Over 1,000,000 scenes acquired!!!

ASTER Browse Image Mosaic: October 2005

January '06 Eruption of Augustine Volcano, Alaska

ASTER, 12 Jan 2006

Look Direction

Input Data Sets

SRTM Landsat

ASTER DEM

ASTER

Historic Landsat + SRTM

ASTER + ASTER DEM + SRTM + Landsat

Plume extent and cloud top topography derived from ASTER image

ASTER night TIR image, January 31

Ash-laden plume

3 Pyroclastic flows

Applications

- Working with National Weather Service Alaska
- NWS primary responsibility is real-time ash hazard warnings and alerts to in-flight aircraft
- NWS uses RAMS ash dispersal model to forecast plume movement
- ASTER data will be used quantitatively to validate and improve RAMS model:
 - adiabatic cooling and sinking of plume
 - ash loading
 - height of plume
 - velocity of downwind dispersal

Polar Glaciology

Gordon Hamilton Leigh Stearns

Climate Change Institute University of Maine Orono, ME 04473 United States

> gordon.hamilton@maine.edu leigh.stearns@maine.edu tel. 207-581-3446/207-581-1491

East Greenland outlet glaciers

Scoresby Sund glaciers

Kangerdlugssuaq Glacier

Kangerdlugssuaq Glacier

2001 velocities from feature tracking

2005 velocities from GPS surveys

- 12 markers
- Surveyed on >4 occasions
- July 22-26

~200% flow speed acceleration
~5 km/yr in 2001
~14 km/yr in 2005

Helheim Glacier

Helheim Glacier

60% flow speed acceleration

- ~6 km/yr in 2001
- ~10 km/yr in 2005

- Kangerdlugssuaq and Helheim glaciers exhibit similar responses at nearly coincident times
 - Implies a common trigger mechanism
 - Climate change is a possible trigger
 - Increased summer melting?
 - Inflow of warmer ocean water?
- Demonstrates short time scale for significant changes in outlet glacier dynamics
 - Other outlet glaciers in Greenland might exhibit similar responses as climate change effects migrate northwards
 - Rapid changes in outlet glacier dynamics are not included in current predictions for sea level rise

Using ASTER to Study Quaternary Deformation Along the Gobi-Altay Fault System, Southwestern Mongolia

Amit Mushkin & Alan Gillespie

W.M. Keck Remote Sensing Lab, University of Washington, Seattle WA.

mushkin@u.washington.edu

Why study the Gobi-Altay Fault system ?

Study Area & Objectives

Measure Quaternary offsets across multiple

> Good exposures in the arid Gobi environment

Methodology

(A) Remote mapping, using spectral image data to Constrain the identify apparent tectonic distribution, rate and offsets timing of Quaternary deformation across the study area (B) Field study (C) Numerical dating (14C, OSL, CRN) of offset features (D) Utilize field data and the numerical dates to calibrate remote estimates and betterconstrain sites that were not studied on the ground

VNIR	Photo interpretation	
Stereo	DEM Sub-pixel Roughness → relative dating	
SWIR + TIR	Compositional mapping	

Apparent tectonic offset:

- → Composition of alluvial surface is incompatible with its present-day drainage basin
- → Discontinuities in surface properties across fault traces

a 12 a

2004 Tsunami

NAS

ASTER Tasking for Asian Earthquake/Tsunami Disaster

 Data acquired for USAID, International Charter, US foreign embassies, IUCN

Data used by Pacific
 Disaster Center, and for
 congressional briefings

As of February 18, 2005

		Lege	nd	
ASTER Expedited Footprint				
360	720	1,440	2,160	2,880

Land Processes Distributed Active Archive Center (LP DAAC)

Created: 02/18/2005

Banda Aceh before tsunami (left) and 5 days after tsunami (right)

AFANJUS

ASTER Response to Indian Ocean Tsunami

DLR disaster map. Produced for EU and UNOSAT. Base is historic Landsat image. Damage assessment derived entirely from ASTER images.

Phuket, Thailand before tsunami (left), 5 days after tsunami (center), and merged with SRTM data of 10m elevation

Before Tsunami 15 November 2002

5 km

SRTM Elevations within 10 m of Sea Level

North of Phuket, Thailand Tsunami: 26 December 2004 ASTER Images with SRTM Elevation Range Mask

Assessment of Water and Temperature Influence on Vegetation in Urban Areas by the VWTI Index

Yasushi Yamaguchi and Akiyoshi Kato Nagoya University

28th ASTER Science Team Meeting Palm Springs, California December 15, 2005

Background

Heat Island Effect : a serious problem in urban areas

Evapotranspiration of vegetation can lower temperature in urban areas.

It is important to assess vegetation status, particularly water and temperature stresses.

Target Area and Data

City of Nagoya : approximately 5,000 km² ASTER Data : Full mode data, July 10, 2000

Flow Chart

- NDVI [Normalized Difference Vegetation Index]
- NDWI [Normalized Difference Water Index]
- VDI [Vegetation Deficit Index]
- **VWTI** [Vegetation Water Temperature Index]
- (VWTI_1: Stress Intensity, VWTI_2: Stress Type)

NDVI and NDWI images of Nagoya

- (1) Atsuta : Tall evergreen trees
- (2) Aioi : Mixed forests of deciduous trees and bamboo
- (3) Makinoga-ike : Mixed forests of deciduous trees and bamboo, lawn, golf links,

 \Rightarrow Areas with the similar NDVI show different NDWI values.

Makinoga-ike

Mixed deciduous forests with bamboo. Not well managed.

There are golf links and lawn in this area.

Comparison of NDVI, NDWI, and VDI

VDI indicates water deficit status of vegetation in urban areas.

High Both Stresses

- (1) Vegetation in Atsuta is under the least stress.
- (2) Water stress is higher than temp. stress for vegetations in Aioi and Makinoga-ike areas.
- (3) Temp. stress is higher than water stress for vegetation on river banks.

 \Rightarrow VWTI is useful to assess water and temp. stresses of vegetation in urban areas.

Concluding Remarks

- VDI is useful to assess water stress of vegetation.
- VWTI is useful to assess both water and temperature stresses of vegetation in urban areas.
- VWTI utilizes the characteristics of the ASTER; wide spectral coverage in the VNIR-SWIR-TIR.

The World

NAS

ASTER

Richat Structure, Mauritania, Africa

Atlas Mtns, Morocco

ASTER SWIR composite

Salt Glaciers, Iran

Grand Canyon, looking north

The Great Dyke, Zimbabwe

Sand Dunes, Afghanistan

ASTER

JAPANJUSA

Alluvial Fan, China

Ugab River, Namibia

Namib-Naukluft National Park, Namibia

Mississippi River Delta

Oil Seeps, Lake Maracaibo, Venezuela (Jan 2003)

Maldives

Lake Natron, East African Rift

JAPAN/USA

Bombetoka Delta, Madagascar

US-Mexico Border, Mexicali

ASTER

JAPAN/USA

Area around Iguazu Falls

ASTER

JAPANJUSA

Mt. Egmont, New Zealand

Palm Island, Dubai

Santa Cruz de la Sierra, Bolivia: 1986 & 2001

Argyle Diamond Mine, Australia

Growth of Riyadh Saudi Arabia

Teotihuacan, Mexico

Growing to 100,000+inhabitants in the 4th century, Teotihuacan was abandoned in the 8th century. Massive pyramids were used for religious ceremonies.

Great Wall of China

Sand Dunes, Bahamas

