Visit NASA's Home Page Jet Propulsion Laboratory California Institute of Technology View the NASA Portal Click to search JPL Visit JPL Home Page Proceed to JPL's Earth Page Proceed to JPL's Solar System Page Proceed to JPL's Stars & Galaxies Page Proceed to JPL's Technology Page Proceed to JPL's People and Facilities Photojournal Home Page View the Photojournal Image Gallery
Top navigation bar

PIA03849: Spallanzani Crater
Target Name: Mars
Is a satellite of: Sol (our sun)
Mission: 2001 Mars Odyssey
Spacecraft: 2001 Mars Odyssey
Instrument: Thermal Emission Imaging System
Product Size: 1130 samples x 3061 lines
Produced By: Arizona State University
Producer ID: 20020717A
Full-Res TIFF: PIA03849.tif (1.612 MB)
Full-Res JPEG: PIA03849.jpg (367.7 kB)

Click on the image to download a moderately sized image in JPEG format (possibly reduced in size from original).

Original Caption Released with Image:

(Released 17 July 2002)
The craters on Mars display a variety of interior deposits one of which is shown here. Spallanzani Crater is located far enough south that it probably experiences the seasonal growth and retreat of the south polar cap. During the southern hemisphere winter, CO2 frost condenses out of the atmosphere onto the surface and probably brings with it small amounts of dust and even water ice. It is this sort of depositional process that is thought to have produced the polar layered deposits. The layered deposit in Spallanzani Crater shares some similarities with the polar deposits. Whatever the origin of the layered materials, they likely filled the crater at one time. Note how the interior slope of the northern rim displays layered material of similar if less distinct morphology as the main deposit on the floor. The process that filled the crater with sediment has been replaced by the opposite process. Erosion has taken over, leaving behind spectacular stair-stepped mesas and bizarre, contorted landforms. Unlike the interior crater deposits in the equatorial latitudes, the erosional process has not produced the yardang features that indicate wind erosion. It may be that ice was one of the cementing agents of the sediment and perhaps the sublimation of that ice has left the sediment susceptible to erosion. The details of the deposition and erosion of this interesting deposit remain to be discovered.

Image Credit:
NASA/JPL/Arizona State University


Latest Images Search Methods Animations Spacecraft & Telescopes Related Links Privacy/Copyright Image Use Policy Feedback Frequently Asked Questions Photojournal Home Page First Gov Freedom of Information Act NASA Home Page Webmaster
Bottom navigation bar