

LECTURE #4

WEATHER DATA AND WDMS

WEATHER DATA

- Nonpoint source pollution is a weatherdriven process
- Hydrologic processes are time varying and depend on changes in environmental conditions, i.e.,
 - Precipitation
 - Temperature
 - Wind speed

WEATHER DATA

- Precipitation
- Potential evapotranspiration
- Air temperature
- Wind speed
- Solar radiation
- Dewpoint temperature
- Cloud cover

HSPF WEATHER DATA REQUIREMENTS

	PERLND/IMPLND						RCHRES				
	Temp.	Snow**	Water	Sediment	Soil Temp.	Ag. Chem.*	Water	Heat	Gen. Qual.	DO	Plankton
Precipitation							Δ				
Pot. ET				Q 1							
Air Temperature						[2]					
Wind Speed									O [3	[5]	
Solar Radiation											
Dewpoint Temp.											
Cloud Cover									Q 4		

is a lake

Required

Optional

For PWATER

For PSTEMP

If volatilization

from lake

is simulated

If photolysis is simulated

If RCHRES

^{*}Ag. Chemicals include nutrients and pesticides

^{**}Degree Day option only requires precip and air temp

HOW PRECIPITATION IS USED IN HSPF

- Primary input for soil hydrology
- Surface runoff is directly dependent on precipitation
- Detachment of soil from soil matrix by the impact of rain and transport of detached sediment
- Pollutant transport caused by overland flow and soil erosion
- Rain falling directly on the water surface of a reach and temperature of rain

HOW EVAPOTRANSPIRATION IS USED IN HSPF

- Evapotranspiration comprises
 - evaporation directly from soil layers and vegetation surface
 - transpiration through plants.
- Evapotranspiration is used in runoff computation
 - Direct loss of water from water surface or from snow pack to atmosphere
 - Loss of water through transpiration from vegetation surface
- Evaporation from reach water surface

HOW AIR TEMPERATURE IS USED IN HSPF

- Function of elevation
 - Temperature corrected for elevation by calculating difference between the weather station elevation and the subwatershed mean elevation
- Snow and snow melt
 - Determines whether precipitation is rain or snow
 - Affects density of snow
 - Affect snow melt
- Soil temperature
 - Heat transfer through soil surface
- Water temperature
 - Conductive-convective heat transport

HOW WIND SPEED IS USED IN HSPF

- Evaporation from snow pack
 - Directly proportional to wind speed
- Heat exchange rate
 - Condensation heat flux to snowpack is directly proportional to wind speed
- Heat balance in water bodies
 - Evaporative heat loss increases with wind speed
 - Conductive-convective heat transfer between air and water is a function of wind speed
- Oxygen reaeration rate
 - Lake reaeration rate is a function of wind speed
- Chemical volatilization rate
 - Proportional to oxygen reaeration coefficient

HOW SOLAR RADIATION IS USED IN HSPF

- Snow melt
- Heat balance in water bodies
- Plankton growth rate

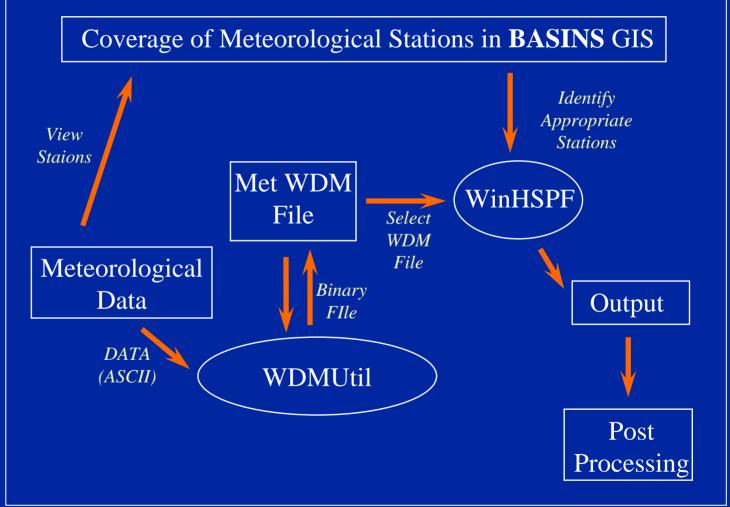
HOW DEWPOINT TEMPERATURE IS USED IN HSPF

- Snow
 - Determines when precipitation is considered as snow
- Heat balance in water bodies

HOW CLOUD COVER IS USED IN HSPF

- Heat balance in water bodies
 - Cloud cover affects long-wave radiation balance

- Photolysis
 - Cloud cover decreases photolyzing radiation


WATERSHED DATA MANAGEMENT (WDM) FILE

- Holds weather, input, output, calibration, and other time series data required by HSPF.
- A WDM file can contain a large number of time series data.
- HSPF can manipulate (i.e., read, replace) the data contained in a WDM file.

PROCESSING OF METEOROLOGICAL DATA IN BASINS-HSPF

MET WDM FILES vs. PROJECT WDM FILES IN WinHSPF

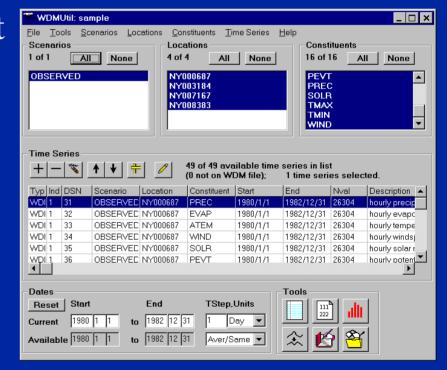
- WinHSPF uses two WDM files
 - Met WDM File
 - Project WDM File
- Met WDM File
 - Holds weather data time series required by HSPF for various locations within each state
 - Linked to the WDM Weather Data Stations shapefile
- Project WDM File
 - Holds all other time series information required or used by HSPF
 - Other required input time series including point source and atmospheric deposition information
 - Model output time series
 - Model calibration time series

REASONS FOR MANIPULATING A WDM FILE

- Many studies require more representative weather data than is available in the BASINS weather WDM files.
- Some time series available from BASINS will need to be appended.
- Local or additional water quality or flow information may be available that will be necessary for model calibration and/or validation.

TIME SERIES DATA MANAGEMENT TASKS

- Collect/obtain data
- Reformat data to WDM file
- Correct/fill-in missing periods; generate data from other parameters
- Aggregate or disaggregate
- Display and analyze data

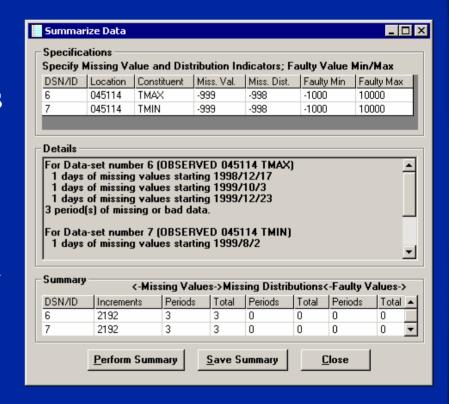


WATERSHED DATA MANAGEMENT UTILITY (WDMUtil)

Functionalities for Time

Series Management Include:

- Create/delete
- Import/export
- Update
- Fill-in
- Extend
- Generate
- Aggregate/disaggregate
- Mathematical operations

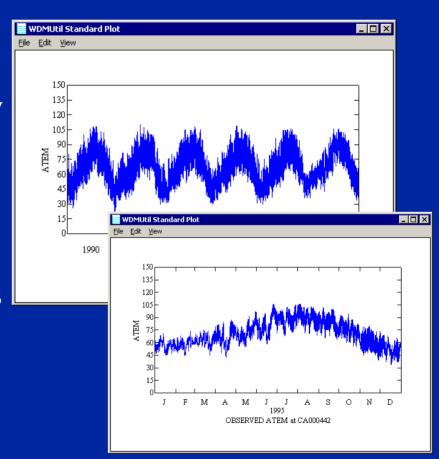


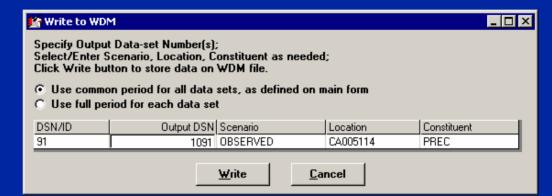
Summarize

- Missing values
- Missing distributions
- Faultyminimums andmaximums
- Periods and total intervals

View/Edit

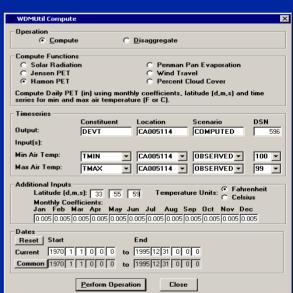
- Save to text file
- Specify date and number formats
- Edit time series attributes
- Edit specific values
- Save to new/ overwrite time series


Timeseries Data		×
<u>File E</u> dit		
Scenario	OBSERVED	
Location	CA000442	
Constituent	ATEM	
1970/01/01 00:00	36.0	
1970/01/01 01:00	35.2	
1970/01/01 02:00	34.7	
1970/01/01 03:00	34.0	
1970/01/01 04:00	33.3	
1970/01/01 05:00	32.7	
1970/01/01 06:00	32.0	
1970/01/01 07:00	36.0	
1970/01/01 08:00	40.1	
1970/01/01 09:00	44.1	
1970/01/01 10:00	47.1	
1970/01/01 11:00	50.0	
1970/01/01 12:00	53.1	
1970/01/01 13-00	54-3	



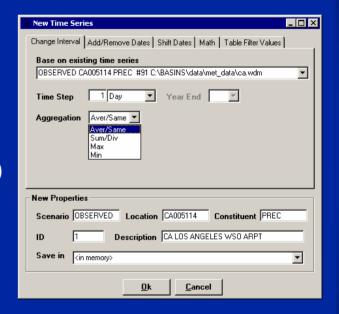
Graph

- Specify display period
- Edit title, axes, legend
- Edit curve markers, colors
- Use left, right, auxillary axes
- Arithmetic and logarithmic plots


- Time series are imported to *memory*
- "Write" time series from memory to WDM
- "Write" to copy time series
- Specify:
 - Data Set Number (DSN) number location on WDM
 - Scenario e.g. "OBSERVED", "COMPUTED", "Baseline"
 - Location e.g. weather station ID
 - Constituent e.g. PREC, EVAP, ATEM

- Solar radiation
 - From cloud cover
- Potential Evapotranspiration
 - From min/max temp and solar radiation
 - From min/max temp
- Pan Evaporation
 - From min/max temp, dewpoint temp, wind movement, and solar radiation
- Wind Travel
 - From wind speed
- Percent Cloud Cover
 - From percent sun

- Disaggregate
 - To shorter interval

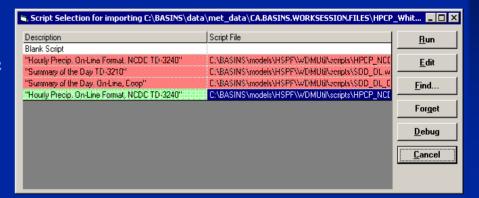


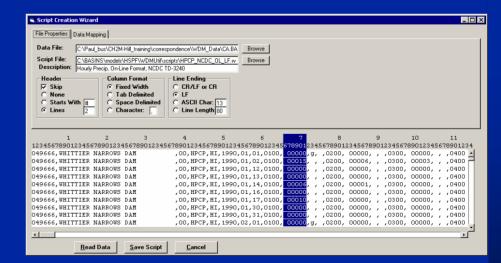
Generate New Time Series from Existing

- Specify base time series
- Change time step
 - Aggregation options
- Add/Remove dates
 - Four data fill options
- Shift dates (for all data)
- Math operations
 - *, /, +, -
 - Mean, weight
 - Logarithms, exponents
 - Running sum, min/max
- Filter values
 - Specify ranges
 - Specify "delete" or "leave unchanged"

Export Time Series

- Export file (*.exp) format
- Readily re-imported to WDM


View File


File preview

- Import
 - Browse for file
 - Select import script
 - Edit script
 - Script Creation Wizard
 - Text editor (advanced)
 - Read/import data

