Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: GENOMICS AND ENGINEERING OF STRESS-TOLERANT MICROBES FOR LOWER COST PRODUCTION OF BIOFUELS AND BIOPRODUCTS

Location: Crop Bioprotection Research

Title: INDUCTION OF PLEIOTROPIC DRUG RESISTANCE GENE EXPRESSION INDICATES IMPORTANT ROLES OF PDR TO COPE WITH FURFURAL AND 5-HYDROXYMETHYLFURFURAL STRESS IN ETHANOLOGENIC YEAST

Authors
item Liu, Zonglin
item Slininger, Patricia
item Andersh, Brad - BRADLEY UNIV, PEORIA, IL

Submitted to: Biotechnology for Fuels and Chemicals Symposium Proceedings
Publication Type: Abstract
Publication Acceptance Date: May 4, 2005
Publication Date: May 4, 2005
Citation: Liu, Z., Slininger, P.J. 2005. Induction of pleiotropic drug resistance gene expression indicates important roles of pdr to cope with furfural and 5-hydroxymethylfurfural stress in ethanologenic yeast [abstract]. Biotechnology for Fuels and Chemicals Symposium Proceedings. Abstract No. 169.

Technical Abstract: Furfural and 5-hydroxymethylfurfural (HMF) derived from dehydration of pentose and hexoses by dilute acid hydrolysis of lignocellulosic biomass are major inhibitive compounds for enzymatic saccharification and microbial fermentation in ethanol conversion. Mechanisms of tolerance to furfural and HMF stress are unknown. Our interest lies on identification of relevant target genes and understanding of molecular mechanisms involved in the inhibitive stress tolerance in ethanologenic yeast. By means of functional analysis and comparative gene expression using microarray and quantitative real-time RT-PCR, we identified genes significantly enhanced in expression during the initial exposure to furfural and HMF stress. These genes belong to the pleiotropic drug resistance (PDR) gene family. Many PDR genes function as transporter of ATP-binding cassette proteins and are encoded for plasma membrane proteins. These genes mediate membrane translocation of ions and a wide range of substrates. This presentation will cover methods of our well-established quality-controlled microarray and qRT-PCR technologies and convincing evidence of yeast gene expression in the earlier stage to cope with the furfural and HMF stress.

   

 
Project Team
Slininger, Patricia - Pat
Liu, Zonglin
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   GENOMIC MECHANISMS OF IN SITU DETOXIFICATION OF BIOMASS CONVERSION INHIBITORS FOR ETHANOLOGENIC YEAST SACCHAROMYCES CEREVISIAE
   GENOMIC MECHANISMS OF IN SITU DETOXIFICATION OF BIOMASS CONVERSION INHIBITORS FOR ETHANOLOGENIC YEAST SACCHAROMYCES CEREVISIAE
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House