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The National Traffic Data Acquisition Conference, 1996 (NATDAC ‘96) was held
in Albuquerque, New Mexico on May 5-9, 1996. The Conference was co-
sponsored by the Federal Highway Administration, the Alliance for
Transportation Research, and the New Mexico State Highway and
Transportation Department.

Presentations covered a broad range of topics related to traffic monitoring.
General sessions included presentations covering policies, perspectives, and
innovations of interest to a wide audience. Three concurrent session tracks
were more specific in nature. Track “A” sessions focused on traffic monitoring in
urban areas - congestion and other performance monitoring activities, including
travel time and the unique challenges of data collection in and urban
environment. Track “B” sessions were oriented toward traffic monitoring
program management and data analysis with particular attention to vehicle
classification data. Track C” sessions focused on weigh-in-motion equipment
and truck weight issues including Long-Term Pavement Performance (LTPP)
project and data collection for weight enforcement.

There were 378 registered participants representing 48 states, the federal
government, academia, and private industry. Twenty international participants
attended. Thirty-four vendors maintained exhibition booths. One day was
dedicated to field demonstrations where participation vendors demonstrated
devices on the roadway for delegates to view. Altogether, NATDAC ‘96 had 119
presenters, panelists, and moderators involved in the program.

The papers within this publication are a compilation of those presented at
NATDAC ‘96. It is presented in two volumes. Volume I has General Sessions I,
II, III, and Track “A”. Volume II contains Track “B” and Track “C”.

Thank you to all the speakers, participants, and exhibitors who made the
conference an outstanding success.

  
iii



The contents of this report reflect the views of the authors of the papers and
abstracts, who are responsible for the facts and accuracy of the data presented.
The contents do not necessarily reflect the official views or policies of the New
Mexico State Highway and Transportation Department or the Federal Highway
Administration. This report does not constitute a standard, specification or
regulation.

Neither the United States government, nor the State of New Mexico endorse
products or manufacturers. Trade or manufacturer names appear herein only
because they are considered essential to the objec of this document.
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Classification Algorithms / Vehicle Classifier Accuracy
Bruce A. Harvey, Ph.D. and Glenn H. Champion

ITL/CND/Georgia Tech Research Institute
Georgia Institute of Technology

Atlanta, Georgia 30332-0821
Phone: 404-894-5597
FAX: 404-894-3906

ABSTRACT:

This paper describes the results of field tests of a number of common vehicle classification
devices currently in use throughout the United States. The objectives of these tests were to
determine the accuracy of vehicle counting devices, the adequacy of equipment to correctly sort
vehicles into the 13 FHWA vehicle classes, the accuracy of automatic measurement of overall
vehicle length, the effects of vehicle and axle sensor technology on the accuracy of the vehicle
classification, and the effects of vehicle repetitions and weather on axle sensors. These tests
were performed by the Georgia Tech Research Institute (GTRI) and the Georgia Department of
Transportation (GDOT). Funding for this project was provided by the Federal Highway
Administration (FHWA)  Office of Highway Information Management.

The tests were conducted on I-20 a high-volume interstate in the metro Atlanta area
where there was a good mix of vehicles. All FHWA vehicle classes were recorded during these
tests except triple trailers which are illegal in the state of Georgia. All the devices were installed
in a single lane and testing was conducted simultaneously on the same traffic stream to ensure a
fair comparison of the devices. The tests included two continuous 48-hour tests for detailed
vehicle-by-vehicle analysis, a 7-day test to determine long term effects on the vehicle
classification devices, and a brief test after pavement overlay at the test site.

Data reduction for these tests included vehicle-by-vehicle comparisons of vendor
classification to ground truth data. Ground truth data was collected using computer-assisted
analysis of each vehicle recorded on video by a camera mounted above and to the side of the
traffic lane. Markings on the roadway were used to derive vehicle length and axle spacing on
each of the vehicles.

The test setup, analysis methods and results of the tests as well as the problems
encountered are presented in this paper. This paper will focus on the classification accuracy of
the devices measured during the tests and the classification errors common to many of the
devices tested.

BACKGROUND & PURPOSE OF TESTS

Traffic  monitoring equipment and especially automatic vehicle classification (AVC) equipment
are a very important part of an overall traffic management system. Many devices are currently
being marketed which are designed to not only monitor traffic density and speed, but also to
classify vehicle into the 13 FHWA vehicle classes. The accuracy of the classification function
of these devices should be independently verified under normal operating conditions. The tests
described in this paper were used to evaluate nine (9) vendor’s equipments including 14 sensor
sets of these AVC devices in a side-by-side test under normal traffic conditions.

4



Harvey, B.A., Champion, G.H. 2

The tests performed under this program were designed to update the results from the
testing of vehicle classification devices by the State of Maine in 1984 for the FHWA. (I) New
technologies included in equipment for the current tests included new types of sensors (such as
piezoelectric axle sensors), and programmable classifiers that allow the user to specify the
dimensional thresholds for various vehicle types and to retain individual vehicle information.

The devices being tested in this project were commercially available, off-the shelf
devices representing the current state-of-the-application classification devices as of September
1992, when the project began. Participating vendors of vehicle classification devices loaned
their classification equipment, and most participated in the installation, check-out and calibration
of their equipment at the test site. The sensors used for the tests were specified by the vendor
and purchased by the project.

The objectives of the test were to:
l Determine the accuracy of vehicle counting devices.
l Determine the accuracy of various types of equipment to correctly sort vehicles into the

13 FHWA vehicle classes (as identified by the FHWA Traffic Monitoring Guide).
l Determine the accuracy of automatic measurement of axle spacings, wheel base length,

and overall vehicle length.
l Determine how vehicle and axle sensor technology affects the accuracy of the vehicle

classification.
l Determine the effects of vehicle repetitions, heavy axle loadings, and weather on

pneumatic tube axle sensors.
The final report for this project has been published and submitted to the FHWA. (2) A

supplementary report has been published summarizing the result of the pavement overlay test.
(3) A paper was presented at NATDAC ‘94 containing a description of the tests and presenting
preliminary general results. (4) This paper summarizes the fmal results from the project.
Individual vendor results are not provided in this paper, but are available in the final report.

TEST SET-UP & INSTALLATION

The tests were conducted on the “slow” or outside lane of westbound Interstate 20 near
Covington Georgia, 30 miles east of the metro Atlanta area. This particular location was chosen
for several practical reasons including available shoulder space for installing an equipment
trailer, available power, and a conveniently located overpass. This section of the roadway met
the conditions for the test including radius of curvature greater than 1740 meters (5700 feet), a
longitudinal gradient of less than 2 percent, and a cross-slope of less then 2 percent with 46
meters (150 feet) available for sensor locations. The width of the roadway lanes were between 3
and 3.7 meters (10 and 12 feet), the pavement surface was relatively smooth, and the normal
traffic flow was in the range of 45 and 105 kilometers per hour (30 to 65 miles per hour). The
test site also had a good mix of vehicles for all FHWA vehicle classes except triple trailers
(FHWA Class 13) which are illegal in the state of Georgia. Average daily traffic for the test
lane was approximately 10,000 vehicles.

Between December 1992 and April 1993, the sensors required by each of the
classification device vendors were installed by GDOT, mostly under the supervision of vendor
representatives or with provided instructions. The vendors participating in the test used only
piezoelectric axle sensors, or some combination of piezoelectric axle sensors and loop sensors.
Table 1 contains a list of the vendors participating in the tests and the sensor configuration used.

5
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Table 1. Equipment Vendors and Configurations

The sensor configuration is depicted using “P” to indicate a piezoelectric axle sensor (voltage
output), an “L” to depict a inductive loop and “PR” to denote a piezoelectric resistive device.
Therefore, a “P-L-P” configuration uses two piezoelectric sensors with a loop in between.

To monitor the traffic at the test site, two video cameras were installed. The first camera
was installed on an overpass at the end of the test site to monitor vehicles changing lanes within
the test area. The second was mounted on a utility pole that was set in place by GDOT off the
side of the road pointing down at the test lane at a 30” angle. Two specially mounted street
lights were used to illuminate the test lane at night. The pole camera was used to record the
individual vehicles in the traffic stream as they passed through the test site. The video tapes of
the traffic stream were used during the data reduction to form the ground truth (or reference)
data which listed vehicle class, axle spacings and overall vehicle length for each vehicle which
passed through the test site.

Figure 1 depicts the test set-up used for this project. A GDOT mobile trailer was used to
house computer equipment, the video recording equipment for the pole camera, and the test
personnel. The pole camera was mounted approximately 13.4 meters (44 feet) above the surface
of the road and 21 meters (69 feet) from the side of the road. The classification equipment was
installed along the right-hand lane of the highway with spacing sufficient to insure no
interference between vendor equipment (60 feet between loop sensors of different vendor
systems). Some of the vendor’s equipment had to be modified (primarily software
modifications) to provide individual vehicle records. In some cases, portable computers were
required to provide the storage capacity needed to store individual vehicle records.

A camera was mounted on an overpass near the end of the test site to provide a record of
vehicle changing lanes within the test site. This data was used to eliminate vehicles from the test
which enter or leave the right lane within the test site. The resulting ground truth data was a file
listing the vehicles which passed over all of the classification sensors and could be classified by
the video from the pole camera.

6

-
I
I

I
I
I
I
1
I
I

I
I
I
I
I



Harvey, B.A., Champion, G.H. 4

POLE CAMERA

\

 

VENDOR EQUIPMENT
(VEHICLE CLASSIFIERS)

Figure 1. Vehicle Classification Test Site

DESCRIPTION OF TESTS

The required tests for the project included two 48-hour tests for detailed vehicle-by-vehicle
analysis and a 7-day test to obtain longer term accuracy statistics. The classifier data collected
during the 48-hour tests was compared on a vehicle-by-vehicle basis with the ground truth data
set derived from the pole camera and the lane-change camera. During the 7-day tests, the
classifiers were programmed to collect vehicle counts for each vehicle class over 15 minute
intervals. This binned data was then compared to similarly binned ground truth data to obtain
longer term statistics for each of the classification systems.

The first 4%hour test was conducted on May 5 - 7, 1993 and the second 48-hour test was
conducted on September 9-11, 1993. Temperatures were moderate to warm for each of these
tests, and no measurable precipitation occurred during either test.

The augmented pneumatic tube test was conducted in parallel with the second 48-hour
test. Two pairs of pneumatic tubes attached to a single classifier were used to monitor the traffic
in both westbound lanes through the test site. One pair was used to monitor the outside (slow)
lane, and one pair was placed across both lanes. The purpose of the test was to determine if the
traffic in multiple individual lanes could be accurately monitored using the pneumatic tubes.
Technical problems with the data collection prevented the successful analysis of the data from
the pneumatic tube tests The Georgia DOT repeated this test after the completion of this project
and the data is not available for this paper.

The 7-day test was conducted in conjunction with the second 48-hour test. Binned data
on 15 minute intervals were recorded for five days following the second 48 hour test. The data
from each vendor’s equipment for the first 4%hours of the test were converted to binned data to
give a full seven days of binned data. This data was then used to compile long term statistics on
the performance of each classifier.

A pavement overlay test was performed following improvements to the highway at the
test site. The improvements included repaving the test lane. The repaving included a leveling
course of pavement (thickness ranging 0.5 to 1.4 inches), a 1 l/2 inch layer of dense asphaltic
concrete (B-mix) and a 3/4 inch layer of open-graded friction course (D-mix). Axle sensor
output voltages were measured and classifier performance was assessed after the leveling course
and after the layer of E-mix was applied and before D-mix was applied.

7



Harvey, B.A., Champion, G.H. 5

DATA REDUCTION
The data reduction required for this project consisted of two phases for each test. The first phase
was the reduction of the video data to a baseline set of vehicles with classifications, length and
axle spacings. The baseline set of data is referred to as the ground truth data for the test. The
second phase involves comparing the ground truth data to the data collected by each of the
vendor’s classification equipment.

Video data reduction from the pole camera was accomplished using the Computer
Vehicle Classification/Reduction System (CVCRS) developed by GTRI for this project. The
CVCRS consisted of a PC/486 computer with a video capture and processing card installed, a
second VGA monitor, and a video cassette recorder (VCR). Custom software was written to
allow a user to measure overall vehicle length, measure axle spacings, and classify each vehicle
in an efficient manner.

Calibration marks in the test lane allowed the user to calibrate the CVCRS measurements
and to correct for the viewing angle of the pole camera. The pole camera video tape of the
traffic stream included a time stamp which was read by the CVCRS and stored with each vehicle
record. The accuracy of the axle spacing measurements made by the CVCRS was assessed using
a specially marked and manually measured test vehicle provided by the GDOT. The test vehicle
was driven through the test site several times at varying speeds during the first 4%hour test. The
tests revealed that the mean error of the CVCRS measurements was 6.1 cm (2.4 inches) and the
standard deviation was 3.3 cm (1.3 inches).

Video data reduction from the lane change camera consisted of identifying vehicles
which entered or exited the test lane within the length of the test site. The vehicles which did
change lanes were removed from the ground truth data record for the 48-hour tests. The
resulting data set included only vehicles which passed completely through the test site without
changing lanes.

The second phase of the analysis began with the conversion of data from the specific
formats of the individual members to a single, standard format for analysis. The results of the
individual classifiers were then compared against the ground truth data and a statistical analysis
performed.

The binned data from the 7-day test was used to determine the long term accuracy of the
classifiers tested. The total vehicles counted in each class and the number of axles counted were
compared against the ground truth data for the 7-day test. Total count volumes and percent
differences were compared to determine the counting accuracy of the classifiers. Also, statistics
on the accuracy of the classifiers during the first day of the test were compared against the
accuracies during the last day of the test to determine if the accuracy was affected by the length
of time in operation of the classifiers.

The peak outputs of the piezoelectric  axle sensors were measured during initial
installation of the equipment using an oscilloscope. After the leveling course and E-mix layers
of pavement were completed during highway improvements, these measurements were repeated
for comparison. A manual assessment of the classification performance of the working systems
was performed after the leveling course. After the E-mix layer was applied, 4-hour binned tests
were performed on some the working classifiers in order to assess classifier accuracy.

-
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CLASSIFICATION ACCURACY RESULTS FROM TESTS

The following results summarize the performance of the vehicle classification systems tested
under this program. To avoid the appearance of a competitive evaluation, the names of the
companies and equipments have been removed from the results. Each individual classifier is
identified by a letter (A, B, . ..) which remains constant throughout the presentation of the results.
Also, all piezoelectric axle sensors are indicated by the letter ‘P’, including the resistive sensors.
The specific results of each individual classifier is presented in this project’s final report. (2)

Overall Classification Accuracy
The classification accuracy for each system was summarized two ways. First, a classification
matrix was generated which compared the actual classification of vehicles (ground truth) to the
classification determined by the system under test. Then, the overall classification accuracy was
calculated (ii percent) for each system.

Figure 2 shows a typical classification matrix derived for one of the vehicle classifiers
tested. The matrix is divided into two sub-matrices. The top sub-matrix displays the actual
vehicle count while the bottom sub-matrix displays the same data as a percent of the total
vehicles of each class (from ground truth). The first column in each sub-matrix indicates the
actual (ground truth) classification of the vehicles. The top row of each sub-matrix indicates the
vehicle classification assigned by the system under test. Therefore, the number located in row
‘2’, column ‘3’ of the top sub-matrix is the number of class 2 (passenger cars) which were
classified as class 3 (pickups, vans) by the system being tested. In the bottom sub-matrix, the
number is the percent of class 2 vehicles classified as class 3.

Two general results were derived from these classification matrices. First, the most
common classification errors were between class 2 and class 3 vehicles. This error is
understandable since both of these classes consist of Z-axle, 4-tire vehicles with often identical
wheelbases. Second, the most accurately classified vehicle classes were the large trucks (classes
8 - 12).

Table 2 summarizes the overall classification accuracy of the systems tested. Included in
this table is the percentage of axle sensor errors (vehicles with miscounted axles) and the
percentage of correctly classified vehicles recorded for each system. Classification accuracy of
the systems if classes 2 and 3 were combined (assumed to be a single class of vehicles) are
included in parentheses. As expected from the classification matrices, the classification accuracy
is significantly higher when classes 2 and 3 are combined into a single class of vehicles.

Classification Accuracy Versus Axle Sensor Errors
A strong correlation between the accuracy of a classifier and the reliability of the axle sensor
used was identified during this test. To quantify this correlation, the classification accuracy of
each configuration tested was plotted versus the percentage of axle sensor errors (defmed as
miscounted axles on a vehicle). Figure 3 depicts the classification accuracy as a function of
percent axle sensor errors with and without combining vehicle classes 2 and 3.. With the
exception of one or two systems, this figure shows that axle sensor reliability has a very strong
effect on the performance of the vehicle classifiers. It appears that if axle sensor error were
eliminated, most of the classifiers would be nearly 98% accurate with classes 2 and 3 combined.
This result indicates that the axle sensor installation is critical to the performance of the vehicle
classification systems.

9
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Table 2. Overall Classification Accuracy

* - Software Bug During Test 2
N/A - Not Available for This Test
(#) - Percent Correctly Classified with Classes 2 & 3 Combined

Accuracy of Axle Spacing Measurements
Another objective of these tests was to determine accuracy of the axle spacing measurements
made by the classification systems tested. The average axle spacing measurement error and
standard deviation of the errors for each system tested was calculated by comparison with
ground truth data. Note that vehicles for which the axle count was incorrect were necessarily
removed from consideration in this analysis. With very few exceptions, the errors and standard
deviation calculated were on the same order as those for the overall length of the test vehicle
used to validate the data reduction. The average axle spacing measurement error and standard
deviation for the test vehicle measured by the CVCRS was 6.1 cm and 3.3 cm.

II
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Accuracy of Overall Length Measurements
Some of the devices tested measure overall, bumper-to-bumper length of the vehicles. The
accuracy of these measurements (average error and standard deviation) were calculated as part of
this project. Table 3 lists the results of these calculations.

The accuracy of the classifiers in measuring overall length was considerably worse than
the accuracy in measuring axle spacings. This is logical given that the overall length
measurements must be made using the outputs of the inductive loops. The axle spacing
measurements rely primarily on the output from precise tire contact with the narrow
piezoelectric axle sensors.

Table 3. Overall Length Measurement Errors
(All Measurements in Feet)

2 -2.152 10.493
N P-L-P 1 -1.271 a.747

2 -3.717 4.613
0 P-L-P 1 -1.196 5.845

2 -2.382 1.600

Long-Term Count/Classification Accuracy Results
The performance of the classifiers as a function of time after installation is of great importance
for traffic planning and monitoring. The accuracy of the classifiers as a function of time was
assessed in this performance by comparing the accuracies of the classifiers during first 48-hour
test to the accuracies during second 48-hour test, and by reviewing the accuracies of the first and
last days of the 7-day test.

The classification accuracy of most systems improved from the first to the second 48-
hour test. This was primarily due to rehabilitation of the piezoelectric axle sensors for the
second test. Asphaltic tape was placed on the piezoelectric sensors on locations where the sensor
height was near or below that of the roadway. This improved the outputs of several of the
piezoelectric sensors. Also, several broken piezoelectric sensors were replaced between the
tests. There was no significant trend in accuracy for the classifiers for which no rehabilitation or
changes were made to the axle sensors.

Comparing the performance of the classifiers on the first and last days of the 7-day test
showed no general trend in accuracy versus time. Some of the vendor systems improved over
the seven days, while other had declining performance. Most of the time the change was nearly
insignificant. It is concluded, therefore, that the accuracy of the classifier/sensor combination is
dependent on the particular system and installation. No general trends were evident.

13
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RESULTS OF THE OVERLAY TESTS

The overlay tests were performed to determine how well the vehicle classifiers performed after
the sensors (loop and piezoelectric) were overlaid with new pavement. The highway
improvements at the test site afforded a unique opportunity to study the effects of pavement
overlay on a number of sensors simultaneously.

The analysis of the piezoelectric axle sensor effects due to pavement overlay was
conducted by measuring the output voltage of the sensors at installation, after the leveling course
of pavement was installed and again after the E-mix layer was completed. Such voltage
measurements were made and recorded on only 6 of the piezoelectric axle sensors during
original installation. Typical output voltages were up to 400 mV and 2000 mV for class 2 and
class 9 vehicles, respectively. After the leveling course was applied the maximum recorded
output voltages were 250 mV and 700 mV for vehicle classes 2 and 9, respectively. After the E-
mix pavement layer was completed, the maximum output voltages measured from the
piezoelectric axle sensors were 100 mV and 400 mV for vehicle classes 2 and 9, respectively.

The ability of the classifiers to accurately classify vehicles was, for all practical purposes,
negated by the addition of pavement layers. After the leveling course, a quick assessment of the
performance of the classifiers was conducted by manually observing the classification outputs.
The results were discussed with the vendors and adjustments were made to sensitivities and
sensor gains where possible. A 4-hour classification test was performed on some of the working
systems after the E-mix layer was applied and after all adjustments were made.

No classifier tested could achieve adequate classification accuracies after all adjustments
were made following the E-mix pavement laydown. Some classifiers detected no vehicles,
others detected only a few heavy truck axles, and some detected multiple extra axles (apparently
due to noise detected after sensitivities were lowered). Only two systems performed well
enough to calculate classification accuracy performance. Both of these classifiers over counted
vehicles by more the 20%, over counted axles by more than 10% and had very poor
classification performance.

The overall conclusion from the overlay tests is that there is insufficient adjustments and
filtering in the systems tested to compensate for the reduced output voltages of the piezoelectric
axles sensors after pavement overlay. With these systems, new axle sensor would have to be
installed if the traffic monitoring site was overlaid with new pavement.

OTHER GENERAL RESULTS

A few other general results can be derived from the installation of the classifiers and the conduct
of the tests. Some of these conclusions are as follows:

l Experiences from the installation and check-out of the sensors and classifiers
resulted in several conclusions of interest. First, while the inductive loops caused no problems,
roughly l/3 of piezoelectric axle sensors installed failed and had to be replaced. Also, the in-
pavement piezoelectric sensors were very sensitive to installation depth and the rigid sensors
were difficult to install with even very slight rutting in the lane. These problems are not entirely
unexpected and have been addressed in an earlier report (5). Often the classifier sensitivities had
to be adjusted to obtain proper response for all types and sizes of vehicles.

l Most of the classifiers tested worked without any or with very minor problems
when they were first installed. Most, however, required some calibration or adjustment in order
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to optiiize their performance. In some case, this adjustment required the devices to be opened
to access internal adjustments while in other cases, the adjustments were made using software.
This showed that many of the devices are not simply turnkey devices, but instead would require
adjustments after installation. This would only be a minor problem if the devices were
permanently installed or used for long periods of time, but multiple adjustments may be
required.

l One problem that was anticipated prior to the test was the misclassification of
pole trucks, which are in Class 9 (tractor trailers), carrying utility poles or logs. The trailers on
these units consist of a long metal beam between the trailer axles and the front of the trailer. It
was anticipated that the classifiers would sometimes mistake the beam or pole for a gap between
vehicles and classified the truck-trailer combination as two separate vehicles. Where a Class 9
vehicle (tractor trailer) was expected, the devices might sometimes classified it as a Class 6 (3-
axle truck) and a Class 2 (car) vehicle. This problem turned out to occur only infrequently and
did not significantly impact the results of the tests.

l The classification accuracy of the units tested was also assessed as a function of
the air and pavement temperature at the test site. Since the winter test was not conducted, the
range of temperatures experienced was rather limited. The data did, however, tend to show a
slight reduction in classification accuracy as temperature increased.

CONCLUSIONS

This study quantified the ranges of expected accuracies for the state-of-the-application vehicle
classification devices (as of September 1992). It also provided information on axle spacing and
overall length measurement accuracies for the classifiers. The installation and operation of the
devices also provided valuable results. The overall results and conclusions for this project
include:

For more information on the performance of individual classifiers tested, refer to the
project final report published in June 1995 (2).

15

Piezoelectric axle sensor failures were a significant problem during and immediately
after installation. A greater percentage of the flexible piezoelectric sensors failed than
did rigid sensors.
Piezoelectric axle sensors performance was the key factor in the overall classification
accuracy of the devices tested. Even slight rutting in the lane caused significant
problems in installation and operation of most axle sensors.
All of the classifiers required some adjustments after installation; some even required
disassembly of the cases to adjust internal elements. None were turnkey devices.
Classification errors were most common between Classes 2 (passenger cars) and 3
(pickups and minivans).
The most accurately classified vehicle was the tractor trailers (Class 9), probably due to
heavy axle loadings and unique axle configuration.
The measurement of axle spacings was very accurate for most devices.
Overall vehicle length measurement accuracies were less accurate due to the use of
inductive loops to make the measurements.
The augmented pneumatic tube test should be repeated due to a setup error.
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Abstract

Traffic classification techniques were evaluated using data from a 1993 investigation of the traffic
flow patterns on I-20 in Georgia. First we improved the data by sifting through the data base,
checking against the original video for questionable events and removing and/or repairing ques-
tionable events. We used this data base to critique the performance quantitatively of a classifica-
tion method known as Scheme F. As a context for improving the approach, we show in this paper
that scheme F can be represented as a McCullogh-Pitts neural network, or as an equivalent
decomposition of the plane. We found that Scheme F, among other things, severely misrepresents
the number of vehicles in Class 3 by labeling them as Class 2. After discussing the basic classifi-
cation problem in terms of what is measured, and what is the desired prediction goal, we set forth
desirable characteristics of the classification scheme and describe a recurrent neural network sys-
tem that partitions the high dimensional space up into bins for each axle separation. The collec-
tion of bin numbers, one for each of the axle separations, specifies a region in the axle space
called a hyper-bin. All the vehicles counted that have the same set of bin numbers are in the same
hyper-bin. The probability of the occurrence of a particular class in that hyper-bin is the relative
frequency with which that class occurs in that set of bin numbers. This type of algorithm produces
classification results that are much more balanced and uniform with respect to Classes 2 and 3 and
Class 10. In particular, the cancellation of errors of classification that occurs is for many applica-
tions the ideal classification scenario. The neural network results are presented in the form of a
primary classification network and a reclassification network, the performance matrices for which
are presented. Cancellation of errors is site dependent and the question of generalization to many
sites suggests another measurement of goodness for a classification scheme that takes into
account the need to operate the network under a variety of operating conditions.
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Introduction

An unofficial standard for the classification of axle-spacing-based highway data into the thirteen
classes of the Federal Highway Administration was developed by the Maine Highway Depart-
ment a decade ago and is known as Scheme F. This scheme is not a FHWA standard and presents
a highly inaccurate count of Class 2 and Class 3 vehicles in the Georgia study. We show that the
assumptions built into this method can be overcome by adaptive means or by using probabilistic
neural networks. Furthermore, these more general methods of characterizing partitioned axle
parameter space, yield higher precision results.

Regions of parameter space requiring special attention are those regions where two or more of the
13 FHWA classes can not be uniquely separated. The Scheme F approach rigidly split parameter
space into fixed compartments that were declared by fiat to be one and only one of the 13 classes.
It was recognized that this approach was not strictly correct, but one would hope that the bound-
aries could be carefully modified so that the errors incurred in one region of parameter space
would cancel those in the other regions. For this to be the case, a number of assumptions have to
hold. One of these assumptions is that the distribution of passenger cars (Class 2) and pickup-up
trucks and vans (Class 3) remains of invariant shape from place to place. Another is that the rela-
tive numbers of Class 2 and Class 3 vehicles conforms to a fixed ratio. Common sense opposes
these assumptions as does extensive ground truth data. We utilize the 1993 study of traffic on 120
near Covington Georgia to demonstrate that the assumption of cancelling errors under scheme F
does not hold, even remotely.

The 120 data suggest new approaches to the axle-based vehicle classification process. One of
these is application of a probabilistic neural network that assumes static distributions. This net-
work is tested with two data sets both of which have good cancellation properties. We also discuss
adaptive classification procedures, the simplest of which is the moving demarcation line model.
This model moves the linear boundary between two classes depending on observations. This
method is highly non-linear in that it involves ascertaining the characteristics of the flow from all
of the vehicles before deciding how to partition up the ambiguous regions of parameter space.
Although the subclass decomposition is often well behaved, we point out instances where the con-
cept of axle spectra has overwhelming experimental difficulties preventing its realization. Practi-
cal data-reduction difficulties that occurred in acquiring the Georgia data are also discussed.

Utilizing the Georgia data, we describe a new neural net approach, reclassification of the rejected
vehicles by a specially designed network for that purpose. Combined with the adaptive approach
described above for the overlap regions, this approach promises greatly enhanced generalizability
that tailors itself to particular geographic sites and/or functional categories.
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Scheme F results

Scheme F is a method developed by the Maine Department of Transportation [Wyman 1984] for
the classification of vehicles. The basic regions for Scheme F are shown in Table 1 for each of the
13 Classes of the FHWA classification. Scheme F has not been approved by the FHWA as a
method of classification nor has it been based upon a systematic analysis of an underlying data-
base that supports it as an optimal data classification scheme. We hold that any modem classifica-
tion scheme must meet the criterion of conforming well to an established database. The results of
classification using Scheme F of the Georgia I20 database are presented in Tables 2 and 3. These
results closely track the relative performance matrices reported by Harvey for manufactured
equipment in his study. That is, it appears that many vendors are basing their classification scheme
on something that closely resembles Scheme F. The lack of symmetry of errors can be seen by
examination of the vehicles misclassified as Class 2 while they are really Class3. These are com-
pared to the Class 2 vehicles that have been classified as Class 3. The latter are in the hundreds
whereas the former are in the thousands. This type of asymmetry is characteristic of Scheme F
shown in Tables 1 and 2. Another problem is the misclassification of Class 10 vehicles as Class
13. The definition of Scheme F that we used is shown in Table 3.

Next we point out that Scheme F can be formulated as a McCulloch-Pitts neural network [McCul-
loch, 1943]; an example of this formulation is shown in Figure 1. Here we look at all the 3 axle
vehicles. They can fall into Classes 2, 3, 4, 6 or 8. The McCulloch-Pitts neural network has two
input nodes; one for the separation between axles 1 and 2 and the other for axle separations 2 and
3. We give an example and trace how the neural net responds to inputs of 12 and 14 respectively.

(T=lO>

Class 3

Class 4

Class 6

Class 2

Class 8

Figure 1: Scheme F for three axles as a McCulloch-Pitts neural net

With 12 for the first axle separation (l-2), only those nodes that are above threshold fire. The
dashed line indicates a negative weight of - 1 _ Thus 12 becomes -12 going into the t=-1 0 node.
Because -12 is below -10, the second node in the first layer does not fire. The first node in the first
layer has a threshold of 10 which is below the value of 12, and thus it fires in the above threshold
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condition. It is the only node that fires in the first layer that is connected to the first axle separation
value. The second axle separation has 14 as the input. For the first of two nodes to which it is con-
nected, the weight is -1 as indicated by the dashed arrow; thus the value going into the t=- 10 node
is -14, a value that is below threshold. Thus the first of the two nodes in layer one attached to (2-3)
does not fire. Neither does the second node with t= 18 because 14 is below threshold. For these
values, the only node that fires in the first layer is the first node. When a node fires it produces a
value of unity; otherwise it produces zero.

We now examine our special case for the second layer neurons that are denoted by A,B,C, and D.
Of these, B,C, and D fire but A does not. The neuron C fires because it is connected to the firing
neuron of layer 1. Neurons B and D fire because they have thresholds of 0 and have 0 inputs. Neu-
ron A does not fire because none of its inputs are active. The interpretation of these nodes may be
helpful in understanding the remaining part of the net: Node A fires whenever Class 3 is not
active. Node B fires whenever the second axle separation is less than 19. Node C fires whenever
Class 2 is not active. Node D fires’ whenever the second separation is less than 18.

The third layer is the classification layer. The reader may establish a few facts: Class 2 occurs
whenever node C does not fire. Class 3 occurs whenever A does not fire. Class 4 occurs whenever
B does not fire. The Class 6 and Class 8 nodes rely on the fact that the neural inputs sum the sig-
nals entering the node. Each of the lettered nodes emit either a zero or unity pulse; only if all four
inputs leading to Class 6 fire will the threshold of 4 be achieved. Because of the negative weight
of - 1 for the D node leading to Class 8, its edge can contribute only zero or - 1 to the sum, whereas
the edge from the B node can contribute either zero or unity depending on its firing condition. For
this case only, if B fires and D does not, will the Class 8 node occur.

Although the language of how a neural network operates is more difficult for most humans to fol-
low in detail, its description, as given above, is nearly in the form required for a computer to
absorb. Humans have a highly developed visual cortex and pictures are much more to their liking
than the set of 15 rules computers like so well. In Figure 2, we show the same three axle system as
a picture with the shaded areas representing regions where the Scheme F classification occurs.
The axle separation (l-2) is plotted as the ordinate and the separation (2-3) is plotted as the
abscissa. The scale can be established by a comparison with Table 1. Figure 2 contains the same
information as Figure 1, but it is in a much more digestible form.
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Class IV

Class II

I

(2-3)

Figure 2: Scheme F for three axle vehicles visually

We can see that a neural network partitions a plane up into black and white regions that corre-
spond to whether a particular node fires or does not fire. Although this is not quite in the form
required for a classification scheme, it is very close. The scheme we describe later involves divid-
ing each axle spacing up into bins, thereby dividing the plane up into a set of rectangular (hyper-
bin) regions. In Scheme F, if properly defined, the hyper-bins falI into one - and only one - of the
13 classes. In the general scheme described later, known as a probabilistic neural network, each of
the hyper-bins has a mixture of the classes. For a given data set, a particular hyper-bin could con-
tain, for instance, 10 vehicles in Class 2 and 34 vehicles in Class 3.

The Neural Network Approach

The basic information that we measure on the highway can be cast in terms of the hyper-bin in
which the axle separations of the vehicle falls. If two vehicles fall into the same hyper-bin of bins
with bin numbers (4,3,5,0,0,0)  their axle separations are considered to be equal within the context
of our model. We use the convention of bin 0 for the i’th axle separation of a vehicle when that
vehicle has too few axles to generate that separation. Thus, the example vehicle described is a four
axle vehicle with three axle separations. All vehicles having these bins for its axles will be com-
pared against each other. If a hyper-bin of bins has only one class of vehicle, it can be assigned to
that class uniquely. The most general situation is for a hyper-bin of bins to have more than one
type of vehicle. Accumulation of the number of each type of vehicle that falls into a given hyper-
bin of bins occurs during the training phase of the neural network. These numbers are then con-
verted into a probability (more correctly a likelihood) of finding the vehicle in that hyper-bin of
bins. In the testing phase, a vehicle that falls into a given hyper-bin of bins is equally considered
to be any of the vehicles that have fallen into that hyper-bin during the training phase. Thus, a
probability for each class of the 13 classes of the FHWA is assigned to the test vehicle according
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to these numbers. In the course of determining the performance matrix during the testing phase,
the performance matrix element is incremented according to the probability.

The neural network has six axle separations as the inputs. Each axle separation has a range of con-
tinuous values whose lower range is greater than zero. The value of zero is used to indicate that
the vehicle is missing such a separation. The continuous range of separations is broken up into a
user determined number of bins. A technical problem in achieving such a system is the potentially
large number of bins that can occur. For the example below, the number of bin combinations is 3.2
million. The computer science technique of a hash table [Sedgewick, 94] is used to condense the
number of possibilities to only those hyper-bins that actually have vehicles. This is approximately
a thousand such hyper-bins, a savings of about a factor of 3 000 in the number of storage elements
that could be accessed as the storage bins. The net classification time is less than the input and
output time - less than 6 seconds total on a SUN SPARC 10.

Table 4: Axle Spacings in 30.48 cm units

axle spacing min space max space number of bins

1 4.0 30.5 40

2 I 2.7 I 63.0 I 40

3 I 1.8 52 I 20 I
4 2.2 I 43 I 20

5 I 2.2 I 31 I 10

6 I 3.5 I 18

Table 5: Axle Spacings for reject classification

In this technique, hyper-bins of parameter space are occupied during training and then accessed
during testing. The data is divided into three parts by random choice: org.tm, org.tes, and org.tst,
the training and two testing sets. Of the approximately 13,5 10 vehicles in file org.tes and 13,649
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Table 6: org.tes data of georgia 1993 study probabilistic neural net 40 40 20 20 10 1 bins

I
146

4 18

11 49 11

12 12 4

13 0

Table 7: org.tst data of Georgia 1993 study

11 54 14

12 14 6

13 00 I
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Table 8: Truth Guess Reclassification with network applied to org.tst with spacings from
Table 5. If all the vehicles listed as rejected in Table 7 are reclassified with this net, less than
one vehicle(0.4) is rejected. The 1 in truth item 10 under rej column is the count in Class 13.
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vehicles in the org.tst, 282 and 355 vehicles, respectively, are rejected as not being in any of the
bins established during training. A methodology that we plan to adopt in the near future is to
examine each of the rejected vehicles and determine how close they are to the established data set.
Then to incorporate them if appropriate. The reclassification neural network classification is
shown in Table 8. Of the combined nets, only one vehicle is unclassified. The rejected Class 10
and Class 12 vehicles are shown in Table 10. These numbers are consistent with Tables 5 and 8.

The classification results are shown in Tables 6 and 7. These are seen to provide a much cleaner
division in Class 2 and 3 and Class 3 and 5 than provided by Scheme F. Here the errors of classifi-
cation of Class 2 as Class 3 and Class 3 as Class 2 balance out, giving the correct overall numbers
in each class. Likewise, the errors in identifying Class 3 as Class 5 and Class 5 as Class 3 cancel
out in a similar fashion.

TABLE IO. Hyper-Bins of Rejected vehicles in Class 10 and Class 12

3. Utility Theory
When there are many applications for a given set of data, utility theory can help sort out the
important aspects of the data. The details of a particular application govern the utility function.
One can imagine many scenarios of usage of traffic data: the most common involves estimation
of a parameter at a particular site that depends linearly on the number of vehicles in each class, or
a derived quantity such as the average speed times the number of vehicles, or perhaps, the equiva-
lent single axle loadings of all vehicles. An enforcement utility function, on the other hand, might
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involve specification of the characteristics of a single stoIen vehicle. The best classification
scheme depends on the characteristics of the associated utility function. For estimation the follow-
ing utility function is appropriate for repeated samples with the same distribution at a given site:

Q = -~Wj(M,.+.)2j i
ij

where Wi indicates the importance of a particular class and Mij is the performance matrix ele-
ment. This indicates that cancellation of errors is useful,; thus, if Class 2 vehicles are misidentified
as Class 3 in the same number as Class 3 vehicles are misidentified as Class 2, the overall counts
will be preserved and to the extent that cancellation happens, the prediction with cancellation will
be as good as that without.

The problem is that most classification schemes are not geared for one site. Even if they were, the
variations in traffic flow at a single site can change with weather, degree of urbanization, techno-
logical factors, and the mission of society. In the language of neural networks, this phenomena is
called the problem of generalization. The network is trained under one set of circumstances and is
used for another; how does its performance change? In the case that the performance matrix
showed perfect performance, this would be expected to hold at all sites. When cancellation of
errors occurs, the cancellation effect depends on the volume of traffic in the two cancelling
classes. This is shown in the simple model moving demarcation line model, shown if Figure 4.

n

Demarcation Line

Figure 4: Moving demarcation line for intermediate case
The two distributions of vehicles are assumed to maintain the same shape, but have variable
amplitudes. If there are almost no vehicles in the second class, the height of the second triangle
will be very small. There will be almost no overlap area under it. This means that the demarcation
line moves to the right until the area under the first triangle, to the right of the line, is almost zero.
Contrariwise, if there are almost no vehicles in the first class, but lots of vehicles in the second
class, the first triangle will have nearly zero height while the second triangle remains tall. Then
the demarcation line moves to the left, until the area to the left of the demarcation line of the sec-
ond triangle is nearly zero. An intermediate case is shown in Figure 4. Other models that vary
with vehicle concentrations also show these effects and could be more important than the moving
demarcation line model in practice. One such model would be to utilize a least square fit to the
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observed profile with variable coefficients multiplying two basis distributions. The conclusion is
the same: namely a model’s generalization characteristics need to be examined in detail.

The generalization characteristics drives the importance of the diagonal matrix elements. The two
effects of cancellation of errors and large diagonal matrix elements in the performance matrix
suggest the following form of utility function to decide on the best classification scheme with data
derived from one site to be applied at other sites for the purpose of parameter estimation.

Q = ~Wi[~~-~ccM,-M,j)2]
i i

Here Wi indicates the relative importance of class i. The parameter c is chosen large if the same
distributions of vehicles occur at all sites and small if the variations at sites are totally unpredict-
able.

Conclusion
The undesirable characteristics of Scheme F have been described qualitatively and more generally
with utility theory. A recurrent probabilistic neural network with a reclassification network for the
rejected vehicles has been constructed and is a major remedy for the difficulties of Scheme F. The
framework of utility theory can be the basis for determination of a best algorithm that applies to a
variety of sites. With this and a study of the underlying phenomena at various sites, the details of
best algorithm implementation can be determined.
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TRAFFIC ANALYSIS EXPERT SYSTEM:

CONSIDERATIONS FOR IMPLEMENTATION

MARK FLINNER

MINNESOTA DEPARTMENT OF TRANSPORTATION

Using the state of Minnesota’s experience during 1995 as an example, this presentation will
share tips and advice on the use of the recently developed expert system for Automatic Traffic
Recorder (ATR) data screening and editing. Beginning first as a proof of concept project for short
duration as well as continuous traffic data, the Traffic Analysis Expert System (TAES) evolved into a
production oriented system that was jointly developed by Colorado, Kansas, Minnesota and the
FHWA. Last year’s NATDAC featured a presentation on TAES which outlined the theoretical
concepts and practical features of the system.

Following initial testing of the continuous traffic data component of TAES Minnesota began
to use TAES exclusively in its efforts to monitor the performance of its 140 continuous traffic
monitoring sites. Implementation considerations that will be addressed briefly include the following:

Assessing the effects of missing ATR data on a traffic monitoring and estimating program and the
role of the “Truth In Data” principle,
Polling and raw data integrity checks that must still take place outside of the TAES system,
Specially developed programs for using past years’ data files to create a historically-based ATR
specific target value and tolerance files essential to TAES,
What to do if one is adding a new site where no historical data is available,
Minnesota’s experience in “fine tuning” the rule base sensitivity in order to balance the benefits of
automated traffic data screening with the costs of manual, hourly data inspection,
Reporting against the fully edited TAES traffic record structure (expanded Card 3),
TAES work process limitations and benefits, and
Proposed changes and enhancements to TAES.
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“TRAFFIC EDIT PROCEDURES” POOLED FUND - PROJECT DIRECTION
AND STATUS REPORT

MARK FLINNER

MINNESOTA DEPARTMENT OF TRANSPORTATION

This presentation will describe the pooled fund activities as planned by sixteen states and the
FHWA Participating states, ranging from California to New York, Montana to Florida, responded
to the 1994 solicitation to contribute to the development of computerized traffic data editing routines
that either supplement existing routines or replace significant manual efforts. Recognizing very early
that there is much to be learned and shared, the pooled fund advisory committee intends to build
upon existing levels of understanding and expertise through:

l facilitated exchanges of and challenges to existing wisdom,

l analysis and synthesis of existing and proposed traffic data screening and editing
mechanisms,

l joint development of platform and operating system ‘independent’ data screening and
editing routines, and potentially,

l enhancement ‘of existing FHWA or AASHTO software so that the benefits of this
effort can be shared in all states and agencies as they may desire.

The year 1996 marks the beginning of significant pooled fund activities. Consequently,
conference attendees will be encouraged to comment and ask questions regarding specific actions
and plans encompassed in this project. States that are considering greater involvement in this effort
wiIl be asked to contact the ‘lead state’ (Minnesota) with their intent.
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TRAFFIC  MONITORING  SYSTEMS PANEL

Moderator: Mr. Tony Esteve, Federal Highway Administration, HPM-3 0

Members: Mr. Rick Reel, Florida Department of Transportation
Mr. Bill Hughes, Kansas Department of Transportation
Mr. Curt Dahlin, Minnesota Department of Transportation
Allan Heckman, Missouri Highway and Transportation Department

Purpose:
levels.

Discuss the status of traffic monitoring activities at the Federal and State

Presentations:

Federal Requirements for Traffic Monitoring Systems
Tony Esteve briefly discussed the history of traffic monitoring requirements introduced by
the Inter-modal Surface Transportation Efficiency Act of 1991 and the resulting Federal
Highway Administration (FHWA) and Federal Transit Administration regulations. As
required, each State provided a plan which was reviewed and approved by the FHWA.
Current regulations were superseded by the National Highway System Designation of
1995, which relaxed the requirements for management systems. The traffic monitoring
systems remain a requirement with wide flexibility provided to meet State differences.
The traffic monitoring requirements are being reevaluated to allow State/MP0 to meet
traffic data needs in a cooperative manner free of penalties or federal reporting
requirements.

Florida’s Traffic Monitoring Program
Rick Reel summarized the current traffic monitoring system in Florida. The State has
about 113,000 miles of roads and about 11,000 miles within the State system. The State
has a large permanent traffic volume, vehicle classification, and WIM program consisting
of about 250 permanent counters, many capable of classification, and about 17 permanent
WIM sites. The traflic volume coverage program is designed to completely cover the
State road system annually. Rick briefly discussed the many real-life difficulties
surmounted during the short-term installation of several permanent counters in the Florida
Turnpike and Interstate 95. Installation of permanent sites remains a costly and labor
intensive task. The State of Florida has made large investments in traffic data collection
and processing and-continues to work with its District Offices and urbanized areas to meet
customer traffic data needs.

-

-

Kansas’ Traffic Monitoring Program
Bill Hughes discussed the implementation of the Kansas program of traffic volume, vehicle
classification, and truck WIM data following the guidelines of the Traffic Monitoring
Guide. The success of the program made the conversion to the TMS regulations very
simple. The State program-meets current needs for traffic volume, vehicle classification,
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and WIM data. Due to new requirements, the location of permanent sites is being
reevaluated. An outreach program is underway to coordinate the traffic data programs of
cities and counties to increase data interchange. The ORACLE database system is being
used to implement a coordinated data processing operation to manage and utilize all the
available data from all sources. The data processing will also be interfaced with a
geographic information system.

Minnesota’s Traffic Monitoring Program
Curt Dahlin discussed the Minnesota program, which is designed to provide
comprehensive road system coverage, account for the variability caused by volume levels,
and reduce count duplication.The expertise and skill of traffic data collectors is critical to
reduce the need for recounts. The State is sponsoring a pooled-fimd study to develop
data editing procedures and software to increase the efficiency of traffic data processing
and insure the quality of traffic information. Curt highlighted the need for adequate
resources to meet traffic data needs, and the importance of better marketing of traffic data
and services to high level managers as a means of competing for scarce resources. He
suggested the need to explore institutional and organizational support from AASHTO and
other traffic engineering or highway organizations as a means to increase the visibility of
traffic data products.

Missouri’s Traffic Monitoring Program
Allan Heckman discussed the implementation of Missouri’s traffic data program following
the guidelines of the Traffic Monitoring Guide. The program consists of about 108
telemetry permanent volume sites, 5,000 annual coverage counts, 4,000 annual special
volume counts, 300 portable classification counts over a 3-year cycle, and WIM data
collected at both portable and permanent sites. All short counts are of a 48-hour duration.
Missouri plans to continue its development of management systems and to fully integrate
the management and monitoring systems. The traffic monitoring system will be expected
to meet the traffic data needs of the management systems.

Open Forum
Each of the speakers entertained questions and comments from the audience on issues
related to traffic monitoring. Participants asked questions and raised several interesting
issues. A lively discussion ensued, and a variety of opinions were expressed.

41



TRAFFIC MONITORING SYSTEMS PANEL SUMMARY

Rick Reel
Florida Department of Transportation

Presented at
National Traffic Data Acquisition Conference

Albuquerque, New Mexico

May 5-9,1996

43



R e e l ,  R i c k 1

Florida’s Traffic Monitoring System

Florida public highway system include 112,804  miles of roadway.  Of these, 89,099

miles are local roads that are excluded from the state  traffic monitoring system. The remainder

comprises  23,705 miles of federal aid eligible public roads, of which 11,881  miles are federal aid

eligible local jurisdiction  roads  and 11,824  miles  are federal aid eligible state highways. Of the

state highways, 4,188 miles are on the National Highway System (NHS).

FDOT has designed, implemented, and operated  a traffic monitoring system for the

11,824 miles of federal aid eligible state highways.  Application of the Federal Highway

Administration’s  (FHWA’s) Traffic  Monitoring Guide  to Florida’s  highway system indicated that 32

automatic  traffic recorder (ATR) sites  were needed to meet  minimum federal reporting

requirements. FDOT currently has a network  of 250 ATR’s.

The FHWA’s  Highway Performance Monitoring  System (HPMS) mandates a coverage

count program of 1,981 sample sections.  The FDOT program  includes these locations  among a

total of 5,891  sites.  Vehicle  classification  is required  under the Intermodal Surface

Transportation Efficiency Act (ISTEA) of 1991 for 217 NHS to NHS connectors. FDOT has

adopted a procedure that at least one vehicle  classification survey will be taken on each highway

section, of which there are 1,061.  These vehicle classification  data collection sessions are

needed  to derive truck  percentages and axle adjustment  factors  for all roads on the state

highway system. During the past year a total of 1,593 different locations were counted using

vehicle classifiers.

The past decade has seen major improvements to the statewide FDOT traffic monitoring

system. In 1991,  FDOT began a major expansion of its ATR system to meet demand for

accurate countywide  seasonal adjustment, growth, K (30th highest hour),  and directional

distribution factors. It is FDOT’s goal to install  one ATR for each highway functional

classification  group for which there is a minimum of ten miles  in each  county. This approach will

require a total of 275 ATR’s. When the ATR expansion  plan was approved, there were a total of

86 ATR’s  statewide. Twenty-five  of the state’s sixty-&en counties had no ATR’s  within  their
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boundaries. Approximately  half of the new ATR sites  were included as part of resurfacing/

reconstruction projects. The remainder  were installed  under two ATR construction contracts.

Within  the coverage count program, the FDOT Districts have gone mostly  to portable

vehicle  classification  surveys rather than simple traffic  volume  counts. The portable vehicle

classifiers  provide more useful  data than simple volume  counting such as truck volumes,  peak

hour volumes  and factors,  directional  distribution factors,  etc. Many of the coverage count

locations have been  equipped with permanently installed sensors.  While  this feature was

provided principally for the safety of FDOT traffic data collection personnel  and the traveling

public, it has also contributed to the accuracy and reliability of the data collection process.

Analysis  of the 1991 weigh-in-motion  (WIM) data  from 13 continuous and 21 seasonal

Strategic  Highway Research  Program (SHRP) Long Term Pavement  Performance (LTPP)

monitoring sites suggested that there may be some geographical differences  in the 18 Kip

equivalent  single axle load (ESAL) factors. In an effort  to substantiate  this hypothesis, a pilot

program was begun  in District 3 to install  eight new WIM sites on different  functional

classification/level  of service highways. A contract was issued  in March 1996 to permanently

install single wheelpath bending  plates in the roadway at four sites. These should be operational

by March  1997.  The remaining four sites will be constructed as soon  as road resurfacing

permits. The eight WIM sites in the study will be operated as ATR vehicle classifiers  year round.

They will be programmed to collect truck  weight data for one week each  quarter. This approach

will provide the WIM data needed  for analysis without the high costs  associated  with transmitting

daily WIM files back to the polling computer  and the effort  required to process  large quantities of

data.

The importance of the traffic monitoring program  was brought into focus last fall after

several accidents occurred involving  cars and trucks that closed  l-95 for six or more hours  at a

time. In an effort  to entice  some of the large trucks away from l-95 and onto the nearby parallel

route on Florida’s Turnpike, the Secretary of FDOT decided  to reduce  the tolls for trucks with five

or more axles on Florida’s Turnpike to their 1989 levels.  This rollback  is now in effect  and is
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costing the Turnpike $100,000 per month in lost revenues.  This has, in turn, had a negative

impact on the Turnpike’s improvement  program  and bond rating.

On September  20, the Statistics  Office was assigned  the task of installing all the ATR’s

required  to determine if the toll reduction strategy was having  the desired  effect. The cost  of this

project was secondary to the need to have the entire data collection infrastructure operational by

October 1,1995.

ATR sites were installed on both l-95 and the Turnpike. The Turnpike wanted one ATR

between  each interchange between  Ft. Pierce  and the Golden Glades Interchange in Miami.

This section contains 21 highway segments of which one was instrumented with a WIM site using

piezoelectric  axle weight sensors. l-95 has five ATR’s within this area of which only two were

providing acceptable  vehicle classification  data when  the project was initiated.

Two inspection crews spent two days surveying the highways to provide more accurate

cost  estimates. When the cost estimates were  repotted to FDOT management, cost then

became a consideration. The project was scaled back to seven screenlines, utilizing all existing

ATR’s. This required that six new ATR’s be constructed  on the Turnpike, two new ATR’s be built

on l-95, and four existing ATR’s on l-95 be reconstructed.

The extremely  short time line associated  with this project resulted  in several  problems

that were overcome. First, it required three to four weeks to identify  a legal and rational method

for hiring  a construction contractor  in a manner that would meet  the need of the truck  diversion

study. Second, it was required to coordinate among two FDOT Districts,  three FDOT

maintenance yards, and six permits offices. The construction effort on the Turnpike was

complicated by the presence of an AT&T fiber optic trunk line for south Florida in the median

under a concrete barrier wall. Additionally, there is at least one fiber optic telephone line for

local service  on each shoulder. There are also two ten inch Florida Gas Transmission  Company

high pressure gas pipelines on the eastern  right-of-way line.

Another complicating  issue was the limitation of construction on l-95 to night hours and

then only after the FDOT District  Public Information Office had given the local news media a

week’s advance notice.  The shortened construction  schedule also caused  difficulties in the

-
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procurement of roadside  cabinets,  concrete utility poles, loop wire,  and sealant.  Weather

conditions were not optimal during the construction. There was ten inches  of rainfall within six

hours  during the second  day that the contractor  had his entire crew on the job. Obtaining phone

service  required a significant  effort.

Despite the above difficulties,  the project resulted in the installation  of 74 lanes  of

inductive  loops and piezoelectric  axle sensors,  thirteen cabinets, eighteen  ATR’s, eleven new

phone lines, and two cellular telephone units by November  1, 1995. Data from this infrastructure

is now being used to evaluate the diversion effects  of the truck toll schedule.

As indicated in the attached figure, FDOT has structured its traffic  monitoring program to

collect the types,  quantity, and distribution of data required to support  the Department’s work

efforts. Federal reporting of traffic data is an offshoot of FDOT’s program,  and willingly provided

to FHWA.
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INTRODUCTION
The increased use of equipment with an Automatic Vehicle Classification (AVC) capability

and Weigh In Motion (WIM) devices produces a large amount of new data that can provide some
insights on understanding traffic patterns more efficiently. Accurate estimates of annual average
daily traffic (AADT) as well as vehicle-miles of travel (VMT) by vehicle type are required for a
variety of traffic studies. Such data can be used in estimating truck traffic for highway cost
allocation studies, in predicting traffic volumes for roadways, and in estimating accident rates for
various vehicle categories.

The use of traffic counts and vehicle classification data to develop AADT and VMT
measures is a common practice throughout the USA. In the past, limitations in manpower and
equipment have prevented vehicle classification data from being obtained in all seasons of the year.
Even though currently improved technologies allow for collection of continuous vehicle
classification data for longer periods, data are not collected for all seasons due to budgetary
constraints and equipment shortage. Therefore, it is important to understand the relationship
between the data collected in one season or month of the year to the entire year. This relationship,
if known, could be used to “expand” or extrapolate short-term traffic data to describe traffic
characteristics for the entire year. Therefore, seasonal, weekly, and hourly adjustment factors
become important. Traffic information developed from these adjustment factors can be used to
develop accurate estimates of traffic for any given period and can be used for a variety of purposes
and studies.

Historically, the Kentucky Transportation Cabinet (KYTC) has applied seasonal
adjustment factors to factor routine short-term volume counts. However, a procedure to apply
seasonal as well as weekly and hourly adjustment factors to short-term vehicle classification
counts has not yet been developed. Previous research has shown that there are indeed seasonal
and weekly variations among the various vehicle classes (1,2, 3). Therefore, a research effort was
initiated to develop such adjustment factors to produce more accurate estimates of AADT by
vehicle type. The first step in this study was to conduct a survey of current uses of vehicle
classification data and identify methods used for data collection throughout the United States. At
the same time, continuous vehicle classification data collected in Kentucky over a two year period
was analyzed to develop seasonal, weekly, and hourly factors.

RESEARCH FINDINGS
Survey Results

The objective of the survey was to determine the current use of vehicle classification data
by each state and to identify potential methodologies on developing and using adjustment factors
for predicting AADT by vehicle type. The survey included questions concerning the collected
classification data, methods for developing adjustment factors, use of any adjustment factors,
current equipment usage, and other related topics. Thirty-two of the fifty states surveyed returned
the questionnaire. With a response rate of 64%, a clear scope of the current vehicle classification
practices across the country can be obtained.

Since vehicle classification data can be used for a variety of reasons and purposes, it was
deemed essential to determine these uses from the outset of the survey. Thus, the first question
identifies the uses of vehicle classification. The predominant use of these data is for operational
purposes, which include roadway design, pavement maintenance, and development of AADT
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estimates, as it was indicated by fifteen states (47 percent). Current ISTEA and HPMS
requirements as well as ESAL/EAL estimates were the primary reasons for collecting these data
by another thirteen states (41 percent). Three states, 9 percent of the those surveyed, use the
classification data for user fee and cost allocation studies while another three states (9 percent)
consider these data important for SHRP test sections. Another five states (16 percent) report that
these data are currently not used for any specific purpose. Please note that the total percentages
do not add to 100 percent because a number of states indicated multi-use of these data.

The next question asked aims to determine whether seasonal adjustment factors are used
and how they are applied. The practice of using seasonal adjustment factors to correct short-term
counts is not a widely spread practice among the states. Only nine states (28 percent) currently
use some adjustment factors to address seasonal variability in traffic counts. Four of those states
develop adjustment factors and use them to adjust. short-term counts to obtain AADT while
another state developed factors to be used only for truck AADT estimates. The remaining states
did not specify the use of these factors and thus, no further comments can be made. Moreover,
there is a great variability among these nine states on the development of these adjustment factors.
The use of automatic traffic counters (ATR’s),  WIM., and AVC devices are prominent methods for
developing seasonal factors. In addition to these devices, use of toll receipts to adjust truck data
only, use of monthly average daily traffic as seasonal indicators, and sampling in various seasons
are other approaches identified in the survey. An additional question, addressed to those states
which do not currently use any seasonal factors, aimed to determine whether any such factors will
be developed in the future.  Among the 23 states that do not currently use any seasonal
adjustment factors only 10 (3 1 percent of all) are considering any future development and use of
such adjustment factors.

The AVC data collectors classify vehicles into a vehicle type using the length and weight
of the vehicle. However, a number of vehicles cannot be properly identified as an exiting type for
a variety of reasons and thus, categorized as unclassified. Obviously a large percentage of
unclassified vehicles is not desirable, since it will produce unreliable estimates of traffic.. The
appropriate treatment of these unclassified vehicles--elimination or reallocation-is an additional
issue that requires attention . Moreover, identifyng the type of vehicle for these unclassified
vehicles is usually a difficult task and, most likely, will affect the reliability of the traffic estimates.
The absence of any standards for acceptable range as well as treatment of unidentified vehicles
lead to an investigation of existing practices among the states. Only one state, Wyoming,
reported a zero tolerance for unidentified vehicles when using Scheme F. Five states indicated
that their acceptable level is less than 10 percent (three in the 1 to 5 percent range and two in the 6
to 9 percent range). The majority of the surveyed states--twenty states, 71 percent--indicated 10
percent as the acceptable level for unclassiied vehicles. Finally, only two states have acceptable
ranges higher than 10 percent for unclassified vehicles.

The treatment of the unclassified vehicles is also of concern. Since unclassified vehicles do
not have a classification category of their own, these vehicles may be either ignored or allocated
to another vehicle category. The surveyed states provided five diierent treatments. The majority
of the surveyed agencies (19 states, 63 percent) completely ignore any vehicles which are not
classified properly during the classification counts. The remaining states use some reallocation of
the unclassified vehicles. Two states allocate them to Class 15 (heavy vehicles) and three other
states allocate these vehicles in the passenger vehicle category. Four more states indicate that they
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allocate the unclassified vehicles but no specific category was identified. Finally, two states, North
Carolina and Minnesota, either allocate or ignore the vehicles depending on the surrounding
circumstances. In Minnesota, the vehicles are either allocated or ignored depending on the
amount of information known about the vehicles. If the vehicle length or axle spacing is available,
the vehicle class is estimated by length. Ifneither the vehicle length nor spacing is known, the
vehicle is ignored. In North Carolina, treatment of the vehicles is dependent on the intent of the
data. Also, the unidentified vehicles are ignored or allocated based on volume distribution
percentages.

An aspect that is of interest is the relationship between the acceptable percentage of
unclassified vehicles and the treatment’ of these vehicles. This relationship is shown n Table 1.
The examination of the data shown in Table 1 does not reveal any relationship between the
variables of concern. For states with a tolerance level less than 10 percent, the number of states
that elect to ignore these vehicles is equal to the number of those which reallocate them. The
same is true for those states with the 10 percent level of acceptance. Moreover, there is no
specific pattern among those states that reallocate the unclassified vehicles, since almost equal
numbers allocate them in all possible categories. Finally, the two states with the above 10 percent
tolerance indicate that they ignore all unclassified vehicles. Based on these observations, one may
conclude that the 10 percent seems to be the common threshold for accepting unclassified
vehicles. However, the treatment of these vehicles is a decision that an agency needs to make
based upon the needs of the data, the type of data available, and the effort willing to put forth to
correctly classify these vehicles.

An additional question addressed the use of other than AVC means for collecting vehicle
classification data and especially the use of length-based classification. The vast majority of those
surveyed (72 percent) do not have any experience in using length-based classification nor are
planning to se any such systems. Seven states (22 percent) have some experience with length-
based systems but do not use these systems to produce EAL’s. Only two states, Idaho and
Kansas, indicated that they do use length-based classification and do currently utilize such systems
to produce EAL’s. The length-based data is used to determine the percent of commercial traffic in
Idaho, where an average ESAL per commercial vehicle is then used to estimate ESAL’s by vehicle
type. The length-based data are used in Kansas only when a car/truck differential is required.
Otherwise, the 13-class system is used for classification.

Since part of the research effort is to also develop lane distribution factors for use in
calculating equivalent axle-loads, the use of such factors among the various state agencies was
also surveyed. Most of the states responded (22 states, 69 percent) do not currently use any lane
distribution factors. The remaining ten states indicated that use some type of lane distibution
procedures are applied. These methods include detailed calculation of lane distribution factors (3
states), default values of percent of heavy trucks using the right lane (4 states), use of the values
indicated in the Highway Capacity Manual (1 state), using estimates from SHRP sites (1 state),
and using the factors from the AASHTO Interim Guide (1 state).

The last item in the survey asked the responding agencies to voice any comments on the
current practices of vehicle classification counts as well as to indicate any suggestions to future
developments in vehicle classification technology. A number of states expressed a concern for the
difficulty of developing seasonal adjustment factors as well as the reliability of these factors over
time. The desire to move to a length-based classification was another comment made by several
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states. The amount of data required to develop adjustment factors is probably the single biggest
deterrent for developing such factors. The required number of permanent classification stations is
another issue that needs to be addressed. Given the fact that unclassified vehicles will always be
present, the treatment of these vehicles has a significant impact on the development of any
procedures. Finally, an issue that is of concern for a number of state agencies is the reliability of
the equipment; a concern that was captured by the unanswered question of a state official “Is there
a product available that classifies accurately?”

Seasonal Factors
The next step in this study consisted of developing adjustment factors that can be applied

to short-term counts for determining the AADT estimates. This research effort aimed to develop
two sets of adjustment factors to account for seasonal and daily variations.

Data were collected from automatic traffic recorders (ATR) from rural Interstates and
rural Non-Interstates for developing these adjustment factors, which applied to AADT could then
be used in calculating the annual average daily (AADT) traffic volumes by vehicle type. These
adjustment factors were developed following the recommended practices in the “Standard Practice
for Highway-Traffic Monitoring” (4) but were defined slightly different to accommodate existing
data in Kentucky. The adjustment factors were determined for four different classes of roadways-
-rural interstates and parkways, urban interstates and parkways, rural non-interstates and non-
parkways, and urban non-interstates and non-parkways. Moreover, 84 adjustment factors were
developed for each day and month of the year (7 days x 12 months) and a separate set was
developed for each vehicle type (15 vehicle types).

To proceed with the development of these factors, it was first necessary to calculate the
AADT for each vehicle type. To accomplish this task, a three step process was taken. First, the
seven averages for each day of the week, Monday through Sunday, in a given month were
estimated for each vehicle type. Then, these Monthly Average Days of Week (MADW)  traffic
were averaged for each month and multiplied by the number of days of the month to estimate the
Total Monthly Volume (TMVi) for each month i. Finally, the AADT was calculated as the
division of the total annual volume (c(TMV~, for i =l to 12) by the 365 days of the year. The
adjustment factors for each vehicle type k, (fij)k,~ are then defined for each day i and month j as
(fij)k =(MADWij)k /(AADT)kFor the development of these factors, six ATR stations were used for interstate
calculations and four stations were used for non-interstate calculations. All stations are permanent
locations and collect continuous data throughout the year. Two years of data, 1993 and 1994,
were used for the calculation of the seasonal adjustment factors. An example of the adjustment
factors for rural interstate and parkways for vehicle types 2 (automobiles) and 9 (5-axle, semi-
trailer) is shown in Table 2 while similar factors for rural non-interstate and non-parkways are
given in Table 3. To obtain an AADT estimate, one needs to divide the short-term count by the
corresponding day and month factor. For example, if a count 4,000 automobiles was taken on a
rural interstate on a Wednesday in July, the estimated automobile AADT for this road would be
(4,000/l .036) = 3,86 1 automobiles.

Figures 1 and 2 illustrate the monthly and daily variation in traffic reflected in through the
adjustment factors for the two vehicle types listed above--type 2, automobiles, and type 9, 5-axle
semi-trailers. Figure 1 indicates a sharp seasonal variation for automobiles and very little variation
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for 5-axle, semi-trailers. Figure 2 also indicates a strong relationship between the day of the week
and the adjustment factors. Moreover, the adjustment factors for these two vehicle types follow
different trends. Traffic counts for semi-trailers during weekdays will show volumes higher than
their AADT while weekend counts will show volumes lower than their AADT. The opposite
trends are noted for automobile counts--lower volumes in weekdays and higher volumes during
weekends.

Figures 3 and 4 demonstrate the monthly and daily variations in traffic for the rural non-
interstate and non-parkway data for vehicle types 2 and 9. The monthly variation is still present
in Figure 3 but there is less variability for automobiles and higher seasonal variability for the 5-axle
semi-trailers. This is an expected phenomenon, since seasonal patterns do affect the travel trends
of heavy vehicles on non-interstate roads; contrary to a more constant pattern on the interstate
system. Figure 4 illustrates similar trends as those observed for interstate roads (Figure 2) with
the exception of more stable trends for heavy vehicles on weekdays and significant reduction of
travel in weekends. Moreover, automobiles show less variation between weekday and weekend
travel indicating more stable trends for the non-interstate automobile travel.

To demonstrate the usefulness of distinguishing among the various vehicle types, similar
adjustment factors were developed for all traffic without any distinction for the vehicle type.
These trends are also shown in all figures. An examination of the three trend lines indicates that
the general trend of all vehicles follow closely the automobile trends and by no means can be used
to approximate the adjustment factors for the 5-axle semi-trailers--an observation that holds true
for both intestate and non-interstate system. Therefore, the development of such factors for each
vehicle type is essential for accurate estimates of the AADT by different types of vehicles.
However, if the desired estimate is the AADT without any distinction for vehicle types then, the
adjustment factors shown for all vehicles can be used to adjust the short-term count.

Therefore, it appears that adjustments in traffic volume estimates that account for day of
the week and month of the year in which the classification count was obtained could provide
better estimates of AADT by vehicle type and thus, can provide a more accurate basis from which
other traffic estimates, like ESAL and VMT, can be calculated.

Currently, the validation of these adjustment factors is under way. The validation consists
of using these adjustment factors to predict AADT estimates by vehicle type for roadways where
ATR counts were taken and then comparing the estimates to the actual counts. Results of this
effort should be completed in the near future.

SUMMARY
The questionnaire completed indicates that there is a wide use of the vehicle classification

data collected among the various states, with predominant use for traffic operations. Even though
data are collected over various times of the year and for different durations, the practice of using
seasonal adjustment factors to correct short-term counts is not a widely spread practice among the
states. The research effort presented here focuses on the development of such factors for
Kentucky. The factoring procedures presented here are developed with the idea of generating
accurate estimates for diierent vehicle types and thus, improving estimates of AADT.

A number of issues related to vehicle classification are of concern--improper vehicle
classification, unclassified vehicles and their treatment, and so forth--and may pose problems in the
development of seasonal adjustment factors. However, the development of adjustment factors by
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vehicle type is a procedure that can definitely improve AADT estimates and assist in the
development of more accurate estimates of VMT by vehicle type.
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Table 1. Percentage of unclassified vehicles and their treatment

Table 2. Examples of adjustment factors for rural interstate and parkways

Vehicle type 2--automobiles

Day JAN
SUIT 0.734
MON 0.651
TUE 0 .566
WED 0.612
THU 0 .632
FRl 0 . 7 6 4

 0 . 7 5 0 0.631

Vehicle type 9--5-axle semi-trailer
Month
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Table 3. Examples of adjustment factors for rural non-interstate and non-parkways

Page 8
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Figure 1. Monthly variation for rural interstate and parkways
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Figure 3. Monthly variation for rural non-interstate and non-parkways
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Factoring of Short-Duration  Classification  Counts

ABSTRACT

Procedures developed by FHWA for “factoring” short-duration traffic counts for
seasonal and day-of-week variations in traffic volumes are capable of producing
estimates of annual average daily traffic (MDT) that are quite good. Moreover, there is
virtually no bias in these estimates, so AADT estimates for a set of sections can be used
to produce unbiased estimates of total vehicle-miles traveled (VMT) for systems of
roads. Unfortunately, corresponding procedures are not generally used for estimating
AADT by vehicle class, and the less sophisticated procedures that are commonly used
contribute to substantial overestimates of truck AADT and VMT. Current procedures
apparently overestimate VMT by 25 to 40 percent for combination trucks.

This paper presents modified versions of the FHWA factoring procedure that are
capable of producing substantially unproved estimates of truck VMT and of AADT of
combination trucks. These procedures use seasonal and day-of-week factoring to
reduce the errors in truck AADT estimates and to eliminate the upward bias in truck
VMT estimates that result from the use of unfactored weekday classification counts.

Keywords: VMT
AADT
Trucks
Seasonal Factoring
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Factoring of Short-Duration  Classification  Counts

Accurate estimates of both vehicle-miles of travel (VMT) by vehicle class and annual
average daily traffic (AADT) by vehicle class are required for a variety of highway-
related planning and policy analyses. Estimates of VMT by vehicle class are required to
derive accident rates by vehicle class and to compare accident rates across classes and
also to allocate highway costs across vehicle classes. Estimates of truck VMT also are
required in order to understand the importance of trucks to the nation’s economy and
to evaluate the costs and benefits of potential changes in truck regulation. Estimates of
truck AADT by class on individual sections of road are required to design pavements
that are appropriate for the truck volumes to be carried.

Although a number of ways exist to estimate national VMT, estimates of AADT on
individual highway sections and estimates of VMT on individual systems of roads
generally must be developed from traffic counts. However, the development of these
estimates from traffic counts poses some nontrivial analytic challenges. Resource
limitations usually make it impractical to count traffic on all sections of interest, and
most of the sections that are counted can be counted only at infrequent intervals (e.g.,
once every three years) for a relatively short time period (e.g., 24 or 48 hours). In order
to produce reliable estimates from relatively limited data, FHWA has developed
“factoring” procedures for adjusting short-duration traffic counts for seasonal and day-
of-week variations in traffic volumes (as well as for annual growth in traffic) (1,2).
The FHWA recommended seasonal and day-of-week factoring procedures have been
found to produce estimates of total AADT that are quite good. The mean absolute error
is only 4 to 7 percent for urban sections and 5 to 10 percent for nonrecreational rural
sections (3, Vol. I, p. 23). Moreover, there is virtually no bias in these estimates, so
AADT estimates for a set of sections can be used to produce unbiased estimates of VMT
for entire systems of roads.

Unfortunately, the procedures currently used by most states for estimating AADT by
vehicle class are less sophisticated and produce substantially less satisfactory results.
Most typically, “classification” counts are collected for a 48-hour period on weekdays
(excluding Friday evenings). These counts are then used, without any seasonal or day-
of-week adjustment, as the basis for distributing estimated AADT across vehicle classes.
On most roads, truck traffic drops on weekends and, outside of urban areas, automobile
traffic generally rises. Accordingly, the use of weekday distributions for apportioning
AADT across vehicle classes contributes to substantial overestimates of truck AADT
and VMT; current procedures apparently overestimate VMT by 25 to 40 percent for
combination trucks, and possibly by more for single-unit trucks with six or more tires.

Substantially better estimates of VMT for all classes of trucks and of AADT for
combination trucks can be developed by using modified versions of--the Traffic
Monitoring Guide (TMG) (2)

 seasonal and day-of-week factoring procedure. The
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California Department of Transportation (CalTrans)  has used such a procedure since
1993 (4); and the Virginia Department of Transportation (VDOT) is introducing one in
1996 (5 - 7).

The first section of this paper presents several comparisons of the truck VMT estimates
derived using traditional count-based estimation techniques with corresponding
estimates from other sources. The second section presents a generalized version of the
procedure developed by Cambridge Systematics for VDOT that could enable all states
to produce improved estimates of truck VMT and of AADT for combination trucks.
The concluding section of the paper contains: a recommendation that VMT estimates
from the Census Bureau’s Truck Inventory  and Use Survey (TIUS) (8) be used when
national truck VMT estimates are needed; and a brief discussion of possible changes to
the FHWA system for classifying vehicles that would improve the usefulness of the
estimates of VMT and AADT by vehicle class.

CURRENT ESTIMATES OF TRUCK VMT

The Mingo/Wolff  Study

FHWA publishes annual estimates of truck VMT reported by the states in the VM-1
Table of Highway Statistics (9). A particularly thorough evaluation of these estimates of
truck VMT was performed recently by Roger Mingo and Holly Wolff (10).

As an initial step in their evaluation, Mingo and Wolff compared the VM-1 estimates for
1987 to TIUS estimates developed from a quinquennial  survey of trucks. In 1987,
approximately 135,000 trucks were surveyed (including light trucks). To improve
comparability with the VM-1 estimates, Mingo and Wolff used the TIUS public-use file
to adjust the TIUS estimates for off-road travel, travel by combination power units
without trailers, and travel by government vehicles. Mingo and Wolff also made a
separate adjustment to the TIUS estimates to reflect the FHWA practice of classifying
trucks with utility trailers as combinations (though this classification is undesirable
from the standpoint of most users of the data). However, they apparently did not
adjust for recreational vehicles, which are excluded from the TIUS data but frequently
included in the VM-1 estimates of trucks with six or more tires.

After all adjustment&, the Mingo and Wolff data indicate that the VM-1 estimates are
0.4 percent lower than the 1987 TIUS estimates for four-tire trucks, but that they are 57
percent higher for other single-unit trucks and 39 percent higher for combination trucks

l Mingo and Wolff actually focused on the results obtained before the adjustment for utility
trailers. Before this last adjustment, the VM-1 estimates are 36 percent higher than TIUS for
single-unit trucks and 51 percent higher for combinations.

I

I

I
I
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Mingo and Wolff considered various potential sources of the differences in the VM-1
and TIUS estimates. The possibility of systematic underreporting of annual vehicle
mileage by truck operators is at variance with a finding by the University of Michigan
Transportation Research Institute (UMTRI) that truck operators tend to overestimate
annual mileage (by 38 percent for single units and 28 percent for combinations) (10).
Also, the TIUS VMT estimates were found to be consistent with FHWA data on diesel
fuel consumption. Mingo and Wolff concluded that the principal sources of the
differences appeared to be:

1. The derivation of truck VMT estimates primarily or exclusively from
weekday classification counts; and

2. Misclassification of light vehicles as trucks.

The significance of the first source of error can be seen from the data in Table 1. This
table compares estimates of the average percent trucks obtained from 6, 10, 14, and 24-
hour classification counts collected on Tuesdays through Thursdays with the percent
trucks obtained using data for an entire year. The data indicates that use of 24 or 48-
hour counts collected on Tuesdays through Thursdays increase the estimates of average
daily traffic by 19 percent and that the increase probably is greater for combinations
than for single-unit trucks. Use of Monday and Friday counts decreases the
overestimates somewhat, while collecting counts only during May through September
increases the overestimates.

The factoring procedures presented in the second part of this paper address only the

first source of error.

Other Comparisons

Table 2 shows five comparisons of estimates of truck VMT or AADT developed using
conventional procedures for analyzing data from classification counts with
corresponding estimates obtained from alternative sources.

The first comparison in Table 2 is the comparison between 1987 TIUS and VM-1 data
discussed above, and the second is a similar comparison between 1992 TIUS data (with
off-road VMT excluded) and VM-1 data (11). The comparison of more recent data
shows the same difference in the estimates for combination trucks as the earlier
comparison but a very sharply reduced difference in the estimates for single-unit
trucks.

The remainder of Table 2 compares estimates of truck VMT and AADT obtained using
conventional count-based procedures with corresponding estimates developed using
three other procedures. Each of these comparisons is described briefly in the
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subsections that follow.  The first of these comparisons is made to estimates of truck
VMT derived from odometer readings, while the remaining comparisons are made to
count-based estimates that adjust for the use of weekday classification counts but not
for misclassification.

All the Table 2 comparisons indicate that conventional count-based procedures produce
higher estimates than the estimates produced by the alternative procedures. For
combination trucks, the differences between pairs of results are fairly consistent, with
the conventional count-based procedures producing estimates that are 27 to 40 percent
higher than those produced by the alternative procedures; while, for single-unit trucks,
there is substantially more variation in the extent of the differences.

Although we have not performed a detailed study of the reasons for the variation in the
differences for single-unit trucks, there is some evidence that the variation on lines 1-32
may be due in part to the increasing use over time of automatic vehicle classifiers
(AVCs) and to weaknesses in the “Scheme F” classification algorithm used by nearly all
AVC vendors. Indeed, data developed in the course of a recent test of AVCs (12, Tables
IV, VII, XIII, XIV, XVII, XXI, XXIV, XXVII, XXX, XXXII, XXXV and XXXVIII) indicate
that, of twelve AVCs, eleven undercount Class 5 (six-tire) vehicles by over 20 percent
and eight undercount these vehicles by more than 50 percent.

The National Truck Trip Information Survey
The National Truck Trip Information Survey (NTTIS) (13, 14), conducted by the
University of Michigan Transportation Research Institute (UMTRI), consisted of an
initial telephone interview covering 6305 medium and heavy trucks conducted in early
1985 and four follow-up interviews conducted over the course of a year. The NTTIS
VMT estimates were developed from odometer data obtained in the course of these
interviews from 58.6 percent of the respondents. These estimates are compared in Table
2 to VM-1 estimates for 1985 (14).3

2 The results shown on Lines 4 and 5 are not affected by the classification procedure used,
though they are affected by the way short-duration classification counts are used to estimate
AADT.

3  The NTTIS also obtained respondent estimates of annual mileage provided during the initial
interview and developed a separate set of estimates by mapping descriptions of truck usage
obtained for the day preceding each of the follow-up interviews. The respondent estimates
were found to be appreciably higher thau the odometer data (even after adjusting for the
normal decline in usage over time), while the data for the four survey days produced estimates
that were about one-third lower than the odometer readings different than those used in the
VDOT procedure.
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Oregon

A recent study of the Oregon Weight-Mile Tax (15) required reliable estimates of VMT
by vehicle class as one component of a comprehensive analysis of evasion of this tax. In
particular, the VMT estimates were required to estimate the extent to which carriers
subject to this tax might be underreporting their mileage.

Oregon, like most states, estimates VMT by vehicle class primarily by using weekday
classification counts to distribute AADT across vehicle classes. In order to adjust for the
resulting overestimates of truck VMT, during November 1994 through January 1995,
additional classification data was collected for one or two week periods at eight rural
sites and two urban sites. Sydec, Inc., then used these data to estimate how weekday
truck volumes compare to volumes on weekends, full holidays, and semi-holidays.
Separate correction factors were developed, by highway functional class, for each of
several vehicle classes; and these factors were further adjusted for seasonal effects using
single-lane classification data collected for the Strategic Highway Research Program
(SHRP).

Line 3 of Table 2 compares the resulting adjusted estimates of truck VMT to unadjusted
estimates. The unadjusted estimates are appreciably larger than the adjusted ones (by
21 percent for single-unit trucks and 27 percent for combinations), though the
differences are smaller than those obtained in the earlier comparisons. The smaller
differences result, at least in part, because the analysis focused on adjusting the VMT
estimates for day-of-week variations in traffic and it did not consider other issues such
as misclassification.

Virginia

The Virginia data shown on Line 4 of Table 2 were obtained from classification counts
collected at two multi-lane SHRP sites on I-64 in the Norfolk area (3, Vol. II, pp. 46-49).
The first two columns show estimates of actual AADT derived from classification
counts obtained for 118 days in 1993 using the standard AASHTO procedure (16) and
averaged across the two sites. The next two columns show averages of AADT estimates
derived in two different ways from 48-hour weekday counts.

The “unfactored” Virginia estimates were derived by extracting from the data 30 sets of
48-hour weekday classification counts obtained at each of the two sites. Each set of
counts was obtained for a 48-hour period starting at noon on a Monday, Tuesday, or
Wednesday. Each of these sets of counts was treated as a set of “unfactored” estimates
of AADT by vehicle class. The “unfactored” estimates shown in Table 2 were obtained .
as the averages of all estimates for single-unit trucks and for combinations. These
estimates exceed the estimates of actual AADT by 9 percent for single-unit trucks and
by 28 percent for combinations.

71



Herbert Weinblatt 7

The “distributed” AADT estimates were derived by using each set of unfactored 48-
hour classification counts as the basis for distributing total AADT across vehicle classes.
This is the most common procedure for estimating AADT by vehicle class from short-
duration classification counts. The last line of Table 2 shows the results of averaging all
estimates obtained in this way. These “distributed” estimates are appreciably larger
than the “unfactored” estimates, exceeding the estimates of actual AADT by 21 percent
for single-unit trucks and 40 percent for combinations. At these two sites, the
distribution procedure that is in common use produces higher overestimates of truck
AADT than does the simple use of unfactored classification counts. This result will
occur wherever total daily traffic is higher on weekends (including Friday evenings and
Monday mornings) than it is during weekdays (and the distribution procedure will
produce better estimates of truck AADT wherever the reverse is the case).

The “percentage difference” figures shown for the Virginia data represent estimates of
the average error introduced by two different procedures for estimating truck AADT
from 48-hour classification counts. Like the percentage differences shown for Oregon,
the Virginia values reflect the effects of errors that result from the use of unadjusted or
improperly adjusted short-duration classification counts, and they do not reflect the
effects of any other error sources such as misclassification.

A SEASONAL AND DAY-OF-WEEK FACTORING PROCEDURE

This section presents a generalized version of the procedure for estimating truck AADT
and VMT developed by Cambridge Systematics for VDOT (5 - 7).. This procedure uses
seasonal and day-of-week factoring to reduce the errors in truck AADT estimates and to
eliminate the upward bias in truck VMT estimates due to the use of unfactored
weekday classification counts (but not the bias due to misclassification). We believe
that most states will find some variant of this procedure appropriate for their use.

The overall procedure distinguishes four categories of highway sections and uses
different procedures for estimating truck AADT and VMT on sections in each category.
The four categories are:

1. Sections that contain permanent automatic vehicle classifiers (AVCs);

2. Sections on which short-duration classification counts are collected
periodically;

3. “Nearby” sections on the same road as Category 1 or 2 sections; and

4. All other sections of road. .

The first subsection below discusses each of these four categories of highway sections;
the second subsection describes the factoring procedure that we recommend for
application to the short-duration classification counts collected on sections in Category
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2; and a third subsection presents time-of-day factoring procedures that we recommend
using for manual classification counts that are collected for periods of less than 24 hours
and when permanent AVC counts for a few hours of a day are missing or unreliable.

The Four Categories of Highway Sections

1. Sections Containing Permanent AVCs

For each section containing permanent AVCs, AADT by vehicle class (AADTVC)
should be estimated by applying the standard AASHTO three-step AADT averaging
process to the daily counts for each vehicle class (17, p.52). In the first step of this
process, for each vehicle class, seven averages, corresponding to the seven days of the
week, are obtained for each month of the year. These “Monthly Average Days of the
Week” (MADW) traffic volumes are then averaged across all twelve months to produce
a single set of seven “Annual Average Days of the Week” (AADW) traffic volumes for
each vehicle class. Finally, the seven AADW values are averaged to produce estimated
AADT for the vehicle class.

In order to develop the seasonal and day-of-week factors to be applied to classification
counts obtained on Category 2 sections, we recommend that the highway system be
divided into at least three “factor groups” (urban, rural Interstate, and rural other) and
that permanent AVCs be established on a representative sample of five to eight sections
in each factor group. Sections selected for this purpose should have seasonal and day-
of-week patterns of truck volume that are reasonably typical of the patterns obtained on
other sections in the factor group. Sections with idiosyncratic patterns of usage (such as
those occurring in the vicinity of a quarry) should be avoided.

In order to maximize the quality of the seasonal and day-of-week factors, we
recommend that permanent AVC classification counts be collected continuously (rather
than only for one or two weeks each month, as is the practice in many states).

Also, in order to make maximum use of all data that is collected, we do not recommend
that counts for an entire day be discarded whenever counts for one or two hours in the
day are missing or rejected as being unreliable. Instead, when part of a day’s count is
missing or rejected, we recommend that the missing hourly counts be imputed, provided
that the imputed counts for each vehicle class represent no more than 25 percent of the
day’s count for that vehicle class. An appropriate imputation procedure is presented in
a subsequent subsection of this paper.

2. Sections Used for Short-Duration Classification Counfs

The second category of highway sections consists of sections on which short-duration
classification counts are collected on a regular basis. These sections should be
distributed across all functional systems (with the possible exceptions of the local
functional systems and rural minor collectors).
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The TMG recommends that each state collect classification counts on at least 300
sections (including sections that are monitored continuously) and that these sections be
distributed across functional systems and traffic volume groups on the basis of total
VMT in the functional-system/volume-group strata. Short-duration traffic counts
obtained with AVCs should be collected for at least one 48-hour period at least once
every three years. At locations where AVCs cannot be used reliably because of
nonuniform speeds, classification counts may be collected manually for part of a day. A
procedure for using partial-day classification counts to estimate daily classification
counts is presented in a subsequent subsection.

As discussed earlier in this paper, the raw 48-hour classification counts do not provide
very good estimates of AADTVC and, if the counts are taken on weekdays, the
estimates for trucks are likely to be quite high. To improve the estimates, AADTVC
estimates should be derived by applying seasonal and day-of-week factors to the raw
counts and then scaling the results so that the AADTVC estimates for any section add
to estimated AADT for that section. The development of the factors is presented in the
next major subsection of this paper.

Limited testing of the use of factored counts indicates that factoring generally is quite
successful in eliminating the upward bias, and that factoring also tends to improve the
accuracy of AADTVC estimates of combination trucks. However, even for combination
trucks, the factored estimates for AADTVC are not as reliable as those for AADT, and
they are likely to be quite unreliable for sites with unusual day-of-week traffic-volume
patterns.

The results of a very limited test of a variant of our proposed factoring procedure are
presented in Table 3. This table compares the errors produced using factored 48-hour
weekday classification counts to the corresponding errors produced when unfactored
versions of the same counts are used for distributing AADT across vehicle classes. The
results indicate that, for buses and for all classes of trucks, conventional procedures
produce average errors that are large and positive, resulting in substantial
overestimates of VMT for these vehicle classes (and underestimates of VMT for four-tire
vehicles). However, except for single-unit trucks with three or more axles, the average
errors are virtually eliminated by factoring.

Factoring also appears to produce an appreciable improvement in the quality of the
estimates of AADT of combination trucks for individual sections (as measured by the
mean absolute error). The estimates for multi-trailer combinations (Classes 11-13) are
not as good as those for single-trailer combinations (Classes 8-l0), primarily because of
the low daily volumes of vehicles in these classes. Similar effects might have been
observed for Classes 8 and 10 if we had analyzed AADT estimates for these classes.
separately; and very poor estimates (in percentage terms) would be expected for
Classes 12 and 13, two very low volume vehicle classes.
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Factoring was less successful in reducing the mean absolute error of AADT for buses
and single-unit trucks. The high errors for these vehicle classes appear to be due to
substantial site-to-site variation in the relative weekday and weekend volumes of
vehicles in these classes. The poorest results were obtained for single-unit trucks with
three or more axles, a category of vehicles subject to relatively unpredictable variations
in traffic volume.

3. Sections That Are “Near” a Category 1 or 2 Section

Consider a section that is on the same road as a Category 1 or Category 2 section but
several miles away from it. If the “character” of the traffic on the road does not change
significantly between the two sections, then the two sections are likely to have very
similar distributions of traffic across vehicle classes. On the other hand, if there is an
intervening intersection or interchange with a major truck route, or if there is a
significant change in the volume of commuter traffic as the road changes from urban to
rural, then the two distributions are likely to be less similar.

Category 3 sections consist of all sections that are relatively close to a Category 1 or 2
section and that are likely to have traffic distributed across vehicle classes in the same
way as the Category 1 or 2 section. For such sections, we recommend that AADTVC be
estimated by assuming that total AADT be distributed across vehicle classes in
accordance with the distribution on the “nearby” Category 1 or 2 section (or, in some
cases, in accordance with an appropriately weighted average of the distributions on two
such nearby sections). When the comparison section is a Category 1 section, this
procedure is likely to produce substantially better estimates of AADTVC than can be
obtained using factored short-duration classification counts.4

The determination of whether a section is sufficiently close to a Category 1 or 2 section
requires some judgment. In urban areas, the sections usually should be no more than a
few miles apart However, on rural arterials, 50-mile separations frequently may be
appropriate; and, in Nevada, all sections of the 235~mile stretch of I-80 between
Wendover  and Winnemucca might be treated as being “neaf each other (with the
possible exception of a one-mile section adjoining Wells, which might have an elevated
volume of local four-wheel vehicles).

The quality of AADTVC estimates produced for a Category 3 section will depend upon
whether the comparison section is a Category 1 or 2 section and the degree of similarity
of the character of the traffic on the two sections. However, even when the similarity of

4 The VDOT system uses approximately 150 continuous AVCs on the National Highway System
(NHS) so that all sections of the Interstate System and most other sections of the NHS are
Category 1 or 3 sections for which high quality estimates of AADTVC are produced.
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character is relatively weak, the quality of AADTVC estimates is likely to be at least as
good as can be obtained by treating the section as a Category 4 section.

4. All Other Sections

Highway sections in each functional system should be grouped on the basis of their
traffic volumes using volume groupings such as those recommended in the Highway
Per-romance Monitoring System Field Manual (17, Appendix F). For each functional
system and each of the corresponding traffic volume groups, a set of distribution factors
should be developed by:

1. aggregating the AADTVC estimates obtained for the Category 1 and 2
sections in the functional-system/volume-group stratum; and

2. dividing these results by total AADT for these sections.
As observed previously, the distributions obtained for Category 2 sections are likely to
be appreciably less reliable than those obtained for Category 1 sections. Accordingly,
for strata that contain sections belonging to both categories, we would be inclined to
weight the distributions for the Category 1 sections more heavily - perhaps by
developing separate sets of distribution factors for the Category 1 sections and the
Category 2 sections, and then obtaining a weighted average of these two sets of
distributions. Alternatively, it may be desirable to use data from Category 2 sections
only when developing distributions for strata that do not contain any Category 1
sections5

Estimates of AADTVC for sets of Category 4 sections in a given functional system and
volume group should be developed by applying the distribution factors obtained for
that functional-system/volume-group stratum to estimated average AADT for all
sections in the set. The resulting estimates of AADTVC are likely to be relatively
unbiased, and so they can be used in the development of unbiased estimates of VMT by
vehicle class. However, the AADTVC estimates may not be particularly accurate for
individual sections in the set, and they should not be used when accurate AADTVC
estimates are required for individual sections.

5 As described in the text, if there is more than one Category 1 section (resp., Category 2 section)
in a given stratum, the distribution used would reflect an AADT-weighted average of the
distributions for all the Category 1 (resp., Category 2) sections. If the distribution of AADT
across all Category 1 and 2 sections in the stratum is reasonably representative of the
distribution across all sections in the stratum, such a weighted average is appropriate.
However, if the Category 1 and 2 sections tend to have higher AADTs than other sections in
the stratum, the procedure in the test will overrepresent the distributions of relatively high
volume sections. If this is the case, it probably would be preferable to develop unweighted
averages of the distributions for all Category 1 sections and, separately, of those for all
Category 2 sections (and then obtaining a weighted average of these two sets of distributions).
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Seasonal and Day-of-Week Factors

Seasonal and day-of-week factors for factoring classification counts should be
developed separately for several groups of vehicle classes for each of several highway
factor groups. For this purpose, we recommend that at least three highway factor
groups be distinguished: urban, rural Interstate, and rural other. A separate factor
group for non-Interstate rural roads on the National Highway System might also be
considered.

We suggest that five groups of vehicle classes be distinguished:

a) Four-tire vehicles (Classes 2 and 3);

Buses (Class 4);

c) Other six-tire, two-axle vehicles (Class 5);

d) Other single-unit vehicles with three or more axles (Classes 6 and 7); and

e) Combination trucks (Classes 8-13).

The development of factors for Groups (a) and (e) are discussed in the first subsection
below. The development of factors for the remaining three groups pose some
additional complications and are discussed in the second subsection.

Four-Tire Vehicles and Combination Trucks

For Vehicle-Class Groups (a) and (e), we recommend that separate sets of 84 Combined
Month and Day-of-Week (CMDW) factors be developed for each Category 1 section and
for each factor group.

For a given Category 1 section, a set of Group (a) CMDW factors is obtained by using
daily counts for four-tire vehicles with the AASHTO procedure for deriving MADW
traffic volumes and AADT (16), and then dividing the 84 MADW values for four-tire
vehicles by AADT for these vehicles. In this process, we suggest the MADW values be
computed twice: once using all available daily data; and once excluding any weekdays
for which it is known that routine short-duration traffic counts were not collected (e.g.,
holidays, Thanksgiving Friday, and Christmas/New Year’s week). If two sets of
MADW values are computed, the first set should be used for deriving AADT and the
second set should be used as the numerators of the MADW/AADT ratios.

For each factor group, a set of Group (a) CMDW factors is obtained as an unweighted
average of the factors obtained for all Category 1 sections in the factor g r o u p .
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Sets of 84 Group (e) CMDW factors for each Category 1 section and for each factor
group are obtained by applying the same procedure to daily counts for combination
trucks.

Factoring works best when the factors applied to a given count are developed from data
for a 12-month period that includes the days on which that count was taken (3, Vol. I,
pp. 12-15). Hence, for the purpose of estimating VMT for a given year, we prefer that
final computations not be performed until the year is over and a complete set of factors
for that year can be developed and applied. If AADT or VMT estimates are required for
individual sections or counties on a more timely basis, we prefer that they be developed
using factors developed for a rolling 12-month period that ends in the month when the
section was counted or when counting in the county was completed. Use of factors
developed entirely from counts obtained in the preceding year is a less desirable, but
also less computer intensive, alternative.

Other Single-Unif Vehicles

Daily traffic volumes for Vehicle-Class Groups (b) and (d) and, to a lesser extent, for
Group (c), are appreciably lower than they are for Groups (a) and (e). For this reason,
the above procedure may produce some relatively unreliable factors for individual
Category 1 sections, particularly for rural non-Interstate sections. Accordingly, some
modification to the above procedure probably would be desirable for Groups (b) and
(d), and perhaps for (c) as well.

We have tested the possibility of combining two or three of these groups and found that
these combinations reduced the effectiveness of the factoring procedures, primarily
because of differences in the three groups’ day-of-week patterns of traffic volume.
Accordingly, we do not recommend that separate factors be developed for each of these
three groups. Instead, we suggest that consideration be given to using a modified
version of the Group (a) and (e) procedure for Groups (b) and (d), and perhaps for
Group (c) as well. Combinations of the three following modifications would appear to
be appropriate:

1. Instead of developing 84 CMDW factors, develop seven day-of-week
factors and 12 separate monthly factors, applying these factors in pairs.
The day-of-week factors are obtained by dividing AADW traffic volumes
by AADT, and the monthly factors are obtained by dividing Monthly
Average Daily Traffic (MADT) by AADT. When used to estimate total
AADT, we have found that these “Separate Month and Day-of-Week’
(SMDW) factors increase the mean absolute error by about 0.1 percentage
points and the root-mean-square error by about 0.25 percentage points. .
However, since the numerators of these factors (AADW and AADT) are
derived using a more extensive set of traffic counts than are used for
MADW (the numerator of the CMDW factors), the SMDW factors should

I
1
I
I
1
I
1
I
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be appreciably less sensitive to random variation in daily bus and truck
volumes.

2. Instead of obtaining factors for a factor group as an unweighted average
of the factors for the Category 1 sections in the factor group, obtain them
as a weighted average, using as weights AADT for the relevant Vehicle-
Class Group. Using weighted averages for a particular Vehicle-Class
Group diminishes the effect of the factors computed for the sections that
have relatively low counts of vehicles in the group.

3. Reduce the number of highway factor groups used.6

Time-of-Day Factors

If manual classification counts collected during part of a day are used at some sites,
time-of-day factors should be used to convert these counts to estimates of total traffic by
vehicle class for that day. Also, we recommend that time-of-day factors be used to
impute daily counts at Category 1 classification sites when some hourly counts are
missing or unreliable.

Procedures for handling missing hourly counts and for converting partial-day counts to
estimated daily counts are presented in the two subsections below.

Missing Hourly Counts

We present below a procedure for imputing daily classification counts when some
hourly classification counts are missing or unreliable. An obvious analog of the
procedure can be used for imputing total daily volume when some hourly volume
counts are missing or unreliable.

For the purpose of developing the imputation factors, we suggest that data for vehicle
classes with similar time-of-day usage patterns be grouped, and that all uncommon
vehicle classes be grouped with a more common class. Possible groupings are: Classes
2 and 3; 6 and 7; 9 and 10; and 11 and 12, or 11-13.

For the purpose of imputing daily counts, we define a set of holiday-affected d a y s  (HADs)
to consist of all holidays, holiday weekends (including Thanksgiving Friday), and the
weekdays immediately preceding and following any holiday weekend. The imputation

6 For Vehicle-Class Groups (b) - (d), the VDOT system uses just two factor groups (one urban
and one rural) and uses weighted averages to develop factors for each factor group:.
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procedure presented below works best on non-HADs. This procedure involves the
following steps:

1.

2.

3.

4.

5.

For each continuous AVC site and each day of the week, consider the set of daily
and hourly counts available for those non-HADs  for which reliable classification
counts have been obtained for every hour of the day.

For each continuous AVC site and each hour of each day in the set developed in
Step 1, obtain an hourly fraction for each group of vehicle classes as the ratio of
the hourly classification counts for the group to the corresponding daily
classification counts.

For each continuous AVC site, each hour of the day, each day of the week, and
each group of vehicle classes, obtain an hourly fraction by day of the week (HFDW)
by averaging the corresponding Step 2 hourly fractions (e.g., obtain a Monday l-
2 A.M. HFDW for buses by averaging all the Step 2 l-2 A.M. hourly fractions
for buses for non-HAD Mondays).

For each continuous AVC site, any single day, and any vehicle class for which
some (but not all) hourly counts are missing or unreliable, obtain the sum of the
HFDWs for the missing hours for the corresponding group of vehicle classes.
This sum is the estimated missing fraction of the daily count (MFDC) for that
group of vehicle classes.

If the MFDCs are acceptably small (as discussed below), impute a set of daily
classification counts for the site by dividing the sum of the reliable hourly counts
for the day for each vehicle class by the corresponding value of l-MFDC.

The reliability of the resulting imputed daily classification counts varies inversely with
the values of the MFDCs and is appreciably greater for non-HADs  than for HADs. For
non-HADs,  we suggest using imputed classification counts for a given day when none
of the MFDCs calculated in Step 4 exceeds 0.25; and, for HADs, we suggest using
imputed counts when none of the MFDCs exceeds 0.1. When higher MFDCs are
obtained, we are inclined to reject the imputed counts as not being sufficiently reliable.

We suggest recomputing the HFDWs at least once every three years using classification
counts for at least a 12 month period.

Partial-Day Classification Counts

If manual classification counts are collected at some sites during part of a day (e.g., at
urban sites where AVCs cannot be used reliably), a variant of the above procedure
should be applied to these counts in order to estimate daily classification counts for
these sites. For this purpose, for each highway factor group and each vehicle-class
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grouping, a set of HFDWs should be developed by averaging the corresponding
HFDWs obtained for the continuous AVC sites in the factor group.

For each partial-day classification count, the HFDWs for the appropriate factor group
should be used to compute MFDCs for each vehicle class (as in Step 4 of the above
procedure). These MFDCs should then be applied to the partial-day classification
counts to produce a preliminary set of estimated daily classification counts (as in
Step 5). Finally, we recommend that a separate count of total traffic volume be obtained
at the site with an automatic traffic recorder (ATR) for a 24-hour period that includes
the period during which classification counting was performed, and that the
preliminary set of classification counts be scaled to be consistent with this count of total
traffic.

RECOMMENDATIONS

Sources of Truck V M T Estimates

The factoring procedures presented in the preceding section are designed to eliminate
the upward bias in estimates of truck AADT and VMT that are obtained primarily or
exclusively from weekday classification counts. Accordingly, implementation of these
procedures should make it possible to obtain substantially improved estimates of truck
AADT and VMT. However, as stated earlier, these procedures do not address the
biases that result from consistent misclassification of trucks - a bias that should be
addressed by the development of better classification algorithms for AVCs.

We believe that the estimates of truck VMT produced using the above factoring
procedures will be substantially better than the state and local truck VMT estimates
currently produced in nearly all states. However, because of the inherent difficulty of
developing VMT estimates from traffic counts and the current limitations of automatic
vehicle classifiers, the resulting estimates of national truck VMT are unlikely to be better
than those already available from the Bureau of Census’ Truck Inventory and Use Survey
(TIUS). The TIUS estimates of national truck VMT appear to be the best estimates
currently available, and they are likely to remain so for the foreseeable future.
Accordingly, we recommend that all studies requiring estimates of national truck VMT
use the TIUS estimates.

The Definition of Combination Vehicles

Mingo and Wolff (9)) make two recommendations relating to the VM-1 definition of
combination vehicles:

1. Produce separate estimates of travel by truck-trailer combinations and
tractor-trailer combinations; and
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2. Exclude light trailers and light trucks from both categories of
combinations.

We view the second recommendation as being particularly desirable. Most studies that
require the use of vehicle classification data are concerned primarily with the numbers
and activity of heavy trucks and heavy trailers. Adoption of the second
recommendation would greatly enhance the value of VM-1 data to policy analysts and
would reduce opportunities for misinterpretation of the data.

Implementation of the second recommendation can best be accomplished by expanding
the number of vehicle categories distinguished by pertnanent AVCs with weight-
sensing capability.7 For data-collection purposes, it probably will be necessary to obtain
separate counts of light vehicles pulling light trailers, heavy vehicles pulling light
trailers, and heavy vehicles pulling heavy trailers. Counts obtained using portable
classifiers without weight-sensing capability will not be able to make these distinctions,
but the overall counts of vehicles with a given axle configuration can be allocated into
the three categories using data from the permanent classifiers. The data developed in
this way can then be aggregated into a more appropriate set of publication categories.

GLOSSARY

AADT
AADTVC
AADW
ATR
AVC
CMDW
HAD
HFDW
MADW
MFDC
SMDW
TIUS
VMT

Annual average daily traffic
Annual average daily traffic by vehicle class
Annual average day of the week
Automatic traffic recorder
Automatic vehicle classifier
Combined month and day-of-week
Holiday-affected day
Hourly fraction by day of the week
Monthly average day of the week
Missing fraction of the daily count
Separate month and day-of-week
Truck Inventory and Use Survey
Vehicle-miles of travel

7 We also recommend that consideration be given to establishing triple-trailer combinations as a
separate vehicle category  and to combining the categories of five and six-axle multi-trailer 
combination trucks (Classes 11 and 12).
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TABLE 1 Truck Overcount Ratios for Tuesday-to-Thursday Counts I

Sample Time Period Single Units Combinations

Midnight to Midnight 1.19

6 AM to 8 PMb 1.09 1.18

8 AM to 6 PMb 1.15 1.28

I
I

10 AM to 4 PMb 1.43 1.56

a Reference 4. Data is for all trucks combined from a single site in California. I

b Reference 9. Data is for six sites in California. I

I
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TABLE 2 Comparisons of Truck VMT  and AADT Estimates from Alternative Sources

Source

Estimates
from Source

Single
Units Combs.

Estimates from
Conventional Truck Percentage

counts Difference
Single Single
Units Combs. Units Combs.

1. 1987 TIUS VMTa 31.6 B 62.2 B 49.6 B 86.3 B 57% 39%

2. 1992 TIUS VMT (II) 51.2B 71.5 B 53.7 B 99.1 B 5 39
3. NTTIS VMT (14) 29.5 B 62.0 B 45.8 B 79.1 B 55 28
4. Oregon VMT (15) 748 M 1214 M 904M 1546 M 21 27
5. Virginia AADTa 1366 2200

Unfactored 1493 2824 9 28
Distributed 1654 3078 21 40

a  See Text
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TABLE 3 Quality of Estimates of AADT by Vehicle Class

23

Conventional Estimates Factored Estimates
Mean Mean

Vehicle Class
Actual
AADT

Average
Error

Absolute
Error

Average
Error

Absolute
Error -

4. Buses 156 +27 31 +0.5% 23%
5. 2-axle, 1090 +16 23 -0.9 31

single-unit trucks I
6-7. 3+ axle, 403 +36 44 +28.9 52

single-unit trucks
S-10. Single trailer 2742 +41 41 +1.0 5 1

combinations
11-13. Multiple trailer 82 +38 38 +0.4 9

combinations I
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Vehicle Classification: Florida’s Perspective

The classification of vehicles  by type meets several needs  of the Florida Department of

Transportation (FDOT) as well as other public and private entities. First, projections of the

number of vehicles  by type assists  pavement design  engineers in determining desired pavement

strength  and composition. Second, these data are used by planners  to assess  a highway’s Level

of Service. Next, business  persons use vehicle  classification  data  to identify and evaluate  sites

for placement of businesses.  The data are also used by reporters  to prepare  their stories.

Finally, vehicle  classification data are used by traffic engineers to develop axle adjustment

factors  that are use to compensate for the over-counting with pneumatic tube counters caused  by

vehicles  with more than two axles.

Vehicle classification  data are obtained using a variety of methods,  including manual

counts and the use of portable and continuous automated equipment. FDOT purchased its first

portable automated vehicle  classifiers  in 1983. They were integrated  progressively into the

vehicle  classification program until 1990, when  manual vehicle  classification  was discontinued.

Presently, manual classification  is used only for turning movement studies at intersections.

Traditionally,  vehicle  classifiers  were installed  using two pneumatic tubes.  Recently, permanent

sensors  have been installed in the pavement. The sensor array consists  of two inductive  loops

and one piezoelectric axle sensor.  Vehicle classification  surveys are conducted from one to four

times  per year with a duration of 24 hours  in urban areas and 48 hours  in rural areas.

Since  1988, all new continuous traffic  monitoring sites  that have  been constructed are

capable of vehicle  classification.  In 1995, 162 continuous classifiers were operational. The

conversion of the program  to continuous classifiers was undertaken  provide a base of data that

could  be used in the future to develop  a method  of factoring portable  classification  survey  data

into more accurate annual  representations.

FDOT reports  vehicle  classification  in four ways.  These  include the Annual Vehicle

Classification Report,  axle correction factors,  the traffic flow map, and the allocation of a truck

percentage to every segment of state highway on the Department’s Roadway Characteristics
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Inventory (RCI) database. The Annual Vehicle Classification Report includes classification

percentages averaged by station on an annual basis, irrespective of the number of surveys. The

annual classification  percentages are multiplied by the stations’ AADT to provide annual  average

vehicles  per class. The axle correction factor  report  allows the Districts  to determine which

factors should be applied to axle count  data  taken on each roadway section.  The traffic flow

map shows  graphically  on a statewide map the approximate volumes  of trucks on each  major

section of Florida highway. The truck percentages are assigned  to each  highway segment in the

database using software developed by FDOT for that purpose.

There are several  problems associated with the FDOT vehicle  classification  program.

The first is the difficulty of assessing  the validity of the data. Another issue is that permanently

installed piezoelectric  axle sensors  are not as durable as is desired when they are installed in

flexible  pavements. It is also difficult  to obtain accurate vehicle  classification  data on multilane

undivided highways.  The classification  of vehicles  in a center paved median (two way left turn

lane)  is an unresolved issue.  Finally, automated vehicle  classification  does not work under stop

and go traffic conditions. These situations most  frequently occur during the morning and

evening rush hours  in urban  areas and is often a result  of queuing at traffic signals.

FDOT experience indicates that short term vehicle  classification  surveys are not

feasible. As previously  indicated, prior to 1983 all vehicle  classification  surveys in Florida were

performed manually. The last procedure for manual surveys called for a traffic technician  to

manually tally vehicles  from I 1:00 AM to 5:00 PM. The six hour truck percentage was then

converted to a 24 hour percentage by applying adjustment factors.  These adjustment  factors

were  based on a single study performed by a staff  statistician  using a limited 24 hour sample.

The factors developed from that study were not verified to determine whether they were

applicable to any other survey. The application of adjustment factors  to new sites  was

problematic. When the first  portable vehicle classifiers were distributed to the FDOT Districts,

one of the District  statistics  engineers conducted a study to compare a 24 hour manual

classification  to the data acquired using the automated vehicle classifier. He reported that there
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-

were a surprising  number of trucks traveling  on the highways at night. The manual surveys and

factors did not accurately depict the truck volumes.

Although FDOT is collecting  more vehicle classification  data  than ever before,  the users

of those data  have grown accustomed to more and better traffic characteristics data,  and

demand even more.  Consequently, FDOT is planning to collect more vehicle classification

survey data  in the future, as opposed to simple volume counts.  One of the FDOT Districts has

already taken  this step  by specifying that all traffic count surveys will be vehicle classification

surveys.

-

I
I
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Temporal Distribution of Volume By Vehicle Classification
bY

Mark Hallenbeck
Washington State Transportation Center (TRAC)

Analysis is based on data

from145 sites

in 22 states

stored in the LTPP traffic database

The sites are predominately

rural (78%)

inter-states and principal arterials (85%)

The results presented show national trends

Individual sites may have different characteristics caused by local conditions

There are four basic time-of-day patterns for all vehicle classes

commuter cars
weekend or rural cars
business day trucks
through trucks

The “commuter” pattern is the classic double humped, urban, AM/PM distribution

It contains FHWA Vehicle Classes 1,2,3, and 4 on weekdays in all urban functional
classes

-

It also appears on weekdays in vehicle classes 1,2, and 3 in some rural functional classes

In rural areas, the morning peak tends to contain a lower proportion of daily travel than
occurs in urban areas
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The “weekend” or “rural” pattern contains these same classes on weekends in both urban
and rural areas, and on weekdays in some rural areas

In almost all cases, for both the Business Trucking and Car patterns

. 75 percent of travel occurs between 6 AM and 6 PM

. less than 60 percent of travel occurs during this period for the through truck
pattern

Truck percentage also has very stable patterns over time.

These patterns are essentially equal for all functional classes,

Although the absolute truck percentage changes from functional class to functional class

Weekend truck percentages tend to be lower than weekday truck percentages

Truck percents are highest in the middle of the night

However,

the total volume of trucks and the percentage of daily travel by trucks traveling late at night
is quite low

.

Functional Class Number of Sites

1                                                                                                                                           35
2                                                                                   58

7
8                                                                                                     1

11                                                                                                       19
12                                                                                            4
14
16

95

6                                                                                                15
4

8
1









CONCURRENT SESSION 4B - SAMPLING AND PRECISION

Presented at
National Traffic Data Acquisition Conference

Albuquerque, New Mexico

May 5-9, 1996

99



PRECISION ESTIMATION APPLIED TO TRAFFIC MONITORING DATA

Antonio E. Esteve
Federal Highway Administration

Presented at
National Traffic Data Acquisition Conference

Albuquerque, New Mexico

May 5-9, 1996

101



Esteve

Precision Estimation Applied to Traffic Monitoring Data

Introduction
Traffic monitoring data and information needs continue to expand and the use of the
information to guide decisions is becoming more common. Once decision-making
based on information becomes the norm, the quality of the information becomes a
critical concern. Decision makers begin to question the value of the information on
which the decisions are based.As a result, the quality of the data is increased and the
data itself subject to a higher level of scrutiny. The perspective of data quality quickly
changes from a technical concept applied by technicians to a high-level managerial
concern dear to the operation and critical to mission success. Traffic monitoring has
been approaching this stage for the past few years. Heavy emphasis has been placed
on automation and on improving the capabilities of data collection procedures. The
1991 ISTEA placed additional emphasis on information management and introduced
requirements resulting in the development of Traffic Monitoring Systems for Highways
(TMS/H) in each State to coordinate, stabilize, standardize, and improve the quality of
traffic information.

The use of statistical principles in traffic data collection and management has also
increased over the last few years. The precision of estimates is a central concept of
the statistics profession and probability sampling, where it is used as a means of
meeting quality objectives in a cost-effective manner. Traffic monitoring data collection
and processing is growing and is expected to grow further as new intelligent
transportation initiatives advance. The amount of traffic monitoring data resulting from
continuous installations is growing prodigiously and creating situations where we are
becoming overwhelmed by the quantities of data available.. Yet, in the midst of this
enormous data wealth, we still seem unable to quantify data quality.

The purpose of this paper is to highlight the use of statistical precision as a means of
controlling the quality of the traffic monitoring estimates produced, to further the
discussion of precision and error estimation, and to mainstream the use of statistical
precision concepts to improve the cost-effectiveness of traffic estimation.

Precision in Statistical Sampling
The concept of precision is basic to the development of probability sampling and relates
directly to the theory of sample size estimation and confidence intervals. Statistical
theory and practice recognize the direct link between accuracy and cost and use the
precision concept to provide alternatives between the two. Statistical sampling al lows
survey professionals to determine the highest accuracy/precision that can be achieved
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for a fixed cost or alternatively to minimize the cost of meeting a desired precision.

The two terms accuracy and precision are often used interchangeably. Webster’s New
World Dictionary defines accuracy as “the quality or state of being accurate or exact;
precision; exactness.” Likewise, precision is defined as “the quality of being precise;
exactness; accuracy; definiteness.” These very circular definitions clearly indicate that
in general language usage, the terms precision and accuracy have the same meaning.

Statistical sampling, on the other hand, makes a clear distinction between accuracy
and precision by defining statistical accuracy as the sum of two components: bias and
precision. Bias refers to all the error introduced by issues outside-of the statistical
sampling design and it is often termed non-sampling error. Statistical precision is
defined as the error introduced by the use of a probability sample to estimate the.
parameter in question and is usually termed sampling error.

The dictionary definition of both accuracy and precision also mentions exactness.
Statistical accuracy implies approximation to an objective based on the concept of
estimation. The statistics profession explicitly recognizes that perfection is only
achievable by mathematical theory, not by statistical data collection programs.
Statistics is an art as much as a science and as a profession should never be confused
with accounting.

Statistical precision is usually reported in studies based on statistical sample designs
and is used as a measure of how closely a specific estimate is from the ‘true” but
unknown value the sample was designed to measure. Examples abound in the
literature and in studies based on statistical sampling. Specific transportation
examples of sampling studies include the Nationwide Personal Transportation Study
(NPTS), a household survey sponsored by the USDOT, the Highway Performance
Monitoring System (HPMS), and the Truck Inventory and Use Survey (TIUS), a trucking
firm survey conducted by the Bureau of the Census.

The major difficulty involving accuracy in statistical studies is the issue of statistical bias
or non-sampling error caused by problems with the sample design’s ability to represent
the universe, coverage of the sampling frame from which the sample is selected, non-
response error, or measurement and processing errors introduced in the administration
of the survey.

The major difficulties in producing sampling error estimates in statistical studies are the
large number of estimates produced and the complexity of the sampling designs
employed, which usually necessitate extensive and complex computations. The major
theoretical issue with sampling error relates to the dependence on the normal
distribution model theory as the source of the established methodology.
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Traffic monitoring has its own set of problems in defining accuracy due to the error
introduced by the data collection equipment, the critical inability to apply rigorous
statistical sample designs, the non-random selection of the sample sites, the human
difficulties with data collection, and the factoring procedures used to develop the traffic
estimates. Traffic monitoring is subject not only to the variability of traffic and to the
statistical (or data collection) design, but also to equipment error and the human factors
involved in traffic data collection. In fact, it is the equipment and human factors that
dominate traffic monitoring programs.

Statistical accuracy in traffic monitoring means controlling equipment error. managing
the human component. and achieving subjective precision targets within realistic cost
constraints. Cost is the limiting or controlling factor in traffic monitoring.’ Given
unlimited funding; random data collection methods, measurement equipment, and
controlled procedures could be implemented to meet any desired accuracy.

The Simple Random Sample Model
The simple random sample equation for determining the sample size needed to achieve
a desired precision level derives directly from the confidence interval computation and
is shown below:

n=z 2 s2/D2

where
n gives the sample size needed,

z is the value of the normal distribution given a specific significance level,

s is the standard deviation of the characteristic under study, and

D is the numerical precision desired.

In this equation, z and s are basically fixed while n and D are inversely related to one
another. Further, the inverse relationship is to the second power (squared) which
means-that a reduction in the precision interval by one half (doubling of precision)
causes a fourth fold increase in the number of samples needed.

Although the equation is a simplification, it is not a difficult equation to understand or
apply, and it clearly explains the trade-offs between sample accuracy and cost, which
indicates that doubling precision quadruples the cost. The equation presented applies
only to estimation of the mean (one of many possible estimates) and based on the
normal distribution (the most basic statistical distribution). The equation quickly
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increases in complexity for more involved sampling designs and depends on the
statistic for which precision is desired.

Another form of the same equation is computed by dividing the standard deviation and
the numerical precision desired by the mean, thereby converting it to the coefficient of
variation and the percent deviation from the mean. The revised equation takes the
form:

n=z2 C2/d2

where
C is the coefficient of variation, and

d is the desired precision as a proportion from the mean.

The second equation allows simpler assessments of precision. For example, to
achieve an AADT estimate with 95 percent confidence and plus or minus 5 percent
precision [95-5], the equation becomes: n = 4 C2 / (.05)2 = 1600 C2. For the example in
appendix B, with a C of .27 and day as the sampling unit, a simple random sample of
117 days would be needed to estimate the AADT with a precision of plus or minus 5
percent with 95 percent confidence. If the precision statement were relaxed to [95-10],
the sample needed reduces to 30 days. This is much better, but still a long way off
from the 48-hour or 24-hour monitoring periods which are the standard short counts on
which most estimates of AADT are based.

The previous example makes it obvious that the traditional sampling methods are not
directly applicable. A rigorous application of statistical sampling precision methods is
not directly applicable because the traffic data are not collected based on a rigid
statistical sampling method and most important because of the periodicity in the traffic
data that distorts the normal distribution assumptions of the random sampling model.

Traffic data collected by continuous counters has no sampling limitations or sampling
error since all possible data (with the exception of equipment shutdowns) is being
collected. Simply stated, a 100 percent sample has no sampling error. Since the data
is produced by continuous monitoring, the statistical parameters needed to establish
sample size or to measure precision or variability can be easily computed and applied
as shown in the previous examples. However, since continuous traffic monitoring data
-represent a 100 percent sample and are subject to periodic variation, it may be more
appropriately analyzed by using time-series methods.

.

Sweden’s example
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The application of rigorous statistical sampling precision statements to traffic volume
data has been questioned due to the lack of a random sampling approach and the
periodicity prevalent in traffic data which affects the assumption of normality in the
sampling model.

In the review that preceded this paper, I have not found a single example of the actual
development of statistical precision statements to short count traffic volume data in
State programs. However, an example of the use of precision statements in traffic
volume flow maps is shown by the flow maps produced by Sweden (sample attached in
Appendix A) and described in a 1993 report’.

These maps show the traffic flow estimate for each highway link followed by a plus or
minus percentage. The volume estimate represents Average Daily Traffic (ADT) and
the percentage is the 95 percent confidence interval. The confidence interval is based
on sets of short counts taken several times a year over several years.

In Sweden’s 1990 traffic flow map the precision values range from a high of 51 percent
to a low of 11 percent. As expected the lower variability is found in the higher volume
links. The precision estimates can remain fairly constant along a route or vary by link,
which seems to indicate that the computations were performed individually by link. The
information provided by these precision statements allows users to generalize the
quality of the estimates presented, to conduct sensitivity analysis assessing the effect
of changes in volume due to traffic variability, or to determine statistical significance.
The use of the precision statement also serves to alert the casual user to the dynamic
nature of the traffic information presented.

The development of precision estimates based on short counts in the Sweden example
leaves many concerns. The effect of variation caused by temporal variation (seasonal,
monthly, daily, and hourly), weather, construction, maintenance, special events, traffic
growth, or the many other factors which affect traffic are not addressed. The precision
estimates presented do not apply to the specific year for which the map was developed,
but rather are a general estimate from data collected over several years.

-

-

I

I

I

A comparison of the sample of days needed to achieve the precision listed in Sweden’s
flow maps and the random sample methods shown in the previous section can be used
to estimate the samples used to compute the estimates.

The continuous counter in Appendix A has a C of 27 percent. Using the equation in the
previous section, a random sample of two days would produce an estimate of plus or
minus 50 percent with 95 percent confidence [95-50]. Likewise, an estimate of [95-10]
requires a random sample of 30 days. .  I

-
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The following table presents a summary of the example and also the estimates if the
value of C were lower (15 percent) as is usually the case in urban sites:

C
.27
.27
.27
.27

Days Precision
2 95-50
8 95-20

30 95-10
117 95-5

.15 1 95-30

.15 3 95-20

.15 9 95-10

.15 36 95-5

Sweden’s report does not provide the complete details of AADT estimation, whether
temporal factors are used, whether continuous counters are used, or how their counting
program is established. If Sweden’s traffic counting program were based on a random
number of daily counts each year, then the AADT and C at each site could be easily
determined using the standard methods shown. However, it remains unclear how the
effects of day-of-week and monthly variation are accounted for to compensate for the
temporal variation in the AADT estimate.

Current traffic data precision auidelines
Traffic monitoring data consists of three basic components: traffic volume, vehicle
classification, and truck weight. The estimation procedures and continuous data
available for traffic volume are far more defined than for vehicle classification or truck
weight. The discussion and application in this paper is limited to traffic volume.

The most common estimate derived from traffic volume data is Annual Average Daily
Traffic (AADT). But, many other estimates are also developed from volume data. The

Traffic Monitoring Guide2 (TMG) identified AADT as the principal objective of traffic
volume data collection and established the AADT target precision criteria as [95-10],
plus or minus 10 percent with 95 percent confidence. This general precision criteria
was based on historical or traditional criteria and it was used to support the Highway
Performance Monitoring System (HPMS), which itself established sample size criteria
for estimation of Vehicle Miles of Travel (VMT).

The reasoning behind the establishment of the AADT criteria was somewhat arbitrary
and not derived from rigorous sampling theory analysis. It was based on an extensive
deterministic analysis of the data’, the data collection equipment, the data collect&
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procedures and the cost. During the development of the TMG, it was quickly
recognized that very tight precision levels could only be achieved by using a continuous
counter. Cost is a primary consideration in traffic monitoring programs. Given the cost
of continuous counters and the inability to place more than a few in each State, the
traditional process of using short counts to estimate AADT remained the only feasible
alternative.

Estimating precision levels tighter than the 10 percent criteria would require repetitive
short counts at the same site, which involves a high cost. The result was the cost-
effective recommendation of a traditional short count adjusted for seasonality based on
a well defined temporal adjustment. process derived from the permanent traffic
counters. The recommended short count period, 48 hours, was based on a comparison
of the precision, equipment, and installation cost of several alternatives.

The application of the TMG-recommended 95-l 0 statistical precision criteria is difficult
due to the natural variability inherent in traffic volume, the effect of random but frequent
traffic events, the different traffic patterns caused by levels of urbanization, the extreme
patterns encountered at many locations, and the many equipment related issues. It is
generally accepted that a plus or minus 10 percent precision can be achieved using a
seasonally adjusted 48-hour count in higher volume urban traffic [assuming that the
appropriate equipment can be safely installed]. Indeed, several States-have found that
the target criteria is achievable with 24-hour counts (the 1992 AASHTO Guidelines3

recommended a 24-hour minimum in urban areas based on that finding as well as the
equipment difficulties encountered in urban areas). The 95-10 precision criteria is more
difficult to meet [based on 48-hour counts] in lower volume urban locations or in rural
areas [although equipment installation is usually not a problem there], and may well be
Impossible to meet in recreational locations due to the extreme variation patterns.

In the final analysis, the target precision criteria representtargets that identify the 
precision objectives, relate precision to cost, and allow future program assessment.
Whether precision criteria are specified on a comprehensive basis [the TMG example]
or separate precision targets are identified depending on other characteristics or needs,
the purpose of specifying criteria remains the same, to provide a general indication of
the quality of the estimate. As with all targets, the expectation of scoring a bull’s eye
each time is unrealistic. Specific cases where the precision criteria is not met do not .
indicate a failure of the data collection method, a lack of validity of the statistical
measures, or reduce the value of the resulting information. They simply reflect the
reality of traffic monitoring and the inability of any statistical tool to achieve success 100
percent of the time.

-

-

-

-

The first aspect of quality improvement, the input phase, involves defining precision
targets to meet specified objectives before the data are collected. The second aspect,
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I
1

I

the output phase, is measuring precision after the data have been collected to
determine whether the objectives of the data collection were achieved. It is the
measurement of precision that allows objective evaluation of the data collection
program. The evaluation aspect becomes critical because it indicates whether the
objectives have been met and/or allows program improvement as techniques and
equipment improve over time.

A simplified method for traffic monitoring precision estimation
Establishing precision criteria can be difficuIt in real-life situations. In theory, sampling
precision criteria can be based on the desired objective irrespective of cost, or
alternatively to maximize the precision achievable based on a fixed cost. Neither of

I

 these sampling theory options offers a clear solution for traffic monitoring data
collection.

1

The definition of traffic monitoring objectives can get complicated due to the many uses
of the data and the types of information needed. Costs can be quite intractable to
specify due to complex budgeting mechanisms, the equipment involved, the operational

1
difficulties with traffic monitoring, resource allocations based on need, personnel,
organizational responsibilities, and the wide variety of ways in which costs are assigned
or allocated by different organizations.

I Estimates of AADT are computed directly from continuous counters or estimated based
on short counts adjusted by factors. Estimation from continuous counter is fairly

I
straightforward. Recent unpublished work4 by Oak Ridge National Laboratory and also
presented in this conference show that computational method or missing data have

I

negligible effect on the AADT estimates and their variability. The finding also extends
to vehicle classification estimates. This is a very important finding that will greatly
simplify the computation of AADT and variability estimates. These findings also

I

increase the credibility of traffic estimates by highlighting their statistical robustness.

As previously indicated, estimates of daily traffic variability can be directly computed at
continuous counter sites. The estimate of AADT from a continuous counter has no
sampling error since it was based on all available data. Of course, data collection
equipment, data processing, and missing data still remain sources of non-sampling
error.

At short count sites where data is collected for a 24-hour or 48-hour period, the direct
estimation of variability is not possible due to the fact that a random sample of short
counts is not used to estimate AADT at the short count site. At portable sites, a single

I

short count is used to estimate AADT based on the application of seasonal factors (day
and month) that compensate for the periodic variability that affects traffic. The AADT
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estimation method, using daily and monthly factors to compensate for the temporal
variability, provides a highly precise method of estimation whose statistical precision is
not adequately reflected in the standard simple random sampling approach. The
computation and application of seasonal factors to estimate AADT is detailed in the
TMG and the AASHTO Guidelines.

The proposed approach to estimate the precision, or more precisely the error, of the
estimate of AADT makes inferences based on comparisons from the continuous
counters. This is done by using the same inference base from which the temporal
adjustment factors for the estimation of AADT are derived. The final result is an
empirical precision estimate for the AADT estimate derived from the short count and the
applicable seasonal factors based on a comparison at the continuous counter base
from which the factors were derived.

The proposed approach makes a critical assumption, that the same continuous sites
used to develop the seasonal factors and determined to be appropriate to estimate the
AADT are also appropriate to estimate the precision of the AADT estimate. This is not
a farfetched assumption. It is well established that the variability in traffic is
compensated for by the use of day and monthly factors and that the variability patterns
can be applied consistently across highway systems or other groups of continuous
counters- All that the proposed approach does is to extend the use of the information
extracted from the continuous counters to estimate not only the AADT but also the
precision of the AADT estimate.

The procedure and the results are demonstrated by example. Appendix B provides a
list of daily traffic at a continuous traffic volume station in 1993. The table provides the
date, day of week, daily volume, and identifies the national holidays.

Appendix C consists of two pages. The first page provides a list of statistics derived .
directly from the data in Appendix B. The statistics include the AADT (16,729), the daily
standard deviation (4.479), the coefficient of variation (27 percent), a table showing the
twelve monthly factors, and a table showing the day of week factors for each month.

The AADT is computed as the straight average of the 365 days. The standard
deviation is the simple random sample statistic. The coefficient of variation is the ratio of

the  standard deviation to the mean (AADT) shown as a percentage. The monthly
factors are computed using standard TMG procedures as the ratio of the AADT to the
monthly average daily traffic (MADT). The daily factors are the ratio of the MADT to the
average of the specific day of week within the month. The computations include all
days of the week including holidays and influence days. . 

-

The second page in Appendix C shows the computations to estimate the error of the
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AADT estimate derived from a 24-hour count on May 5, and the AADT estimate from a

1

48-hour count on May 5 and May 6. The tables were computed using Lotus 123
Version 5.

I

Single-day error estimation
Using the data in Appendices B and C, an AADT estimate and its empirical error (which
I refer to as estimated precision) will be computed using a 24-hour monitoring period

I
and the standard factorization approach based on day of week and monthly factors to
compensate for temporal variation. The selected day is May 5, which in 1993 was on a
Wednesday. The following table presents the AADT estimating procedure and the error

1 of the estimate.

Day Month AADT True . Error

1 .
Date Day Volume Factor Factor Estimate A A D T  %
May 5 Wednesday 13,661 1.08 1.05 15,492 16,729 -7.4

This information, extracted from the continuous counter in Appendix B, shows that the
AADT estimate computed using the standard factoring procedure from the May 5 count

I

underestimates AADT by 7.4 percent. This is not a precision estimate. This is the
actual error based on complete information at this site. Given complete continuous
data, there-is no need for confidence intervals to compensate for non-existent sampling

1
error or for the theoretical assumptions that support sampling methods.

The next step is how to infer the information from this actual process and station to

I
estimates based on short counts taken at other sites. For this we need a generalized
inferential process since we lack temporal information at the short count sites.

The generalized error inferential process recommended in this paper is to use the
highest absolute error identified, based on the same day of the week and month as the

I

short count, at the continuous station or stations from which the day and month factors
used to make the AADT estimate were taken. If the factors used to expand the short
count came from a single site, then the process is shown in Appendix C. If the factors

1

came from a group of sites then, the Appendix C method would be computed at each of
the group sites and the average of the highest absolute errors at each site used as the

 generalized estimate.

I The procedure will be described in detail by example. If a 24-hour count is taken on
Wednesday, May 5 and the factors from the station in Appendix B are used to expand

I
the short count to AADT, then the errors for each Wednesday in May are computed in
as shown in the second page of Appendix C. The highest error identified is an

I

underestimate of 7.4 percent, which can be rounded up to 8 percent. Interestingly, the
highest error detected for the Wednesdays in May occurred on May 5, the date of the
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count. The error of the AADT estimated from the 24-hour count is the absolute value of
the highest error found and, in this case, is plus or minus 8 percent.

Any short counts taken on Wednesdays in May 1993 where the AADT was estimated
using the factors from the continuous counter in Appendix B will have an estimate of
error of plus or minus 8 percent. Although no analysis of year effects has been done, it
is recommended that the proposed method be applied only to current year counts using
current year factors computed after analysis of the continuous data for the full year.

As can be seen from the table in Appendix C, proposed method results in a very
conservative estimate, the highest absolute error found. The AADT estimates from
other Wednesdays in May show much lower error. Other less conservative estimates
could be developed. flowever, the most conservative estimate is recommended 
because the inference is made from the continuous counter to a completely different
site where the short count is taken and where no information on temporal variation is
available. As other studies2, 6 have found, the correct application of factors is one of the
most important aspects of traffic estimation, far more important than the length of the
count.

If instead of a single counter, the factors came from a group of IO continuous stations,
the procedure in Appendix C would be applied to each of the IO continuous sites using
the group factors. Then the average of the absolute errors at each of the 10 sites
would be used as the empirical error estimate equivalent to a precision estimate. The
average absolute highest error would then become the error applied to any AADT
estimate based on the group factors for the appropriate day and month..

Since the individual site and group factors are known (and used frequently to estimate
AADT at the short counts), tables of estimates can be easily computed using any
spreadsheet package for each day of the week for each month for each continuous
counter or group of counters. The error tables would be similar to the day of week
factor table shown in Appendix B, providing an easy to apply error estimate for each
day of the week for each month. A decision to apply factors to estimate AADT based
on a short count would immediately point to a similar table providing the empirical error
of the AADT estimate. The process provides both easy computation of error estimates
from continuous counters and simple direct application to the short counts.

Two-day error estimation
The second page of Appendix C also presents a similar procedure for a 48-hour
monitoring period. The only difference being that the process consists of two days and
the AADT is estimated as the average of the two days. The error estimate is based on
exactly the same procedure once the 48-hour AADT is estimated.
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The procedure is shown by an actual example using Wednesday, May 5 and Thursday,
May 6 and also result in an empiric error estimate of plus or minus 8 percent. The
procedure is essentially the same except that instead of using 4 daily periods to
estimate AADT for the single-day example, we now have 8 periods for the two-day
example. Once the 48-hour AADT estimates are produced, the procedure remains the
same.

The empiric error estimate for the May 5 & 6 (48-hour) count using the procedure
advanced in this paper is plus or minus 8 percent estimated as the largest absolute
difference detected rounded up to the next percent. If the seasonal factors came from
a group of stations, then the estimate would be computed in the same manner as
indicated for the single-day period as the average of the highest absolute error at the
group sites.

The application of empirical error for a 48-hour count would be based on the day of
week of the first day of the count for the specific month. In this example, 48-hour counts
starting on a Wednesday in May 1993 where the factors came from the counter in
Appendix B would show an error of plus or minus 8 percent. As before, if group factors
were used, the procedure would be applied to each of the continuous counters in the
group and the average absolute highest error would become the empirical error
estimate.

By comparing the one and two day procedures, an interesting result is highlighted. The
error estimate for the 48-hour count consisting of May 5 and 6 is -7.84 percent, higher
than for the May 5 count, - 7.4 percent. Since both are rounded to the next highest
percent, both AADT estimates result in errors of plus or minus 8 percent.

This finding begs discussion and explanation. The equal error result is not a mistake, it
simply reflects the reality of the comparison between periods of 48 and 24 hours using
a single day approach. As can be seen in Appendix C, the AADT estimate from May 5
is 15,492. The same estimate from May 6 is 15,344. These estimates are very close.
The estimate from the 48-hour period is the average of the two or 15,418. By definition,
the average of two numbers is going to be between the two, lower than one and higher
than the other. If we had compared the 48-hour estimate to May 6 rather than May 5,
then the 48-hour error estimate would have been slightly lower.

On the average and over large samples, a 48-hour count will always’be more precise
than a 24-hour count, but not by a significant amount. This is supported by sampling
theory, since a larger sample is, on the average, more precise than a smaller sample.
In the application of the real-life AADT temporal estimation procedure, the real gain of
the 48-hour period occurs in cases where the separate estimates from each of the two
days err in opposite directions.
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For example, if the first 24 hour period produces a 5% underestimate and the second
day produces a 5% percent overestimate, then the average of the two days, the 48-
hour period AADT, results in a perfect estimate with zero percent error and is far
superior to both 24-hour periods. This is, of course, a contrived example which will not
occur often. In general, when the average error of 48-hour AADT based on the
average of two days AADT is compared with a single 24-hour count, the 48-hour will
show less error of a magnitude of 1 to 2 percent. If the AADT estimates from the two
days err in the same direction then the AADT estimate from the 48-hour period will
always be better than one day and worse than the other. if the two days estimates err
in opposite direction, then the 48-hour estimate may produce an estimate which is
better than each of the two days.

A reflection of the fact that 48-hour counts will be more precise than 24-hour counts is
shown by comparing the average error of the single versus two-day periods from the
table in Appendix C. In this actual example, the single day average error is 0.26 while
the two-day average error is 0.06. For a while, I contemplated using the average error
as the empirical estimate of precision. However, as can be seen from the examples
presented, the average errors get very small and reflect the averaging effect in opposite
directions.

The average error presents a very misleading implication of very low error from an
AADT estimate. Experienced data collectors and users of traffic data recognize the
many sources of error that often affect traffic estimates. However, the low average
errors are also a reflection of the high accuracy that can be achieved with the temporal
factorization based on day and monthly factors- Given the extreme variability of traffic, I
opted for the conservative approach using the absolute highest error detected, which I
believe is far more realistic.

A comparison of the proposed methodology to Sweden3 example can not be shown-
until the proposed approach is applied and tested in the real world. However, by
examining the weaknesses of Sweden’s approach and the errors presented, it seems
apparent that the AADT temporal factorization method as recommended in the TMG will
result in more precise AADT estimates.

Summary and conclusions
Estimating the precision of traffic data is another step to improve the quality of traffic
data and enhance its decision-making potential. This paper has examined the theory of
simple random sampling and precision and highlighted its lack of applicability to real
traffic monitoring data as exemplified by the AADT estimation process based ‘on
temporal factors. The theory has been followed by an actual application from Sweden’s
1990 traffic flow map. Finally, an empirical procedure for estimating the error of AADT
estimates as it applies to real traffic data is proposed and demonstrated. Use of the

114



Esteve 14

simple procedure described will provide an adequate estimation of AADT error and
highlight the quality of the information presented. It will also serve to increase the
comfort level of both data collectors and users of traffic data.
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ABSTRACT

We consider an approach to modeling traffic detection errors that has impacts on
procedures used to adjust for systematic bias and on design of tests to estimate correction
parameters for these procedures. In this approach, we consider three kinds of detection
errors: not counting existing vehicles, counting existing vehicles more than once, and
counting non-existing vehicles. We then develop a stochastic model of the detection
process and derive a formula to adjust observed traffic for systematic bias. The formula
uses correction parameters estimated through a test in which the observed traffic is
compared to the actual traffic in a disaggregated (i.e., vehicle-by-vehicle) fashion.

We conducted a simulated, numerical study that allows a comparison of the
accuracy of this procedure with that of the currently recommended procedure. We
compare the two procedures as a function of: traffic volumes used to estimate parameters
of the adjustment formulas; traffic volumes that are to be monitored; and levels of the
various error probabilities. The results show that the approach developed in this paper
provides better average estimates of traffic volumes in almost all cases. The current
adjustment procedure provides equal average estimates only when the traffic volumes
used to estimate the parameters of the adjustment formula are the same as the traffic
volumes to be monitored, an unlikely situation in practice.

The results imply that an approach that considers different types of errors
separately might be preferred to the currently recommended procedure. This type of
approach would require dissagregate tests, however, which are more difficult and
expensive to perform than the aggregated tests currently recommended. The advantages
of the improved accuracy, compared to the additional cost and complexity of the tests,
would need to be evaluated.
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INTRODUCTION

Highway traffic data provides basic information for design, maintenance, and
management of highway systems (I). Hence, errors in this data may have important
impacts on the final uses. Despite the fact that little is known about the size of these
impacts (2), there is a perceived demand for quality.

Traffic monitoring data is prone to various sources of error, namely, sampling,
parameter estimation, special conditions and equipment errors (I). Sampling errors are
the result of the faulty selection of the number, location and duration of traffic counts.
Parameter estimation errors follow incorrect determination of factors used to expand
short term counts to estimate annual average daily traffic. Special conditions errors are
the result of certain events, such as bad weather or construction, during the traffic studies.
Finally, equipment errors are either the consequence of equipment malfunction or
detection errors. In the Traffic Monitoring Guide (I), the federal government
recommends procedures to minimize the sampling and parameter estimation errors while
keeping costs at tolerable levels. This guide also suggests that practitioners exert
judgment upon the occurrence of special conditions or equipment malfunction.

In addition, the guide emphasizes the need to correct traffic counts for systematic
bias resulting from equipment detection errors and suggests an adjustment procedure. The
adjustment procedure is based on the assumption that the ratio of number of vehicles
“observed” by the equipment to the “actual” traffic volume is independent of the actual
traffic volume. The guide recommends that this ratio be obtained using a test in which
the number of vehicles observed by the equipment and the actual number of vehicles are
recorded. To obtain the actual number of vehicles, or “ground-truth”, the guide
recommends using manual counts or a calibrated traffic monitoring device. The ratio is
then calculated by dividing the number of observed vehicles by the ground-truth. The
resulting ratio is used to estimate actual traffic volumes in monitoring studies. The
estimated actual traffic volume in a given monitoring study is equal to the number of
vehicles observed by the equipment divided by the ratio obtained in the test.

In this paper, we approach equipment detection errors differently. We propose that
there are different types of detection errors. We also consider that these errors are
probabilistic. This approach has impacts on the procedures used to adjust for bias and on
the design of equipment accuracy tests. We develop a simple model based on this view
in the next section. In section three, we derive a correction formula based on the model
and present the formula for the currently recommended adjustment procedure. In section
four, we conduct a simulated, numerical comparison of the accuracy of the estimates of
traffic using the correction formulas. The results of this comparison indicate that
distinguishing among different types of errors would provide better estimates of actual
traffic volumes. We discuss our results and their implications in the final section.
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DETECTION PROCESS MODEL

To model the vehicle detection process we distinguish among three types of
errors. We call them “error of omission”, “error of commission type A”, and “error of
commission type B”. An error of omission is an error such that a vehicle that is present is
not counted. An error of commission type A is an error such that a vehicle that is present
is counted more than once. We assume in this paper that it is counted as two vehicles. An
error of commission type B is an error such that a vehicle count is obtained when no
vehicle is present.

With this framework, the number of vehicles (No) that would be observed by the
detection device for a given time period would be:

NO=NR-NM+NA+NB, (1)

where NR is the actual (real) traffic volume during the time period; NM is the number of
errors of omission committed during the time period; NA is the number of errors of
commission type A committed during the time period; and NB is the number of errors of
commission type B committed during the time period.

We model the detection of a vehicle that is present as a discrete process with
probability p of not counting the vehicle, probability q of counting the vehicle twice, and
probability (1 -p-q) of counting the vehicle once. Hence, the number of errors of omission
(NM) would be a Bernoulli random variable with expectation and variance given by

E[NM] = NR*p ; (2)
Var[NM]=NR*p*( 1 -p) . (3)

Similarly, the number of errors of commission type A (NA) would be a Bernoulli random
variable with expectation and variance given by

E[NA] = NR*q :
Var[NA]=NR*q*( 1 -q) 

(4)
(5)

As a first approximation, we model the number of errors of commission type B as
a Poisson variable with parameter h. This approach assumes that the number of errors of
commission type B are independent of the actual traffic volume and dependent on the
length of the observation period only. In an actual situation this type of errors might be a
function of the traffic in other lanes (3) or objects different than vehicles (4). The
expected value of the number of false alarms is given by

E[N,]=h.
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CORRECTION FORMULAS

This approach to the problem leads to a different formula for estimating actual
traffic from observed traffic from that used in the currently recommended adjustment
procedure. We first derive a correction formula based on the model discussed in the
previous section. Then, we present the formula for the currently recommended
adjustment procedure.

We derive the correction formula based on the expected number of observed
vehicles (E[NO]). Taking the expectation of(l), E[NO] is found to be

E[NO] = NR - E[NM] + E [ N A ]  + E [ N B ]  (7)

Replacing the corresponding expected values on the right hand side by equations (2), (4)
and (6), respectively, we write

E[NO] = NR - NR*p + NR*q + h .

Solving for NR, we have

NR=
E [ N O ]  - 2
(l-p+q) 

(9)

The parameters p, q and h are not observable. However, they could be estimated from a
test. Unbiased estimators of p, q and h would be

where N e
M
 is the number of errors of omission in the test, Ni is the actual traffic volume

in the test (ground-truth), Nb is the number of error of commission type A in the test,

and Nk is the number of errors of commission type B in the test. The number of errors of
omission, commission type A and commission type B can be obtained by vehicle-by-
vehicle comparison of the observations using the equipment being tested and the ground-
truth.

To estimate the actual traffic volume in a monitoring study from an observed.
number of vehicles (Ni ) we replace p, q and h by the estimators obtained through
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equations (l0), (1 l), and (12), respectively, and E[NO] by Ni in equation (9). This leads
to

e.
NRl =

N; - i
(l-l)+3 . (13)

Given that (13) is based on a disaggregate (i.e. vehicle-by-vehicle) test, we refer
to it as “dissagregate-based formula”.

We want to compare the results of adjusting the traffic using the dissagregate-
based formula with the adjustment procedure suggested in the Traffic Monitoring Guide
(I). In the suggested procedure, the estimated traffic, which we shall call I?, , is the
result of dividing the number of vehicles observed by the equipment in a traffic
monitoring study (I$, ) by a correction factor ( 6):

where @ is the ratio of the number of observed vehicles in the test (Nb) to the actual

traffic volume in the test (Ni ), as described in section 1. Given that this formula is
based on the total actual and observed traffic volumes, we call this an “aggregate-based
formula”.

NUMERICAL COMPARISON

To compare the performance of the correction formulas presented in the previous
section, we consider the difference between the estimated traffic volume (fiRI or fiR2)

and the actual traffic volume in a monitoring study (Ni), divided by the actual traffic
volume in the study. For the dissagregate-based formula the performance measure, or
relative error (El), is given by

E1 =
rj,, -Ni .

Nfi
(15)

Similarly, for the aggregate-based formula, the performance measure, or relative error
(E2), is given by

E2 = fiR2 -Ni

NaR
(16)

-

-
I
I
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We are also interested in comparing the magnitude of these relative errors. We do
this by calculating the ratio of the size of the two relative errors (RE)

E
2RE=-.

E1
(17)

The relative errors (E1 and E2) and the ratio of the size of the relative errors (RE)
are random variables. Their probability distributions are difficult to obtain. Therefore,
we approximate these distributions using Monte Carlo simulation. We calculate the mean
and the standard deviation of the relative errors (E1 and E2) and the mean (RE). We
perform the simulations for different sets of initial values, namely, different values of p,
q and h, and different levels of the actual traffic volume in a test (Ni ) and actual traffic

volume in a monitoring study (Ni).

The simulation procedure follows the actual process for estimating correction
parameters using a test and adjusting the number of observed vehicles in a traffic
monitoring study. The procedure consists of the following steps: i) simulate the
outcomes of an accuracy test (i.e., Nb , Ni , Nb , and Nb ); ii) estimate the correction

parameters for each adjustment formula (6, 4, and 1 for the dissagregate-based formula,
and @ for the aggregate-based formula); iii) simulate the outcome of a traffic monitoring
study (Nb); iv) we estimate the actual traffic using each adjustment formula ( tiR1 and
fiR2) with the parameters obtained in step ii); and v) calculate performance measures
(El, E2, and RE) using tiRr and GR2fi-om step iv).

To simulate the outcomes of an accuracy test in step i), we randomly sample a
number of errors of omission (Nb ), a number of errors of commission type A (Ni ), and

a number of errors of commission type B (NE ) from the probability distributions of each
type of error. We then use the sampled values to calculate a number of observed
vehicles for the test (Nb ) using equation (1). To obtain the correction parameters

6, 4, and i in step ii), we use equations (l0), (11) and (12), respectively. To get (@) we

divide N$ by Ni. We repeat the sampling procedure described in step i) to obtain the
components of equation (1) and calculate the outcome of a traffic monitoring study
(N;), in step iii). In step iv) we apply the adjustment formulas --equations (13) and (14)
for disaggregate and aggregate adjustment, respectively. Finally, in step v) we apply
equations (15), (16) and (17) to calculate the relative errors E1 and E2 and the ratio RE.

We replicate the five simulation steps 3,000 times. In each replication the
numbers Nb, Ni, Nb , Nb, Ni, and Nag are randomly selected. Based on the-3,000
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replications, we calculate the averages and standard deviations of El and E2 and the
average of RE.

We develop the simulation-based comparison for different scenarios resulting
from the combination of values shown in Table 1. We use three levels of actual traffic

volume in the test (Ni ); five levels of actual traffic volume in a monitoring study (Ni );
and two levels of the probability of error of omission (p), error of commission (q) and
expected false alarms (A.).

RESULTS OF THE COMPARISON

In table 2 we present the averages El and E2 for different values of Ni and Nk 9
two levels of h @=l,OOO  and h=lOO) and fixed p and q (p=O.O2 and q=0.0l). We note
that the size of the averages of the relative errors E2 (columns 4 and 6) are greater than the
averages of the relative error El (columns 3 and 5) for most of the traffic volume pairs
considered. When the traffic volume in the test is equal to the traffic volume in the
monitoring study (i.e., NL =Ni ), the size of the relative errors is the same, with the

exception of Ni = Ni = 5,000 and h=l,OOO.  In this case, E2 is slightly greater than El.

Moreover, as indicated in Figure 1, we observe that for both values of h, the
average of E2 is less than zero when the actual traffic  volume levels in the test is less than
the actual traffic volume in the monitoring study (Nk <Ni ), and greater or equal to zero

when Ni>N&. This indicates that the aggregate-based formula is expected to either
underestimate or overestimate traffic when the actual traffic volume in the test is different
than actual traffic volume in the monitoring study.

In Figure 2 we present the average ratio of the size of the relative errors as a
function of traffic in the monitoring study (Nk ), for three levels of traffic in the test
(Nk ) and two levels of h. We observe that for both h values, the averages of RE are
increasing functions of the size of the difference between Ni and Ni . When this
difference is zero (i.e., Nk =Ni), the average of RE is less than one for h=l,OOO and
equal to one for X=100. This indicates that when the levels of traffic in the test and the
monitoring study are the same, the disaggregrate-based formula cases is expected to
yield errors at least as large as the aggregate-based formula. Nevertheless, having exactly
the same traffic in the test and in the monitoring study is very unlikely.

We also performed the simulations and calculated summary statistics for different
values of the probability of error of omission (p) and probability of error of commission
(q). In Table 3 we present the averages of the relative error with the disaggregate
estimate for Ni =5,000,  h=l ,000, two combinations of p and q, and five levels of traffic
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in the monitoring study (Ng ). We observe similar results than those obtained with
p=O.O2 and q=O.Ol.. In the new cases, in which p=O.lO and q=O.Ol, and p=O.O2 and
q=O.O5, the sizes of the averages of the relative error E2 are also greater or equal than the
averages of the relative error E1 . This indicates that the observed results do not depend
on the values of the probabilities of error of omission (p) and error of commission type A
(q)/

DISCUSSION

The estimates of actual traffic volume in a monitoring study using a formula
based on disaggregate (i.e., vehicle-by-vehicle) comparison of actual and observed traffic
in a test are better than those using a formula based on aggregate comparison. In the
unlikely case in which the traffic volumes in the test are the same as that traffic volumes
in the monitoring study, the aggregated approach provides equal or better estimates than
the disaggregated approach.

As a result, it would be recommended to use a correction formula based on
disaggregated comparison of the observed and actual traffic in a test. Obtaining the
parameters of the dissagregate-based formula would be more complicated, however.
Specifically, it would be necessary to discern among existing vehicles that are not
counted (errors of omission), existing vehicles that are counted more that once (errors of
commission type A) and non-existing vehicles that are counted (errors of commission
type B).

It would be interesting in future studies to evaluate the advantages of improving
accuracy compared to the additional cost and complexity of the required tests. This
comparison might lead, for example, to special test designs in which only a subset of the
accuracy test is compared at the disaggregate level. This would lead to worse estimates
of the correction parameters, but less costs than performing full disaggregate test. A
result of the comparison of advantages and disadvantages of alternative test designs could
be the selection of a test design that would maximize accuracy while keeping cost and
complexity at tolerable levels.

Our results are based on a simple model of the detection process. This model is
based on the assumption that the probabilities of committing different types of errors are
the same in the monitoring study and the test. We also assume that when multiple
counting errors (errors of commission type A) are committed, only two vehicles are
reported. Additionally, we assume that the number of non-existent vehicles reported
(errors of commission type B) has a Poisson distribution. Nevertheless, we expect that
our main results would hold for a more realistic model of the process. Further simulation
tests with more complex model specifications would be required to confirm this belief.
For instance, it would be interesting to use a model in which errors of commission could
result in three or more vehicle reports, or a model in which the distribution of the non-
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existent vehicles is associated with the level of traffic in other lanes. Still, it appears that
looking at errors from a more dissagregate perspective could lead to greater accuracy.
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Table 1. Values of the Input Variables Used to Construct Simulation Scenarios

Input Variable Selected Values

Real traffic volume in the test (Nk ) 5,000; 10,000; 15,000

Real traffic volume in the monitoring study (Ni ) 5,000 ; 7,500; 10,000; 12,500; 15,000

Probability Error of Omission (p) 0.02; 0.10

Probability Error of Commission (q)

Expected number of error of omission type B (h)

0.01; 0.05

100; 1,000
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Table 2. Results of the Simulation for Different Values of Nk and Nk
(p=0.02, q=O.Ol)
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Table 3. Results of the Simulation of El for Different Values of

Combinations of p and q (Ni =5,000 and h=l,OOO)

N; and Two

p=O.l, q=O.Ol p=0.02, q=0.05

5000
7500
10000
12500
15000

Average El Average E2 Average E1 Average E2
0.0000 -0.000 1 0.0000 0.0000
0.0002 -0.0602 -0.0002 -0.0542
0.0000 -0.0900 0.0001 -0.0812
-0.0001 -0.1081 -0.000 1 -0.0973
0.0001 -0.1201 0.0000 -0.1083
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Figure 1. Average Relative Error of Aggregate Approach (E2) as a Function of Traffic in
a Monitoring Study for Different Levels of Traffic in a Test

131



D. Hidalgo and M. R. McCord 15

lambda

Traffic in Monitoring Study

a. Test Traffic Volume Equal to 5,000 vehicles, p=O.O2, and q=O.Ol

lambda

Traffic in Monitoring Study

b. Test Traffic Volume Equal to 10,000 vehicles, p=O.O2, and q=O.Ol

300.0

250.0

200.0

150.0

100.0

50.0

0.0
7,500 10,000 12,500

Traffic in Monitoring Study

lambda

C. Test Traffic V o l u m e  Equa l  t o  15,000 vehicles, p=0.02, and q=0.0l

Figure 2. Average Relative Error Size Ratio as a Function of Traffic in Monitoring Study
and h, for Different Levels of Traffic in Test
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Classification counts are used for a variety of purposes: HPMS estimates of truck
percentages, cumulative loads for pavement management systems and site specific pavement design.
Resources can constrain data collection to short counts which must then be factored to annual
estimates. This research is two-fold: estimating general expansion factors and evaluating several
short term count periods in terms of when they should occur and how to define when using site
characteristics.

This research did not use the AASHTO expansion methodology to obtain annual estimates. Instead
a set of factors was developed that would allow direct factoring of a given count period to an annual
estimate. Factors were developed for four categories of facilities: urban freeways, rural freeways,
urban other routes and rural other routes. Three counting periods were investigated: 48 hours, 12
hours and 6 hours.

Reflecting the range of uses for heavy vehicle data annual estimates of total trucks, Class 9s, Class 5s
and Class 4s were developed. Since the data came for the Long Term Pavement Performance
database the estimates pertained to the outside lane only. Only limited data would have been
available had estimates of the various annual vaIues for one or both directions been specified.

The second phase of the research was to determine when these short counts should be taken to
develop the “best” estimates and what site characteristics could be used to describe when. A “best”
estimate was defined to be one that was within plus or minus 10 percent of the actual value after
factoring. Site characteristics considered included functional class, number of lanes, freezing index
and precipitation. Definitions of when included season, month and day of week
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