Visit NASA's Home Page Jet Propulsion Laboratory California Institute of Technology View the NASA Portal Click to search JPL Visit JPL Home Page Proceed to JPL's Earth Page Proceed to JPL's Solar System Page Proceed to JPL's Stars & Galaxies Page Proceed to JPL's Technology Page Proceed to JPL's People and Facilities Photojournal Home Page View the Photojournal Image Gallery
Top navigation bar

PIA03910: Medusae Fossae
Target Name: Mars
Is a satellite of: Sol (our sun)
Mission: 2001 Mars Odyssey
Spacecraft: 2001 Mars Odyssey
Instrument: Thermal Emission Imaging System
Product Size: 1240 samples x 3043 lines
Produced By: Arizona State University
Producer ID: 20020731A
Full-Res TIFF: PIA03910.tif (1.767 MB)
Full-Res JPEG: PIA03910.jpg (449.7 kB)

Click on the image to download a moderately sized image in JPEG format (possibly reduced in size from original).

Original Caption Released with Image:

(Released 31 July 2002)
This image crosses the equator at about 155 W longitude and shows a sample of the middle member of the Medusae Fossae formation. The layers exposed in the southeast-facing scarp suggest that there is a fairly competent unit underlying the mesa in the center of the image. Dust-avalanches are apparent in the crater depression near the middle of the image. The mesa of Medusae Fossae material has the geomorphic signatures that are typical of the formation elsewhere on Mars, but the surface is probably heavily mantled with fine dust, masking the small-scale character of the unit. The close proximity of the Medusae Fossae unit to the Tharsis region may suggest that it is an ignimbrite or volcanic airfall deposit, but it's eroded character hasn't preserved the primary depositional features that would give away the secrets of formation. One of the most interesting feature in the image is the high-standing knob at the base of the scarp in the lower portion of the image. This knob or butte is high standing because it is composed of material that is not as easily eroded as the rest of the unit. There are a number of possible explanations for this feature, including volcano, inverted crater, or some localized process that caused once friable material to become cemented. Another interesting set of features are the long troughs on the slope in the lower portion of the image. The fact that the features keep the same width for the entire length suggests that these are not simple landslides.

Image Credit:
NASA/JPL/Arizona State University


Latest Images Search Methods Animations Spacecraft & Telescopes Related Links Privacy/Copyright Image Use Policy Feedback Frequently Asked Questions Photojournal Home Page First Gov Freedom of Information Act NASA Home Page Webmaster
Bottom navigation bar