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Abstract. Following Bell (1997), we first present a simplified ideal model
which can be used to simulate underlying data for the small-area (county-
level) estimation currently used in the SAIPE project. We then describe
two different small-domain estimation methodologies which can be used on
such data: (i) a mixed-effect linear-model fit to the logarithms of sampled
counts, with zero-counts discarded, and (ii) a mixed-effect unit-level logistic
regression model fit to the sampled counts. The methods, both of which are
based on slightly misspecified models, are compared via simulation. Initially,
sampling weights are ignored, but then it is shown how they can be included
in both the aggregated-linear and the unit-level models.

Key words: best linear unbiased predictor (BLUP), mean-squared errors,
mixed effects linear model, mixed effect logistic regression, nonlinear regres-

sion, SAIPE, sampling weights, small area estimation, weighted census like-
lihood.

This preprint reports on research and analysis undertaken by Eric Slud, and
1s released to inform interested parties and to encourage discussion. Results
and conclusions expressed are those of the author and have not been endorsed
by the Census Bureau.



1 Introduction

As summarized by Bell (1997, 1998) the Small Area Income and Poverty
Estimates (SAIPE) project at the Census Bureau has developed methods for
estimating poverty and income statistics at the county and state level. At
the county level, these methods rely on a mixed-effects linear model which
is applied to the logarithms of the observed numbers (e.g. of poor children
5-17) in counties for which CPS samples were taken and in which the sam-
ple contained a nonzero number of poor children. Those sampled counties
without poor children 5-17 in-sample are dropped from the analysis, a both-
ersome aspect of the methodology. It would be desirable instead to model
the essential discreteness of the response-counts by some sort of unit-level
model.

Based upon the methods proposed in Slud (1998, 2000) of estimating
mixed-effect logistic regression models via mixed-nonlinear-regression soft-
ware or by maximization of an approximate log-likelihood, we describe here a
mixed-effect unit-level logistic regression model for SAIPE data. This model
would make use of all of the SATPE data. In order to compare this new
method to the one which is now in use, we conduct a simulation based upon
several idealized models which include the mixed linear model of Bell (1997)
and the mixed logistic regression model which is probably the simplest avail-
able at the level of sampling-units.

2 Idealized Model for Simulated Data

Suppose that for each county (PSU) ¢ = 1,...,m in the nation, there is
a population size N; which can (initially) be assumed known; a response
variable Y which is a count of individuals in a desired response-category
(e.g., poor child aged 5-17); and an explanatory variable X; = X;; (such as
“log of IRS poverty-rate”). Assume that the count Y is never observable,
but that the corresponding count 3 is observable for a random sample of
size n; taken from the PSU. For many PSU’s, n; will be 0 (no sample
drawn); and for many of the sampled PSU’s, the observed counts 3P will
turn out to be 0. Assume that the PSU sizes N; are always at least of

order 1000 times larger than the sample size n; . Initially, also assume



for simplicity that the samples are drawn at random, with identically equal
weights.

The parameters which it is desired to estimate are the ratios
0; = Y /N;

for entire PSU’s. For purposes of analysis, we assume as a first approximation
that these quantities follow a possibly nonlinear regression model with a
PSU-cluster (normally distributed) random effect and a normal sampling
distribution with known variances:
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Here 7, and ~; are unknown constants; and A will be taken to be one
of a few possible known (ezp, logistic, or identity) functions. The variance
of the cluster random effect U, is not chosen to be a decreasing function of
PSU size or sample size because the effect is shared by all individuals within
the PSU. The unobservable Y and the sampled quantity y° are assumed
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to be connected through the model
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For the SAIPE models in current use, one often treats the variance v, —
which quantifies sampling error — as essentially known through generalized
variance-function estimation. The model (2) expresses the error in estimating
9; on the measurement scale define by h~' due to sampling within the PSU.
Presenting the errors on this measurement scale is convenient but slightly
unnatural: the model (2) makes clear sense only if A is the identity function,
so that
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y—Z = = + €;
n; N;

But when this is true, we have by the delta method for large n; and general
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and this model differs from (2) in the dependence of the variance of the
difference h *(y?/n;) — h 1 (Y°/N;) on the true PSU parameter 9;.

A particular way for models resembling (1), but with o2 replaced by a
quantity depending upon 7 and X;, to arise is by a unit-level model in
which Y is the sum of N; independent indicators with identical probability

i = h(y0 +nX;+ U;) of being 1. A natural model of this sort is a mixed-
effect logistic regression, with

h(z) = /(1 + €)

3 Analysis Methods for Comparison

In the simulations which follow, the data (n;, ¥9) will be analyzed in one of
two possible ways. First, we imitate the linear-model analysis described by
Bell (1997) for logarithms of (non-zero) counts. The ‘model’ is

0
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where ¢; is taken to be normal with variance w,. Initially, w, will
be taken to be known and, in our (unweighted-sampling) simulations, is set
equal to the estimated variance of

VN: (1og(Y2/N)) —1og E(Y/N; | Uy))

Within model (3), the cluster random effect U; ~ N(0,0?%) is independent
of the random sampling error J;, and the unknown parameters -, 71, 02

are estimated via maximum likelihood, for fixed w, = v., omitting the data
for sampled PSU’s ¢ having counts 3 equal to 0. Later, within the
description of simulations in Section 5 below, another estimation method is
described for model (3), according to which ¢? is assumed known and w,

is estimated from simulated complete PSU data.

The second method of analysis which we consider in these comparisons
is based upon the idea that, conditionally given each PSU cluster effect and
sampling error, the individuals within each PSU respond independently with
identical probability of a logistic-regression form
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exp(o + 11 Xi + U;)
1+ exp(yo + 11X + U;)

(4)
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This unit-level model corresponds to the aggregated model like (1) with
h(z) =€ /(14 ¢€%) and (given X;, U;)
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Note that because /N; is so much larger than n; it does no harm to treat

Y?/N;

) X Y+ mnXi+ Ui

Through the unit-level model, we have also
yY ~ Binom(n;, ;) (5)

which for moderate to large n; implies approximately

0 . .
Yo _r o A0, T,

n; n;
and via the delta method,

7TZ(1 — 7Ti)
(mi(1 —m;))?

or, with h(z) = e*/(1+€") and h™'(y) = logit(y) = log(y%),

N (logit(y?/ni) — % — 71X — Ui) ~ N(0,, )

1
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This development indicates the more general result that a unit-level model
with N(0,0?) PSU-level random effects U;

YR ~ Binom(Ni, h(70+71Xz'+Uz‘)) NS Bmom(ni, h(70+71Xi+Ui))



with moderate n; and much larger N; (but no explicitly known sampling-
error term v,) is compatible with and well-approximated by an aggregated
model (1) along with the model conditional upon 9; = Y?/N; that

- (y—i>=h—1(m>+ei, i~ N (0, () ZE=00)

n;

The approzimate model (7) based on (aggregated) unit-level response differs
from the model (2) primarily in allowing the ‘sampling’ variance term to vary
with the PSU parameter 9; = Y/N;.

It is clear from the foregoing discussion that an aggregated model (1) is
likely to be well approximated by a unit-level Binomial model only if the A
‘link’ functions for the two models match. However, the most natural h to
use is the logistic, and that is the one we use in (most of) the simulations
reported below; while the h which has been used in the SAIPE county
model (on the subset of the sampled data with non-zero response counts)
is the exponential. Extra regression terms beyond the linear terms specified
for these models may help in mitigating the effects of misspecifying the link.
For this reason, we consider the effects in our simulations of incorporating a
quadratic term in the explanatory variable.

As mentioned above, the methodology used so far in developing county-
level small-area estimates of school-age poor children, as described in Bell
(1997, 1998) and the 1999 Interim Report 3 (Citro and Kalton, editors) of
the National Research Council, has been to fit a mixed-effect linear model
like (3) on the sampled-county data for which at least one child in poverty
was sampled. The model actually fitted was based on several covariates, not
just the single one of model (3). For simplicity, the simulation will be based
on data with a single covariate. The second method of statistical analysis
studied here is based on approximate maximum likelihood estimation of pa-
rameters in the mixed-effect logistic model (1)-(2) with h(z) = e*/(1 + €*).
As explained in the preprints Slud (1998, 2000), there is no generally avail-
able software for ML estimation in mixed logistic models with large num-
bers of PSU’s which works sufficiently rapidly and reliably to be used in a
comparative simulation. The approximate method devised in Slud (1998)
was based on applying mixed-effect nonlinear regression software (function
nlme) available in Splus, after transforming the PSU relative-frequency data
by the variance-stabilizing transformation arcsin(y/z). An earlier version



of the work reported in Slud (2000) gave an approach to the approximate
calculation of likelihoods within large mixed logistic models, which initially
was intended as a way to calculate mixed-logistic deviances based on es-
timates obtained from the mixed nonlinear regression approach. However,
simulation study of the behavior on moderate to large sample data of the
nonlinear-regression estimation method showed that it can often get stuck
at local optima on the boundary of the parameter space corresponding to
0 random-effect variances. An alternative approach based upon maximiz-
ing an accurately approximated log-likelihood function was shown in Slud
(2000) to give generally good and numerically well-behaved ML estimators
for the mixed logistic model which correct the evident tendency of the mixed
nonlinear-regression estimators in the setting of the present simulation to
underestimate the cluster variance. This alternative approximate ML esti-
mator for the mixed-logistic model (1)-(2) is the one which is used in the
simulations of later Sections.

4 Small-Area Estimates

It is desired to estimate the parameters 9, = Y?/N;, based on covariates
Xy which are constant over the k’th PSU. The parameters (7o, 71, 0°)

in model (1) are first to be estimated, either by a mixed-linear-regression
methodology with h(z) = €® or an approximate ML methodology with
h(z) = (1+e*)~! ignoring the sampling errors ey in (2). These estimators
will then be substituted into modified ‘EBLUP’ small-area estimators (in
the terminology of Prasad-Rao 1998 and Datta-Lahiri 1997). There are two
separate cases: first, where the estimate of parameter ¥, in PSU £k is based
on no sampled data in the PSU, but only on the population-wide estimators
(%0, 41, 62) and the known predictor variable Xj; and second, where Uy

in PSU £k is estimated in terms of the population parameters and predictor
plus an observed sample of nj (with y) responses) in the k’th PSU. In
each of the two cases, the sampling variability of the fixed-effect coefficient
estimators (9, 41, 6) can and should be taken into account. This is
necessary in our context both in defining the small-area estimators themselves
and in estimating mean-squared errors (MSE’s). Many papers (see especially
Prasad-Rao 1990 and Datta-Lahiri 1997) have underscored this in connection
with MSE’s, but these papers were dealing with cases where h(z) =z in



the notation of model (1), so that the small-area estimators J) would be
linear in the observed responses yp/n; (and therefore also in the errors Uy
and coefficients (7o, 1)) and the distribution (assumed normal, centered
at the true values) of the fixed-effect coefficient estimators did not enter the
EBLUP. Here, however, especially for nonlinear h, the estimators are based
on nonlinear functions of observed response rates.

4.1 Modified EBLUP’s & Approximate Distributions

The small-area estimator for 9, should, if we knew the coefficients (7o, 71)
in model (1) exactly, be based on the random quantity ~, + 71 Xy + U and
the conditional distribution of the PSU random effect U given the observed
data. Hence, by analogy with BLUP’s, our principle of estimation is that
¥ is to be estimated by the best available approximation or estimator for
the conditional expectation

E(h(% + 1 Xk + U) ‘ (%0, 41, 6°), yg) =
E ( E<h(’Yo + 71Xy + Uk)‘ (W), i€ 5)) ‘ (%0, A1, 67), yl(c)) (8)

In the setting where there is no sample in a PSU, the conditional expectation
should instead be taken given only the parameter estimators (9o, 41, 62)-
The estimators so defined will be approximately unbiased by construction,
and the corresponding (estimated) unconditional variances are the most nat-
ural candidates for estimating MSE.

Estimators based on (8) explicitly require some approximation to the
joint distribution of U, and (9o, 41, 6%), and we adopt the following
approximation, which can be tested in subsequent simulations:

Assumption A. The £’th PSU random-effect U, is approxi-
mately conditionally independent of the estimators (%g, 41, 62)
and of (y?, i € s\{k}), given y?, and the parameter estimators
are conditionally jointly normally distributed with means equal
to some nonrandom values (the true values when model (1)-(2)
holds) and variances the same for all .



In fact, although the approximate normality does appear adequate for many
real applications such as SAIPE, the displayed conditional independence as-
sumption is suspect for the largest PSU’s, which may be influential in the
model-fitting. A correction to the assumption could be imagined, but in light
of the simulation results to be reported below may not be necessary, since
the modified EBLUP small-area estimators seem extremely accurate for large
PSU’s, and since the largest PSU’s are by design chosen to be sampled.

We apply Assumption A separately for the two models we want to com-
pare. Consider first the case of model (3) — motivated by (1)-(2) with
h(z) = e®* — and denote y; = log(y?/n;). This model is a Fay-Herriot
(1979) model as in Prasad-Rao (1990, Sec. 2.3), within which the conditional
law of U, given vy is

2 2
o 0V /N,
LU, = N _— — — v X , —
( k‘yk) ( 0% + v /ny, (g =0 = 11 &%) 0% + v /1y )
Then, by our approximate assumption A, we find that conditionally given
the sampled value ¥, and the parameter estimators,

E(’AYO + %Xk + Ui | (%0, Y1 &2); yk) ~ N(% +n X +
o? o?v,
o 4 A
PR (e — Fo — 41 Xk) )

(9)

nEo? + v,

If the conditional law given only v but not given the parameter estimators,
were desired, then the estimators 4 in the normal mean would be replaced
by their true values, and the variance in the last normal distribution would

increase by
s (1Y 1
ap = ( X, Yy X,

where Y, denotes the (large-sample) variance-covariance matrix for the
fixed-effect estimators 4p, 41. In the case of the linear model for log-counts,
the approximate conditional law given the parameter estimators is

L(’s/o +’$/1Xk; + Uk ‘ (’3/0, ’3/1, 6’2)) ~ N(’Y()-i-’)/le, 0'2) (10)

Note that the conditional expectation which will be calculated in applying
(8) in this setting has the form of the moment generating function for the
normal distribution:

E(ea+ﬁz) — ea+ﬁ2T2/2 ’ 7~ /\/’(0,7’2) (11)



Next we apply assumption A in the model (4)-(5). In this setting, we have
observations yp ~ Binom(ny, m;) with 7, = (14+exp(—v%—nXe—Ux)) 1),
and the conditional density of U, given (%, %1, 62) and y2 = m becomes
approximately proportional to

exp(m(yo + 11Xy +u) — u2/(20%) /(1 + @oFnXermm (19)
and again 4y + 91X, is approximately independent of U, with
Yo+ Xk ~ N(’Yo+’Y1Xk, (li) (13)

The expectations which we will calculate in this model involve two functions
which we now define:

z+bz
9(@,6) = [ T 9(2)dz (14)
and em(z—l—bz)
Amonb) = [ Gy $(e) 0z (15)

where ¢(-) denotes the standard normal density. Note that by defini-
tion g¢g(z,b) = A(x,1,1,b), and the function (15) satisfies the recursion
Az,m,n+1,0) + Alx,m+1,n+1,b) = A(xz,m,n,b).

Note also that if X ~ N(a, 3?), then

eX—f—bu eoz—l—'ln/bz—l—ﬂ2
Eg(X,b) = E/maﬂ(u) du = / Y v ¢(v) dv

= gla, \/0* + 5?) (16)

In the mixed logistic regression setting, the frequentist EBLUP small-
area estimators are essentially like those of Booth and Hobert (1998), who
also give an approach (slightly different from the one in Section 4.4 below)
to the estimation of mean-squared errors. A Bayesian approach to small-

area estimation for generalized-linear unit-level models is given by Ghosh et
al. (1998).
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4.2 Non-sampled PSU’s

For non-sampled PSU’s, the estimator would be

O = B (h(y +mXe+Us) | (Go.5,6%))

where the expectation is taken over the errors Uy but not over the parameter
estimators, and the estimator E of the expectation will have parameter-
estimators (4o, 91, 62) substituted and will be bias-corrected as far as possi-
ble. In the setting of the Fay-Herriot model(3) with h(x) = e®, we obtain via
assumption A, (10), and (11) after substituting estimators for the unknown
parameters, that

A . . 1. 1.
Uy = exp(% + N Xi + 502 - §ai) (17)

Here and in what follows, we assume that the estimation-algorithm for fixed-
effect coefficients automatically produces an estimator XAL, for the resulting
covariance matrix of coefficient-estimators. For simplicity of notation from
now on, we define

!
1 & 1
=Y%+1Xe » % =%+nXs , @G = b
Tk Yo T 1Ak Tk Yo T 1Ak k (Xk> 7<Xk>
The term a;/2 in (17) is a bias-correction, since according to (11),

E( exp(§o + %1 Xk — % — N Xk)) ~ /2

The bias-corrected small-area estimator (conditional on estimated parame-
ters) for the model (4)-(5) becomes, after applying (8) along with (13) and
(16), using the notation (14) and substituting parameter estimators,

Ik = g(ie, Vo2 —at) = a(fo + 51Xk, /67— aF) (18)

Of course, if the quantity 62 — a; in the square-roots were negative, it
should be understood to be replaced by 0, and g(-,0) is simply the logistic
distribution function.
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4.3 Sampled PSU’s

In the case of a small-area estimator for a PSU k£ from which a sample has
been drawn, we make direct use of (8), assumption A, and the conditional
distributions described in Section 4.1. First, in the Fay-Herriot model (1)
with h(z) = €, we apply the conditional distribution (9) along with (11)
to obtain after substituting parameter estimators (and correcting for bias)

5’2 " 1 l 52’06 (&kve/nk)2 ] )

Tt ufmy T Ty

N 02 + Ve (62 +Ue/nk)2
(19)

1§k = exp (ﬁk +

Finally, using the mixed logistic regression model (4)-(5) and h(z) =e*/(1+
e”), we obtain for (8) via the approximate distributions in Section 4.1

E(h(’AYo + %X + Uy) ‘ (%0, 1, 62), y/(c)) ~

exp(yy (7 + 02)) exp(yp (e + 02))
/ (1 + etrom)m h(M + 02) dz/ / (1 + e tor)me ¢(2) dz

which is equal by definition to

A(ﬁa y12+ 1) nlc+ 1) U)/A(ﬁ: yl(c)a Nk, U)

However, it is not at all clear that a simple bias-correction would be available
for this ratio. Thus we obtain, for the mixed logistic unit-level model

A 5 = M+l m+1,0)
E(h(Fo + 51Xk +Un) | Go, 31, 6°), 97 ) = Op = —— 7 ’
((’Yo-l-’h k+ k)‘(%) f, 67) yk) k A7, yp, i, 0)

(20)

4.4 Estimation of MSE’s

Applications of small-area estimators O usually require standard errors as
well as point estimates, and the ideas above lend themselves readily to the
approximation and estimation of mean-squared errors. The key idea is that
the proposed estimators 1§k have the form

e = ts(yo/mk, i, 6%, 87)  or  tu(ig, 67, az)
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respectively for sampled and non-sampled PSU’s, where t,(-) and t,(-) are
smooth, nonrandom, known functions given in formulas (17) and (19) for the
aggregated linear model and (18) and (20) for the mixed logistic unit-level
model. The estimators are constructed to be approximately unbiased, when
parameters are replaced by their correct values and PSU sample averages are
replaced by the PSU averages, which means in particular that for each model
used we take

0

ts( z_z » Nk 02, 0) ~ E (h(’ﬂk + Uy) ‘yg) (ks 027 0) ~ E (h(n + Up))

where recall that o

Uy = ]}\/7_]; = h(nk + Uk)

From this starting point, maintaining Assumption A and the requirement
that sample sizes are large enough so that parameter estimators are approxi-
mately jointly normal with small variances, we ignore the randomness in ay
and apply the delta-method to estimate MSE’s. We develop MSE’s in detail
for the case of non-sampled PSU’s, with the convention that t,,; is the
derivative of the function ¢,(-) with respect to its r’th argument, evaluated
at (mx, 02, 0) :

E(), —9)? = Var (h(ny +Uy)) +

R R 2
E (e = 1) tu e + (6% = 0%) tuzp + 0} tua)

The resulting MSE estimators, obtained by substituting parameter-estimators
on the right-hand side after dropping the %,3; terms, are respectively

— L. R 1 —
MSE() = e {( = 1) + @ + o Var(o?) | (21)
in applying (17), where t,(n,0?%,a*) = exp(n + (6? — a?)/2) and we have

used the fact that 7, and 62 are approximately uncorrelated in the linear
model, along with (11) for a =0, 8 =2, Z = 2Uj, and

. _ M +Uk o 2

1+ emwtUs
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for the PSU estimator (18), for which t,(n,0? a*) = g(n, Vo — a?). Within
(22), we would approximate ¢(7g, 6) by ¥ or V.

A bias-corrected form of (21) is given by
MSE(J)) = exp (2 — 2a;) - (exp(26® — 2Var(5?)) —

exp(6? — Var(6”)/2) - [1 - & — ¢ Var(s?)]) (23)

4.5 Robust Standard Errors

In practice, the models used to generate Small-Area Estimates cannot be
expected to fit very closely. Therefore, in justifying the error structure of
estimation formulas, any use of the assumption that models are properly
specified is suspect. The parameters (g, 71, 02) which are being estimated
will in any case have a meaningful interpretation as the parameters in the
best-fitting model to the complete PSU data Y?/N;, but large-sample rea-
soning based upon likelihood methods can lead to incorrect conclusions when
the models are actually misspecified (White 1982). However, even in such
cases the parameter estimators, which can be viewed as ‘M-estimators’, will
often have large-sample approximately normal distributions with variances
which can be found via a famous ‘sandwich formula’ originally due to Huber
and explained in the exposition of White (1982).

Although robust standard errors are desirable, we do not pursue methods
to obtain them here, since the effect of the parameters ¥, and a; on
the performance of small-area estimators in the parameter- and sample-size
ranges of the simulations below appear rather small.
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5 Simulation Methodology & Results

In this section, we describe in detail a simulation experiment (without PSU
or unit weighting) designed to compare small-area estimates based upon the
SAIPE methodology for county estimates (involving mixed-effect linear mod-
els for log poverty rates, omitting sampled counties showing zero counts of
poor school-age children) versus individual-level models with approximate
maximum likelihood parameter estimates for a mixed logistic model.

We began by fixing once and for all the numbers n;, a set of 1488
PSU sample-sizes corresponding to the (non-zero) numbers sampled by the
Current Population Survey in counties over the 3-year period 1992-94 (sup-
plied by Matt Kramer in the file smpsiz.3yr). The distribution of numbers
sampled within PSU’s is very skewed, ranging from 1 to 2226, with 34% of
PSU’s containing 10 or fewer sampled, and 57% containing 20 or fewer. The
overall PSU sizes N; play a direct role only in the estimation of w, = v,
but are regarded as fixed at some factor (initially 2000 — approximately the
reciprocal sampling fraction of the CPS) multiplied by the numbers sampled
within PSU.

The single predictor variable X; which we use is meant to mimic the
IRS-supplied estimate of log numbers of poor children in county (column
IRSPr5-17 from the predictor-variable file X93.SAIPE, also supplied by Matt
Kramer). This predictor column has been simulated here, at most once for
each Table based on 100 simulation iterations, as a column of independent
N (7.33, 1.69) random variables. (The 7.33 is actually replaced by 0, since
an intercept term is always fitted.) However, to prevent unrealistically large
variation in response fractions for the PSU’s with very large samples (those
> 220), we made the predictors X; for these PSU’s much smaller: in Tables
1 to 9, all of which corresponded to the same column of X;, we fixed the X;
values for these large-sample PSU’s to be 0; in later Tables, we multiplied
by 0.25 the simulated X; values corresponding to the 30 indices 7 with

In each simulation iteration, individual units j within PSU i have binary
responses y;; simulated as

Yji ~ Binom (1, 7Ti) . T, = h(’)/() +’)/1XZ + Uz) (24)

where the function h(z) (equal to €®/(1+ e”) unless indicated otherwise)
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and parameters (o, 71, 02) are fixed separately within each simulation and
U; ~ N(0,0%). The initial choice of these parameters, was:

e To get 5 to 40 % in poverty, with overall rate of the order of 20%, we
first take intercept -y = log(0.2) , or approximately — 1.6.

e Then, with coefficient ; = 0.9, the overall response rate is 0.22.

Initially, and throughout this Section, the simulations took all sampling
weights identically equal to 1.

For each iteration of each simulation, estimators of g, 71, 02 are calcu-
lated in the two ways described in the Analysis Methods section above, using
Splus software, except that the mixed logistic estimates are themselves cal-

culated in two ways: first via the nonlinear mixed-effect regression model
described in Slud (1998)

0 [ enitU; .
. Y; . eliTVi Di
= ] = arcsin + 25
aresin ( n,) ( 1+ e"i+Ui> 2./n; (25)

where the variables p; are standard normal and independent across PSU’s,
and then for comparison using the maximizer of the Laplace-method approx-
imation to mixed logistic log-likelihood, as described in detail in Slud (2000).
Next the small-area estimators 1§Z described in Section 4 are calculated. For
each simulation iteration, the retained results include for each of the three
sets of parameter estimators:

e the estimates for (o, 71, 02);

e empirical average biases and Mean-Squared Errors for small-area esti-
mators by PSU, grouped into the 5 categories defined by number n;
sampled respectively in the intervals (0, 10], (10, 25], (25, 75], (75,220],
and (220, 2500].

The respective numbers of PSU’s with number sampled falling into these
intervals are: 506, 448, 398, 106, and 30.

There is one further set of estimators which has been used to generate
results in the aggregated linear model (3) to reflect the fact that SATPE small-
area estimates have on occasion proceeded from an assumption that o? was
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known and v, estimated, by ML from the same Fay-Herriot model (3). The
value 02 = 02 used in the simulations was estimated as the mean-squared
residual error from the regression of log(Y’/N;) on 1, X;. The estimators
generated using the Fay-Herriot fit with o2 estimated and v, = w, known
are designated by column-headers ImfitA; those with ¢? known and v,
estimated, by headers ImfitB. The column-headers for estimators within the
mixed-logistic unit-level model are: nlmfit when parameters are estimated
using the transformed nonlinear regression model (25), and glmfit when
parameters are estimated by maximizing the approximate mixed-logistic log-
likelihood of Slud (2000).

Throughout the simulations reported below, the estimated PSU response
rates U estimated from the nonlinear models were necessarily given as
probabilities, and therefore lay between 0 and 1. However, the estimators
derived from the linear (Fay-Herriot) models for log response rate did occa-
sionally turn out to be greater than 1, either because of imprecision of the
substituted parameter estimators or because of excessively large bias cor-
rections. In those cases, it was important to replace those estimators by
1 to maintain a fair comparison between the Mean-squared Errors of the
small-area-estimators derived from the linear and nonlinear models.

Throughout the simulations below, the quantities A appearing in formula
(20) were calculated via a Laplace-method approximation in groups 3-5 and
a very accurate series approximation of Crouch and Spiegelman in Groups
1-2. All of these approximate values were documented in Slud (2000) to be
accurate to no less than one part in 105.

5.1 Simulation Results — Single Predictor

The Tables summarize the results of simulation experiments of 100 itera-
tions each, with parameters specified as above. In all of these simulations,
the reported bias and MSE numbers are empirical and do not yet reflect
attempts to validate theoretical estimators of MSE. The simulations of this
Section are all based upon unweighted analyses, and upon the same set of
scalar predictors X;, with two exceptions: Tables 5 and 7 are based on a
different simulated predictor-column X; .

Note that at present, no separate standard error estimates for parameter
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estimators have been generated under the approximate mixed-logistic ML
estimation method.

The first set of three simulations, with results in Tables 1 to 3, relate
to (7, 11, 0) = (—1.6, 0.9, 0.3). Table 1 shows the behavior of estimators
based on formulas (17) and (18). These should be interpreted as follows:
imagine that, corresponding to each of the 1488 PSU’s which were sampled
in each simulation iteration, there is another PSU with the same size and
predictor value X;, from which no sample was drawn. The small-area
estimators ¥; would be those of (17) and (18), and Simulation 1 reflects
their empirical performance. The second simulation shows the performance
of modified-EBLUP estimators (19) and (20), and the third simulation is
exactly like the second except that in the fitting of all models the predictor
covariates X; (plus intercept, with coefficients i, 79) used in parameter
estimation are augmented by X? (with a third fixed-effect coefficient ~,).

Table 1 exhibits not only the groupwise averaged Mean-Squared Errors
for the PSU response-rate estimators, but also the groupwise-average biases.
However, these biases do not appear very informative, and we omit them
from all later tables.
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TABLE 1. SIMULATED PERFORMANCE OF SMALL-AREA ESTIMATORS FOR
NoON-SAMPLED PSU'’s (¢ = 0.3), VIA FORMULAS (17), (18). Average estimated
w* in lmfitA is 9.916; average estimated o2 in lmfitB is 0.0802.

*

nlmfit glmfit ImfitA ImfitB

b0 -1.67118 -1.59886 -1.84895 -1.83096

bl 0.95364 0.89725 0.63384 0.60788
sigP  0.25849  0.29991  0.15813  1.73853
Varb0  0.00044 NA 0.00028 0.00018
Varbl  0.00031 NA 0.00020 0.00012
Biasl -0.00558 -0.00038 -0.00081  0.00382
MSE1 0.00231 0.00223 0.00389  0.00366
Bias2 -0.00599 0.00013 -0.00417 0.00104
MSE2 0.00217 0.00210 0.00333  0.00316
Bias3 -0.00521 0.00016 -0.00023  0.00420
MSE3 0.00237  0.00229  0.00403  0.00370
Bias4 -0.00475 0.00077 -0.00237  0.00244
MSE4 0.00257 0.00250 0.00375  0.00360
Bias5 -0.01154 -0.00053 -0.01388 -0.00650
MSE5 0.00195 0.00183  0.00201  0.00187

TABLE 2. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTIiMA-
TORS FOR SAMPLED PSU’S (¢ = 0.3), VIA FORMULAS (19), (20) WITH SINGLE
PREDICTOR VARIABLE X;. Average estimated w* in lmfitA is 9.983; average
estimated o2 in ImfitB is 0.0800.

nlmfit glmfit ImfitA ImfitB

b0 -1.67672 -1.60370 -1.85122 -1.83350

bl 0.95512 0.89790 0.63374  0.60749
sigP  0.25345 0.29784  0.15718  1.73772
Varb0  0.00044 NA 0.00028 0.00018
Varbl  0.00031 NA  0.00020 0.00012
MSE1 0.00232 0.00224 0.00378  0.00335
MSE2 0.00224 0.00216 0.00318  0.00259
MSE3 0.00142 0.00133 0.00334 0.00194
MSE4  0.00073  0.00070  0.00237  0.00085
MSE5  0.00030 0.00029  0.00061  0.00030
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TABLE 3. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP ESTIMA-
TORS FOR SAMPLED PSU’s (o =0.3), VIA FORMULAS (19), (20) WITH PARAM-
ETERS FITTED USING PREDICTOR VARIABLES X;, X?. Average estimated w*
in lmfitA is 9.984; average estimated o2 in ImfitB is 0.0624.

nlmfit glmfit ImfitA ImfitB

b0 -1.65396 -1.60134 -1.81515 -1.80562
bl 0.98410 0.89819 0.64581 0.62563
b2 -0.02335 0.00235 -0.02596 -0.02237
sigP  0.24810 0.29768  0.14323  1.88163

Varb0  0.00051 NA  0.00037 0.00025
Varbl  0.00052 NA 0.00021 0.00013
Varb2  0.00014 NA  0.00006 0.00004

MSE1 0.00236  0.00229  0.00315  0.00295
MSE2 0.00221  0.00215 0.00276  0.00232
MSE3 0.00141 0.00133  0.00255 0.00173
MSE4  0.00077  0.00072  0.00200  0.00082
MSE5 0.00029  0.00029  0.00061  0.00029

The results in Tables 1-3 indicate very satisfactory performance by the es-
timators for the (properly specified) unit-level model, except that the nonlinear-
regression seems to show persistent small biases in the population-wide pa-
rameter estimators in and underestimation of the PSU cluster variance com-
ponent. These biases are not present in the approximate mixed-logistic ML
methods, and appear to account for the slightly superior performance of its
small-area estimates.

Not much emerges by examining the biases within groups of PSU’s in
the Tables, but the MSE’s are very interesting and revealing. The MSE’s
for 9) in nonsampled PSU’s are of the order of 0.002 across the board
in the methods based on the unit-level model, but tend to be larger by a
factor of roughly 1.5 (in PSU groups 1, 2, 3, and 4) in the linear-model
methods, except for very large PSU’s (Group 5) in which the linear models
do about as well as the nonlniear. As would be expected, in Tables 2 and 3
corresponding to EBLUP’s in sampled PSU’s, the MSE’s are much smaller in
large PSU’s, for all methods of estimation. However, the advantage of using
the properly specified unit-level model over the analysis in lmfit A becomes
especially pronounced in the larger PSU’s (groups 3 to 5). In groups 1,
2 and 3 (PSU samples of 25 or less), the MSE’s for lmfitB EBLUPs are
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from 1.3 to 1.5 times worse than for the unit-level logistic model, although
the nonlinear-model results and those of lmfitB are quite comparable in
the larger-PSU groups (4 and 5). But very strikingly, when the quadratic
predictor X? is used in the linear-model fitting, the MSE’s for ImfitB (with
the properly chosen value for o taken as known) are nearly as good as for
the mixed-logistic analyses based on the single predictor Xj.

A technical aspect of the estimation methodology, evaluated and checked
by further runs in the setting of Tables 1 to 3, was that the effect of omitting
the terms aj in the EBLUP estimators of Table 2 is completely negligible
to the accuracy shown: in only a few entries, this omission caused a change
of 1 digit in the fifth decimal place. The same assertion was checked to hold
also for all of the other EBLUP simulations reported in this sub-section.

The next three Tables are analogous to the first three, the only difference
being that a smaller cluster standard deviation o = 0.2 replaces the pre-
vious value of 0.3. One purpose of reducing this parameter was to mimic
the realistic (for SAIPE) setting where the differences between (linear-model)
small-area estimators for non-sampled PSU’s and EBLUP estimators for sam-
pled PSU’s would be very small for small PSU’s. That is, in the small PSU’s
it is found that the linear-model estimators for sampled PSU’s place hardly
any weight on the direct-sample estimators y; within formula (19), and this
is true also in the comparison of MSE’s in the lmfit columns of Tables 4, 5.

TABLE 4. SIMULATED PERFORMANCE OF SMALL-AREA ESTIMATORS FOR
NoON-SAMPLED PSU’s (0 = 0.2), VIA FORMULAS (17), (18). Average estimated

*

w* in ImfitA is 9.722; average estimated o2 in lmfitB is 0.0492.

nlmfit glmfit ImfitA ImfitB

b0 -1.67454 -1.60020 -1.85158 -1.84394

bl 0.95638 0.89963 0.64481 0.62525
sigP 0.15086  0.19690  0.08275  1.87128
Varb0  0.00034 NA 0.00023 0.00016
Varbl  0.00025 NA  0.00018 0.00011
MSE1  0.00109 0.00101  0.00273  0.00252
MSE2 0.00104 0.00096 0.00219  0.00205
MSE3 0.00111 0.00103  0.00287  0.00255
MSE4 0.00119 0.00110 0.00245 0.00231
MSE5  0.00087  0.00077  0.00090  0.00083
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Again the unit-level model estimators (nlmfit and glmfit) in the no-
sample case (Table 4) uniformly outperform the linear-model estimators
(with MSE’s half as large) for all PSU groups other than 5. A similar com-
ment holds for the EBLUP estimators (Table 5) in Groups 1 to 3, beyond
which the advantage of nlmfit MSE’s versus lmfitB is only 50% in Group
4 and disappears in Group 5.

TABLE 5. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP ESTIMA-
TORS FOR SAMPLED PSU’s (o0 = 0.2), VIA FORMULAS (19), (20) WITH SINGLE
PREDICTOR VARIABLE X;. Average estimated w* in lmfitA is 9.682; average
estimated ¢? in lmfitB is 0.0487.

nlmfit glmfit ImfitA ImfitB

b0 -1.67123 -1.59672 -1.84753 -1.84029

bl  0.95647 0.89939 0.64163  0.62281
sigP  0.15017  0.19834  0.08190  1.87796
Varb0  0.00034 NA 0.00023 0.00016
Varbl  0.00025 NA 0.00018 0.00011
MSE1 0.00110 0.00103 0.00266  0.00237
MSE2 0.00103 0.00096 0.00212  0.00181
MSE3  0.00087  0.00077  0.00261  0.00159
MSE4 0.00060 0.00051  0.00210  0.00084
MSE5 0.00029 0.00024  0.00057  0.00027

Although we used formula (20) in estimating PSU response rate for the
unit-level (nonlinear) models in PSU Groups 1 and 2, in these groups the
nonlinear MSE entries are essentially identical in Tables 4 and 5. Note again
that there are dramatic differences in Groups 3 to 5 for the nlmfit and glmfit
MSE’s respectively between the Table 4 and 5 entries.

Table 6 shows that inclusion of a quadratic predictor X? makes the
linear-model limfitB estimator almost competitive with the nonlinear-model
estimators (although the lmfitB results shown here rely on the correctly
known value o?). Results for (ImfitA are also much improved by the ad-
ditional predictor, but still much worse than lmfitB.) But in Groups 1 to
3, it remains true that ImfitB has MSE’s larger by at least half than either
nlmfit or glmfit.
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TABLE 6. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTIMA-
TORS FOR SAMPLED PSU’s (o =0.2), VIA FORMULAS (19), (20) WITH PARAM-
ETERS FITTED USING PREDICTOR VARIABLES X;, X?. Average estimated w*
in ImfitA is 9.662; average estimated o2 in lmfitB is 0.0309.

nlmfit glmfit ImfitA ImfitB

b0 -1.65289 -1.59774 -1.81262 -1.81203
bl 0.98907 0.89913 0.65481 0.64262
b2 -0.02717 0.00019 -0.02890 -0.02560
sigP  0.15008 0.19832 0.07130 2.03317

Varb0  0.00039 NA  0.00030 0.00021
Varbl  0.00046 NA  0.00018 0.00011
Varb2  0.00012 NA  0.00005 0.00003

MSE1 0.00111 0.00104 0.00187  0.00183
MSE2 0.00104 0.00098 0.00162 0.00149
MSE3  0.00087  0.00078  0.00157  0.00123
MSE4 0.00063  0.00053  0.00160  0.00076
MSE5 0.00026  0.00023  0.00052  0.00024

After comparing the foregoing Tables, for unweighted sample-survey data
simulated according to the mixed logistic model, we arrive at the tenta-
tive conclusion that the best available small-area estimator based upon the
generalized-linear unit-level model would be the glmfit estimator, which
uses direct-sample data in a PSU via the EBLUP formula (20). The best
competitor using an aggregated log-linear model is the ImfitB estimator in-
cluding a quadratic predictor, at least when the assumption of known o2 is

approximately correct.

We proceed next to consider the performance of the same small-area
estimators upon simulations of data from models other than the unit-level
mixed-effect logistic. Tables 7 to 9 concern the model (24) with h(z) = €*
with the particular parameter choices vy = —1.9, v, = 0.3, var(U;) = (0.2)%.
In view of the discussion surrounding equation (7), this model is designed to
show the aggregated linear model (3) in its most favorable light.

Table 7 shows only a tiny advantage in MSE for the lmfit-based small-
area estimators over those based on the nlmfit, glmfit mixed-effect logistic
analyses. Table 8 does show an advantage in MSE for Groups 1 and 2 of the
linear-model small-area estimators over those based on the (misspecified)
mixed-effect logistic. In Table 8, where all models use only X; as predictor,
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the advantage (say of ImfitB over glmfit) is 5% in Group 1, 10% in
Group 2, but disappears for PSU’s with sample-size larger than 25.

TABLE 7. SIMULATED PERFORMANCE OF SMALL-AREA ESTIMATORS FOR
NoN-SAMPLED PSU’S (0 = 0.2, h = ezp), VIA FORMULAS (17), (18) WITH
PARAMETERS FITTED USING PREDICTOR VARIABLE X;. Average estimated w*
in ImfitA is 6.380; average estimated o2 in lmfitB is 0.0402.

nlmfit glmfit ImfitA ImfitB

b0 -1.78671 -1.72407 -1.92191 -1.92024

bl 0.39956 0.37167 0.28844  0.28705
sigP  0.18698  0.25215  0.19419  2.12572
Varb0  0.00034 NA 0.00021 0.00016
Varbl  0.00022 NA  0.00013 0.00011
MSE1 0.00150 0.00146 0.00145 0.00145
MSE2 0.00137 0.00132 0.00130 0.00130
MSE3 0.00138 0.00132 0.00135 0.00135
MSE4 0.00147 0.00143 0.00145 0.00145
MSE5 0.00096 0.00094 0.00093  0.00093

TABLE 8. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP ESTIMA-
TORS FOR SAMPLED PSU’s (0 = 0.2, h = ezp), VIA FORMULAS (19), (20)
WITH PARAMETERS FITTED USING PREDICTOR VARIABLE X;. Average esti-
mated w* in ImfitA is 6.351; average estimated o2 in lmfitB is 0.0403.

nlmfit glmfit ImfitA ImfitB

b0 -1.78508 -1.72216 -1.91952 -1.91768

bl 0.40071 0.37215 0.28835 0.28672
sigP  0.18056  0.24719  0.18968  2.11283
Varb0  0.00034 NA  0.00020 0.00016
Varbl  0.00022 NA 0.00013 0.00010
MSE1 0.00153 0.00148 0.00143 0.00141
MSE2 0.00139 0.00135 0.00121  0.00119
MSE3 0.00106 0.00093 0.00108 0.00103
MSE4 0.00065 0.00055 0.00067  0.00060
MSE5 0.00025 0.00023 0.00024 0.00023

Remarkably, there are no other cases where the linear models perform better
than the nonlinear: at least in this simulation, the misspecified linear-model
fit due to the use of PSU-aggregated data which are discarded in those PSU’s
with zero response is no better than the fit due to an incorrectly specified
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h function (logistic rather than exponential) in the unit-level model. In
particular, when the quadratic predictor X? is included (Table 9), ImfitB
is slightly better than glmfit in Group 2 and slightly worse in Group 3,
but linear and nonlinear model fits are virtually equivalent from the vantage
point of groupwise MSE.

TABLE 9. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTiMA-
TORS FOR SAMPLED PSU’s (¢ = 0.2, h = ezp), VIA FORMULAS (17), (18)
WITH PARAMETERS FITTED USING PREDICTOR VARIABLES X;, X2.  Average
estimated w* in lmfitA is 6.380; average estimated o? in lmfitB is 0.0404.

nlmfit glmfit ImfitA ImfitB

b0 -1.78908 -1.73727 -1.92452 -1.92354
bl 0.39424 0.36276  0.28676  0.28499
b2 0.00480 0.01195 0.00403  0.00452
sigP  0.18184 0.24923 0.18994 2.11611

Varb0  0.00045 NA  0.00029 0.00023
Varbl  0.00026 NA  0.00013 0.00011
Varb2  0.00007 NA 0.00004 0.00003

MSE1 0.00149 0.00142 0.00143 0.00141
MSE2 0.00135 0.00128 0.00121  0.00118
MSE3  0.00103  0.00090 0.00104 0.00099
MSE4 0.00063 0.00054 0.00065  0.00060
MSE5 0.00024 0.00022  0.00023  0.00022

A tentative conclusion, well supported in all simulations done so far, is
that using the glmfit-based small-area estimators in place of ImfitB can
help considerably more than it is likely to hurt due to misspecification of the
mixed logistic unit-level model. But other sorts of misspecifications remain
to be explored in further simulations.

5.2 Displaying Results by Squared Relative Errors
Since results concerning mean-squared errors of small area estimators are
often presented in terms of coefficients of variation (CV’s), we calculated the

results of the EBLUP simulations of Tables 2, 5, and 8 also by averaging
squared relative errors

(O — 9)2/92  inplaceof (D — )2 (26)
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over PSU sample-size groups. Just for purposes of comparison with these
respective Tables, we display the results here. As before, all simulations
were done with 100 iterations.

TABLE 10. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP ESTIMA-
TORS FOR SAMPLED PSU’s (¢ = 0.3), VIA FORMULAS (19), (20) WITH SINGLE
PREDICTOR VARIABLE X;. Average estimated w* in ImfitA is 9.983; average
estimated o2 in ImfitB is 0.0800. MSE’s are now given as groupwise averages
of squared relative errors (26).

nlmfit glmfit ImfitA ImfitB

b0 -1.6733 -1.60048 -1.84859 -1.83125

bl 0.95745 0.90037 0.63601 0.60898
sigP  0.25266  0.29790  0.15210 1.73669
MSE1 0.06302 0.07617 0.12743  0.18865
MSE2 0.06291 0.07664 0.12875  0.19667
MSE3 0.04435 0.05069 0.10435 0.12872
MSE4 0.02420 0.02531  0.05482  0.04550
MSE5 0.01120 0.01142 0.01880 0.01162

TABLE 11. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTIMA-
TORS FOR SAMPLED PSU’s (o0 = 0.2), VIA FORMULAS (19), (20) WITH SINGLE
PREDICTOR VARIABLE X;. Average estimated w* in lmfitA is 9.682; average
estimated o2 in lmfitB is 0.0487. MSE’s are now given as groupwise averages
of squared relative errors (26).

nlmfit glmfit ImfitA ImfitB

b0 -1.67123 -1.59672 -1.84753 -1.84029

bl  0.95647 0.89939 0.64163 0.62281
sigP  0.15017 0.19834 0.08190 1.87796
MSE1 0.03080 0.03134 0.07025 0.09566
MSE2 0.02981 0.03004 0.07171  0.10395
MSE3 0.02582  0.02540  0.06159  0.07606
MSE4 0.01625 0.01478  0.04195 0.03554
MSE5 0.00920 0.00865 0.01667  0.00949

The results are now different in detail than they were in Tables 2, 5, and
8. The groupwise averaged EBLUP MSE’s are now not smaller in Group 2
than in Group 1, but are again monotonically decreasing as one moves from
Group 2 (where PSU sample size was 11 to 25) to Groups 4 (where sample size
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was 76 to 220) and 5. However, the general pattern of accuracy of the nlmfit
and glmfit PSU response estimators is as before, with one glaring exception:
as is probably due to the directions of bias in its parameter estimators the
nlmfit MSE’s (26) are now a bit better than those for glmfit in Groups 1
and 2, in all three Tables.

TABLE 12. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTiMA-
TORS FOR SAMPLED PSU’S (0 = 0.2, h = ezp), VIA FORMULAS (19), (20) WITH
PARAMETERS FITTED USING PREDICTOR VARIABLE X;. Average estimated w*
in lmfitA is 6.351; average estimated ¢? in ImfitB is 0.0403. MSE’s are now
given as groupwise averages of squared relative errors (26).

nlmfit glmfit ImfitA ImfitB

b0 -1.78508 -1.72216 -1.91952 -1.91768

bl 0.40071 0.37215 0.28835 0.28672
sigP  0.18056  0.24719  0.18968  2.11283
MSE1 0.04369 0.04759  0.04478  0.04568
MSE2 0.04281 0.04697 0.04118 0.04186
MSE3 0.03324 0.03354 0.03358  0.03446
MSE4 0.02170 0.02027  0.02108  0.02074
MSE5 0.01129 0.01091 0.01067  0.01058

5.3 Simulations with More Than One Predictor

Several simulation experiments were also conducted with multiple predic-
tor columns. First, we display tables 13 and 14 respectively for small-area
estimators in nonsampled PSU’s and for EBLUP’s, based upon simulated
data with 4 simulated independent predictor columns (the same for all 100
simulation iterations). All columns were simulated as N(0,1.3%) with-
out downweighting in the largest PSU-sample group. In the simulation, the
fixed-effect intercept was —1.5; the vector of fixed-effect coefficients was
(0.5, 0.4, 0.2, 0.1); and the random PSU-effect standard deviation was 0.2.
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TABLE 13. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP ESsTIMA-
TORS FOR NON-SAMPLED PSU’s (¢ = 0.2), VIA FORMULAS (17), (18) WITH
FOUR UNCORRELATED PREDICTOR VARIABLES AND FIXED-EFFECT COEFFICIENTS
(=1.5, 0.5, 0.4, 0.2, 0.1). Average w* inlmfitA is 6.500, o? inlmfitB 0.0317.

nlmfit glmfit ImfitA ImfitB

b0 -1.55696 -1.50065 -1.77326 -1.77025
bl 0.52600 0.49912 0.37963  0.37570
b2 0.41782 0.40066 0.30454 0.30138
b3  0.20943 0.19844 0.14788  (.14598
b4 0.10395 0.10067 0.07010  0.06989
sigP 0.13289  0.19739  0.15052  1.95765

Varb0  0.00029 NA  0.00019 0.00014
Varbl  0.00018 NA 0.00012 0.00008
Varb2  0.00017 NA 0.00012  0.00009
Varb3  0.00015 NA 0.00011  0.00008
Varb4  0.00015 NA  0.00012  0.00008

MSE1 0.00118 0.00113  0.00208 0.00203
MSE2 0.00118 0.00112 0.00191 0.00184
MSE3 0.00113 0.00107  0.00218 0.00211
MSE4 0.00112 0.00106  0.00248  0.00240
MSE5 0.00100 0.00097  0.00115 0.00114

These Tables show groupwise MSE’s at least 70% larger for Groups 1-
4 (corresponding to PSU sample-size of 75 or less) in the linear-model fits
as opposed to the unit-level nlmfit and glmfit. This effect appears even
stronger than in the single-predictor tables. The severe underestimation of
PSU random-effect variance in nlmfit (which produced an estimate of 0.133
for the standard deviation which was actually 0.2) caused only slightly
worse MSE performance for nlmfit versus glmfit. On the other hand, for
the same reason, when squared relative errors were averaged groupwise (as
in (26, not shown), the PSU response-rate estimators were a bit (5%-10%)
better for nlmfit than for glmfit in all groups, but both gave consistently
better relative-error MSE’s by about 30% than the lmfit methods.
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TABLE 14. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTI-
MATORS FOR SAMPLED PSU’s (¢ = 0.2), VIA FORMULAS (19), (20) wWITH
FOUR UNCORRELATED PREDICTOR VARIABLES AND FIXED-EFFECT COEFFICIENTS
(=1.5, 0.5, 0.4, 0.2, 0.1). Average w* inlmfitA is 6.457, o2 in ImfitB 0.0318.

nlmfit glmfit ImfitA ImfitB

b0 -1.55494 -1.49871 -1.77061 -1.76717
bl 0.52544 0.49919 0.37826  0.37403
b2 0.41856 0.40123 0.30253  0.29912
b3  0.20963 0.19906 0.14825  0.14593
b4  0.10668 0.10299 0.07161  0.07130
sigP  0.13384 0.19628 0.14996 1.93626

Varb0  0.00029 NA 0.00018 0.00013
Varbl  0.00017 NA 0.00011  0.00008
Varb2  0.00017 NA 0.00012 0.00009
Varb3  0.00015 NA  0.00011  0.00008
Varb4  0.00015 NA  0.00011  0.00008

MSE1 0.00123 0.00118 0.00206  0.00195
MSE2 0.00117 0.00112 0.00168 0.00151
MSE3 0.00094 0.00083  0.00178  0.00152
MSE4 0.00070  0.00059  0.00128  0.00085
MSE5 0.00036  0.00029  0.00041  0.00032

Next, we display results, respectively in Tables 15, 16, and 17 for small-
area estimators in nonsampled PSU’s and for EBLUP’s, based upon simu-
lated data with 3 Normal predictor columns simulated (and then fixed for
all 100 simulation iterations) with means 0, variances 1.69, and all pairwise
correlations 0.2, without downweighting in the largest PSU-sample group.
The true fixed-effect intercept used in the simulation was — 1.5, and the
vector of fixed-effect coefficients was (0.5, 0.4, 0.2). The random PSU-effect
standard deviation used was 0.15.

The pattern of greater accuracy (in the sense of smaller ordinary MSE)
of the unit-level nonlinear models versus aggregated linear models continues
to hold here. The underestimation of PSU random effect by nlmfit con-
tinues, perhaps with slightly greater severity than in the tables based on
single-predictor data, but glmfit seems to be essentially free of bias in esti-
mating parameters when (as here) the logistic mixed-effect unit-level model
is properly specified. In the relative-error MSE counterpart of Table 15 (not
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shown), due most likely to the smaller random-effect variance o2, the rela-
tive MSE’s of the type (26) are somewhat lower for estimators based upon
glmfit versus those based upon nlmfit. The analogous comparison for the
case of sampled strata with EBLUP estimators is given in Table 16, which
displays ordinary MSE’s, and Table 17, which displays MSE’s of the type
(26). Again we find here that, except in Group 1 (the smallest PSU’s, with
samples of no more than 10), the relative-error MSE’s (26) are smaller for
method glmfit than for nlmfit.

TABLE 15. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTiMA-
TORS FOR NON-SAMPLED PSU’s (¢ = 0.15), VIA FORMULAS (17), (18) wWITH
THREE CORRELATED PREDICTOR VARIABLES AND FIXED-EFFECT COEFFICIENTS
(—1.5, 0.5, 0.4, 0.2). Average estimated w* in lmfitA is 7.023; average esti-
mated o2 in lmfitB is 0.0264.

nlmfit glmfit ImfitA ImfitB

b0 -1.55515 -1.49918 -1.78838 -1.78489

bl 0.52329 0.49981 0.37192 0.36815

b2  0.41713 0.39973  0.29575 0.29264

b3  0.20792 0.19932 0.14794  0.14537
sigP  0.07234 0.14974 0.13107  1.98377
MSE1 0.00068 0.00063 0.00204 0.00195
MSE2 0.00070 0.00065 0.00260  0.00249
MSE3 0.00064 0.00060 0.00199 0.00189
MSE4 0.00058  0.00053  0.00083  0.00081
MSE5  0.00054 0.00050  0.00202  0.00190
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TABLE 16. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP EsTI-
MATORS FOR SAMPLED PSU’s (¢ = 0.15), VIA FORMULAS (19), (20) wITH
THREE CORRELATED PREDICTOR VARIABLES AND FIXED-EFFECT COEFFICIENTS
(=1.5, 0.5, 0.4, 0.2). Average estimated w* in lmfitA is 7.068; average esti-
mated o2 in lmfitB is 0.0266.

nlmfit glmfit ImfitA ImfitB

b0 -1.55250 -1.49698 -1.78652 -1.78268

bl 0.52314 0.49985 0.37164 0.36757

b2 0.41767 0.40061 0.29542  0.29213

b3 0.20892 0.20026 0.15022 0.14692
sigP 0.06799  0.14386  0.12535 1.96749
MSE1 0.00071  0.00066  0.00205 0.00188
MSE2 0.00071  0.00066  0.00249  0.00223
MSE3  0.00061  0.00052  0.00180 0.00153
MSE4 0.00050 0.00038  0.00061 0.00052
MSE5 0.00036  0.00024  0.00092  0.00044

TABLE 17. SIMULATED PERFORMANCE OF SMALL-AREA EBLUP ESTIMA-
TORS FOR SAMPLED PSU’s (o = 0.15), VIA FORMULAS (19), (20) FOR ANOTHER
SIMULATION WITH THE SAME PREDICTORS AS IN TABLE 16, BUT WITH MSE’s
GIVEN AS GROUPWISE AVERAGES OF SQUARED RELATIVE ERRORS (26).

nlmfit glmfit ImfitA ImfitB

b0 -1.55250 -1.49698 -1.78652 -1.78268

bl 0.52314 0.49985 0.37164 0.36757

b2  0.41767 0.40061  0.29542  0.29213

b3  0.20892 0.20026  0.15022  0.14692
sigP  0.06799  0.14386 0.12535 1.96749
MSE1 0.01678 0.01693 0.02748  0.02953
MSE2 0.01601 0.01581 0.03029  0.03384
MSE3 0.01569 0.01433 0.02735  0.03056
MSE4 0.01516 0.01279  0.02145 0.02453
MSE5 0.01340 0.01031 0.01489  0.01609

6 Incorporating Sampling Weights

Since some PSU’s and population subgroups are intentionally over-sampled
in many sampling enterprises, such as SAIPE, it is important to be able to

31



incorporate the weighting scheme appropriately into model assumptions and
estimators. We do this differently in the aggregated-linear and the unit-level
logistic models. First, supposing that PSU’s ¢ are weighted by (slightly
modified inverse inclusion probabilities) w;, while the weights for selected
individual units j within the 7’th PSU are denoted wj;;. We maintain
the PSU-level aggregated model (1) as before, but it seems most natural to
replace the unweighted sample average y?/n; in (2) by the weighted sample

average
v = “Uubvi/ DR
JES; J€si
within PSU, where y;; denotes the unit-level binary response. The resulting
aggregated model, analogous to (2), is

yi =h (YY) vi = Y+ e (27)

The method of parameter estimation is based upon the sample-weighted cen-
sus likelihood idea of Binder (1983). Since PSU’s are independent according
to our superpopulation models (i.e., the cluster random effects apply only
within PSU’s), the weighted ML parameter estimators in the Fay-Herriot
model are the maximizers over (7o, 71,0?) of the Fay-Herriot model weighted
log-likelihood

1 Ve (yi — Y0 — 11X;)?
— ;{1 24 €
Qiezsw{og(a—i-ni)-i- o2 + vo/mn

Remark 1 It seems a natural idea to try to re-allocate the weight w; of
sampled PSU’s with 0 responses artificially to increase the weight of sampled
PSU’s with similar characteristics and sample sizes and low (< 10%) rates
of poor children. But the SAIPE researchers have apparently never tried this.

By contrast, the unit-level binomial-logistic model with PSU random ef-
fect, does not change at all due to sample weighting, but the parameter
estimators do. As indicated in the previous Section, we have two different
methods for estimating parameters in the mixed logistic regression unit-level
model, and we now describe the sample-weighted versions of these methods.
The first method, described in Slud (1998), is to transform the mixed-logistic
model to give (25). The underlying idea was the delta method (assuming both
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N; and n; were large), and we now apply the same idea with y/n; re-
placed by y? (which we assume is self-weighting, i.e., consistently estimates
791' = Y;O/NZ) For

et U;

di = h(ni+Ui) = 15 oniti

this yields

arcsin \/y¥ =~ arcsiny/h(n; + U;) +

with standard normal errors p;. As before, parameter estimation would
proceed by maximizing the log-likelihood within this nonlinear regression
model, but now the ¢'th sampled PSU would receive the weight w;.

(28)

2
Ljesi Wili | pi
Yjes Wili | 2

However, in the mixed nonlinear regression analysis (nlmfit columns),
existing software does not easily accommodate maximization of a stratum-
weighted sum of log-likelihoods over PSU’s, so that the modified log-likelihood
which we actually maximize in sample-weighted simulations below is:

) . )2
> log / exp ( _ Wi e w;h) (arcsin \/ﬁ — arcsin \/1; + 0u)2) é(u) du

i€s 4% jes: Wy

in place of the census-weighted log-likelihood expression, which would remove
the PSU weights w; from the exponents in the integrand and instead position
them to multiply the logarithms of the integrals.

The second method used in estimating mixed logistic model parameters
was described in Slud (1999, 2000). It involves an approximation to the
log-likelihood which can be directly weighted both within and across PSU’s.
Apart from special modifications made in PSU’s for which the response rate
is either 0 or 1, the approximation used in the unweighted case for the
7’th PSU log-likelihood is a constant plus

0 0
0 Y; 0 Yi 1 0 Yiy 2
yi log = + (ni—yi)10g< - —) - §{log(1 +y01 - 2)e% )+



(29)

9= o) Gogtm) ="
ni + y; (ni —y))o?
Denote the total weight within the ¢’th PSU by

P= Y wy,

JEsi

Then the weighted log-likelihood contribution corresponding to (29), which
would be weighted by a further factor w; and summed over sampled PSU’s
1, is

log / H (i + ou)¥ (1 — h(n; + UU))l_y]’i)wN o(u) du

JESs;

which (for PSU’s such that y? # 0, n;) is approximately

1 * w w
ni (y;" logy” + (1 —y;’) log(1 —y;)) — 5{10g(1 + iy (=) +

L (1 —y) (logit(y) — m;)? }
L+ niy? (1—yP)o?

So the effect of including sampling weights in the approximate maxi-
mum likelihood analysis for mixed-effect logistic data is essentially that the
response-rates y2/n; should be replaced by 3 and the sample-size by
Y jes; wj; within the 2’th PSU, and the log-likelihoods across PSU’s should
be combined combined using weights w;.

The EBLUP’s corresponding to the various estimation methods of this
report require only simple modifications to take account of sample weights,
after population-wide parameter estimators have been calculated:

e For nlmfit and glmfit, the EBLUP’s are estimated, in terms of the
plug-in parameter estimators g, 41, 62, using formula (20).

e For the Fay-Herriot Imfit methods, the only change required in formula
(19) is to replace yy, = log(y}/ni) by vk = log(y").
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7 Summary & Directions for Further Research

This report compares two different types of estimation methodology for
small area estimation in a two-level modeling framework allowing for lin-
ear or generalized-linear dependence of within-PSU response rates on predic-
tor variables, and also allowing for a normally distributed random PSU ef-
fect. Since measured counts in a sampling framework like that of the SAIPE
program (Citro et al. 1999) necessarily have many PSU’s showing counts
of 0, the Fay-Herriot mixed-linear-model methodology currently employed
on log-counts works with data from which such 0-count sampled PSU’s
have been deleted (essentially, treated as though they were not sampled).
We have here explored a small-area estimation methodology based upon a
generalized-linear unit-level model with PSU random effects. Simulations
clearly show that when a mixed-effect logistic model is correctly specified,
small-area EBLUP estimators based upon the approximate maximum like-
lihood parameter estimates outperform — sometimes substantially — the
Fay-Herriot methodology which uses only PSU’s with non-zero counts. This
is so even when the Fay-Herriot model is fitted with a known PSU variance
component. At least in the case of a single strong predictor variable, the ad-
vantage of the generalized-linear unit-level methodology over the Fay-Herriot
log-linear methodology is much lessened, but still present, when the latter
model is allowed to include a quadratic predictor term. In settings where
there are multiple predictors, whether or not these are highly correlated,
our simulations suggest that the advantage for unit-level generalized-linear
models becomes more pronounced than in the single-predictor case, and it is
very unclear whether the inclusion of interaction and quadratic terms in the
Fay-Herriot estimation approach could mitigate this disadvantage. Further
research is needed on these issues.

Although the effect of incorporating sample weights has not been explored
directly in the simulation studies reported here, both the Fay-Herriot SAIPE
analysis method and the method based on logistic unit-level models are im-
plemented to take account of sample weights, as described in Section 6, and
sample weighting is not expected to change any of our conclusions materially.

One theoretical element of Small-Area Estimation which still requires fur-
ther research is the prediction from data of the MSE’s of small-area GLM-
based EBLUP estimators. Although some ideas for this have been advanced
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in the present report, the necessity of including some corrections for misspec-
ified models has made this a more substantial problem, and the development
of MSE formulas has seemed less important in the present study, where the
main issue has been the comparison of the two available small-area estimation
methodologies.

It remains in future research also to explore the performance of the
mixed-logistic (or other generalized-linear unit-level mixed-effect) analysis
and small-area estimation methodology on the real SAIPE data.
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