Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Hybridization Between Declining Native and Invasive Exotic Tiger Salamande (Ambystoma californiense and A. tigrinum)

EPA Grant Number: U915724
Title: Hybridization Between Declining Native and Invasive Exotic Tiger Salamande (Ambystoma californiense and A. tigrinum)
Investigators: Fitzpatrick, Benjamin
Institution: University of California - Davis
EPA Project Officer: Edwards, Jason
Project Period: August 1, 2000 through August 1, 2003
Project Amount: $80,613
RFA: STAR Graduate Fellowships (2000)
Research Category: Fellowship - Zoology , Biology/Life Sciences , Academic Fellowships

Description:

Objective:

The objectives of this research project are to: (1) document the mechanisms of reproductive isolation between the tiger salamanders Ambystoma tigrinum and A. californiense; (2) discover what causes the breakdown of reproductive isolation in some unnatural habitats; (3) describe ecological interactions between the species; and (4) create a model to predict the eventual outcome of these genetic and ecological interactions.

Approach:

To distinguish the importance of natural selection against hybrids from environmental influences on mating patterns, existing genetic tools are being used to test for nonrandom patterns in the production of hybrid eggs and the survival of hybrid offspring. If the cohort analysis identifies assortative mating as a primary cause of the deficiency of hybrids in natural ponds, a series of experiments will be conducted that are aimed at discovering why assortative mating breaks down in cattle ponds. If selection against hybrid larvae proves more important, experiments to test factors influencing relative fitness will be used. There are several potentially important differences between pond types. For example, the shallow water of vernal pools tracks ambient air temperature while cattle ponds, being deeper, are thought to be more buffered against extreme temperature fluctuations. Heat stress has been shown to affect relative fitness of hybrid Drosophila and Tribolium. Differences in vegetation structure suggest that small salamander larvae would be more vulnerable to invertebrate predators in natural vs. artificial ponds, making natural ponds fundamentally more dangerous. Vegetation also may influence the frequency and intensity of sexual competition among adult males. These observations suggest some straightforward experiments that will help identify the mechanism of environment-dependent reproductive isolation. Simple experiments complementary to those aimed at mechanisms of isolation will be used to describe the effects of competition on relative fitness of pure and hybrid larvae. In addition to fundamental competitive ability, differences in breeding time, age at first reproduction, fecundity, and individual growth rates will influence the rate of spread of nonnative genes.

Expected Results:

Mechanistic understanding and good quantitative estimates of important parameters will allow for the construction of a dynamic mathematical model of the hybrid zone. This model is intended to estimate the current rate of spread of the invasion and to quantitatively describe the influence of vernal pool vs. cattle pond abundance on the ultimate outcome.

Supplemental Keywords:

hybrid zone, reproductive isolation, habitat-dependent isolation, vernal pools, invasion biology. , Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Habitat, Ecology and Ecosystems, conservation biology, habitat species co-occurrence, habitat population structure, adaptive genetic variation, habitat dynamics, salamanders, genetic consequences, invasive species, breeding habitat, biodiversity

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.