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Small Area 

A b s t r a c t :  The U.S. Census Bureau Small Area In- 
come and Poverty Estimates program (SAIPE) cur- 
rently uses an empirical Bayes estimation method 
similar to the Fay and Herriot (1979) model to pro- 
duce biennial intercensal estimates of the poverty 
rates and counts of poor within counties. The de- 
pendent variable is formed from a three-year average 
of the March Current Population Survey (CPS) sup- 
plement, and the independent variables are formed 
from administrative data. The model includes two 
error terms. Problems with this estimation tech- 
nique include a loss of data points due to the log 
transformation for counties whose CPS sample of 
poor is zero, and the requirement of using decen- 
nial census data to estimate the model error vari- 
ance term. To address these problems, a hierarchical 
Bayes model based on a scaled binomial kernel has 
been developed (see Fisher and Asher (1999)). The 
scaling factor corrects for both the overdispersion of 
the variance and the complexity of the CPS sample 
design. This paper will discuss the effect of different 
scaling factor functions on the implementation and 
quality of this proposed model. 

In troduct ion  

The U.S. government, through the Department 
of Education, allocates approximately $7 billion 
under Title I of the Elementary and Secondary 
Education Act to school districts with high numbers 
or proportions of poor children. In 1994, through 
the "Improving America's Schools Act," the United 
States Congress required the U.S. Census Bureau to 

*This paper reports the results of research and analysis 
undertaken by U.S. Census Bureau staff. It has undergone a 
Census Bureau review more limited in scope than that given 
to official Census Bureau publications. This report is re- 
leased to inform interested parties of ongoing research and 
to encourage discussion of work in progress. The authors 
wish to acknowledge the support and assistance of William 
R. Bell, Beverly Causey, Donald Luery, Donald Malec, and 
Paul Siegel. 

begin to produce estimates of poverty for counties 
on a biennial basis. Through the Small Area Income 
and Poverty Estimates program (SAIPE), the U.S. 
Census Bureau has released county-level poverty 
estimates for income years 1993 and 1995, and will 
release estimates for income year 1997 in the year 
2000. 

In order to create county-level estimates, SAIPE 
uses an empirical Bayes estimation method centered 
on a linear regression model with a log transforma- 
tion of a three-year average of the March Current 
Population Survey (CPS) estimates of the number 
of poor for each county as the dependent variable. 
The CPS sample size, however, is small for most 
counties, and for any given estimate year only about 
1300 counties are included in the CPS sample. Inde- 
pendent variables for the regression are formed from 
administrative data sources and also undergo a log 
transformation: these variables include the number 
of poor from the previous decennial census, the num- 
ber of poor as aggregated from tax returns, the num- 
ber of food stamp participants, the population, and 
the total number of tax returns for each county. The 
model takes the following form: 

y* = X / 3 + u + e  

where y* is the vector of the log of the three year av- 
erage of CPS poor, and X is the matrix of log values 
of variables from administrative records. Two error 
terms are included in the model to accommodate 
the sampling error associated with the CPS and 
the model error; u represents the model error and 
is distributed Normal[0, Vu], and e represents the 
sampling error and is distributed Normal[0, Ve]. 
V~ is assumed to take the form v~I; Ve is assumed 
to be a diagonal matrix whose entries take the form 
cr 2 
k-7' where ki represents CPS sample size for county i. 

Three concerns arise from the implementation of 
this model. The first is that  for approximately 200 
counties each year, the CPS estimated number poor 
for the county is zero. Our naive strategy for these 
sampling zeros has been to remove these counties 
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from the regression, thereby losing the information 
available in these cases. A new modeling strat- 
egy that  allows the inclusion of these counties is 
therefore desirable. A second issue is the use of 
census estimates of number poor for determining 
the structure of the error terms; the underlying 
assumption is that  Vu is the same for both the 
census and CPS data, and we use census data to 
estimate vu before using CPS data to determine 
values for the coefficients and cr 2. This is question- 
able both because the census and CPS use slightly 
different definitions of poverty, and also because 
this reliance becomes more problematic the further 
in time we move from the previous decennial census. 
A final issue is that  the underlying assumption of 
a gaussian model for the error terms seems to be 
inappropriate, especially for small counties. 

In order to address these issues, we test the use of hi- 
erarchical Bayesian modeling techniques to create a 
model which both fits our data better and is feasible 
for the production of a large number of estimates on 
a regular basis. We use for our analysis data for the 
1990 income year measuring poverty in related chil- 
dren age 5-17; the CPS variable is the three-year av- 
erage for income years 1989, 1990, and 1991. To cap- 
ture the complexity of the CPS sample, we rely on an 
approximated probability distribution function with 
a scaled binomial kernel for CPS poor given the true 
underlying poverty rate. We consider the size of the 
sample in a given county fixed in the CPS; a bino- 
mial distribution therefore seems more appropriate 
than more common models for count data, such as 
the Poisson distribution. Preliminary results were 
presented in Fisher and Asher (1999). This paper 
continues that work by improving the procedure for 
sampling from the posterior and attempting differ- 
ent functions for a scaling parameter in the scaled 
binomial kernel. 

Methodology 
* be the CPS estimate of total poor for county Let Yij 

i in income year j; this variable is a weighted sum 
of the number poor found in the CPS sample. The 
variable available for analysis is yi, a weighted three 
year CPS average of the total number of poor for 
county i. 1 We take kij to be the CPS sample size 
for county i, year j ,  and ki = ~ k i j  to be the 
derived sample size for yi. Also available is hi,  

1Note that yi is not the product of a log transformation, 
as y.* is in the current SAIPE modeling procedure. Also note 
that Yi is described in greater detail later in this paper. 

an estimate of the total population for county i. 2 
Because the Current Population Survey follows a 
complex sample design and, additionally, yi is a 
weighted three-year average, at tempting to model 
yi directly as a binomial random variable with total 
population ni would cause a severe underestimation 
of the true variance of yi. Similarly, using the CPS 
sample directly and modeling number of poor in 
CPS sample for county i and year j as a binomial 
distribution with sample size kij would cause an 
underestimation of the variance of the weighted sum 
Yi*j due to the complexity of the CPS sample design. 
Additionally, at tempting to create a modeling 
procedure that accounts for the CPS sample design 
and the effect of the weighted three year averaging 
would be prohibitively complicated. 

An intermediate solution is to model the sample de- 
sign by taking a random variable zi to represent the 
number poor drawn from a simple random sample 
(SRS) with a sample size that provides the same 
information as is available through the three year 
average of the CPS total poor for county i. Then 
zi [ Pi "~ bin(pi,  mi ) ,  where mi represents a sample 
size of a SRS which contains the same information 
as the more complex CPS design and weighted av- 
eraging procedure, and pi represents the underlying 
proportion of poor. Then yi is taken to be the scaled 
value yi = z i / f i ,  and the population for county i is 
taken to be ni = m i / f i .  The scaling factor f i  is 
greater than zero and describes the amount of in- 
formation in each estimated person relative to an 
observation from the underlying binomial distribu- 
tion; it can be interpreted as a ratio of the variance 
associated with yi (due to the CPS design, weighting 

* 's and three year in the summation to create the Yij 
weighted averaging) and a SRS design. The scaling 
factor therefore corrects for both the overdispersion 
of the variance and the complexity of the sample 
design at once. A direct transformation of the dis- 
tribution of zi would yield the following equation: 

g(wlp , = 
F ( f i n i  + 1) 

F( f i y i  + 1 ) F ( f i n i -  fiyi + 1) 
• p( 'Y'(1 - p i )  A ~ ' - A v '  (1) 

where yi has discrete support (0, ~,, ~, , . . . ,  ni) given 
a particular value of fi. This is a probability func- 
tion for yi only if f i  takes a value such that  f i n i  is an 
integer. For this to occur, fi must have the discrete 

2More technically, ni is a weighted average of the CPS 
poverty universes for related children age 5-17 for income 
years 1989, 1990, and 1991; ni is described in greater detail 
later in this paper. 
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support f i  : n i  mod f/--1 = 0. Furthermore, the sup- 
port of f i  must account for the possible values of Yi 
in the data. This makes fi difficult to model due 
to our desire to parameterize the vector of f i  with 
a small number of parameters. We therefore relax 
this constraint to allow f i  a continuous support, and 
anticipate f i  < 1. The direct effect of this relaxation 
of the support of f i  is the resulting required relax- 
ation of the support  of yi; yi can now potentially 
take values on the continuous range [0, hi]. 

Then, 

Var(15i ) P ! ~ '  I(p ) 

and 

1 p , ( 1  - 

I (pi)  f i n i  

with fii ~ pi for large rni - f ini .  

2.1 Approximated P D F  

The result of allowing yi to have a continuous range 
is that  arguments of the normalizing function for the 
kernel in (1) must include pi; (1) is no longer a legit- 
imate probability function. We therefore treat this 
function as an approximated probability distribution 
function" our goal is to both find a normalizing con- 
stant that is not a function of pi in order to allow 
the approximated probability distribution function 
to behave as if the moments of yi were from the un- 
derlying binomial kernel, and also to approximate 
the distribution of yi well over the range of pi and 
f i .  We therefore use the following form for the ap- 
proximated probability distribution function of yi" 

c iF( f in i  + 1) 
g*(yilPi, f i )  = 

r(f y  + 1)r(fgn - f i y i  + 1) 
• p ~ ' Y i ( 1 - - p i ) f ' n i - : f i Y i  ' 

The form of ci is chosen to normalize the ap- 
proximated probability distribution function as 
effectively as possible over the joint range of Pi 
and f~. We note that  9*(yi[pi, f i )  is a normalized 
(uniform) distribution function for yi when f i  ~ 0 

1 and it is a normalized and (consequently) ci -~ ~ ,  
(binomial) distribution function with discrete sup- 
port for yi when f i  is 1 if ci = f i .  We can also show 
that as f i n i  ~ co, g*(y i[p i , f i )  is approximately 
normalized by ci = f i .  Finally, empirical evidence 

1 works reasonably well suggests taking ci - f i  + n--( 
for non-extreme values of pi, as is presented in 
Fisher and Asher (1999). 

1 The result of taking ci - f i  + ~ is an approximated 
probability distribution function that  behaves ap- 
propriately with respect to the moments of yi and is 
approximately normalized for most values of f i  and 

P i .  

1 Our justification is as fol- where ci - f i  + ~ .  
lows. We first note that  the behavior of the approxi- 
mated probability distribution function with respect 
to Pi is independent of our choice of scaling factor 
ci. For both the scaled binomial distribution and 
this approximated probability distribution function, 
P i  - -  Y i / n i  • We know that for the scaled binomial 
distribution, E(lJilpi ) = pi for any value of f i n i ,  and 
Var(15~lp~) = p~(1 - p~)/(f~n~). Asymptotically, we 
can take this expected value to be true of the approx- 
imated probability distribution function as well; we 
note the consistency of 15: 

E(fiilpi) S,2!_~ 1 
P i  

We can also determine the following for the approx- 
imated probability distribution function: 

I(p ) = 
d21og(f*(yi[pi,  f i ) )  

f w(x - + - f w)p  

p~(1 - pi) 2 

2 . 2  P r o p o s e d  m o d e l s  f o r  f i  

The parametric form proposed for f i  in Fisher and 
Asher (1999) is as follows' 

fi - ni -xexp(-7o)k~ 1 

where ki - ~ kij,  and kij is the CPS sample size 
(#  of households) for county i, year j.  This form is 
based on a generalized variance function for cv 2 (pi) 
from Bell and Kramer (19908) and the suggestion to 
base the squared coefficient of variation of ibi on a 
function of 1-p___x/ from Zaslavsky (1997). 

Pi 

An alternative approach to determine the paramet- 
ric form of f i  is to start  with the form of the three 
year CPS average used in the SAIPE modeling pro- 
cedure. We note: 

3 

- 

i ki niJ 
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where ni is the SAIPE population estimate, yi is 
the three year CPS average, k[ - ~ j  k'j, k*j is the 
number of households in county i in year j in the 
CPS sample that  contain related children aged 5-17, 
ni~ is the CPS poverty universe estimate for county 

, * is the CPS estimate of number of i in year j and Yij 
poor in county i in year j. We note that  for year j,  
the variance for county i can be modeled as follows: 

, 3(1 - P i j )  
kij deff(y;j) 

Now, assuming the first two moments for pij are 
consistent for every year j ,  and assuming the same 
underlying distribution of the design effect for every 
year, we can determine the variance for yi: 

Var(yi)  V a r ( E  ( ki~ Yi~ 

. ))  = 

j U 

2 
ni )uipi(1 - pi)deff(y*) = 

(k; j )  ~ <~k~ k;2k;~ 
w h e r e u i i s ( ~ j (  kij )+'9~/k~iki2 +'9v~k,~k~ ,) and 
deft(y[) is the design effect for county i taken to 
be common across the three years. To find ui, we 
assume the correlation for adjacent year CPS esti- 
mates is .45 and for non-adjacent year CPS esti- 
mates is 0, as given in U.S. Bureau of the Census 
(1995). Equating this to the form for Var(IJi) from 
our model yields 

pi(1 - P i )  
f ini  

This yields 

1 
L ;)'k*'2 uipi(1 - pi)deff(y*) 

(k*) 2 1 

n i t t i  d e f t  

There are several options for modeling the design 
effect in fi. One is to assume a constant form across 
counties, e.g. deft = e ~°. Another is to assume that  
the design effect varies by sample size, e.g. deft = 

For this paper, we have chosen to focus on the four 
potential parameterizations of fi listed below" 

Model k 

(},)~1 e x p ( - % )  
(k?i~'l exp (--"/0) 

ni 

(k*)~ exp(-%) 
n i u i  

(k~)~ (k;)- ' r l  e x p ( - % )  
n i u i  

Model 1 is the original as stated in Fisher and Asher 
(1999). In our procedure, all four models use the 
1259 counties for which k~ is greater than zero. 

2.3 Pr iors  and H y p e r p r i o r s  

We take the mixing distribution for p, which is the 
' t rue'  poverty ratio in county i" 

Pi ~ Beta(exp(Xif l )no,  (1 - exp(Xif l)no),  

Under this parameterization the expected value 
of pilfl, no is exp(Xifl). Xi is formed through a 
principal components analysis based on the correla- 
tion matrix of predictors taken to be log values of 
measures of poverty. Use of principal components 
analysis reduces the dependence of the fl's, which 
allows for simpler implementation of a MCMC 
algorithm, exp(Xifl) represents the inverse-link 
function. The hyperpriors used for each of the four 
fi 's are as follows: 

For all four models: 

no "~ Gamma(I / I ,000,000,  1/100,000,000) 
~ Uniform (R e ) 

This parameterization of the prior for no yields a 
mean of 100 and a variance of 1X101°. 

For Models 1 and 2" 

% ~ Normal(-5,10) 
7, ,-~ Gamma(5/3 ,  5/6) 

The prior for 71 has a mean of .5 and a variance of 
.3. For Models 3 and 4: 

"Y0, ~'1 ~ Normal(0,5) 

The priors for all parameters were picked to be dif- 
fuse, and are diffuse compared to the resulting pos- 
terior distributions. The prior on "yl for Models 1 
and 2 is picked based on previous information; in 
the current SAIPE modeling procedure the sampling 
variance is believed to be modeled well by the square 
root of CPS sample size. Even so, this prior is dif- 
fuse compared to the posterior distributions for both 
models. 

2.4 I m p l e m e n t a t i o n  

The form of the approximated probability distribu- 
tion function and prior for Pi lead to an approximate 
posterior for the hyperparameters of the following 
form: 
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p* (~, no, y[y)  = p(no ,  13, "~) • 

H c i r ( f i n ~  + 1 ) r ( n o ) r ( f i y i  + g l ) r ( l i n i  + no - f iY i  - gi) 
r(-/~.~ :~l)r(~n~ - - ~ / ~ -  1)r(lin~ + no)r(g~)r(no - g~) 

i 

w h e r e  gi  - -  e x p ( X i / 3 ) n o .  

We form the posterior for pi in the standard way: 

P(Pi lY i ,~ ,  no, 3') = B e t a ( f i y i  + gl, f i n i  - f i y i  - 9i + no) (2) 

The posterior distributions of the hyperparameters 
are simulated using a multi-step Metropolis algo- 
rithm. Within each iteration, a gaussian candidate 
generating function is formed for each parameter 
separately, whose mean is the previous value for the 
parameter. Then, identically for each iteration, a 
jump for each parameter is determined as follows. 
Let 0 be a vector of the hyperparameters. Let 0-k 
represent the vector of hyperparameters with Ok re- 
moved. Let 0~ be a draw of parameter k at iteration 
t. Then 

p * ( O *k , o t_-kl l f f  ) 
r - -  

p* ( O tk- ~ , O t_-kl [ ~7) 

The jumping rule becomes: 0 t * k - Ok with prob- 
ability rain(r, 1), otherwise 0~ - 0~ -1 To test 
convergence, we create chains of length 100,000, 
remove the first 5000 iterations, take every tenth 
value from the remaining 95,000 iterations, and test 
the posterior draws of the hyperparameters using 
an Augmented Dickey-Fuller Test. Jump rates are 
between 20 and 25 percent for most parameters. For 
several of our models, convergence is also tested by 
starting several chains at different parameter values. 

Once a sample of hyperparameters is drawn, gener- 
ating a corresponding sample for Pi is done through 
a simple random draw from the Beta distribution in 
(2). Model fit is tested by a comparison to census 
values for proportion poor for 1990, and by a com- 
parison of the posterior predictive distribution to the 

yi's. 

3 R e s u l t s  

the different parameterizations of fi to have min- 
imal effect on the/~'s, so this result is not surprising. 

Pos te r io r  M o m e n t s  for no,  70, 71 

M 
1 
2 
3 
4 

nO 
a 

395.9 287.5 
486.5 333.1 
53.81 10.27 
56.73 16.19 

7o 
tL cr 
.8617 .2024 
-.1296 .1388 
1.17 .0763 
1.16 .1685 

71 
tt (~ 
.7543 .0501 
.7356 .0452 
NA NA 
.0038 .0686 

In the two models for which the parameters inform 
us about CPS design effect, we find that  using 
the posterior mean for 3'o gives us a deft of 3.18 
for Model 3 and a deft close to 3.22 for Model 4. 
Note that the parameter 71 in Model 4 represents a 
multiplicative factor of 1 to 1.03 in the final CPS 
design effect estimate, suggesting that a function 
for the design effect based on number of households 
with related children aged 5-17 in CPS sample is 
not effective. 

In the posterior distribution of the pi's, no rep- 
resents the weight on the equation of predictive 
variables (on exp(X¢])), and f ini  represents the 
weight on the iSi's. The values for no in comparison 
t o  f i r t i  indicate whether a model relies on the 
regression equation more heavily than the CPS 
estimates. 

To test for model fit, we calculate the mean of 
the posterior means for the pi's, the mean relative 
difference from the census poverty proportions for 
1990, and the absolute mean relative difference from 
the census poverty proportions for 1990. These 
three statistics allow an external validation of the 
models; we use the census poverty proportions as 
an imperfect "gold standard." We compare these 
results to results from the current SAIPE model 
described in the introduction, using the same 
1259 counties as used for the modeling procedures 
described in this paper. $1 represents estimates 
before raking to state totals, and $2 represents 
estimates after this raking. 

The chart below shows results for the four models. 
The column labeled "M" represents the model 
number. Posterior distributions for the ~'s are 
not listed due to confidentiality constraints. The 
/3's for the four models are quite similar, however: 
Models 3 and 4 are identical in the first two 
significant digits, and Models 2, 3, and 4 are closer 
to each other than Model 1. We would expect 

We also perform a goodness of fit test using the 
statistic T = ~ ( y i -  E(y i ) )2 /Var(y i )  for both the 
original CPS yi's and for draws from the posterior 
predictive distribution for the yi's. We determine 
these statistics for every iteration, and then era- 
pirically determine Pr(T(y  rep, O) >_ T(y,  0)) as de- 
scribed in Gelman et al. (1995). 
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Fit  Stat is t ics  

Poster ior  
M Mean,  i5i 
1 .1651 
2 .1664 
3 .1653 
4 .1652 
s~ N/A 
S2 N / A  

Mean Rel. 
Diff. 
.0120 
.0275 
.0198 
.0195 
-.0027 
.0396 

Abs. Mean Fit  
Rel. Diff. Stat .  
.1260 .6245 ' 
.1265 .5925 
.1785 .6103 
.1765 .6237 
.1346 N / A  
.1396 N / A  

All four models produce posterior means of 10i 
that are identical to two significant digits and 
similar mean relative differences. Absolute mean 
relative differences for Models 3 and 4, however, 
are considerably larger than those for Models 
1 and 2, and for the current SAIPE modeling 
procedure before and after raking. While the 
results for Models 3 and 4 may seem discouraging, 
the CPS universe is different than the census 
universe. As a result, poverty proportions measure 
a different population for each, and although we 
use the census poverty estimates as a check for 
model fit, we do not believe that CPS and census 
poverty estimates should be identical. A remaining 
question is what "distance" represents the true 
difference between CPS and census proportion poor. 

Finally, a note: we know now that the results listed 
in Fisher and Asher (1999) for no, 70, and 71 do 
not represent accurate posterior distributions due 
to an error in the random number generation for 
the candidate generating functions used to produce 
that paper's results. The impact of that error on 
posterior distribution of the pi's, however, was 
minimal. Results in this paper for Model 1 should 
supersede results given in Fisher and Asher (1999); 
further information will appear in an addendum to 
that paper. 

Future work will include formulating a discrete scal- 
ing parameter function, removing the need for an 
approximated pdf. 
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