Yakima River Basin Ground-Water Investigation : an Update

February 28, 2007 Yakima Area Arboretum

TODAY

Present overview of results for selected study components and the planned work for the components

STUDY COMPONENTS

Well information

- Mapping hydrogeologic units
- Estimating ground-water pumpage
- Estimating ground-water recharge
- Analysis of ground water-surface water interchanges
- Assessment ground-water flow system, including ground-water levels
- Estimating hydraulic characteristics of hydrogeologic units

Ground-water flow modeling/assessment

WELL INFORMATION

- Well-driller logs/well inventory
- Mass water-level measurements
- Hydrogeologic databases
- Water-right associations
- Spatial distribution of wells

Well Inventory

- Locate wells
- Measure water levels if possible
- Input all information in the USGS National Water Information System (NWIS) as part of the Ground Water Site Inventory (GWSI)
- Input historical water levels

Mass Water-Level Measurements

- Fall 2000 Spring 2001 Fall 2001 Spring 2002
- Input all water-levels into GWSI

Developed Digital Files of Well Locations Using Available Well Logs

Wells in the Yakima River Basin

MAPPING HYDROGEOLOGIC UNITS

- Defined boundaries of six Sedimentary Basins
- Mapped hydrogeologic units in the basins
- Mapped lateral extents of basalt units

121 WW

120 °0'W

Mapping Basin-Fill Deposits

- Mapped total thickness of Basin-Fill deposits
- Mapped thickness of hydrogeologic units

0 1.5 3 6 Miles

EXPLANATION

0 2.5 5 10 Miles

EXPLANATION

0	1.5	3		6	Miles
	1				

Benton Basin

EXPLANATION

0 2 4 8 Miles

Mapping of Basalt Hydrogeologic Units

Constructed maps of lateral extents

Saddle Mountains Basalt

Wanapum Basalt

Grande Ronde Basalt Basalt

0 5 10 20 Miles

Saddle Mountains Basalt

Preliminary subject to revision

Wanapum Basalt

Preliminary subject to revision

0 5 10 20 Miles

Grande Ronde Basalt

Preliminary subject to revision

Developed Map of Generalized Extent of Surficial Hydrogeologic Units

GROUND WATER PUMPAGE

 Identified well-driller's log associated with most Ground-Water Rights:

Certificates: 2,575 Permits: 299

- Estimated pumpage for eight categories for the period 1960-2000
- Documented methods and results in a report

Wells with water rights

Ground-Water Pumpage Estimates

- Municipal pumpage
- Public Water Supply pumpage
- Domestic Pumpage (exempt wells)
- Irrigation pumpage
- Livestock pumpage
- Fish and Wildlife pumpage
- Commercial and Industrial pumpage
- Ground-water Claims
- Relate to Water Rights

The following 9 slides are figures or graphs from the report describing ground-water pumpage from the Yakima River Basin Aquifer System

Exempt

Irrigation

Irrigation

Ground-water pumpage, by category, in 5-year increments values are in acre-feet per year

	Public Water Supply					Irrigation			Commercial	Fish	Ground-	Total	Cumulative
Years	Municipal	Group A systems	Group B systems	Domestic	Total	Primary	Standby/ reserve	Livestock	and industrial	and wildlife	water claims	for all categories	without standby/ reserve
Pre-1960	19,127	3,888	858	12,379	42,000	41,896	104	222	3,093	3	34,310	115,880	115,776
1960-64	628	331	73	1,187	9,299	9,299	0	208	438	0	0	12,164	127,044
1965-69	2,702	358	79	716	20,271	20,249	22	39	1,428	0	0	25,593	153,510
1970-74	1,379	389	85	988	25,010	23,743	1,267	3,189	612	2	0	31,653	183,897
1975-79	4,236	422	93	2,914	99,474	49,399	50,075	84	44	58	0	107,324	241,147
1980-84	975	458	101	-107	28,845	17,507	11,338	996	1,442	2,661	0	35,371	265,180
1985-89	2,614	586	110	305	20,687	14,927	5,760	461	170	0	0	24,933	284,352
1990-94	1,793	449	119	1,175	21,821	10,398	11,423	1,527	3	4,194	0	31,081	304,010
1995-2000	3,819	584	129	479	3,635	812	2,823	0	0	2,451	0	11,097	312,284
Total in 2000	37,273	7,465	1,647	20,036	271,042	188,230	82,812	6,726	7,230	9,369	34,310	395,096	312,284

GROUND-WATER RECHARGE

- Used existing Watershed Models to estimate Daily Values of Recharge in upland areas
- Used a Daily Water-Budget Model (DPM) to estimate Recharge in remaining areas
- Documented DPM in a report
- Estimated recharge for predevelopment and current land-use and land-cover conditions
- Documented recharge methods and estimates in a report

GROUND-WATER RECHARGE:

DRAINAGE FROM: THE ACTIVE ROOT-ZONE OR THE SOIL COLUMN FOR BARREN SOILS

- SPATIAL DISTRIBUTION OF RECHARGE
- TEMPORAL VARIATIONS IN RECHARGE <u>FOR</u>:

PREDEVELOPMENT AND CURRENT LAND-USE AND LAND-COVER CONDITIONS

DAILY ESTIMATES FOR WATER YEARS 1950-1998/2003

Science for a changing world

PREDEVELOPMENT CONDITIONS

CURRENT CONDITIONS

PREDEVELOPMENT CONDITIONS

CURRENT CONDITIONS

ANNUAL WATER BUDGET FOR A SEMIARID MODELED AREA

COMPARISON WITH OTHER WATER BUDGET ITEMS

RECHARGE PREDEVELOPMENT CURRENT

PRECIPITATION

STREAMFLOW UNREGULATED REGULATED 5,450 ft³/s 7,130 ft³/s

12,000 ft³/s

5,600 ft³/s 3,600 ft³/s

EVAPOTRANSPIRATION UNREGULATED REGULATED

<u>PUMPAGE</u>

6,400 ft³/s 8,400 ft³/s

430 ft³/s

GROUND WATER – SURFACE WATER INTERCHANGES

- Measured streamflow at selected locations
- Monitored surface-water and ground-water levels and temperature at 4 sites and added an additional area
- Developed method to thermally-profile reaches and profiled selected reaches
- Documented method in report
- Gathering other historical and current information
- Made mini-piezometer measurements

TEMPERATURE AND DEPTH VS. DISTANCE FROM START PARKER (AUGUST) REACH, 8/28/2001

Examples of thermal profiles along selected reaches

Monitoring of water-levels and temperature in ground water

09N/21E-02R04

09N/22E-18K02

Ground-water temperature in 3 piezometers—side channel

GROUND-WATER LEVELS and FLOW SYSTEM

- Input some 18,000 water-levels in the national database (GWSI)
- Identified wells tapping flowing artesian zones
- Collected samples for isotope and noble gas
- Analyzed hydrographs
- Constructed preliminary map of water-levels for surficial basin-fill deposits
- Constructing depth-to-water table map for complete aquifer system

Ground-Water Level Hydrographs

- Status: depth to water
- Trends: stable, slight declines, moderate declines, and large declines

20N/15E-28R02 164.4 ft Unit 4 Roslyn Basin

18N/18E-36B01 900 ft Unit 3, Kittitas Basin

BASALT WATER LEVELS WITH DEPTH

Water levels indicate upward flow

08N/30E-09E01 WELL DEPTH 33.3 Feet PASCO GRAVELS

HYDRAULIC CHARACTERISTICS

- Developed spatial coverage of well yields
- Analyzed specific capacity data to estimate hydraulic conductivity
- Compiled previous estimates of hydraulic characteristics
- Analyzed well test data to estimate hydraulic conductivity

GROUND-WATER FLOW MODELING AND ASSESSMENT

 Constructed 6 preliminary predevelopmentcondition models for the basin-fill deposits in the sedimentary basins

Kittitas basin Model

PLANNED WORK FOR STUDY COMPONENETS

Mapping Hydrogeologic Units

- Map depth to top of basalt formations
- Documents maps in a report
- Extend the surficial extents of the non-Columbia River Basalt Group bedrock units to basalt

Ground-Water Pumpage

- Finish assigning open intervals of major wells
- Assign wells to hydrogeologic units
- Determine method to account for exempt wells
- Develop model input files

Ground-Water Recharge

• Develop method to move monthly values of recharge from ascii files to model input

Ground Water –Surface Water Interchanges

- Finishing compiling and checking all information
- Analyze data
- Document results in a report

Ground-Water Flow System

- Map depth to water table
- Map water levels for surficial deposits in basins
- Map, where possible, water levels in basalts and other units
- Analyze hydrographs
- Document status and trends
- Describe aspects of flow system based on isotope analyses
- Document results in a report

Ground-Water Flow Modeling and Assessment

- Develop monthly time series of streamflow, diversion, and return information
- Create river cross-sections for models
- Create agricultural drain-system in models
- Operate predevelopment basin models on a monthly basis
- Operate and calibrate current condition models, 1960-2001
- Document sedimentary basin models in a report
- Construct steady-state regional model for predevelopment conditions
- Construct and calibrate steady-state regional model
- Test calibrating transient regional model
- Assess selected model scenarios
- Document regional model and results in a report

