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Abstract

The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza
H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental move-
ment of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that
wild birds could carry Asian-origin strains of HP avian influenza to North America during
migration. Previous North American assessments of LPAI genetic variation have found few
Asian reassortment events. Here, we present results from whole-genome analyses of LPAI
isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates
between North America and Asia. Phylogenetic analyses confirmed the genetic divergence
between Asian and North American strains of LPAI, but also suggested inter-continental
virus exchange and at a higher frequency than previously documented. In 38 isolates from
Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than
to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates
from GenBank clustered more closely with North American northern pintail isolates than
with other Asian origin viruses. Our data support the role of wild birds in the intercontinental
transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere
in North America.
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Introduction

A critical question surrounding emergence of the highly
pathogenic (HP) Asian H5N1 avian influenza is the role
of wild migratory birds in the geographic redistribution of
this virus. While virus translocation via migratory birds is
suspected in outbreaks of HP H5N1 in Africa and Europe,
other mechanisms of transmission, such as illegal trafficking
of wild birds and international trade of poultry cannot be
discounted (Kilpatrick et al. 2006; Salzberg et al. 2007). As a
result, the potential dissemination of HP H5N1 within
Eurasia and to Russia and North America via migratory
movements of birds remains the subject of considerable
discussion (Feare 2007; Gauthier-Clerc et al. 2007) and has
two independent components. First, can wild birds be

inapparent carriers, becoming infected with and shedding
the virus, yet healthy enough to migrate? To date, there are
no data to definitively answer this question (Feare 2007;
Flint 2007), and while recent studies have demonstrated
that infection with HP H5N1 is not fatal to some waterfowl
species (Brown et al. 2006; Kalthoff et al. 2008; Keawcharoen
et al. 2008), experimental studies may not reflect natural
conditions. Second, is there direct intercontinental move-
ment of infected individuals, or contact between Asian and
North American migrants which results in transfer of
viruses between continents? In the case of several HP H5N1
outbreaks, wild birds have been dismissed as potential
sources of the virus as there were no known migratory
movements from HP avian influenza endemic regions to
the area of the new outbreak (Kilpatrick et al. 2006). However,
direct movement may not be necessary to facilitate virus
movement. Viruses may also spread via sequential contact
among wild birds along a wide range of migratory
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pathways and through environmental reservoirs (Webster
et al. 1992; Lang et al. 2008; Uchida et al. 2008), although the
exact conditions necessary for host-to-host transfer, such as
species assemblages, animal densities, and environmental
characteristics remain largely unknown.

Phylogenetic analysis of whole low pathogenic avian
influenza (LPAI) genomes has the potential to answer
questions about wild bird contact and associated viral
exchange, provided appropriate species and geographic
locales are sampled. Wild migratory birds, primarily in the
orders Charadriiformes (gulls and shorebirds) and Anser-
iformes (ducks, geese, and swans), are the natural reservoirs
of a large diversity of LPAI subtypes (Webster et al. 1992;
Clark & Hall 2006). Several lines of evidence from recent
surveys of LPAI in wild birds have led to speculation that
intercontinental transfer of avian influenza viruses from
Asia to North America via wild birds is rare (Kilpatrick
et al. 2006; Krauss et al. 2007; Winker et al. 2007). These
include lack of detection of HP H5N1 in North America,
phylogenetic divergence between Asian and North Amer-
ican lineages of LPAI (Ito et al. 1995; Widjaja et al. 2004), and
low levels of reassortment between Asian and North
American lineages of LPAI (Marakova et al. 1999; Wallensten
et al. 2005; Krauss et al. 2007; Dugan et al. 2008; Kim et al.
2008). However, most of these studies examined viruses
obtained from species that are not transcontinental migrants
or from mid-latitude locales of North America, which are far
removed from sources of Asian lineages of avian influenza.
Genetic characterization of LPAI viruses obtained from a
large sample of known intercontinental migrants and from
an area close to the Asian continent would provide a better
test of whether migratory birds can transfer Asian lineages
of LPAI into North America.

In this study, we focus on the northern pintail (Anas
acuta), which is a wide-ranging migratory bird with a
Holarctic breeding and wintering distribution (Kear 2005)
and a model species to test hypotheses about the movement
of avian influenza viruses. The northern pintail is one of
the most abundant duck species at high latitudes during
summer and is sympatric with a diverse array of other
waterbirds on wintering areas in Asia and North America.
Thus, intra- and interspecific transfer of LPAI viruses are
likely on both breeding and wintering areas, facilitating
intercontinental viral exchange indirectly. In addition,
information from banding and radio-transmitter studies
has revealed occasional direct migratory movements of
this species within and between Asia and North America
(Miyabayashi & Mundkur 1999; Miller et al. 2005; Nicolai
et al. 2005). Lastly, northern pintails regularly carry numerous
strains of LPAI at some of the highest prevalence among
species of water birds (Hinshaw et al. 1980; Ip et al. 2008;
Parmley et al. 2008).

We therefore conducted whole-genome analysis of LPAI
viruses isolated from wild northern pintails in Alaska, an

area at the crossroads of Eurasian and North American
migratory flyways. We hypothesized that a phylogenetic
examination of LPAI strains isolated from northern pintails
in Alaska would demonstrate higher frequencies of inter-
continental transfer of avian influenza viruses than lower
latitude locations in North America that can be considered
farther from the source of Asian origin strains. We compared
northern pintail sequences from Alaska to selected reference
samples in the National Center for Biotechnology Infor-
mation (NCBI) Influenza Virus Resource database (Bao
et al. 2008) from areas in Eastern Asia (China, South Korea,
and Japan) where northern pintails are known to winter.
We interpret these results in the context of using LPAI phy-
logenetic analysis to infer the degree to which wild birds
disperse Asian lineages of viruses across intercontinental
boundaries.

Materials and methods

Sampling and virus isolation

Samples were collected from 1426 live and hunter-harvested
birds in Alaska in 2006. The live bird samples came
primarily from five National Wildlife Refuges (Koyukuk,
Yukon Flats, Innoko, Yukon-Kuskokwim Delta, and
Izembek) and one State Game Refuge (Minto Flats) located
in central and western Alaska, whereas hunter-harvested
samples were collected near the communities of Nome and
Palmer, Alaska, and from two National Wildlife Refuges
(Yukon-Kuskokwim Delta, and Izembek). Detailed maps
of these sampling locations can be viewed in Ip et al. (2008)
and at http://alaska.usgs.gov/science/biology/avian_
influenza/monitoring.html. From the total 1426 samples,
793 were analysed using molecular detection of avian
influenza viruses via virus isolation in embryonated eggs
(Purchase et al. 1989). Following this analysis, allantoic
fluids from each egg were tested for the presence of hemag-
glutinating virus using chicken and turkey red blood cells.
This resulted in a total of 57 LPAI positive samples that
were then subtyped (see Ip et al. 2008). From these 57 positive
samples, we selected 38 for whole-genome sequencing.
This reduction in number of samples sequenced is based
on our selection of one to three samples of each virus
subtype per location. Additional isolates were excluded if
they duplicated the subtype combination of a previously
selected sample collected from the same location and date.

RNA extraction, PCR and sequencing

Viral RNA was extracted from allantoic fluid with the
MagMAX AI/NDV RNA extraction kit (Ambion Inc.). All
eight segments were amplified with the QIAGEN one-step
RT PCR kit using a combination of previously published
primers (Zou 1997; Hoffmann et al. 2001; Phipps et al. 2004;

http://alaska.usgs.gov/science/biology/avian_
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Bragstad et al. 2005; Chan et al. 2006; Obenauer et al. 2006;
Li et al. 2007). A number of additional primers were also
specifically designed for this study (see Appendix SI,
Supporting Information). Amplified products were gel
purified and extracted using the QIAquick gel extraction
kit (QIAGEN, Inc.) or treated with ExoSap-IT (USB) without
additional purification before sequencing. Cycle sequencing
was performed with identical primers used in the PCR
along with BigDye Terminator version 3.1 mix (Applied Bio-
systems). Samples were analysed on an Applied
Biosystems 3730xl automated DNA sequencer (Applied
Biosystems).

Sequence analysis

We sequenced 294 (out of 304) segments from eight genes
for this study. The lengths (in parentheses) of the nucleotides
sequenced for each gene segment are as follows: PB2
(2240), PB1 (2257), PA (2142), HA (1665–1701), NP (1457),
NA (1397–1422), M1 protein (737), NS1 protein (671). Final
sequences were assembled and edited with Sequencher
version 4.7 (Gene Codes Corp.).

Our main objective was to examine the placement of
all segments from each isolate into either Asian or North
American clades as defined by our reference samples
(below). Therefore, we used phylogenetic analyses (distance
and Bayesian) to determine the most likely continental
affinity of each gene segment, as Asian and North American
clades of LPAI are well-differentiated (Ito et al. 1995; Widjaja
et al. 2004). To test the clade affinities of each segment, we
first selected two groups of reference sequences from the
NCBI database (Bao et al. 2008). For each of the eight gene
segments, we selected 12–31 sequences of LPAI strains
from the database. Where possible, we selected sequences
of Asian influenza viruses isolated in Japan, South Korea,
and China, since these are areas where northern pintails are
known to overwinter in large numbers (Perennou et al.

1994; Miyabayashi & Mundkur 1999). We also selected five
to seven North American LPAI waterfowl sequences for
each segment. No LPAI sequences of northern pintail
are available from Asian sampling locales on the NCBI
database and many sequences are not identified to host
species. Therefore, the Asian reference samples we selected
included those classified as ‘aquatic bird’, ‘migratory
duck’, ‘duck’, and ‘wild bird faeces’. Additionally, four
samples classified as ‘swan’, three as ‘egret’, and one as
‘gull’ were also included. The majority of these reference
sequences were from viruses isolated within the past
15 years. Sequences for each gene segment were then aligned
using ClustalW version 1.4 in BioEdit 7.0.9 (Hall 1999).

We used paup* version 4.0b (Swofford 2003) to generate
neighbour-joining trees using the branch-and-bound method
with 10 000 bootstrap replicates. The best-approximating
model of nucleotide evolution (GTR), as determined by
modeltest version 3.06 (Posada & Crandall 1998), was
incorporated into the analysis. For Bayesian analysis, we
used the program MrBayes version 3.1.2 (Ronquist &
Huelsenbeck 2003) to construct posterior probabilities of
support for clade differences. Each analysis was run for
5 × 106 generations using four heated chains following a
burn-in of 5000 generations. Average posterior probabilities
of the 50% majority rule consensus tree topologies were
estimated using a sampling of likelihood parameters every
100 generations. Trees were visualized with TreeView
(Page 1996).

Following the construction of phylograms, we determined
that a viral reassortment event had occurred between
Asian and North American viruses when a gene segment
isolated from a northern pintail in North America was
most closely related to Asian reference genes. In summa-
rizing these events, we first tabulated all events per gene
segment. Next, to make direct comparisons to the reassort-
ment events as reported in Krauss et al. (2007), we deter-
mined if several closely related northern pintail strains
formed a clade within the Asian strains. In such cases, only
a single event was considered to have occurred. Nucleotide
sequences for all gene segments in this article have been
submitted to GenBank under Accession nos EU557376–
EU557669.

Results

We generated complete sequence data for 294 segments
and obtained virus subtype information for all 38 isolates.
Sampling locales of these 38 isolates came from a large
geographic area, including four National Wildlife Refuges
(Yukon-Kuskokwim Delta, n = 5; Yukon Flats and
Koyukuk, n = 12; and Izembek, n = 11), one State Game
Refuge (Minto Flats, n = 4), as well as locations near Palmer
(n = 3) and Nome, Alaska (n = 3). We observed eight HA
subtypes, with H3 (44.7%) as the most common (Fig. 1). All

Fig. 1 Distribution of HA and NA subtypes observed among 38
northern pintail avian influenza isolates from Alaska.
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NA subtypes were represented (Fig. 1) with the most
frequent being N8 (36.8%). The most common subtype
combination among northern pintails was H3N8 (34.2% of
all samples), followed by H4N6 (18.4%), H10N7, H12N5,
H3N6 (all 7.8%), plus eight additional subtype combinations
(H2N3, H3N1, H5N9, H6N1, H6N2, H6N4, H6N8, H8N4)
that occurred at low frequency (< 6%). No H5N1 subtype
combination was observed.

The phylogenetic separation of Asian and North
American lineages of LPAI was well supported for all gene
segments by both distance and Bayesian methods (Figs 2–5).
Seventeen of the 38 Alaskan isolates (45%) had one or more
gene segments that were more closely related to Asian
isolates than those found in North America and 12 of these
occurred within the PB2, PB1, PA, NP, and NS segments
(Fig. 2). Thirteen of these 17 isolates had a single reassort-
ment event, whereas three had two events and one had

three. Across all 294 segments, we observed 22 (7.5%) that
were more closely related to Asian reference samples
(Table 1), with the largest number occurring among the HA
genes (27%). When closely related sequences were removed,
following the methodology of Krauss et al. (2007), a total of
nine (3.1%) Asian reassortment events were determined to
have occurred (Table 1, see Discussion).

Phylogenetic analysis of the most common LPAI subtypes
(H3 and N8) revealed contrasting patterns of lineage
ancestry. The phylogram of H3 sequences (Fig. 3) shows
six Alaskan samples nested within the Asian group of
reference sequences. Three of these isolates were identical
across all nucleotides of the H3 gene. The H6 phylogram
(Fig. 4) is similar to that of the H3 gene, with four Alaskan
isolates nested within the Asian group. Phylograms of the
remaining HA subtypes contained no reassortment events
(not shown). The N8 phylogram (Fig. 5) revealed five

Fig. 2 Unrooted neighbour-joining phylo-
grams of Asian and North American lineages
of PB2, PB1, PA, NP, M, and NS genes. Shaded
areas indicate Asian lineages. Circled
numbers indicate the number of reassortment
events for Alaskan northern pintails at each
gene segment. The level of neighbour-joining
bootstrap support and Bayesian posterior
probabilities between major groups is shown
along branches (separated by a slash). Scale
bar indicates substitutions per site.
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Asian reference sequences nested within the group of
northern pintail isolates and North American reference
samples. A similar pattern was observed for the phylogram
of the N1 subtypes, but the number of Asian lineages
within the North American group was limited to a single
sequence (not shown).

Discussion

The observed frequency of reassortment events (45%) of
Asian and North American virus lineages in our study
is considerably higher (7.5×) than what was found in a
recent global study (Dugan et al. 2008) that reported 6%

Fig. 3 Phylogram of the most common HA
subtype (H3) for 17 Alaskan northern pintail
samples (shown in bold). Shaded areas
indicate Asian lineages. Comparative Asian
and North American sequences are shown
in non-bold font. Bayesian posterior proba-
bilities and the level of neighbour-joining
bootstrap support between major groups
are shown above and below branches,
respectively. Scale bar indicates substitutions
per site.

Table 1 Frequency of Asian-origin avian influenza lineages among viral sequences of northern pintails sampled in Alaska. Numbers in
brackets are values after removing closely related sequences (see Materials and methods)

PB2 PB1 PA HA NP NA M NS Total

Segments analysed 36 37 37 37 36 35 38 38 294
Asian segments in North American clades 1 (1) 1 (1) 5 (2) 10 (2) 4 (2) 0 (0) 0 (0) 1 (1) 22 (9)
Per cent of Asian events/segment 2.8 (2.8) 2.7 (2.7) 13.5 (5.4) 27.0 (5.4) 11.1 (5.6) 0.0 (0.0) 0.0 (0.0) 2.6 (2.6) 7.5 (3.1)
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hemispheric reassortment. Krauss et al. (2007) excluded closely
related LPAI replicates, arguing that they are not necessarily
representative of independent events, and reported the
frequency of intercontinental exchange at the gene segment
level as 0.64%. Following this methodology, the number of
Asian reassortment events in our study is reduced to 3.1%
(Table 1) and that of Dugan et al. (2008) is reduced to < 1%.
Thus, regardless of the exclusion of closely related lineages,
we found a considerably higher frequency of reassortment
events that contain Asian lineages than previously reported.
Because the likelihood of detecting intercontinental reassort-
ment events is directly related to the degree of contact
among host populations, we found a higher frequency of
intercontinental reassortment because Alaska northern
pintails are closer to the source of Asian lineages. The lower
frequency of LPAI strains found with Asian lineages
by Krauss et al. (2007) and Dugan et al. (2008) is likely caused
by dilution (i.e. further reassortment) related to the increased
distance from areas where Asian lineages commonly circulate.

Although our data support intercontinental transfer of
LPAI segments, we suspect that our assessment of the
level of transfer is still biased low. To date, all studies of

hemispheric reassortment among LPAI viruses in North
American birds, including ours, have made comparisons
to Asian gene sequences available on the NCBI database.
Because many strains in the database are not classified to
species, we are likely comparing northern pintail LPAI
strains to species that do not exhibit similar migratory ten-
dencies or patterns of breeding and wintering distribution
as have been documented for the northern pintail (Kear
2005; Miller et al. 2005). Accordingly, we likely underesti-
mated the degree to which viruses are exchanged between
wild migratory birds in Alaska and Asia. We suspect that a
whole-genome comparison of LPAI viruses sampled from
northern pintails in Asia and Alaska would show greater
evidence of exchange than we report here. Furthermore,
we predict that such a comparison would reveal individuals
with a mixture of both Asian and North American lineages,
as suggested by our data for the N8 and N1 lineages (Fig. 4).
Similar observations were made in a single green-winged
teal (Anas crecca) wintering in Japan (Kida et al. 1987; Bean
et al. 1992).

We also question whether LPAI viruses in which all
eight gene segments are of Asian descent (i.e. completely

Fig. 4 Phylogram of the H6 HA subtype
for four Alaskan northern pintail samples
(shown in bold). Shaded areas indicate
Asian lineages. Comparative Asian and
North American sequences are shown in
non-bold font. Bayesian posterior probabi-
lities and the level of neighbour-joining
bootstrap support between major groups is
shown above and below branches, respec-
tively. Scale bar indicates substitutions per
site.
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Asian-origin viruses) persist in substantial frequency
in northern pintails. Our study, along with others (Krauss
et al. 2007; Dugan et al. 2008), observed no completely
Asian viruses, but this may be related to the fact that north-
ern pintails tend to show high rates of LPAI virus exposure
(Ito et al. 1995; Runstadler et al. 2007; Ip et al. 2008) com-
bined with ‘extremely frequent’ reassortment (Dugan
et al. 2008). Reassortment can only occur when individuals
are co-infected by multiple LPAI strains (Sharp et al. 1997)
and the probability of co-infection appears positively
related to overall virus prevalence. Wang et al. (2008) found
co-infection in 16% of samples where the overall prevalence
of influenza viruses was 26% (i.e. 61% of the positive sam-
ples were co-infections). Furthermore, novel virus types
may be more likely to result in co-infections (Sharp et al. 1997).

Thus, dispersal of northern pintails within and between
continental wintering populations, as demonstrated with

satellite telemetry, banding data, and putatively neutral
genetic markers (Cronin et al. 1996; Miyabayashi & Mundkur
1999; Miller et al. 2005), should over time facilitate contact
with novel virus lineages, but perhaps only at northern
latitudes during the breeding period when different popu-
lations come into contact. Northern pintails that migrate
along the Pacific coast of both Asia and North America
spend winters within, what we suspect, are isolated LPAI
gene pools as demonstrated by deep phylogenetic diver-
gence (Ito et al. 1995; Krauss et al. 2007; this study) and
remarkably different virus subtype combinations. Influenza
subtypes H3N8 and H4N6 were the most common among
northern pintails sampled in Alaska (Fig. 1), similar to
previous surveys of LPAI in Alaskan wild waterfowl (Ito
et al. 1995; Runstadler et al. 2007), but different from subtype
combinations found among northern pintails in Japan
during winter (Jahangir et al. 2008). Additional research is

Fig. 5 Phylogram of the most common NA
subtype (N8) for 14 northern pintail samples
(shown in bold). Shaded areas indicate
Asian lineages. Comparative Asian and
North American sequences are shown in
non-bold font. Bayesian posterior prob-
abilities and the level of neighbour-joining
bootstrap support between major groups is
shown above and below branches, respec-
tively. Scale bar indicates substitutions per
site.
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needed on whole LPAI genome surveys of wintering
populations of northern pintails in both Asia and North
America, but initial indications are that the number of
Asian lineages per isolate is lower on wintering areas (Dugan
et al. 2008), likely a result of continuous reassortment and
distance from the source of Asian lineages.

In summary, while our data support previous conclusions
of large genetic differences between hemispheric popula-
tions of LPAI, we find greater evidence that wild migratory
birds in Alaska are a mechanism for the movement of LPAI
viruses across this phylogenetic boundary. Alaska is a
major crossroad of Eurasian and North American migratory
flyways, and thus, may harbour migratory birds with
greater frequencies of co-circulating LPAI lineages than other
areas of North America, especially among those species
that exhibit high virus prevalence, such as the northern
pintail. We suggest that species such as northern pintails
that maintain relatively high prevalence of influenza
viruses (Runstadler et al. 2007; Ip et al. 2008) and migrate
long-distances among divergent virus gene pools (Miller
et al. 2005), may have a greater chance for co-infection, and
thus reassortment, with novel viruses that they come into
contact with. When viewed collectively with previous
surveys of LPAI genetic variation in North America (e.g.
Krauss et al. 2007; Dugan et al. 2008), our data demonstrate
that substantial geographic and species variation likely
exist in levels of intercontinental gene exchange in LPAI
viruses. Such variation should serve as a valuable tool for
directing future avian influenza surveillance programmes
in wild birds. For example, full-genome LPAI phylogenetic
analyses could be used to optimize and prioritize surveil-
lance sampling by targeting habitats used by species with
the highest frequencies of virus prevalence, as well as the
greatest likelihood of contact with areas where HP H5N1
occurs. Geographic patterns of LPAI genome variation
should also inform our understanding of mechanisms of
circulation and persistence of avian influenza viruses in
wild birds.
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