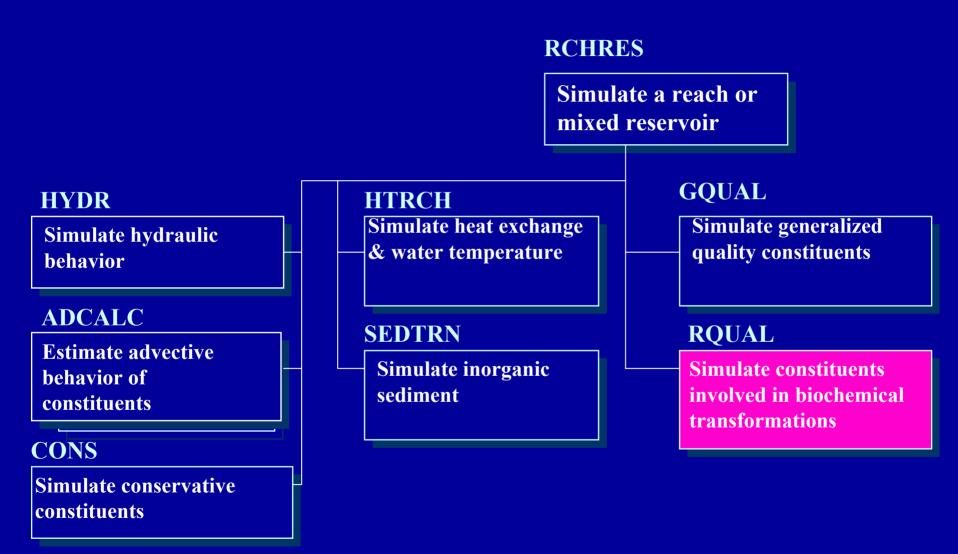


LECTURE #14


INSTREAM WATER QUALITY – BIOCHEMICAL REACTIONS

RCHRES STRUCTURE CHART

RQUAL STRUCTURE CHART

RQUAL

Simulate constituents involved in biochemical transformations

OXRX

Simulate dissolved oxygen and BOD

NUTRX

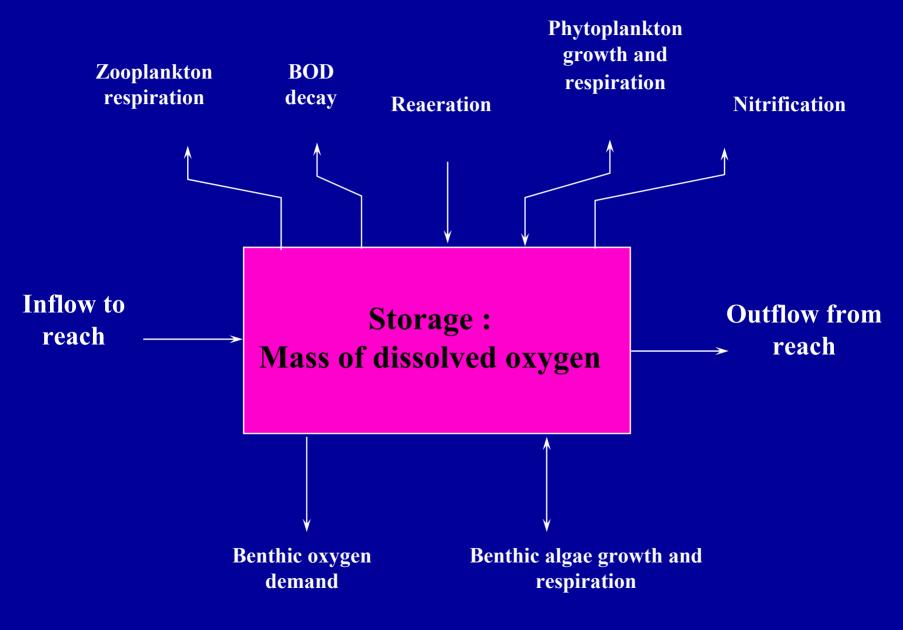
Simulate inorganic nutrients (N and P)

PLANK

Simulate plankton and refractory organics

PHCARB

Simulate pH and inorganic carbon



OXRX: DISSOLVED OXYGEN AND BOD PROCESSES

- Reaeration
- BOD decay/oxygen depletion
- Settling of BOD material
- Benthic oxygen demand
- Benthic release of BOD

DISSOLVED OXYGEN MASS BALANCE

OXYGEN REAERATION AND SATURATION

Function of DO deficit and reaeration coefficient

 $DO_{realeration} = K_{realeration} \cdot (DO_{sat} - DO)$

where:

 $K_{reaeration}$ = Reaeration coefficient (hr⁻¹)

= Oxygen saturation level for current water temperature (mg/L)

DO

DO_{sat}

= Dissolved oxygen concentration (mg/L)

 $DO_{sat} = 14.65 + T_{w} \cdot f \cdot \left(-0.4102 + T_{w} \cdot (0.007991 - 0.7777 \cdot 10^{-4} \cdot T_{w})\right)$

where:

 $T_w = Water temperature (°C)$ = Correction factor based on reach elevation

OXYGEN REAERATION: OPTIONAL METHODS

Streams

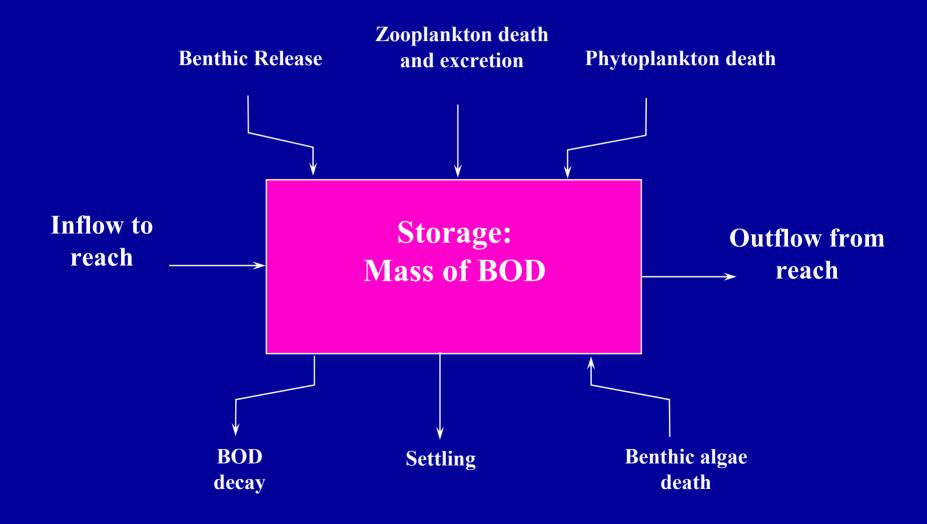
1. Tsivoglou, Wallace method

- Based on velocity and slope
- Temperature correction
- Escape coefficient

2. Covar method

- Power function of velocity and depth
- Temperature correction
- Escape coefficient
- Three sets of coefficients & exponents based on depth and velocity regimes (Owens, Churchill, O'Connor-Dobbins)

3. User-specified, similar to Covar method


Lakes

- Function of depth and wind speed
 - User-defined circulation correction factor

BOD MASS BALANCE

BOD DECAY

$$DO_{consumed} = K_{BOD} \cdot \theta^{(T_w - 20)} \cdot BOD$$

where:

- K_{BOD} = BOD decay rate at 20 °C (hr⁻¹)
- **Temperature correction coefficient**
- **BOD** = BOD concentration (mg/L)
- T_w = Water temperature (°C)

BENTHIC PROCESSES

- Benthic oxygen demand (optional)
 - Exponential function of DO
 - Benthic oxygen demand at 20 ° C
 - Temperature correction

• Benthic release of BOD (optional)

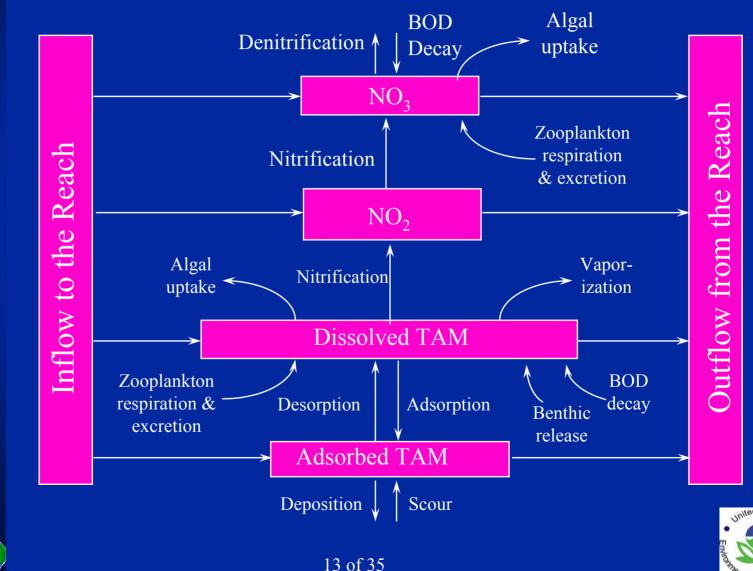
- Release rate under aerobic conditions
- Release rate under low oxygen conditions
- Exponential function of DO
- Affected by scouring condition

OXYGEN/BOD PARAMETERS

- **REAK** Escape coefficient in reaeration equations
- **TCGINV Temperature correction coeff. for reaeration**
- **EXPREV** Exponent to velocity in user-specified reaeration equation
- **EXPRED** Exponent to depth in user-specified reaeration equation
- **CFOREA** Lake reaeration correction factor; accounts for good or poor circulation
- **KBOD20 BOD** decay rate at 20 °C (hr⁻¹)
- **TCBOD** Temperature correction coeff. for BOD decay
- **KODSET BOD** settling rate (m/hr or ft/hr)

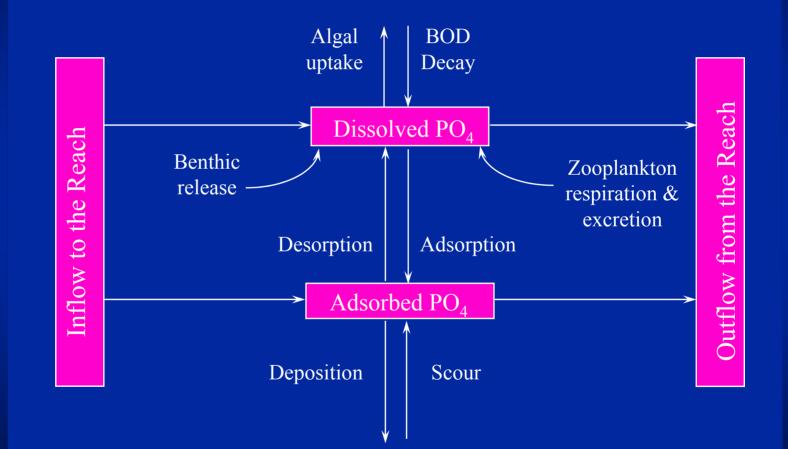
NUTRX: INORGANIC NUTRIENTS

• CONSTITUENTS


- NO₃
- NO₂
- TAM, particulate TAM
- PO₄, particulate PO₄

• **PROCESSES**

- Decomposition of BOD material to PO₄ and TAM or NO₃
- Nitrification of TAM to NO₃
- Denitrification of NO₃ to N₂
- Adsorption of TAM and PO₄ to sediment
- Benthic release of TAM and PO₄



INORGANIC NITROGEN SOURCES, SINKS AND TRANSFORMATIONS

CONSULTAN

INORGANIC PHOSPHORUS SOURCES, SINKS AND TRANSFORMATIONS

NITRIFICATION AND DENITRIFICATION

- Nitrification: TAM \longrightarrow NO₂ \longrightarrow NO₃
 - First-order in ammonia concentration
 - Nitrification rate coefficient (TAMNIT)
 - Temperature correction (TCNIT)
 - Consumes oxygen
- Denitrification $NO_3 \longrightarrow N_2$
 - First-order in nitrate
 - Denitrification rate coefficient (KNO320)
 - Temperature correction (TCDEN)
 - Process occurs below threshold DO (DENOXT)

SEDIMENT- NUTRIENT INTERACTIONS

Particulate P and N - Optional

- Equilibrium adsorption of PO₄ and TAM to three sediment fractions (sand, silt, clay) in the water column
- Deposition/resuspension of sediment is computed in Section SEDTRN
- Resuspended sediment has a constant user-defined concentration of N and P
- Nutrient resuspension is limited by mass of sediment in bed

NUTRIENT PARAMETERS

KTAM20

KNO220

KNO320

DENOXT

BNH4

BPO4

BRTAM

BRPO4

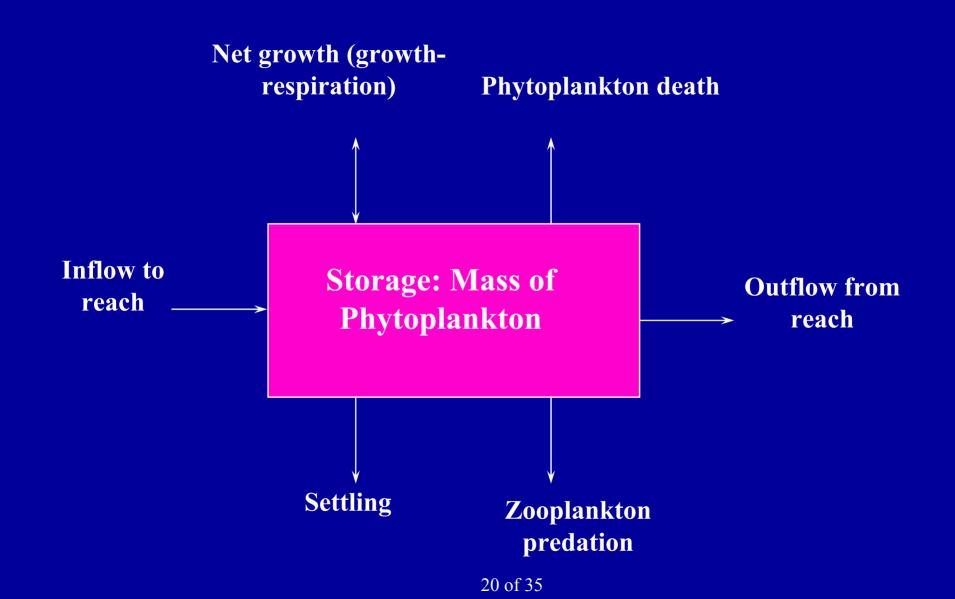
- Nitrification rate of TAM at 20 °C
- Nitrification rate of NO₂ at 20 °C
- Denitrification rate at 20 °C
- Dissolved oxygen threshold concentration for denitrification (mg/l)
- **ADNHPM** Adsorption coefficients for TAM and PO4**ADPOPM**adsorbed to inorganic sediment (mg/l)
 - Concentrations of TAM and PO₄ adsorbed to scoured bed sediments
 - Benthic release rates of TAM under aerobic and anaerobic conditions (mg/m²/hr)
 - Benthic release rates of PO₄ under aerobic and anaerobic conditions (mg/m²/hr)

NUTRIENT PARAMETERS: COMPOSITION OF BIOMASS

- **CVBPC** Ratio of C to P in biomass (molar)
- **CVBPN** Ratio of N to P in biomass (molar)
- **BPCNTC** Percentage of biomass weight consisting of C
- **CVBO** Mg dissolved oxygen associated with 1 mg biomass

Default biomass composition: C:N:P = 106:16:1

PLANK: PLANKTON PROCESSES


Phytoplankton

- Growth, respiration, death
- Settling from water column
- Predation by zooplankton
- Zooplankton
 - Growth, respiration, death
- Benthic algae
 - Growth, respiration, death
- Refractory organics (N, P, C)
 - Results from decomposition of algal material
 - Settling

PHYTOPLANKTON MASS BALANCE

PHYTOPLANKTON SIMULATION

- Single species
 - Default composition: C:N:P = 106:16:1

Advection and settling

- Settling rate: PHYSET
- Advection routine: minimum concentration of phytoplankton

• Light

- Solar radiation reduced by surface shading and reflection
- Light extinction = base (water) + sediment + phytoplankton
- Euphotic depth and light available to phytoplankton computed
- Light correction factor (< 1 if euphotic depth < average depth)

PHYTOPLANKTON SIMULATION

• Growth simulation by Michaelis- Maton kinetics $G_i = G_{max,T} * X_i / (C_{xi} + X_i)$

where

 G_i = Growth rate based on nutrient or light limitation $G_{max,T}$ = Temperature-corrected maximum growth rate X_i = Nutrient concentration or light intensity C_{xi} = Michaelis-Menton constant for nutrient or light limited growth

 Growth rate = minimum G_i (where i = nitrogen, phosphorus, light)

PHYTOPLANKTON SIMULATION

Respiration

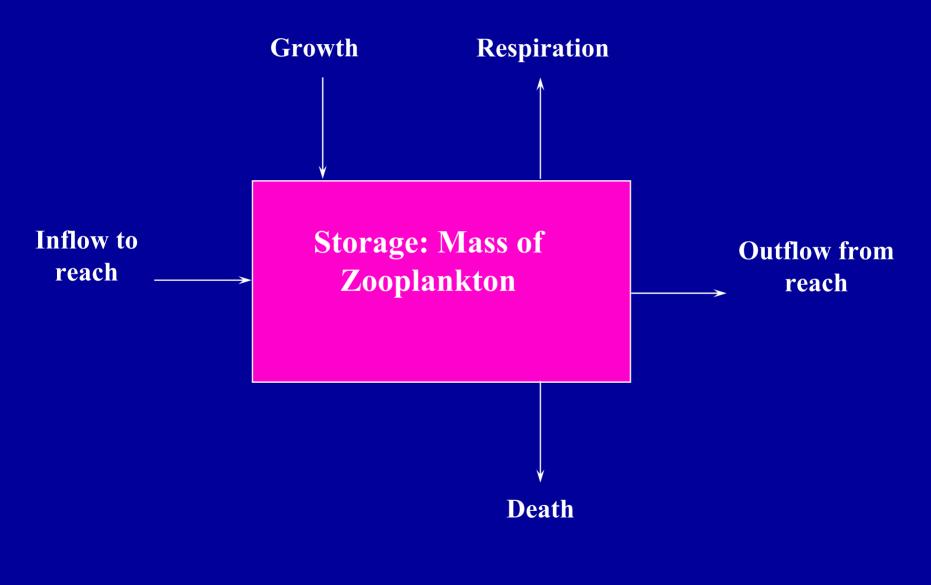
- First-order, temperature-corrected rate

• Death

- First-order rate
- Low death rate (ALDL) when nutrients are plentiful
- High death rate (ALDH) when nutrients are scarce or phytoplankton concentration is high
- Increment to death rate during anaerobic conditions

PHYTOPLANKTON PARAMETERS: 1

- **MALGR** maximum algal unit growth rate (/hr)
- **CMMLT** Michaelis-Menton constant for light-limited growth (ly/min)
- **CMMN** nitrate Michaelis-Menton constant for N-limited growth (mg/l)
- **CMMNP** nitrate Michaelis-Menton constant for P-limited growth (mg/l)
- **CMMP** phosphate Michaelis-Menton constant for P-limited growth (mg/l)
- **TALGRH** temperature above which algal growth ceases (C)
- **TALGRL** temperature below which algal growth ceases (C)
- **TALGRM** temperature below which algal growth is retarded (C)
- **EXTB** base extinction coefficient (/m)
- **RATCLP** ratio of chlorophyll a to phosphorus in biomass
- **NONREF** non-refractory fraction of algae and zooplankton biomass
- **ALNPR** fraction of nitrogen required for algal growth satisfied by NO₃


PHYTOPLANKTON PARAMETERS: 2

- ALR20 unit algal respiration rate at 20C (/hr)
- **ALDH** high algal unit death rate (/hr)
- **ALDL** low algal unit death rate (/hr)
- **OXALD** increment to phytoplankton death rate due to anaerobic conditions (/hr)
- **NALDH** inorganic N concentration below which high algal death rate occurs (mg/l N)
- PALDH inorganic P concentration below which high algal death rate occurs (mg/l P)
- **CLALDH** chlorophyll a concentration above which high algal death rate occurs (ug/l)
- **SEED** minimum concentration of plankton not subject to advection
- **MXSTAY** concentration of plankton not subject to advection at low flow
- **OREF** flow rate where plankton concentration not subject to advection is midway between SEED and MXSTAY
- **PHYSET** settling rate of phytoplankton

ZOOPLANKTON MASS BALANCE

26 of 35

ZOOPLANKTON

• Filtering and ingestion of phytoplankton

 First-order, temperature corrected rate at low phytoplankton concentrations; constant rate at high phytoplankton concentrations

• Assimilation

Ingested phytoplankton converted to zooplankton; efficiency based on user-defined food quality

Respiration

First-order, temperature-corrected rate; inorganic nutrients released

• Excretion

Difference between ingestion and assimilation; BOD, refractory organics, and inorganic nutrients released

• Death

First-order rate based on dissolved oxygen conditions; BOD and refractory organics released

ZOOPLANKTON PARAMETERS

- **ZFOOD** quality of zooplankton food (1, 2, 3)
- **MZOEAT** maximum zooplankton unit ingestion rate (mg phyto/mg zoo/hr)
- **ZFIL20** zooplankton filtering rate at 20C (l/mg zoo/hr)
- **ZRES20** zooplankton unit respiration rate at 20C (/hr)
- **ZD** natural zooplankton unit death rate (/hr)
- **OXZD** increment to zooplankton death rate in anaerobic conditions (/hr)
- **TCZFIL** temperature correction coefficient for filtering (-)
- **TCZRES** temperature correction coefficient for respiration (-)
- **ZEXDEL** fraction of non-refractory excretion immediately decomposed when the ingestion rate is greater than MZOEAT (-)
- **ZOMASS** average weight of a zooplankton organism (mg)

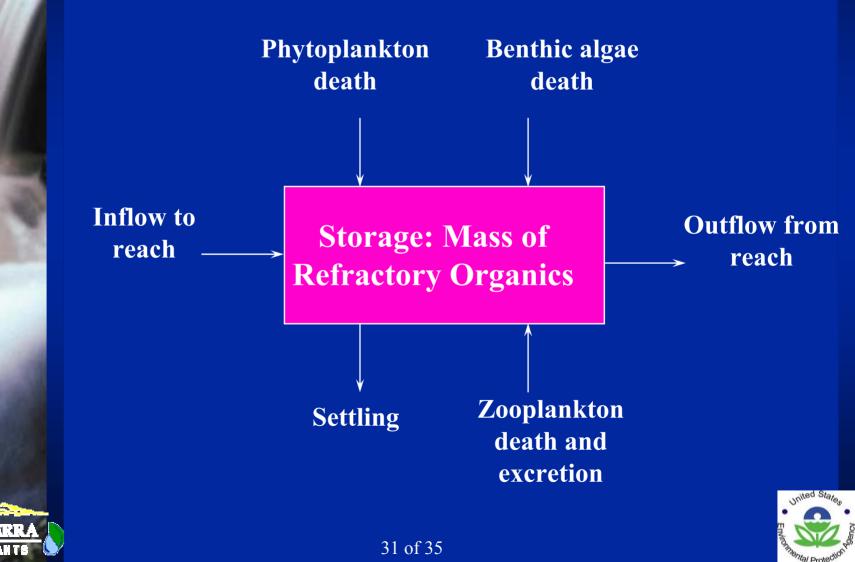
BENTHIC ALGAE

- Attached to rocks and other stationary material
- Simulated using same composition, processes and methods as phytoplankton except:
 - No advection
 - Different method for estimating death

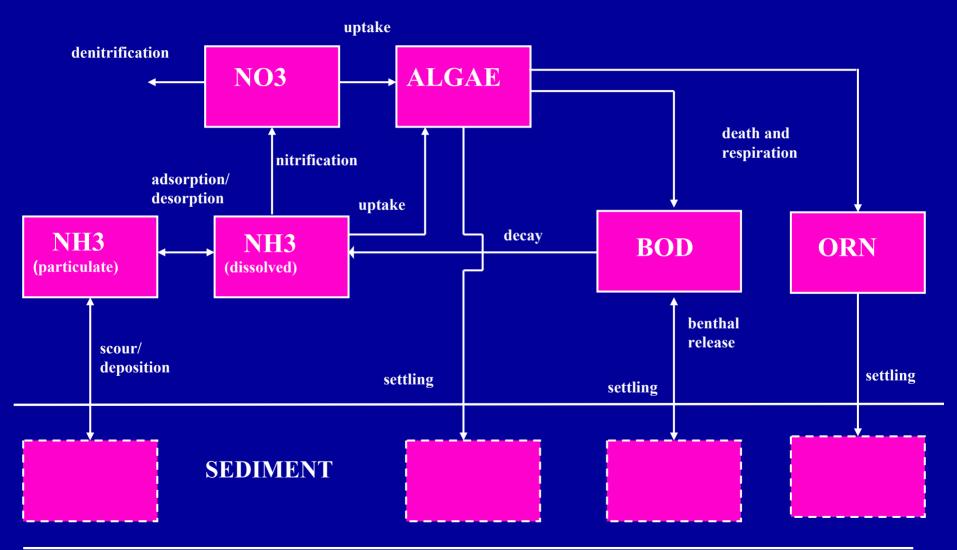
• Parameters:

MBAL - maximum benthic algae density (mg biomass/m²)
CFBALG - ratio of benthic algae to phytoplankton growth rate
CFBALR - ratio of benthic algae to phytoplankton respiration rate

BENTHIC ALGAE MASS BALANCE



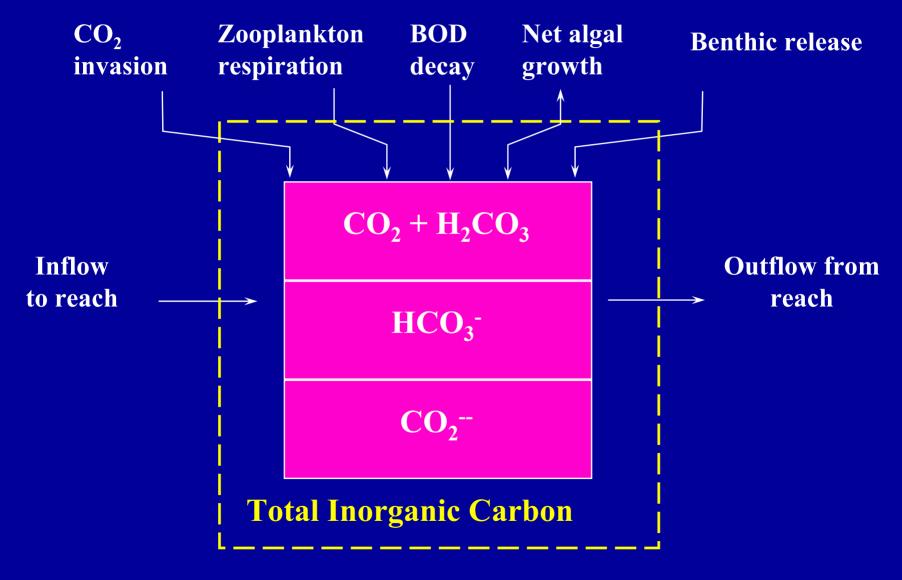
Storage: Mass of Benthic Algae



REFRACTORY ORGANICS (N,P,C) MASS BALANCE

SUMMARY OF NITROGEN CYCLE

WATER COLUMN


PHCARB: pH & INORGANIC CARBON

- Computes pH based on total inorganic carbon (TIC), alkalinity, and CO₂ equilibrium
- Alkalinity simulated as a conservative (CONS)
- CO₂ input from atmosphere proportional to oxygen reaeration

INORGANIC CARBON MASS BALANCE

34 of 35

PHCARB PARAMETERS

CFCINV- Ratio of CO₂ invasion rate to oxygen reaeration rate

BRCO2- Benthic release rates of CO₂ for aerobic and anaerobic conditions (mg/m²/hr)

