Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

The Impact of Global Climate Change on Urban Air Pollution and Human Health

EPA Grant Number: U915333
Title: The Impact of Global Climate Change on Urban Air Pollution and Human Health
Investigators: Bell, Michelle L.
Institution: Johns Hopkins University
EPA Project Officer: Thompson, Delores
Project Period: September 1, 1998 through September 1, 2001
Project Amount: $102,000
RFA: STAR Graduate Fellowships (1998)
Research Category: Fellowship - Environmental Engineering , Engineering and Environmental Chemistry , Academic Fellowships

Description:

Objective:

The objective of this research project is to investigate the possible climate change-driven effects of selected criteria air pollutants (particulate matter, ozone) on human health, with a special emphasis on urban air quality. This research connects global climate change to ambient air pollution concentrations that then are linked to epidemiological endpoints. Results will indicate how ambient air pollutant concentrations respond to different climatic conditions and emission scenarios, and how human health could be affected by changes in air pollution induced by global warming and emissions.

Approach:

This research examines the potential relationships between climate change, selected urban air pollutants, and associated human health effects by integrating remote-sensed data, mesoscale modeling, epidemiological data, and data analysis tools with downscaled climate change scenarios. This will include the development of methodologies to link air pollution modeling and human health effects, which will have applications beyond climate change. The Baltimore, Maryland, metropolitan area will be used for a case study. Several downscaled climate-change scenarios, representing a variety of climatic conditions, will be used as input along with corresponding emissions fields and meteorological data to the Models-3/Community Multi-Scale Air Quality modeling system, developed by the U.S. Environmental Protection Agency National Exposure Research Laboratory. This state-of-the-art model allows analysis of tropospheric ozone, particulate matter, and other pollutants on a urban or regional scale, and will be used to evaluate the impact of different climatic and emission scenarios on ambient air concentration fields (e.g., pollutant concentration’s distribution, altered maxima and minima, length of high O3 days, frequency of National Ambient Air Quality Standards violations, etc.). These air pollutant concentrations will be linked with results from selected epidemiological studies that estimate the effect of changes in air pollutant concentration with human health endpoints. Various subgroup populations will have different vulnerability to these health impacts; therefore, separate analysis will be performed for particularly susceptible subgroups (e.g., the elderly, those with preexisting respiratory conditions). Research also will include uncertainty and sensitivity analysis.

Supplemental Keywords:

fellowship, air pollutants, epidemiological endpoint, emissions, climate change, tropospheric ozone, particulate matter, global warming. , Air, Geographic Area, Scientific Discipline, Health, RFA, Engineering, Chemistry, & Physics, Disease & Cumulative Effects, climate change, Health Risk Assessment, Air Pollution Effects, Atmosphere, air toxics, Atmospheric Sciences, Environmental Engineering, East Coast, State, epidemiology, precipitation patterns, Maryland (MD), exposure and effects, ambient air quality, Global Climate Change, health effects, precipitation, ambient air, emissions, urban air , air pollutants, air quality models, environmental monitoring, air pollution, climate variability, Baltimore, MD, exposure, mesoscale models, modeling, urban air pollution, human health, ambient air pollution, human exposure

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.