<u>*</u>	HIGH PERFORMANCE CONCRETE 2006-07 FOLLOW-UP SURVEY RESULTS
<u>NA</u>	TIONAL HIGH PERFORMANCE CONCRETE FOLLOW UP SURVEY RESULTS
BY:	Louis N. Triandafilou, P.E. FHWA Resource Center – Baltimore Senior Structural Engineer
	CLAUDE S. NAPIER, Jr., P.E. FHWA Virginia Division Bridge Engineer
	Rodolfo F. Maruri, P.E. FHWA Virginia Assistant Division Bridge Engineer

- CFRP
- AFRP

State/Prov:	>	AL	3.4	¥5	84	C.A.	C0	CT	30	FL	64	н	10	IL.	15	LK.	25	ĽΥ	LA	316	MD	M.K.	MI	MN	115	10
General line of HPC	Forme	chuch	cal elez	s eats lis	ted be is	w, sele	ct the r	inge wi	hich ber	t setle c	to the ma	mbera	HPC -	ca netra	cted bei	iges wit	ince by :	ach, clay	g, cilica	fame, s	er arth e r	minera	admiss	ces are	beingit	ave be
	used to	e increa	iced du	ratility.	but with	NON		¥.																		
Structural Element	Aunas	r et an	ages	Itter	80.0.	NONL	1.1	10,2 -	11-20,	1 - 21 -	10,4 - 1	1-50, 5	x >50,	a - No.	ASCHOO	i	1.7	i	i .	i	1	i.	1.	i	i	i .
Deck		1	1	1	1	ŝ	1	1	1	5	1	0	1	1	1	4	1	2	1	ŝ	0	0	1	2	0	1
Superstructure		1	1	0	0	S.	0	0	3	S.	1	0	0	1	1	3	1	0	1	5	0	Ó	1	1	0	1
Substructure		1	0	0	0	5	0	0	2	5	1	0	0	0	0	¢	0	0	1	5	0	Ó	1	1	2	0
HPC for Permeability																										
Senefit	Forthe	CTUC N	rai elen	s eats lis	sed be k	iw, colo	ct the r	inge af	ceelen	b value	s which	be stoel	le cits th	o prajec	1 specif	ied gent	142200	the ma	ijerby el	the tim	۰.					
Structural Element	Coulon	b Valu	65 - [L	EGENE	0.1 + 0	-1000,2	100	1-3500,	3 - 20	01-2000	(4 × 20	01-600	2, 5 + >	0001,6	- Not S	peclies	tite An	Caree [
Deck overlays	-	6	1	6	6	6	2	6	2	3	4	6	- 6	6	6	2	6	6	2	1	2	2	6	4	6	
Deck	-				2		2		- 1	- 2	2		2		1	2			2	2	2	- 7				<u> </u>
Superstructure	-			6	6		. 6		2	2	2		. 6		1	2		6	2	1	2	2	6	6	6	1
2407liteconte	-	•	•	•	•	•	÷	•				•	•	•	•		•	•	2		2	2	•		•	<u> </u>
HPC for Strength	Car Ba	-	and allow	and the	and have				-		anire as		-	ania at a	a. Mar					alerity a	1 10.0 50					
Senefit								,						- spectra												
Structural Element	Compo	eccies :	Lave get	1 (Fe) -	ILCOL	NO: 1	LOSS	or Equa	115 100	0,2 = 3	001-60	10, 2	1001-51	00,4 -	\$001-4	000,5.	6001-	1003,4	- >800	2, 2 - 5	A A A A A A A A A A A A A A A A A A A	(at)	1.5			i
DECK			· · ·		1.1	1.1	÷.		1.1				1.1						1.1							<u>، ۱</u>
Structural Element	7+10.0	01-12.0	02.8-		1.9-10	Anter	d a service																			
Superstructure	1	6	5	1.4		2	1.5		1.1	6	6	2	6	1	6	5	1		6	1.4	5	1.2	1	6	4	6
	Compt	essive :	inve ett	(15)-	115.95	NO: 1	Less	or Equa	1 10 3 0 0	0.2 - 3	001-40	10.2	1001-51	00.4 -	5001-6	000.5	6221-	1000								
Structural Element	6 - 28	100,7-	No An	swee]																						
Substructure		4	2	2	2	2	5	2	2	2	3	2	2	2	2	2	2	2	2	3	2	2	3	2	4	2
fall Canadidation	1		-	-		-		-	-	-	1	-		-	-	-	-	-	-		-	-	-	-	-	<u> </u>
Concrete	Forthe	CBACK.	rai ele s	s eats like	sed by k	iw, colo	ct the r	ingo wi	hich bee	it tells c	is year S	tane's a	es et e	E-case	ridating	CERCIN	6a.									
Structural Element	Numbe	r at Rri	áges	11202	ND: 0 -	NONE		10,2 =	11-20,	2 = 21-	10,4 = 1	11-50, 5	+ > 50,	6 - No.	Asswer											
Superstructure		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
Substructure-Pier and			•			0	•	0	0	1		0		0	0	0	1		0	1		0		0		0
Piercaps Exhibition Exclose	-																					6		6		- 6
Substructure - Piles		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Substructure - Drilled																										
Shafts																			*							, v
Other Precast Members							1			1				1		3	1			2		2		1		0
	+		<u> </u>	-	-	<u> </u>	-	<u> </u>	-	-	-	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	-	-	-	-	<u> </u>	<u> </u>	—
Lightweight HPC	Forme	Charles.	tal eles	s eats lis	ted be k	w, cele	ct the r	inge wi	sich ber	t sette c	it year i	tate's a	to of 5	pasa ekgi	MHPC.	(110 m)	125 pct									
Structural Element	Numbe	r af Rri	áges	11202	ND: 0 -	NONE	1 - 5	10,2 =	11-20,	2 = 21-	10,4 = 1	1-50, 5	= > 50,	6 - No.	Asswer	1										
	1			1.0	0	1	0	0	1	2	0	0		0	0	0	0	0	0		1	0	0	0	0	0
DECK	-	_	_	-	_				_	_	_									_						

UHPC HISTORY

- 1994: Development of Bouygues, Lafarge, and Rhodia, France
- 1997: Sherbrooke, Canada Footbridge
- 2001: Bourg lès Valence, France Highway Bridges
- 2002: Seoul, Korea Footbridge of Peace

VTRC

UHPC

- Compressive strengths ≥ 30,000 psi
- High ductility

VTRC

- Very low permeability
- Lighter, thinner, and more durable structural sections
- · High shear capacity in bending

UHPC

- Two of the primary sources for these enhancements:
 - Finely graded and tightly packed nature of concrete constituent materials (no coarse aggregate)
 - -Steel or synthetic fibers

VTRC

UHPC

- Light rail transit station, Calgary, Canada
- Canopies 20 mm (0.8 in) thick

UHPC

6x10 ft panel, 1-inch thick carries 2,000 lb car.

VTRC

Three 110-ft beams, 27'-2" ft wide deck
Beams cast in Canada in 2005
Opened to traffic in 2006

UHPC Beams

- Route 624 over Cat Point Creek, Richmond County, Virginia
- 10 spans: 81 ft 6 in each
- Five 45-in bulb-T beams per span
- One span with UHPFRC

VTRC

	Test	psi (average of 3)	
	1	30,456	
	2	30,747	-
	3	30,492	-
	4	27,275	-
		1	1
WERE			

VTRC Vegeta Tarapartation

Corrosion Resistant Reinforcing Steel (12 Projects)

Michael Sprinkel, P.E. Associate Director – VTRC Julius Volgyi, P.E. Structure and Bridge – VDOT Richard Weyers, P.E PhD Professor-VPI&SU

Why Use CRR?

• Lab and field studies evaluated the performance of uncoated reinforcement (UR), epoxy coated reinforcement (ECR) and corrosion resistant reinforcement (CRR) in decks.

VTRC

Disadvantages of ECR in decks

- Cracks are 33 % wider when ECR is used.
- Epoxy loses adhesion to steel as it ages.
- The permeability of epoxy increases with age.
- Epoxy cracks with age.

(Why Use CRR?
•	Time to corrosion of UR and ECR was estimated at 25 to 50 years for VDOT concretes (1977-1995).
•	ECR was estimated to increase the time to corrosion-induced spalling by only 5 years.
•	Time to corrosion for CRR is \geq 4.5 times that of UR.
•	Time to corrosion of CRR was estimated at more

Why Use CRR?

- Crack control is better than ECR.
- Corrosion protection in cracks is better than ECR.
- Initial cost is <u>></u> ECR.
- Life cycle cost is < ECR.

Section 223 Steel Reinforcement

- CRR shall conform to the requirements of one of the following standards:
- ASTM A1035/A1035M 05 Standard Specification for Deformed and Plain, Low-carbon, Chromium, Steel Bars for Concrete Reinforcement.
- ASTM A955/A955M 06a Standard and Specification for Deformed and Plain Stainless Steel Bars for Concrete Reinforcement.
- AASHTO Designation: MP 13M/MP 13-04, Standard Specification for Stainless Steel Clad Deformed and Plain Round Steel Bars for Concrete Reinforcement.

Section 223 Steel Reinforcement

 Revisions being reviewed by VDOT Specifications committee and the FHWA.

ASTM A1035/A1035M

- Will have an upper limit on yield strength as ductility may still be an issue.
- Has been adopted into the AASHTO LRFD Construction Specifications.

VTRC

VTRC

• Has not yet been adopted into the design specifications.

Available Products

VTRC

- MMFX-2 by Steel Corporation of America, Inc.
- EnduraMet 32 by the Carpenter Company
- 2101, 2201, 2205, 304, 316 Stainless Steels

VDOT Plan to Use CRR

- 2007: modify design standards to specify CRR in decks (one to one replacement for Grade 60 rebars).
- January December 2008: Advertise 12 projects (approximately 10%).
- January December 2009: Advertise 24 30 projects (approximately 30%).
- January 2010: Full implementation.

VIRC
Why did tendon fail in 17 years?
• Original grout (water, cement, admixture)
Vacuum grout (high performance)
 Original grout and vacuum grout
Chloride ions (none found)
• Carbonation of grout (original grout at failure)
Moisture (grout has high moisture content)
 Oxygen (voids in tendons, unsealed vent tubes and inspection holes)
Combination of factors

VIRC

Concerns About Grouts in Tendons

3

- Voids due to bleeding and segregation (Bleeding in grouts used prior to 2000 was approximately 4 percent. In a 150 ft long tendon, 4 percent bleeding can cause 6 ft of void at the high points in the tendon)
- Voids due to incomplete grouting and leaks

- Twenty tendons selected for detailed evaluation by removal of a 2-ft section of duct (18 because of corrosion in bore scope pictures, 1 because of Magnetic Flux measurements by Dr Al Ghorbanpoor and 1 because of his visual inspections) (2007)
- Plan to monitor tendons representing 6 conditions (2008)

VIR	ç	G	out M	oisture	Content
Tendon	Broken wires	Section loss	color	Moisture content, %	Absorption, %
NP13T10	2	7 wires 5.3 %	Gray	32.8	35.5
SP12T9	1	4.8 wires 3.6 %	Gray (bottom)	36.6	39.5
SP12T9	1	4.8 wires 3.6 %	White (top)	21.6	36.5

VTRC

Monitoring 6 Tendon Conditions

0

- 1. Voids, no vacuum grout (45 per cent of tendons)
- 2. Voids, incomplete vacuum grout
- 3. Drying shrinkage cracks in grout
- 4. Small section with minor pitting corrosion
- 5. Pitting corrosion and several broken wires
- 6. Vacuum grouted tendon with broken wires

VTRC

Tentative Conclusions

3

- Tendons have voids
- Approximately 55 % of tendons were vacuum grouted
- Grout typically has high pH and high moisture content
- Corrosion typically associated with access to oxygen and absence of grout

VIRC

Recommendations

3

3

- Vacuum grout tendons with accessible voids
- Repair ducts and vacuum grout tendons subjected to detailed inspections
- Monitor tendons representing 6 tendon conditions using visual inspections through transparent duct repairs, half cell and rate of corrosion measurements and acoustic emission sensors.

Consider Other Health Monitoring Technologies Based on Failure Analysis Death loss action

- Determine Future In-Depth Inspection Requirements
- Perform Additional Repairs As Recommended from On-going Evaluation of Bridge

VTRC

Acknowledgements

- Steve Sharp and staff, Research Scientist VTRC
- Gary Martin and staff, VDOT Bridge
 Engineer
- Claude Napier, FHWA
- Rudy Maruri, FHWA
- Denney Pate and staff, Figg Bridge
- VSL staff

Rodney T. Davis, PhD, PE Virginia Transportation Research Council

Economical Bridge Designs Using Normal Weight Concrete

Virginia PCBT's set as simple spans, CIP deck

- Span to beam depth h ratio of 18 to 21, with 20 being about optimal
- Beam spacing up to about 10 feet
- Beam Concrete 8000psi
- Beam web width 7 inches
- Equivalent of 0.8 1/2" dia. strands per inch of beam depth h
- Deck concrete 4000psi
- Continuity diaphragms and integral backwalls

Economical Bridge Designs

Virginia PCBT's set as simple spans, CIP deck

- Span to beam depth h ratio greater than 20
- Beam spacing of about 10 feet maintained with span to depth ratios up to 24 requires LW deck
- Beam Concrete 8000psi (normal weight unless reduced superstructure weight is needed, reduced modulus and reduced self-weight offset in pretensioned beams)
- Lightweight deck concrete up to 5000psi and down to 110 pcf
- Add beam lines only if necessary

Spliced Girder Superstructures

- Use typical spliced girder construction for spans from 170 feet to 380 feet
- Try span to girder depth h ratios of 21 at the pier and 29 near midspan
- Girder concrete strength 8000psi Use individual splices with moment capacity as reinforced concrete section
- Use conventional 4000psi CIP deck
- Use 4 or more tendons, spread them out in web
- Need P/T duct specification similar to Florida DOT, but we don't need nor want the plastic duct

Spliced Girder Superstructures

- Girder weight has important influence as span length increases
- Modify section
- · Reduce beam and deck densities
- Add girder lines
- · Increase girder strength last option
- · Pier segments use custom form
- · No massive elements in girders

Properties for Design Tensile Strength

 Lightweight concretes are exhibiting about 7/8th of the tensile strength of the equivalent normal weight concrete

Slower cure results in higher tensile strength relative to the compressive strength

Tensile Strength of Typical 8000psi Beam Concretes							
Failure mode	NWC	LWC					
Splitting Tensile	0.090 f _c '	0.080f _c '					
Beam Rupture	0.085 f _c '	0.075 f _c '					
Tension Field	0.060 f _c '	0.055 f _c '					

Properties for Design

Modulus of Elasticity

- Modulus of elasticity of lightweight concrete is dependent on the volume of lightweight aggregate, and the paste density
- Modulus of elasticity of normal weight concrete is dependent on the type of aggregate, and the paste density

Modulus of Elasticity of Typical 8000psi Beam Concretes

	NWC	LWC
At Transfer	4200-5600 ksi	3100-3300 ksi
In Service (VA)	5000-6500 ksi	3300-3500 ksi
Dried at 50% RH		3100 ksi

Properties for Design Creep Coefficient for P/S plus Self-weight

- Beam concretes using slag (and presumably fly ash) show a marked increase in early age creep as well as strength when cured at lower temperatures (less than 135 degF)
- Range of values in the table are for peak concrete temperatures during curing from 130 to 165 degF
- Creep from prestess transfer and self-weight is complete in 7 to 60 days depending on curing regiment

Creep Coefficient for Typical 8000psi Beam Concretes						
Interval	NWC	LWC				
Transfer to day 7 - 60	0.25 -1.2	0.25 - 1.2				

Properties for Design Autogenous Shrinkage of Beam Concrete

- Use of lightweight aggregates is known to reduce
 autogenous shrinkage and its associated stresses
- This is a difficult strain to measure as it is occurring during the accelerated curing of the beams
- Vertical cracking of beams during cooling and before prestress transfer indicates that the beam has shortened during the curing process
- Reduces camber at transfer

Autogenous Shrinkage Strain for Typical 8000psi Beam During Accelerated Cure						
	NWC	LWC				
Microstrain	about 250	lower				

Properties for Design

Total Shrinkage of Beam Concrete

- Lightweight concrete exhibited more shrinkage than the normal weight concrete after leaving the form
- Beams cured at lower temperature showed more shrinkage after leaving the form than beams cured above 150 degF

Total Shrinkage Strain for Typical 8000psi Beams							
	NWC	LWC					
Microstrain	about 350	about 350-450					

Mix I Beam (Mix Design Beam Concretes							
Typical 8000psi Bea	Typical 8000psi Beam Concrete Constituents							
	NWC	120 PCF LWC						
Portland Cement	450 pcy	480 pcy						
Slag	300 pcy	320 pcy						
Water	232 pcy	248 pcy						
w/cm ratio	0.31	0.31						
Fine Aggregate	1050 pcy	1150 pcy						
Coarse Aggregate	2100 pcy	1050 pcy						

Problem Areas - Precast Prestressed Beams and Girders

- Beam end cracking at transfer of prestress
- Thermal stress induced web cracking and cold joints
- Creep and shrinkage, camber growth

Working Stress for Vertical Beam End Reinforcement

- 22ksi for normal weight concrete in nonaggressive environments
- 19ksi for lightweight concrete
- 16ksi for aggressive environments, spliced girder segment ends

Curing Method of Precast Prestressed Beams

- Higher temperature, shorter duration
 - Lower final tensile and compressive strength
 - Little creep and less shrinkage after prestress transfer
 Improved production
- Lower temperature, longer duration
 - Higher final tensile and compressive strength
 - More creep and shrinkage after prestress transfer
 - Camber growth may be unacceptable for LW beams, and will not meet 50% camber growth spec

Fabrication of Beams

- · Casting should proceed quickly and continuously
- Upon initial set enclosure temperature should be ramped at a rate such that the form temperature does not exceed the concrete temperature by more that a few degrees
- Beam temperature should be kept constant until transfer strength has been achieved
- Strands should be cut as quickly as possible after steam has been stopped
- Best results have been achieved when ramp rate is slower, and transfer strengths are above 6400psi

Count On Concrete for Long Life & Value

A Contractors Footprint in the Deck!

How Can Contractors Contribute to Long Life & Value in Full Depth Precast/Prestressed Deck Systems?

- Address Construction Means & Methods in the Shop Drawing Phase.
- Panel Production
- Handling, Transport, & Storage
- Field Engineering & Accuracy of Installation
- Erection
- Transverse & Longitudinal Joints

Means & Methods in the Shop Drawing Phase

- Will construction be top-down, or bottom-up? If topdown, will add'l reinforcing be required for setting operation? (live loading of installation equipment on partially completed deck)
- Will producers standard lifting and handling embeds be adequate for setting operation? If not, can producer install embeds that will also accommodate contractors setting operation?
- How will panels be supported in place prior to keyway grouting? Haunch Support Angles? Leveling Bolts?

Panel Production

- Have a competent contractor employee interact with the panel supplier during initial casting operation and as necessary thereafter to verify embed location and overall conformity to dimensional requirements.
- Challenge the panel supplier to perform better than his specified tolerances require.

Handling, Transport, & Storage

- Develop a formal lifting, transport, and jobsite storage (if necessary) plan.
- In necessary) plan.
 Set panels from delivery truck into final position whenever possible. Avoid stockpiling panels on jobsite.
 If panels must be stored on site, improve storage area as necessary to insure its load bearing characteristics and stability under adverse weather conditions.
- If stacking is required, always use square blocking material. (4x4 or 6x6, not 4x6)
- Periodically check stockpiles for unexpected settlement and modify as required

Field Engineering & Accuracy of Installation

- Top of girder elevations should be shot twice, by different instrument men if possible.
- Set grade points to coincide with transverse panel joints, or multiples thereof.
- Install string-lines set at a constant vertical offset along centerline of girders above grade points for use in installation of panel support devices.
- Project management should inspect string-lines for common plane between girders, and smooth vertical transitions between spans or into abutments as applicable PRIOR to any panel erection or installation of panel supporting devices.

Panel Erection

- Inspect panels for dimensional irregularities and remediate prior to erection.
- Lay-out termination points on girders for each panel.
- Adjust rigging so that panels hang at roughly the same cross slope as the girders.
- If leveling bolts are used for panel support and elevation control, check and set elevation as each panel is installed, and once panel is on grade, use torque wrenches to compare torque values between the bolts of each panel. Actual torque values are insignificant, but adjust until all bolts for each panel fall within a range of 10%. This procedure will minimize the occurrence of hard point bearing areas in the panels prior to haunch grouting.

Transverse & Longitudinal Joints

- Joints between precast panels have historically been a source for moisture intrusion and corrosion.
- Most joints are "<u>met cast</u>" in that they are filled with a high performance cast-in-place concrete after erection.
- Research is currently under way that investigates the possibility of "match cast?" transverse panel joints. Match casting would eliminate the need for CIP closures, and the waterproofing of the joint would be obtained by either an epoxy gel, or a thin compressed neoprene strip adhered to one side of the joint.

Wet Cast Joints

- Project specifications generally call for either water-blasting or sand-blasting to be performed in advance of joint filling operations under the wet cast method.
- The best condition would be for the precast supplier to sandblast joint surfaces as soon as possible after form removal. The form finish paste would be removed from the surface, and both coarse and fine aggregate would be visible on the bonding plane. Immediately prior to the placement of the CIP joint fill material, the contractor would perform a high pressure water-blast of the bonding planes. The water-blasting removes any deleterious material deposited since sand blasting, and properly moisture impregnates the surfaces for the best bond with the chosen joint fill CIP concrete.

Match Cast Joints

(Not currently utilized in full depth deck panels, but hopefully coming soon!)

- Closely inspect joints for any irregularities
- Grind off any form seam or joint marks that might interfere with tightness of joint.
- Sand or water-blast surface to obtain good bonding profile for chosen epoxy.
- Use epoxy gel with enough set time and in appropriate temperature conditions to allow for minute adjustments of panel as may be required without premature set.

Thank You

Special Thanks to:

Dr. Maher Tadros P.E., Leslie D. Martin Professor of Civil Engineering at University of Nebraska for his Contribution of pictures used in this presentation.

GOAL / OBJECTIVE

 COLLECTIVELY, WE (OWNERS, DESIGNERS, PRECASTERS, & ENGINEERS) NEED TO DEVELOP FULL DEPTH DECK PANELS THAT ARE A COST EFFECTIVE ALTERNATIVE, CREATES EFFICIENT CONSTRUCTION METHODS, AND PROVIDES A LONG LASTING, MAINTENACE FREE BRIDGE DECK.

OVERVIEW

- CONCRETE CHARACTERISTICS
- TOLERANCES
- JOINT DETAILS
- SURFACE FINISH
- SHEAR POCKETS
- PANEL GEOMETRY
- FORMWORK

BCP

- STEEL BEAMS STUDS CAN BE SHOT AFTER PANEL PLACEMENT
- CONCRETE BEAMS STUDS CAN BE GROUTED IN PLACE
- CONCRETE BEAMS STUDS CAN BE CAST IN TOP
 OF GIRDERS
- SHEAR POCKET SPACING COULD BE INCREASED

- TRUCKING ISSUES TYPICALLY REQUIRE 8'-0" TO 10'-0" MAX WIDTH
- KEEP DIMENSIONS RELATIVELY CONSISTENT TO REDUCE COSTS
- CONSIDER PANEL WEIGHTS FOR SHIPPING
- DIFFERENTIAL CAMBER BETWEEN PIECES MAY OCCUR

FORMWORK

- MATCH CAST FORM WORK IS EXPENSIVE (ESP.W/ PRESTRESSING) AND TIME CONSUMING
- RIGID/MACHINED SIDE FORMS FOR SHEAR KEY SHOULD ELIMINATE THE "NEED" FOR MATCH CASTING
- MAXIMIZE PANEL LAYOUT FOR PRESTRESS BEDS
- LOCATE PRESTRESS STRAND ON 2-INCH SPACING

Time Dependent Behavior

- Deck panels are post-tensioned and then connected to girders
 (steel or concrete)
- Over time the deck wants to creep and shrink but is restrained by the girders
- Self-equilibrating stresses develop over time, along with restraint
- stresses in continuous systemsDeck loses precompression over time

Design Recommendations

Girder Type	Number of Spans	Required Initial P/T (psi)
Steel	1	200
	2	650
	3 or more	500
PCBT	1	200
	2	200
	3 or more	200
AASHTO	1	200
	2	200
	3 or more	200

Concrete Conference

UirginiaTech

Continuing and Future Work

- Panel-to-panel joint evaluation
- Shear stud pocket performance
- Field implementation and testing

Concrete Conference

UirginiaTech

