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Abstract

The U.S. Census Bureau Small Area Income and Poverty Estimates program
produces biennual intercensal estimates of the povery rates and counts of poor
within counties for use in determining the allocation of federal funds to local ju-
risdictions. Numbers of poor are currently modeled through an empirical Bayes
estimation method centered on a linear regression; the dependent variable is a log
transformation of the three-year average of the March Current Population Survey
(CPS) estimate of the number of poor for each county, and the independent vari-
ables are log transformations of administrative data. We assume the variability of
the CPS estimates is the sum of a model error term with constant variance, and a
sampling error term whose variance is proportional to the inverse of a power of the
CPS sample size. Maximum likelihood estimation is used to jointly determine the
values of the regression coefficents and the sampling variance components. Prob-
lems with the current estimation technique include a loss of data points due to the
log transformation for counties whose CPS sample of poor is zero, and the require-
ment of using decennial census data to estimate the model error variance term.
To eliminate these problems and improve the overall quality of our estimates, we
have developed a hierarchical Bayesian model which assumes the observed number
of poor can be modeled through an approximated probability distribution function
with a scaled binomial kernel that is dependent on the underlying poverty rate.
This poverty rate, in turn, has a beta prior which relies on a set of parameters that
includes the regression coefficents for the administrative data. Posterior probability
distributions for regression parameters, variance parameters, and true proportion
poor are generated using Markov Chain Monte Carlo techniques. We will discuss
the Bayesian model and compare the results of the original and new estimation
methods.



1 Introduction

The U.S. government, through the Departments of Education, Health and Human Ser-
vices, Housing and Urban Development, and Labor, allocates approximately $30 billion in
funds annually to programs to aid economically disadvantaged areas of the United States.
Approximately $7 billion is distributed under Title I of the Elementary and Secondary
Education Act by the Department of Education to school districts with high numbers and
proportions of poor children. Traditionally, these funds have been allocated on the basis
of small area estimates created from the most recent decennial census, which resulted in
poverty figures that were not updated for a decade or more. The fact that poverty not
only fluctuates within the span of a decade, but also fluctuates unevenly across different
geographic areas of the country (for an example see Dalaker and Naifeh (1998)), suggests
that more recent, intercensal estimates of poverty should be available. In 1994, through
the “Improving America’s Schools Act,” the United States Congress required the U.S.
Census Bureau to begin to produce estimates of poverty for counties on a biennual basis.
Through the Small Area Income and Poverty Estimates program (SAIPE), and with the
support of a consortium of five federal agencies, the U.S. Census Bureau has released
county-level poverty estimates for income years 1993 and 1995, and will release estimates
for income year 1997 in the year 2000.

In order to create county-level estimates, SAIPE uses an empirical Bayes estimation
method centered on a linear regression model with a log transformation of a three-year
average of the March Current Population Survey (CPS) estimates of the number of poor
for each county as the dependent variable. To our knowledge, the March CPS is the best
source currently available of direct estimates of poverty for counties in the United States.
The CPS sample size, however, is small for most counties, and in any given year only
about 1300 counties are included in the CPS sample. We use a three year average of CPS
poverty counts in order to increase the number of counties for which a sample is avail-
able, and to borrow strength from the years surrounding the target year. Independent
variables for the regression are formed from administrative data sources and also undergo
a log transformation: these variables include the number of poor from the previous de-
cennial census, the number of poor as aggregated from tax returns, the number of food
stamp participants, the population, and the total number of tax returns for each county.
The model takes the following form:

y'=XB+u+e (1.1)

where y* is the vector of the log of the three year average of CPS poor, and X is the ma-
trix of log values of variables from administrative records. Two error terms are included
in the model to accomodate the sampling error associated with the CPS and the model
error; u represents the model error and is distributed Normal[0, V], and e represents the
sampling error and is distributed Normal[0, Vg|. V, is assumed to take the form v,I;

V. is assumed to be a diagonal matrix whose entries take the form k—%, where k; 1s CPS



sample size for county :.

Estimation of the variances of the error terms is accomplished through two steps. First
the model error variance term is estimated jointly with the coefficients through maximum
likelihood estimation by use of a regression equation where the log transformation of the
census direct estimates of poverty is substituted as the dependent variable in the place
of the CPS estimates, and the census sampling error variance is estimated with a gener-
alized variance function (see U.S. Buerau of the Census (1990) for a description of the
generalized variance function). The model is then rerun with CPS poor as the dependent
variable and with the model error variance term fixed to the value determined from the
census model; maximum likelihood estimation is used to jointly determine the values of
the regression coefficents and the sampling variance component (see Fisher (1997)).

Three concerns arise from the implementation of this modeling procedure. The first is
that for approximately 200 counties each year, the CPS estimated number poor for the
county is zero. These “sample zeros” occur particularly in small counties which have
small sample size within the CPS. Our naive strategy for these sampling zeros has been
to remove these counties from the regression, thereby losing the information available in
these cases. A new modeling strategy that allows the inclusion of these counties is there-
fore desirable. A second issue is the reliance on the census estimates of poor in order to
determine the structure of the error terms; the underlying assumption is that v, is the
same for both the census and CPS data. This is questionable both because the census and
CPS use slightly different definitions of poverty, and also because this reliance becomes
more problematic the further in time we move from the previous decennial census. A final
issue is that the underlying assumption of a gaussian model for the error terms seems to
be inappropriate for small counties.

In order to address these issues, we began to explore the use of hierarchical Bayesian
modeling techniques to create a model which both fits our data better and is feasible for
the production of a large number of estimates on a regular basis. We use for our analysis
data for the 1990 income year measuring poverty in related children age 5-17; the CPS
variable is the three-year average for income years 1989, 1990, and 1991. Our desire is to
keep the model relatively simple while capturing the important features of our data. We
consider the size of the sample in a given county fixed in the CPS; a binomial distribution
therefore seems more appropriate than more common models for count data, such as the
Poisson distribution. In Section 2 we describe our model in detail and the implementation
of that model: to capture the complexity of the CPS sample, we rely on an approximated
probability distribution function with a scaled binomial kernel for CPS poor given the true
underlying poverty rate. Similar approaches to approximating the sampling distribution
have been made by Wedderburn (1974) in his discussion on quasilikelihoods and by West
(1985) in his develpoment based on deviance functions. We use mostly diffuse priors
and hyperpriors; specifically, a beta prior is used for the elements of the poverty rate



vector p so that the joint posterior of the hyperparameters can be easily determined.
A Metropolis-Hastings algorithm is employed to sample from the joint posterior of the
hyperparameters with good results; using these results a sample is drawn for the poverty
rates p. In Section 3 we evaluate the results of the simulation and note that the estimates
produced match our expectations from other modeling techniques. We conclude that this
modeling procedure holds promise for the production of small area poverty estimates in
the future, and we will continue to explore this modeling technique.

2 Methods

2.1 Model of Number Poor and Justification of Approximated
Probability Distribution Function

The Current Population Survey follows a complex sample design: one primary sampling
unit (PSU) is selected from each of 754 strata using probability proportional to popu-
lation; within each PSU clusters of households are selected after sorting by geographic,
demographic, and socioeconomic characteristics. As such, attempting to model the three
year CPS average of total poor for county ¢, y;, directly as a binomial random variable
with total population for county ¢ as estimated by the CPS, n;, would cause a severe un-
derestimation of the true variance of the sample. Similarly, using the CPS sample directly
and modeling it as a binomial distribution with sample size k; would cause an underes-
timation of the variance. Direct modeling of the CPS sample design, however, would be
difficult. An intermediate solution is to model the design by taking a random variable
z; to represent the number poor drawn from a simple random sample (SRS) with the
same information available through the 3 year average of the CPS total poor for county «.
Then z; | p; ~ bin(m;, p;), where m; represents a sample size from a SRS which contains
the same information as the more complex CPS design, and p; represents the underlying
proportion of poor. Then y; is taken to be the scaled value y; = z;/ f;, and the population
for county 7 is taken to be n; = m;/f;. The scaling factor f; is taken to be greater than
zero and describes the amount of information in each estimated person relative to an
observation from the underlying binomial distribution; it can be interpreted as a ratio of
the variances of the CPS design and a SRS design. The scaling factor therefore corrects
for both the overdispersion of the variance and the complexity of the sampling design at
once. A direct transformation of the distribution of z; would yield the following equation:

F(flnz + 1) pfiyi
(fiyi+ DI(fin; — fiyi+ 1)

This i1s a probability function for y; only if f; takes a value such that f;n; and f;y; are
integers for y; € 0,...,n;. If we accept this constraint, a prior distribution for f; would
have a discrete support, and would be difficult to model due to our desire to parameterize
the vector of f; with a small number of parameters. We therefore relax this constraint to

Failpi 1) = = (1 = pi)fere=ton 21)



allow f; a continuous support, and anticipate f; < 1.

The effect of this relaxation of the support of f; is the resulting required relaxation of the
support of y;; we now allow y; to be continuous on [0, n;]. The result is that the kernel in
(2.1) can only be normalized by a function of p;; it is no longer a legitimate probability
function. We therefore treat this function as an approximated probability distribution
function: our goal is to both find a normalizing constant that is not a function of p;
in order to allow the approximated probability distribution function to behave as if the
moments of y; were from the underlying binomial kernel, and also to approximate the
distribution of y; well over the range of p; and f;. We therefore propose the following
form for the approximated probability distribution function of ¥;:

¢l (fini +1) pfiyi
(fiyi + DU(fini = fiyi + 1)

where ¢; = f; + ni Our justification is as follows. We first note that the behavior of the
approximated pr(;babﬂity distribution function with respect to p; is independent of our
choice of scaling factor ¢;. For both the scaled binomial distribution and this approximated
probability distribution function, p; = y;/n;. We know that for the scaled binomial
distribution, F(p;|p;) = p; for any value of fin;, and Var(p;|p;) = pi(1 — pi)/(fins).

Flulpi £) = (1=pymion, (2

Asymptotically, we can take this expected value to be true of the approximated probability
distribution function as well; we note the consistency of p:

Epilps) sompe | (2.3)
pi
We can also determine the following for the approximated probability distribution func-
tion:
I(p) — Plog(f*(yilpi, 1)) fiyi(1 = pi)* + (fini — [iyi)p} 9 4
(p) = - LA il J)) ) U (24)
D; Pi( pi)
Then,
N
Var(p;) "= 2.5
(5) "% s (25)
and | |
Pizb pz( '_'pz) (26)

with p; — p; for large m; = fin;.

The form of ¢; is chosen to normalize the approximated probability distribution function
as effectively as possible over the joint range of p; and f;. We note that f*(vy:|pi, fi) is
a normalized distribution function for y; when f; 1s 0 if ¢; = %, and it is a normalized
distribution function for y; when f; is 1 if ¢; = f;. Empirical evidence suggests taking
¢ = fi+ n% works reasonably well for non-extreme values of p;. An example follows below:

5



the surfaces in the following figures represent the value of the integration of f*(y:|pi, f;)

over the range of p;, taking f; € [0, n;] where n; is set to 10 for convenience. Note the sur-
face is relatively flat for ¢; = f; + %; for p;

.16, for example, the surface ranges between
9411 and 1.025. The surface when ¢; = 1 behaves especially poorly as f; approaches 0.

Effect of normalizing function on intergral of the Quasilikelihood.
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The result of taking ¢; = f; + ni is an approximated probability distribution function that
behaves appropriately with respect to the moments of y; and is approximately normalized

for most values of f; and p;. More rigorous theoretical justification of the approximated
probability distribution function is in progress.

2.2 Parametric Form of f;

Since the value of f; is dependent on the design of the CPS, which is somewhat constant

over counties, we wish a constant parametric form for the set of f;’s. Given p; consistent
and unbiased, by the results in (2.3),

E(pi|pi) — p:

(2.7)
and by (2.6) ” )
R pill — pi
V(pilp:) — T (2.8)
then
. Vilp) 1—p
cv? pi) = — R . 2.9
(7) E(pilpi)*  pifini (2.9)
Solving for f;,
L —p;
R 2.1
4 pinicv?(p;) (2.10)
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We choose to model the relvariance of p; based on an equation suggested by Bell and
Kramer (1998), in which they derive a generalized variance function for cv?(p;) using
balanced half sample replicates. Specifically, they explore modeling the relvariance of
yi by a function of both the CPS sample size (k;) and the poverty rate (p;). Further
motivation of this form is given by Zaslavsky (1997), in which he notes that an appropriate
function of the relvariance to consider is %. We therefore propose the following form of
the relvariance: l

1 — Pi)

- (2.11)

cv’(pi) = exp(—y0)k; " (
This leads to
fi = n;l exp(yo)k;" (2.12)

where k; is the CPS sample size and n; the population size. Note from (2.10) that f; is
just the relvariance of the SRS binomial over the relvariance of y; for the CPS sample
design, which follows the heuristic explanation of this factor given in Section 2.1.

2.3 Priors and Hyperpriors

We take the mixing distribution for p, which is the ‘true’ poverty ratio in county z:
pi ~ Beta(z;,ng — z;), (2.13)

where z; = ¢(X;3)no. Under this parameterization the expected value of p;|3,n¢ is
g9(X;3). X; is formed through a principle components analysis of predictors taken to
be log values of measures of poverty. Use of principle components analysis reduces the
dependence of the 3’s, which allows for simpler implementation of a Metropolis-Hastings
algorithm. The inverse-link function used is

§(X5) = exp(X5). 2.14)
The hyperpriors used are as follows:

no ~ Gamma(1/1,000,000, 1/100,000,000)
3 ~ Uniform(R®)
Yo ~ Normal(-5,10)
1 ~ Normal(.5, .3)

With the exception of the prior for ng, these priors are picked to be diffuse when com-
pared to the resulting posterior distributions. The prior on =, is picked based on previous
information; in the current SAIPE modeling procedure the sampling variance is believed
to be modeled well by the square root of CPS sample size. Examination of the rates
at which the tails of the posterior distributions converge to zero indicates the marginal
posteriors are proper.



The prior on ng is chosen recognizing some characteristics of p(y|3, no,7) taken as a func-
tion of ng. Holding other parameters constant, this distribution increases quickly over
small values of ng, and then becomes quite flat after a certain level. One interpretation
for this is that the data indicate that ng is more likely not to have a small value and
that, above some level, the model is not very sensitive to ng. The part of the real line
where the distribution is increasing as a function of ng is well within the region where
the prior for ng has relatively large mass. Allowing the prior for ng to be diffuse results
in simulations that do not converge or converge very slowly. The posterior may not be
proper for improper priors of ng.

2.4 Implementation

The form of the approximated probability distribution function and prior for p; lead to a
approximate posterior for the hyperparameters of the following form:

p*(ﬁa no, 7|g) = p(n07 67 7)
I aU(fini + )D(no)U(fiyi + 2)U(fing + no — fiyi — x4)
S U(fays + DU(fini — fiys + DU (fini 4 no)U(2:)T (no — 24)
where x; = g(X;)no.

We form the posterior for p; in the standard way:

p(pilyi, B,n0,7) = Beta( fiy: + xi, fini — fiyi — xi + no) (2.15)

The posterior distributions of the hyperparameters are simulated using a Metropolis-
Hastings algorithm, for which the candidate values are drawn as follows:

1. n§ from a Gamma candidate-generating distribution with coefficient of variance set
to .1 and mean to ng;_;. We used this form due to the fact that ny can vary greatly
in size; determining the ratio of the mean and the standard deviation that produces
good mixing is easier than pinpointing the variance.

2. * from the candidate-generating distribution N[3;_1, V3]. The covariance matrix is
formed with the cholesky root of the approximate covariance matrix of the posterior
marginal for # and is centered on the value of 3;_;. The covariance matrix was
estimated with short runs of the sampler and some human supervision.

3. 7¢ from the candidate-generating distribution N[vyp,_1,.03%].

4. ~5 from the candidate-generating distribution Beta[vyy ;—1,.00005].

The tightness of the variances for the 49 and ~; candidate-generating functions are re-
quired by the tightness of their posteriors. Once a sample of hyperparameters is drawn,
generating a corresponding sample for p; is done through a simple random draw from the
Beta distribution in (2.15).



3 Results

3.1 Posterior Distributions

To calculate the posterior distributions of the hyperparameters, we draw 100,000 samples
and keep every 10th sample of the last 10000. Convergence is achieved well before this
point, after about 2000 iterations. Alternate runs with varying starting points confirm
the convergence behavior in all but one case: if the starting value for ~; is too extreme a
value, the convergence of all the parameters occurs in a different location, with ng decay-
ing to its minimum. Possible explanations include a second local maximum in the joint
posterior; further exploration of this anomaly will occur.

Following are the convergence plots for a typical run:

Convergence plots of Hyperparameters
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The posterior distributions of the hyperparameters behave well; a summary of their dis-
tributions for this run follows:



Parameter 1st Qu. Median 3rd Qu. Stand. Dev.
ng 779,500,000 982,200,000 1,217,000,000 304,311,599
Do -1.953 -1.933 -1.919 0.02433934
Je3t 0.02014 0.02431 0.02842 0.00663341
o) 1.044 1.081 1.103 0.04693845
O3 -0.2818 -0.2024 -0.1378 0.09265293
Jen -0.495 -0.4301 -0.3619 0.08703785
Bs -1.295 -1.034 -0.8017 0.3488488
Yo 0.06009 0.07447 0.1076 0.03919703
"1 0.5216 0.5216 0.5216 .000008102818

The size of the ng’s in the posterior distribution can be interpreted as follows: large ng
means that the prediction equation X;3 carries more “weight” in the formulation of the
posterior values of p; than the data point y;. As ng approaches infinity, the actual value
of ng makes less and less difference as to its importance in the posterior distribution of
p;. Note that ~1’s posterior distribution is sufficiently tight that its variability is only
noticible past four significant digits. Interpretation of the f’s is left to future research.
Plots of the estimated marginal posterior density functions for a typical run follow.

Posterior Distributions of Hyperparameters

The behavior of the posterior distributions of the p;’s is encouraging; we note the dis-
tribution of the posterior means in the first plot below, and the tight variances on the
distributions of the p;’s in the second plot below. A detailed analysis of the characteristics
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of the posterior distributions of the p;, including the change in the shape and moments of
the posteriors given underlying county size and CPS sample size, is saved for future work.
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3.2 Evaluation of the Model

Because we have an established modeling procedure, and we can compare our results to
the 1990 census, we have several ways of testing the quality of our modeling procedure.
We must first discuss some of the differences between the census and CPS measurements
of poverty. The CPS measurement of population differs from the census due to a dif-
ference in measurement of the “poverty universe”, or the people that are included when
a number poor within a particular county is modeled. The CPS poverty universe for
related children age 5-17 is bigger than the census population count for this group; the
CPS poverty universe includes unrelated subfamily members and residents of college dor-
mitories, while the census population for this group does not. The current SATPE model
is for total poor as measured by the CPS; to create proportions of poor for counties from
this model, we have traditionally divided by the census population for that county due
to our belief that there is less variability in the census population measurement than the
CPS population measurement. For the hierarchical Bayes modeling procedure, using the
CPS poverty as the population count for county ¢ better matched our goal of modeling
the poverty rates (p;’s). For the purpose of comparing the hierarchical Bayes modeling
results to the current SAIPE estimates and the census, however, we have also run the
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model using the census populations for the n;’s. In any comparisons of CPS model results
with the census, we must assume some variation due to the fact that they measure slightly
different populations.

We first measure the absolute relative difference between the posterior means of the p;’s
and the poverty rates given by the 1990 census to test the quality of our model. Using
a typical run, the census population as n; yields an absolute relative difference of .1451,
which is favorably comparable to the results from the current SAIPE model (.1625). Us-
ing the CPS poverty universe for n; yields an absolute relative difference of .1293; testing
with different simulation runs yields results between .1267 and .1299. We also check the
mean value of the posterior means of the p;’s; using the census population for n; yields
a mean of .1814, which is comprable to our expectation given the current SAIPE model.
Using the CPS poverty universe gives us .1640, which is not surprising given the CPS
poverty universe is larger than the census universe. Testing with different simulation runs
yields results between .1634 and .1641.

The following figure shows a comparison of both the current SAIPE model’s predicted
poor (using the CPS poverty universe in the denominator) and the posterior means of the
pi’s (using the CPS poverty universe for n;) to the 1990 census p;’s for a typical simulation
run. We note that the posterior means follow the census p;’s more closely than the p;’s
from the current SAIPE model. We also note that due to the fact that the current SATIPE
model predicts y;’s independently of n;, it produces several extremely unlikely values for
proportion poor, including one value greater than one.

Comparison, SAIPE model and Hierarchical Bayes Model

© ©
(= o
2] 2]
o a
B <« B <
@ =} @ o
=3 =}
© ©
> >
[%2] [%2]
3 3
(%) [%2)
c c
(9% Q
o o
N N
o o
Line at census p = SAIPE p. Line at census p = HBM p.
o o
) o
0.0 0.5 1.0 1.5 0.0 0.5 1.0 15
SAIPE model p’s posterior means of p's

12



Supporting evidence towards the validity of the hierarchical Bayes model can also be
found in the behavior of the posterior distribution of 4g; this posterior distribution has
a very tight variance around .5216. This result is supported by research done by Fisher
and Asher (1999) suggesting that the square root of CPS sample size is a good function
for the CPS sampling variance for the three-year average of number poor related people

age 5-17.

Finally, we check the model by comparing the data to the posterior predictive distribution;
using the methodology outlined in Gelman et al. (1995). Taking a test quantity T as the
x? discrepancy, and using a simulation-based measure of the Bayes p-value Pr(T(y"*,p) >
T(y,p)|ly), we have achieved values ranging between .48 and .57. These tail-probabilities
are very far from extreme, and so we are positively encouraged by the fit of the model.

4 Discussion

We are satisfied with the preliminary results of our research into Bayesian hierarchical
modeling of U.S. county poor, and will continue to explore this modeling procedure as an
alternative to the traditional empirical Bayes approach. Future work will include testing
this modeling procedure on data from intercensal years. We also will continue work on the
theoretical justification of the approximated probability distribution function. Finally, we
are intrigued by concept of formulating a function of f; to more realistically model the
scaled binomial distribution.
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