direction of decreasing

age, away from areas of maximum age.  Where advective flux is relatively small—that is,

where velocity is small—the effect of this dispersive flux on age distribution is greatest.

The effect of longitudinal dispersion is mitigated in the case of age transport because,

along a streamline, age increases smoothly in the direction of flow due to aging.  Thus the

steep longitudinal gradients typically associated with an advancing solute front are not

present.  However, steep gradients in age are present transverse to the flow direction,

particularly in the layered case (figs. 2-3c and 2-3d).  In these areas of steep gradients

dispersion can have the greatest effect on groundwater age.  Figure 2-4 is a contour map

of the percent change in groundwater age, ranging from -37 to +64 percent, due to

diffusion and dispersion for the layered case.
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Figure 2-4  Percent difference in simulated age distribution between advection only and

advection-dispersion (Dm = 1.16 x 10-8 m2/s, αL = 6 m, αT = 0.6 m) cases in a

layered regional aquifer system.  The percent difference in simulated age ranges from

-37 to +64 percent.

To examine further the relative contribution of diffusion and dispersion to the

previous results, and to compare the theory developed here with residence-time-

distribution (particle tracking) methods, a simulation of the layered case is conducted

with advection and diffusion, but without dispersion.  Figure 2-5 shows the results

obtained by the theory proposed here, which are similar to those for advection alone, but

exhibit a slight reduction in maximum ages.  In the bottom layer, where velocities are

high, diffusion has no observable effect on age distribution.  Figure 2-5 also shows results

of a particle-tracking model applied to the same problem.  Particle paths and travel times

are computed by linear velocity interpolation (Goode, 1990) and a random walk

(Kinzelbach, 1988) to simulate diffusion.  The groundwater age distribution is computed

by numerical integration of equation (2.1).  The close agreement between results obtained

by using these alternative methods further supports the theoretical arguments presented in

section 2.2.
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Figure 2-5  Contours of simulated groundwater age in a layered regional aquifer system

for advection and diffusion obtained by using proposed transport equation method

(solid lines), and by using a particle tracking and random walk method (dashed lines).

The diffusion coefficient is 1.16 x 10-8 m2/s and the contour interval is 10 years.

The discontinuous layered case is derived from the layered case but has a

discontinuous bottom layer of even higher permeability.  Here the high-permeability

layer occurs only across part of the regional flow system in three sections.  The bottom

30 m of the aquifer system has hydraulic conductivity K3 = 100 x K1 = 10-4 m/s in  zones

between 0-200 m, 400-600 m, and 800-1000 m distance from the left.  The hydraulic

conductivity is the same as the uniform case, K1 = 10-6 m/s, in the rest of the aquifer.  The

same value of porosity is used throughout the aquifer system, 0.2.

Flow is significantly diverted into the discontinuous high-permeability zones

because of the 100 fold higher permeability (fig. 2-6a).  The flow system is characterized

by downward flow in the areas upgradient of and over the high-permeability zones, and

upward flow at the downgradient end.
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Figure 2-6  Results of direct simulation of groundwater age in a cross-section through a

discontinuous layered regional aquifer system in which three high-permeability

zones occur at the bottom.  Each zone is 30 m thick with hydraulic conductivity 10-4

m/s and the horizontal extents are between 0 - 200 m, 400 - 600 m, and 800 - 1000 m

from the left boundary.  The remainder of the aquifer system has hydraulic

conductivity 10-6 m/s. (a) Streamlines from recharge to discharge locations. Vertical

exaggeration is 2X and the 10 row by 50 column finite-difference grid used for the

numerical flow and transport solutions is indicated by the small ticks on each axis. (b)

Contours of simulated groundwater age for advection only (Dm = αL = αT = 0).

Contour interval 10 years.

The pattern of ages from advection alone is complex, even for this relatively

simple case with only three high-permeability zones.  As shown in Figure 2-6b, the

nonuniform permeability distribution leads to widely varying travel times.  As in the

layered case, low horizontal velocities occur immediately adjacent to the high-

permeability zones because their presence significantly reduces the local hydraulic
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gradient.  Hence, ground-water ages change significantly between adjacent flow lines

depending on their history - whether they pass into high-permeability zones or pass

through low-velocity areas adjacent to high-permeability zones.

The stratified heterogeneous case has several discontinuous high-permeability

zones at different depths.  The bulk of the aquifer has K1=10-6 m/s.  Several very high

permeability features are included; these features have K3 = 100 K1 = 10-4 m/s.  The

porosity is uniform, θ=0.2. The two-order-of magnitude contrast in hydraulic

conductivity causes a very complex flow pattern.  Much of the horizontal flow occurs

within the horizontal high-permeability features (fig. 2-7a).  However, these features do

not connect with each other, or with the top boundary.  Outside of the high-permeability

features, flow is primarily vertical, either between separate high-K zones, or between the

upper high-K zones and the recharge/discharge boundaries at the top.

Although ages generally increase from left to right, in the direction of the overall

flow, the age distribution is so complex that interpretation of the ages alone would be

difficult (fig. 2-7b).  For example, several closed contours of ages less than 40 years

occur for 600 ≤ x ≤ 1000 m.  As with the layered case above, these closed contours occur

because of the averaging of ages in model cells.  Within high-K zones, the age is an

average of many streamlines, some of which are very old.  As these streamlines diverge

downstream of the high-K zone, the youngest streamlines occupy cells in which no very-

old streamlines occur, yielding younger cell-average ages.  Conceptually, the cell-average

age may represent the age of a sample taken from that location that mixed waters from

the entire cell space, rather than the age at a point.  This particular configuration yields

youngest average ages outside the high-K zones, which is somewhat counter-intuitive.

However, the occurrence of the oldest waters beneath the lower high-K zones re-

emphasizes the shadowing effect of high-permeability features which reduce gradients in

surrounding low-K areas.
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Figure 2-7  Results of direct simulation of groundwater age in a cross-section through a

stratified heterogeneous regional aquifer system in which eight discontinuous high-

permeability zones occur at three different depths.  Each zone is 30 m thick with

hydraulic conductivity 10-4 m/s and with horizontal extent of 200 m.  The remainder

of the aquifer system has hydraulic conductivity 10-6 m/s. Porosity is uniform, θ=0.2.

(a) Streamlines from recharge to discharge locations. Vertical exaggeration is 2X and

the 10 row by 50 column finite-difference grid used for the numerical flow and

transport solutions is indicated by the small ticks on each axis. (b) Contours of

simulated groundwater age for advection only (Dm = αL = αT = 0).  Contour interval

10 years.

The second stratified heterogeneous case is derived from the previous case by

changing the porosity of the lower 90 m of the system to θ2=0.01.  The hydraulic

conductivity distribution is the same as the previous case, so the head gradients and

fluxes are the same, but the velocity is increased by a factor of 20 in the lower part of the

aquifer.  This case illustrates the effect of stratified porosity; here the upper zone may

represent a weathered rock zone with high porosity, and the lower zone may represent
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unweathered rock with both highly-fractured and less-fractured zones.  The ages in the

fractured rock are lower than the previous case because of the reduced porosity, although

the pattern of age variability is similar in many respects.  However, the 20X large

porosity in the overburden layer causes ages to be highest at the top of the system where

significant horizontal flow occurs in the top layer.  Maximum ages of about 40 years

occur near the left end of the discharge region, and these ages are similar to the ages in

the previous simulation at the same location.  For this location, the main control on the

age is the time spent in the top layer, and that has not changed because the porosity of the

top layer, and of course the specific discharge everywhere, is identical to the previous

simulation.
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Figure 2-8  Results of direct simulation of groundwater age in a cross-section through a

stratified heterogeneous regional aquifer system in which eight discontinuous high-

permeability zones occur at three different depths.  Each zone is 10 m thick with

hydraulic conductivity 10-4 m/s and with horizontal extent of 200 m.  The remainder

of the aquifer system has hydraulic conductivity 10-6 m/s. Porosity is θ=0.2 in the

upper 10 m and is θ2=0.01 in the remainder of the aquifer.  (Streamlines are the same

as fig. 2-7a)  Contours of simulated groundwater age for advection only (Dm = αL =

αT = 0).  Contour interval 10 years.
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In summary, these regional cross-section examples illustrate the utility of the

method of direct simulation of ground-water age, and the complexity in spatial age

patterns that can be created by heterogeneities in hydraulic conductivity and porosity.

The methods presented here for direct simulation of ground-water facilitate computation

of age throughout an aquifer with simple modifications to existing solute transport

models.  Although environmental tracers offer additional information, compared to

hydraulic head measurements, it may not be easy to unravel the underlying permeability

distribution from spatially variable age distributions; highly complex age patterns emerge

from relatively simple simulations, albeit ones with at least one order of magnitude

variability in permeability.

2.3.2  Matrix Diffusion from a Single Fracture

Matrix diffusion can be an important aspect of transport of solutes in ground

water, particularly in fractured-rock settings.  Matrix diffusion generally refers to

diffusive exchange between high-permeability fractures or fracture zones and low-

permeability rock matrix, whether much less fractured or unfractured.  Water flow occurs

primarily in the fractures and flow is often modeled ignoring the permeability of the rock

matrix.  However, diffusive exchange of solutes between the flowing water in the

fractures and the immobile water in the rock matrix can have significant impacts on

solute migration (Grisak and Pickens, 1980; Sudicky and Frind, 1982).

The impact of matrix diffusion on age transport is examined here for a one-

dimensional flow system using MOC3D (Goode and Konikow, 1991; Konikow and

others, 1996) modified to solve the transient age transport equation (2.10).  A 1 m long

column is discretized with 10 cells (∆x = 0.1 m).  Imposed fixed-head boundary

conditions yield a specific discharge of 1 m/day, and the porosity of 0.01 results in a

uniform velocity of 100 m/day.  This porosity represents the high-permeability fractures

in the rock column.  Ignoring dispersion and matrix diffusion, the steady-state age at a x

= 9.5 m is simply the travel time: A (x=9.5) = x / V = 9.5 m / 100 m/day = 0.095 day.
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At steady state, the effect of matrix diffusion is an apparent increase in porosity,

from that of the fractures alone, to the sum of both fracture and matrix porosity (θm ; eq.

2.15).  In this case, the apparent travel time to x = 9.5 m, and the steady-state age, is A =

x / [q/(θ + θm) ] = 9.5 m / [1 m/day / (0.01 + 0.09) ] = 0.95 day, or an increase by an

order-of-magnitude.  This increase corresponds directly to the increase in porosity from

0.01 to 0.10.  However, the rate at which this steady state is approached depends on the

system properties.

The exchange of age-mass between the fractures and the rock matrix is the term F

in the governing equation (2.10).  In the rock matrix, the age transport processes are

limited to accumulation, production, and diffusion.  Diffusion is assumed to be one-

dimensional in the rock matrix, orthogonal to fractures.  An integral balance equation for

age-mass in the rock matrix is

   d Am
dt

=1 –
β Am–A

θm
    . (2.16)

where Am is the average age in the rock matrix, A is the age in the fracture system at the

same location, β [T-1] is a linear exchange coefficient characterizing diffusion between

the fracture and the rock matrix, and the density is assumed to be constant.  The term F in

the fracture governing equation is F = ρβ (Am - A) and corresponds to the age-mass flux

into the fractures per unit volume of aquifer.

The linear exchange coefficient is generally proportional to the diffusion

coefficient (Dm) divided by a characteristic length (b) squared:

   
β ∝

Dm

b2     . (2.17)



34

For example, for the case of planar fractures, the linear exchange coefficient

corresponding to a 1-node finite-difference approximation is given by:

  
β =

1
2

Dm

b2
    . (2.18)

where b is the block half-thickness.  This simple linear model of matrix diffusion is

strictly accurate only for relatively small diffusion distances, i.e. small b.  However, this

kinetic exchange model can be considered a first-order approximation of the impact of

exchange between high-permeability and much lower-permeability portions of a flow

system, whether limited strictly to diffusion or not.

The initial age is assumed to be zero throughout the aquifer.  At early time, water

at all locations ages as simulation time progresses (fig. 2-9).  If the linear exchange

coefficient is low (β = 10-4 m2/day in fig. 2-9), then the age temporarily stabilizes at a

level corresponding to the travel time in the fractures alone, 0.095 day.  However,

eventually the age in the matrix builds up to such high levels that the age-mass flux into

the fracture is sufficient to increase the age in the fractures, and eventually reach a new

plateau corresponding to the travel time computed from the total porosity, 0.95 day.  The

magnitude of the linear exchange coefficient (β) controls the time at which matrix

diffusion has a significant impact on computed ages.  For very high β, the initial plateau

is not present because the fracture and matrix ages are essentially in equilibrium at all

times (fig. 2-9).

Equation (2.16) can be used to compute the steady-state age in the rock matrix

from the steady-state age in the fracture:  Am = A + θm / β.  Hence for this case the steady-

state ages in the matrix at x = 9.5 m for β = 1, 10-2, and 10-4 day-1 are Am = 0.185, 9.095

and 900.095 days., respectively.
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Figure 2-9  Age at x = 9.5 m from the inflow boundary of a one-dimensional rock column

having fracture porosity 0.01, rock matrix porosity 0.09, and specific discharge 1

m/day.  The initial condition is age = 0 at all locations.  Age is shown as a function of

simulation time for three values of linear exchange coefficient (β) characterizing the

rate of mass transfer by diffusion between the flowing water in the fractures and the

immobile water in the rock matrix.

2.3.3 Age of Pumped Samples from a Heterogeneous Formation

The age in a ground-water system can be estimated from concentrations of

environmental tracers in samples pumped from wells.  For example, the time since water

has been isolated from the atmosphere can be estimated from CFC concentrations

because the atmospheric concentration has been increasing for about the last 50 years

(Plummer et al., 1993).  When drawing water from a well, particularly one with a long

screened or open interval, the pumped water is a mixture of water from different parts of

the aquifer.  This mixing can significantly complicate or add uncertainty to estimation of
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ground-water age.  Furthermore, the age of discharging water after a pump is turned on

would change in time as water from a larger and larger capture volume enters the well.

A hypothetical simulation illustrates use of the direct age method to model the

time-evolution of age in water discharging from a pumping well in a highly

heterogeneous formation.  This simulation is based on a well-field scale model developed

by Paul Hsieh (USGS, Menlo Park, California, written communication, 1994) of ground-

water flow during an aquifer test in fractured rock at Mirror Lake NH.  Aquifer hydraulic

properties (Table 2-1) were estimated by calibrating steady-state and transient models of

three-dimensional flow during the test.  These properties are used here in a model of both

steady-state age distribution and age transport during pumping tests.

Table 2-1.  Hydraulic Properties of Three-Dimensional Model of Highly-Heterogeneous

Formation (Paul A. Hsieh, U.S. Geological Survey, written communication, 1994).

Hydraulic Conductivity (m/s)

Hydrogeologic Unit Model Layers Horizontal Vertical

Overburden 1-5 1.8 x 10-6 1.8 x 10-6

Bedrock Surface between 5 & 6 -- 1.9 x 10-8

Highly-Fractured parts of 11, 22 & 38 5.6 x 10-5 --

Less-Fractured 6-38 3.3 x 10-8 1.9 x 10-7

The model grid is 22 rows x 14 columns x 38 layers.  The grid spacing is uniform

throughout the grid with ∆x = ∆y = 7.62 m, ∆z = 1.5 m.  The highly-fractured zones of

the bedrock are simulated as 1.5 m thick porous media units with much higher hydraulic

conductivity than the surrounding bedrock (fig. 2-x).
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Figure 2-10  Hydraulic conductivity distribution for three-dimensional highly-

heterogeneous case.  Weathered zone at top (dark gray) has K = 2.7 x 10-6 m/s; four

horizontal highly-fractured zones (black) occur at three different depths and have K =

8.4 x 10-5 m/s; the remainder of the less-fractured bedrock  has K = 5 x 10-8 m/s.

The initial steady-state distribution of ground-water age is assumed to represent

conditions prior to pumping.  The average annual recharge of 368 mm/yr is distributed

over the top of the model.  All other boundaries are no-flow, except the face at y = 168 m

where the head in all model layers is fixed at 0.0.  Age is simulated only in the bedrock

portion of the aquifer and it is assumed that all water inflowing from the overburden has

age zero.  For advection alone, the age distribution is efficiently computed using particle

tracking and equation (2.1).  For the age simulation, the bedrock porosity is assumed to

be 0.001, which corresponds to a bulk porosity of fracture volume per unit volume of

rock.

Maximum ages occur at the bottom of the system where less-fracture bedrock

underlies the highly-fractured zones (fig. 2-11; fig. 2-12).  Flow is generally downward

from the overburden into the horizontal fracture zones, and then laterally out along the

downgradient face (front face in fig. 2-11; right end of cross-section in fig 2-12 (a)).  The

fracture zone at the bottom of the model is shown as the area of blue age in fig. 2-11.
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The maximum ages are diluted downgradient from the red area by much younger waters

in the fracture flow system.  Resulting outflow face ages are high only at the very bottom

of the aquifer (fig. 2-12(b)).
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Figure 2-11  Results of direct simulation of steady-state groundwater age in a highly-

heterogeneous fractured bedrock.  Hydraulic properties are shown in fig. 2-10 and

summarized in table 2-1.  Also shown are locations of wells which are not pumping in

this simulation.  The colors correspond to age, ranging from less than 3 years (white)

to greater than 700 years (black).
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Figure 2-12  Results of direct simulation of steady-state groundwater age in a highly-

heterogeneous fractured bedrock.  Hydraulic properties are shown in fig. 2-10 and

summarized in table 2-1.  (a) Y-Z cross-section along the middle of the model at

column 7 (x=53 m), variable contour intervals in years.  (b) X-Z cross-section at the

outflow end of the model along row 21 (y=160 m), contour intervals are 50 years.
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Ground-water age in pumped samples is evaluated for four fracture-zone well

locations.  In each case, the initial age distribution is that from the previous steady-state

age simulation.  A steady-state flow field is generated for each pumping scenario by

imposing no-flow boundaries on the model bottom and all four sides.  The top layer of

the overburden is modeled as a fixed-head boundary from which all of the flow to the

well is ultimately derived.  Each well is pumped separately at a rate of 10.6 L/min.

The evolution of ground-water age of pumped samples is different for each well

(fig. 2-13).  Wells 1 and 2 are in downgradient and upgradient fracture zones near mid-

depth in the model.  Age in downgradient well 1 increases sharply at early time from

about 37 years to over 40 years, levels off near 43 years, and appears to be gradually

increasing after 10 hours of pumping.  Well 2 is in the upgradient fracture zone at the

same depth, and its age is initially higher.  Age in well 2 drops, but not as sharply in time,

from 54 years to less than 46 years and then increases to about 56 years at the end of the

simulation.  The small-scale fluctuations in the age are numerical artifacts of the discrete

method-of-characteristics model (Konikow and other, 1996).

Ground-water age in samples from wells 3 and 4 decrease logrithmically in time

from the initial values (fig. 2-13).  Well 3 is located (fig. 2-11) in the bottom fracture

zone and has the highest initial age, over 200 years.  However, the age decreases sharply

to less than 120 years after 2 hours of pumping and is less than 100 years after 10 hours.

Well 4 shows a similar pattern, but at much younger ages.  This well is located in the top

fracture zone, much closer to the recharge source in the overburden.  Ages in samples

from well 4 decrease from over 12.5 years initially to less than 8.5 years after 10 hours.
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Figure 2-13  Sample age as a function of pumping time in a highly-heterogeneous

aquifer.  Age transport to the pumping well is simulated with four different steady-

state flow models having only the well of interest pumping.  The initial age

distribution for each case is the steady-state age shown in fig. 2-11.  Hydraulic

properties are shown in fig. 2-10 and summarized in table 2-1. Locations for each

well are shown in fig. 2-11.
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2.3.4 Two-Dimensional Age Distribution in Mildly-Heterogeneous Porous Media

Simulation of the age distribution in a hypothetical aquifer illustrates features of

ground-water age in relatively homogeneous systems.  Intensive field tracer experiments

have been conducted at a military reservation on Cape Cod, Massachusetts.  LeBlanc and

others (1991) describe a natural gradient tracer test conducted over 2 years using

nonreactive and reactive tracers in a relatively homogeneous sand and gravel aquifer.

Garabedian and others (1991) analyze the spreading of a nonreactive tracer and estimate

asymptotic dispersivities from the temporal growth in the spatial moments of the tracer

distribution.  Hess and others (1992) compare field and laboratory measurements of

hydraulic conductivity and estimate macrodispersivities from theoretical relations.

A hypothetical two-dimensional aquifer is generated that has heterogeneous

hydraulic conductivity with spatial statistics similar to those from the Cape Cod tracer

test.  The turning bands methods (Mantoglou and Wilson, 1982; Zimmerman and Wilson,

1989) is used to generate a spatially correlated field of hydraulic conductivity (K).  K is

assumed to be lognormally distributed with mean 110 m/d (Garabedian et al., 1991) and

variance of the natural log of K = 0.24 (Hess et al., 1992).  An exponential spatial

covariance function is assumed with zero nugget and isotropic correlation length of 2.6 m

(Hess et al., 1992).  The grid is 100 m by 20 m and is discretized by 500 x 100 square

blocks having ∆x = ∆y = 0.2 m.  The single realization of K used (fig. 2-14a) reflects the

underlying statistical properties: most of the K values are clustered near and below the

mean value, the size of the high and low zones are larger than individual grid blocks and

smaller than the grid dimensions; only a few isolated zones exhibit K > 300 m/d.
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Figure 2-14  Age simulation in a mildly heterogeneous two-dimensional aquifer: (a)

Hydraulic conductivity distribution; (b) Hydraulic head contours (0.01 m interval)

and age distribution for advection-only.

The boundary conditions for the steady-state flow model are h(x=0) = 0.148 m;

h(x=100 m) = 0 m; and no-flow at y = 0 and y = 20 m.  These boundary conditions, along

with an assumed porosity of 0.39 (LeBlanc et al, 1991) yield an average velocity of about

0.4 m/d.

The steady-state age distribution (fig. 2-14b) is more variable than the head

distribution and indicates significant persistence of thin ‘fingers’ of contrasting age.
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Youngest ages occur along a somewhat continuous zone of elevated K in the upper half

(y<10m) of the aquifer.  However, an adjacent zone with older water reflects the impact

of a large zone of low K located at about (x,y)=(20m,5m).  The resulting large difference

in age between closely space streamlines persists downstream to the end of the aquifer.

This ‘slip’ between adjacent streamlines would be modeled as longitudinal dispersion if

the small-scale K variability were not explicitly accounted for.

The spatial variability of the steady-state age distribution can also be illustrated by

plots of age as a function of distance.  In the longitudinal direction, the age generally

increases more or less smoothly in the average direction of flow (fig. 2-15a).  For much

of the domain, the variability in the x-direction is relatively smooth, as illustrated by the

lines at y = 7.3 and 13.3 m.  The overall rate of increase in age versus x shown for these

two lines essentially brackets all longitudinal transects in this simulation.  Significantly

more variability along x is illustrated near the position of the large low-K zone, as shown

by the line at y = 5.3 m.  At this position, the age does not monotonically increase in the

mean direction of flow.  For example, the water at (x,y) = (45m,5.3m) is about 30 days

older than water 5 m further down (the mean) gradient at (x,y) = (50m,5.3m).  Close

examination of other lines indicates that in this simulation all lines have portions where

age decreases in the mean flow direction.  This decrease in age in the mean flow direction

is due to the difference between the actual streamlines and the mean path.
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Figure 2-15  Age variation along lines oriented longitudinal (a) and lateral (b) to the

average flow direction for a mildly heterogeneous two-dimensional aquifer.
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Variability in age is pronounced in the y-direction, lateral or transverse to the

mean flow direction (fig. 2-15b).  The variability is less at the upstream boundary

because by definition the age is uniform at 0 days at x=0.  A significant peak of older

water develops between x = 10 and 30 m because of the large low-K zone discussed

above.  Although the y position of this peak shifts due to shifting flowlines, the

magnitude of the difference between the age on this peak and on adjacent streamlines

persists through the simulated domain.
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2.4  Summary

A new method is developed to simulate groundwater age.  The spatial distribution

of groundwater age is governed by a transport equation that has an internal source of unit

(1) strength, corresponding to the rate of aging.  This governing equation is derived both

from residence-time-distribution concepts, and from mass-conservation principles applied

to conceptual age mass.  This method of groundwater age simulation falls between

existing approaches of, on one hand, simulation of groundwater age as governed by

advection alone, by using a particle tracking model and, on the other hand, simulation of

isotopes or chemical markers of interest in a solute transport model.  Use of the theory

presented here allows general simulation of groundwater age, without solute-specific

modeling, by incorporating the physical effects of diffusion, dispersion, mixing, and

exchange processes on age.  These methods can be incorporated easily in existing models

of transport in aquifers.

Application of this theory is illustrated for several examples.  The impact of

layered heterogeneity on regional scale age distribution is examined in cross-section for

cases with and without dispersion and diffusion.  Average ages are not highest at the

discharge boundary in many cases, and the shadowing effect of high-permeability units

on gradients in surrounding low-permeability units is illustrated.  Matrix diffusion causes

a ‘retardation’ of apparent velocity at steady state, but the rate at which steady state is

approached may be slow, as controlled by diffusion in the rock matrix.  The age transport

equation is a convenient method of examining the time variation of age of pumped

samples.  For the case examined, the time history of age of pumped samples depends on

the local conditions near the well and may result in large changes in age during pumping

at some locations.  Finally, a relatively homogeneous example illustrates that even when

the spatial variability of hydraulic conductivity is relatively small, the age distribution is

not smooth.  The age is much more sensitive to variability in K than the head.  Hence,
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deviation of age from the mean value can provide significant information about

heterogeneity.  On the other hand, interpretation of mean age from a limited number of

point samples is complicated by this sensitivity.
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