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Abstract

The Small Area Income and Poverty Estimates (SAIPE) program at
the U.S. Census Bureau has a model for poverty which relates direct
estimates from the Annual Social and Economic Supplement (ASEC) of
the Current Population Survey to various Administrative Records (AR)
and the last decennial census through a regression model with random
effects.

In this paper a Hierarchical Bayes (HB) model is described. Various
data are modeled as functions of poverty. Further, the variances of the
data sources, conditioned on poverty, are modeled explicitly. This avoid
the well-known problems associated with regressions when the predictors
are measured with error. Further, the model is easily extended to han-
dle poverty-related data from other surveys or AR, such as the American
Community Survey or data from the National School Lunch Program
(NSLP). The model is parameterized in an easily interpreted way, which
should make it easier to understand the relationships between the vari-
ables. The model is applied to the estimation of poverty for SAIPE and
there is some discussion of the fit of the model and the interpretation of
the parameters.

Introduction

*This paper reports the results of research and analysis undertaken by the U.S. Census
Bureau staff. It has undergone a Census Bureau review more limited in scope than that given
to official Census Bureau publications. This report is released to inform interested parties of
ongoing research and to encourage discussion of work in progress. The views expressed are

those of the author and not necessarily those of the U.S. Census Bureau.



Annual Social and Economic Supplement (ASEC) of the Current Population
Survey to various Administrative Records (AR) and the last decennial census
through a regression model with random effects. See U.S. Census Bureau (2003).

In the current SAIPE model, the AR are modeled as if they have a negligible
random error, but this assumption has not been examined. Further, while one
may believe that AR have negligible sampling error, it may be that the behavior
of people in the various counties, given true poverty, may be modeled as a
random effect. It is known that data from the decennial census long form has
non-negligible variance, which itself varies among the counties. There is also
interest in including new covariates which may have variable reliability or which
may be absent in some counties. Examples include data from the American
Community Survey (ACS) and data from the National School Lunch Program
(NSLP). In any of these cases, it is desirable to model the variances in the
model.

In this paper, a Hierarchical Bayes (HB) model is described in which the
various measures of poverty available to SATPE are modeled so their expecta-
tions are functions of poverty and their variances are modeled explicitly. This
avoids the well-known problems associated with regressions when the predic-
tors are measured with error. Further, the proposed model is easily extended
to handle other poverty-related data from other surveys or AR. It also allows
for an easily-interpreted parameterization of the model. The model, the data,
and some simple applications of the model are also described. This includes the
estimation and model fitting procedure, some results, the final estimates of the
parameters, and the fit statistics. The parameters were constructed to be easily
interpreted, so the success of that construction is discussed as well.

2 Data and Model

2.1 Data and Variable Definitions

A description of the model follows for the estimation of the log number of 5-
to 17-year old children in families in poverty and all people in poverty in 1989.
The log number in poverty will generically be refered to as LNP, modified by
age group where necessary to avoid ambiguity. The SAIPE project used 1989
for the evaluation of the original SATPE model for poverty; it is used here to
preserve some comparability of the evaluations. The interpretations of some
of the parameters are easier and more interesting when the relevant poverty
definition is similar, and this motivates the experiment for LNP for all ages.

Detailed descriptions of the data are given by the U.S. Census Bureau (2003)
and in other places. Brief definitions follow.

1. p; is the “true” LNP of 5-17 year old children or for all ages in county i.
2. Xo; is the ASEC direct estimate of the LNP in county 3.

3. Xj; is the log number of children in poverty or total exemptions indicating
poverty.



4. Xo; is the log number of Food Stamp (FS) recipients.

5. X3; is the log number of nonfilers in county ¢. This is log (total population-
total exemptions).

6. X4; is the LNP measured by the previous decennial census.
7. Xcen,i is the LNP measured by the current decennial census.

8. Z; is the population of the 5-17 year old children or total population in
county i.

2.2 General Description of the Model

Assume that there are M small areas; the goal is to estimate the quantities
Wiyt = 1,..., M, which are, in the present application, the LNPs for small areas
indexed by i. There are J random variables, each of which is observed for some
of the small areas; denote the jth random variable for small area i as Xj; ,
i=1,.,M,j5=0,..J. Conditioned on yu; and some parameters, the X;;’s
have a normal distribution.

Xijlpi, 05, Vij ~ N (81 + 052, Vij).

The f-parameters describe the relationship of the conditional expectation
of p; and Xj; given ;. If X;; is conditionally unbiased for p;, 8;1 = 1 and
0jo = 0. Make this assumption for j = 0; this means that the ASEC, when
available, is unbiased for the true LNP in the county. Consider the X;’s as
estimators for LNP; then 6;; and ;2 are interpretable as bias parameters. That
is their reference in this paper. This assumption also makes the §-parameters
identifiable. The variance parameter, V;;, will be modeled separately for variable
j. The parameters, u;, ¢t = 1, ..., M have a normal distribution, conditioned on
other parameters n and v,, given by

Mz'|77;Uu ~ N(Vi,’l)u),

where v; = 1+ Z;. The parameter n can be interpreted as the national log
poverty rate, and has the distribution

n=N(my,Vy).

Models for the variance terms V;; appear in the list below. This term extends
the idea of the sampling variance in ASEC to the AR; for AR, one might think
of this variance as the sum of a sampling error variance and a random effect
variance. The random effect variance describes the variability of the behavior
of people filing tax forms or deciding whether to participate in food stamp
programs.



. The variance of the direct ASEC LNP estimate in county i is inversely
proportional to the square root of the sample size.

).

This is the model in the official SAIPE estimates (U.S. Census Bureau
2003); this form for the variance model was arrived at empirically.

[N

Vio = wvo(k

%

. The variance of the log number of exemptions for children in poverty or
total exemptions given p; is inversely proportional to a function of the

1
population: Vi1 = Vi/f(V;). Here let f(N;) = N2.
. The variance of the log number of FS recipients is constant: V;s = V5.

. The variance of the log number of nonfilers is inversely proportional to
a function of the population: V;3 = V3/f(N;). In these experiments let

f(N;) = Nz.%. This allows for decreasing conditional standard deviations
of the log tax variables or, approximately, decreasing coefficients of vari-
ation (cv), as the population increases. This function is motivated by
exploratory analysis, but there is evidence, reported below, that it does
not increase quickly enough in N;.

. Two models are considered for the variance of the LNP from the previous
and current decennial censuses.

e Decennial Census Variance Model 1: The total variance model for
the decennial census LNP borrows the form of the census generalized
variance function (GVF), transformed to describe the squared coef-
ficient of variation, which is approximately the variance on the log
scale. This model simplifies the function, so parameters specific to
states and places with various sampling intervals are neglected. For
a detailed description of the census GVF, see U.S. Census Bureau
(1992).

Vai = 71(% - %) + vy

Note that, if the GVF is correct, v should be indexed by the counties
and, for county 4, v1; = 5DEF;, where DEF; contains factors for the
sampling intervals of the county and a factor for the state. The
multiplier 5 is part of the definition of the GVF and is the product
of the sampling interval and the finite population correction. The
extra variance term v; represents an added variance for the passage
of time between the decennial census and the year of interest. The
analogous form is used for the current decennial census, but the prior
distribution for v; is chosen so nearly all of the probability mass is
near zero.



e Decennial Census Variance Model 2: The total variance for the pre-
vious decennial census LNP is equal to the variance derived from
decennial census GVF plus a term to represent the change in the real
LNP between 1979 and 1989.

Vais = GV E; + vy,

where GV F; is the variance from the decennial census GVF, trans-
formed to apply to the log scale. This is approximately the squared
coefficient of variation for the decennial census number in poverty.
Again, there is an additive term to represent a random effect for the
passage of time.

This model derives from the assumption that the transformed decen-
nial census GVF is correct to a multiplicative constant and that the
movement of the LNP through time is a diffusion process. Both of
these assumptions are of course suspect, but model checks, described
below, do not identify this as a failure in the model.

The direct estimate from the current decennial census, given the true LNP,
has a normal distribution.

Xcen,i'ﬂi; 066n,17 acen,Qa Vcen,i ~ N(gcen,lllli + 0cen,27 ‘/cen,i)-

Modeling assumptions for Ocen,1, Ocen,2, and Veen,; are analogous to those for
the previous decennial census. This paper is motivated by an interest in the
application of these models, in the relationship of the conditional expectations
of the decennial census and ASEC, and in the worthiness of these models for
estimation of LNP in counties. It is therefore worthwhile to fit the models in a
census year and condition on the current decennial census as well as the previ-
ous decennial census to estimate the bias parameters for the current decennial
census. It would also be worthwhile to fit it without conditioning on the current
decennial census and do evaluations analogous to some of those reported by the
National Academy of Sciences (NAS) panel charged with the evaluation of the
SATPE estimates of poverty (NAS, 2000), and to see how the model fares at the
end of a decade. One can also use these models, even conditioning on the cur-
rent decennial census, to say something about the performance of the relative
differences.

There are three experiments described in this paper: Experiment 1 has the
decennial census variance model 1 and fit to the LNP for school-age children.
Experiment 2 uses census variance model 2 on school-age children. Experiment
3 uses census variance model 1 on poverty for all ages.

2.3 Prior Distributions

The unknown parameters are assigned prior distributions as follows.



. The 8;5, j > 0, ¢ = 1,2, parameters are normally distributed.

Oij ~ N(u(0:5),v(055))-

. The proportionality constant for the ASEC variance, vy, has an inverted
gamma distribution

vg ~ IT(sh(vg), sc(vg)),

where IT denotes the inverted gamma distribution and sh(.) and sc(.)
represent the shape and scale parameters respectively. In this parameter-

ization, the mean is % and the variance is (Sh(vo)_slc)2”(°3h(v0)_2). The

precision, Ul—o, has a gamma distribution with mean Z’c’((;’g)) and variance
:ch(gj(’)o)l The inverted gamma distribution for the variance is equivalent

to the gamma distribution for the precision, and is the conjugate prior
for this parameter in the normal distribution. This improves the perfor-
mance of the Monte Carlo procedure for forming the estimates described
in Section 3.

. The variance of p; given v; also has an inverted gamma distribution.

v ~ IT(sh(v), 5c(v,)).

Here, the variance of the true LNP is approximately the same as the cv?
of the number in poverty, given the mean parameter. In our model the
population is a fixed quantity, so this is approximately equal to the cv?
of the poverty rate given the overall poverty rate. This, taken as a global
parameter, is bounded as a practical matter so that the LNP does not
exceed the log population very often.

. The variance parameters of the X-variables have inverted gamma distri-
butions.

vj ~ IT(sh(v;), sc(vj)).

. The additive constant for the previous decennial census variance has an
inverted gamma distribution,

vy ~ IT(sh(vy), sc(vy))-

. The additive constant for the current decennial census variance has an
inverted gamma distribution,

Veen ~ IT(8h(veen), $¢(Veen))-



Table 1. Models and Prior Parameters.

| Experiment 1 | Experiment 2 | Experiment 3 |

Decennial Census 2 1 2
Variance Model
My, Uy 1.9,0.25 1.9, 0.25 1.9,0.25
1(0,1), v(0;1) 1.0,1.0 1.0,1.0 1.0,1.0
u(6]~2), U(eﬂ) 0.0, 2.0 0.0, 2.0 0.0, 2.0
sh(vg), sc(vg) 0.0, 0.0 0.0, 0.0 0.0, 0.0
sh(vrm), sc(vm) 1.0, 1.0 1.0, 1.0 1.0, 1.0
sh(v1), sc(v1) 3.6, 0.716 3.6, 0.716 3.6, 0.716
sh(va), sc(va) 3.6, 0.716 3.6, 0.716 3.6, 0.716
sh(vs), 5c(vs) 3.6, 0.716 3.6, 0.716 3.6, 0.716
sh(vy), sc(vg) 10.0, 1.0 10.0, 1.0 10.0, 1.0
5T (Veen), 5C(Veen) 1000.0, 10.0 | 10000.0, 1.0 1000.0, 1.0
1(79), v(7,) || 5.0, 1.0 x 10~ 10,50 | 5.0,1.0x 109
p(ve), v(ve) || 5.0, 1.0 x 107 1.0, 5.0 | 5.0,1.0 x 1075

These are the prior parameters for each of the three models. In this notation,
w(0) refers to the mean of 0, v(8) is the variance of 0, sh(v) is the shape pa-
rameter and sc(v) the scale parameter for v in an inverted gamma.

The additive constant for the decennial census variance of the LNP in the
current decennial census remains in the equation formally, but the prior
distribution may constrain it to small values. The parameter v; can be
thought of as a cv? for a random multiplier applied to the true current
LNP to get the LNP in the year of the previous decennial census. In this
case, that is 1980.

7. The parameters 1 and 7, in variance models 1 and 2 have normal prior
distributions.

¥j ~ N(m(v;),v(74))-

The prior parameters are presented in Table 1. In experiments 1 and 3, the
prior distributions for the decennial census variance have very low variance and
expectations equal to 5.0. This is the same as treating the base formula for the
decennial census variance as true. There was no reason to anticipate this would
fit well, but the evidence for rejecting this model is weak, as reported in the
model-fitting section. Setting the prior expected values for v.., close to zero
reflects an interpretation of that variable as the contribution to the variance of
the decennial census which arises by getting out of date; the current decennial
census is not out of date at all, so this variance contribution is small.



Note: Parameter Descriptions.

Parameters

Description

My, Uy

Mean and Variance for National LNP

(1), v(01)

Mean and Variance for The Multiplicative
Bias Parameter

p(052), v(02)

Mean and Variance for The Additive Bias Parameter

sh(vg), sc(vg)

Shape and Scale for the ASEC Variance Parameter

sh(vm), sc(vm)

Shape and Scale for the
Random Effect Variance for LNP

Shape and Scale for the Tax LNP Variance Parameter

Shape and Scale for the Log FS Variance Parameter

Shape and Scale for the Log Nonfiler Variance Parameter

Shape and Scale for the Additive
Variance Parameter of the Previous Decennial Census

Sh(vcen)a SC(UCGTL)

Shape and Scale for the Additive
Variance Parameter of the Current Decennial Census

#(7g), v(7g)

Mean and Variance for the Multiplicative
Variance Parameter of the Previous Decennial Census

p(ve), v(ve)

Mean and Variance for the Multiplicative
Variance Parameter of the Current Decennial Census

2.4 Relationship of this Model to Regression Models

Condition the ASEC on the other data and the parameters besides p to get
the following model. The distribution of the LNP given the data except for the
ASEC direct estimate is

p(ﬂi|xi(70)) ~ N(T‘i,’U,'),

where (-0) indicates that Xy; has been left out of the vector. The mean, r;, is

0
r; =
' ; 2k OiaTin + 7m0

X; — 0j2

2 .
31 Tij

Tm

R
Zk 0]2917_1'1:: + Tm

(n + log(N;)),

where Tgup = 1/vsyp for all subscripts sub, and

SO

v = (2912-17'1']' +7m) "1,

P(Xoi|Xi(_0)) ~ N(ri,v; + v/ ki)




The mean, r;, can be rewritten

ejoini Tm
- § + + log(N;
' ; Ek‘giﬂik + Tm Zkaizﬂ'k +Tm(n 9()
017052

- ; 2k O Tik + T
= ) BLiXij + Bo.

When 7;; = 75, this is the regression model, except for the common dependence
of Vand S onb and 7. If :—"’L — 00, those terms act more like regular regression

parameters, so multivariate regressions are also limiting cases. Then §; = 23—912
k1l

. > 051050
f 0 and By = =%——.
or j > 0 and Sy S,

3 Estimation

The Metropolis sampler (see, for example, Gelfand 1995) is an appropriate tool
to calculate the joint posterior distribution of the model. The distribution of a
random variable and that of its parent parameters is usually a conjugate pair
in this model, so derivation of the full conditional distributions in these cases is
straightforward, and these steps are ordinary Gibbs steps. The parameters in
the variance model for the decennial census had more complicated distributions
and were simulated with Metropolis steps. The program was written in C
using the RANLIB library of random number generating functions (Brown et
al. 1993). The simulation was run in each experiment for 1,000,000 iterations,
thinned to 10,000.

3.1 Model Fit

There is a heavy reliance on posterior predictive p-values (PPP-values) for eval-
uating model fit. For a discussion of PPP-values, see Gelfand (1995) or Meng
(1994). The interpretation of these is similar to classical p-values; the lack of fit
of the data to the posterior predictive distribution (the distribution of new data
analogous to the observed data) is measured by the probability mass of values
more extreme than the observed data. Examples of these p-values in small-area
estimation are presented by You et al. (2000) and Fisher and Campbell (2002).
The PPP-values are defined as

b= P(T(Xrepafrep) < T(Xobs, §re,,)|data),

where T'(.) is some function, chosen to evaluate some interesting aspect of the
model. One example is

T(.’L., 6) = x’



so that p represents the probability that a new observation from the posterior
is less than the observed value. One can also define the overall PPP-value,
which is the probability that a randomly chosen county has T(X,ep,&rep) <
T (Xops, &rep)- In each case, values of p close to zero or one suggest some problem
with the model in terms of the location of the response. A well-fitting model
should exhibit the following properties.

e The posterior predictive probabilities should not be close to zero or one.

e The posterior predictive probablities should not exhibit a trend relative
to other variables. In this respect, the posterior predictive p-values may
be examined in a way similar to residual plots.

With the above definition for T', extreme predictive p-values indicate that
a replicated observation is too high or too low most of the time. That is, the
observed datum is far in the tails of the marginal distribution of the modeled
distribution which should then be viewed with distrust. In all three experiments,
the overall PPP-values fall in the interval (0.47,0.49), which is comfortably far
from zero or one.

Some of the plots of the PPP-values against the logs of the posterior mean
numbers in poverty are presented. They are similar for all three experiments so
only those for Experiment 1 are shown.

The plot in Figure 1 for the ASEC PPP-value shows little dependence on
the LNP, except for some curvature at the lower end which may be illusory.
On the other hand, it may be an effect of the censoring of the no-poverty-in-
sample counties. The counties with PPP-values equal to zero are counties with
no people in poverty in sample.

The plot for log poverty exemptions in Figure 2 shows a clear relationship
between the spread of the PPP-values and the log posterior mean poverty. For
larger posterior mean LNP, the PPP-values for the log child poverty exemptions
spread, tending toward the extreme for the largest counties. The same trend is
visible, but less obviously, in the plot for nonfilers, X3;. This suggests that the
model for the variability does not fit well in some respect. This is consistent
with the PPP-value plots, presented in Figure 5, for the variances of the tax
variables, which follow. There seems to be a more complicated situation in the
plot for FS, seen in Figure 3; for smaller counties, the PPP-values tend toward
the extremes, while they tend toward zero for larger counties, suggesting that
food stamp usage is underestimated for large counties. This should be examined
further, since a systematic underprediction here may indicate a conditionally
biased part of the model or perhaps a curvilinear relationship between log-food
stamps and log-poverty.

The decennial census plots in Figure 4 are striking mostly for their differ-
ence. Even though the models share the same form, the plot for the previous
decennial census shows no visible relationships between the PPP-value and the
log posterior mean number in poverty at all, while the variability in the current
decennial census plot clearly decreases with increasing log posterior mean in
poverty.

10



Another possibility for T'(x, ) is

T(z,8) = (z — E(z[9)?,

so overall values of p close to zero or one indicate a problem in the variance
model. In this case, all of the overall PPP-values are in the interval (0.47,0.51),
which is not itself indicative of a failure in the model with respect to variances.

Consider the plot of the PPP-values for the sampling variance of the log
number of poverty exemptions in Figure 5. The plots in all of the experiments
are similar, showing that the variances of replicated observations tend to be
too big for places with more people in poverty, suggesting that the tax variance
function f(.) should increase more quickly with the size of the county. This will
be addressed in future research.

Figure 6 shows plots of the PPP-values for the decennial census variances;
the plots for the other two experiments are similar to these, and so are not
shown, but the plots for the two decennial censuses are different from each other.
The plot for the previous decennial census shows PPP-values fairly uniformly
distributed over the interval, without a trend, except for a compression of values
at the low end. The 1990 decennial census PPP-values, on the other hand, while
generally centered around 0.51, show much less variation in the large counties.
Perhaps the normal model is failing with respect to higher moments, or the
diffusion effect, which is negligible in the 1990 decennial census, has a more
normal distribution.

3.1.1 Relative and Absolute Relative differences from the Decennial
Census

Historically, in the SAIPE project, the mean relative difference across counties
between the estimates from the model and the decennial census estimates in 1990
has been an important statistic for judging quality of a model. The definition
of the relative difference between z; and x5 is

RD(Z‘l,.Z'Q) = .’L'lm—.’l,'g .
2

The absolute relative difference, ARD(z1, =), is the absolute value of RD(z1, z2)-
The mean of these quantities, applied to some estimates fi; and decennial
census estimates Xcen; are MRD = L3 RD(fii, Xcen;) and MARD =
ﬁ Ez ARD (ﬂ’w Xcen,i)'

Models with MRDs and MARDs close to zero were preferred, as were those
where the MRD varied little with respect to other variables. MRDs with large
negative or positive values were considered indicators of relative bias; large
MARDs were considered indicators of high relative error. Further, if the MRD
was high for a subset of counties distinguished by some other variable, the suspi-
cion was that the estimates were biased for those counties. The interpretation of
the MRD and MARD as measures of lack of accuracy and precision depends on

11



the assumption that the decennial census estimates in poverty are both accurate
and precise. That assumption is questionable for precision of small counties and
for the accuracy of all counties, since the §-parameters for the decennial census
are unlikely to be zero and one, especially given the estimates. The models fit
here give us an opportunity to measure certain kinds of failure in that assump-
tion. This model has the assumption that the decennial census LNP in 1990 is
affine in the true LNP.

It is also useful to examine the expectation of the RD under the model.
Consider the following transformation of the RD between decennial census and
true LNP for county 3.

q = lOg(RD(/J/za Xcen,i) + 1)
= Mi— (gcen,lﬂi + 06677.,2 + Z\/ Ucen,i)
= (1 - ecen,l)ﬂi - 0cen,2 - Z\/ Vcen,is

where Z is a random variable with mean zero and variance one. In these models
there is also the assumption that it is normally distributed, but that assumption
is not necessary for the following. It follows that

exp(Q) = RD(Miaxcen,i) + 1.

The first terms of the Taylor expansion give

exp(q) = exp(go) + (¢ — qo) exp(qo) + %(q —q0)? exp(go) + 0,(q — q)*.

The expectation conditioned on some parameters £ is

E(RD(pi, Xcen,i) + 1€) = exp(qo) + E(q — q0l€) exp(qo)
+5V(al€) explas) + olV (al6))

where, by assumption, go = E(q|§). Now say £ is p and 6, the relevant param-
eters. Then

E(RD(NiaXcen,i) + 1|IU/7 0) = (1 + %V(Z“,L, 0)) exp(E(z|u, 0)) + O(V(Z\/ Ucen,i))

SO

1
E(RD(,UhXcen,i) + 1|,u7 0) = (1 + Evcen,i) exp((l - ecen,l),ui - acen,Z) + O(vcen,i)- (1)

If Ocen,1 = 1.0 and fcepn 2 = 0.0, then

1
E(RD(,Uz; Xcen,i)) = Evcen,i + 0(vcen,i)-

12



Neglecting the error term, the expected RD is one-half the sampling variance of
the decennial census LNP. This number is approximately one-half the relative
variance of the decennial census direct estimate of poverty, which can be high
for counties with little sample and decreases for counties with more. The real
point is that even when the decennial census is unbiased for the ASEC LNP,
the RD is nonzero and is not flat.

Table 2 shows the MRD of the posterior means, iz of the county LNP and the
decennial census Estimates LNP, the posterior mean of the MRD of the LNP
and the decennial census LNP, and the expectation of the MRD using equation
(1) above for each of the decennial census variance models.

Table 2. Mean Relative Differences (MRD) From the Decennial Census.

| [ MRD(#,X cen) | MRD (1, Xeen) | EQURD) |

Experiment 1 -0.117 -0.117 -0.126
Experiment 2 -0.107 -0.107 -0.114
Experiment 3 -0.174 -0.175 -0.177

The MRD estimates in all three experiments are somewhat less than zero,
especially for Experiment 3. The consistency with their theoretical expectation,
E(MRD), in the third column, suggests the MRD values are explained by the
model and the posterior distributions for #, at least in the presence of the
available data.

The RD can be used to construct posterior predictive p-values as well; con-
sider the function

T(x,£) = 76}(1)(”12 — 4,
K

Table 3. Owerall Relative Difference Predictive p-values.

Experiment 1 || 0.51
Experiment 2 || 0.50
Experiment 3 || 0.51

The nicely moderate PPP-Values for the MRD in Table 3 show that the model
explains the overall relative differences between the posterior mean number in
poverty and the decennial census number in poverty. Figure 7 shows the PPP-
values plotted against the log-posterior mean numbers of people in poverty.
There is no clear trend for the level of PPP-values though there is, again, het-
erogeneous variability.

The conclusions of this section are (1) that the measurement differences
between ASEC and decennial census are unknown but likely not zero and (2)
given that and the effects of the variance, the RD and the ARD can not be
expected to be flat or centered on zero. Under the assumptions of this model
(including that of ignorability of the censoring of no-poverty-in-sample counties)
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the RD is closer to zero than its approximated expectation and behaves much
as the model predicts, as measured by PPP-values.

3.2 Estimates

The posterior means and standard deviations of the parameters are presented
in Table 4. Experiment 3, where the variables are all related to total poverty, is
most easily interpreted. The multiplicative bias parameters for the log tax data
have posterior means around 0.85, which is several standard deviations away
from 1.0. This indicates a downward concave function of tax poverty relative to
the true ASEC poverty. In counties with relatively large populations of people
in poverty, fewer of those people in poverty appear as such in the taxes, and,
in those counties, the rate of nonfilers also decreases. While this may reflect
a difference in the populations of counties with various levels of poverty, one
must also recognize the possibility of an effect of censoring the counties without
poverty in sample. Since the probability of having no poverty in sample and,
therefore, having an undefined ASEC direct estimate of LNP, decreases with
increasing poverty rates, the model must be misspecified; the magnitude and
nature of the effect is still not clear, though Maiti and Slud (2002) study it
with simulation experiments. It is possible to explicitly model the censoring
mechanism in an HB model, and that research is underway.

To examine the conditional expectations of the z;;, j > 0, on the linear
scale, consider the quantity

rij = exp((Bo; — 1)jti + 61,5),

where the hat denotes the posterior mean and ¢ indexes counties. This is the
ratio of the posterior means of the expectations of the covariates to those of the
ASEC, converted to the linear scale; if the AR and decennial census measure
poverty, these are the ratios of those poverty measure to that of the ASEC.
Table 5 shows the averages of the ratios across counties.

The results for Experiments 1 and 2 are similar. The numbers of exemptions
for people in poverty are about 80 percent larger than the ASEC direct esti-
mates. One would expect there to be more child poverty exemptions, since the
universe for this classification is nominally children under 21 years of age. Recall
that FS participation counts all ages, so there are 2.45 times as many estimated
total F'S participants as school-aged children in poverty. Similarly, there are per-
haps five times as many nonfilers as there are school aged children in poverty.
Since the universe for nonfiler is all people rather than school-aged children, it
is not very surprising that there are so many more. Finally, the decennial cen-
suses, which do measure similarly (but not identically) defined age groups, show
about 13 to 15 percent more poverty than the ASEC, consistently between the
decennial censuses. In experiment 3, the poverty-related measurements are for
all ages, so they are more comparable than those for the school-aged children.
Also note the numbers of poverty exemptions and non-filers are 29 percent and
22 percent larger than the ASEC people in poverty, respectively. The bias pa-
rameters for the tax poverty and the decennial census poverty are fairly similar.
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Table 4. Posterior Means and Standard Deviations of The Parameters.

Description Exp 1 Exp 2 Exp 3

011 Multiplicative Bias Parameter, | 0.85, 0.008 | 0.86, 0.006 | 0.85, 0.007
Log Tax Poverty.

021 Multiplicative Bias Parameter, | 1.01, 0.007 | 1.02, 0.008 1.02, .009
Log FS¢

031 Multiplicative Bias Parameter, | 0.96, 0.01 | 0.97, 0.009 | 0.99, 0.009
Log Nonfilers

041 Multiplicative Bias Parameter, | 0.87, 0.007 | 0.89 0.007 | 0.85, 0.007
80 Decennial Census LNP?

015 Add Bias Parameter, 1.55,0.06 | 1.50, 0.05 | 1.43,0.07
Log Tax Poverty

052 Add Bias Parameter, | 0.82, 0.07 | 0.79, 0.06 | -0.63, 0.84
Log FS

032 Add Bias Parameter, | 1.88,0.08 | 1.81,0.07 | 0.31, 0.09
Log Nonfilers

042 Add Bias Parameter, | 1.00, 0.06 | 0.86, 0.06 | 1.34, 0.07
80 Decennial Census LNP

Ocen,1 Multiplicative Bias Parameter, | 0.92, 0.007 | 0.93, 0.006 | 0.91, 0.007
90 Decennial Census LNP

Ocen,2 Add Bias Parameter, | 0.68, 0.06 | 0.60,0.05 | 0.95, 0.07
90 Decennial Census LNP

Vg ASEC Variance Parameter. | 5.70,0.26 | 5.57,0.25 | 3.07, 0.13

Um Variance of p;|n | 0.30, 0.009 | 0.28, 0.008 | 0.23, 0.007

vy Tax Poverty Variance Parameter. 4.6, 0.13 4.3,0.13 | 9.21,0.25

Vs FS Variance Parameter. | 0.12, 0.004 | 0.11, 0.004 | 0.15, 0.004

V3 Nonfiler Variance Parameter. | 33.2,0.86 | 31.8,0.82 | 50.91, 1.32

vt 80 Decennial Census | 0.08, 0.010 | 0.06, 0.003 | 0.04, 0.001
LNP Variance Parameter.

Veen 90 Decennial Census 1.0,0.03 0.1, 0.01 1.0,0.04
LNP Variance Parameter
(x1073)

71,80 || 80 Decennial Census Variance Parameter NA | 1.83,0.25 NA

71,00 || 90 Decennial Census Variance Parameter NA | 2.19,0.13 NA

“Number of Food Stamp Recipients
*Log Number in Poverty
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Table 5. Ratios of Covariate measures of Poverty to that of the ASEC.

| j || Measure | Exp. 1 | Exp. 2 | Exp. 3|
1 || Poverty Exemptions 1.81 1.79 1.30
2 || Food Stamps 2.48 2.48 0.60
3 || Nonfilers 5.18 5.11 1.23
4 || Previous Decennial Census 1.15 1.13 1.16
cen || Current Census 1.16 1.14 1.24

Examination of the §-parameters for the decennial census LNPs show that the
ratio of the expectation of the decennial census measurement of LNP to that
of the ASEC increases with the LNP and averages about 1.23. This positive
slope is consistent with the plot of the relative difference from the decennial
census shown versus size in Figure 8. This and the moderate PPP-values and
the plots of the PPP-values for the relative differences lead to the conclusion
that the relative difference is about what it should be under the model and the
decennial census’ value as a “gold standard”, against which other estimates may
be compared, is limited, at least using the RD directly.

One important flaw in this argument is that the effect of the censoring of
counties with no people in poverty in sample is not well understood. Depending
on the censoring mechanism, this may have an important effect on these com-
parisons. Indeed, if, in counties with smaller samples, counties with fewer people
in poverty were more likely to have zero people in poverty and, therefore, to be
dropped, then we might expect the model to show a lower decennial census-to-
ASEC ratio for small counties and a higher one for large-sample counties. This
is in fact contrary to these results.

Turning our attention to the variance parameters, the FS variance parameter
is about 0.11 in the experiments with school aged children and about 0.15 in that
with all people in poverty. Since this is the log scale, this is approximately the
cv? of the FS, or a cv of about 0.33 and 0.38, respectively. There may be some
error in the measure of F'S given the true number of FS participants, but it seems
reasonable to suspect there is a comparatively large random effect in the true
participation given poverty. Modeling of the relationship of FS participation to
other variables may yield some benefits.

The posterior standard deviations of the number of people in poverty in the
three experiments, divided by the posterior means, are shown in Table 6.

The only differences between Experiment 1 and 2 are in the model for the de-
cennial census variances, namely the prior distribution for the constant term, the
form of the GVF-type term, and the prior distribution for its parameter. Since
the prior mean for the constant term is the smaller of the two in Experiment 2,
one has to conclude that the formulation for the GVF-like term in Experiment
1 vs. that in Experiment 2 has the larger effect. The posterior means for the
multiplier for the GVF in Experiment 2 are larger than one, so the estimated
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Table 6. Awverage Ratio of the Posterior Standard Deviation to the Posterior
Mean

Experiment 1 || 0.09
Experiment 2 || 0.12
Experiment 3 || 0.06

information in the second model is lower. These ratios compare favorably to the
cvs in the SAIPE mixed effects model, which are 0.13 and 0.12 for school-aged
related children in poverty and total people in poverty, respectively.

4 Conclusions

4.1 More Research
Research on these models will proceed in the following ways.

1. Extend the ASEC model into a mixture, where one component is as mod-
eled as in this paper, while the other concentrates all of its probability
at zero on the linear scale, where the probability of that component is
some function of the poverty rate and the sample size. Alternately, one
can employ a probabilistic imputation of the counties with no people in
poverty in the ASEC sample, conditioning on the event they fall below a
cut-off. This is convenient in a Markov Chain Monte Carlo method.

2. In an approach similar to that in the first item, the approximate scaled
binomial model (Fisher and Asher, 1999) could be used in the ASEC
sampling model. Their use of this method seemed to yield a good fit and
estimates with good variances, but the properties of the method should
be more fully established before it is used in production.

3. The choice of prior distributions here is a little strange, especially for the
FS variance, though these priors probably contribute little information.
Better priors could be formulated on the basis of other knowledge and the
sensitivity to those prior distributions can be tested.

4. Include other variables of interest. A current example is health insurance
coverage (HI). In that case there are several measurements of insurance
status from AR and surveys. Given that there is a relationship between
HI and income, information about each variable could inform us about
the other.

5. The FS participation rates could be modeled as a function of other covari-
ates. As mentioned in section 3.2, there is a large error associated with
FS conditioned on LNP. It may be profitable to model this effect, which
could allow us to get more information from FS.
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6. This model has the assumption of independence between the two tax vari-
ables. It would be straightforward to test this assumption with a PPP-
value constructed around a correlation or similar measure of dependence.
Then a modification of the model might be appropriate.

5 References

Brown, Barry W., Lovato, J., Russel, K.,(1993), RANLIB random number gen-
eration library, available at http://www.netlib.org/random/ranlib.c.tar.gz

Fisher, Robin and Campbell, Jennifer (2002) Health Insurance Estimates for
States, 2002 American Statistical Association Proceedings of the Section on Gov-
ernment and Social Statistics

Gelfand, Alan E.,(1995), Model Determination using Sampling-Based Meth-
ods. In Markov Chain Monte Carlo In Practice (eds W.R. Gilks, S. Richardson,
and D. J. Spiegelhalter),pp.145-161

Maiti, T. and Slud, E.V. (2002). Comparison of Small Area Models in SAIPE.
Tech Rep. U.S. Census Bureau.

Meng, Xiao-Li, (1994), Posterior Predictive p-Values, The Annals of Statis-
tics, 22, pp. 1142-1160

U.S. Census Bureau (2003), “Small Area Income and Poverty Estimates, In-
tercensal Estimates for States, Counties and School Districts”, Available at
http://www.census.gov/hhes/www /saipe.html

U.S. Census Bureau (1992), “1990 Summary Tape File 3 Technical Documenta-
tion on CD-ROM?”, available at http://factfinder.census.gov/metadoc/1990stf3td.pdf

You, Yong, Rao, J.N.K., and Gambino, Jack (2000), “Hierarchical Bayes Esti-
mation of Unemployment Rate for Sub-provincial Regions Using Cross-sectional
and Time-series Data”, 2000 American statistical Association Proceedings of the
Section on Government and Social Statistics

18



Figure 1. PPP-values for the Annual Social and Economic Supplement (ASEC)
in Experiment 1.
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There is little evidence for a failure of the model except possibly at the lower
end. The counties with PPP-values equal to zero have no poverty in sample.
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Figure 2. PPP-values for Tax Variables in Ezperiment 1.
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The PPP-values do mot seem to indicate a failure of the model with respect to
the expectation of the tax variables.
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Figure 8. PPP-values for Food Stamps in Experiment 1.
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There is some relationship between the PPP-value and log posterior mean
poverty, but it is not an increasing or decreasing one.
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Figure 4. PPP-values for the Decennial Censuses in Experiment 1.
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Figure 5. PPP-values for the

Tazx variances in Experiment 1.
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Figure 6. PPP-values for the Variances of the Decennial Censuses in Ezrperi-

ment 1.
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Figure 7 PPP-values for the Relative Difference with the Decennial Census in
FExperiment 1.
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Figure 8. Relative Differences Between Posterior Mean poverty and Decennial
Census in Experiment 3.
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