POWC MACT-Overview

4

Susan J. Miller

Clayton Group Services

104 TOWN V Court

Cary, North Carolina 27513 smiller@claytongrp.com (919) 468-0135

1

First, Some Terms

- ■Paper and Other Web Coating
- Maximum Achievable Control Technology
- National Emission Standards for Hazardous Air Pollutants

smiller@claytongrp.com

MACT vs. NESHAP

- NESHAP is the rule
- MACT is the level required by most NESHAPs
- "MACT Standard"

GOALS

- Introduce requirements of the POWC MACT
- Review applicability case studies
- Review possible compliance approaches
- Discuss implementation cases

smiller@claytongrp.com

Overview of Rule

- Codified in 40 CFR Part 63, Subpart JJJJ
- Applies to ONLY major sources.
- Requires use of add-on control and/or low-HAP coatings

smiller@claytongrp.com

Overview of Rule

- Applies to all coating lines not covered by other MACTs
- Includes aqueous lines
- Monitoring, reporting, and recordkeeping requirements

What is included?

- Regulates "organic HAP"
- •Must include all HAP that are greater than:
 - •0.1 % for carcinogens
 - •1.0 % for non-carcinogens

smiller@claytongrp.com

Typical HAP in the Coating Industry

- Toluene
- Xylene
- Hexane
- Methyl Ethyl Ketone*
- Methyl Isobutyl ketone
- Methanol

- Vinyl acetate
- Acetaldehyde
- Methyl methacrylate
- Benzene
- Certain Glycol Ethers**
- * proposed for delisting **treated as one HAP

smiller@claytongrp.com

Existing Affected Source

- All coating lines = one affected source
- Additional line at existing facility is part of existing affected source- generally

	_	

New Affected Source

- New line(s) installed at new facilities
- Lines at facilities with no prior P&OWC operation.

smiller@claytongrp.com

Operations covered by other MACTs are excluded

- Printing and Publishing (Subpart KK)
- Magnetic Tape (Subpart EE)
- Metal Coil Coating (Subpart SSSS)
- Fabric Coating (Subpart OOOO)

smiller@claytongrp.com

More Exclusions

- Specific process exclusions:
 - Lithography
 - Screenprinting
 - Letterpress
 - Narrow web flexographic printing
- Research and development lines

§63.3300

Key Date: September 13, 2000

- ■Rule proposed (65 FR 55331)
- "Affected sources" built after this date are considered "new affected sources"

smiller@claytongrp.com

Key Date: December 4, 2002

- Rule promulgated
- Compliance date for <u>new</u> affected sources

smiller@claytongrp.com

More Key Dates

- **●**December 5, 2004
 - •Initial Notifications due
- **●**December 5, 2005
 - Compliance date for existing affected sources

Affiliated Operations

- Definition (preamble):
 - Coating formulation and mixing
 - Storage and wastewater operations
- Affiliated equipment have no P&OWC requirements
- Defers to the "MONs"

smiller@claytongrp.com

The MON

- Miscellaneous Organic NESHAPs
- Miscellaneous OrganicChemical Manufacturing MACT
- Miscellaneous Coating Manufacturing MACT

smiller@claytongrp.com

Affiliated Operations and the "MONs"

 P&OWC affiliated equipment specifically is exempted from other MACTs (i.e., MCM and MOCM)

> §63.7985(d)(2) §63.2435(c)(3)

Existing Sources

- Must limit emissions to:
 - Reduce emissions by 95 percent, OR
 - Meet limit of 0.04 kg HAP / kg coating applied, OR
 - Meet limit of 0.20 kg HAP / kg solids applied.

§63.3320(b)

smiller@claytongrp.com

Rule Requirements - New Sources

- Must limit emissions to:
 - Reduce emissions by 98 percent, OR
 - Meet limit of 0.016 kg HAP / kg coating applied, OR
 - Meet limit of 0.08 kg HAP / kg solids applied.

§63.3320(b)

smiller@claytongrp.com

Options to Meet MACT

- Use Low-HAP Coatings
- Install Capture and Control System
 - Solvent Recovery System (SRS)
 - Thermal or catalytic destruction
- Combination of above

smiller@claytongrp.com

§63.3370

One More Alternative

No greater than 20 ppmv at outlet of an oxidizer and demonstrate 100 percent capture efficiency

smiller@claytongrp.com

Alternatives Presentation

- Does not follow rule flow
- Follows likely thought flow of person assessing compliance
 - You do not (necessarily) know which option you will use
 - You do (generally) know if you have- or intend to use- "add-on controls."

Step-by-Step Guidance [Based on draft documents]

Step-by-Steps

- A- Each coating, as purchased and applied (no averaging)
- B- Monthly average or each or all coatings
- C- Oxidation and capture system
- D- Single SRS with Liquid-Liquid balance
- E- SRS using CEMs and capture system
- F- Averaging using reductions in C, D, or E and coating content in B.
- G- Multiple solvent recovery systems and L-L balance
- H- Multiple solvent collection systems/SRSs and CEMs
- I- Multiple collection systems and one or more incinerators

smiller@claytongrp.com

Step-by-Step A **Compliance Demonstration: Individually Compliant Coating Materials**

Overview: This approach can be used if every material purchased meets one of the MACT limits and no averaging is needed to demonstrate compliance.

In this approach, a facility needs to:

- 1. Identify all coatings and additives used in process. 2. Gather "NESHAP quality" data for each coating.
- 3. Calculate the as-applied organic HAP content mass fractions.
- 4. Demonstrate that each coating meets one of the applicable MACT limits.

 5. Maintain monitoring and other compliance
- records.

MACT limits

Existing Sources

HAP/kg coating

H_{si} ≤ 0.20 kg HAP/kg solids

New Sources

C_{ahi} ≤ 0.016 kg HAP/kg coating

H_{si}≤0.08 kg HAP/kg solids

Step-by-Step A

STEP 1- Identify all coatings and additives used in process.	
STEP 2 Gather "NESHAP quality" data for each coating and additive used.	
Method 311	
 Organic HAPs, OSHA defined carcinogens, ≥ 0.1% percent by weight. Organic HAPs ≥ 1.0% by weight. 	§63.3360(c) (1) and App. A of Part 63.
Four places after the decimal point. Sum individual mass fractions	
· Suili iliulviduai iliass ilactiolis	

Step-by-Step A

STEP 2-Continued

Gather "NESHAP quality" data for each coating and additive used

Method 24

- Use VOC to represent HAP
- Use for solids content, if needed.

Formulation data

- · From manufacturer
- Method 311 data takes precedence
- Meet ³ 0.1% / ³ 1.0% requirements

smiller@claytongrp.com

inued

§63.3360(c)(2) and App. A of Part 60.

§63.3360(c)(3)

Step-by-Step A

STEP 3- Calculate the as-applied organic HAP content mass fractions (C_{ahi} and H_{si}).

§63.3370(c)

If any coating material is added to the original coating before application, determine the weighted average organic HAP content of the final coating, using Equation 1a:

этшег ಅскауюнугр.сотт

Step-by-Step A

Equation 1a: $C_{ahi} = [(C_{hi}M_i + \sum C_{hij}M_{ij})/(M_i + \sum M_{ij})]$

> Note: Equation 1b is the same as 1a except that VOC content is used instead of HAP content. Must then equate VOC to HAP..

smiller@claytongrp.com

Step-by-Step A

STEP 3- Continued-

To show compliance with the organic HAP content as a percent of solids, use Equation 2 and then \$63.3370(c)(Equation 3.

Equation 2:

 $C_{\mathrm{asi}} = [(C_{\mathrm{si}} \, \mathsf{M_{i}} + \sum \, C_{\mathrm{sij}} \, \mathsf{M_{ij}})/(\mathsf{M_{i}} + \sum \, \mathsf{M_{ij}})]$

smiller@claytongrp.com

Step-by-Step A

STEP 3- Continued-

Equation 3:

 $H_{si} = C_{ahi} / C_{asi}$

§63.3370(c)(2)

Step-by-Step A

STEP 4- Demonstrate that <u>each coating</u>, as-applied, meets one of the applicable MACT limits

- You are in compliance if C_{ahi} or H_{si} meet the applicable MACT limits.
- C_{ahi} or H_{si} need to be calculated for each coating used in a month

§63.3370(c) §63.3370(b)

> Benefit: no monthly usage records

smiller@claytongrp.com

Step-by-Step A

STEP 5- Maintain monitoring and other compliance records

- HAP content data.
- Volatile matter, coating solids, and compliance demonstrations

§63.3410(a)

- (1) (iii)
- §63.3410(a) (1) (vi)

smiller@claytongrp.com

 $Step-by-Step\ D$ Compliance Demonstration:

Single Solvent Recovery System, Liquid-Liquid Material Balance, Efficiency Demonstration

Overview: This approach is valid when using a single solvent recovery system to demonstrate compliance with the volatile organic matter collection and recovery efficiency as determined through a liquid-liquid material balance.

MACT Limits

Existing Sources R_v=≥ 95%

New Sources R_v=≥ 98%

Step-by-Step D

- In this approach, a facility needs to:
 1. Identify all coatings and additives used in process.
 2. Gather "NESHAP quality" data

 - 3. Install a monitoring device in-line with the SRS.
 4. Calculate the monthly volatile organic matter collection and recovery efficiencies.
 5. Compare the monthly efficiencies with the

 - MACT limits.
 - 6. Maintain monitoring and other compliance records.

smiller @ciaylongrp.com

Step-by-Step D

STEP 1- Identify all coatings and additives used in process.	§63.3410(a) (1)(iv)
STEP 2 Gather "NESHAP quality" data for each coating and	§63.3360(c)
additive used. (Basically same data as Step-by-Step A)	No HAP data is needed for this calculation since efficiency is based on "volatile matter."

smiller@claytongrp.com

Step-by-Step D

flo the	O 3- Install a wmeter inline with e solvent recovery stem.	§63.3350(d) (2)
Pla	acement	§63.3360(g)

Step-by-Step D

STEP 4- Calculate the volatile organic matter collection an recovery efficiencies.

- Mass of purchased materials $(M_i, M_{ij}).$
- Volatile matter content of materials purchased (C_{vi}, C_{vij}) .
- Determine material retained or otherwise not emitted (M_{vret}).

§63.3370(e) §63.3370(i)

smiller@claytongrp.com

Step-by-Step D

STEP 4- continued

Calculate the VOM collection/recovery efficiency using Equation 7.

Equation 7

 $R_v = (M_{vr} + M_{vret}) / (\sum C_{vi} M_i)$ $+\sum C_{vij}M_{ij}$

smiller@claytongrp.com

§63.3370(i)(1)

In many/most cases M_{vret} is assumed to be zero.

Step-by-Step D

STEP 5- Compare the monthly VOM efficiencies with the compliance standards.

STEP 6- Records of all

§63.3320(i)(1)(x) (A)

data and calculations

Step-by-Step F.

Compliance Demonstration: Single Control Device and Capture System, Emission Rate Demonstration

Overview: This approach is valid when using a single solvent recovery system, liquid-liquid material balance to demonstrate

compliance with MACT limits on a monthly average as-applied basis.

MACT limits

Existing Sources S ≤ 0.04 kg HAP/kg coating L ≤ 0.20 kg HAP/kg sol

New Sources L ≤ 0.016 kg HAP/kg coating

S < 0.08 kg HAP/kg sol

Step-by-Step F.

- 1. Follow Step-by-Step B in identifying coatings and gathering "NESHAP quality" data.
- 2. Follow Step-by-Step C, D, or E in installing a monitoring device and calculating the control efficiency.
- 3. Determine the organic HAP emitted
- 4. Calculate the monthly avg. organic HAP emission rates as-applied (L or S).
- Maintain monthly records to demonstrate compliance.

smiller@claytongrp.com

Step-by-Step F.

STEP 1. Follow Step-by-Step B **Compliance Demonstration.**

See Step-by -Step B

- Identify all coatings and additives used in the process.
- Gather "NESHAP quality" data for each coating and additive used in
- unit of coating or per unit of solids.

	F
Dete	ermine HAP content data per
	and the second s

Step-by-Step F.

STEP 2. Follow Step-by-Step C, D, or E Compliance Demonstration .

See Stepby-Step C, D, or E

- Determine capture efficiency (if required)
- Determine overall control efficiency

smiller@claytongrp.com

Step-by-Step F.

STEP 3. Determine the organic HAP emitted.

Equation 8:

 $H_{e} = [1-R_{v}/100][SC_{hi}M_{i} + SC_{hij}M_{ij} - M_{vret}]$

§63.3370 (i) (1)

Equation may be simplified by not distinguishing between coating products and additive products $(C_{hi} = C_{hij} \text{ and } M = M_{ij})$.

smiller@claytongrp.com

Step-by-Step F.

STEP 4. Calculate the monthly average organic HAP emission rate as-applied per unit of coating (L) and/or per unit of solids (S).

Equation 9:

 $L = H_e / (SM_iC_{si} + SM_{ij}C_{sij})$

Equation 10:

smilier @ciaytongrp.com

 $S = H_e / (SM_i + SM_i)$

§63.3370(i)(1)

Equation may be simplified by not distinguishing between coating products and additive products $(C_{si} = C_{sij} \text{ and } M_i = M_{ij}).$

	Step-by-Step	F.
1	5. Demonstrate that one of the MACT limits is being met	
	6. Record keeping equirements	§63.3410(a) (1) §63.3410(b)
smiller@clay	/tongrp.com	

. Equation 15 All Alwa	ys Controlled Work Sta	ntions
H	AP emitted from from from olled work stations	itted trolled ons ar it-M _{vret} int ing
ThenTo compare either total coating of	to the limits, you divide by or total solids	Solvent retained in the tape or otherwise not emitted

