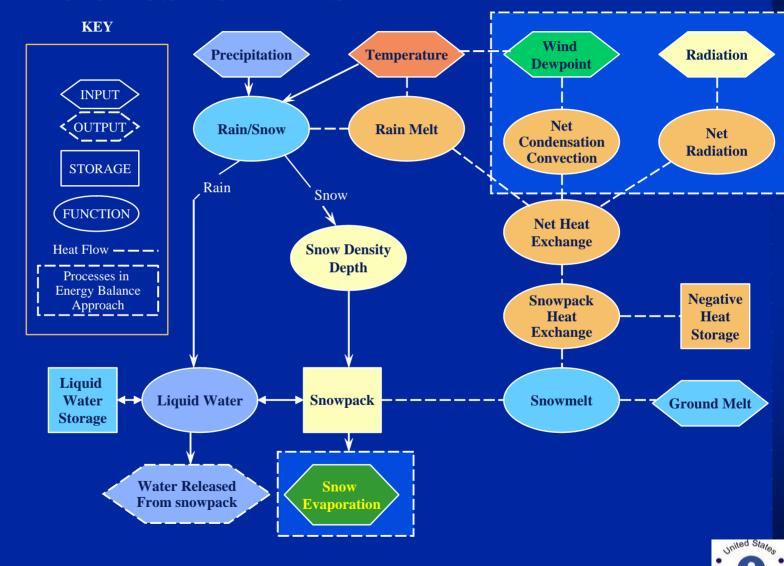

LECTURE #9

SNOW PROCESSES, PARAMETERS, AND CALIBRATION



SNOW ACCUMULATION AND MELT PROCESSES - THE SNOW CYCLE

AQUA TERRA CONSULTANTS

FLOWCHART OF SNOWMELT PROCESSES IN HSPF

SNOW SIMULATION OPTIONS IN HSPF, VERSION No. 12

ENERGY BA	ALANCE APPROACH	TEMPERATURE INDEX/DEGREE-DAY METHOD		
SNO	OPFG = 0	SNOPFG = 1		
Rain/Snow Determination	U	U		
Snow Pack Depth & Density	U	U		
Snow Pack Liquid Storage	U	U		
Rain Melt	U	U		
Radiation Melt	U			
Condensation/ Convection	U			
Snowpack Heat Exchange	U	U		
Ground Melt	U	U		
Snow Evaporation	U			

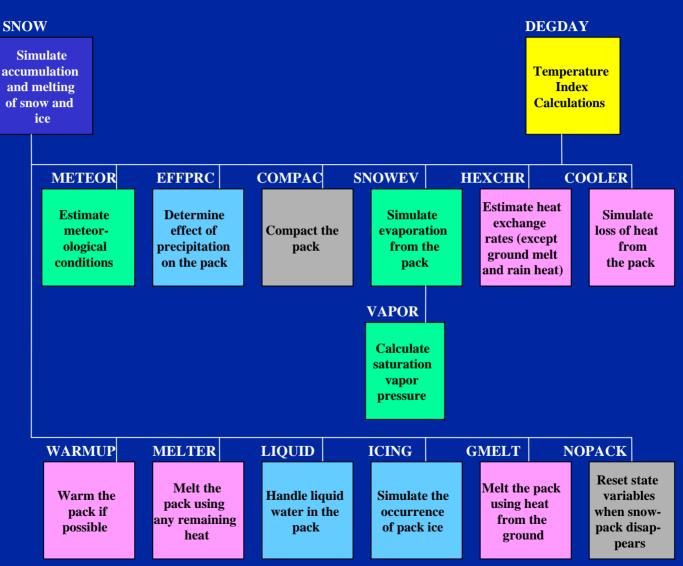
METEOROLOGIC DATA REQUIREMENTS FOR SNOW SIMULATION

Precipitation Required Required

Air Temperature Required Required

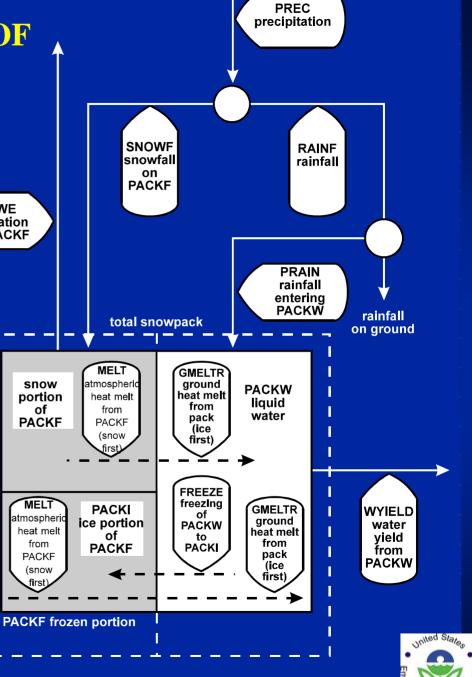
Solar Radiation Required Not Used

Dewpoint Required Optional


Wind Velocity Required Not Used

Cloud Cover Optional Not Used

SNOW STRUCTURE CHART



FLOW DIAGRAM OF WATER
MOVEMENT/
STORAGE IN THE PACK

SNOWE evaporation from PACKF

SNOWMELT - TIME SERIES INPUTS, RAIN/SNOW DETERMINATION, DENSITY EQUATION

Time series inputs

precipitation air temperature dewpoint temperature wind movement solar radiation

RAIN or SNOW

SNOTMP = TSNOW + (AIRTMP - DEWTMP) * (0.12 + 0.008 * AIRTMP)

max adjustment 1 degree F

SNOTMP = air temperature below which is snow

TSNOW = input parameter

AIRTMP = air temperature

DEWTMP = dew point temperature

Density of new snow

 $\overline{RDNSN} = \overline{RDCSN} + (\overline{AIRTMP} / 100.0)^2$

RDCSN = input parameter (density at zero degrees F and lower)

AIRTMP = air temperature

To Annual Projection

SNOWPACK HEAT GAIN AND LOSS - RAIN HEAT, CONDENSATION, CONVECTION, RADIATION, AND GROUND HEAT

from rain

RNSHT = (AIRTMP - 32.0) * RAINF/144.0

AIRTMP = air temperature

RAINF = rain in inches

<u>from condensation</u> (Energy Balance Only)

CONDHT = 8.59 * (VAP - 6.108) * **CCFACT** * 0.00026 * WINMOV

VAP = vapor pressure at current air temperature

CCFACT = input parameter to adjust to local conditions

WINMOV = wind movement in miles/interval

from convection (Energy Balance Only)

CONVHT=(AIRTMP-32)*(1-0.3***MELEV**/10000)***CCFACT***0.00026 * WINMOV

AIRTMP = air temperature

MELEV = mean elevation above sea level in feet

CCFACT = input parameter to adjust to local conditions

WINMOV = wind movement in miles/interval

<u>from radiation</u> (Energy Balance Only)

RADHT = (SHORT - LONG)/203.2

SHORT = net solar radiation in langleys/interval

LONG = net longwave radiation in langleys/interval

from ground

function of maximum rate (MGMELT) when snow pack

is 32 degrees F, but reduced for colder snow packs

9 of 18

SHORT AND LONG WAVE RADIATION-**CALCULATIONS**

SHORT WAVE

```
SHORT = SOLRAD * (1.0 - ALBEDO) * (1.0 - SHADE)
```

SOLRAD = solar radiation in langleys/interval

ALBEDO = albedo (reflectivity of snow pack) = 0.85 - 0.007 * (DULL/24)^{0.5}

DULL = index which is increased with age of

snowpack and decreased with new snowfall

SHADE = input parameter for effect of shading by vegetation

LONG WAVE

air temperature above freezing

LONG = SHADE * 0.26 * RELTMP + (1 - SHADE) * (0.2 * RELTMP - 6.6)

air temperature below freezing

LONG = SHADE * 0.20 * RELTMP + (1 - SHADE) * (0.17 * RELTMP - 6.6)

 $\overline{SHADE} = same as above$

RELTMP = air temperature - 32.0 degrees F

TEMPERATURE INDEX/DEGREE APPROACH: EQUATION, INPUTS, PARAMETERS

Standard Equation

HSPF Algorithm

Q = Kmelt * (Tair - Tbase)

MOSTHT= KMELT*(AIRTEMP-TBASE)*SNOCOV

where:

Q= runoff (in)

Kmelt= degree-day factor (in/day F)

Tair= daily mean temperature (F)

Tbase= reference temperature, often taken to be 32 F where:

MOSTHT=net heat exchange (equivalent melt), exclusive of rain sensible heat and ground melt (in)

KMELT= degree-day factor, possibly interpolated from monthly values (in/day/F), PARAMETER

AIRTMP= current air temperature (F)

TBASE= reference temperature for snowmelt (F), PARAMETER

SNOCOV= fraction of land segment covered by snow
11 of 18

WATER LOSSES FROM SNOWPACK

Evaporation

SNOWEP = SNOEVP * 0.0002 * WINMOV * (SATVAP - VAP) *SNOCOV

SNOEVP = input parameter

WINMOV = wind movement in miles/interval

SATVAP = saturated vapor pressure at current air temperature

VAP = vapor pressure at current air temperature

SNOCOV = fraction of land segment covered by snowpack

Snow cover

100% until frozen content (snow and ice) of snowpack less than input parameter **COVIND**.

Snowmelt losses to land surface

When liquid water in snowpack exceed capacity

if snow density > 0.9

PACKWC = 0.0

if 0.6 < snow density < 0.91

PACKWC = MWATER * (3.0 - 3.33 * snow density)

if snow density < 0.61

PACKWC = MWATER

MWATER = input parameter for maximum liquid water content of snowpack (in/in)

FROZEN GROUND, INFILTRATION REDUCTION

Conditions: SNOW is simulated, CSNOFG=1

Icing is simulated, ICEFG=1

TWO OPTIONS (PWAT-PARM1) -

IFFCFG=1:

INFFAC = max (1.0 - FZG*PACKI, FZGL)

INFFAC = Fraction reduction in Infiltration/Percolation

FZG = Impact of icing on infilt/percolation, 1/in (WE)

PACKI = Ice in snowpack, in (WE)

FZGL = Minimum value of INFFAC

(WE = Water Equivalent)

IFFCFG= 2:

INFFAC = { 1.0, when LZ soil temp ≥ freezing FZGL, when LZ soil temp < freezing

(Section PSTEMP must be active) 13 of 18

SNOW PARAMETERS - SNOW-PARM1

SNOW-PARM 1

- Latitude of the PLS, positive for the northern hemisphere, negative for the southern hemisphere (used when SNOPFG = 0)

MELEV - Mean elevation of the PLS (used when SNOPFG = 0)

SHADE - Fraction of the PLS shaded from solar radiation (used when SNOPFG = 0)

SNOWCF - Correction factor to account for poor catch efficiency of the gage

COVIND - Maximum pack (water equivalent) at which the entire PLS will be covered with snow

KMELT - Degree-day factor (used when SNOPFG = 1); need table (Mon-Melt-Fac) of monthly values if VKMFG = 1

TBASE - Reference temperatures for snowmelt (used when SNOPFG = 1)

SNOW PARAMETERS - SNOW-PARM2

SNOW-PARM 2

RDSCN - Density of cold, new snow relative to water

TSNOW - Air temperature below which precipitation will be snow

SNOEVP - Parameter which adapts the snow evaporation (sublimation) equation to field conditions (used when SNOPFG = 0)

CCFACT - Parameter which adapts the snow condensation/convection melt equation to field conditions (used when SNOPFG = 0)

MWATER - Max water content of the snow pack, in depth water per depth water equivalent

MGMELT - Max rate of snowmelt by ground heat, in depth of water equivalent per day

HSPF SNOW PARAMETERS AND TYPICAL/POSSIBLE VALUE RANGES

			RANGE OF VALUES					
NAME	DEFINITION	UNITS	TYP	ICAL	POSS	SIBLE	FUNCTION OF	COMMENT
			MIN	MAX	MIN	MAX		
SNOW - PARM1								
LAT	Latitude of watershed segment	degrees	30.0	50.0	-90.0	90.0	Location	Positive for northern hemisphere
MELEV	Mean elevation of watershed segment	feet	50.0	3000	0.0	7000	Topography	Used in convective heat flux equation
SHADE	Fraction shaded from solar radiation	none	0.1	0.5	0.0	0.8	Forest cover, topography	Controls radiation to and from the snowpack
SNOWCF	Snow gage catch correction factor	none	1.1	1.5	1.0	2.0	Gage type, characteristics, location	Calibrate to snow depth observations
COVIND	Snowfall required to fully cover surface	inches	1.0	3.0	0.1	10.0	Topography, climate	Higher for mountainous watersheds
SNOW - PARM2								
RDCSN	Density of new snow	none	0.10	0.20	0.05	0.30	Climate, air temperature	Adjust with field snow density data, if available
TSNOW	Temperature at which precip becomes snow	deg. F	31.0	33.0	30.0	40.0	Climate, topography	Precip. is snow when temperature below TSNOW
SNOEVP	Snow evaporation factor	none	0.10	0.15	0.0	0.5	Climate, topography	Only important in windy, low humidity conditions
CCFACT	Condensation/convection melt factor	none	1.0	2.0	0.5	8.0	Climate	Calibrate to change rate/timing of snowmelt
MWATER	Liquid water storage capacity in snowpack	in/in	0.01	0.05	0.005	0.2	Climate	Adjust to change timing of snowmelt
MGMELT	Ground heat daily melt rate	in/day	0.01	0.03	0.0	0.1	Climate, geology	Usually small under frozen ground conditions

SNOW CALIBRATION

- ♦ Estimate initial parameters from watershed characteristics, previous applications, and past experiences
- ◆ Evaluate transference of meteorological data from observation sites to the model segment:
 - * Precipitation and evaporation
 - * Air temperature
 - * Wind movement
 - * Solar radiation
 - * Dewpoint temperature
- ♦ Adjust TSNOW and/or air temperatures to mimic observed rain and/or snow events
- ◆ Adjust **SNOWCF** to calibrate snow depths and melt volumes
- ◆ Adjust CCFACT/KMELT to improve timing of snow melt events
- ◆ MGMELT can be adjusted if there is evidence of a constant melt component
- ♦ MWATER can be adjusted if melt water is being retained in the snow pack until major spring melt events

LITERATURE RANGES FOR DEGREE-DAY FACTOR

Reference	Degree-day Fac	tor (in/day•F)	<u>Notes</u>		
Single constant	t values				
Zingg (1951)	.10		Lysimeter test at Weissfluhjoch		
McCallister &	.06		Plains *		
Johnson (1962)					
Pyskylwec (1968)	.040		Eastern Canada, forested		
Quick &	.066		Western Canada mountains		
Pipes (1975)					
Ranges for con	stant values				
Horton (1945)	.06	.09	Typical range *		
USACE (1956)	.020	.039	Forested *		
Linsley (1958)	.06	.15	Typical range *		
Martinec (1960)	.077	.131	1.1 * relative snow density *		
			(usually .3055)		
Granger &	.033	.153	6-hourly values for prairie *		
Male (1978)					
Kuusisto (1978)	.055	.071	Depending on choices of internal		
			snowpack processes being modeled		
Ranges for seas	sonal values				
Linsley (1943)	.022 (Mar)	.153 (Jun)	San Joaquin River Basin		
Clark (1955)	.020 (early)	.059 (late)	Southern Manitoba - Red River		
USACE (1956)	.089 (Apr)	.100 (May)	Montana Rockies, partial forest		
	.037 (Apr)	.072 (May)	Western Cascades, heavy forest		
	.039 (Apr)	.042 (May)	Sierra Nevada, light forest		
Weiss &	.040 (Apr)	.081 (Jun)	Forested *		
Wilson (1958)	.081 (Apr)	.162 (Jun)	Open *		
WMO (1964)	.044 (Apr)	.087 (Jun)	Moderate forest *		
	.066 (Apr)	.131 (Jun)	Partial forest *		
	.087 (Apr)	.153 (Jun)	Open *		
Bruce &	.080 (early)	.125 (late)	Southern Ontario		
Clark (1966)	•				
Bengsston (1980)	.066 (Mar)	.131 (Jun)	Northern Sweden		
Gray &	.013 (mid)	.040 (late)	Boreal forest *		
Prowse (1993)	.020 (mid)	.036 (late)	Taiga *		

