Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Development of an Original Laboratory Prototype for a Field Tritium Detector Containing a Proton Exchange Membrane Electrolyzer Mounted in Series With a Gas Flow Proportional Counter.

EPA Grant Number: F6D50256
Title: Development of an Original Laboratory Prototype for a Field Tritium Detector Containing a Proton Exchange Membrane Electrolyzer Mounted in Series With a Gas Flow Proportional Counter.
Investigators: Soreefan, Aurelie M
Institution: Clemson University
EPA Project Officer: Willett, Stephanie H.
Project Period: September 1, 2006 through September 1, 2008
Project Amount: $111,172
RFA: STAR Graduate Fellowships (2006)
Research Category: Academic Fellowships , Drinking Water , Ecological Indicators/Assessment/Restoration , Fellowship - Health Physics , Fellowship - Radiation Detection , Fellowship - Environmental Monitoring

Description:

Objective:

This research describes the development of a laboratory prototype for an in-situ tritium in water field sensor. The laboratory prototype is constituted of a proton exchange membrane (PEM) electrolytic cell mounted in series with a proportional gas counter. The research consists in studying the tritium enrichment characteristics of a PEM electrolytic cell to determine whether the latter can be used for sample enrichment before use to reduce the aqueous solution to tritiated hydrogen gas for the gas proportional counter. The research project describes a simple treatment of water samples before admission into the PEM electrolytic cell.

The objective of this research is to build a laboratory prototype for a field tritium detector containing a PEM electrolyzer mounted in series with a gas flow proportional counter. The instrument is being designed for near real time measurements of tritium concentrations in water at a level down to 20,000 pCi/L, which corresponds to the Safe Drinking Water Act Maximum Contaminant Level of 4 mrem/year. This tritium monitoring system should be designed for future field installation in a well. Important constraints in the conception of the device, such as: size, little to no consumables, minimal energy consumption, autonomous operation, and maintenance free operation will be observed.

Approach:

The research will be split into 3 parts. The first part of the project will consist in a laboratory study to qualify an electrolytic cell containing a proton exchange membrane for the tritium enrichment of water samples. The second part of the project will consider the possibility of using the same electrolytic cell to produce hydrogen gas, which will be subsequently analyzed in a gas-filled proportional counter. This part will also evaluate the most suitable shielding design required for appropriate detection limits. The shield provided by the ground, for both environmental and cosmic ray backgrounds, will have to be studied. Finally a third part will consider the field application with the sample preparation before enrichment process. This part is a critical part to the analysis of tritiated water sample since the electrolytic cell can only receive pure water.

Expected Results:

Tritium enrichment in the electrolytic cell is expected. Preliminary results show that enrichment is limited in the PEM cell. We expect to be able to report a minimum detectable activity in water samples, as low as 20,000 pCi/L, with short counting time.

Supplemental Keywords:

Proton Exchange Membrane, Proportional Counter, Tritium, In-situ sensors, , Water, Scientific Discipline, RFA, Drinking Water, Environmental Chemistry, Environmental Monitoring, drinking water contaminants, tritium detector, proton exchange membrane, drinking water monitoring

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.