

GEOGRAPHIC INFORMATION SYSTEMS:

Improving Management, Getting Results, and Communicating the U.S. Foreign Assistance Story

> Carrie Stokes EGAT/NRM Office July 12, 2005

Geospatial Information Technology includes tools to collect, organize, analyze and display spatially related information:

- Remotely sensed data (satellite / aerial imagery)
- Global Positioning Systems
- Paper maps
- Statistical data
- Geographic feature data (roads, rivers, etc)
- Geographic Information Systems (GIS)

A Geographic Information System (GIS) is a computerized, decision-support system that includes software, hardware, people, and geographic information

It can create, query, analyze, and display data "layers" such as land cover, elevation, climate zones, forests, political boundaries, population density, per capita income, etc.

Measuring & Integrating the Parts ...

Socio-economic Data Agriculture

Land Cover **Political Boundaries**

> ... Means Seeing the Whole

The Simple Definition of a GIS is:

It's a map with a database underneath, or It's a database that you can display on a map.

It can be used to visualize different kinds of information, conduct spatial analysis, and manage information

Maps Can be Linked to Statistical Information in a Database

District	Region	District	Region
Regional coverage	Arusha Region	Regional coverage	Kilimanjaro
Arumeru	Arusha	Hai	Kilimanjaro
Arusha Urban <i>(Municipality)</i>	Arusha	Moshi Rural	Kilimanjaro
Babati	Arusha	Moshi Urban	Kilimanjaro
Hanang-Katesh	Arusha	Mwanga	Kilimanjaro
Karatu	Arusha	Rombo	Kilimanjaro
Kiteto	Arusha	Same	Kilimanjaro
Mbulu	Arusha	Regional coverage	Lindi Region
Monduli	Arusha	Kilwa Masoko	Lindi 🖌
Ngorongoro	Arusha	Lindi Rural	Lindi 📃
Simanjiro	Arusha	Lindi Urban (Town Council)	Lindi
lala (Municipality)	Darles Salaam	Liwale	Lindi
Kinondoni <i>(Municipality</i>)	Darles Salaam	Nachingwea	Lindi
Temeke <i>(Municipality)</i>	Darles Salaam	Ruangwa	Lindi
Regional coverage	Dodoma Region	Regional coverage	Mara Region
Dodoma Rural	Dodoma	Bunda	Mara
Dodoma Urban <i>(Municipality)</i>	Dodoma	Musoma Rural	Mara
Kondoa	Dodoma	Musoma Urban (Town Council)	Mara
Kongwa	Dodoma	Serengeti	Mara
Мрмар ма	Dodoma	Tarime	Mara
Regional coverage	Iringa Region	Regional coverage	Mbeya Region
linga	Iringa	Chunya	Mbeya
lringa Urban	Iringa	lleje	Mbeya

The Database Can Include Ground Activity Information and Aerial Imagery

Microenterprise Activities

				# of which
Date	City	District	#trained	women
2/14/2005	Bagamoyo	Bagamoyo	323	121
3/1/2005	Giyankula	Chunya	119	50
3/4/2005	Mbeya	Mbeya	213	77

Imagery Can Be Draped Over Elevation Models for 3-Dimensional Viewing of the Terrain

In Terms of Spatial Analysis, a GIS Can Determine for Each Village:

Distance to the nearest market town

Average rainfall within a 20km radius

Demographic indicators

 Village level estimates of income poverty

Famine Early Warning System

Water Requirement Satisfaction Index: Forecasts the potential crop yield based on the availability of water supply and crop demand throughout the growing season using rainfall, evapotranspiration, soil type, crop specific information. FAO Index (WRSI) for 120-day Maize in Kenya Rainfall Accounting method (i.e. 25mm + 2x20mm) for SOS Applied till dekad 22 and extended to EOS using longterm average

Landsat images (30 m res) show ag. conditions in Kenya during a year of good rains (left) with those of the drought of 2000 (right). Light green portrays healthy crops, dark green parcels are tea. Pink tones are associated with bare soil.

National Mapping Division EROS Data Center

Forest Management and Conservation

Identifying Protected Areas and Logging Concessions

Assessing Deforestation Trends

Monitoring Snow Cover in Afghanistan

Using MODIS 8-day snow cover extent products from the National Snow and Ice Data Center (NSIDC), USGS/SAIC International Program scientists were able to monitor snow cover depletion for Afghanistan in support of Famine Early Warning System Network (FEWS NET) activities in the region. Approximately 80% of Afghanistan's annual wheat crop is dependent on irrigation, much of which is supplied through snowmelt. Using a basin delineation derived from the USGS HYDRO 1K Global Topographic Database, this analysis concentrated on watersheds upstream of important irrigation areas. An elevation threshold of 2500 meters was applied to identify areas, within each basin, where historical average snow extent is approximately 100 percent in March. Monthly averages (1966 – 2001) of snow cover extent were taken from the NSIDC historical snow cover database at 25-kilometer resolution. The NASA MODIS 8-day snow cover extent product, at 500-meter resolution, was used to track incremental changes in snow cover extent throughout the snowmelt season.

Modeling the Effects of a Dam Release

Using GIS as a Management and Communication Tool for USAID

Track Ongoing Activities

Review Activity Status: Road Building Project

Act. Details - Microsoft	Internet Explorer p	rovided by USAID					
			Update Activity	252505.00			
			Activity ID:	4824			
SO	502 💌		Partner:	MUNI			
PCBS ID or Cluster Code	151090 💌		Village Name or Cluster Name:	Beit Furik			
Program	Cash_T1						
AT Code	S08-A051 -		Sector Code:	Roads			
Activity Type Description	Construction / imp	rovement of interior and	connecting roads (other than agr	cultural)			
Activity Description	stion: Rehabilitation & paving of internal roads						
Activity Status	On Time		Percent Completed:	80 - 96			
Estimated Cost	200000		USAID Contribution:	200000			
Actual Cost	10						
Start Date	00 (10 (2002)	instant start	Planned Completion Date:	10.01.0000	in the second second		
Last On altautal	09/12/2003	set clear	Actual Completion Date:	12/31/2003	set clear		
Last On-site visit	1		Actual Completion Date:	b	set clear		
Comments							
Specific UM#1	#11 bla of Linear matery of interior and connection reads constructed						
	No. of Linear meters of intenor and connecting roads constructed						
UM#1 Planned Qty	8000	UM#1 Actual Qty: 0					
Specific UM#2	No. of square met	ers of side walks					
UM#2 Planned Qty	0		UM#2 Actual Qty:	0			
Specific UM#3	No. of linear meter	s of retaining walls, fend	es, and terraces				
UM#3 Planned Qty			UM#3 Actual Qty:	0			
Malo Donoficiarios	1	Date	on dass Employment Constants	(a)			
Male Beneficiaries	- jo		ion-days Employment Generated.	10			
Female Beneficiaries	: 0		Interpreting Beneficiaries			100	
		di ye					
Bafara	11Zent :						

Sefore Working

Measure Output Results

Proportionate Funding by Sector and Region

Generate Summary Reports

USAD Funding per Sector as a percentage of total funding

Show Distribution of Partners

Summarize Programs

Strategically Plan: Use Demographic and Infrastructure Information to Determine Where to Put New Projects

Population Density per Governorate

Additional Uses of GIS for Development

Ivory Coast

Tax assessment and collection in Abidjan boroughs by combining geo-information on land, population, & economic activity

Placement of new village health care centers based on population locations

Improved allocation of revenues to local jurisdictions with more precise info of size and boundaries of nearby forest concessions

GIS Use for Development

<u>Mozambique</u>

Determines spatial distribution of land mines for removal and safe passage

<u>Senegal</u>

Census data and village location data monitors progress of national poverty alleviation program

Gambia

Land use data combined with human settlement info to determine waste disposal facility sites

South Africa

Data on population centers, rivers, roads, mountain ranges combined to delineate boundaries of electoral wards for 1999 elections Geospatial Information Technology allows us to integrate different sources of information to better understand our world and show us how interconnected we really are...