Thermal Profiling of Long River Reaches to Characterize Ground-Water Discharge and Preferred Salmonid Habitat

by John J. Vaccaro

Washington Water Science Center

April 14, 2005

<u>Purpose</u>

 Identify ground-water discharge locations

 Assess salmon habitat in relation to temperature

<u>Overview</u>

 Ecological role of thermal regimes and ground-water discharge

Method for thermal profiling

Application to Yakima River Basin

Thermal Regimes: Abiotic Driver of Aquatic Ecosystems

- Dissolved oxygen concentrations, metabolic and decomposition rates
- Algal and invertebrate communities
- Fish assemblages (summer and winter)
- Controls bioenergetics of the riverine system
- Increased biodiversity due to thermal diversity (long spatial/temporal variability) thermal structure (short spatial/temporal variability)

Ground-Water Discharge is Basic to Ecological Function

- Provides preferred thermal structure and thus habitat for fish at different life-cycle stages
- Provides nutrients to the aquatic ecosystem
- Provides unique ecotone at interface where it interacts with surface-water (similar ecotones are some of the most productive of all habitats)

Typical Methods for Measuring:

Streamflow Temperature

- In situ, fixed stations
- Remote sensing techniques
 'snapshots' in space and time

Ground-water Discharge

- Discharge Measurements
- Mini-piezometers

Need:

Method for Measuring Temperature and Ground-Water Discharge *in situ* in Large, Modified River Systems.

Yakima River: 1,600 mi network with mean annual discharge of at least 5 cfs

Developed Thermal Profiling Method

- Longitudinal profile of the near-bottom water temperature, conductivity, and depth
- Measure continuously while drifting in a Lagrangian framework

 Long reaches: 8 ~ 25 km (typical study reach : 1 ~ 500 m)

Self-Contained Data Logger & Vehicle

Stainless steel in PVC container No wires to tow Sampling rate is adjustable (second to hours) 'Generally' safe method

Method Details

- Tow data logger(s) set to GPS time
- GPS data collected at 1-sec intervals
- CTD data collected at 1- to 3-sec intervals

Parker Reach: Reproducibility of Results

Parker Reach: : 4-mile Cooling Stretch

Parker Reach: Conductivity (30-sec moving average) August 2001

Easton Reach: Temperature and Depth

Easton Reach: Profile vs. Fixed-Station Data

CLE ELUM RIVER:

REDD STUDY AREA

Cooling area in summer, warming area in winter

Cle Elum River, Redd Study Area, Feb. 2002

UPSTREAM

DOWNSTREAM

UPSTREAM

Redds in Relation to Temperature deviations from Trends

Cle Elum section A Temperature data collected 3/21

Legend

- Redds
 Temperature, C
 2.83 2.93
 2.94 3.01
- 9 3.02 3.07
- 3.08 3.12
- 3.13 3.23

Conclusions

- Thermal profiles provide a new perspective on the temperature regimes of rivers
- Aquatic habitat templet for lotic community patterns
 - different life stages/life-history patterns of salmonids
 - logical progression of the longitudinal gradient of fish assemblages
- Ground-water discharge occurs over broad areas and very locally
 - localized discharge associated with dry tributaries, side channels, geomorphic controls, springs

