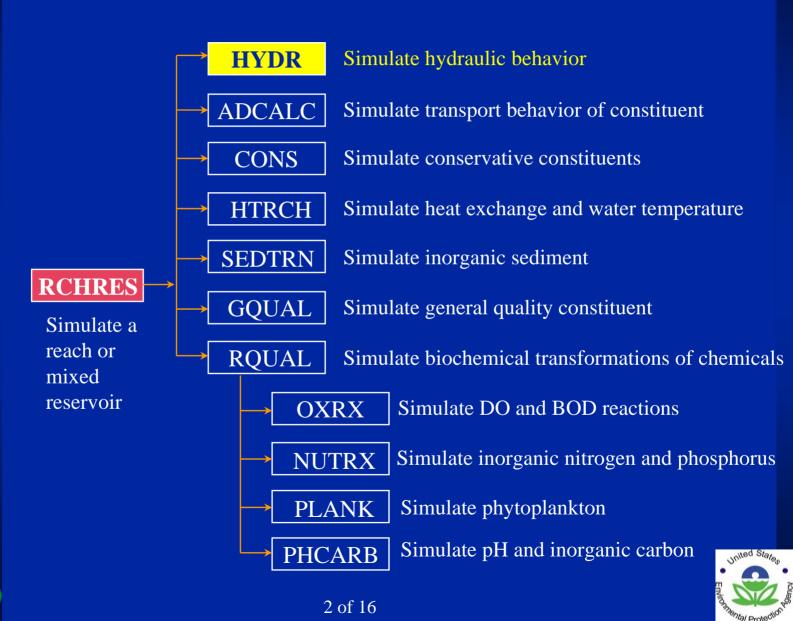


LECTURE #6

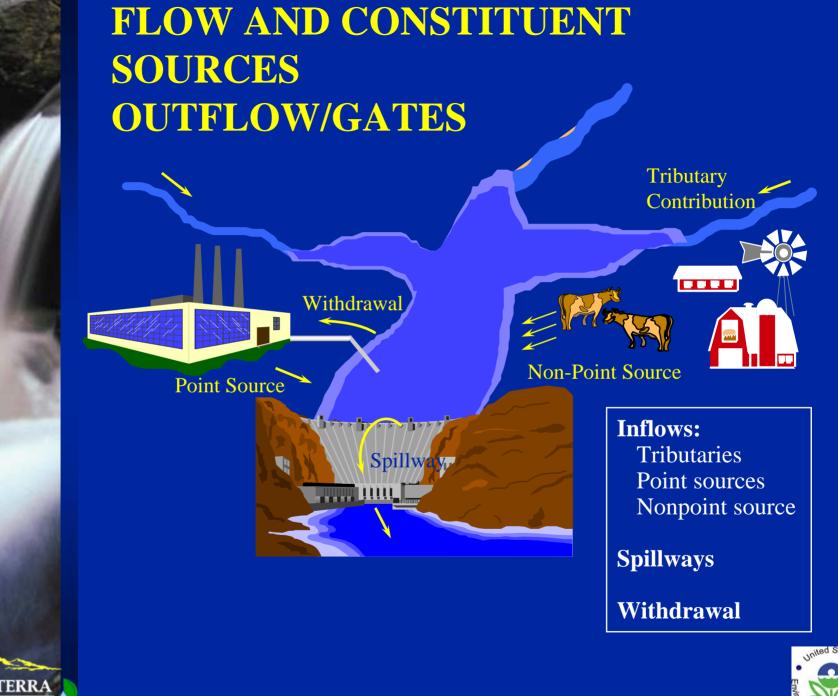
CHANNEL ROUTING IN HSPF



LEARNING OBJECTIVES

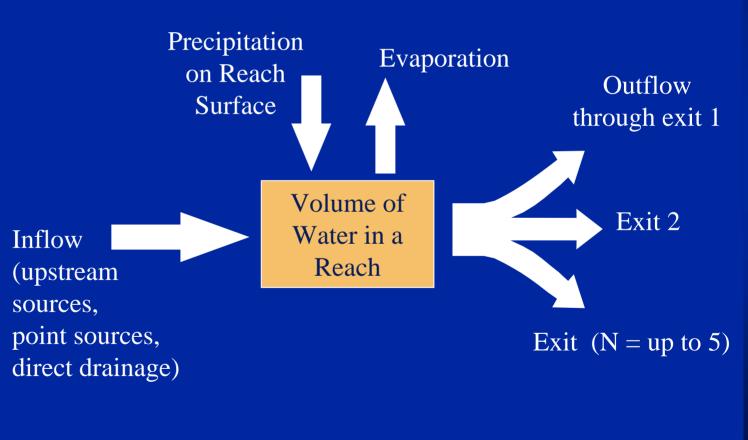
- Develop a familiarity with organization and linkages in HSPF related to RCHRES
- Learn the key processes simulated and parameters used in flow routing simulation in HSPF

RCHRES STRUCTURE CHART


STREAM HYDRAULICS (HYDR)

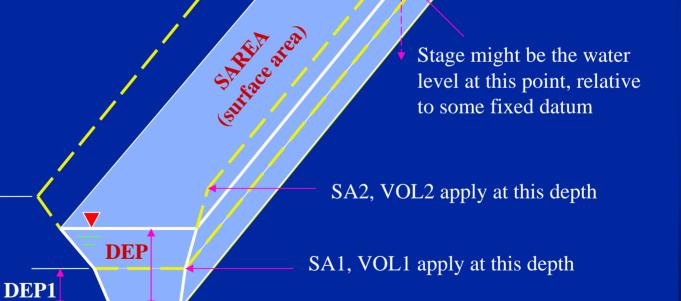
• Assumptions

- Completely mixed reach (single layer)
- Unidirectional flow
- Flow routing by kinematic wave or storage-routing method (i.e., conservation of momentum not considered)
- Requires function table (FTable) for depth-volumedischarge relationship for each reach.
- Precipitation/evaporation accommodated
- Calculates outflow, depth, volume, surface area, and selected auxiliary variables (velocity, crosssectional area, bed shear velocity/stress)



CONSULTANTS

FLOW DIAGRAM FOR HYDR SECTION OF RCHRES



5 of 16

CHANNEL GEOMETRY

FTABLES

0.0

5.0

20.0

END FTABLE 103

0.0

10.0

120.0

VARIABLE	DEFINITION				
NROWS	Number of rows in the FTABLE. There must be at least one row in the table.				
NCOL	Number of columns in the FTABLE. NCOLS must be between 3 and 8. NROWS*NCOLS must not exceed 100.				
DEPTH	Depth of reach (m or ft). The depth must not decease as the row number increases.				
SURFACE AREA	Surface area of the reach (ha or acres).				
VOLUME	Volume of reach (Mm ³ or acre-feet). The volume must not decrease as the row number increases.				
DISCHARGE	Discharge from reach (m ³ /sec or ft ³ /sec). There may be up to five discharge columns.				
EXAMPLE					
FTABLE 103 ROWS COLS *** 3 5					
DEPTH AREA					
(FT) (ACRES)	(AC-FT) (CFS) (CFS) ***				

0.0

20.5

995.0

0.0

10.2

200.1

0.0

25.0

1000.0

FLOW ROUTING EQUATIONS I CONTINUITY

VOLE = VOLS + sum IVOL - sum OVOL + PR - EVAP

EVAP

VOLE = volume at end of time step VOLS = volume at start of time step

OVOL = outflow volumes

IVOL = inflow volumes

PR

PR = volume of precipitation

EVAP = volume of evaporation

let OVOL = $\triangle t$ (KS * OS + (1.0 - KS) * OE)

unknown

IVOL

KS = weighting factor (0.0 - 0.5) OS = outflow at start of time step OE = outflow at end of time step

then VOLE = (VOLS + sum IVOL + PR - EVAP) - $\Delta t \{ KS * OS + (1 - KS) * OE \}$

OVOL

unknown

OUTFLOW FROM REACHES

- User needs to specify each outflow as one of the following:
 - Case 1. Outflow = f(storage volume)
 - Open channels and unregulated reservoirs
 - Case 2. Outflow = f(time)
 - *Reservoir withdrawal for irrigation or water supply, and wastewater discharge*
 - Case 3. Outflow = f(storage volume, time)
 - Both unregulated outflow and a withdrawal

OUTFLOW FROM REACHES (CONT.)

- Case 4. Outflow = Min[f(storage volume,time)]
 - Irrigation demand is a function of time (season), but pump capacity is limited by water level
- Case 5. Outflow = Max[f(storage volume,time)]
 - If the reservoir level is high, emergency spillway used, else seasonal release schedule for low flow

FLOW ROUTING EQUATIONS II OUTFLOW DEMANDS

OE = f(VOLE)

open channels and unregulated reservoirs use rating table or table (FTABLE in HSPF)

OE = **f**(**time**)

diversions into or out of a channel or reservoir such reservoir withdrawal for irrigation or waste water treatment plant discharge (time series on WDM file)

OE = f(VOLE) + f(time)both unregulated outflow and a diversion

OE = MIN [f(VOLE), f(time)]

irrigation demand is a function of time(season), but pump capacity limited by water level

OE = **MAX** [**f**(**VOLE**), **f**(**time**)]

if reservoir level is high, emergency spillway used, else seasonal release schedule for low flow

DISCHARGE OPTION

ODFVFG - volume component (each exit)

- 0 exit is not f(vol)
- > 0 use column in FTABLE
- < 0 absolute value is column in COLIND array (which is read from time-series data set)

ODGTFG - time component (each exit)

0 - exit is not f(time) > 0 - column in OUTDGT array (which is read from time-series data set)

FUNCT - combination rule (each exit)

- 1 min(f(vol), f(time))
- 2 max(f(vol), f(time))
- 3 f(vol) + f(time)

DISCHARGE EXAMPLES

HYDR-P2	ARM1					
#	# VC	A1	A2 A3	ODFVFG	ODGTFG	FUNCT
	FG	FG	FG FG	1 2	1 2	1 2
1	0	1		4	0	
2	0	1		-1	0	
3	0	1		4 5	1	1
END HY	DR-PARM1					

Reach 1 - Simple stream reach with constant stage-discharge relationship

FTABLE 1				
Depth	Area	Volume	Disch1	Disch2 ***
(ft)	(acres)	(ac-ft)	(cfs)	(cfs) ***
0.0	0.0	0.0	0.0	0.0
3.0	1.0	2.0	5.0	3.0
10.0	10.0	50.0	25.0	18.0
END FTABLE	1			

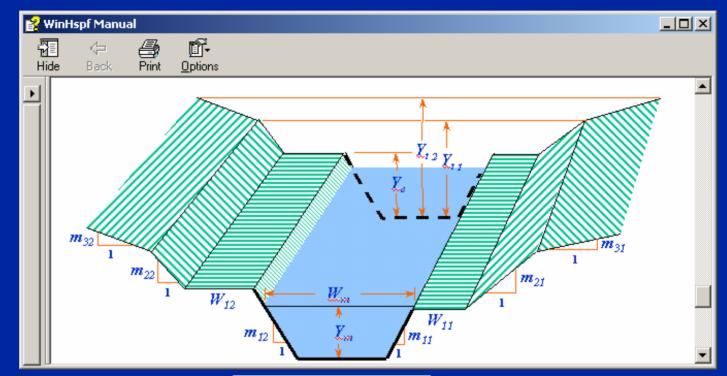
No time series required.

Reach 2 - Stream reach with seasonally variable stage-discharge relationship

Same FTABLE as above.

COLIND(1) specifies discharge column(s) For example: 4.0 4.1 4.2 4.5 5.0 4.9 4.8 4.6 ...

Reach 3 - Reservoir with gate and spillway


FTABLE 3				
Depth	Area	Volume	Disch1	Disch2 ***
(ft)	(acres)	(ac-ft)	(cfs)	(cfs) ***
0.0	0.0	0.0	0.0	0.0
20.0	50.0	500.0	100.0	0.0
40.0	500.0	7000.0	300.0	10.0
50.0	900.0	12000.0	350.0	200.0
END FTABLE	3			

OUTDGT(1) specifies the outflow demand For example: 75.0 80.0 100.0 120.0 90.0 85.0 ...

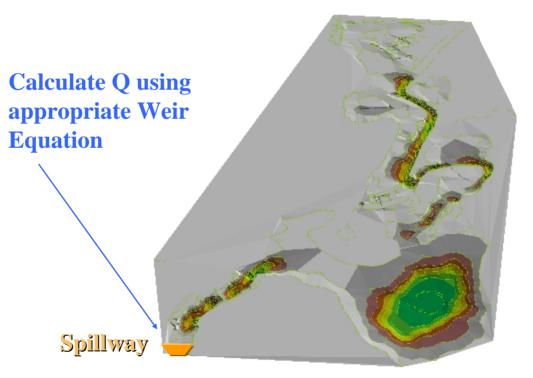
WinHSPF FTABLE GENERATION

Import From Cross-Section					
- Cross-S	ection Files				
[
0	oen 1 <u>▼</u> <u>S</u> a	ve			
_					
FTABLE	25				
Variable	Variable Description				
L	Length (ft)	1			
Ym	Mean Depth (ft)	3.5			
Wm	Mean Width (ft)	42.5			
n	Mannings Roughness Coefficient	0.02			
n S	Longitudinal Slope	0.0007			
m32	Side Slope of Upper Flood Plain Left	0.4			
m22	Side Slope of Lower Flood Plain Left	0.4			
W12	Zero Slope Flood Plain Width Left (ft)	0.01			
m12	Side Slope of Channel Left	0.4			
m11	Side Slope of Channel Right	0.4			
W11	Zero Slope Flood Plain Width Right (ft)	0.01			
m21	Side Slope Lower Flood Plain Right	0.4			
m31	Side Slope Upper Flood Plain Right	0.4			
Yc	Channel Depth (ft)	5			
Ytl	Flood Side Slope Change at Depth (ft)	15			
Yt2	Maximum Depth (ft)	16			

<u>C</u>ancel

<u>H</u>elp

OK


CREATING FTABLES FOR RESERVOIRS BASINS TECHNICAL NOTE 1

- Obtain data tables or graphs describing the depth-area and depth-volume relationships from reservoir management agency
- Alternatively, create a bathymetric map of the lake
 - Determine surface area at different depths from planimetry
 - Calculate volume of lake at given depths
- Obtain reservoir release data from reservoir management agency or USGS gage data

BATHYMETRY WITHIN GIS

Incrementally increase Stage and calculate Surface Area and Volume

16 of 16