Grand Forks Human Nutrition Research Center Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: MINERAL UTILIZATION AND BIOAVAILABILITY IN THE 21ST CENTURY, WITH CHANGING DIETS AND AGRICULTURAL PRACTICES

Location: Grand Forks Human Nutrition Research Center

Title: Bioavailability to Humans of An Electrolytic Elemental Iron Fortificant, Assessed after Radiolabeling by Neutron Activation

Authors
item Hunt, Janet
item Swain, James - CASE WESTERN RESERVE UNIV

Submitted to: Journal of Federation of American Societies for Experimental Biology
Publication Type: Abstract
Publication Acceptance Date: December 1, 2004
Publication Date: March 7, 2005
Publisher's URL: http://www.fasebj.org
Citation: Hunt, J.R., Swain, J.H. 2005. Bioavailability to humans of an electrolytic elemental iron fortificant, assessed after radiolabeling by neutron activation [abstract]. The Federation of American Societies for Experimental Biology Journal. 19(5):A1468.

Technical Abstract: Three experiments were conducted to assess the absorption of electrolytic Fe powder relative to FeSO4, as affected by the Fe dose and by ascorbic acid or phytic acid. Fe absorption was measured in 56 volunteers, using 59FeSO4 and an electrolytic 55Fe powder labeled by neutron activation. The Fe sources were tested with a farina cereal breakfast. After 2 wk, absorption was based on whole body counting (59Fe) and blood isotope incorporation. Absorption of Fe from the irradiated electrolytic powder was much lower than expected, 5-10% that of FeSO4. In contrast, pigs had retained 50% of this same irradiated Fe powder, relative to FeSO4 (Zinn, et al., J Nutr 1999;129:181). Ascorbic acid (~160 mg) enhanced Fe absorption 5.8 times from FeSO4 vs. 2.3 times from electrolytic Fe (p< 0.01 for interaction). Compared to 3 mg, a 20 mg dose reduced fractional absorption from FeSO4, but not from electrolytic Fe (p< 0.0001 for interaction). Phytic acid from wheat bran inhibited Fe absorption from both FeSO4 and electrolytic Fe by 60-65%. In conclusion, the irradiation process likely reduced the bioavailability of the electrolytic Fe to humans, but this reduction was not apparent in a pig model tested with the same Fe powder. Compared to FeSO4, the bioavailability of an elemental Fe powder was less influenced by ascorbic acid and by the administered Fe dose. Funded by USDA-CREES grant 2002-35200-12222.

   

 
Project Team
Yan, Lin
Combs, Gerald - Jerry
 
Publications
   Publications
 
Related National Programs
  Human Nutrition (107)
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House