



LP DAAC Evolution Status

Land Processes DAAC (LP DAAC)
User Working Group

August 22-23, 2007

Tom Sohre
Acting LP DAAC Project Manager
USGS

Agenda

- EOSDIS Evolution Goals
- ECS/SDPS Evolution Goals
- ECS Milestone Status Update
- LP DAAC Integration & Simplification
- LP DAAC Schedule
- Post-ECS Evolution considerations

Core: Evolving EOSDIS

- In early 2005, NASA embarked on an EOSDIS Evolution Study
- Address multi-faceted goals/issues:
 - Manage archive volume growth
 - Improve science need response and data access
 - Reduce recurring costs of operations and sustaining engineering
 - Update age of systems and components
 - Move towards more distributed environment
- A vision for the 2015 timeframe was developed to guide conduct of study
- EOSDIS Evolution "Step 1" Plan approved by NASA Headquarters in late 2005.

Features of EOSDIS Evolution (1 of 3)

- Migration to commodity-based hardware
 - reduces maintenance and technology refresh costs

- Transfer responsibility for archive and distribution of MODIS Level 0, Level 1, and Atmosphere (Level 2) data from Goddard DAAC to MODIS data processing facility (MODAPs)
 - Move from archiving all products to on-demand production of Level 1
 - Decrease archive size and slow future growth; facilitates transition to disk-based archive (all data on-line)
 - Closer relationship/control by science community expected to be more responsive to science needs, products, tools

Features of EOSDIS Evolution (2 of 3)

- Rearchitect EOSDIS Core System (ECS) to reduce footprint; simplify system (removes 750K SLOC (current baseline 1.2M SLOC) and 15 S/W Components)
 - Reduced operations/sustaining engineering costs
 - Improved performance

- At Goddard and Langley DAACs, consolidate data holdings into single, in-house developed system at each DAAC (currently operating ECS and heritage systems at both DAACs)
 - Reduction in operations costs due to elimination of multiple systems

Features of EOSDIS Evolution (3 of 3)

Earth science ClearingHOuse (ECHO)

- Achieving higher operational maturity (ingest, reconciliation, search and order, performance, error handling)
- Global Change Master Directory (GCMD) portal to ECHO underway
- ECHO 8.0 based on service-oriented architecture paradigm.

New ROSES 2006/ACCESS ECHO client awards:

- "AQUA: Automated Data Query & Access for Large Earth Science Datasets", Brian Wilson, JPL
- "A Water and Energy Cycle EOS Clearing House Client", Paul Houser, Institute of Global Environment and Society, Inc.

Current Holdings

Collections 2.237

Granules 56 million

Browse 14 million

Key Benefits of Proposed "Step 1" Plan

Maximize Science Value

- Data access easier and data products quickly available to science community
- MODIS data more closely integrated with science community
- Potential pathfinder for migration of other data into science communities

Substantial Cost Savings

- Addresses operational and sustaining engineering
- Takes advantage of current IT advances
- Investments provide return on value within 3 years

Manageable Risk

- Minimizes software development efforts
- Builds upon existing systems
- Utilizes steps within plan as proof of value before proceeding
- Reduces footprint for EOSDIS Core System

ECS/SDPS Evolution

Rearchitect ECS to simplify sustaining engineering and automate operations

Features:

- Simplify software architecture (eliminate 15 components & 750K SLOC)
- Move towards disk-based archive
- Leverage new hardware technology (e.g., commodity-based systems; shared storage) to reduce hardware maintenance costs

Benefits:

- Low risk approach based on proven data pool technology
- Increased system automation; simplified hardware/software configuration
- Reduction in operational costs at ECS DAACs
- Improved data access due to increased on-line storage and commodity disks/platforms
- Provides risk mitigation for GES DAAC and LaRC DAAC ECS phase out efforts

ECS Milestone Status

- Sybase to Linux Transition
- SAN Monitoring Tools
- DDTS Replacement (TestTrackPro)
- ✓ AMASS to StorNext
- ✓ DAAC Blade Centers
- ✓ Rimage Replacement (Luminex)
- ✓ Release 7.20 (Migration to commodity HW, Linux)
- ✓ SAN Capacity Upgrades
- **✓** COTS Upgrades
- ECHO WSDL Order Controller (EWOC)
- Release 7.20+ (BMGT Patch)
- Release 7.21 (Code simplification)

LP DAAC Integration & Simplification

- **✓ ASTER DAR Tool DAAC Unique Extension (DUE)**
- ✓ Catalog Reconciliation Tool (CRT) DUE Re-design
- ECHO 9 Testing
- **✓** ASTER Expedited Flow (part of Goddard Evolution)
- **✓** ESDIS Metrics System (EMS) Migration (from EDGRS)
- Machine-to-Machine Gateway (MTMGW) DUE
- Traffic Cop DUE Re-Design
- S4PM-XML Processing Gateway DUE
- EDG to WIST Migration Testing
- ECHO 10 Testing
- Platform consolidation (Linux, commodity servers)
- Computer Room consolidation (reduce footprint)

Schedule

- Week of August 27, 2007
 - Formal retirement of ECS Java DAR Tool (replaced w/ LP DAAC DAR Tool)
- Week of September 10, 2007
 - ECS 7.20 Operational
 - Blade Center, Rimage Replacement, EMS Transition
- September 25 & 26, 2007
 - EMD / DAAC Technical Exchange Meeting
- December, 2007
 - MTMGW Change, Traffic Cop, EWOC
- January, 2008
 - ECHO 10.0 Operational, WIST replaces EDG
- February 2008
 - ECS 7.21+ (BMGT Patch) Delivery Review
- March 2008
 - ECS 7.21 Delivery Review

Post-ECS Evolution Considerations

- Current EOSDIS Maintenance & Development (EMD) support contract extended thru May 2009
- LP DAAC Silos reaching end of life
 - EMD looking at 3rd party vendors for support
 - Moving towards more and more data online
- Realization of Evolution Efficiencies
 - Reduced facilities expenses
 - Less frequent changes to Baseline
 - Increased automation & monitoring

Questions...

