





















| Fixed Interval Rep | PROVAL  |            |
|--------------------|---------|------------|
|                    |         |            |
| <u>Start(ft)</u>   | End(ft) | HRI(in/mi) |
| 0                  | 500     | 39.8       |
| 500                | 1000    | 29.7       |
| 1000               | 1500    | 42.0       |
| 1500               | 2000    | 40.1       |
| 2000               | 2500    | 36.2       |
| 2500               | 3000    | 41.6       |
| 3000               | 3500    | 48.5       |
| 3500               | 4000    | 51.0       |
| 4000               | 4500    | 44.0       |
| 4500               | 5000    | 45.5       |
|                    |         |            |
|                    |         |            |
|                    |         |            |



| Job Summary                                                                     |                                                                                   |                                                                                  | PROVAL |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------|
| Low IRI<br>(in/mi) _<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | High IRI<br>_(in/mi)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | Percentage<br><br>0.0<br>8.3<br>35.4<br>40.5<br>15.8<br>0.0<br>0.0<br>0.0<br>0.0 |        |





| Hot Spot Locations        | PROVAL   |
|---------------------------|----------|
| Segment Start Segment End | Peak HRI |
| (ft) (ft)                 | (in/mi)  |
| 3201 3274                 | 64.6     |
| 3276 3280                 | 60.3     |
| 3925 4123                 | 76.5     |
| 4495 4583                 | 85.9     |











| Optimal Gr  | PROVAL    |            |            |
|-------------|-----------|------------|------------|
| Grind Start | Grind End | HRI Change | Max. Depth |
| (ft)        | (ft)      | (in/mi)    | (in)       |
| 3945        | 3990      | 4.8        | 0.36       |
| 4058        | 4093      | 5.4        | 0.33       |
| 4473        | 4587      | 6.1        | 0.16       |

















# Project Information 1.45 Peach, Crawford, & Bibb Counties, GA 141,200 SY Outside Lane Replacement 10 inches thick: 12 ft vide Reconstruction completed In 16 weeks Winter & Spring 2003 Al major work was done at night Project Letting Date: April 19, 2002 Bid Amount \$19,125,146.20 88.4 Traffic Lane Miles 29.5 Shoulder Miles 20.1 Concrete Lane Replacement Miles

# Scope of Project

- Removal and Replacement of outside lane
- Full Depth and Partial Depth Patching on the middle lane
- Diamond Grinding of all 3 lanes
- Reconstruction of outside shoulder

## 20.20



# New Slabs

- Thickness 10 ½- 11 inches (Payment by CY as measured in place)
- Maximum Joint Spacing 15 feet
- Dowel Bars
- Structural Welded Wire Reinforcing Grade 80 equivalent to #5 Rebar @ 12" centers
- Strength of concrete 2500 psi in 24 hours
   3500 psi in three days.

























# Concrete Mix

- Specified 2,500 psi in 24

2,22















# Lessons Learned

- Provide separate bid items for lane removals and for different types of full depth patching.
- Use cubic yard/cubic meter units of measure for replacement items.
- Off-set the longitudinal edge joint of the lane being replaced into the adjacent remaining pavement 1" to 2" to eliminate the seal reservoir so as to reduce the potential for spalling at that joint.
- Re-establish Underdrain outlets/french drains at low points through shoulder.

# apac



# Lessons Learned

- Perform concrete pavement repairs in adjacent lanes prior to lane replacement when possible.
- Perform diamond grinding of adjacent lanes prior to lane replacement when possible.
- Allow the use of maturity for opening to traffic

anac





# **Concrete Overlays in VA** (courtesy David Kaulfers)

- 1920s: Virginia's first PCC overlay on existing PCC
- 1930s thru 1980s: Some unbonded PCC overlays (primarily airports)
- 1990: Bonded PCC overlay on US-13 in Northhampton County
- 1995: Bonded PCC overlay on I-295 near Richmond
- 1995: Bonded PCC overlay on I-85 near Petersburg
- 1999: UTW on Rt. 29N south of Charlottesville

# **BONDED OVERLAY FAMILY**

- PCC/ PCC
- Thin and Ultra-Thin Whitetopping

## Bonded PCC/PC

# **Bonded PCC/PCC Overlays**

- 3 to 4 in PCC
- Bonded to existing PCC (monolithic behavior)
- Aggressive surface preparation
- Increases structural capacity and rideability

**Bonded Interface** 



**Existing PCC Pavement** 

Subbase

# **Feasibility**

Bonded PCC/PC

- Pavements in good condition with need for:
  - Increased structural capacity
  - -Improved surface characteristics
- Unsuitable candidates:
  - -Pavements with structural deterioration
  - -Pavements with moderate/severe MRD

# Bonded PCC/PC

# Key Considerations

- Pre-overlay repair (as needed)
- Effective surface preparation
- Overlay joints match those in underlying pavement
- Effective timing and sawing of transverse & longitudinal joints
  - -Through entire overlay thickness + 1/2 inch
- Effective curing

# Bonded PCC/PC

# **Surface Preparation**

- Needed to ensure monolithic behavior
- Process:
  - Mechanical preparation (generally shotblasting or sandblasting)
  - Surface cleaning (e.g., airblasting)



Shotblasting Equipment



### Bonded PCC/PC0

# Performance

- Mixed performance
- Extensive use in TX and IA
- Performance issues:
  - Inappropriate use (too far deteriorated)
  - Effective bond
  - -Joint details
- Virginia projects:
  - -US 13: 3.5 in PCC / 8 in JPCP (1990)
  - -I-295: 2 in PCC / 8 in CRCP (1995)
  - -I-85: 4 in PCC / 8 in CRCP (1995)







# **Key Considerations**

TWT/UT

- Pre-overlay repair (as needed)
- Effective surface preparation
- Joint design
  - -Maximum panel spacing: 12 to 15 \* D
  - -Avoid placement in wheel paths
- Effective timing and sawing of joints
- Effective curing

# Surface Preparation

- Milling HMA surface
  - Remove rutting
  - -Restore profile
  - -Enhance bond
- Minimum HMA thickness remaining after milling: 3 to 5 in
- Surface cleaning (e.g., airblasting)







# Performance

TWT/UTV

- TWT: Good performance - CO and IL
- UTW: Fair-to-good performance –TN, KS, KY
- Performance issues:
  - -Proper application
  - -Effective bond
  - -Effective joint design (layout)
- Virginia Project (1995)
  - -Experimental UTW on Rt. 29N
  - -Various thicknesses and fiber usage

# Colorado TWT Experience

- Early 1990s
- 6 x 6 x 6 design
- Conventional concrete mixture
- Milled and cleaned HMA surface
- No dowels
- Deformed tie bars across longitudinal joints
- Single cut, sealed joints (silicone)



# UNBONDED OVERLAY FAMILY

- PCC/ PCC
- Conventional Whitetopping

# Unbonded PCC Overlays

- 8 to 12 in PCC
- Separated from underlying PCC
- Minimal surface preparation
- Virtually any PCC pavement type and condition

# Unbonded PCC/PC

# **Feasibility**

- PCC pavements in poor to fair condition
- Any traffic level
- Any existing PCC pavement type
- Site factor considerations
  - -Lane-closure time
  - -Overhead clearances
  - -Shoulders



## Unbonded PCC/PC0

Unbonded PCC/PCC

tor Laye

PCC Overla

Existing PCC Paverr Subbase

(not to sca

# **Key Considerations**

- Limited pre-overlay repair required
- Placement of separator layer
- Joint design
  - Spacing < 21 \* D (max 15 ft)
  - No need to match joints (offset if practical)
  - Dowel as for conventional pavements

Performance

# Unbonded PCC/P

# **Separator Layer**

- Isolates overlay from existing pavement
  - Prevents reflection cracking
  - Prevents mechanical interlocking
- Provides level surface for overlay construction
- Recommended interlayer material: –1-2 inch dense-graded HMA



many highway agencies (e.g., IA, MI, MN, CO)



- -Adequate separator layer
- -Adequate structural design
- -Effective joint design
- Virginia: No recent experience



Unbonded PCC/PC



# Conv. Whitetopping

- Slabs > 6 in thick
- Placed directly on HMA pavement (little preoverlay repair)
- Designed as a new PCC pavement (assuming no bonding)

PCC Overlay Existing HMA Subbase

Interface



## Conv. Whitetopping

# **Key Considerations**

- Localized pre-overlay repair
- Limited surface preparation
  - Milling if significant distortions
- Joint design
  - -Spacing < 21 \* D (max 15 ft)
  - Dowel as for conventional pavements

# Performance

- Good to excellent performance
- Extensive use in Iowa, Nevada, California, Texas
- Performance issues
  - -Uniform support
  - -Effective joint design
- Virginia: no recent experience



# Summary

- PCC overlays offer a long-lasting, low maintenance rehabilitation solution
  - Bonded Solutions:
    - On existing PCC
    - >On existing HMA (TWT/UTW)
  - Unbonded Solutions
    - On existing PCC
    - >On existing HMA (whitetopping)
- Each a unique structure with specific applications and design/construction considerations



# FHWA CPTP Task 64

Develop computer-based guidelines for job-specific optimization of paving concrete

## Considerations:

- > Used by concrete pavement engineers, materials engineers, and paving concrete suppliers
- > Balance practical and reliable
- > For JPCP, CRCP, and patch/repair mixtures
- Conventional concrete-making materials

















## Aggregate Gradation Optimization

- Purpose: to determine optimal proportioning of available aggregates to...
  - Improve durability
  - Maximize strength potential
  - Achieve workability requirements for paving applications
  - Minimize cost





# Aggregate Packing

- "Reality Checks"
  - Application of practical principles learned from construction practice
  - Aggregate gradation for PCC mixtures

    - Coarseness Factor Chart
      0.45 Power Chart (Asphalt Industry)
      Percent Retained (8-18 Chart)



# COMPASS 1. Mix Expert 2. Gradation optimization 3. Initial proportioning 4. Proportioning optimization

|     | Adjustments to Basic                                                                                                             | Water Require             | ement                                |                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|-------------------------|
|     | Water adjustment                                                                                                                 | Water<br>adjustment range | Adjustment<br>Percentage<br>Selected | Water Content           |
| 1.  | Aggregate shape & texture<br>Baseline = cubical crushed stone<br>• Rounded deduct 0.5%<br>• Elongated add 0.3%                   | (-5 to +5%)               |                                      |                         |
| 2.  | Combined aggregate grading<br>(0 for ACI 211.1 Assumptions)                                                                      | (-10 to +10%)             |                                      |                         |
| 3.  | Air entraining admixture<br>Effect varies with higher tir<br>context and other factors. Zero at<br>2% air, 10% for about 6% air. | (-10 to 0%)               |                                      |                         |
| 4.  | Normal range<br>water reducing admixture                                                                                         | (-10 to -5%)              |                                      |                         |
| 3.  | Mid-range water reducing<br>adminture (MRWRA)                                                                                    | (-15 to -8%)              |                                      |                         |
| 6.  | High range water reducing<br>administre<br>(HRWRA= Superplasticiper)                                                             | (-30 to -12%)             |                                      |                         |
| 7.  | Mineral Admixtures<br>Flyach to Silica Fume                                                                                      | (-10 to +15%)             |                                      |                         |
| 8.  | Other factors such as: w/c,<br>cement fineness, temperature                                                                      | (-10 to +10%)             |                                      |                         |
| 9.  | Cumulative adjustment percentage<br>= sum of all values.                                                                         |                           | = 91453                              |                         |
| 10. | Suggested maximum reduction<br>recogniting overlapping effects of<br>individual factors                                          |                           | -30%                                 |                         |
| 11. | Water Adjustment Factor                                                                                                          |                           | = 1.00+(sum/100)                     | (taken from Hover 2001) |



# COMPASS 1. Mix Expert 2. Gradation optimization 3. Initial proportioning 4. Proportioning optimization





# Response Models In general, a response is a property of interest that can be expressed in terms of one or more factors For concrete, response models relate the materials proportions to concrete properties (mix design criteria)











| Optimization Example 1                                                                                                                                                                 | * - COMPASS                                                                                                                       |                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| New Open Save Print                                                                                                                                                                    | Cat Copy Paste                                                                                                                    | Material Factors                                       |
| General Information     Tral Batches     Mathematical     Analyse     Moto Design Orters     Batching     Oscimization     Max Design Orters     Batching     Oscimization     Analyse | Nene Toto<br>27 W.C Rato: Weters Cenert Rato<br>28 Blandda Aog<br>28 Ar Context Ar Context                                        | Rende<br>0.4019:0.45<br>6.56 19/2 32 Valance<br>5.00 % |
|                                                                                                                                                                                        | Agregate and Fiber Just Volume  Aggregate and Fiber Just Volume  Fiber Float  Fiber Float  Komm  Aggregate  Aggregate Type  Coste |                                                        |
|                                                                                                                                                                                        | Bulk Specific Gravity 2.70<br>Cost 0.006 \$/bm                                                                                    | -                                                      |



| Detimiza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ition Example 1 * - COMPA<br>selo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55    |                                      |            |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|------------|---------|
| New Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Save Print Cut Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Paste | Miz                                  | x Design C | riteria |
| Imm         Color           ©         Trail Each           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         →           →         → | i gen and the Cape<br>of the Cape | Tean  | Source<br>Lie Tenno<br>Walle Bushing |            |         |



































# Purpose of CPP

- Used early when pavement has little deterioration.
  - Repairs isolated areas of distress.
  - Repairs some
  - construction defects. Manages the rate of deterioration.

3/11/2008













# What is Diamond Grinding?

- Removal of thin surface layer of hardened PCC using closely spaced diamond saw blades;
- Results in smooth, level pavement surface;
- Longitudinal texture with desirable friction and low noise characteristics;
- Frequently performed in conjunction with other CPR techniques, such as full-depth repair, dowel bar retrofit, and joint resealing.
- Comprehensive part of any PCC Pavement Preservation program;

3/11/2008











# Advantages of Diamond Grinding

- Cost competitive;
- Enhances surface friction and safety;
- Can be accomplished during off-peak hours with short lane closures and without encroaching into adjacent lanes;
- Grinding of one lane does not require grinding of the adjacent lane;
- · Does not affect overhead clearances underneath bridges;
- Blends patching and other surface irregularities into a consistent, identical surface;
- Provides a low noise surface texture!

3/11/2008

# Surface Characteristic Research

- CALTRANS Diamond Grinding Research
- WSDOT Safety Research
- National Concrete Pvmt Technology Center
- Purdue Tire Pavement Testing Apparatus
- · ACPA Sound Intensity Testing
- California and Arizona PCCP SI Testing
- NITE Sound Intensity Testing (CALTRANS)

26

3/11/2008

# Effectiveness of Diamond Grinding -CALTRANS

- Diamond grinding was first used in California in 1965 on a 19-year old section of I-10 to eliminate significant faulting
- CALTRANS has determined that the average life of a diamond ground pavement surface is 17 years and that a pavement can be ground at least three times without affecting pavement structurally. See IGGA.net for full report



25

# MODOT- Safer, Smoother, Sooner

- MODOT initiates Safer, Smoother, Sooner program in 2005 2007
- The initiative invests \$400 million on 2,200 miles
- Improve customer satisfaction through
  - Safer pavements
     Smoother ride quality
  - Quiet ride quality
- Approx 18,000,000 sq yds let since 1<sup>st</sup> Qtr 2005
- See IGGA.Net for MODOT's BMP on diamond grinding new PCCP



Dowel Bar Retrofit

























# Load Transfer Jointed Pavements: • 1.5 inch dowels • At least 6 inches of embedment on either side • Minimum of 3 dowels in each wheelpath • Corrosion resistance necessary if deicing chemicals will be used

# Performance of Full-Depth Repairs

- Can provide 20 or more years of service when properly designed and constructed
- High-early strength materials allow early opening to traffic and limited lane closures

3/11/2008

# Preventive Maintenance 2 Session 2

3/11/2008

|         | Jointed Plain |           |  |  |  |  |
|---------|---------------|-----------|--|--|--|--|
| Plan    |               |           |  |  |  |  |
|         |               |           |  |  |  |  |
|         |               | 3.5-6.0 m |  |  |  |  |
| Profile | e             |           |  |  |  |  |
|         |               |           |  |  |  |  |
|         |               | or        |  |  |  |  |
| -       |               |           |  |  |  |  |
|         |               |           |  |  |  |  |













# Partial-Depth (Joint Spall) Patching Operations



# Partial Depth Repairs

- Repairs deterioration in the top 1/3 of the slab.
- Generally located at joints, but can be placed anywhere surface defects occur.

















# Joint/Crack Resealing

- Application of a sealant material in concrete pavement joints and cracks
- Purpose
- Minimize moisture infiltration
- Prevent intrusion of incompressibles
- Sealant Materials
  - Rubberized asphalt
  - Silicone
  - 3/11/2008

# Performance of Joint Resealing

- Original sealant typically requires resealing after 5 to 12 years
- Resealing required every 5 to 8 years thereafter

3/11/2008

- Regular resealing may extend pavement life 5 to 6 years
- Most beneficial on pavements that are not badly deteriorated



# Good Candidate Pavements for Preventive Maintenance

- Minimal distress (extent and severity)
- Relatively young in age

3/11/2008

- *Minor* functional problems
- · Few historical problems with similar projects













# <section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

| Salient Items of W                      | ork        |
|-----------------------------------------|------------|
| Grinding & Texturing Concrete Pavement  | 330 000 SV |
| Concrete Payement (Full Denth Patching) | 1 200 SY   |
| Rumble Strin                            | 22.500 LF  |
| Epoxy Pavement Marking                  | 985 GAL    |
|                                         |            |
|                                         |            |
| ~                                       |            |

















# **Preventive Maintenance 2** Session 2

78











# SAFETEA-LU Legislation

- □ Sec. 5203. (e) Demonstration Projects and Studies
  - (3) Alkali Silica Reactivity. Of the funds made available by 5101(a)(1) of this Act, \$2,450,000 shall be made available by the Secretary for each of fiscal years 2006 through 2009 <u>for further development</u> and deployment of techniques to prevent and mitigate alkali silica reactivity.

# Before FHWA Started a New Program

## **ASR Benchmarking Workshop**

Stakeholders and customers provide <u>input</u> and identify <u>potential program elements</u> toward development of a comprehensive program of development and deployment activities addressing techniques to prevent and mitigate alkali silica reactivity

# Main Points from the Workshop

- □ Develop protocols/framework/decision tree for ASR prevention and mitigation using existing techniques and guide specifications
- □ Field trials, field trials, and more field trials
- Develop a framework for inventorying and prioritizing structures through existing Pavement Management and Bridge Management systems
- Provide technology transfer through delivery of information and training/education

# **ASR Program Goals**

- □ Increase durability, performance, and reduce life cycle costs
- □ More effectively deploy current technologies
- Develop new technologies, develop rapid lab methods, and develop NDE techniques to assess ASR in the field

# FHWA's ASR Development and Deployment Program

- (1.) Understanding the ASR Mechanism Process for Prevention
- (2.) Develop Testing and Evaluation Protocols
- (3.) Selection, Implementation, and Maintenance of Field Application and Demonstration Projects

# FHWA's ASR Development and Deployment Program

- (4.) Assist States in Inventorying Existing Structures for ASR
- (5.) Deployment and Technology Transfer

Establishment of a Technical Working Group (TWG) to monitor the Program

# (1.) Understanding the ASR

# Mechanism

- Task Goal:
  - Obtain a better understanding of the ASR mechanism
- □ Applied Research Strategies:
  - Quantify various chemical reactions and rates between constituents
  - Identification of formed products
  - Consideration of environmental effects such as deicers
- □ Applied Research Products:
  - Development of prescriptive methodology to produce durable concrete mix designs

# (2.) Develop Testing and Evaluation Protocols

### □ Task Goal:

- Develop a reasonable, effective, and clear decisionmaking process for methods and techniques to prevent and mitigate ASR
- Deployment Strategies:
  - Develop protocols for rapid testing and evaluation for ASR prevention in new construction, ASR mitigation in existing concrete, and determination of future deterioration

# (2.) Develop Testing and Evaluation Protocols

- Deployment Products:
  - Guidance on evaluation of aggregates and mixtures appropriate to prevent against ASR
  - Guidance on the determination of existence and extent of ASR
  - Guidance on mitigation measures to reduce the severity of ASR





# Selection of Mitigation Measures

| Treat the Cause           | Treat the Symptom       |             |
|---------------------------|-------------------------|-------------|
| Chemical                  | Crack Filling           |             |
| Treatment/Injection       | Aesthetics              | Guidance    |
| $\square$ CO <sub>2</sub> | □ Protection (e.g. from | on decision |
| Lithium Compounds         | Chloride ingress)       | factors for |
| Drying                    | Restraint               | considering |
| Sealants                  | Prevent Expansion       | various     |
| Cladding                  | □ Strengthen/Stabilize  | mitication  |
| Improved Drainage         |                         | mugation    |
|                           | Relieve Stress          | options     |
|                           | Sawcutting/Slot Cutting | _           |
|                           |                         |             |

# (2.) Develop Testing and Evaluation Protocols

- □ Applied Research Strategies:
  - Identify the most viable rapid test methods to accurately predict field performance of ASR
- □ Applied Research Products:
  - Modifications to existing test procedures or recommendation for the development of a new test procedure

# (3.) Field Trials

## Task Goal:

- Gather long-term data on the effectiveness and service life of methods and techniques to prevent ASR in new concrete and mitigate ASR in existing concrete
- Deployment Strategies:
  - Implementation of existing techniques to prevent and mitigate ASR
  - Explore new methods and techniques to prevent and mitigate ASR

# (3.) Field Trials

- Deployment Products:
  - Implementation and monitoring of field trials
  - Analysis of the best methods and techniques to prevent and mitigate ASR





# (3.) Field Trials

- □ Applied Research Strategies:
  - Controlled laboratory experiments coordinated with field trials

## □ Applied Research Products:

Cost effective methods for ASR mitigation

# (4.) Assist States with Inventorying Existing Structures for ASR

- □ Task Goal:
  - "Assist States in inventorying existing structures for ASR" per SAFETEA-LU legislation
- Deployment Strategies:
  - Provide tools for States to successfully track and monitor ASR affected structures

# (4.) Assist States with Inventorying Existing Structures for ASR

- Deployment Products:
  - Track ASR affected structures utilizing States Pavement Management and Bridge Management Systems
  - Development of a severity rating system
  - Training

# (4.) Assist States with Inventorying Existing Structures for ASR

- □ Applied Research Strategies:
  - Distinguish ASR and subsequent damage from other deterioration mechanisms to make decisions regarding mitigation, rehabilitation, and reconstruction

## □ Applied Research Products:

 Development of a simple reliable non-destructive field test for the determination of ASR

# (5.) Deployment and Technology Transfer

# □ Task Goals:

 Provide tools, assistance, and efficient and effective technology transfer to educate and train

## Deployment Strategies:

- ASR Data Center
- Technology Transfer

# (5.) Deployment and Technology Transfer

- Deployment Products:
  - Data center that serves as a clearing house for information
  - Training (presentations, workshops, etc.)
  - ASR Newsletter *Reactive Solutions*



# ASR Technical Working Group

States 🖈 Academia 🖈 Industry 🏞 Federal Agencies

Information Sharing
 Technical Input on the Program
 Monitor Program Implementation

| 2007                                        | 2008                      | 2009         | 2010        | 2011       | 2012 |  |
|---------------------------------------------|---------------------------|--------------|-------------|------------|------|--|
|                                             | Task 1 – Mechanism of ASR |              |             |            |      |  |
|                                             |                           |              |             |            |      |  |
| Tas                                         | k 2 – Deve                | lop Test a   | nd Evalua   | tion Proto | cols |  |
|                                             |                           |              |             |            |      |  |
|                                             |                           | Task 3 – F   | ield Trials | 5          |      |  |
|                                             |                           |              |             |            |      |  |
| Та                                          | sk 4 – Ass                | ist States v | with Inven  | tory for A | SR   |  |
|                                             |                           |              |             |            |      |  |
| Task 5 – Deployment and Technology Transfer |                           |              |             |            |      |  |
|                                             |                           |              |             |            |      |  |

# What's Next

- □ Looking for ASR field trials
  - Prevention of ASR in new concrete
  - Mitigation of ASR in existing concrete



# What's Next

- **Reactive Solutions** 
  - Looking for interesting stories, photos, questions, YOUR INVOLVEMENT & INTEREST
- Survey State Structures
  - States to pilot the system developed



















| Street Class         | Description                                                                                                                                                 | Two-way<br>Average Daily<br>Traffic<br>(ADT)       | Two-way Average<br>Daily Truck<br>Traffic (ADTT) | Typical Range<br>of Slab<br>Thickness                           |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|
| Light<br>Residential | Short streets in subdivisions and similar<br>residential areas – often not through-<br>streets.                                                             | Less than 200                                      | 2-4                                              | 4.0 - 5.0 in.<br>(100-125 mm)                                   |
| Residential          | Through-streets in subdivisions and<br>similar residential areas that<br>occasionally carry a heavy vehicle<br>(truck or bus).                              | 200-1,000                                          | 10-50                                            | 5.0 - 7.0 in.<br>(125-175 mm)                                   |
| Collector            | Streets that collect traffic from several<br>residential subdivisions, and that may<br>serve buses and trucks.                                              | 1,000-8,000                                        | 50-500                                           | 5.5 - 9.0 in.<br>(135-225 mm)                                   |
| Business             | Streets that provide access to shopping<br>and urban central business districts.                                                                            | 11,000-17,000                                      | 400-700                                          | 6.0 - 9.0 in.<br>(150-225 mm)                                   |
| Industrial           | Streets that provide access to industrial<br>areas or parks, and typically carry<br>heavier trucks than the business class.                                 | 2,000-4,000                                        | 300-800                                          | 7.0 - 10.5 in.<br>(175-260 mm)                                  |
| Arterial             | Streets that serve traffic from major<br>expressways and carry traffic through<br>metropolitan areas. Truck and bus<br>routes are primarily on these roads. | 4,000-15,000<br>(minor)<br>4,000-30,000<br>(major) | 300-600<br>700-1,500                             | 6.0 - 9.0 in.<br>(150-225 mm)<br>7.0 - 11.0 in.<br>(175-275 mm) |



- Traffic Lanes 10-12 feet
- Parking Lanes 7-8 feet





































| Dowel Sizes                   |                           |                              |                      |
|-------------------------------|---------------------------|------------------------------|----------------------|
| Pavement<br>Thickness,<br>in. | Dowel<br>Diameter,<br>in. | Drilled Hole Diameter, in. * |                      |
|                               |                           | Cement-Based<br>Grout        | Epoxy-Based<br>Grout |
| 6                             | 0.75                      | 0.95                         | 0.83                 |
| 7                             | 1.0                       | 1.2                          | 1.08                 |
| 8                             | 1.0                       | 1.2                          | 1.08                 |
| 9                             | 1.25                      | 1.45                         | 1.33                 |
| 10                            | 1.25                      | 1.45                         | 1.33                 |



















































# **Bonded Summary**

- Bonded overlays are rapidly gaining in popularity, particularly in urban environments
- They have been used at intersections, bus pads, highway ramps, parking areas, subdivision streets
- Performance has generally been excellent
- Where problems occurred, improper placement reducing bond





# Unbonded Summary

- Conventional whitetopping is probably over designed by not accounting for bond
- The new StreetPave Mechanistic Pavement Design software will produce a more optimized design than previous design methods



Performance has been excellent







# Questions

# Thank you

• For additional information, please contact Scott Haislip at <u>shaislip@pavement.com</u> or visit the American Concrete Pavement Association website at www.pavement.com





Count on Con