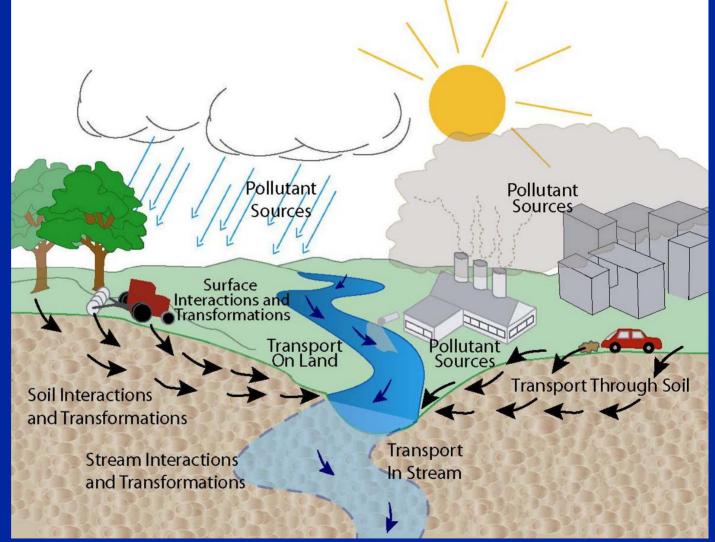


LECTURE #2

INTRODUCTION TO HSPF AND THE MODEL APPLICATION PROCESS


HSPF: HYDROLOGIC SIMULATION PROGRAM - FORTRAN

- Continuous simulation model
- Natural and developed watersheds and water systems
- Land surface and subsurface hydrology and quality processes
- Stream/lake hydraulics and water quality processes
- Time series data management and storage
- Time series data statistical analysis and operations
- Core watershed model in EPA BASINS and Army Corps WMS
- Development and maintenance activities sponsored by U.S. EPA and U.S. Geological Survey

COMPONENTS OF WATER QUALITY PROBLEMS AND POLLUTION

COMPONENTS OF WATERSHED WATER QUALITY MODELS

Nonpoint Loading Simulation

- Runoff quantity surface and subsurface
- Sediment erosion/solids loading
- Runoff quality
- Atmospheric deposition
- Inputs needed by instream simulation

Instream Simulation

- Hydraulics
- Sediment transport
- Sediment-contaminant interactions
- Water quality constituents and processes
- Point source accommodation
- Lake/reservoir simulation
- Benthal processes and impacts

HSPF APPLICATION & UTILITY MODULES (Version 12, 2001)

APPLICATION MODULES

PERLND	<u>IMPLND</u>	RCHRES	<u>BMP</u>
Snow	Snow	Hydraulics	Flow
Water	Water	Conservative	Any constituent simulated in PERLND, IMPLND or RCHRES
Sediment	Solids	Temperature	
Quality	Quality	Sediment	
Pesticide		Nonconservative	
Nitrogen		BOD/DO	
Phosphorus		Nitrogen	
Tracer		Phosphorus	
		Carbon	
		Plankton	

UTILITY MODULES

COPY, MUTSIN, PLTGEN, DURANL, GENER, DISPLY, REPORT

PERLND STRUCTURE CHART

PERLND

Simulate a pervious land segment

ATEMP

Correct air temperature

SNOW

Simulate snow and ice

PWATER

Simulate water budget

SEDMNT

Simulate sediment

PSTEMP

Estimate soil temperature(s)

PWTGAS

Estimate water temperature and gas concentrations

POUAL

Simulate general quality constituents

MSTLAY

Estimate solute transport

AGCHE

PEST

Simulate pesticides

NITR

Simulate nitrogen

PHOS

Simulate phosphorus

TRACER

Simulate a conservative tracer

IMPLND STRUCTURE CHART

IMPLND

Simulate a segment of impervious land

ATEMP SNOW IWATER SOLIDS IWTGAS IQUAL

(see module PERLND)

(see module PERLND)

Simulate water budget for impervious land segment

Accumulate and remove solids

Simulate water temperature and dissolved gas concs. Simulate quality constituents using simple relationships with solids and/or water yield

RCHRES STRUCTURE CHART

RCHRES

Simulate a reach or mixed reservoir

HYDR

Simulate hydraulic behavior

ADCALC

Estimate advective behavior of constituents

CONS

Simulate conservative constituents

HTRCH

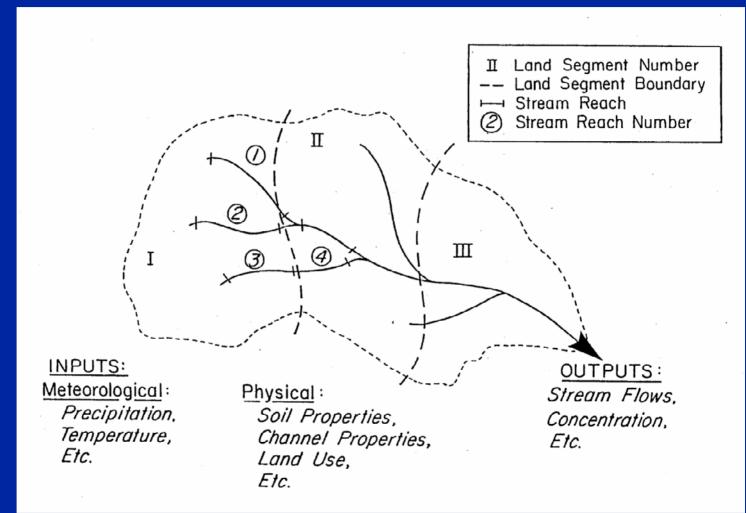
Simulate heat exchange and water temperature

SEDTRN

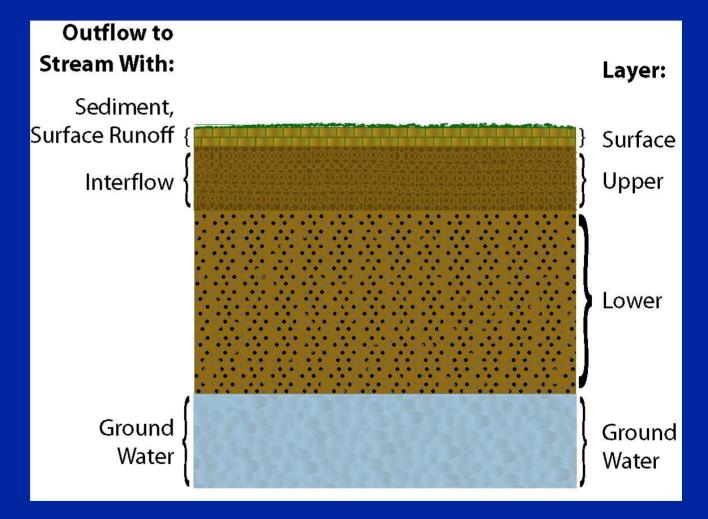
Simulate inorganic sediment

GQUAL

Simulate generalized quality constituents


ROUAL

Simulate constituents involved in biochemical transformations


SEGMENTATION OF COMPLEX WATERSHEDS FOR MODELING

SOIL PROFILE REPRESENTATION BY THE AGCHEM MODULE

HSPF - STRENGTHS

- Comprehensive representation of watershed land and stream processes
- Comprehensive representation of watershed pollutant sources, including nonpoint sources (by multiple land uses), point sources, atmospheric, etc.
- Flexibility and adaptability to a wide range of watershed conditions
- Well-designed code modularity and structure
- Companion database and support programs to assist model users (e.g., WDMUtil, WinHSPF, GenScn, HSPEXP)
- Ongoing development and support by U.S. EPA and U.S.G.S.
- Continuing code enhancements funded by numerous groups
- Strict code version control through joint agreement of U.S. EPA & U.S.G.S.

HSPF - IDENTIFIED/PERCEIVED LIMITATIONS AND WEAKNESSES

- Extensive data requirements (e.g., hourly rainfall)
- User training normally required
- No comprehensive parameter estimation guidance available
- Limited spatial definition (i.e., lumped parameter approach)
- Hydraulics limited to non-tidal freshwater systems and unidirectional flow
- Simplified representation of urban drainage systems (e.g., culverts, pipes, CSOs)
- Limited representation of algal species phytoplankton, zooplankton, benthic algae

HSPF - RECENT ENHANCEMENTS AND DEVELOPMENTS

- Wetlands and shallow water-table hydrologic capabilities (funded by SFWMD)
- Implementation of water quality linkage between land segments for modeling buffer strips, riparian zones, grass waterways, etc. (funded by MPCA)
- Irrigation capabilities added to define application methods and sources (funded by SFWMD)
- Simplified snow algorithms (degree-day method) added to minimize meteorologic data needs (funded by EPA OW/OST for use within BASINS)
- Online interactive HSPF HELP available (complete HSPF Manual, V.11 in Windows) (funded by USGS)
- Development of Scenario Analysis (GENSCN) GUI software for generation, display, and evaluation of watershed model scenarios (funded by USGS & EPA)
- BMP and REPORT modules developed (funded by TMDL studies in Georgia)
- Multiple benthic algae species incorporated (Version 13, funded by NV group)

THE BASINS/HSPF APPLICATION PROCESS

THE MODELING PROCESS

Phase I

• Data collection

• Model input preparation

• Parameter evaluation

Calibration

Validation

• (Post-audit)

Model Testing

Phase III

Phase II

• Analysis of alternatives

HSPF APPLICATION PROCESS

- Study definition
- Development of modeling strategy
- Learn operational aspects of HSPF
- Input/management of time series data
- Parameter development
- Calibration/validation
- Analysis of alternate scenarios

STUDY DEFINITION

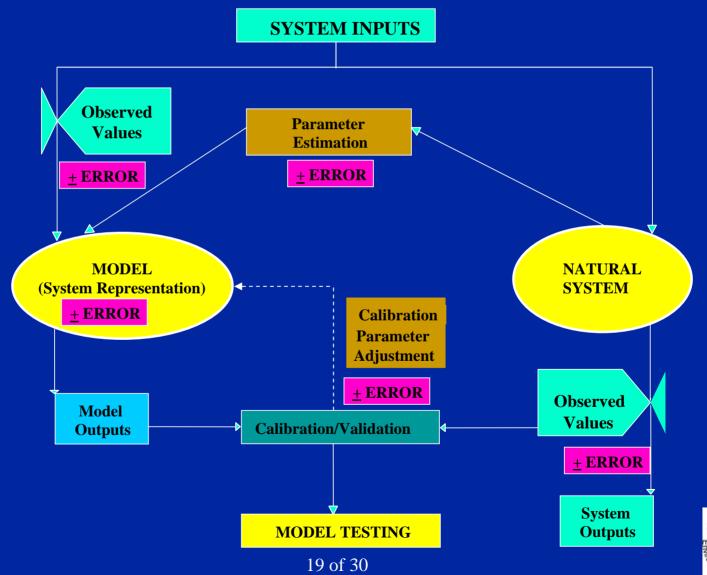
• Problems/questions for analysis, study goals

• Data availability

• Project resource availability (time, money, expertise)

MODELING STRATEGY

- Processes, constituents, and sources to be modeled
- Watershed segmentation (spatial and temporal detail)
- Channel segmentation and tributary areas
- Data to support modeling effort
- Human impacts, alternatives to be analyzed
- Develop simulation plan


CONSTITUENT SOURCES IN HSPF

- Initial storages
- Nonpoint loadings
- Point loadings
- Atmospheric deposition
- Chemical transformations
- Releases from the channel bottom
- Atmospheric gas invasion

MODEL VERSUS NATURAL SYSTEM: INPUTS, OUTPUTS, AND ERRORS

ANALYSIS OF ALTERNATIVES

- Definition of alternatives
- Selection of constituents and numeric/statistical measures
- Representation of alternatives
 - input changes
 - system configuration
 - parameter changes

RELATIVE EFFORT FOR HSPF APPLICATION STEPS (through calibration/validation)

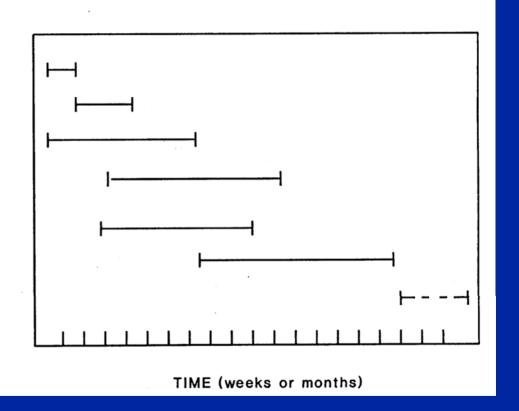
<u>TASK</u>	% EFFORT	
Problem definition	5	
 Modeling strategy 	10	
 Learn operational aspects 	10	
 Development and input of time series 	30	
Parameter development	15	
 Calibration and validation 	30	

REPRESENTATIVE HSPF PROJECT SCHEDULE

TASK

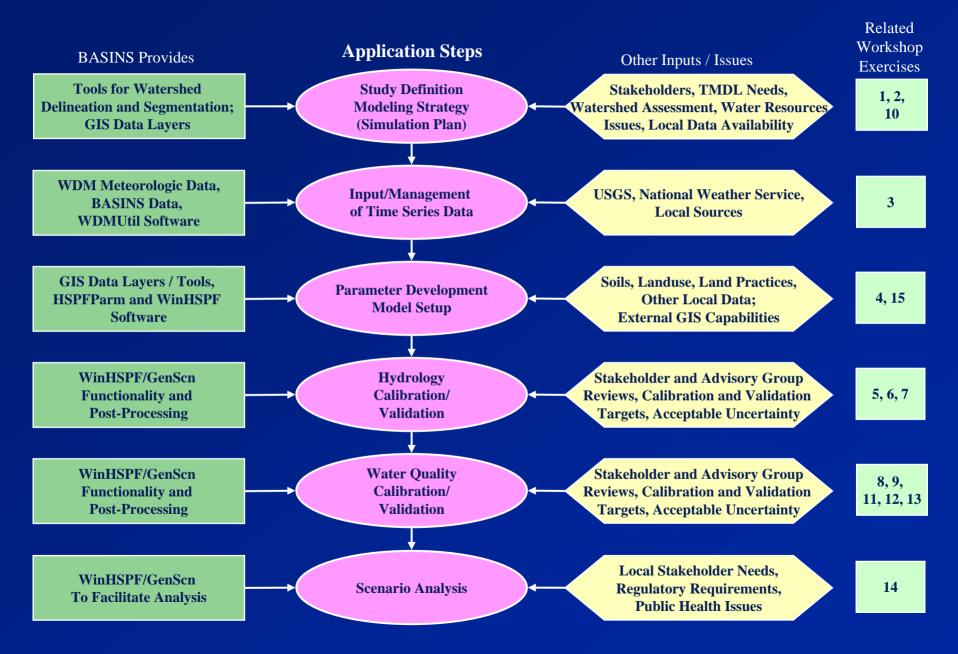
Problem definition

Modeling strategy


Operational aspects

Time series data development

Parameter development


Calibration/verification

Analyze alternatives

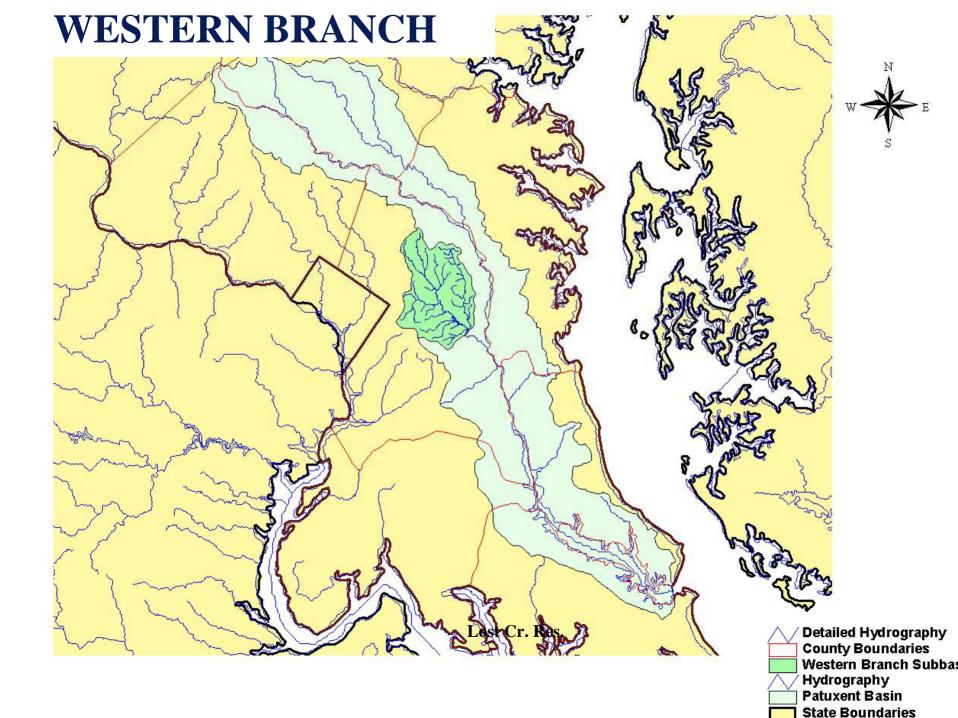
WATERSHED ASSESSMENT WITH BASINS/HSPF

CASE STUDY INTRODUCTION

PATUXENT RIVER BASIN Hydrography Patuxent Basin **State Boundaries**

PATUXENT STUDY

- Initiated in 1985 by the U.S. Geological Survey and the Maryland Department of the Environment
- Nonpoint source nutrient loadings
- Representative of other subbasins of the Chesapeake Bay



MAJOR ISSUES

- Substantial commercial, residential, and industrial development
- Investigate effects of future growth on water quality
- Planning growth to minimize potential adverse effects

WESTERN BRANCH

- Discharges directly to the Patuxent estuary
- Land use 45% Forest/Wetland, 25% Agriculture, 25% Urban
- Gage at Upper Marlboro, drainage area about 90 square miles

WATER QUALITY CONSTITUENTS SIMULATED

- Water Temperature
- Sediment
- Dissolved Oxygen, BOD
- Nitrogen NH₃, NO₂/NO₃, Org N
- Phosphorus PO₄, Org P
- Plankton Phytoplankton, Benthic Algae (as Chl a)

