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High dispersal in a frog
species suggests that it is
vulnerable to habitat
fragmentation
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Global losses of amphibian populations are a
major conservation concern and their causes
have generated substantial debate. Habitat frag-
mentation is considered one important cause of
amphibian decline. However, if fragmentation is
to be invoked as a mechanism of amphibian
decline, it must first be established that disper-
sal is prevalent among contiguous amphibian
populations using formal movement estimators.
In contrast, if dispersal is naturally low in
amphibians, fragmentation can be disregarded
as a cause of amphibian declines and conserva-
tion efforts can be focused elsewhere. We exam-
ined dispersal rates in Columbia spotted frogs
(Rana luteiventris) using capture-recapture
analysis of over 10 000 frogs in combination with
genetic analysis of microsatellite loci in replicate
basins. We found that frogs had exceptionally
high juvenile dispersal rates (up to 62%
annually) over long distances (>S5 km), large
elevation gains (> 750 m) and steep inclines (36°
incline over 2 km) that were corroborated by
genetic data showing high gene flow. These
findings show that dispersal is an important life-
history feature of some amphibians and suggest
that habitat fragmentation is a serious threat to
amphibian persistence.
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1. INTRODUCTION

Dispersal among populations is expected to increase
population persistence through the ‘rescue effect’
whereby immigrants reduce local extinction rates
(Brown & Kodric-Brown 1977). Immigrants may
reduce extinction rates directly by reproducing in the
populations to which they disperse, and indirectly by
boosting genetic diversity, which can reduce negative
inbreeding effects on reproductive and survival rates
(Tallmon er al. 2004). Because rescue effects may be
important for the persistence of populations naturally
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connected by dispersal, the isolation of populations
with high dispersal rates through habitat fragmenta-
tion is expected to increase extinction rates. On the
other hand, if dispersal rates are low and populations
are naturally isolated, then fragmentation is unlikely
to isolate populations further and fragmentation will
not increase extinction rates.

Despite recognition of the importance of dispersal
in population dynamics, few studies have attempted
to quantify dispersal in amphibians (Trenham ez al.
2001; Lowe 2003). Amphibians are thought to have
low dispersal rates (Blaustein ez al. 1994), although
this may not apply to all species (Alford & Richards
1999; Marsh & Trenham 2001). Advances in cap-
ture-recapture analysis and highly variable molecular
genetic markers greatly improve the potential to
understand dispersal patterns. In particular, multi-
state capture-recapture analysis allows statistically
rigorous estimation of current movement rates among
populations (Nichols & Kendall 1995). Moreover,
microsatellite loci are sufficiently variable to uncover
patterns of gene flow over small geographical scales in
order to infer historic dispersal. In this study, we used
capture-recapture analysis in combination with
microsatellite analysis to investigate dispersal in the
Columbia spotted frog (Rana luteiventris), a pond frog
distributed throughout the northwestern United
States, western Canada and southeastern Alaska.

2. MATERIALS AND METHODS

(a) Capture-recapture analysis

We uniquely marked and recaptured juvenile and adult Rana
luterventris from 21 ponds in two replicate basins, Keeler Creek
(9 ponds) and Marten Creek (12 ponds), in northwestern
Montana, USA (figure 1a). Ponds were separated by a maximum
straight-line distance of approximately 7 km in each of these basins,
which are sixth code hydrologic units (Seaber er al. 1984). Most of
the ponds used by R. luteiventris in Keeler Creek and Marten Creek
are beaver ponds adjacent to the creeks and connected to them by
small inlet and outlet streams. Frogs were caught using dip-nets
during capture sessions of approximately three weeks in July and
August of each year for four consecutive years starting in 2000. We
made a total of 15 008 captures of 10 443 uniquely marked frogs
during these 4 years.

We marked frogs by clipping a unique combination of 3-7 toes
using an alphanumeric coding system (Waichman 1992; Donnelly
et al. 1994). Thumbs were not cut because they are used by males
for clasping females during breeding. We tested whether there was
an effect of toe-clipping on return rate using logistic regression with
the number of toes clipped and the year first marked as independent
variables (Parris & McCarthy 2001). The regression coefficient for
the number of toes clipped was not significant for Keeler Creek
(b=—0.075, n=2563, p=0.407), but was significant for Marten
Creek (b= —0.206, n=7879, p<0.001). The regression coefficient of
—0.206 in Marten Creek is equivalent to a reduction in return rate
of 0.009-0.019 for each additional toe removed after three toes.

Movement distributions were compared among stages, sexes
and basins using Kolmogorov—Smirnov tests (Sokal & Rohlf 1981).
Upstream or downstream bias in movement was examined by
testing whether movement distributions were significantly skewed
(Zar 1984). Site-specific capture histories were then used to
estimate annual stage-specific movement probabilities between the
lower and upper group of ponds in each basin using multistate
capture-recapture analysis. Basins were divided into lower and
upper groups of ponds at the elevational midpoint between the
lowest and highest pond in each basin. In Keeler Creek, the upper
group was pond A and the lower group comprised ponds B-I
(figure 1a(i)). In Marten Creek, the upper group included ponds A-D
and ponds E-L were considered the lower group (figure la(ii)).

We analysed capture-recapture models with stage-, annual- and
site-specific variation in movement, survival and capture probabil-
ities in the program Mark (White & Burnham 1999). A step-down
modelling approach (Lebreton et al. 1992) was used to reduce
sources of variation in survival and capture probabilities and then test
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Figure 1. (a) Location of Columbia spotted frog breeding
ponds in (i) Keeler and (i) Marten Creeks, Montana,
sampled for capture-recapture and genetic analyses. (b)
Movement distributions of (i) juvenile and (ii) adult
Columbia spotted frogs from Keeler and Marten Creeks,
Montana. Negative values represent downstream
movements and positive values upstream movements.

hypotheses about variation in movement probabilities. Sixty-four
models were analysed to examine variation in survival and capture
probabilities, and 16 were used to analyse variation in movement
probabilities in each basin. Akaike’s information criterion adjusted
for sample size (AICc) was used to identify the best models in
terms of a trade-off between parsimony and fit to the data. Because
no generally agreed upon method exists for independently testing
the fit of multistate models, we followed the recommendation of
Cooch & White (2001) to increase the variance inflation factor (¢)
from one to assess confidence in the best model. Increasing ¢
favoured models with fewer parameters, as expected, but did not
qualitatively change our finding that juvenile dispersal rates are high
in both Keeler and Marten Creeks. (The best-supported capture—
recapture models are found in tables 1 and 2 in Electronic
Appendix A.)

(b) Microsatellite analysis

We also analysed genetic variation in five ponds from Keeler Creek
(ponds A, D, F, H and I) and six ponds from Marten Creek (ponds
B, C, E, G, H and K) at six microsatellite loci to estimate gene flow
(figure 1a). These ponds were chosen because they supported the
largest numbers of breeding adults. We genotyped a total of 312
adult frogs (mean=28 frogs per pond) sampled during spring
breeding seasons. Primer sequences, DNA extraction methods,
microsatellite DNA amplification conditions and Hardy—Weinberg
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Figure 2. Movements of juvenile Columbia spotted frogs
from low elevation ponds to a high elevation lake in Keeler
Creek, Montana. The inset shows a juvenile Columbia
spotted frog (approximately 25 mm in total length). Vector
A represents an elevation gain of 770 m over a horizontal
distance of 4240 m (18° mean incline); vector B an
elevation gain of 760 m over 4620 m (16° incline); and
vector C an elevation gain of 700 m over 1930 m (36°
incline). The numbers of frogs observed moving from each
low elevation pond to the high elevation lake are shown in
parentheses.

proportion and gametic disequilibrium analyses are found in Funk
et al. (2005). F, averaged over loci was estimated using FsTaT v.
1.2 (Goudet 1995). The five ponds sampled in Keeler Creek are
equivalent to ponds 1-5, and the six ponds sampled in Marten Creek
are equivalent to ponds 7-12 in Funk ez al. (2005), respectively.

3. RESULTS
Marked Columbia spotted frogs showed high disper-
sal rates over long distances in both basins. Juveniles
moved significantly more than adults (p<0.001;
figure 1b). Twenty-five per cent of recaptured juven-
iles moved 200 m (n=108) or further, 14% moved
1000 m (n=60) or further, 9% moved 2000 m (n=
39) or further, and 2% moved 5000 m (#=7) or
further. In contrast, only 4% of adults moved 200 m
(n=13) or further, 2% moved 1000m (n=6) or
further, and 1% moved 2000 m (n=4) or further.
The maximum distance moved was 5750 m, the
maximum elevation gain was 770 m and the greatest
incline traversed was 36° (700 m elevation gain over
1930 m horizontal distance), all by juveniles (figure 2).
Annual juvenile movement probabilities between
the lower and upper groups of ponds were exception-
ally high in some years. In Keeler Creek, juvenile
movement probabilities were 0.29+0.12 (s.e), 0.00+
0.00 and 0.4940.19 in 2000, 2001 and 2002,
respectively. In Marten Creek, juvenile movement
probabilities were 0.124+0.11, 0.09+0.04 and 0.02+
0.01 from the lower to the upper group of ponds and
0.62+0.31, 0.03+0.04 and 0.26+0.16 from the
upper to the lower group in 2000, 2001 and 2002,
respectively. Annual adult movement probabilities
between the lower and upper groups of ponds
approximated to zero for all years in both basins.
(Movement, survival and capture probability
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estimates are found in tables 3 and 4 in Electronic
Appendix A.)

Ninety-five per cent of frogs (21 out of 22) that
were marked, recorded in a new location in a
subsequent year and then caught again in another
year remained in the site to which they immigrated.
This indicates that almost all movement represents
permanent dispersal rather than temporary migration.
Moreover, annual juvenile survival rates were fairly
high in both basins (mean=0.33), suggesting that
juveniles often survive long enough to reproduce in
the sites to which they immigrate. We found no
difference in movement distributions between basins
(p=0.59 for juveniles and p=0.29 for adults) or
sexes (p=1.00), nor any bias towards upstream or
downstream movement (0.10<p<0.20).

F,, was low in Keeler Creek (0.064+0.011) and
in Marten Creek (0.016+0.002), as expected if
historical dispersal rates and gene flow are high. This
degree of subdivision is expected if there are on
average 2.5 and 10.5 dispersers (genetic ‘migrants’)
entering each population during each generation in
Keeler and Marten Creeks, respectively, assuming an
island model of migration corrected for a finite
number of populations (Wright 1969; Slatkin 1995).
Moreover, the island model estimate of the number
of dispersers is probably biased low for Keeler Creek
because of decreasing gene flow with increasing
geographical distance in this basin (p=0.01). Distance
does not predict gene flow in Marten Creek (p=0.21).

4. DISCUSSION

Our study shows that current and historical rates of
dispersal are exceptionally high in Rana luteiventris.
Other studies have also shown high dispersal rates in
some amphibians (Alford & Richards 1999; Marsh &
Trenham 2001), but this is the first study, to our
knowledge, to quantify amphibian dispersal using
formal capture-recapture analysis in replicate basins
and to confirm that current dispersal patterns are
representative of historic patterns with genetic anal-
ysis. Moreover, this is the first study, to our knowl-
edge, to document high dispersal rates between low
and high elevation populations of amphibians,
suggesting that populations in these different habitats
are connected demographically. The negative relation-
ship between return rate and the number of toes
clipped in Marten Creek indicates that capture,
survival, and/or movement probabilities are negatively
affected by toe-clipping in this basin, and we are
currently investigating the effects of toe-clipping on
each of these parameters in more detail. The general
agreement between the capture-recapture and micro-
satellite data, however, suggests that any effects of toe-
clipping on movement rates are subtle.

High dispersal rates in R. [uteiventris and other
amphibians suggest that dispersal plays an important
role in the population dynamics of some amphibians
and that isolation of these populations through
habitat fragmentation may increase extinction rates.
Dispersal of amphibians can be impeded by roads,
urbanization and clear-cutting of forests (Hitchings &
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Beebee 1997; Johnston & Frid 2002) and several
studies indicate that dispersal is important for amphi-
bian population persistence. For example, extinction
probability is correlated with population isolation in
pool frogs (Sjogren 1991) and the dispersal of stream
salamanders from downstream to upstream sections
increases population growth rates of upstream sec-
tions (Lowe 2003). The maintenance of habitat
connectivity should therefore be a high priority for
amphibian conservation. It seems likely that other
amphibian species also have high dispersal rates, but
this can only be verified by studies designed to
quantify dispersal over large distances. We feel that
capture-recapture and genetic analyses should be
applied more widely for estimating amphibian move-
ment rates to determine whether high dispersal rates
are more common in amphibians than was previously
recognized.
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