# **Digital Databases and CD-ROM for the Animas River Watershed**

By Tracy C. Sole, Matthew Granitto, Carl L. Rich, David W. Litke, and Richard T. Pelltier

Chapter G of Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado

۲

۲

Edited by Stanley E. Church, Paul von Guerard, and Susan E. Finger

Professional Paper 1651

۲

U.S. Department of the Interior U.S. Geological Survey

# Contents

| Abstract                      |  |
|-------------------------------|--|
| Introduction                  |  |
| Purpose and Scope             |  |
| Acknowledgments               |  |
| Base Cartographic Data        |  |
| Site Data                     |  |
| Sample-Site Data              |  |
| Mine-Related Site Data        |  |
| Geoscientific Data            |  |
| Geologic Data                 |  |
| Geochemical Data              |  |
| Biological Data               |  |
| Geophysical Data              |  |
| Relational Database           |  |
| Contents of Database          |  |
| Database Structure            |  |
| Data Viewer Software          |  |
| Animas River Watershed CD-ROM |  |

۲

# Figures

۲

| 1.   | Ma                                                                                               | p showing geographic extent of Animas River watershed study area |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|
| 2.   | 2. Map showing distribution of Animas River watershed study sample sites in nine-quadrangle area |                                                                  |  |  |  |  |
| 3–6. | Dia                                                                                              | igrams showing:                                                  |  |  |  |  |
|      | 3.                                                                                               | Tables in relational database and relationships between tables   |  |  |  |  |
|      | 4.                                                                                               | Select query qselFerricreteChem1 in Query Design view            |  |  |  |  |
|      | 5.                                                                                               | Crosstab query qctabFerricreteChem2 in Query Design view         |  |  |  |  |
|      | 6.                                                                                               | Crosstab query ctabFerricreteChem2 exported as an XLS file       |  |  |  |  |
|      |                                                                                                  |                                                                  |  |  |  |  |

۲

# Tables

| 1. | Base cartographic data coverages in the Animas River watershed GIS database | 1083 |
|----|-----------------------------------------------------------------------------|------|
| 2. | Elevation and elevation-derived grids in the Animas River watershed         |      |
|    | GIS database                                                                | 1084 |
| 3. | File names for Site Data in various formats                                 | 1086 |
| 4. | Geoscientific data in the Animas River watershed GIS database               | 1090 |
|    |                                                                             |      |

# *Chapter G* Digital Databases and CD-ROM for the Animas River Watershed

By Tracy C. Sole, Matthew Granitto, Carl L. Rich, David W. Litke, and Richard T. Pelltier

## Abstract

( )

During the U.S. Geological Survey Animas River watershed Abandoned Mine Lands Initiative between 1996 and 2001, scientists collected diverse data that describe and characterize the geology, geophysics, geography, biology, mining, and water quality of the Animas River watershed. The environmental effects of more than 100 years of mining along with a complex geologic history in this area have brought to light several fundamental questions regarding the relationships between the products and features left behind from hardrock mining, weathering processes of geologic units, and water quality. Team scientists produced and compiled many layers of spatial digital data to support the multiple objectives of the Animas River watershed project. Base cartographic data covering the project study area were used to provide geographic reference for display of scientific information and results. The accompanying compact disc (CD-ROM) contains these data and provides users with capabilities for viewing these data layers and for utilizing the information for user-defined purposes. The data not only are useful for cartographic displays of scientific results, but also can be used for watershed characterization, investigative analysis, and modeling.

# Introduction

This chapter is a summary and description of the digital data that were generated as part of the Animas River watershed study, and which are placed on the CD-ROM that accompanies this volume.

The Animas River watershed study area is located about 40 miles north of Durango, Colo. Our multidisciplinary study has resulted in numerous digital data layers, which have been used to produce maps and images included and cited in other chapters of this volume. Team scientists analyzed rock, sediment, water, and biota. The data of other Federal and State agencies were incorporated where needed, as well as data from

۲

previous USGS studies. Different types of remote-sensing information were gathered from several platforms, including helicopters, fixed-wing aircraft, and satellites.

An integral part of this chapter is a description of the relational database, the geographic information systems (GIS) database, and the map, image, and graphics products created during the Animas River watershed study. The databases and graphics products are contained on the accompanying CD-ROM, and these digital data are described and listed in tables as part of this text chapter. The relational database contains the biologic, hydrologic, geochemical, and geologic sample-site data collected for the Animas River watershed study, and an inventory and description of mine-related sites. These same data are provided as data layers and associated tables in the GIS database, in both vector and raster formats. In addition, the CD-ROM provides data viewing software that allows basic spatial analysis of the digital data layers.

 $( \bullet )$ 

The base cartographic data cover the Telluride, Ironton, Handies Peak, Ophir, Silverton, Howardsville, Engineer Mountain, Snowdon Peak, and Storm King Peak 7.5-minute quadrangles at a level of detail similar to that of U.S. Geological Survey 1:24,000-scale topographic maps. The geoscientific data also exist within these same nine quadrangles. Most of the sample sites fall within the project-defined watershed boundary (wshdbnd), but there are also some sample-site data in other portions of the Animas River watershed, and a few outside the Animas River watershed. Nine sites are outside the ninequadrangle area.

The data are available on the CD-ROM in native software platform formats, and in several other formats including DOS ASCII text file (TXT), ESRI shapefile, ESRI interchange file (E00), dBASE (DBF) file, Adobe Portable Document format (PDF), and georeferenced tagged image file format image file (GeoTIFF) formats. The *x*,*y* coordinates of the ArcInfo coverages, ESRI shapefiles, and GeoTIFF image files are in UTM (Universal Transverse Mercator) meters, zone 13, and are projected to the common datum of North American Datum of 1927 (NAD27). The FieldSite table in the relational database also contains the longitude and latitude values of the field site locations in decimal degrees, also in NAD27.



#### 1082 Environmental Effects of Historical Mining, Animas River Watershed, Colorado

Figure 1. Geographic extent of Animas River watershed study area.

۲

The following sections describe the data in three categories, including (1) base cartographic data, (2) sample-site data and mine-related site data, and (3) data layers pertaining to geologic, geochemical, biologic, and geophysical information. (This third group of data layers is collectively referred to in this chapter as "Geoscientific Data.") A brief description of the data is followed by summary tables that provide relevant information about individual data files. This data synopsis is followed by an explanation of the relational database. The chapter concludes with a description of the data viewer software that is provided on the CD-ROM and an explanation of the content and format of the CD-ROM. ۲

#### Digital Databases for the Animas River Watershed 1083

#### Purpose and Scope

The purpose of this study was to design a relational database and a GIS database to aid scientists in evaluating the effects that mining and weathering processes have on the ecosystem health of the Animas River watershed study area. The relational database was designed and implemented to store sample and analyses information in a format that permits simple to complex queries. The GIS coverages were created to permit data to be viewed, analyzed, and plotted.

The objectives of this study are to:

- Integrate the thousands of rock, water, and biology data items initially stored in flat files into a relational database
- Archive spatial data in a vector GIS database
- Provide metadata for the digital data collected for the Animas River watershed project.

### Acknowledgments

The authors acknowledge the assistance of Paul Martin, Rick Poss, Stewart Wright, Steve Howard, Earl Wilson, Maria McCormick, Steve Methven, Martin Chourre, and Eric Wong in the creation of the base cartographic data for the Animas River watershed GIS database.

## **Base Cartographic Data**

The base cartographic data were initially collected from the nine 7.5-minute U.S. Geological Survey topographic maps mentioned previously. Data were scanned or digitized from stable-base separates for each pertinent 7.5-minute topographic map. Digital line graph (DLG) files were created, and then converted to ArcInfo coverages. The coverages were then revised where possible using 1998 one-meter resolution digital orthophoto quadrangles (DOQ).

Base cartographic layers created as just described include hydrography, roads and trails, railroads, miscellaneous transportation, hypsography (vector topographic contours), administrative and political boundaries, and cultural features. The hydrography and roads and trails layers were revised using DOQ files as just described. The remaining layers were not altered, and thus their content reflects the content of the 7.5-minute topographic maps.

Inactive mines and mine-related features were of utmost importance to this study, and are described separately later in this chapter, and in detail in the chapter, "Mine Inventory and Compilation of Mine-Adit Chemistry Data" (Church, Mast, and others, this volume, Chapter E5). The Animas River watershed study area boundary layer was created using the administrative boundaries, hypsography, and hydrography layers.

The base cartographic data vector layers exist on the Animas River watershed CD-ROM as Arc Interchange files in the \animas\_cd\gis\_db\basecart\e00 directory, and as ESRI shapefiles in the \animas\_cd\gis\_db\basecart\shape directory. A complete list of base cartographic data coverages is in table 1. Due to shapefile naming restrictions, the names of some of the shapefiles are abbreviated versions of their corresponding ArcInfo coverage names. For a complete listing of the shapefile names, see the \animas\_cd\gis\_db\basecart\README.txt file on the CD-ROM which accompanies this volume.

The coverages listed in table 1 contain data that lie entirely within the nine-quadrangle area. The Administrative Boundaries theme contains national forest and wilderness boundaries but does not include private inholding boundaries. The Political Boundaries theme contains county and incorporated boundaries that represent the only political boundaries that exist in the nine-quadrangle area.

 Table 1.
 Base cartographic data coverages in the Animas River watershed GIS database.

| Coverage name | Theme                                             | File name         | Data format                             |  |                         |
|---------------|---------------------------------------------------|-------------------|-----------------------------------------|--|-------------------------|
| ADMINBND      | Administrative Boundaries                         | adminbnd.e00      | ArcInfo vector coverage                 |  |                         |
| HYDRO         | Hydrography                                       | hydro.e00         | ArcInfo vector coverage                 |  |                         |
| HYPSO         | Hypsography                                       | hypso.e00         | ArcInfo vector coverage                 |  |                         |
| MINE_TOPO_PTS | Mine-related Point Features from Topographic Maps | mine_topo_pts.e00 | ArcInfo vector coverage                 |  |                         |
| MISC_CUL      | Miscellaneous Culture Features                    | misc_cul.e00      | ArcInfo vector coverage                 |  |                         |
| MISC_CUL_PTS  | Miscellaneous Culture Point Features              | misc_cul_pts.e00  | ArcInfo vector coverage                 |  |                         |
| MISCTR        | Miscellaneous Transportation Features             | misctr.e00        | ArcInfo vector coverage                 |  |                         |
| PLACE_NAMES   | Place Names                                       | place_names.e00   | ArcInfo vector coverage                 |  |                         |
| POLBND        | Political Boundaries                              | polbnd.e00        | ArcInfo vector coverage                 |  |                         |
| RAILRDS       | Railroads                                         | railrds.e00       | ArcInfo vector coverage                 |  |                         |
| QUADS         | Quadrangle Boundaries                             | quads.e00         | ArcInfo vector coverage                 |  |                         |
| Q9OUTLINE     | Q9OUTLINE Outline of nine-Quadrangle Area         |                   | OUTLINE Outline of nine-Quadrangle Area |  | ArcInfo vector coverage |
| ROADS         | Roads                                             | roads.e00         | ArcInfo vector coverage                 |  |                         |
| WSHDBND       | Watershed Boundary                                | wshdbnd.e00       | ArcInfo vector coverage                 |  |                         |
| SUBBASINS     | Subbasins                                         | subbasins.e00     | ArcInfo vector coverage                 |  |                         |

A typical USGS DLG Miscellaneous Culture Features file would contain the contents of the Miscellaneous Culture Features theme, the Miscellaneous Culture Point Features theme, and the Mine-related Point Features from Topographic Maps theme. Because of the importance of mine-related sites to this study, mine-related sites were separated from the other cultural point features and stored in a separate coverage called MINE\_TOPO\_PTS. This coverage contains all mine-related point features exactly as they are shown on the 7.5-minute topographic maps. A separate coverage, MINE\_SITES, which was created using the digital orthophoto quadrangle files and a wide variety of other sources, is described briefly in this chapter under the SITE DATA section, and in greater detail in Church, Mast, and others (this volume).

Other related base cartographic data in the GIS database include an elevation grid created by converting USGS 10-meter Digital Elevation Model (DEM) files into individual grids and mosaicking them together, and individual Digital Raster Graphic (DRG) files of the topographic maps. Slope grids in percent and degrees, and aspect and shaded-relief grids were also derived from the elevation grid. All of the elevation-related grids are listed in table 2. The elevation and elevation-derived grids exist on the CD-ROM in the \animas cd\gis db\basecart\elev\grids directory as a compressed tar file (elev.tar.gz), which, when uncompressed, produces an entire ArcInfo workspace containing all of the elevation-related grids. The elevation and elevation-derived data also exist as GeoTIFF and TIFF files on the Animas River watershed CD-ROM in the \animas\_cd\gis\_db\basecart\elev\ images directory.

For more detailed information describing the sources, creation and content of the base cartographic data in the Animas River watershed GIS database, see the metadata located on the accompanying CD-ROM, in the \animas\_cd\ gis\_db\basecart\meta directory.

# **Site Data**

Site characterization, analysis, and monitoring were the primary objectives of the research of this project. Rock, sediment, water, and biological samples were collected, measured, and analyzed, and an inventory of mine-related sites and descriptions was compiled. All data were integrated spatially, using a GIS, and conceptually, using a relational database, to produce a coherent organization of project data.

There are three sets of site data. Two are sample-site data and the third is mine-related site data; they are field sites, analysis sites, and mine sites. Field sites are all the sites that were sampled by project scientists; they number 2,014. Analysis sites are groupings of field sites. These are field sampling sites that are considered by project scientists to be co-located for analysis purposes; there are 1,648 analysis sites. Mine sites represent both inactive mines and other mine-related features; they number 374.

The conceptual structure of the implementation of the site data differs from the GIS data files to the relational database. The three data sets are provided as ArcInfo export files of coverages as well as ESRI shapefiles and DBF files. In the Access database the Field Sites and Mine Sites all are contained in a single table (Site). Associations between the GIS data files Field Sites (field\_sites) and Mine Sites (mine\_sites) were defined and represented in the relational database as relationships, rather than as individual Access tables.

### Sample-Site Data

Figure 2 shows the distribution of the sample sites for the Animas River watershed study which lie within the ninequadrangle area. Most sites are in the Animas River watershed; a few are outside of the Animas River watershed, and nine sites are outside the nine-quadrangle area. For detailed locations of specific sample sites, see the appropriate chapter of this volume or extract the FIELD\_SITES data from the accompanying CD-ROM.

The sample-site data and mine-related site data exist in a number of different formats on the accompanying CD-ROM. The site data file names and associated formats are shown in table 3. Because of the differences in the allowed lengths of file names and attribute names, some of the ArcInfo, ESRI shapefile, and DBF file names and attribute names are abbreviated versions of those that exist in the analogous relational (Access) database tables. These differences are delineated in the README.txt file on the Animas River watershed CD-ROM in the \animas\_cd\gis\_db\sitedata directory.

Table 2. Elevation and elevation-derived grids in the Animas River watershed GIS database.

| Grid name     | Theme                  | File name   | Data format  |
|---------------|------------------------|-------------|--------------|
| ELEVATION     | Elevation              | elev.tar.gz | ArcInfo grid |
| ELEV_60MINT   | Reclassified Elevation | elev.tar.gz | ArcInfo grid |
| HILSHD        | Shaded Relief          | elev.tar.gz | ArcInfo grid |
| SLOPE_DEGREE  | Slope in Degrees       | elev.tar.gz | ArcInfo grid |
| SLOPEDEG_CLS  | Reclassified Slope     | elev.tar.gz | ArcInfo grid |
| SLOPE_PERCENT | Percent Slope          | elev.tar.gz | ArcInfo grid |
| SLOPEPCT_CLS  | Reclassified Slope     | elev.tar.gz | ArcInfo grid |
| ASPECT        | Slope Aspect           | elev.tar.gz | ArcInfo grid |
| ASP_CLASS2    | Reclassified Aspect    | elev.tar.gz | ArcInfo grid |



Digital Databases for the Animas River Watershed 1085

Figure 2. Distribution of Animas River watershed study sample sites in nine-quadrangle area.

The coverage, file, and attribute names used in the remainder of this section are from the ArcInfo GIS database. Access relational database table and attribute names are used in the "Relational Database" section later in this chapter.

۲

The sample data exist in the GIS database as two point feature data layers (FIELD\_SITES and ANALYSIS\_SITE) and 15 associated tables. The FIELD\_SITES data layer contains one point feature for each sample site. Attributes for each site include a unique identifier called SITENUMBER, various information provided by the person who collected the sample(s) at the site, and location information. A table called FSLOC\_MASTER contains the attributes ELEVATION, UNIT (stratigraphic unit), LITH (lithology), and AGE (geologic age), for each sample site. Values for these attributes were assigned by using the GIS to perform spatial overlays with the FIELD\_SITES coverage and the appropriate base cartographic and geologic coverages.

۲

Table 3. File names for Site Data in various formats.

| Export files for ArcInfo<br>coverages or Info files | cport files for ArcInfo Shapefiles or Access tables dBASE files Access tables |                         | ASCII tables                |
|-----------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|-----------------------------|
| analysis_site.e00                                   | anlysite.shp                                                                  | SpatialAnalysisSites    | SpatialAnalysisSites.txt    |
| (coverage)                                          |                                                                               |                         |                             |
| analytic_meth.e00                                   | an_meth.dbf                                                                   | AnalyticMethod          | AnalyticMethod.txt          |
| (Info file)                                         |                                                                               |                         |                             |
| field_sites.e00                                     | fldsite.shp                                                                   | Site                    | Site.txt                    |
| (coverage)                                          |                                                                               |                         |                             |
| fs_ms_assocs.e00                                    | fmsassoc.dbf                                                                  | FieldSiteMineSiteAssocs | FieldSiteMineSiteAssocs.txt |
| (Info file)                                         |                                                                               |                         |                             |
| fsloc_master.e00                                    | fslocmst.dbf                                                                  | FieldSiteLocationMaster | FieldSiteLocMaster.txt      |
| (Info file)                                         |                                                                               |                         |                             |
| lab_name.e00                                        | labname.dbf                                                                   | LabName                 | LabName.txt                 |
| (Info file)                                         |                                                                               |                         |                             |
| msloc_master.e00                                    | mslocmst.dbf                                                                  | MineSiteLocationMaster  | MineSiteLocMaster.txt       |
| (Info file)                                         |                                                                               |                         |                             |
| mine_sites.e00                                      | minesite.shp                                                                  | Site                    | Site.txt                    |
| (coverage)                                          |                                                                               |                         |                             |
| parameter.e00                                       | parametr.dbf                                                                  | Parameter               | Parameter.txt               |
| (Info file)                                         |                                                                               |                         |                             |
| project.e00                                         | project.dbf                                                                   | Project                 | Project.txt                 |
| (Info file)                                         | 1 11 0                                                                        |                         |                             |
| qual_result.e00                                     | qualres.dbf                                                                   | QualitativeResult       | QualitativeResult.txt       |
| (Info file)                                         | 1.1 11 0                                                                      |                         |                             |
| result1.e00                                         | result1.dbf                                                                   | Result                  | Result.txt                  |
| (Info file)                                         |                                                                               |                         |                             |
| (Infa fila)                                         | result2.dbl                                                                   | Result                  | Resultixt                   |
| (IIIIO IIIE)                                        | rogult2 dbf                                                                   | <b>D</b> aquit          | Deput tyt                   |
| (Info file)                                         | results.ubi                                                                   | Kesuit                  | Result.txt                  |
| (IIIIO IIIE)                                        | sample dbf                                                                    | Sample                  | Sample tyt                  |
| (Info file)                                         | sample.doi                                                                    | Sample                  | Sampie.txt                  |
| (iiii0 iiic)<br>sample media e00                    | sampmed dbf                                                                   | SampleMedia             | SampleMedia tyt             |
| (Info file)                                         | sampinea.aoi                                                                  | Sumplemedia             | Sumplementative             |

Sample sites that are considered co-located for purposes of spatial analysis are assigned the same value for an identifier called AMLI\_ANALYSIS\_ID. Because the location chosen to represent the "analysis site" is not always exactly the same as that of the sample sites that are logically considered to be co-located there, a second point feature data layer, ANALYSIS\_SITE, is used to contain the locations of the analysis sites. The same attributes that were added to the FIELD\_SITES data layer using spatial overlay were also added to the ANALYSIS\_SITE data layer.

( )

Because the AMLI\_ANALYSIS\_ID exists in the attribute tables for both the FIELD\_SITES and ANALYSIS\_SITE data layers, the two can be related to each other and to other data tables containing actual sample data and results. The relationship between the two point feature data layers is oneto-many, since more than one field site can have the same AMLI\_ANALYSIS\_ID. In order to aid GIS users not familiar with techniques for dealing with one-to-many relationships, the attribute table for the ANALYSIS\_SITE data layer also contains the SITENUMBERs of the field sites associated with each analysis site. A table called FS\_MS\_ASSOCS contains a list of field sites that are associated with specific mine-related sites. For a complete description of the inventory of mining-related sites created for this study, see Church, Mast, and others (this volume).

The other tables contain the actual sample data and results, as well as various characteristics of the samples and results. These tables were initially created using Microsoft Access and then converted to INFO files and DBF files for inclusion in the GIS database. These tables are described in the "Relational Database" section of this chapter. Effective use of the data in many of these tables requires dealing with one-to-many relationships. The relationships between the tables are shown in figure 3, and are explained in the "Relational Database" section of this chapter. An Adobe Portable Document format document (relationship.pdf) containing a complete diagram of the relationships of all the files in the Animas River watershed relational database exists on the accompanying CD-ROM in the \animas cd\rel db directory. Because effective use of the sample-site data requires an understanding of these relationships, this diagram is important for users of the GIS database, as well as for users of the relational database.

۲



۲

Figure 3. Tables in relational database and relationships between tables.

The FIELD\_SITES and ANALYSIS\_SITE coverages exist on the Animas River watershed CD-ROM as export files in the \animas\_cd\gis\_db\sitedata\e00 directory. These coverages and tables also exist as ESRI shapefiles and DBF files, respectively, in the \animas\_cd\gis\_db\sitedata\shape and \animas\_cd\gis\_db\sitedata\dbf directories.

#### **Mine-Related Site Data**

۲

An inventory of inactive mines and mine-related sites in the Animas River watershed study area was compiled from existing State and Federal sources. The data include significant mines, mills, and mill tailings sites. This inventory of minerelated data provides detailed site characterization, including flowing adits, as well as the size and distribution of mine and mill waste.

In some cases, multiple shafts, adits, prospects, and mined areas of disturbance were located at a given site, but in each case a single point location was chosen to best represent the entire site. Several points were used, however, to represent some mine sites that are composed of multiple levels. The location of each mine-related site was verified where possible with digital orthophoto quadrangle (DOQ) images, and by persons with local knowledge of the area.

Three hundred and seventy-four mine-related sites are stored in an ArcInfo coverage called MINE\_SITES, which exists on the Animas River watershed CD-ROM as an Arc Interchange export file in the \animas\_cd\gis\_db\sitedata\e00 directory. A detailed description of the mine inventory data is in Church, Mast, and others (this volume).

In addition, the MINE\_SITES coverage and related tables are also available on the Animas River watershed CD-ROM as an ESRI shapefile and DBF files, respectively, in the \animas\_cd\gis\_db\sitedata\shape and \animas\_cd\gis\_db\ sitedata\dbf directories. The mine-related site data are also part of the Animas River watershed relational database, which is described later in this chapter.

## **Geoscientific Data**

### **Geologic Data**

The geology of the Animas River watershed study area is described in Yager and Bove (this volume, Chapter E1). These data overlap the areas of the Ironton, Handies Peak, Ophir, Silverton, and Howardsville 1:24,000-scale topographic maps. The combined data files produce a generalized geologic map of the study area. All of the data are provided in both Arc Interchange format and ESRI Shapefile format.

These data consist of the following:

- 1. A geology coverage (geo.e00, geop.shp, and geol.shp). This file is provided with both polygon and line attributes.
- 2. A faults coverage (faults.e00 and faults.shp). Included in this fault coverage are combined fault and vein structures.
- 3. A veins and fissures coverage (veins.e00 and veins.shp). This coverage shows mineralized and nonmineralized or altered veins and fissures in the geologic map area.
- An andesitic dikes coverage (a\_dike.e00 and a\_dike.shp). The a\_dike file shows dikes of andesitic (52–68 percent SiO<sub>2</sub>) composition.
- 5. A rhyolitic dikes coverage (r\_dike.e00 and r\_dike.shp). The r\_dike file shows dikes of rhyolitic (>68 percent SiO<sub>2</sub>) composition.
- 6. A caldera coverage (sjcald.e00 and sjcald.shp). This coverage defines the boundary of the San Juan caldera.

These data files are provided in Arc Interchange format in the \animas\_cd\gis\_db\geosci\geology\e00 directory, as well as in ESRI shapefile format in the \animas\_cd\gis\_db\geosci\geology\shape directory.

In addition, the CD-ROM contains six oversize map products, presented as PDF (portable document format), that were generated from data pertinent to the Animas River watershed study. These maps are provided in the \animas\_cd\ gis\_db\geosci\plates directory. Each is listed in the contents of, and described in, a specific chapter, but most are referenced in several chapters throughout the volume. Plate 1, called pl\_1.pdf in the \geosci\plates directory, is an integrated, generalized geologic map; it is described in Yager and Bove (this volume). Plate 2 is also from Yager and Bove (this volume); it is a map showing ferricrete, manganocrete, and bog iron occurrences and related bogs and springs in the study area region; its image is called pl\_2.pdf. Plates 3 and 4 are a total-field magnetic map and apparent conductivity map, respectively, of the watershed study area, and are associated with Smith and others (this volume, Chapter E4). They are called pl\_3.pdf and pl\_4.pdf. Plate 5, pl\_5.pdf, is a map of surficial geologic deposits along Cement Creek and is from Vincent and others (this volume, Chapter E16). Plate 6, pl\_6.pdf, presents the stratigraphy

of channel and flood-plain deposits in a trench near the Eureka townsite; it is from Vincent and Elliott (this volume, Chapter E22).

Two oversize data tables, too large to be included in the printed book, are also included in the \animas\_cd\ gis\_db\geosci\ directory on the CD-ROM, in a folder called \animas\_cd\gis\_db\geosci\tables. One is an expanded version of table 1 in Jones, Chapter C, giving cumulative production history of mining by year in San Juan County, Colo. The second is an appendix to Anderson, Chapter E20, and is a large table of effects of mining on benthic macroinvertebrate communities in the study area; it includes strategies for monitoring. These items are included as both .xls and .pdf files.

#### **Geochemical Data**

In addition to the streambed and water geochemistry site data, which are provided in the Access database, both generalized and detailed hydrothermal alteration assemblages have been developed as the result of integration of the geologic data described previously with the results of the aqueous geochemical data (alt\_gen.e00, alt\_genl.shp, alt\_genp.shp, and alt\_det.e00, alt\_detl.shp, alt\_detp.shp). These data highlight the contrasting types of mineralization and hydrothermal alteration in the Animas River watershed study area. The files are provided in both Arc Interchange format in the \animas\_cd\gis\_db\geosci\geochem\e00 directory as well as ESRI shape file format in the \animas\_cd\gis\_db\geosci\geochem\shape directory.

A detailed description of the hydrothermal alteration data is in Bove and others (this volume, Chapter E3).

### **Biological Data**

Fish survey studies resulted in a data set that shows locations of species survival in the tributaries of the Animas River (ani\_fish.e00 and ani\_fish.shp). The fish sampling was conducted in 1992 by the Colorado Department of Health and Environment Water Quality Control Division (WQCD) with additional help and information provided by Mike Japhet of the Colorado Division of Wildlife in Durango, Colo. This file is provided in Arc Interchange export format in the \animas\_cd\gis\_db\geosci\biologic\e00 directory and in ESRI shapefile format in the \animas\_cd\gis\_db\geosci\biologic\shape directory.

## **Geophysical Data**

Electromagnetic and magnetic anomaly geophysical data were collected over the Animas River watershed study area. The primary goal of the geophysical data is to aid the mapping of surface and subsurface lithology and structure in the study area.

The electromagnetic and magnetic anomaly data are described in Smith and others (this volume, Chapter E4). The chapter by McDougal and others (this volume, Chapter E13), provides a description of geophysical signatures of mapped geologic structures and identifies possible unmapped structures based on these geophysical signatures. Images of these data are available in the \animas\_cd\gis\_db\geosci\geophys\geotiff directory.

Vector files that define the extent of the airborne geophysical surveys are available in ArcInfo export format (gp\_poly.e00) in the \animas\_cd\gis\_db\geosci\geophys\e00 directory, and in ESRI shapefile format (gp\_poly.shp) in the \animas\_cd\gis\_db\geosci\geophys\shape directory.

The images provided on the CD-ROM were derived from grids of data collected along closely spaced (200 m and 400 m) flightlines as part of a high-resolution airborne geophysical survey over the Animas River watershed area. The 200 m flight spacing is in the western section of the geophysical study area. The closer spacing was chosen to highlight features of the Cement and Mineral Creek drainages.

Images relating to the magnetic anomaly data include a reduced-to-pole magnetic anomaly map (rtp\_mag.tif), a high-pass magnetic anomaly map (rtp\_mag\_hipass.tif), a low-pass magnetic anomaly map (rtp\_mag\_lowpass.tif), a high-pass horizontal magnetic gradient map (HGM\_hipass.tif), and a low-pass horizontal magnetic gradient map (HGM\_lowpass.tif). The high-pass and low-pass images emphasize magnetic anomalies caused by lateral variations in magnetic properties of rocks from surface elevations to approximate depths of 200 m. They are the result of a filter that was applied to the reduced-to-pole data. From these data, a predictive model of geologic structures was calculated (HGM\_hipass\_model.tif).

Images that portray apparent conductivity of rocks as measured from the airborne geophysical survey are provided on the CD-ROM. The images represent conductivity of rocks at three frequencies resulting in different depths of penetration. They illustrate the electrical structure of the Earth. The image produced using the highest frequency (34,960 Hz) shows conductivities of rock at depths from the topographic surface of a few to 10 m (cond\_34960csr\_100k.tif). The mid-frequency (4,310 Hz) images (cond\_4310\_48k.tif and cond\_4310csr\_100k.tif) map conductivities of rock from the surface to depths of approximately 30 m. The lowest frequency (984 Hz) image (cond\_984csr\_100k.tif) maps conductivities of rock at depths to approximately 60 m.

In addition, two images of predictive models are provided. The first image uses the electrical resistivity at 4,310 Hz to model geologic structures (res4310\_model.tif). The second image is a profile convexity predictive model of geologic structures (profile\_convex\_model.tif). A detailed description of these images is found in McDougal and others (this volume).

The geologic, geophysical, and geomorphological maps and the geochemical, biological, geophysical, and remote sensing data are listed in table 4, and are available on the CD-ROM accompanying this paper in the \animas\_cd\gis\_db\geosci directory.

## **Relational Database**

The Abandoned Mine Lands Initiative (AMLI) Animas River relational database was constructed as a tool to be used for data synthesis and analysis, and as an archive of data collected during the AMLI project. It includes data collected by USGS biologists, geologists, and hydrologists within or adjacent to the Animas River watershed during the period 1995 to 2000<sup>1</sup>. It also includes data collected by the Colorado Division of Minerals and Geology during the period 1995 to 1998. It is a relational database containing field measurements made at point locations, and laboratory analyses of samples collected at point locations. Quality-assurance data are not included; information on field and laboratory quality-assurance practices is located in individual chapters in this report or in previously published reports.

## **Contents of Database**

The AMLI Animas River relational database contains 19 data sets contributed by USGS scientists and teams from the Geologic Discipline, Water Resources Discipline, and Biological Resources Discipline. These data sets comprise all the available data collected as part of the project, and all the data discussed in this volume, amassed at 2,389 sites. Samples, taken from a total of 66 defined media types, included 1,898 water, 1,885 earth material, and 190 biotic material. Water media sampled included surface water (for example, streams) and ground water (for example, well water). Earth media sampled included sediment, soil, bedrock, and mine-waste material. Biotic media sampled include biofilm, fish tissue, invertebrate tissue, and vegetation. The database contains 144,522 results, divided among quantitative, qualitative, and descriptive measurements. Data definition is provided through the establishment of 1,231 unique parameters (measurement types).

#### **Database Structure**

۲

Because of the scope and complexity of data collected as part of the AMLI project, a relational database structure was designed for data storage. Data are grouped into logical units (tables), and relationships are defined to link the tables. This structure provides efficient storage of information (information need not be repeated), and also provides for built-in data verification checks. For example, a result cannot exist without corresponding site, sample, and parameter information. The relational database structure is also a powerful and efficient tool for retrieving subsets of data to meet user requirements. The AMLI relational database contains 12 tables that have been populated and linked to one another, providing the necessary functionality that the project requires.

<sup>&</sup>lt;sup>1</sup>Analyses of 110 bedrock samples collected during previous studies (1982–1993) are also included in the AMLI database.

#### Table 4. Geoscientific data in the Animas River watershed GIS database.

۲

[On the CD-ROM, the six PDF maps are in a separate sub-directory called \geosci\plates\; the two tables (mine production information and invertebrate community information) are in a separate sub-directory called \geosci\tables\]

| Subject                | Description                                                                                                           | File name                                      | File<br>format(s)          | Chapter                                            |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|----------------------------------------------------|--|
| Geology                |                                                                                                                       |                                                |                            |                                                    |  |
|                        | Geology                                                                                                               | geo.e00, geop.shp (polys),<br>geol.shp (lines) | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Structure                                                                                                             | faults.e00, faults.shp                         | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Veins                                                                                                                 | veins.e00, veins.shp                           | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Dikes-andesitic                                                                                                       | a_dike.e00, a_dike.shp                         | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Dikes-dacitic                                                                                                         | d_dike.e00, d_dike.shp                         | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Dikes-rhyolitic                                                                                                       | r_dike.e00, r_dike.shp                         | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Topographic base                                                                                                      | topobase_nad27_4bit.tif                        | GeoTiff                    | Yager and Bove (E1)                                |  |
|                        | San Juan caldera                                                                                                      | sjcald.e00, sjcald.shp                         | ArcInfo vector<br>coverage | Yager and Bove (E1)                                |  |
|                        | Geologic Map Plate                                                                                                    | pl_1.pdf                                       | PDF Map                    | Yager and Bove (E1)                                |  |
|                        | Ferricrete, Manganocrete, Bog Iron<br>Occurrences, and Related Bogs<br>and Springs Map Plate                          | pl_2.pdf                                       | PDF Map                    | Yager and Bove (E1)                                |  |
|                        | Cumulative production history of<br>mining by year in San Juan County                                                 | ChCTable1_orig.xls<br>.pdf                     | XLS Table<br>PDF Table     | Jones (C)                                          |  |
| Geochemistry           |                                                                                                                       | *                                              |                            |                                                    |  |
|                        | Generalized hydrothermal alteration<br>assemblages                                                                    | alt_gen.e00, alt_genl.shp,<br>alt_genp.shp     | ArcInfo vector<br>coverage | Bove and others (E3)                               |  |
|                        | Detailed hydrothermal alteration assemblages                                                                          | alt_det.e00. alt_detl.shp,<br>alt_detp.shp     | ArcInfo vector<br>coverage | Bove and others (E3)                               |  |
| <b>Biological Data</b> | -                                                                                                                     |                                                |                            |                                                    |  |
|                        | Fish species survival location map                                                                                    | ani_fish.e00, ani_fish.shp                     | ArcInfo vector<br>coverage | Besser and Brumbaugh (E18<br>Besser and others (D) |  |
|                        | Effects of mining on benthic<br>macroinvertebrate communities in<br>the study area, with strategies for<br>monitoring | ChE20Appendix.xls<br>.pdf                      | XLS Table<br>PDF Table     | Anderson (E20)                                     |  |
| Geophysics             |                                                                                                                       |                                                |                            |                                                    |  |
|                        | 984 Hz. conductivity                                                                                                  | cond_984csr_100k.tif                           | GeoTiff                    | Smith and others (E4)                              |  |
|                        | 4310 Hz. conductivity (1:48k)                                                                                         | cond_4310_48k.tif                              | GeoTiff                    | Smith and others (E4)                              |  |
|                        | 4310 Hz. conductivity (1:100k)                                                                                        | cond_4310csr_100k.tif                          | GeoTiff                    | Smith and others (E4)                              |  |
|                        | 4960 Hz. conductivity<br>4310 Hz. resistivity predictive<br>model                                                     | cond_34960csr_100k.tif<br>res4310_model.tif    | GeoTiff                    | McDougal and others (E13)                          |  |
|                        | Reduced-to-the-pole magnetic<br>anomaly                                                                               | rtp_mag.tif                                    | GeoTiff                    | McDougal and others (E13)                          |  |
|                        | Reduced-to-the-pole high pass<br>magnetic anomaly                                                                     | rtp_mag_hipass.tif                             | GeoTiff                    | McDougal and others (E13)                          |  |
|                        | Reduced-to-the-pole low pass magnetic anomaly                                                                         | rtp_mag_lowpass.tif                            | GeoTiff                    | McDougal and others (E13)                          |  |
|                        | Reduced-to-the-pole high pass<br>horizontal magnetic gradient                                                         | HGM_hipass.tif                                 | GeoTiff                    | McDougal and others (E13)                          |  |
|                        | Reduced-to-the-pole low pass<br>horizontal magnetic gradient                                                          | HGM_lowpass.tif                                | GeoTiff                    | McDougal and others (E13)                          |  |

| Subject              | Description                                                                                     | File name                | File<br>format(s)       | Chapter                   |
|----------------------|-------------------------------------------------------------------------------------------------|--------------------------|-------------------------|---------------------------|
| Geophysics—Continued |                                                                                                 |                          |                         |                           |
|                      | Profile convexity predictive model<br>of geologic structures                                    | profile_convex_model.tif | GeoTiff                 | McDougal and others (E13) |
|                      | High-pass horizontal gradient<br>magnitude magnetics predictive<br>model of geologic structures | HGM_hipass_model.tif     | GeoTiff                 | McDougal and others (E13) |
|                      | Outline of the geophysical study area boundary                                                  | gp_poly.e00, gp_poly.shp | ArcInfo vector coverage | McDougal and others (E13) |
|                      | Outline of extent of structural mapping                                                         | struct.e00, struct.shp   | ArcInfo vector coverage | McDougal and others (E13) |
|                      | Total-Field Magnetic Map Plate                                                                  | pl_3.pdf                 | PDF Map                 | Smith and others (E4)     |
|                      | Apparent Conductivity Map Plate                                                                 | pl_4.pdf                 | PDF Map                 | Smith and others (E4)     |
| Geomorphology        |                                                                                                 |                          |                         |                           |
|                      | Surficial Geologic Deposits<br>Map Plate                                                        | pl_5.pdf                 | PDF Map                 | Vincent and others (E16)  |
|                      | Stratigraphy of Channel and Flood-<br>Plain Deposits Map Plate                                  | pl_6.pdf                 | PDF Map                 | Vincent and Elliott (E22) |

Table 4. Geoscientific data in the Animas River watershed GIS database.—Continued

The principal tables in the AMLI relational database are the Site, Sample, Result, QualitativeResult, and Parameter tables (fig. 3). The Site table contains information about each of the 2,389 sites in the database. A SiteNumber uniquely identifies each site, which may be further described with data entered in the SiteName and SiteComment fields. The SiteNumber field also provides the link between data in the Site, FieldSiteLocMaster, and Sample tables. Sites that are considered co-located for purposes of spatial analysis are assigned the same AMLIAnalysisID, which creates the link needed to access data in the SpatialAnalysisSites table. The Site table also contains all of the project data that describes mining activity in the Animas River watershed study area. All sites that are located at mine sites have been assigned AMLIMineID numbers, providing the link to data stored in the MineSiteLocMaster table. A project code for each site (ProjectCode) indicates what project and scientist established the site. ProjectCode links Site to the data in the Project table. Additional characteristics in the Site table include geographic coordinates (Latitude and Longitude) and a Stream designation that indicates the name of the stream on which the site is located. Relationships between the Site table and other tables in the database are shown in figure 3.

The **Sample** table contains information about the sample material collected at each site. Each analyzed sample has a unique SampleID, as well as a SampleName provided by the sample collector. SampleID is the key field that links the sample to its chemical and physical data found in the **Result** and **QualitativeResult** tables. The time and date of sample collection are noted in the SampleTime and SampleDate fields. The SampleMediaCode defines the sample material type, a definition that is clearly described in the **SampleMedia** lookup table to which it is linked. Media type should be carefully noted in analysis of data so that data from different sample types are not mistakenly equated. For example, the database contains analyses for arsenic found in streambed sediment and in mill tailings sediment—two types of sample material that have different potential for the concentration of metals. Information regarding the collection and preparation of the sample may be found in the optional fields CollectionMethod, and SamplePreparation. Any other pertinent sample information available may be found in the SampleComment field. Relationships between the **Sample** table and other tables in the database are shown in figure 3.

The Result table contains measurements made in analytical laboratories as well as at sampling sites, expressed as numeric values, whereas the QualitativeResult table (fig. 3) contains qualitative measurements that are expressed as text values. For the most part, the two tables function in the same way, although 97 percent of the project result data is found in the Result table. The characteristic measured is identified using a ParameterCode, a succinct 20-character-length field that can be used as a column name in a data report or spreadsheet. The ParameterCode links both result tables to the Parameter look-up table, which is further detailed in the next paragraph. In the Result table, measurements consist of a numeric Value and an optional ValueRemarkCode, which is used to qualify results such as non-detections or estimates based on limits of instrumental detection. Data describing water filters, where used in the sampling procedure, may be found in the FilterPoreSize field. Information regarding the method of analysis or measurement used to obtain data is found in the AnalyticMethodShortName field, which is an abbreviated label linked to the AnalyticMethod look-up table. Likewise, LabShortName is an abbreviated label linked to the LabName look-up table, which provides information

regarding the laboratory or work group responsible for the analysis. Any further remarks regarding the Value or the analytic process will be found in the ValueComments field. Relationships between the **Result** and **QualitativeResult** tables and other tables in the database are shown in figure 3.

The **Parameter** table is a look-up table that contains a complete description of each characteristic measured. Whereas the **Result** table contains a short description of the characteristic measured (ParameterCode), the highly specific nature of laboratory measurements requires a lengthier description. For example, the ParameterCode "Ag\_st\_sl" is shorthand for "Silver, sediment, mine waste/tailings/dump material, dry sieved, finer than 0.18 millimeters, leachate from 1% H<sub>2</sub>O<sub>2</sub>-HCl leach digestion, laboratory, micrograms per gram." The Parameter table also includes a ConstituentName field that groups results according to the element or compound type (zinc, for example), and a Ppcode field that lists the corresponding measurement code (where available) in the U.S. Geological Survey's National Water Information System (NWIS) and the U.S. Environmental Protection Agency's STORET database. Lastly, the Parameter table contains fields that show the units in which values are reported, as well as the pore size of the filtered or sieved sample in question.

Relationships between these tables are depicted as lines in figure 3. The **Site** table is linked to the **Sample** table by including a common field (SiteNumber) in both tables. Therefore, a sample cannot exist without having a site in the **Site** table. The symbols "1" and " $\infty$ " at the ends of the relationship line indicate a one-to-many relationship, that is, a site may have many samples. Similarly, a sample may have many results, and a parameter may also have many results.

As for the remaining seven tables, the SpatialAnalysis-Sites table provides site groupings so that data may be extracted from sites in the same locale, stream basin, or mine area. The FieldSiteLocMaster and MineSiteLocMaster tables contain characteristics for each field site and mine site. These characteristics were derived from overlays using a GIS database. The AnalyticMethod table provides additional information on field and laboratory techniques used for sample analysis. The LabName table provides additional information about analytical laboratories or work groups that produced chemical results or physical measurements. The Project table provides additional information about the projects or work groups that provided data to the AMLI relational database. This table provides contacts for these projects, as well as information regarding other publications where the project's data have been previously published. The SampleMedia table not only provides additional information about the media types sampled but also is a media classification scheme created for the purpose of concise data retrieval.

Relational databases can be used by a variety of proprietary or nonproprietary software packages. The AMLI relational database is provided in the CD-ROM attached to this report in a proprietary, write-protected, read-only format (Microsoft Access 2003) and it is also provided in a nonproprietary format. A README file on the CD-ROM provides technical details about how to use the database in these two formats. A more complete discussion of the creation and content of the database is included on the CD-ROM in a Federal Geographic Data Committee-compliant metadata file.

Data may be extracted from the AMLI relational database to meet specific user needs. Within relational database software packages, queries may be constructed and saved to retrieve data using user-defined criteria. The Microsoft Access version of the AMLI relational database on the CD-ROM contains several example queries. For example, a series of linked queries were constructed to extract data yielded from ferricrete samples collected in the Animas River watershed study area. To formulate this query, the user needs to list the database fields of interest and the conditions to be placed on extracting this information. The construction of more complex queries requires the user to browse the various tables to get an idea of their contents. For the ferricrete data, the table includes the site name, site location, sample name, sample media information, sample date, elemental concentrations, analytic method used for detection, and a detailed description of the analytic parameter. The query 'qselFerricreteChem1' selects these fields of interest (fig. 4).

This query combines data from five tables: the Site table (containing the SiteNumber, SiteName, and coordinates), the Sample table (containing the sample name and date), the SampleMedia table, the Result table (containing result information and parameter codes), and the Parameter table (containing the detailed parameter names). Data will be sorted first by SiteNumber and then by SampleName. Conditions are placed on this query so that only ferricrete solid sample media data are selected. This is done by specifying the criteria "Not like "W\*" " for SampleMediaCode, and "Like "\*ferricrete\*"" for the Sub-type of SampleMedia. Ferricrete rock and sediment are now queried. This query also constructs the Result value as a new field called "adjvalue" so that all results that are less than the detection limit (have "<" in the ValueRemarkCode accompanying the Value) are divided by two. The script used to define this field is:

"adjvalue: IIf(Result!ValueRemarkCode='<',0.5\*Result! Value,[Value])

This procedure renders all result data as numerical results. Also included in the query is the creation of a new field "LongParam" that combines the ParameterCode and AnalyticMethodShortName from the **Result** table and ReportUnits from the **Parameter** table so that the resulting data can be clearly qualified. The new LongParam "As\_r\_sl\_µg/g\_ICP-AES" is a shortened equivalent of the ParameterName "Arsenic, rock/"fossil" ferricrete/mineral, outcrop, dry sieved, finer than 0.149 millimeters, leachate from 2M HCl-1%  $H_2O_2$  leach digestion, laboratory, micrograms per gram". The script used to define this new field is:



#### (continued from right side)

( )

| Field:    | adjvalue: IIf(Result!ValueRemarkCode='<',0.5*Result!Value,[Value]) | LongParam: (Result!ParameterCode & "" & Parameter!ReportUnits & "" & Result!AnalyticMethodShortName) | ParameterName |
|-----------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------|
| Table:    |                                                                    |                                                                                                      | Parameter     |
| Sort:     |                                                                    |                                                                                                      |               |
| Show:     | V                                                                  | $\checkmark$                                                                                         |               |
| Criteria: |                                                                    |                                                                                                      |               |
| or:       |                                                                    |                                                                                                      |               |
|           |                                                                    |                                                                                                      |               |

۲

Figure 4. Select query qselFerricreteChem1 in Query Design view.

LongParam: (Result!ParameterCode&"\_\_"&Parameter!Report Units&"\_\_"& Result!AnalyticMethodShortName)

The graphical view of the query shown in figure 4 is translated into a Structured Query Language (SQL) statement as follows:

SELECT Site.SiteNumber, Site.SiteName, Site.SiteComment, Site.Latitude, Site.Longitude, Sample.SampleName, Sample.SampleDate, Sample.SampleMediaCode, SampleMedia.[Sub-type], IIf(Result!ValueRemarkCode='<',0.5\*Result!Value, [Value]) AS adjvalue, (Result!ParameterCode& ''\_\_''& Parameter!ReportUnits&''\_\_''&Result!AnalyticMethod ShortName) AS LongParam, Parameter.ParameterName FROM (SampleMedia INNER JOIN (Site INNER JOIN Sample ON Site.SiteNumber = Sample.SiteNumber) ON SampleMedia.SampleMediaCode = Sample.Sample MediaCode) INNER JOIN (Parameter INNER JOIN

#### Result ON Parameter.ParameterCode = Result. ParameterCode) ON Sample.SampleID = Result.SampleID WHERE (((Sample.SampleMediaCode) Not Like "W\*") AND ((SampleMedia.[Sub-type]) Like "\*ferricrete\*")) ORDER BY Site.SiteNumber, Sample.SampleName;

۲

In addition, the query "qselFerricreteMin1" has been constructed to gather mineralogical data for these same samples.

Running select query qselFerricreteChem1 produces a display containing 1,571 rows, each one containing one chemical value. The second query in this example is a crosstab query "qctabFerricreteChem2" that pivots the results of interest gathered by the first query so that they appear as columns rather than rows (fig. 5).

This crosstab query was constructed using our first query so that SampleNames are row headings and ParameterCodes are the column headings. In this case, the query is seeking all arsenic results for ferricrete solids (see Criteria row,

| 🖉 Microso                                                                                                | oft Access - [qctabF                                                                                                                                                | erricreteChem2 : C           | rosstab Query]      |                     |                     |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|---------------------|---------------------|
| -                                                                                                        | 🚯 📾 🖪 🖤 🔡                                                                                                                                                           | K 🖻 💼 🗠 - 🖓                  | - 💼 - 🚦 🔩 🕽         | Σ 🚽 🗗 🖄             | a · 2 .             |
| Eile                                                                                                     | Edit View Tocert                                                                                                                                                    | Query Tools Window           |                     |                     |                     |
| inte Tie                                                                                                 | Ear Mew Tuserr                                                                                                                                                      |                              |                     |                     |                     |
| $  \leftarrow \rightarrow  $                                                                             | 🗵 🚺 🚮 🔕 Favo                                                                                                                                                        | rite <u>s</u> • <u>G</u> o • |                     |                     | * .                 |
| qse<br>*<br>Site<br>Site<br>Site<br>Lati<br>Lon<br>Sam<br>Sam<br>Sam<br>Sam<br>Sub<br>Ady<br>Lon<br>Par- | elFerricreteChem1<br>Number<br>Name<br>Comment<br>tude<br>gitude<br>npleName<br>npleDate<br>npleDate<br>npleDate<br>npleDate<br>spleDate<br>angleAram<br>ameterName |                              |                     |                     |                     |
| Field:                                                                                                   | SiteNumber                                                                                                                                                          | SiteName                     | SiteComment         | Latitude            | Longitude           |
| Table:                                                                                                   | gselFerricreteChem1                                                                                                                                                 | gselFerricreteChem1          | gselFerricreteChem1 | gselFerricreteChem1 | gselFerricreteChem1 |
| Total:                                                                                                   | Group By                                                                                                                                                            | Group By                     | Group By            | Group By            | Group By            |
| Crosstab:                                                                                                | Row Heading                                                                                                                                                         | Row Heading                  | Row Heading         | Row Heading         | Row Heading         |
| Sort:                                                                                                    | Ascending                                                                                                                                                           |                              |                     |                     |                     |
| Criteria:                                                                                                | _                                                                                                                                                                   |                              |                     |                     |                     |
| 011                                                                                                      |                                                                                                                                                                     |                              |                     |                     |                     |

۲

(continued from right side)

( )

| Field: SampleName SampleDate SampleMediaCode Sub-type LongParam adivalue LongParam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Panpertano Panperto Cadeso Patropo Edigi di di dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Table: gselFerricreteChem1 | iem1 |
| Total: Group By Group By Group By Group By Group By First Where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Crosstab: Row Heading Row Heading Row Heading Row Heading Column Heading Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Sort: Ascending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| or:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |

Figure 5. Crosstab query qctabFerricreteChem2 in Query Design view.

LongParam column in fig. 5). SampleMedia subtypes and associated **Site** table data are listed to further describe the samples. The graphical view of the query shown in figure 5 is translated into a Structured Query Language (SQL) statement as follows:

TRANSFORM First(qselFerricreteChem1.adjvalue) AS FirstOfadjvalue SELECT qselFerricreteChem1.SiteNumber, qselFerricreteChem1.SiteName, qselFerricreteChem1.SiteComment, qselFerricreteChem1.Latitude, qselFerricreteChem1. Longitude, qselFerricreteChem1.SampleName, qselFerricreteChem1.SampleDate, qselFerricreteChem1. SampleMediaCode, qselFerricreteChem1.[Sub-type] FROM qselFerricreteChem1 WHERE (((qselFerricreteChem1.LongParam) Like ''As\_\*'')) GROUP BY qselFerricreteChem1.SiteNumber, qselFerricreteChem1.SiteName, qselFerricreteChem1. SiteComment, qselFerricreteChem1.Latitude, qselFerricreteChem1.Longitude, qselFerricreteChem1. SampleName, qselFerricreteChem1. SampleDate, qselFerricreteChem1.SampleMediaCode, qselFerricreteChem1.[Sub-type] ORDER BY qselFerricreteChem1.SiteNumber, qselFerricreteChem1.SampleName PIVOT qselFerricreteChem1.LongParam  $(\mathbf{\Phi})$ 

This query can be exported as a spreadsheet or as a text file (fig. 6).

In addition, the query "qctabFerricreteMin2" has been constructed to display the mineralogical data for these same samples in the same manner.

| Microsoft Access - [qctabFerricreteChem2 : Crosstab Query] |                                 |               |                 |                                             |             |                 |                       |
|------------------------------------------------------------|---------------------------------|---------------|-----------------|---------------------------------------------|-------------|-----------------|-----------------------|
| 🔟 - 🔲 🔩 🎒 🕭 🐧 🖤 👗 🗈 💼                                      | 🗠 🍓 🛃 🏹 🈼 🛅 🗸 🛤 🕨               | * 💌 🛅 ⁄a ·    | • 🤋 🗸           |                                             |             |                 |                       |
| Elle Edik Ylew Insert Figmat Records Iools Window Help     |                                 |               |                 |                                             |             |                 |                       |
| ← → 🙁 🕼 🚮 🚳 Favorites - Go -                               |                                 |               | · .             |                                             |             |                 |                       |
| SiteNumber SiteName SiteCommon                             | t Latitude Longitude SampleName | SamalaData    | SampleMediaCode | Subtype                                     | Acre uda    | Ac r cl ug/g    | Ac ch col PL          |
| N 95ABS119                                                 | 37.89703 -107.64543.95ABS119    | 10/17/1995    | DIR             | ferricrete, hog iron                        | <u></u>     | <u></u>         | <u>As_sb_sci_i L_</u> |
| 99ABEC102                                                  | 37.88935 -107.64643.95ABS119    | ng/n1/1999    | R00<br>R07      | ferricrete, bog non<br>ferricrete, enring d | 31          | 15              |                       |
| 99ABEC110                                                  | 37.88866 -107.6572 99ABEC110    | 09/01/1999    | R0/             | ferricrete, spring u                        | 29          |                 |                       |
| 99ABEC111                                                  | 37 88839 -107 65825 99ABEC111   | 09/01/1999    | R04             | ferricrete, alluvial                        | 20          |                 |                       |
| 99ABEC115                                                  | 37 8864 -107 66288 99ABEC115    | 09/01/1999    | R04             | ferricrete, alluvial                        | 20          |                 |                       |
| 99ABEC118                                                  | 37.88307 -107.66569.99ABEC118B  | 09/01/1999    | R04             | ferricrete, alluvial                        | 25          |                 |                       |
| 99ABEC119                                                  | 37 88258 -107 66605 99ABEC119   | 09/01/1999    | R04             | ferricrete, alluvial                        | 20          |                 |                       |
| 99ABEC120                                                  | 37 88224 -107 66628 99ABEC120   | 09/01/1999    | R04             | ferricrete, alluvial                        | 67          |                 |                       |
| 99ABEC126                                                  | 37.86564 -107.67539.99ABEC126   | 09/01/1999    | RN6             | ferricrete, anaviar<br>ferricrete, hog iron | 120         |                 |                       |
| 99ABEC128                                                  | 37 85641 -107 67532 99ABEC128A  | 09/01/1999    | R04             | ferricrete, alluvial                        | 36          |                 |                       |
| 99ABEC131                                                  | 37 85162 -107 67574 99ABEC131   | 09/01/1999    | R04             | ferricrete, alluvial                        | 300         |                 |                       |
| 99ABEC133                                                  | 37 85075 -107 676 99ABEC133     | 09/01/1999    | R04             | ferricrete, alluvial                        | 44          |                 |                       |
| 99ABEC134                                                  | 37 84563 -107 6776 99ABEC134    | 09/01/1999    | R04             | ferricrete, alluvial                        | 73          |                 |                       |
| 99ABEC136                                                  | 37.8353 -107.67763.99ABEC136A   | 09/01/1999    | R04             | ferricrete, alluvial                        | 45          |                 |                       |
| 99ABEC138                                                  | 37 83316 -107 67255 99ABEC138   | 09/01/1999    | R04             | ferricrete, alluvial                        | 46          |                 |                       |
| 99ABEC139                                                  | 37 83155 -107 67113 99ABEC139   | 09/01/1999    | R07             | ferricrete, andria.<br>ferricrete           | .5          |                 |                       |
| 99ABEC141                                                  | 37 82323 -107 66472 99ABEC141B  | 09/01/1999    | RN6             | ferricrete, bog iron                        | 5           |                 |                       |
| 99ABEC141                                                  | 37 82323 -107 66472 99ABEC141C  | 09/01/1999    | R04             | ferricrete, alluvial                        | 5           |                 |                       |
| 99ABEC151                                                  | 37 85933 -107 67643 99ABEC151   | 09/01/1999    | R04             | ferricrete, alluvial                        | 50          |                 |                       |
| 99ABEC153                                                  | 37 87382 -107 67277 99ABEC153   | 09/01/1999    | R04             | ferricrete, alluvial                        | 21          |                 |                       |
| 99ABEC159                                                  | 37.88723 -107.64901.99ABEC159A  | 09/01/1999    | R07             | ferricrete, spring d                        | 5           |                 |                       |
| 99ABEC161                                                  | 37 88324 -107 64522 99ABEC161   | 09/01/1999    | RN6             | ferricrete, bog iron                        | 5           |                 |                       |
| 994BEC162                                                  | 37 86965 -107 64429 99ABEC162A  | 00/01/1000    | RNG             | ferricrete, bog iron                        | 2100        |                 |                       |
| 994BEC170                                                  | 37 90989 -107 6377 99ABEC170    | 09/01/1000    | R05             | ferricrete, colluvial                       | 13          |                 |                       |
| 99ABEC173                                                  | 37 90466 -107 64375 99ABEC173   | 09/01/1999    | R06             | ferricrete, bog iron                        | .0          |                 |                       |
| 99ABEC176                                                  | 37.89586 -107.64629.99ABEC176A  | 09/01/1999    | R04             | ferricrete, alluvial                        | 18          |                 |                       |
| 99ABEC176                                                  | 37.89586 -107.64629 99ABEC176B  | 09/01/1999    | RN6             | ferricrete, bog iron                        | 5           |                 |                       |
| 994BEC185                                                  | 37 86409 -107 6791 99ABEC185C   | 09/01/1999    | R04             | ferricrete, alluvial                        | 30          |                 |                       |
| 99V/M09                                                    | 37 82361 -107 70556 99V/MS09    | 09/01/1999    | R05             | ferricrete, colluvial                       | 38          |                 |                       |
| 99\/M13 Mineral Creek                                      | 37 86833 -107 72583 99V/MS1342  | 00/01/1000    | R04             | ferricrete, ethiavial                       | 5           |                 |                       |
| 99\/M29                                                    | 37.86016 -107.7108 99VMS13A2    | 09/01/1999    | R04             | ferricrete, alluvial                        | 100         |                 |                       |
| 99VM33                                                     | 37.84492 -107.731 99VMS33       | 09/01/1999    | R04             | ferricrete, alluvial                        | 23          |                 |                       |
| 99V/M65                                                    | 37.86528 -107.72667.99\/MS654   | 09/01/1999    | R04             | ferricrete, andviar<br>ferricrete, enring d | 120         |                 |                       |
| 99\/M65                                                    | 37 86528 -107 72667 99VMS65B    | 09/01/1000    | P07             | ferricrete, spring d                        | 5           |                 |                       |
| ID Y00-14                                                  | 37 89445 -107 64603 IDV00-14    | 09/01/2000    | RN6             | ferricrete, spring a                        | 5           |                 |                       |
| ID Y00-29                                                  | 37 8829 -107 66888 ID Y00-29A   | 09/01/2000    | RN6             | ferricrete, bog iron                        | 480         |                 |                       |
| ID Y00-29                                                  | 37.8829 -107.66888 IDY00-298    | 09/01/2000    | RN6             | ferricrete, bog iron                        | 400         |                 |                       |
| NAR205 Rusty alluvi Rusty alluvium                         | n 37 89331 -107 68087 NAR205    | 08/16/1997    | SD08            | active ferricrete al                        | 400         |                 | 0.1                   |
|                                                            | 37 84419 -107 75362 OD V99-09   | 09/01/1999    | R04             | ferricrete alluvial                         | 5           |                 | 0.1                   |
| SDY00-17A                                                  | 37.8494 -107.6895 SDY00-17A1    | 09/01/2000    | RN6             | ferricrete, bog iron                        | 150         |                 |                       |
| SDY00-17A                                                  | 37.8494 -107.6895 SDY00-17A2    | 09/01/2000    | R05             | ferricrete, colluvial                       | 5           |                 |                       |
| SDY00-2                                                    | 37.84035 -107.6887 SDY00-2      | 09/01/2000    | R05             | ferricrete, colluvial                       | 160         |                 |                       |
| SDY00-28                                                   | 37 83453 -107 72729 SDY00-28    | 09/01/2000    | R05             | ferricrete colluvial                        | 35          |                 |                       |
| SDY99-14                                                   | 37 84111 -107 74883 SDY99-14    | 09/01/1999    | R05             | ferricrete, colluvial                       | 5           |                 |                       |
|                                                            |                                 |               |                 |                                             |             |                 |                       |
|                                                            |                                 |               |                 |                                             |             |                 |                       |
| Record: 1 + + + + o                                        | ıF 44                           |               |                 |                                             |             |                 |                       |
| Unique field site identifier.                              |                                 |               |                 |                                             |             |                 |                       |
| 👭 start 📄 🞯 💿 😂 😪 👘                                        | C:\AML\AnimasRiver              | otr reviewdra | Figure7 105MG.d | oc 🕜 animas -                               | Lotus Notes | AnimasAMLI : De | atab 🔊 orta           |

Figure 6. Crosstab query ctabFerricreteChem2 exported as an XLS file.

## **Data Viewer Software**

 $( \bullet )$ 

Two freeware GIS data viewer software packages are provided on the CD-ROM with this volume. These products are GIS data explorers. The purpose of the data viewer software is to give the user the capability to display and perform elementary GIS analysis on the digital data. The vector coverages and raster images provided on the CD-ROM are useful for illustrating the processes and dynamics, in terms of mine drainage, that occur in the watershed.

The two data viewer software packages are ArcExplorer 2.0 and MapSheets Express 1.3. ArcExplorer 2.0 was written by Environmental Systems Research Institute, Inc. MapSheets Express was written by ERDAS, Inc.

Using these two products, the spatial data can be displayed, queried, and overlaid to produce map output. MapSheets Express enables the user to generate maps that can be imported into PowerPoint presentations. In addition, Word and WordPerfect documents can be output from MapSheets Express.

The two software packages have some important differences. ArcExplorer is better at handling vector files than raster files. Raster images can be displayed in ArcExplorer, but one cannot query the images. The raster images can only be displayed one at a time as a background for vector files. Basically, this image is a static backdrop with no inherent analysis properties.

In contrast, MapSheets Express has more functionality for raster images than ArcExplorer provides. The user is able to query pixels of the raster images. The attributes of these pixels are accessible in the data tables for user output. In addition, MapSheets Express allows the user to control the transparency of the images, which allows several raster images to be overlaid. In summary, for vector data work, ArcExplorer is a more effective tool, and for raster data work, MapSheets Express is better.

The two packages have similar platform requirements. ArcExplorer 2.0 requires a PC with Windows 98/2000/NT/XP operating systems. It requires Internet Explorer 4.0 for the internet capabilities of the software. MapSheets Express 1.3 requires Windows 95 or Windows NT version 4.0 operating system or later. Both ArcExplorer 2.0 and MapSheets Express 1.3 need 16 MB RAM and an IBM/PC or compatible system with 486-class processor or better.

## Animas River Watershed CD-ROM

The rel\_db directory contains the relational database version of the sample-site data collected for the study, and the mine-related site inventory compiled for the study. The directory contains a README.txt file which describes the contents of the directory, and an Adobe Portable Document Format file (relationship.pdf) which is a diagram of all the tables in the relational database, and the relationships between them (fig. 3 of this chapter). The mdb subdirectory contains the Microsoft Access version of the relational database (AnimasAMLI.mdb), the ascii subdirectory contains relational database tables in the form of flat ASCII files, and the meta subdirectory contains metadata for the relational database.

The gis db directory contains three subdirectories (basecart, sitedata, and geosci), each of which contains different types of data in formats suitable for use in Geographic Information Systems. The basecart subdirectory contains base cartographic data used as reference for the other data. The basecart subdirectory itself contains a README.txt file describing the base cartographic data. Below the basecart subdirectory, the e00 subdirectory contains ArcInfo export files of base cartographic data stored as ArcInfo coverages. The shape subdirectory contains ESRI shapefiles and DBF files of the data contained in the ArcInfo coverages. The elev subdirectory contains a compressed tar file, which when uncompressed creates an ArcInfo workspace containing an elevation grid, and slope, aspect, and shaded relief grids derived from the elevation grid. The elev subdirectory also includes GeoTIFF image file representations of the elevation data, and TIFF images of legends for the elevation data image files. The meta subdirectory contains metadata for the data in the e00, shape, and elev subdirectories. The drg subdirectory contains U.S. Geological Survey Digital Raster Graphic (DRG) image files for the nine 7.5-minute quadrangles which contain the majority of the data in the Animas River watershed study.

The second subdirectory under the gis\_db directory, the sitedata subdirectory, contains the sample-site and mine-related site data from the relational database, but in formats directly compatible with Geographic Information Systems. A README.txt file at the sitedata level provides descriptive information about the data stored beneath it. The e00 subdirectory contains the site data as ArcInfo export files of coverages and ArcInfo export files of INFO files. The shape subdirectory contains ESRI shapefiles of the layers field sites, analysis sites, and mine-related sites. The dbf subdirectory contains tables in dbf format that provide information about the sites, and data collected at the sites. The meta subdirectory contains metadata about the data in the e00, shape, and dbf subdirectories.

The third subdirectory under the gis db directory, the geosci subdirectory, contains geoscientific and hydrologic data sets, as well as a sample ArcExplorer project file. A README.txt file in the geosci subdirectory lists the contents of the directory. There are eight subdirectories: geology, geochem (geochemistry), geophys (geophysics), biologic, meta (metadata), aep\_project (ArcExplorer project file), and plates (PDF maps) and tables (oversize tables). The meta subdirectory contains metadata about all of the interpretive geoscientific data. In each of the data subdirectories, an e00 subdirectory contains data as Arc Interchange export files of coverages, a shape subdirectory contains data as shape files, and a geotiff subdirectory (if one exists) contains data in the GeoTIFF format. The viewer directory contains two data viewer software packages. The directory contains a README.txt file which summarizes the directory's contents. There are two subdirectories: ArcExplorer and MapSheets\_Express. The ArcExplorer subdirectory contains an executable file (ae2setup.exe) that allows one to install the ArcExplorer 2.0 data viewer software. The ArcExplorer.pdf file, created when the ae2setup.exe file is run, is a User Guide for ArcExplorer which includes a tutorial. Similarly, the MapSheets\_Express subdirectory contains an executable file (mxsetup.exe) that allows one to install the MapSheets Express 1.3 data viewer software. The README.txt file, created when the mxsetup.exe file is run, provides various types of information about the MapSheets Express program.

An ArcExplorer project file (animas\_aml.AEP, located in the \animas\_cd\gis\_db\geosci\aep\_project directory on the CD-ROM) is available as an example of how to use the ArcExplorer software to display and use the data on the CD-ROM. The data files have been organized, and their attributes have been displayed, in the explanation defined in the project file.