Grand Forks Human Nutrition Research Center Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: MICRONUTRIENT ROLES IN PHYSIOLOGY AND HEALTH

Location: Grand Forks Human Nutrition Research Center

Title: Boron

Author

Submitted to: Book Chapter
Publication Type: Book/Chapter
Publication Acceptance Date: May 1, 2005
Publication Date: January 1, 2006
Publisher's URL: http://www.nap.edu
Citation: Nielsen, F.H. 2006. Boron. In: Klasing, K.C., editor. Mineral Tolerance of Animals. 2nd Revised Edition. Washington DC; National Academies Press. p. 60-67.

Technical Abstract: Elemental boron (B) is a relatively inert metalloid that exists as either black monoclinic crytsals or yellow-brown amorphous powder when impure at room temperature. However, boron as an element does not occur in nature; it is always found bound to oxygen or in the borate form. The most common commercial compounds of boron are anhydrous, pentahydrate and decahydrate (tincal) forms of disodium tetraborate (borax, Na2B407), colemanite (2CaO'3B2O3'5H2O), ulexite (Na2O'2CaO'5B2O3'16H2O), boric acid (H3BO3), and monohydrate and tetrahydrate forms of sodium perborate (NaBO3) (Woods, 1994). The borate industry began in 1865 with the mining of borate pandermite (priceite, 4CaO'5B2O3'7H2O) in Turkey. Shortly thereafter, several borate deposits were found in California and Nevada including ulexite and colemanite in Death Valley. Subsequently, tincal, colemanite and kernite (Na2O'2B2O3'4H2O) were found and mined in the Mojave Desert (Woods, 1994). In addition to Turkey and the United States, other countries producing borates are Peru, Chile, Russia, and China. Sodium perborates are hydrolytically unstable compounds containing boron-oxygen-oxygen bonds; they are used as bleaches in detergents. The end uses of boric acid and borates are diverse and include glass, enamel, and synthetic gems manufacturing, wood and leather perservatives, flame retardants, cosmetics, medical products, detergents, fertilizers, and neutron absorbers for the nuclear industry. Boron halides and hydrides are used as catalysts and in jet and rocket fuels. Elemental boron and its carbides and nitrides are used in high-temperature abrasives and in steelmaking (Larsen, 1988).

   

 
Project Team
Lukaski, Henry
Combs, Gerald - Jerry
Nielsen, Forrest - Frosty
Johnson, William - Thomas
 
Publications
   Publications
 
Related National Programs
  Human Nutrition (107)
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House