Mycotoxin Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Development and Evaluation of Improved Materials for Mycotoxin Analysis

Location: Mycotoxin Research

Title: Comparative study of patulin, ascladiol, and neopatulin by Density Functional Theory

Authors

Submitted to: Bioorganic and Medicinal Chemistry
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: September 22, 2008
Publication Date: N/A

Interpretive Summary: Patulin is a small molecule and mycotoxin produced by several fungal species. Although patulin contamination is most commonly associated with apple rot, it is a potential contaminant of other types of fruit and vegetable products. Levels of this important mycotoxin are regulated by several countries, including the United States. Patulin contamination is related to the production of E-ascladiol and neopatulin. To better understand the chemistry of patulin and the molecules involved in patulin production, a study was carried out on the three dimension structures of these molecules using state-of-the-art calculations. This study provides important information for understanding the chemistry of patulin production at the molecular level, and will be useful in the design and evaluation of materials that interact with patulin.

Technical Abstract: Patulin, a secondary metabolite produced by several fungal species, is a potential contaminant of fruit and vegetable products. To better understand the structure and electronic properties of this mycotoxin and its biosynthetic precursors, a density functional theory (DFT) study was performed on conformations of patulin, ascladiol, and neopatulin. Geometry optimization and transition state calculations were carried out using the three parameter B3LYP functional at the 6-311++G** level of theory. Both aqueous solvation studies using a continuum solvation model and in vacuo calculations resulted in several stable conformations of patulin within a range two kcal/mol. One conformation was preferred by ~one kcal/mol over the other geometry optimized conformations considered. Similar results were found for neopatulin. Ascladiol had several stable conformations within two kcal/mol that possessed favorable intramolecular hydrogen bond interactions. High level density functional calculations were applied to investigate the conformational preferences of important molecules involved in patulin synthesis, and these results serve as a basis for modeling studies and interpretation of experimental results.

   

 
Project Team
Maragos, Chris
Appell, Michael
Kendra, David
 
Publications
   Publications
 
Related National Programs
  Food Safety, (animal and plant products) (108)
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House