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1. Introduction

The Census Bureau’s Small Area Income and
Poverty Estimates (SAIPE) program produces poverty
estimates for various age groups for states, counties,
and school districts. For states the age groups are 0-4,
5-17, 18-64, and 65+. The state estimates come from a
regression model with state random effects (Fay and
Herriot 1979) applied to direct state estimates from the
Current Population Survey (CPS) Annual Social and
Economic Supplement (ASEC, formerly known as the
CPS March income supplement). The models borrow
information from regression variables related to
poverty that are constructed from administrative
records data and from poverty estimates from the
previous decennial census. Estimates are identified by
the “income year” (IY), which refers to the year for
which income is reported in the ASEC.  Beginning
with  IY 2000, the CPS ASEC sample was expanded to
produce estimates of health insurance coverage for the
State Children’s Health Insurance Program. This
increased the sample size from about 60,000
households to about 98,000 households. Further
information is available on the SAIPE web site at
http://www.census.gov/hhes/www/saipe/documentati
on.html.

In recent years supplementary surveys fielded to
test data collection procedures for the American
Community Survey (ACS) have also provided state
poverty estimates. The ACS asks essentially the same
questions as the decennial census long form survey,
and is proposed to replace the long form, but with the
data collection spread continuously throughout the
decade, rather than at a single point in time.  When
fully implemented, the ACS will have a national annual
sample size of approximately 3 million addresses. The
supplementary surveys have had sample sizes of about
700,000,  significantly  larger  than  the  CPS  ASEC.
___________________________________________
Disclaimer: This report is released to inform interested
parties of ongoing research and to encourage
discussion of work in progress.  The views expressed
on statistical, methodological, technical, or operational
issues are those of the authors and not necessarily those
of the U. S. Census Bureau.

Further information on the ACS may be found at
http://www.census.gov/acs.

The ACS procedures for collecting income data
differ from those of the CPS ASEC. ACS collects
income data continuously with a reference period of the
previous 12 months (at the time income is reported)
whereas the CPS ASEC collects income data in
February–April with a reference period of the previous
calendar year. Annual ACS state estimates use data
collected over a full year, and thus involve income
reports that cover different 12 month time frames
extending over a period of nearly two years. The data
collection differences mean that the ACS results would
be expected to have some bias relative to what the CPS
ASEC is estimating. Since the CPS ASEC provides the
official direct poverty estimates at the national level,
SAIPE strives to estimate poverty as defined by the
CPS ASEC. ACS has  the advantage, though, of a
much larger sample than the CPS ASEC.

In this paper we report results of an empirical
study investigating the potential benefits to the SAIPE
state poverty models of using data from the ACS
supplementary surveys. (Benefits of using the full
production ACS data when it becomes available should
be greater due to the larger sample size planned for the
full production ACS.)  We compared results in terms of
prediction error variances from the current state
poverty ratio models with results from a bivariate
model that used data from both CPS ASEC and ACS.
We did this for both IYs 2000 and 2001 using data
from two ACS supplementary surveys: the Census
2000 Supplementary Survey (C2SS, for IY 2000), and
the 2001 Supplementary Survey (SS01, for IY 2001).
Our results suggest that use of the ACS supplementary
survey data has potential to reduce prediction error
variances from the models, but there are two
qualifications. First, the results vary over states, with
some states actually showing increased variances.
Second, we tried alternative models for using the ACS
supplementary survey data, and results varied across
the alternative models. Models that made more
restrictive assumptions yielded apparently greater
improvements in prediction error variances. The
validity of these results depends, though, on the more
restrictive model assumptions holding. Therefore, we
also examined statistical tests (chi-squared tests) of
these restrictions. The most restrictive assumptions
(such as assuming no difference between what CPS
ASEC and ACS are estimating) were rejected.



Section 2 presents the alternative models we tried
for the CPS ASEC and ACS state poverty ratios.
Section 3 contains the empirical results including
prediction error variance comparisons and results of the
chi-squared tests. The prediction error variances for our
models are posterior variances computed via a
Bayesian approach discussed in Section 2. Finally,
Section 4 summarizes our conclusions.

2. Alternative Models for State Poverty Ratios

To incorporate information from both  CPS ASEC
and ACS data we use a general bivariate regression
model with random effects. Bell (2000) discussed this
model in the context of county poverty models. Section
2.1 discusses the general bivariate model, and Section
2.2 some alternative (restricted) bivariate models, as
well as the univariate model currently used in SAIPE
production. Section 2.3 then discusses Bayesian
treatment of the models – i.e., how we obtain posterior
means and variances for the state poverty ratios.

2. 1 General Bivariate Model 

For any given year and age group, let Y1i  and  Y2i
be the true poverty ratios (number poor / population)
for state i that are being estimated by the CPS ASEC
and ACS, respectively, for i = 1,ÿ,51 (including the 50
states and the District of Columbia). Note that due to
data collection differences between the CPS ASEC and
ACS, this model assumes that Y1i … Y2i, in general. Also
let y1i and y2i be the direct sample estimated poverty
ratios for state i from the CPS ASEC and ACS,
respectively. Then we have

y1i = Y1i   + e1i

y2i = Y2i  + e2i,

where the sampling errors e1i and e2i are assumed to be
independently distributed as  N(0, vji), j = 1,2. Here the
vji are assumed known, though in reality they are
estimates of the actual sampling variances. In the case
of CPS ASEC, the direct variance estimates are
smoothed using a sampling error model (Otto and Bell
1995) to get the v1i. In the case of ACS, we use the
direct sampling variance estimates as the v2i. Finally,
we assume Cov(e1i, e2i) = 0, because the CPS ASEC
and ACS are independent samples.

Our model for the true poverty ratios is:

Y1i = α1 + xi' β1 + u1i

Y2i = α2 + xi' β2 + u2i

where

(u1i , u2i)N are independently and identically
normally distributed with means zero, with
Var(u1i) = s11 and Var(u2i) = s22, and with
Corr(u1i , u2i) = ρ, and

xi'  is a row vector of  regression variables.

The regression variables in xi' for IYs 2000 and 2001
include pseudo state poverty rates constructed from
Internal Revenue Service (IRS) tax data, tax  non-filer
ratios constructed from IRS data and state population
estimates, Supplementary Security Income (SSI) state
participation rates (for age 65+ only) constructed from
Social Security Administration data and state
population estimates, and Census 2000 state poverty
ratios. For more information see the SAIPE web site
mentioned earlier.

Noninformative prior distributions for the model
parameters are assumed as follows:

β = (α1, β1N, α2, β2N)N is  assumed to be 
multivariate N(0, cI), with c large,

s11 and s22 are assumed to be Uniform (0, m1) and
Uniform (0, m2), with m1 and m2 large, and

ρ  is  assumed to be Uniform (-1, 1).

The values of c, m1, and m2 were chosen to be
sufficiently large so that the priors could effectively be
regarded as flat on (!4, +4) and (0, +4) as appropriate.
We used c = 1,000 for all age groups and chose
appropriate values for m1 and m2 separately for each
age group (e.g., for age 5-17 we used m1 = m2 = 20).

2. 2 Alternative Models

Bivariate Model A is the general bivariate model
discussed above with no restrictions on the model
parameters (except s11 > 0, s22 > 0, and  |ρ| < 1.)

Bivariate Model B1 assumes that the CPS ASEC and
the ACS estimate the same state poverty ratio, that is,
Y1i = Y2i . (For Model A this implies the constraints
α1 = α2, β1 = β2, and  u1i  = u2i, which in turn imply that
s11 = s22 and ρ = 1.)

Bivariate Model B2 assumes that the CPS ASEC and
ACS models have the same regression parameters 
(α1= α2 and β1 = β2), but with different model errors
(u1i … u2i , so s11 … s22 and  ρ  … 1, in general).
  
Bivariate Model C assumes that, excluding the
intercepts, the regression coefficients in the CPS ASEC
and ACS regression equations are the same (β1 = β2).



Univariate Models: If ρ = 0, then Model A reduces to
separate univariate regression models and we fit the
CPS ASEC and ACS equations separately.

The univariate model using the CPS ASEC equation  is
the current SAIPE state model. If ρ  … 0 then a bivariate
model has potential benefits compared to this
univariate model.

2. 3 Bayesian Inference for the Models

For the bivariate Model A, we used Gibbs
sampling via WinBUGs ( Spiegelhalter, et al. 2003) to
simulate  10,500 (first 500 discarded as burn in) sets of
model parameters (ρ, s11, s22 , β). The posterior means
and variances of Y1i from the CPS ASEC equation were
approximated by averaging results over the simulations
of (ρ, s11, s22) to approximate the following formulas:

    E(Y1i  | y) = Eρ, s11, s22 [E(Y1i  | y, ρ, s11, s22)]     (1)

Var(Y1i  | y) = Eρ, s11, s22 [Var(Y1i | y, ρ, s11, s22)]
         (2)

+ Varρ, s11, s22 [E(Y1i | y, ρ, s11, s22)]

where y  = {(y1i , y2i), i = 1,ÿ,51} is the observed data.
In (1) and (2) E(Y1i  | y, ρ, s11, s22) and Var(Y1i | y, ρ, s11,
s22) can be readily calculated from standard formulas
that account for the effects of estimating the unknown
βs.  (See, e.g., Bell 2000.) Eρ, s11, s22 and Varρ, s11, s22 were
approximated by taking the sample mean and variance
across the simulations of the terms as indicated. The
analogous calculations were made to obtain the
posterior means and variances of the Y2i, the true
poverty ratios in the ACS equation, but the results are
not reported here.

For the other bivariate models, and the univariate
model, we used the same set of simulated parameter
values (ρ, s11, s22) obtained under Model A to compute
posterior means and variances of Y1i, using analogous
formulas to (1) and (2) above, but that reflected the
restrictions imposed by the various models. For
example, results for the univariate model were obtained
by replacing y by y1 = (y11,ÿ,y1,51)N. The use of the same
simulations of (ρ, s11, s22) for all models provides a
better indication of differences between the posterior
means and variances due to conditioning on different
amounts of information (i.e., CPS ASEC alone versus
CPS ASEC in combination with ACS) than we would
obtain by using different simulations of the model
parameters from their posterior distributions under the
alternative models. When doing the latter, differences
in E(Y1i | y) and  Var(Y1i | y) from conditioning on
different amounts of information are confounded by
differences in the posterior distributions of the model

parameters, particularly the variances.

3. Empirical Model Comparisons

Our primary interest is in whether using ACS data
in conjunction with the CPS ASEC data can reduce
prediction error (posterior) variances of Y1i, the “true”
poverty ratio as estimated by CPS ASEC? We present
here three sets of empirical results relevant to this
question. First, in Section 3.1 we compare posterior
variances of Y1i from Model A with those from the
univariate (current production) model to see what
improvements may result from use of the general
bivariate model. Then, in Section 3.2 we present results
of chi-squared tests of the restrictions imposed on the
regression coefficients by Models B2 and C to see if
these more restrictive models are consistent with the
data. We find Model B2 is rejected (and by implication,
so is the more restrictive Model B1), while Model C is
not. Finally, in Section 3.3 we compare posterior
variances of Y1i from Model C with those from the
univariate model to see what improvements may result
if we are willing to use the more restrictive Model C.

To compare posterior variances we examine their
relative percentage differences under an alternative
model with those from the univariate model. For
example, we compare posterior variances from Model
A with those from the univariate model by computing
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3. 1 Posterior Variance Comparisons for Model A

The posterior means and standard deviations of the
model parameters (ρ, s11, s22 ) from the Gibbs sampling
via WinBUGs of 10,000 simulations  from bivariate
Model A are shown in Table 3.1.

Table 3.1 Posterior means and standard deviations of
the parameters of Model A for IY 2000 and IY 2001

IY 2000

age   0-4 5-17 18-64     65+

 ρ  0.53
(0.38) 

 0.29
(0.46) 

 0.34
(0.41) 

 -0.20  
 (0.47) 

s11  2.92
(2.23) 

 0.81
(0.70) 

 0.23
(0.19) 

  0.76   
 (0.71) 

s22  2.24
(1.21) 

 1.26
(0.58) 

 0.48
(0.17) 

  0.66   
 (0.30) 



IY 2001

age    0 - 4  5 - 17  18-64     65+

 ρ  0.17 
(0.53) 

 0.54 
(0.33) 

 0.49 
(0.40) 

!0.07  
 (0.53) 

s11  1.80 
(1.70) 

 1.85 
(1.21) 

 0.18 
(0.16) 

  0.39   
(0.40) 

s22  1.53 
(0.97) 

 0.92 
(0.45) 

 0.37 
(0.13) 

  0.38   
 (0.21) 

Notice that the standard deviations for s11 and s22 are
rather large relative to the posterior means, and the
posterior standard deviations for ρ are large relative to
the width of the interval (-1,1). These results reflect
considerable uncertainty about these model parameters.
This uncertainty can also be seen from estimates of the
posterior densities for (ρ, s11, s22 , β) plotted in Figure 1
for age 5-17 in IY 2000. In fact, in regard to ρ, for none
of the age groups in IY 2000 or 2001 can we
conclusively determine that ρ > 0. Plots of the posterior
densities of the regression coefficients shown in Figure
1 also show considerable uncertainty, more so for the
first four coefficients shown (which refer to the CPS
ASEC equation) than for the last four coefficients
(which refer to the ACS equation). The lower level of
sampling error in the ACS estimates leads to more
precise estimates of the ACS regression coefficients.
Also note that the posterior densities of the regression
coefficients appear reasonably  normal. [Note: The
notation in Figure 1 of beta[1],...,beta[8] corresponds to
the regression parameters β = (α1, β1N, α2, β2N)N.]

Table 3.2 summarizes the comparisons of the
posterior variances of the state poverty ratios Y1i from
Model A with those from the univariate model. We see,
for both years and across all age groups, only small
improvements in posterior variances on average from
use of the bivariate model. The min values show that
some states show more dramatic variance reductions
than others, while the max values show that some states
show substantial variance increases. Appendix A
shows more detail from these results, presenting the
frequency distribution of the percentage differences in
posterior variances. These tables show that substantial
variance increases for states are relatively rare, while
small to moderate variance reductions predominate.

The best cases for variance reductions from the
bivariate Model A are age 0-4 in IY 2000 and ages 5-
17 and 18-64 in IY 2001. Even for these cases the
average variance reductions are small, and for most
individual states the percentage differences in posterior
variances are small or moderate at best. For ages 5-17,
18-64, and 65+ in IY 2000, and for ages 0-4 and 65+ in
IY 2001, it is difficult to claim an advantage from using

Table 3.2 Relative percent differences of the posterior
variances from Model A and the univariate model

IY 2000
  Age         Mean        Min         Max 
  0-4          - 6.67       -19.64       19.07
 5-17         - 2.65       -12.14       17.29 
18-64        - 4.31       -13.33       20.30
  65+         - 1.61        - 9.54       23.63

IY 2001
  Age         Mean          Min        Max 
   0-4        ! 1.46        !10.84      34.05
  5-17       ! 7.08        !15.71        5.53 
18-64       ! 7.81        !19.38      27.06   

         65+        ! 0.48        ! 9.05       20.37          

bivariate Model A. Also, the fact that the age group
providing the best case for IY 2000 differs from those
providing the best cases for IY 2001 is somewhat
disturbing, as it does not suggest consistent
improvements for any age group.

3.2 Chi-Squared Tests of Model Restrictions

Section 2.2 presented three alternative bivariate
models (B1, B2, and C) all of which impose restrictions
on the general bivariate Model A. The restrictions
implied by Models B2 and C can be tested by testing
the following null hypotheses:

   H1: α1 = α2,   β1  =  β2   (Model B2)

   H2: β1  =  β2       (Model C) 

Hypothesis H1 postulates equality of the regression
coefficients in the CPS ASEC and ACS equations.
Hypothesis H2 postulates this equality apart from the
intercept terms. We test these hypotheses against the
alternative hypothesis of Model A holding with no
restrictions. While we will not explicitly test Model B1
(CPS ASEC and ACS estimate the same poverty
ratios), note that if H1 is rejected so, by implication, is
the more restrictive Model B1.

To test the hypotheses H1 and H2 we formulate
chi-squared statistics using the posterior means and
covariance matrices of the regression coefficients under
Model A. From a Bayesian perspective, this is
equivalent to seeing if the values under these null
hypotheses lie within a given highest posterior density
region. More broadly speaking, the chi-squared
statistics check if the restrictions under H1 and H2 are
reasonably consistent with the posterior distribution of
the regression parameters under the general Model A.

More specifically, the chi-squared statistic for



testing H2 is

χ2 = (b1 ! b2)N[Var (b1 ! b2)]-1 (b1 ! b2)

where b1 and b2 are the posterior means of β1 and β2,
while Var(b1 ! b2) is the posterior covariance matrix  of
β1 ! β2. This statistic has three degrees of freedom for
ages 0-4, 5-17, and 18-64, and four degrees of freedom
for age 65+ (the difference being due to the additional
inclusion of the SSI participation rate in xi' for age
65+). For testing H1 an analogous statistic is used that
also involves the intercepts, α1 and α2, and which has
four degrees of freedom for ages 0-4, 5-17, and 18-64,
and five degrees of freedom for age 65+. We compare
χ2 to five percent critical values from the chi-squared
distribution; these are 7.8, 9.5, and 11.1 for three, four,
and five degrees of freedom, respectively.

The results of the Chi-squared tests for IYs 2000
and 2001 are given in Table 3.3. Values that are
significant at the five percent level are shown in bold.

Table 3.3  Chi-Squared statistics for testing hypotheses
H1 and H2 for IYs 2000 and 2001

IY 2000

Age  0-4 5-17  18-64  65+

H1 8.4 35.3 44.1 8.6

H2 5.5 2.5 2.5 5.2

IY 2001 

Age  0-4  5-17  18-64  65+

H1 7.7 18.6 12.2 0.7

H2 7.0   0.4  2.5 0.6

For both IY 2000 and IY 2001, we reject the
hypothesis H1 for ages 5-17 and 18-64. We fail,
however, to reject H2 for all age groups. The results
suggest that assuming regression intercepts are the
same between the CPS ASEC and ACS equations is not
tenable for ages 5-17 and 18-64, and hence that we
should reject Model B2, and by implication, the more
restrictive Model B1. Given this result, suggesting
some systematic difference in level between what CPS
ASEC and ACS are estimating for poverty, we would
be disinclined to use Model B2 for ages 0-4 and 65+ as
well. On the other hand, the failure for all age groups
in both years to reject H2, corresponding to the less
restrictive Model C, suggests that perhaps the
regression parameters other than the intercepts can be
assumed to be the same in the CPS ASEC and ACS

equations, so we might consider using Model C instead
of Model A. The consequences of this for posterior
variances are examined in the next section.

3.3 Posterior Variance Comparisons for Model C

Posterior variances for Model C were computed as
discussed in Section 2.3, i.e., using equations (1) and
(2) with the simulations of (ρ, s11, s22) obtained under
Model A, and with  E(Y1i  | y, ρ, s11, s22) and Var(Y1i | y,
ρ, s11, s22) computed to account for the Model C
restriction, β1 = β2. Table 3.4 presents summaries of the
percent differences of the resulting posterior variances
from those for the univariate model; these results can
be compared to those of Table 3.2. Doing so we see
that the variance reductions from Model C are, on
average, substantially larger than those from Model A.
The largest reductions are about 50 percent or more,
and while there are some variance increases, the
maximum increases from use of Model C are not as
severe as those from Model A. Note also that for age
5-17 all states show variance reductions with Model C.

Table 3.4 Relative percent differences of the posterior
variances from Model C and the univariate model

IY 2000
  Age         Mean        Min         Max 
   0-4         !19.3       !49.8         15.0
  5-17        !18.1       !50.3        !0.2
18-64        !17.2       !47.1         12.8
  65+         !18.3       !48.4         17.4

IY 2001
  Age         Mean        Min         Max 
   0-4         !17.2       !56.5         22.3
  5-17        !17.8       !44.3        !1.6
18-64        !24.6       !55.3         23.3
  65+         !28.5       !64.0         18.7

To put these results in context, Appendix B
presents further tables showing the average posterior
variances from Models A and C, and from the
univariate model, along with average sampling error
variances for the CPS ASEC and ACS direct estimates.
The latter are the variances one would have from each
data source if modeling was not used to improve the
estimates. The tables show the substantially lower
variances of the ACS direct estimates compared to
those for CPS ASEC, due to the larger sample size of
the ACS supplemental surveys. (This difference will
increase with the production ACS.) They also show
that the univariate models achieve substantial variance
reductions compared to the direct CPS ASEC
estimates, and that further reductions under Models A



and C are not as large.
The larger variance reductions under Model C than

under Model A are presumably due to increased
precision in the estimation of the regression
coefficients under Model C’s assumption that, apart
from the intercepts, the regression coefficients are
common to both equations. Given the substantially
lower sampling variances from ACS, under this
assumption the ACS data should provide relatively
more information for estimation of the common
regression coefficients than does the CPS ASEC data.
So there appears to be more potential for improvement
from using the ACS data to improve estimation of the
regression coefficients (if the assumption that they are
common to both equations holds) than from using the
ACS data to improve prediction of the state random
effects (which is done by all the bivariate models.)

Note one important qualification to these results.
The posterior variances quoted from Model C assume
that the Model C restriction of β1 = β2 holds exactly
(and that the other model assumptions are true, these
being the assumptions for Model A). We determined
that the assumption β1 = β2 was plausible by performing
the chi-squared tests of Section 3.2. So to decide to use
Model C, we had to actually estimate Model A and
perform the tests of β1 = β2. If we then quote posterior
variances calculated as if Model C were known to be
true we would not be accounting for this estimation and
testing and we would thus understate our uncertainty
about the true poverty ratios. One way around this
dilemma that we intend to explore is to use an
informative prior distribution for β1 ! β2 with mean
zero. In the future such a prior might be developed
from estimation results for previous years.

4. Summary
  
 

Our goal in this paper was to examine the potential
benefits of modeling the CPS ASEC and ACS state
poverty ratio estimates jointly to improve estimates of
poverty ratios in the CPS ASEC equation. We
examined alternative models for doing this using CPS
ASEC estimates for IYs 2000 and 2001, and ACS data
from the supplementary surveys of C2SS and SS01.
The models included regression variables constructed
from administrative records data and 2000 Census
poverty ratios, along with state random effects and
sampling error components. We can summarize the
results from our empirical study as follows:

1. In comparing the general bivariate Model A with
the current univariate model, there is, at best, a
small average improvement in state posterior
variances. Results are variable for individual
states, with some states showing larger

improvements, but a few showing substantial
variance increases.

2. For IYs 2000 and 2001, chi-squared tests rejected
the more restrictive bivariate Models B2 and B1for
ages 5-17and 18-64, but failed to reject model C
for all four age groups. This suggests a systematic
difference in level between the CPS ASEC and
ACS estimates, but provides no evidence that other
regression coefficients are different in the two
equations.

3. Model C had substantially lower posterior
variances, on average, than the general Model A.
However, in order to decide to use model C, we
have to estimate Model A and test whether β1 = β2.
Quoting posterior variances as if Model C is
known to be true thus understates uncertainty.

Further studies are needed when we have the full
production ACS data.   
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Appendix A: Frequency distributions over states of
the relative percentage differences of the state
posterior  variances from bivariate Model A and
the univariate model

Table A.1: IY 2000

Percentage
Difference

age
0-4

age
5-17

 age
18-64

age
65+

-20 to -15 2  0  0  0

-15 to -10 15  2  9  0

-10 to -5 19 16 21 18

-5 to 0 11 22 13 20

 0 to 5 1  7  3  5

 5 to 10 0  3  1  4

10 to 15 1  0  1  2

15 to 20 2  1  2  1

20 to 25 0  0  1  1

Table A.2:  IY 2001

Percentage
Difference

age
0-4

age
5-17

 age
18-64

age
65+

-20 to -15 0  2 14  0

-15 to -10 2 11 15  0

-10 to -5 15 25  7  6

-5 to 0 21  9  8 29

 0 to 5 7  3  3 10

 5 to 10 3  1  0  3

10 to 15 0  0  0  1

15 to 20 1  0  1  1

20 to 25 1  0  2  1

25 to 30 0  0  1  0

30 to 35 1  0  0  0

Appendix B: Comparing average prediction error
variances of direct and alternative model-based
state poverty ratio estimates using CPS ASEC and
ACS supplementary survey data
 

Age 0-4               IY 2000        IY2001
Direct estimates        
   ASEC                 11.794        11.633
   ACS                     4.083  3.479
Model estimates
   Univariate            2.973  2.265
   Bivariate A          2.798  2.243
   Bivariate C          2.333  1.779

Age 5-17            IY 2000        IY2001
Direct estimates
   ASEC                 4.907  4.957
   ACS                    1.833  1.521
Model estimates
   Univariate           0.996  1.576
   Bivariate A         0.974  1.472
   Bivariate C         0.780  1.264

Age 18-64           IY 2000        IY2001
Direct estimates        
   ASEC                   1.135  1.189
   ACS                      0.359  0.309
Model estimates
   Univariate             0.260  0.233
   Bivariate A           0.251  0.216
   Bivariate C           0.208  0.167

Age 65+               IY 2000        IY2001
Direct estimates
   ASEC                   3.993   4.046
   ACS                      1.162   0.748
Model estimates
   Univariate             0.910   0.663
   Bivariate A           0.898   0.658
   Bivariate C           0.716   0.439



Figure 1: Posterior Densities for Model A Parameters - Income Year 2000 - Age 5-17
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