#### ESTIMATES OF GROUND-WATER RECHARGE TO THE YAKIMA RIVER BASIN AQUIFER SYSTEM, WASHINGTON, FOR PREDEVELOPMENT AND CURRENT LAND USE AND LAND COVER CONDITIONS





J.J. Vaccaro and T.D. Olsen USGS Washington Water Science Center Tacoma, Washington

#### **COOPERATORS**:

#### Bureau of Reclamation Yakama Nation Washington State Department of Ecology



# **OVERVIEW**

- WHAT— GROUND-WATER RECHARGE
- WHERE YAKIMA RIVER BASIN, WASHINGTON
- WHY GROUND-WATER AVAILABILITY
- **HOW** APPLICATION OF TWO HYDROLOGIC MODELS
- **RESULTS** MAPS AND GRAPHS





### **GROUND-WATER RECHARGE**:

### DRAINAGE FROM: THE ACTIVE ROOT-ZONE OR THE SOIL COLUMN FOR BARREN SOILS



- SPATIAL DISTRIBUTION OF RECHARGE
- TEMPORAL VARIATIONS IN RECHARGE <u>FOR</u>:

### PREDEVELOPMENT AND CURRENT LAND-USE AND LAND-COVER CONDITIONS

DAILY ESTIMATES FOR WATER YEARS 1950-1998/2003



### WHERE













# Ground-water availability and its relation to surface-water resources

Hydrogeologic Framework

Ground-Water Pumpage

**Ground-Water Recharge** 



Integrate Elements Using Ground-Water Flow Models

**GW/SW** Interchanges

**Ground-Water Levels** 





#### 1,280 feet deep, about 5.7 feet per year decline



# HOW

• Application of two hydrologic models:

### Precipitation-Runoff Modeling System (PRMS)

### Deep Percolation Model (DPM)

### Both in the USGS Modular Modeling System











## **Upper Yakima Modeling Unit**

**404 HRUs** • **EXPLANATION** Node & identifier Θ **Precipitation station** Cle Elum Lake 17 subbasins **Temperature station** Olallie Meadows Precip & temp station ▲, **Streamflow station** Kachess 21 nodes Lake • 4 Snow pillow Keechelus Lake Teanaway River 14 • Swauk Creek precipitation Naneum inputs Horlick Cooke **Cle Elum** 13 • Taneum Creek temperature inputs Manastash Cræk

science for a changing world

## RESULTS





#### PREDEVELOPMENT CONDITIONS

**CURRENT CONDITIONS** 





#### **PREDEVELOPMENT CONDITIONS**

#### **CURRENT CONDITIONS**



#### ANNUAL WATER BUDGET FOR A SEMIARID MODELED AREA













PREDEVELOPMENT RECHARGE FOR AN ARID AREA



Science for a changing world

#### **COMPARISON WITH OTHER WATER BUDGET ITEMS**

RECHARGE PREDEVELOPMENT CURRENT

5,500 ft<sup>3</sup>/s 7,300 ft<sup>3</sup>/s

12,000 ft<sup>3</sup>/s

#### **PRECIPITATION**

STREAMFLOW UNREGULATED REGULATED

5,600 ft<sup>3</sup>/s 3,600 ft<sup>3</sup>/s

EVAPOTRANSPIRATION UNREGULATED REGULATED

6,400 ft<sup>3</sup>/s 8,400 ft<sup>3</sup>/s

**<u>PUMPAGE</u>** (2000)

430 ft<sup>3</sup>/s

