Resource materials for a GIS spatial analysis course Revision of Lectures

By Gary L. Raines(1)

Open-File Report 01-221
Version 1.1
2006

Any use of trade, product, or
firm names is for descriptive purposes only and does not imply endorsement by the U.S.
Government.
Manuscript approved 2001
U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY
(1) U.S. Geological Survey, Reno, NV 89557

Advanced Geographic Statistical Methods (Spatial Modeling)

Professor: Dr. Gary L. Raines

Office: Laxalt Mineral Research 271, telephone 784-5596, email: graines@usgs.gov

Course Goals and Objectives: Introduction to the techniques of modeling and spatial analysis of non-deterministic processes in GIS for geographers and natural scientists.

The goal of this class is to introduce the concepts of modeling in which multiple categorical and ordered spatial-data sets are combined to predict the distribution or occurrence of the product of some complex process. Examples of the types of applications addressed might be predictive models of animal habitat, occurrence of infectious disease, or undiscovered mineral resources. These types of models all have the characteristic that the processes involved are complex and sometimes poorly understood, that is the models are not prescriptive, but are often fuzzy or probabilistic in nature.

We will use ArcGIS 9.1 and the Spatial Analyst extension with the Spatial Data Modeler extension (ArcSDM 3.1). This will require the student to be familiar with ArGIS 9 and Spatial Analysis. Students will create simple to complex models using software to gain experience in the process of modeling complex natural science processes. Exercises will work toward the types of multi-disciplinary problems that are common in land management or natural resources organizations. Self directed exercises using available data are utilized.

The class will be a combination of lectures and student-lead discussions. In addition, students will present results of exercises to the class.

Schedule

Lecture - 2 hours per week
Laboratory - Three hours per week minimum in 222 or 221 Mackay Science Hall (Geography GIS computer lab. The GIS laboratories are open from 8am to 5pm Monday through Friday. Software and data will be available in both rooms. From Data Works Computer Laboratory in Getchell Library should be able to access the class materials and we plan to get the software there in a few weeks. Students need to meet with GIS laboratory manager, Patrick Guiberson in room 224 in Mackay Science to get a login for this class and an update on GIS laboratory policy. Patrick has office hours from 11 am to Noon, Monday through Thursday. All of the exercises for this class can be done with Arcview 3 with the Spatial Analyst, and Spatial Data Modeler (ArcSDM) extensions. The ArcSDM extension is available on the class folder. I am currently developing an ArcMap version of ArcSDM. It should be available for many of the exercises, but it is not yet fully debugged and tested.

Office Hours: to be arranges, 271 Laxalt Mineral Research. I maintain an open door policy. When I am in, the door is open. You are welcome to drop by when you have questions.

Textbook: Bonham-Carter, G.F., 1966, Geographic information systems for geoscientists modeling in GIS: Elsevier Science Inc., New York, 398p. Besides the textbook, journal articles will be read and discussed in student-led discussions.

Assignments

All students will use modeling tools in an increasingly complex series of exercises. Later exercises will require a group of students with differing science backgrounds to form a team to address a problem that requires expertise in several fields of science. Graduate students will be expected to take a leadership position in these multidisciplinary teams to define the task, the approach, to integrate team members, and to write and present the team report.

Assignment 1 - Using ArcSDM 3.1 in ArcMap 9.1 reproduce weights-of-evidence, logisticregression, fuzzy-logic, and neural-network models for Carlin deposits. The intent of this exercise is for the student to gain familiarity with ArcSDM, the processing steps, and the decisions necessary to calculate these models.
Assignment 2 - Using various statistical measures, compare the maps prepared in Exercise 1.
Assignment 3 - Prepare and compare models of animal habitat in the Tahoe Basin.

Grading	Geog
Class Participation	10%
Assignment 1	10%
Assignment 2	10%
Assignment 3 Poster	20%
Assignment 3 Report	30%
Examinations	10%
Discussions	10%

Originality, logic, and overall quality of the models will be the primary consideration in grading; but cartographic and oral presentation will also influence the grade.

Additional Requirements for Students Enrolled in Geography 701M

All graduate students are expected to draw on their experience and knowledge gained elsewhere to enhance the formation of connections between the topics covered in this course as well as related topics not explicitly covered in the course. In a sense, this course addresses a philosophy of creating scientific, spatial models. Thus, the students have to integrate their science, statistics, and GIS background to define the spatial problem, the approach necessary to solve a problem, and then present a solution to the problem. Graduate students will be called upon throughout the semester to lead and participate in class discussion related to advanced concepts of the course material.

Students enrolled in 701M will have to prepare a research project and class presentation in relation to Assignment 3. The report provides an opportunity for investigating course subjects at an advanced level. The graduate students' technical presentation increases their ability to speak in from of an audience, and serves as a synthesis experience, combining explicit class material with external independently research information to develop a greater understanding of the subject.

Lecture, Reading, and Exercise Schedule

Date	Subject	PPT	Exercise 1	$\begin{gathered} \text { Exercise } \\ 2 \end{gathered}$	Exercise 3	Reading
29-Aug-06	Finland (Reading Ch 9 \& Ch 8 (pg 248-258)					Ch. 9
31-Aug-06	Finland					Ch. 8 (Pg 250-258)
5-Sep-06	Arrive Home					Carlin Exercise
7-Sep-06	Introduction	1	Carlin - WofE			ArcSDM users manual
12-Sep-06	Redlands					King \& Kramer, Velleman
14-Sep-06	Overview \& Demo	2				
19-Sep-06	Patterns \& Discussion (King \& Kramer, Vellerman)	3				Nova Scotia
21-Sep-06	Multimap Introduction	4				CI_Agterberg
26-Sep-06	Boolean and Index Overlay models	5				(Exploratory Carlin)
28-Sep-06	WofE1	6	Carlin - LR			(Epithermal Gold)
3-Oct-06	WofE2	7	Carlin - FL			
5-Oct-06	Multi-class Generalization	8	Carlin - NN			
10-Oct-06	Carlin WofE Presentations (Part 1 of Exercise 1)		Expert WofE			
12-Oct-06	Expert WofE, LR, FL, and NN Demo	8B			Final Exercise	Logistic Regression
17-Oct-06	Logistic Regression	9				
19-Oct-06	Fuzzy Logic	10			Form Groups	
24-Oct-06	Neural Networks	11				
26-Oct-06	Miscellany	12			Review Data	
31-Oct-06	Exercise 1 Discussion \& Progress on Final Exercise					
2-Nov-06	Ch9 Discussion	13		Correlation		Ch. 8
7-Nov-06	Overlay	14			Define Approach	Kappa
9-Nov-06	Correlation1	15				
14-Nov-06	Correlation2	16				
16-Nov-06	Exercise 2 Presentations \& Discussion					Fragstats
21-Nov-06	Fragstats	19				Ch 7.
23-Nov-06	Thanksgiving Holiday					
28-Nov-06	Reclassification	17				
30-Nov-06	Filtering	18			Completed Modeling	
5-Dec-06	Summary	21			Prepare Report/Poster	
7-Dec-06	Spatial-Temporal Modeling?	20				(CA)
12-Dec-06	Final Exercise Presentations					

Additional Reading

Agterberg, F.P., Bonham-Carter, G.F., Cheng, Q. And Wright, D.F., 1993, Weights of evidence modeling and weighted logistic regression for mineral potential mapping in Davis, J.C., and Herzfeld, U.C. (eds.), Computers in geology, 25 years of progress: Oxford, Oxford University Press, p. 13-32.
Agterberg, F.P., and Cheng, Q., 2002, Conditional independence test for weights-ofevidence modeling: Natural Resources Research, v. 11, no. 4, p. 249-255.
Bonham-Carter, G.F., Agterberg, F.P., and Wright, D.F., 1988, Integration of geological datasets for gold exploration in Nova Scotia: Photogrammetric Engineering and Remote Sensing, v. 54, no. 11, p. 1585-1592.
Begueria, Santiago, 2006, Validation and evaluation of predictive models in hazard assessment and risk management: Natural Hazards, v. 27, p. 315-329.
Brismar, Jan, 1991, Understanding receiver-operatoring-characteristic curves: a graphic approach: AJR, p. 1119-1121.
Chung, C.F, and Fabbri, A.G., 2003, Validation of spatial prediction models for landslide hazard mapping: Natural Hazards, v. 30, p. 451-472.
Cohen, Jacob, 1960, A coefficient of agreement for nominal scale: Educational and Psychological Measurement, v. 20, no. 1, p. 37-46.
Hudson, W.D., and Ramm, C.W., 1987, Correct formulation of the kappa coefficient of agreement: Photogrammetric Engineering and Remote Sensing, v. 53, no. 4, p. 421-422.
King, J.L., and Kraemer, K.L., 1993 , Models, facts, and the policy process: the political ecology of estimated truth in Goodchild, M.F., Parks, B.O., and Steyaert, L.T., Environmental modeling with GIS: New York, Oxford University Press, p. 353360.

Levin, S.A., 1992, The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture: Ecology, v. 73, no. 6, p. 1943-1967.
Raines, G.L., and Bonham-Carter, G.F., 2006, Exploratory Spatial Modelling Demonstration for Carlin- type deposits, Central Nevada, USA, using Arc-SDM in Harris, J.R. (editor), GIS applications in earth sciences: Special Publication, Geological Association of Canada, Special Publication 44, p. 23-52.
Raines, G.L., 1999, Evaluation of.weights of evidence to predict epithermal gold deposits in the Great Basin of the western United States: Natural Resources Research, , v. 8, no. 4, p. 257-276.
Rosenfield, G.H., and Fitzpatrick-Lins, Katherine, 1986, A coefficient of agreement as a measure of thematic classification accuracy: Photogrammetric Engineering and Remote Sensing, v. 52, no. 2, p. 223-227.
Velleman, P.F., 1997, The philosophical past and the digital future of data analysis: 375 years of philosophical guidance for software design on the occasion of John W. Tukey's $80^{\text {th }}$ birthday in Brillinger, D.R., Fernholz, L.T., and Morgenthaler, S., The practice of data analysis: essays in honor of John W. Tukey: Princeton, Princeton University Press, p. 317-337.

Source of Spatial Data Modeller Extension

http://www.ige.unicamp.br/sdm/default_e.htm

Lectures for a University Semester Course

- Lecture schedule
- Three Laboratory Assignments
- Examinations
- Reading
- Geographic Information systems for geoscientists - modeling in GIS: Chapters 7, 8, and 9
- Additional reading - student lead discussion

Laboratory Assignments

- Assignment 1 - Reproduce the weights-ofevidence, logistic-regression, fuzzy-logic, and neural-network models for Carlin deposits.
- Assignment 2 - Using various statistical measures, compare the maps prepared in Exercise 1.
- Assignment 3 - Prepare and compare models of animal habitat in the Tahoe Basin.

Discussions

- Journal articles will be assigned to enhance material in book.
- Discussion of these articles will be lead by students.
- Laboratory assignments will be presented and discussed in class by students.

Goals and Expectations

- To introduce the concepts and process of spatial modeling in GIS for geographers and natural scientists.
- Emphasis on probability and favorability models, that is nondeterministic models.
- Students are GIS experts!

What is a model?

- A simplification of nature.
- A representation of a set of objects and their relationships.
- A model is a way of describing something that cannot be directly observed.

- Objective - To gain familiarity with ArcSDM, the processing steps, and the decisions necessary to calculate these models.
- Data - Carlin exercise
- Arcview 3 - Carlin_AV3.zip
- ArcMap - Carlin_ArcMap83.zip
- Carlin Exercise - Carlin_Exercise.pdf

Challenges in this exercise

- How to process the data in ArcGIS and to report the results elegantly.
- How to use ArcSDM while the lectures and reading give you an understanding of the mathematics and decision process.
- How to concisely summarize the processing sets.
- Assume a knowledgeable ArcGIS and ArcSDM users, such as yourself.

- The number of significant figures determines how maps can be reclassified and symbolized.
- Integers versus real numbers in ArcGIS
- Integer and Real valued grids can be classified by various methods that all have assumptions about the data.
- Integer grids always have VAT or, simply, an attribute table.

Guidelines for Modeling

- Formal statement of the problem.
- Define the user of the model.
- Specification - preprocess the data to provide useful information, that is evidence.
- Data exploration
- Data transformation, filtering, and scaling
- Reduce the dimensionality by eliminating redundant or correlated information
- Use the minimum information necessary
- Prediction - combine the evidence to create the model.
- A type of multidimensional data exploration.
- Testing - evaluate the model and it's properties

Properties of Evidence

- Selected attributes must discriminate between one or more classes of objects.
- Selected attributes must not be correlated with other attributes to any moderately strong extent.
- Selected attributes must have meaning for humans.
- Define a problem
- Gather pertinent data
- Form a working hypothesis or explanation
- Do experiments to test the hypothesis
- Interpret the results
- Draw a conclusion and modify the
hypothesis as needed.

Occam's Razor

Occam's razor states that a person should not increase, beyond what is necessary, the number of entities required to explain anything, or that the person should not make more assumptions than the minimum needed.
This principle is often called the principle of parsimony
Questions have been raised, however, as to whether a person can determine without any doubt that given entities or assumptions are not needed in an explanation. Unless this determination can be made, it is impossible to tell with complete certainty when the principle can be applied
Abstracted from the Grolier Encyclopedia.
Here:

Spatial Analysis in GIS Overview

- Examples of Nondeterministic Spatial Models
- Demonstration of ArcSDM

Additional Materials

- Raines, G.L., 2001, Resource materials for a GIS spatial analysis course: U.S. Geological Survey Open File Report 01221, http://geopubs.wr.usgs.gov/open-file/of01-221/, 216p, four zip files of software and class exercises, and a zip file of student posters.
- Exploratory Carlin zip file

Points of Demonstration

- What to do with data and why.
- There may be no right way to analyze any particular data!
- There are often several ways to analyze data that are good!
- Data analysis is like doing an experiment.

Demonstration of ArCSDM

- Weights of Evidence and Logistic Regression
- Fuzzy Logic
- Neural Networks

Data Exploration

- Process of seeking patterns on maps that help predict spatial phenomena.
- Visualization leads to recognition of a pattern and the association of the pattern with something of interest.
- A model is proposed that describes the association.

Data Exploration

- Seeking patterns involves:
- Measurement
- Statistical Summary
- Visualization
- Description
- Understanding of processes causing pattern
- Foundation is data model.

Pattern

- An area having a consistent, recognizable characteristics associated with some object or process.
- A pattern is something that deviates from the norm.
- A pattern is associated with a particular scale of observation!
- It is a primitive.
- Association of patterns and their causes are the bricks of scientific knowledge.

Types of Recognition

- Classification is the process of grouping objects together in classes according to perceived similarities.
- Identification is the recognition of an individual object as a unique singleton class.
- Discrimination is the recognition that an individual object as different from a class.

Recognition of a Pattern

- Task - Determine what the appropriate level of aggregation and simplification is for the problem at hand, a problem of reclassification
- Aggregation and simplification are tied to scale of observation.
- There is no single scale at which to view a system.
- Does not mean that all scales serve equally well or there are not scaling laws.
- Description of patterns is the starting point.
- Spatial models start with an assemblage of patterns and associated processes.

Measurement Scales

- Nominal (Categorical)
- An unordered label of categories or classes.
- Ordinal (Rank)
- Measurements ordered (ranked) according to relative position on a scale with unequal intervals between classes.
- Interval
- Measurements that can be labeled and ordered with an equal interval between classes but without a true zero.
- Ratio
- Measurements that can be labeled and ordered with an equal interval between classes, and with a true zero.

5rime

King and Kramer

- Models are most useful when the right answer is not clear.
- Modeling clarifies the issues of debate in evaluation of an answer.
- Modeling enforces a discipline of analysis, discourse, and consistency.
- Models provide a powerful form of "advice", that is not "truth", but a refined result of a particular viewpoint

Velleman - Top 3 Points

- Aphorism 3 - Iterative learning leading to understanding.
- Aphorism 7 - Keep it simple!
- Aphorism 14 - Multiple working hypotheses.

Tools for Map Analysis
Multiple Maps
Boolean Logic
Index Overlay (Weighted Overlay)
Fuzzy Logic
Weights of Evidence
Logistic Regression
Neural Networks

Additional Reading

- Epithermal Gold
(Nevada_Epithermal_Gold.pdf)
- Exploratory Carlin: (060117_GIS44-2.pdf)
- Fuzzy Logic (060117_GIS44-2.pdf)
- Neural networks (RBFLN_ArcSDM1.pdf)

Purpose of GIS Projects

- Combine data from diverse sources
- To describe and analyze interactions
- To make predictions, that is models
- To provide support for decision makers

Properties of Evidence

- Selected attributes must discriminate between one or more classes of objects.
- Selected attributes must not be correlated with other attributes to any moderately strong extent.
- Selected attributes must have meaning for humans.

Guidelines for Modeling

- Formal statement of the problem.
- Define the user of the model.
- Specification - preprocess the data to provide useful information, that is evidence.
- Data exploration
- Data transformation, filtering, and scaling
- Reduce the dimensionality by eliminating redundant or correlated information
- Use the minimum information necessary
- Prediction - combine the evidence to create the model.
- Testing - evaluate the model and it's properties.

Scientific Method

-Define a problem

- Gather pertinent data
- Form a working hypothesis or explanation
- Do experiments to test the hypothesis
- Interpret the results
- Draw a conclusion and modify the hypothesis as needed.

Types of Models

- Prescriptive or Deterministic
- Application of good technical practices
- Process: Boolean rules, Equations, Index Overlay
- Output: Binary map (yes or no), User defined range such as 0 to 10
- Predictive
- Application of mathematics to represent how people think about the evidence but cannot represent as equations.
- Process: weighting of evidence and combination of weights
Output: Favorability, probability, or fuzzy map [0 to 1]

Knowledge Driven Methods

- Boolean Logic - True/False representation of maps with all maps rated equally. Simple method with True/False answer.
- Index Overlay with Binary Maps - Maps are given different weights. Linear combination of maps. Can use Weighted Overlay tool.
- Index Overlay with Multi-Class Maps - Maps are given different weights as well as the classes of the maps are given different weights. Linear combination of maps. Can use Weighted Overlay tool
- Fuzzy Logic - More flexible weighting of maps and map classes. Nonlinear combination of maps.

Data Driven Methods

- Weights of Evidence
- log linear combination of maps, simplest with binary maps.

Classifies areas by probability or favorability of occurrence of a training site.
Model parameters easy to understand.

- Logistic Regression
log regression combination of binary maps
Classifies areas by probability of occurrence of a training site.
Model parameters complex.
- Neural networks

Experimental, nonlinear combination of fuzzy or rescaled maps

- Classifies areas by fuzzy membership in training set.

Can also be self organizing to produce fuzzy membership.
Model parameters complex.

Compare Results

- ArcSDM Post Processing (Classes)
-Spearman Correlation Coefficienct
- Map of Rank Differences
-Quantile-Quantile Plot
- Spatial Analyst Tools/Multivariate
-Band Collection Statistics
- Covariance and Pearson's Correlation Coefficient (aka Product Moment Corelation Coefficient) matrices

Tools for Map Analysis Multiple Maps

Boolean Operators

- And - Returns True (=1) only if all are true - Logical intersection
- Or - Returns False $(=0)$ if all are false, otherwise returns True (=1)
- Logical union
- Xor - Returns True (1) if one and only one is true.
- Not - Negates the operation

Examples

- 1 and $1=1$
- 1 and $0=0$
- 0 and $0=0$
- 1 or $1=1$
- 1 xor $1=0$
- 1 or $0=1$
- 1 xor $0=1$
- 0 or $0=0$
- For Boolean operators, an input of zero (0) equals False.
- Any other number is True.
- -3 and $2=1$
- 2 and $0=0$
- -3 and 2 and $12=1$
- 0 xor $0=0$
- -3 or 2 or $12=1$
- -3 or 2 or $0=1$
- -3 xor 0 xor $0=1$

Landsite Selection Statement of the Problem

1. Be in an area where unconsolidated surficial material is more than a minimum thickness, AND
2. Be in material that has a low permeability, AND etc.

Example on page 272 of text.

Boolean Map Algebraic Statement of the Problem

At current location, determine if conditions for each input are satisfied

- OVERTHIK is an integer grid

The conditions, C1 to C2 are either TRUE $(=1)$ or FALSE $(=0)$
See Table 9-5 for a summary of the map classes
C1 = class('OVERTHIK') >4
etc.
$\mathrm{C} 10=\operatorname{class}\left({ }^{(E C O L O G}{ }^{\prime}\right)==1$
:Combine conditions with Boolean "AND" operator
The variable OUTPUT is either TRUE $(=1)$ or False $(=0)$ OUTPUT = C1 AND C2 AND ... AND C10
Map results as a binary 2-class map RESULTS(OUTPUT)

Translate class into ArcGIS

- C1 = class('OVERTHIK') > 4
- Returns TRUE $(=1)$ if OVERTHIK >4; otherwise returns FALSE ($=0$)
- ArcMap 9.1:
- Spatial Analysis/Raster Calculator

CON ([OVERTHIK] > 4, 1, 0)

- Spatial Analyst/Raster Calculator [OVERTHIK] > 4
- Spatial Analyst/Reclassify
- Geoprocessing - Weighted Overlay

Decisions for Boolean Logic

Reclassify Attributes and Map Interactions

- Thresholds
- Greater than some value
- Distance from some feature
- Some high measured value (e.g. slope >20)
- Less than some value
- Some measured low value (e.g. thickness <4)
- Equal or Not Equal to some named class
- How the criteria (maps) interact
- AND, OR, XOR, NOT

Boolean Logic Summary

- Advantages
- Models are simple.
- Where prescriptive guidelines from law, Boolean combinations are practical and easily applied.
- Disadvantages
- All evidence (Maps) are treated equally.
- A weak representation of how people think about spatial problems
- Output is binary, either Suitable or Not Suitable.

Index Overlay

$$
\text { Score }=\frac{\sum_{i=1}^{n} w_{i} * s_{i j}}{\sum_{i=1}^{n} w_{i}}
$$

Where
$w_{i}=$ weight of Map I
For binary-class maps, s_{ij} is either 1 for true or present or
0 for false or absent.Score ranges between 0 and 1 .
For multi-class maps, s_{ij} is the score or weight assigned to a particular attribute.Score is averagescore ranging between minimum and maximum weights.
High scores indicate more favorableplaces.

Index Overlay Algebraic
Statement of the Problem
Calculate normalization sum
SUMW $=3+4+5+3+2+4+5+4+2+1$
Define a variable to name the row
ROW = class('BASIN')
For current location, determine map weights
$\mathrm{M} 1=3$ * $\left(\operatorname{class}\left({ }^{\prime} \mathrm{GEOL}\right.\right.$ ') $==1$ OR class('GEOL') $\left.==2\right)$
$\mathrm{M} 2=4 *$ table('BASIN', ROW,'AS') >30
$\mathrm{M} 3=5 *$ table('BASIN', ROW, 'SB') >0.8 etc.
: Calculate normalized sum of weight factors
NEW $=(\mathrm{M} 1+\mathrm{M} 2+\mathrm{M} 3 \ldots+\mathrm{M} 10) /$ SUMW
Classify and map output
NEWMAP = CLASSIFY(NEW,'BINWT') RESULTS(OUTPUT)
Portion of calculation on page 287, Mineral model.

Inference Net for Landfill Site Binary Index Overlay

Translate table into ArcGIS

- M1 = 4 * table('BASIN', ROW,'AS') > 30
- Basin is an integer grid with multiple attributes. ArcGIS 9.1 does not do this. Will be in ArcGIS 9.2
- Returns TRUE $(=4)$ if AS >30; otherwise returns False $(=0)$
- Arcview 3.0 (Something like this in ArcGIS 9.2) - Analysis/Map Query
([BASIN.AS] > 30.AsGrid)*4.AsGrid
Returns 4 if TRUE and 0 if FALSE, but will be labeled TRUE(1) and
FALSE (0), respectively. FALSE (0), respectively.
- ArcMap 9.1 (Arsenic raster)
- If had a real or float grid, that is only one attribute (Value), can use the same procedure. If want an integer result, may have to appropriately use Int() in the equation.
- Can also use the longer form in the Raster Calculator of the Boolean example (con statement). CON([AS] > 30, 1, 0)*4

Returns 4 if TRUE and 0 if FALSE. May need to use Int() function - Spatial Analysis/Reclassify, specially for categorical data - Geoprocessing Weighted Overlay tool

From Mineral Model page 287.

Model for Multi-class Index Overlay

Index Overlay Summary

- Advantages

Weights for individual maps and attribute values allows for better representation of experts opinion of the data.

- By adjusting weights of maps and attributes can evaluate many different scenarios.
Output is a ranking of suitability, which gives decision makers more flexibility.
- Scaling of Output is by reclassification, an expert decision.
- Disadvantages
- Linear additive nature is greatest disadvantage.

Model Complexity

Simple - Boolean Logic does binary, logical reclassification of evidential layers (maps).

- Binary Index Overlay adds relative weighting of evidential layers (maps).
More
- Multi-Class Index Overlay adds relative

Complex weighting of an attribute or attributes of each evidential layer (map).

Area Tabulation

Venn Diagram

Conditional Probability

$P\{B \mid A\}=\frac{P\{B \cap A\}}{P\{A\}}=\frac{p_{11}}{p_{\bullet 1}}=\frac{T_{11}}{T_{01}}$
$P\{$ Granite Til $1 \mid$ Granite $\}=\frac{345}{486}=0.7098$
$P\{$ GraniteTil $\}=p_{1 \bullet}=\frac{T_{1 \bullet}}{T_{\bullet .}}=0.247$
If Granite is present, then the probability of Granite Till also being present is 0.7098

Conditional Odds

$$
\begin{aligned}
& O\{B\}=\frac{P\{B\}}{1-P\{B\}}=\frac{T_{1 \bullet} / T_{\bullet \bullet}}{1--\frac{T_{\bullet \bullet}}{T_{. \bullet}}}=\frac{T_{1 \bullet}}{T_{. \bullet}-T_{1 \bullet}} \\
& O\{B \mid A\}=\frac{P\{B \mid A\}}{1-P\{B \mid A\}}=\frac{P\{B \mid A\}}{P\{\bar{B} \mid A\}} \\
& O\{B \mid A\}=\frac{p_{11} / p_{\bullet 1}}{p_{21} / p_{\bullet 1}}=\frac{p_{11}}{p_{21}}=\frac{T_{11}}{T_{21}}
\end{aligned}
$$

Example - Conditional Odds

$O\{$ GraniteTill $\}=\frac{727}{2945-727}=0.328$
or 3 to 10
$O\{$ GraniteTill \mid Granite $\}=\frac{345}{141}=2.45$
or 25 to 10
If Granite is present, then the odds of Granite Till also being present is 25 to 10

Probability and Odds

$\mathrm{P}=$ probability
$\mathrm{O}=$ odds
$O=\frac{P}{1-P}$

$$
P=\frac{O}{1+O}
$$

P	O	$\ln \mathrm{O}$
0.0	0	$-\infty$
.1	$1 / 9$	-2.20
.2	$1 / 4$	-1.39
.4	$2 / 3$	-0.41
.5	$1 / 1$	0.00
.6	$3 / 2$	0.41
.8	$4 / 1$	1.39
.9	$9 / 1$	2.20
1.0	∞	∞

Conditional Odds

Odds of B given A does occur
$O\{B \mid A\}=\frac{p_{11} / p_{.1}}{p_{21} / p_{\bullet 1}}=\frac{p_{11}}{p_{21}}=\frac{T_{11}}{T_{21}}$
Odds of B given A does not occur
$O\{B \mid \bar{A}\}=\frac{p_{12}}{p_{22}}=\frac{T_{12}}{T_{22}}$

Weights

- Define the area to be studied

Count its area in unit cells $=\mathrm{N}\{$ Study Area $\}$

- Count the number of training sites in the study area $=\mathrm{N}\{$ Training Sites $\}=N\{S\}$
- Count the area of the pattern $B=N\{B\}$
- Prior probability $=P\{S\}=N\{$ Training Sites $\} / N\{$ Study Area $\}$
- Conditional Probability: Posterior Probability of a training site given the presence of a binary pattern B and absence of B.

$$
\begin{aligned}
& P\{S \mid B\}=\frac{P\{S \cap B\}}{P\{B\}}=\frac{N\{S \cap B\}}{N\{B\}}=P\{S\} * \frac{P\{B \mid S\}}{P\{B\}} \\
& P\{S \mid \bar{B}\}=P\{S\} * \frac{P\{B \mid S\}}{P\{\bar{B}\}}
\end{aligned}
$$

Odds Formulation

$P\{S \mid B\}=\frac{P\{S \cap B\}}{P\{B\}}=\frac{N\{S \cap B\}}{N\{B\}}=P\{S\} * \frac{P\{B \mid S\}}{P\{B\}}$
$O\{S \mid B\}=O\{S\} \frac{P\{B \mid S\}}{P\{B \mid \bar{S}\}}$
$\ln O\{S \mid B\}=\ln O\{S\}+\ln \left\{\frac{P\{B \mid S\}}{P\{B \mid \bar{S}\}}\right\}$
$\operatorname{logit}\{S \mid B\}=\operatorname{logit}\{S\}+\operatorname{logit}\left\{\frac{P\{B \mid S\}}{P\{B \mid \bar{S}\}}\right\}=\operatorname{logit}\{S\}+W^{+}$
$P\{S \mid \bar{B}\}=P\{S\}^{*} \frac{P\{\bar{B} \mid S\}}{P\{\bar{B}\}}$
$\operatorname{logit}\{S \mid \bar{B}\}=\operatorname{logit}\{S\}+\operatorname{logit}\left\{\frac{P\{\bar{B} \mid S\}}{P\{\bar{B} \mid \bar{S}\}}\right\}=\operatorname{logit}\{S\}+W^{-}$

Cross-Tabulation Table

Area Tabulation

Bayes’ Theorem

$\mathrm{P}\{$ Rain|Time-of-Year $\}=\mathrm{P}\{$ Rain $\}$ * Time-of-Year Factor
$\mathrm{P}\{$ Rain \mid Evidence $\}=\mathrm{P}\{$ Rain $\}$ * Evidence * * Evidence 2 etc.

P\{Rain\} = Prior Probability, the probability before considering the evidence
$\mathrm{P}\{$ Rain \mid Evidence $\}=$ Posterior Probability, the probability after considering the evidence.

- The evidence can increase or decrease the prior probability
-Applied to maps, the evidence is a pattern!

Weights Calculation Formula

$$
\begin{aligned}
& W^{+}=\ln \left[\frac{T_{11} * T_{2 \bullet}}{T_{21} * T_{1 \bullet}}\right] \text { eq. } 8-20 \\
& W^{-}=\ln \left[\frac{T_{12} * T_{2 \bullet}}{T_{22} * T_{1 \bullet}}\right] \text { eq. 8-21 }
\end{aligned}
$$

Binary Patterns!

Bayes' Theorem and Training Sites

- Used here to predict the presence or absence of a set of point objects.
- Points objects used include mineral deposits, animal habitat, human disease, etc.
- Points represent a small unit of area, the unit cell, relative to the area studied and the resolution of the evidence.
- Points are the training sites.
- Assumes one training site per unit cell.
- Assumes conditional independence of evidence with regards to training sites.

Logit Form of Baye's Theorem

- This allows for summation of the weights for all patterns as opposed to products
- W^{+}is weight for inside the pattern, B
- W^{-}is weight for outside the pattern, not B
- Positive W^{+}and negative W^{-}indicates a positive correlation between training sites and the pattern
- Contrast $=\mathrm{W}^{+}-\mathrm{W}^{-}$
- Relative measure of correlation - larger the contrast the greater the correlation
- Can use contrast to help define best pattern!

Multiple Patterns $=$ Multiple Weights

- Objective is to combine all the evidence to obtain a combined posterior probability.
- Use Bayes' Theorem to combine patterns
- Assumes conditional independence of patterns with regards to the training sites.

Conditional independence implies

$$
P\left\{B_{1} \cap B_{2} \mid S\right\}=P\left\{B_{1} \mid S\right\}^{*} P\left\{B_{2} \mid S\right\}
$$

This allows

$$
P\left\{S \mid B_{1} \cap B_{2}\right\}=P\{S\} * \frac{P\left\{B_{1} \mid S\right\}}{P\left\{B_{1}\right\}} * \frac{P\left\{B_{2} \mid S\right\}}{P\left\{B_{2}\right\}}
$$

or
$\operatorname{logit}\left\{S \mid B_{1} \cap B_{2}\right\}=\operatorname{logit}\{S\}+W_{1}^{+}+W_{2}^{+}$

Conditional Independence

Conditional Independence is satisfied if :
What if there were three patterns?
$\frac{N\left\{B_{1} \cap S\right\}}{N\{S\}} * \frac{N\left\{B_{2} \cap S\right\}}{N\{S\}}=\frac{N\left\{\mathrm{~B}_{1} \cap \mathrm{~B}_{2} \cap S\right\}}{N\{S\}}$
Using numbers from Fig $9-9$
$\frac{180}{200} * \frac{140}{200}=0.63 \Rightarrow$ for $\mathrm{CI} \frac{\mathrm{N}\left\{\mathrm{B}_{1} \cap \mathrm{~B}_{2} \cap S\right\}}{N\{S\}}=\frac{126}{200}=0.63$

Old Overall Test for Conditional Independence $N\left\{S_{\text {Calc }}\right\}=\sum_{k=1}^{m} P_{k} *($ unit cell $)$ where $\mathrm{m}=$ total number of unit cells.
CI Ratio $=\frac{N\{S\}}{N\left\{S_{\text {Calc }}\right\}}$

- Unit cell is a constant in the grid implementation of Weights of Evidence.
- CI Ratio is typically less than 1.
-If CI Ratio is less than $\mathbf{. 9 0}$ to $\mathbf{. 8 5}$ then a serious CI problem has occurred. Now considered too conservative.
-Replaced by Agterberg-Cheng CI Test

Testing for Sources of Conditional Dependency

- Pair-wise Chi-squared test
- A weak test of pairs only.
- Not implemented in ArcSDM 3.
- Replaced by multiple Agterberg-Cheng tests.
- Make models of pairs, triplets, etc. of evidence layers and get the Agterberg-Cheng results.
- Identify combinations causing the problem. Note may be a triplet or larger combination.

Solutions to CI Problems

- Combine group of evidence causing the CI problem in some logical fashion or delete one evidence and recalculate the model.
- If still have CI problem, must consider the WofE Posterior Probability distorted.
- Treat the "posterior probability" as favorability, an ordinal measurement-scale number.
- Call it favorability even though the software labels it posterior probability.
- Define ranks.
- Use Logistic Regression Posterior Probability.

Variance of Weights and Contrast

$$
s^{2}\left(W^{+}\right)=\frac{1}{N\{B \cap S\}}+\frac{1}{N\{B \cap \bar{S}\}}
$$

$$
s^{2}\left(W^{-}\right)=\frac{1}{N\{\bar{B} \cap S\}}+\frac{1}{N\{\bar{B} \cap \bar{S}\}}
$$

$$
s^{2}(\text { Contrast })=s^{2}\left(W^{+}\right)+s^{2}\left(W^{-}\right)
$$

Revised Variance of Missing Data

$s_{i}^{2}($ Missing $)=\sum_{j=1}^{m_{i}}\left[\left(P_{j}^{*}-P\right)^{2} \frac{a_{i j}}{a_{-} \text {data }_{i}}\right]$
where
$\mathrm{i}=$ a layer with missing data
$j=$ one of m_{i} classes in layer i.
$P_{j}^{*}=$ updated posterior probability by the weight for class j of a cell with missing data
$P=$ the posterior probabilty of a cell with missing data
$a_{i j}=$ the area of class j in layer i
a_{-}data $_{i}=$ the total area of data in layer i ,
that is total study area - area of missing data in layer i
Note this is a cell based calculation, which is applied to
cells with missing data!

Studentized Value

- Studentized Contrast $=$ Contrast $/ \mathrm{s}(\mathrm{C})$
- Studentized Posterior Probability $=$ Post. Prob./s(total Post. Prob.)
- An informal test of the hypothesis that value tested is zero. If Studentized value greater than 2 then can assume that the value tested is not equal to zero with approximately 98% confidence.
- Use in a relative sense and to structure decision making.

Student T Values

Confidence	Test Value	
99.5%	2.576	
99%	2.326	Because Studentized test applied here is only approximate, use
97.5%	1.96	these values as a guide. If you can accept more risk, then you can
95%	1.645	use lower confidence values!
90%	1.282	
80%	0.842	
70%	0.542	
60%	0.253	

Decisions for Weights of Evidence

- Define the study area
- Define the training set
- Select confidence level for contrast
- Select the evidential maps
- Use Contrast and Studentized Contrast to evaluate.
- Binary Reclassification
- Thresholds maximum, minimum, or grouping of nominal classes
- These decisions define objective, binary reclassification
- Needed measurements: Area of study, Area of the pattern, Number of training sites, Number of training sites inside the pattern

Weights of Evidence

- Advantages
- Objective assignment of weights, which reflect the importance of the class and the layer.
- Multiple patterns combined simply
- Binary reclassification to optimize contrast gives insights into spatial relationships
- Deals with missing data
- Measures aspects of uncertainty that can be mapped
- Disadvantages
- Assumption of conditional independence
- Requires a training set of sufficient size.

Tools for Map Analysis

Multiple Maps

Weights-of-Evidence Method

- Originally developed as a medical diagnosis system
- relationships between symptoms and disease evaluated from a large patient database
- each symptom either present/absent
- weight for present/weight for absent (W+/W-)
- Apply weighting scheme to new patient - add the weights together to get result

Weights of Evidence

- Data driven technique
- Requires training sites
- Statistical calculations are used to derive the weights based upon training sites.
- Evidence (maps) are generally reclassified into binary patterns.

Weights-of-Evidence Terms

- Weights for patterns
- W+ - weight for inside the pattern
- W- - Weight for outside the pattern
- 0 - Weights for areas of no data
- Contrast - a measure of the spatial association of pattern with sites
- Studentized Contrast - a measure of the significance of the contrast

Weights of Evidence

- Binary maps to define favorable areas
- Can use multi-layer patterns
- Measurements
- Area of study
- Area of Pattern
- Number of training sites
- Number of training sites inside the pattern

Bonham-Carter, personal comm. 2002

Preprocessing

 Nominal Measurement Scale- For example - Geological map
- select particular stratigraphic units or class
- generalize by reclassification
- extract and buffer boundaries between units

Preprocessing

Continuous Measurement Scale

- Histogram transformations
- Physical properties processing
- Filter
- separate anomaly/background
- Spatial interpolation (e.g. surfaces, krige)
- Logical combinations (merging, boolean, fuzzy logic)
- Summarize by zonal statistics
- separate anomaly/background
- define a residual
- multivariate analysis
- principal components analysis and others

Overlay combination

- In vector
- create polygon overlay and associated PAT
- create unique conditions overlay and associated PAT
- Topological selections
- In raster
- superimpose grids

Application to Binary Evidence

Class	Area	\#sites	Relative density	Weight
1	50	8	$0.8 / 0.5=1.6$	$\ln (1.6)=+0.47$
2	50	2	$0.2 / 0.5=0.4$	$\ln (0.4)=-0.92$
Total	100	10		

Example - More Points Than Chance

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$N(B)=500$ unit cells (area of theme B present)
$N(B \& D)=20$ (count of number of training points on B)
$N(D)=30$ (count of total number of training points)
$\mathrm{W}^{+}=0.2980 \quad \mathrm{~W}^{-}=-0.4157 \quad \mathrm{C}=0.7138$
More points on theme than would be expected due to chance

Example - Many More Points

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{B})=500$ unit cells (area of theme B present)
$N(B \& D)=28$ (count of number of training points on B)
$N(D)=30$ (count of total number of training points)
$\mathrm{W}^{+}=0.6513 \quad \mathrm{~W}^{-}=-2.0414 \quad \mathrm{C}=2.6927$
Many more points on theme than would be expected due to chance Bonham-Carter, personal comm. 2002

Example - Small Pattern and Many Points

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{B})=250$ unit cells (area of theme B present)
$N(B \& D)=20$ (count of number of training points on B)
$\mathrm{N}(\mathrm{D})=30$ (count of total number of training points)
$\mathrm{W}^{+}=1.0338 \quad \mathrm{~W}^{-}=-0.8280 \quad \mathrm{C}=1.8617$
Many more points on theme than would be expected due to chance

$$
\text { Bonham-Carter, personal comm. } 2002
$$

Example - Equal Pattern and Points

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{B})=500$ unit cells (area of theme B present)
$N(B \& D)=15$ (count of number of training points on B)
$\mathrm{N}(\mathrm{D})=30$ (count of total number of training points)
$\mathrm{W}^{+}=0.0$
$\mathrm{W}^{-}=-0.0$
$\mathrm{C}=0.0$

Number of points on theme equals that expected due to chance Bonham-Carter, personal comm. 2002

Example - Weights Undefined

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{B})=250$ unit cells (area of theme B present)
$\mathrm{N}(\mathrm{B} \& \mathrm{D})=30$ (count of number of training points on B)
$\mathrm{N}(\mathrm{D})=30$ (count of total number of training points)
$\mathrm{W}^{+}=\inf \quad \mathrm{W}^{-}=-\inf \quad \mathrm{C}=\inf$
Undefined: practical solution--assign fraction of point to (not B)
Bonham-Carter, personal comm. 2002

Multi-class Themes

- Maps (themes) with unordered classes (categorical) e.g. geological map. Calculate weights for each class and then group classes (reclassify) as needed.
- Maps (themes) with ordered classes (contour maps e.g. geochemical or geophysical field variables). Usually calculate weights based on successive contour levels, cumulatively. Then reclassify.

Multi-class - Categorical Classes

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{A})=250, \mathrm{~N}(\mathrm{~B})=500, \mathrm{~N}(\mathrm{C})=250$,
$\mathrm{N}(\mathrm{A} \& \mathrm{D})=23, \quad \mathrm{~N}(\mathrm{~B} \& \mathrm{D})=4, \quad \mathrm{~N}(\mathrm{C} \& \mathrm{D})=3$,
$\mathrm{N}(\mathrm{D})=30$ (count of total number of training points)
$\mathrm{W} 1=1.1866 \quad \mathrm{~W} 2=-1.3442 \quad \mathrm{~W} 3=-0.9347 \quad \mathrm{C}_{\text {max }}=2.5308$
Three classes, e.g. rock types (categorical scale of measurement)
Bonham-Carter, personal comm. 2002

Handling Uncertainty

- Uncertainty due to weights - variance of weights.
- Uncertainty due to missing data - estimate of variance due to missing data
- Other measures of uncertainty?
- For Response Map can combine the various uncertainty measures to obtain a total variance.
- Studentized posterior probability ($\mathrm{PP} / \mathrm{s}(\mathrm{PP})$) can provide a useful measure of confidence.

Decisions for Weights of Evidence

- Define unit area for counting area (Unit Cell)
- Define the study area
- Define the training set
- Select confidence level for contrast
- Select the evidential maps
- Use Contrast and Studentized Contrast to evaluate.
- Reclassification (Binary or Multi-class)
- Thresholds maximum, minimum, or grouping of nominal classes
- These decisions define objective, binary reclassification
- Needed measurements: Area of study, Area of the pattern, Number of training sites, Number of training pattern, , Number of traide the pattern

Categorical Weights Data

Class Code	Area Sq km	Area Units \#	\#Points	W+	s(W+)	W-	S(W-)	C	S(C)	stud(c)
${ }^{38}$ LPZE	4766.9375	4767	19	1.9917		-0.8617		2.8534	0.3690	7.7319
27 C	999.6250	1000	3	1.7066	0.5782	-0.0841	0.1890	1.7907	0.6083	2.9436
45 UPZC	385.9375	386	1	1.5595	1.0013	-0.0260	0.1826	1.5855	1.0178	1.5577
14 LPZ	1805.8750	1806	4	4.4024	0.5006	-0.1059	0.1925	1.5083	0.5363	2.8124
29 UPZE	1469.8750	1470	1	0.2204	1.0003	-0.0066	0.1826	0.2270	1.0169	0.2232
1 TPC	1950.6250	1951	1	-0.0628	1.0003	0.0022	0.1826	-0.0650	1.0168	-0.0639
10 LMZ	3512.9375	3513		-0.6512	1.0001	0.0311	0.1826	-0.6823	1.0167	-0.6711
13 Q	24553.4375	24553		-2.5958	1.0000	0.5337	0.1827	-3.1295	1.0166	-3.0785
2 TRPE	999.0625	999	0							
3 TMF	5511.8125	5512	0							
6 TMV	0.2500	0	0		,					
9 UPZ	432.2500	432	0							
17 QV	74.8125	75	0			,				
18 TPV	1991.2500	1991	0							
20 TPF	1570.8750	1571	0							
${ }^{25} \mathrm{KG}$	531.8125	532	0							
32 P	58.9375	59	0		,					
35 T	106.8125	107	0							
${ }_{39} 36 \mathrm{LTV}$	4537.7500 665.5625	4538 666	$\begin{aligned} & 0 \\ & 0 \end{aligned}$							
43 kc	138.5000	138	0							
47 LMZV	325.5625	326	0							
48 TRG	173.3750	173	0							
49 KG2	50.9375	51	0							
50 JMI	184.2500	184	0							

Categorical Data (Zoomed)

| Class Code | \#Points | \mathbf{C} | $\mathbf{s (C)}$ | stud(C) |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 38 LPZE | 19 | 2.8534 | 0.3690 | 7.7319 |
| 27 C | 3 | 1.7907 | 0.6083 | 2.9436 |
| 45 UPZC | 1 | 1.5855 | 1.0178 | 1.5577 |
| 14 LPZ | 4 | 1.5083 | 0.5363 | 2.8124 |
| 29 UPZE | 1 | 0.2270 | 1.0169 | 0.2232 |
| 1 TPC | 1 | -0.0650 | 1.0168 | -0.0639 |
| 10 LMZ | 1 | -0.6823 | 1.0167 | -0.6711 |
| 13 Q | 1 | -3.1295 | 1.0166 | -3.0785 |
| 2 TRPE | 0 | | | |

Ordered-Data Preprocessing

Logistic Regression Method

Graeme Bonham-Carter

In ordinary regression, the response variable is continuous, unbounded and measured on an interval or ratio scale

In situations where the response variable is binary (present/absent) this causes a problem, because the predicted response must be in the interval $[0,1]$.

The response variable can be assumed to be $\mathrm{P}(\mathrm{Y}=1)$, from which we also know
$\mathrm{P}(\mathrm{Y}=0)=1-\mathrm{P}(\mathrm{Y}=1)$

Logistic Regression Vs. Weights of Evidence

$\operatorname{Logit}(Y)=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots+b_{k} X_{k}$ (simultaneous solution of b's)
$\operatorname{Logit}(\mathrm{Y})=$ Prior Logit $+\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3}+\ldots .+\mathrm{W}_{\mathrm{k}}$ (solution for W's theme by theme, not simultaneous)

Note that the b_{0} term in LR is comparable to the prior logit in WofE, and the b's are comparable to the W's. However, instead of 1 coefficient, there are 2 (or more) weights, depending on the number of classes. Therefore, the b's are more comparable to the contrast values

Introduction

- "Data-driven" method applicable where training set of mineral sites is available
- The response variable is dichotomous (binary), e.g. presence/absence of mineral site
- The explanatory variables (evidential themes) are ordered or dichotomous (not multi-class categorical).

The solution to the problem of forcing the response variable to be in the range $[0,1]$ is to use the logit transform.

Logits = natural logs of odds
Odds $=$ Probability/(1-Probability)
$\operatorname{Logit}(\mathrm{Y})=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\ldots+\mathrm{b}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}$
Where the b's are unknown coefficients and the X's are the explanatory variables

Solution to Logistic Regression Equation

- The coefficients cannot be solved by ordinary least squares (a direct matrix inversion), because the equation is nonlinear
- The method of maximum likelihood is used to maximize the value of a log-likelihood function
- This requires an iterative solution
- So coefficients are obtained simultaneously without an assumption of conditional independence.

Practicalities

- Can calculate the logistic regression coefficients using the same unique conditions table as for WofE
- Muti-class themes must be split into binary themes in unique conditions table.
- In ArcSDM deal with missing data and multi-class problem automatically.
- In Arc/Info does not deal with missing data and has another input format.

Problem of Missing Data

- Deleting all unique conditions with missing values in any of the evidential themes.
- Deleting themes that have missing data totally.
- Replacing missing values with zero, or some other constant.
Replacing missing values with an
expected value, e.g. area weighted mean

Bonham-Carter, 1999

Can then compare the results from weights of evidence to logistic regression

This is then a check on the effect of conditional dependence on the results of weights of evidence, although if missing data and multi-class categorical evidential themes have been used, then one cannot be absolutely sure what effect the recoding in logistic regression has on the results.

Compare Results

- ArcSDM includes three techniques for comparing the results of different techniques:
- Spearman's Area Weighted Rank Correlation
- Quantile-quantile plot
- Map of rank differences

Compare Results

Compare Results

- Possible inputs:
- integer grid theme with numeric field(s)
- floating point grid theme

Compare Results

Quantile-quantile plot

- Sorts the values in each field or theme in ascending order
- if one variable has more observations than the other (for Arcview3), its values are interpolated so that there are equal number of values. ArcGIS: specify number of classes
- values are plotted as x and y coordinates

Compare Results

Spearman's Rank Correlation and Rank Mapping

- Arcview 3 - Classifies both variables into 20 quantiles (ranks). ArcGIS - user specifies number of ranks
- Spearman's Area Weighted Rank Correlation is calculated and written to a dBase file
- Map of rank differences generates a difference map, classifies and symbolizes it to show where the two input evidential themes are similar or dissimilar

Band Collection Statistics Report

SUMMARY

- Logistic regression can be compared to weights of evidence to check CI assumption
- The total expected number of deposits is usually slightly underestimated by LR (rounding?)
- In general the results of the two methods are similar in terms of ranks, except the WofE probabilities are usually higher than LR probabilities because of CI

SUMMARY (2)

- ArcSDM will generate LR automatically (expanding the UC table for categorical themes and substituting area-weighted mean values for missing data) at the same time as running WofE, if desired
- Tools for comparing maps are provided in ArcSDM Post Processing and ArcGIS geoprocessing tools.

Multiple Maps

Fuzzy Logic
Modified from Graeme Bonham-Carter

Crisp Logic

- Membership of crisp set defined as either 1 or 0 , True or False
- (1) $\operatorname{Truth}($ This location is close to a lineament) $=1$
- (2) Truth(This location is on a geochemical anomaly) $=0$
- Combination of (1) and (2) by AND, OR, NOT Boolean operators.
$-\operatorname{Truth}(1$ AND 2) $=0$
$-\operatorname{Truth}(1$ OR 2) $=1$

Fuzzy Membership Functions

- Membership defined by a functional relationship, or by a table of ordered pairs
- Membership reflects degree of truth of some proposition or hypothesis (often a linguistic statement)

Fuzzy logic

- Fuzzy membership defined in the range [0,1] allowing for gradational membership
- (1) Truth(This location is close to a lineament) $=0.6$
- (2) Truth(This location is on a soil geochemical anomaly) $=0.9$
- Fuzzy operators
- fuzzy AND, fuzzy OR, fuzzy algebraic SUM, fuzzy algebraic PRODUCT, fuzzy GAMMA, etc
$-\operatorname{Truth}(1$ Fuzzy Or 2$)=0.9$
$-\operatorname{Truth}(1$ Fuzzy And 2$)=0.6$

Non-spatial example

- Truth of proposition (Person X is Tall)
- Degree of tallness depends on height
- Need a fuzzy membership function relating height to degree of tallness
- In range $[0,1]$, similar to probability, but not satisfying probability laws
- Sometimes termed "possibility"

Person	Height	Tallness	
Fred	$32^{\prime \prime}$	0.00	Tallness $=0$ if height $<5^{\prime}$,
Mike	$55^{\prime \prime}$	0.21	$\begin{aligned} & \text { Tallness }=(\text { height }-5) / 2 ; \\ & \text { if } 5<=\text { height }<=7 \end{aligned}$
Sally	59	0.38	Tallness $=1$ if height $>7^{\prime}$
Marg	$510^{\prime \prime}$	0.42	
John	$61^{\prime \prime}$	0.54	Truth(Marg is tall $)=0.42$
Sue	$72^{\prime \prime}$	1.00	

Oldness

Fuzzy Combination of Tallness and Oldness

Person	Height	Tallness	Age	Oldness	Tall and old	Tall or old
Fred	3'2"	0.00	65	1.00	0.00	1.00
Mike	5'5"	0.21	30	0.29	0.21	0.29
Sally	5'9'	0.38	27	0.21	0.21	0.38
Marg	$5^{\prime} 10^{\prime \prime}$	0.42	32	0.33	0.33	0.42
John	$61^{\prime \prime}$	0.54	41	0.54	0.54	0.54
Sue	$72^{\prime \prime}$	1.00	45	0.64	0.64	1.00
	Truth(Sally is tall AND old $)=\min (0.38,0.21)=0.21$					
	Truth $($ John is tall OR old $)=\max (0.54,0.54)=0.54$					

Fuzzy Membership Function

$\mu(x)=0$ if $x<50$
$\mu(x)=\frac{(x-50)}{250}$ if $50<x<250$
$\mu(x)=1$ if $x>250$
Where $\mu(\mathrm{x})$ is the membership value for x

Class	Fuzzy Membership Table	
	Membership	Source Intervals
1	0.8	'142-166 ppm As ${ }^{\text {' }}$
2	0.7	'112-142 ppm As'
3	0.3	' $28-52 \mathrm{ppm}$ As ${ }^{\prime}{ }^{\prime}$
5	0.2 0.2	'17-28 ppm As'
7	0.2	'7-12 ppm As'
	0.2	'No data'
		Bonh

Fuzzy Membership Table

Fuzzification Functions

- Functions
- Large
-Small
-Near
-Gaussian
-MS Small
-MS Large
- Linear
- Hedges (square root and squared)
-Somewhat
- Very

Fuzzification Functions

Large
$\mu(x)=\frac{1}{1+\left(\frac{1}{f 2}\right)^{-f 1}}$
Small

Near
$\mu(x)=\frac{1}{1+f 1^{*}(x-f 2)^{2}}$

Gaussian

$\mu(x)=e^{-f 1^{*}(x-f 2)^{2}}$
where $\mathrm{f} 2=$ mid point and $\mathrm{fl}=$ spread $\mu(\mathrm{x})$ is the membership value for x

Hedge Applied to Small

Very Small = small squared
Somewhat small $=$ square root of small

Mean-Standard Deviation (MS) Small and Large

MS Large

$$
\mu(x)=1-\frac{b s}{x-a m+b s} \text { if } x>a m
$$

Otherwise $\mu(x)=0$
MS Small
$\mu(x)=\frac{b s}{x-a m+b s}$ if $x>a m$
Otherwise $\mu(x)=0$
Where: $\mathbf{m}=$ mean, $\mathbf{s}=$ standard deviation
a and b are user input parameters, defaults 1 and 1

Operators

Fuzzy Or and Fuzzy And
Fuzzy Or
$\mu_{\text {Combination }}=\operatorname{Max}\left(\mu_{a}, \mu_{b}, \mu_{c}, \ldots\right)$
Fuzzy And
$\mu_{\text {Combination }}=\operatorname{Min}\left(\mu_{a}, \mu_{b}, \mu_{c}, \ldots\right)$

Examples of MS Small and Large

Fuzzy Membership in ArcSDM2

Combination Operators

Fuzzy Product $=\mu_{\text {Combination }}=\prod_{i=1}^{n}\left(\mu_{i}\right)$
FuzzySum $=\mu_{\text {Combination }}=1-\prod_{i=1}^{n}\left(1-\mu_{i}\right)$

Gamma Operator

$\mu_{\text {Combination }}=$
$(\text { Fuzzy Sum })^{\gamma} *(\text { Fuzzy Product) })^{1-\gamma}$
Where $\gamma=$ Gamma specified by user

Decisions for Fuzzy Logic

- Fuzzy Memberships
- Thresholds can be gradational, potentially many values to assign
- Named classes can be fuzzy, potentially a value for each class
- How the criteria (maps) interact
- Fuzzy AND, OR, and GAMMA
- Fuzzy SUM and PRODUCT - not used often
- Gamma value to define fuzzy relationships of criteria

Comparison of Fuzzy Evidence
Fuzzy W in Lake Sediment

Fuzzy Logic Summary

- Advantages
- Flexibility of assigning fuzzy memberships
- Choice of combination operators
- Mimic decision making by expert
- Can deal with "maybe"
- Not limited to binary criteria
- Easy to understand
- Disadvantages
- Problem of missing data
- Confusion between fuzzy membership and uncertainty
- Potentially many fuzzy membership values to assign

Modified from Bonham-Carter
Oct. 1999; Wright, 1996

Neural Networks

Fuzzy Clustering (Unsupervised)
Radial Basis Functional Link Net (Supervised)
Modified from
Carl G. Looney, Prof. of Computer Science
Computer Science and Engineering/171, UNR

1. Intro. to Classification

- Humans accumulate knowledge by grouping observed objects into classes
- This saves the effort of storing every object as a unique item with its own special list of properties
- Classification allows knowledge to be built and organized efficiently

1. Intro. to Classification

- Given a population of objects and the goal of classifying them, we must first find measurable properties they all share that
- distinguish them to some extent
- allow multiple individuals to be alike
- We call such measurable properties features

1. Intro. to Classification

- We represent the objects in the population by their feature vectors
- It is the set of feature vectors that we classify
- To classify, we must partition, or cluster, the
feature vectors into groups with similarity within

To classify, we must partition, or cluster, the
feature vectors into groups with similarity within groups, and dissimilarity between groups

1. Intro. to Classification

- Suppose there are 3 types of beetles
- Let us measure the green color intensity x and the height-to-width ratio y
- Then the feature vector for a beetle is (x, y)

1. Intro. to Classification, cont'd

1. Intro. to Classification

- After the clustering into clusters, a vector is used to represent each cluster (called prototypes or centers) [a cluster is also called a class]
- When a new feature vector from that population is to be recognized, it is compared with the prototypes in the various clusters
- It is recognized as belonging to the class that has a prototype most similar to it

2. Recognition

- Classification: self-organizing, or unsupervised learning, of classes by a system [e.g., clustering]
- Recognition: supervised learning, or training, of a system to determine which class an input feature vector belongs to [e.g., neural networks]

1. Intro. to Classification

- Data may or may not have clustering structure

2. Recognition

+ After classification, we desire to train an on-line
automatic recognizer that recognizes the class of any new input vector from the same population.
+ We use the set of labeled feature vectors to train a
-- fuzzy neural network
-- fuzzy recognizer

Fuzzy Clustering

Unsupervised Method No Training Sites Needed

Unique Conditions Table
 VAT

- Each row can be thought of as a feature vector, $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ where each x_{n} is the value or attribute of the feature.
- There are N attributes for any object in a population of objects.
- There are Q rows or feature vectors
- Goal is to partition the population of feature vectors in classes of objects by partitioning the feature vectors.

Estimation of Variance

Xs are standardized between $[0,1]$
$\mathrm{N}=2$ = number of evidential layers
$M=4$ = number of clusters, experience indicates if want 2 final clusters start with $\mathrm{M}=10$

Where M is large enough, then can initially estimate the variance by
$\sigma=\frac{1}{4} *\left(\frac{1}{M}\right)^{\frac{1}{n}}=\frac{1}{4} *\left(\frac{1}{4}\right)^{\frac{1}{2}}=\left(\frac{1}{8}\right)=0.125$

Weighted Fuzzy Expected Value

\[

\]

Fuzzy Clustering Algorithm

- Input a number K of classes that is larger than the expected number of classes
- Assign first K of the Q vectors as cluster centers $\mathrm{z}^{(1)}, \ldots, \mathrm{z}^{(\mathrm{K})}$
- For $\mathrm{q}=1$ to Q
- Assign $x^{(q)}$ to closest $\mathrm{z}^{(\mathrm{K})}$ by $\mathrm{c}[\mathrm{q}]=\mathrm{k}$
- Find WFEV for each cluster to obtain a new center $\left\{\mathrm{z}^{(\mathrm{K})}\right\}$
- If(any center changes more than ε) start over
- Else Compute weighted fuzzy variance for each cluster and WFEV $d_{\text {WFEV }}$ of distances between centers
- for $\mathrm{k}=1$ to $\mathrm{K}-1$
- for $\mathrm{kk}=\mathrm{k}+1$ to K
- if distance $\left(\mathrm{z}^{(k)}, \mathrm{z}^{(k)}\right)<\beta d_{\text {WFEv }}$ then merge $(\mathrm{k}, \mathrm{kk})$

Fuzzy Clustering Flow Chart

Calibration of Fuzzy NN Models

- Cluster validity - make as small as possible

Radial Basis Function Link Net

Supervised
Training Sites Required

Radial Basis Functional Link Nets

- A radial basis functional link net (neural network, NN) transforms each N -dimensional input feature vector into an output target vector

$$
\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{NN} \rightarrow \mathbf{t}=\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)
$$

- Target vector t is a code word that represents a class. This is called supervised learning because the network must be told the class for each input feature vector x .
- NNs have a relatively large number of parameters that can be thought of as dials. The parameters are also known as weights.
- During training a set of feature vectors are presented to the network and the dials are adjusted until each feature vector is mapped to its known target vector

These feature vectors are called training vectors when used to train the network.

Diagram of Process

$x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow N N \rightarrow z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow e \leftarrow t=\left(t_{1}, \ldots, t_{n}\right)$
The error to be minimized over all Q input feature vectors is $\mathrm{E}=\sum_{q=1}^{Q} \sum_{j=1}^{J}\left(t_{j}^{q}-z_{j}^{q}\right)^{2}$
In our case $j=1$ because only one target value.

RBF Contour Curves in the Plane

Radial Basis Function

- RBF is a Gaussian function. It has a center vector v and processes any input vector x via $y=f(x ; v)=\exp \left[(x-v)^{2} /\left(2 \sigma^{2}\right)\right](0<y \leq 1)$
- Each middle-layer node in RBFN or RBFLN contains a RBF whose output fans out to each node in the output layer.

Output Results File

- $\mathrm{g}_{1}{ }^{(\mathrm{q})}$ is the key field to join with unique conditions table
- $c^{(q)}$ is the fuzzy class number
- $\mathrm{f}_{1}{ }^{(\mathrm{q})}$ fuzzy membership values, respectively for input vector q belonging to class $\mathrm{k}=$ $1, \ldots, K$.

Decision with Neural Networks

- Transform evidential values into range [0,1]
- Can use fuzzy membership values as inputs
- Possibly can use value field
- Ranking of training sites
- Evaluation of reported measures of classification

Calibration Measures of RBFLN

- Minimize number of clusters, M .
- Small number of iterations
- Over fitting
- Calibration measures.

PNN

Summary

- Advantages
- Can rank training sites
- Non-linear mathematics
- Unsupervised and Supervised method
- Disadvantages
- Model parameters are difficult to understand
- Need training sites for occurrence and nonoccurrence
- Approaches to ranking of training sites not well understood
- Overall use is poorly understood

Miscellany

Fuzzy Membership
Nature of Evidence
Semantic Classification of Response
Testing of Predictions

Membership Functions

Fuzzy Membership

Semantic Approach

Membership Function

Ranking Fuzzy Membership

Speculations on the Nature of Evidence

Generalization

Positive and Negative Evidence

Categorical Generalization

Simple

Categorical Class	Area	\#Points	Contrast
Sand	3000	35	2.0
Lime mud	2000	3	-1.0
Shelly sand	75	0	Null or 0

- Assume both have significant Studentized Contrast
- Always check categorical generalization by calculating weights of the generalization
- Does Shelly sand belong with Lime mud?

Categorical Generalization

 Expert Interpretation| Categorical
 Class | Area | \#Points | Contrast |
| :--- | :---: | :---: | :---: |
| Sand | 3000 | 35 | 2.0 |
| Inside | | | |
| Lime mud | 2000 | 3 | -1.0 | | Outside |
| :--- |
| Shelly sand |

- For percolation of water through sediments, Sand and Shelly sand are more alike than Lime mud!
- Always check categorical generalization by calculating weights of the generalization

Another Multi-Class

What are the rules of Generalization?

- A model should follow a consistent rule of generalization.
- Rules might define how to consistently derive specific types of models.
- Models are always wrong but sometimes useful!
- Not all models are equal.
- Is there a best model or simply a collection of better models?

Solution

- Analyst has the best understanding of the significance of the response value.
- Highest posterior probability may not be a high or large value. Might be quite low.
- Consider the meaning of the prior probability
- Assign names to intervals of response values.
- Carefully consider the meaning or implication of the selected terms.

Semantic Classification of Response

- What is the significance of a particular posterior probability or fuzzy membership value?
- Have to interpret in context of the model.
- Number of training sites: Do you have a large or small sample of the possible training sites?
- State of knowledge about process being modeled: How good is the scientific understanding of the process?
- Quality of the evidence: Consider accuracy and precision of the values and the location.

Testing of Predictions

- How well does the Response value predict the training sites?
- ArcSDM2: Associate Responses with Point Theme
- Experimental Design
- Hold back training sites to test the model
- ArcSDM2: Associate Responses with Point Theme
- Field studies

Chapter 9

Summary
Comments on Exercise 1

Guidelines for Modeling

- Formal statement of the problem.
- Define the user of the model.
- Specification - preprocess the data to provide useful information, that is evidence.
- Data exploration
- Data transformation, filtering, and scaling
- Reduce the dimensionality by eliminating redundant or correlated information
- Use the minimum information necessary
- Prediction - combine the evidence to create the model.
- Testing - evaluate the model and it's properties.

Purpose of GIS Projects

- Combine data from diverse sources
- To describe and analyze interactions
- To make predictions, that is models
- To provide support for decision makers

Properties of Evidence

- Selected attributes must discriminate between one or more classes of objects.
- Selected attributes must not be correlated with other attributes to any moderately strong extent.
- Selected attributes must have meaning for humans.

Types of Models

- Prescriptive or Deterministic
- Application of good technical practices
- Process: Boolean rules, Equations
- Output: Binary (yes or no), Index overlay (score)
- Predictive
- Application of mathematics to represent how people think about the evidence but cannot represent as equations.
- Process: weighting of evidence and combination of weights
- Output: Favorability, probability, or fuzzy map [0 to 1]

Knowledge Driven Methods

- Boolean Logic - True/False representation of maps with all maps rated equally. Simple method with True/False answer.
- Index Overlay with Binary Maps - Maps are given different weights. Linear combination of maps.
- Index Overlay with Multi-Class Maps - Maps are given different weights as well as the classes of the maps are given different weights. Linear combination of maps.
- Fuzzy Logic - More flexible weighting of maps and map classes. Nonlinear combination of maps.
- Expert Weights of Evidence - Weighting of evidence easily understood. Log linear combination of maps.

Data Driven Methods

- Weights of Evidence
- log linear combination of binary or multi-class maps.
- Classifies areas by probability or favorability of occurrence of a training site.
Model parameters easy to understand.
- Logistic Regression
- log regression combination of binary maps
- Classifies areas by probability of occurrence of a training site.
Model parameters complex.
- Neural networks
- Experimental, nonlinear combination of fuzzy or map classes
- Classifies areas by fuzzy membership in training set.
- Can also be self organizing to produce fuzzy membership.
- Model parameters complex.

Recognition of a Pattern

- Task - Determine what the appropriate level of aggregation and simplification is for the problem at hand, a problem of reclassification.
- Aggregation and simplification are tied to scale of observation.
- The is no single scale at which to view a system.
- Does not mean that all scales serve equally well or there are not scaling laws.
- Description of patterns is the starting point.
- Spatial models start with an assemblage of patterns and associated processes.

Scale Type Examples		Operations	Means
Nominal	Rock type	$=$	Mode
Ordinal	Relative age	$><$	Median
Interval	Temperature	$+-* /$	Mean
Ratio	Distance	$+-* /$	Mean

Buffer Resolution

Threshold Weighting Reclassification

	Map Resolution	Geologic Resolution	Buffer Resolution
$1: 2,500,000$	1250	2500	5000
$1: 500,000$	250	500	1000
$1: 250,000$	125	250	500
$1: 100,000$	50	100	200

Units - Meters
Map Resolution $=($ Scale denominator $) / 2000$

Testing

Data-driven Methods

- Evaluate classification of training points

- Associate Points with Response

- Efficiency of Classification
- Use points not included in training set to test the model
- Implementation - use a random subset of training set to develop the weights and use the remainder to evaluate the model. (Efficiency of Prediction)
- Problem - for many models there may only be a small number of training points to start with.
- Field Studies

Guidelines for Modeling

- Formal statement of the problem.
- Define the user of the model.
- Specification - preprocess the data to provide useful
information, that is evidence
- Data exploration
- Reclassification, filtering, transformation, and scaling

Reduce the dimensionality by eliminating redundant or correlated information
Use the minimum information necessary

- Prediction - combine the evidence to create the model.
- Testing - evaluate the model and it's properties.

Combining Grids

- Zonal Statistics - summarize one grid for zones in another grid or shape file
- Map Calculator - some sort of map algebra - Combine - Con
- Multivariate Statistics (Scaling Issues) Maximum Likelihood Classification Principal Components
- Merge grids

Unique polygons
Unique conditions

Problem with the VAT

Frequency VAT with Case added					
VALUE	COUNT	Map B	Map A	CASE	
1	53517	0	0	-	
3	9356	0	1	2	
5	2971	0	2	3	
2	3291	1	0	4	
4	4139	1	1	5	Do this for Shapefile
6	2642	1	2	6	in ArcGIS 9.1.
9	718	2	0	7	Can do in ArcGIS 9.2
8	1071	2	1	8	Can do in ArcGis 9.2
7	545	2	2	9	
ArcMap: ArcToolBox Analysis Tools/Statistics/Frequency Sort and add Case in Excel Or					
ArcMap: Symbolize by multiple attributes					

Summary

- Shape files - several tools
- Computations can be slow
- Grid overlay offers great flexibility
- Numerical and logical combinations
- Ordered VAT or table of combinations opens the door for many types of modeling
- Unique conditions table shortens the ordered matrix and simplifies programming in modeling
- Computations are very fast

Spatial Analysis in GIS Map Pairs

- Map Correlation

Probability

Put 3 red balls and 7 blue balls in a bag.
What is the probability of drawing a blue ball from the bag?
What is the probability of drawing a red ball from the bag?

Probability of drawing a blue ball is $7 / 10=0.7=\mathrm{P}_{\mathrm{b}}$ Probability of drawing a red ball is $3 / 10=0.3=P_{r}=1-P_{b}$

Tabulate Areas or Unique Conditions

Agreement $=100 *$ (Sum of Diagonal (gray cells)/Total). Also called area cross tabulation or confusion matrix.

Nominal Scale Data
 Information Statistic

Nominal Scale Data
 Coefficient of Agreement, kappa

Weighted Pearson's Correlation Coefficient

 Modified for Cross-Tabulation Table$$
\begin{aligned}
& r_{s}=\frac{\sum_{i=1}^{\text {colums rows }} \sum_{j=1} T_{i j} *\left(X_{i}-\bar{X}\right)\left(Y_{j}-\bar{Y}\right)}{\sqrt{\sum_{i=1} \sum_{j=1}^{\text {columns rows }} T_{i}^{*} *\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{\text {columns rows }} \sum_{j=1} T_{i} *\left(Y_{j}-\bar{Y}\right)^{2}}} \\
& \text { where } \\
& \bar{X}_{i} \text { and } Y_{j}=\text { Values of Map } \mathrm{X} \text { and Map } \mathrm{Y} \text { respectively } \\
& \text { and } \bar{Y}=\text { Area }- \text { weighted mean respectively } \\
& \mathrm{T}_{i \mathrm{ij}}=\text { area or count in the } \mathrm{i}^{\text {th }}-\mathrm{j}^{\text {th }} \text { pair or cell of the } \\
& \text { cross }- \text { tabulation matrix. }
\end{aligned}
$$

Same as in Excel

Ordinal Data

Weighted Spearman's Rank Correlation

$$
\begin{aligned}
& r_{\mathrm{s}}=1-\frac{6 * \sum_{i=1}^{\text {rows columns }} \sum_{\mathrm{j}=1} \mathrm{~T}_{\mathrm{ij}} *\left(R_{x i}-R_{y j}\right)^{2}}{n\left(n^{2}-1\right)} \\
& \text { where } \\
& \mathrm{R}_{\mathrm{x}} \text { and } \mathrm{R}_{\mathrm{y}} \text { are ranks for Maps } \mathrm{X} \text { and } \mathrm{Y} \\
& \mathrm{n}=\text { sum of cells in cross - tabulation matrix }
\end{aligned}
$$

Use this formula:
where ranks are numbered $1,2,3, \ldots, \mathrm{n}$ and
where there are no ties.
If have ties, then ranks are given average of the ranks!

Band Collection Statistics: Pearson

Bonham-Carter's Modification

Weighted Spearman's Correlation Coefficient

where
$R_{x i}$ and $R_{y j}=$ ranks of Map X and Y respectively
$\overline{\mathrm{R}}_{x}$ and $\vec{R}_{y}=$ Area - weighted average rank respectively

$$
\mathrm{T}_{\mathrm{ij}}=\text { area or count in the } \mathrm{i}^{\text {th }}-\mathrm{j}^{\text {th }} \text { pair. }
$$

If the area-weighted average rank is simply the normal areaweights average this is the same as Pearson Correlation Coefficient. This is what is done in ArcSDM 3.1

ArcSDM2 Compare Results

Spatial Correlation

Rank Difference Sb - As

Area-Weighted

 Spearman's Correlation Coefficient $=0.28$Agreement $=\mathbf{0 . 3 1}$

Correlation Analysis

Interval and Ratio Scale

- Pearson's product moment correlation coefficient - measure of linear correlation
- Varies from -1 to 1
- -1 - perfect negative correlation
- 0 - no correlation
- 1 - perfect positive correlation
- Use for ratio and interval measurement scales.
- Not appropriate for nominal and ordinal measurement scales.

Nominal Scale Data

Chi-square statistic

$T_{i j}$, where there are $I=1,2,3, \ldots, N$
and $\mathrm{j}=1$ Map B (rows of the table)
Map A (columns of the table).
Ti. is the sum of the $i^{\text {th }}$ row,
T. j is the sum of the $j^{\text {th }}$ column, and
T.. is grand sum over rows and columns.

Proportional-Area Table

Probability and Odds

$$
\begin{aligned}
& \mathrm{P}=\text { probability } \\
& \mathrm{O}=\text { odds } \\
& O=\frac{P}{1-P}
\end{aligned}
$$

Conditional Odds

$$
\begin{aligned}
& O\{B\}=\frac{P\{B\}}{1-P\{B\}}=\frac{\frac{T_{1 \bullet}}{T_{\bullet \bullet}}}{1-\frac{T_{1 \bullet}}{T_{\bullet \bullet}}}=\frac{T_{\bullet \bullet}}{T_{\bullet \bullet}-T_{1 \bullet}} \\
& O\{B \mid A\}=\frac{P\{B \mid A\}}{1-P\{B \mid A\}}=\frac{P\{B \mid A\}}{P\{\bar{B} \mid A\}} \\
& O\{B \mid A\}=\frac{p_{11} / p_{\bullet 1}}{p_{21} / p_{\bullet 1}}=\frac{p_{11}}{p_{21}}=\frac{T_{11}}{T_{21}}
\end{aligned}
$$

Conditional Odds Example

$O\{$ GraniteTill $\}=\frac{727}{2945-727}=0.328$
or 3 to 10
$O\{$ GraniteTill \mid Granite $\}=\frac{345}{141}=2.45$
or 25 to 10
If Granite is present, then the odds of
Granite Till also being present is 25 to 10

Odds Ratio - Binary Maps
$O_{R}=\frac{O\{B \mid A\}}{O\{B \mid \bar{A}\}}=\frac{T_{11} T_{22}}{T_{12} T_{21}}$
$O_{R}=\frac{345 * 2077}{382 * 141}=13.3$
$O_{R}=\frac{\text { Measure of Agreement }}{\text { Measure of Disagreement }}$

Categorical Correlation Summary

```
\alpha \mp@code { a n d ~ } \kappa
\kappa
OR}\mathrm{ and }\mp@subsup{\textrm{C}}{\textrm{W}}{
C are easy to compute.
C
    important than negative agreement.
\chi
    distinguish large interactions due to
    agreement or disagreement.
C
    for chance associations.
Qualification
    Choice of counting region (study area)
    influences the correlation measured.
```


Correlation of Rare Events

Kappa and

Agreement $\left(\frac{\left(T_{11}+T_{22}\right)}{T_{* *}}\right)$ and Jaccard's C $\left(\frac{T_{22}}{T_{12}+T_{22}+T_{21}}\right)$ from cross tabulation of two random binary grids.

Arc/Info Statistical Tools

- Grid: Autocorrelation tools
- Correlation - calculates cross correlation
- Geary and Moran spatial autocorrelation index
- Grid: Multi-variant clustering
- Isocluster() - natural clustering of attributes in attribute space
- Mlclassify() - maximum-likelihood classification in attribute space
- Princomp () - principal components classification in attribute space
- Regression - linear or logistic regression coefficients
- Stackstats - standard statistics for a stack of grids

Summary

- Ratio and Interval
- Pearson's correlation coefficient
- Ordinal
- Spearman's rank correlation coefficient
- Categorical
- Several measures. Kappa is very useful as long as have same number of classes.
- Problems when dealing with rare events.

Summary

- Quantitative comparison between two maps can be done several ways!
Chap. 8 provides a brief overview and a starting point for further investigation.
- Area tabulation or cross-tabulation table is a fundamental input to most of the correlation measures.

Spatial Analysis in GIS Single Maps

-Modeling - Pattern Recognition

- Reclassification
-Filtering

Data Exploration

- Process of seeking patterns on maps that help predict spatial phenomena.
- Visualization leads to recognition of a pattern and the association of the pattern with something of interest.
- A model is proposed that describes the association.

Pattern

- An area having a consistent, recognizable characteristics associated with some object or process.
- A pattern is something that deviates from the norm.
- A pattern is associated with a particular scale of observation!
- It is a primitive.
- Association of patterns and their causes are the bricks of scientific knowledge.

Types of Recognition

- Classification is the process of grouping objects together in classes according to perceived similarities.
- Identification is the recognition of an individual object as a unique singleton class.
- Discrimination is the recognition that an individual object as different from a class.

Data Exploration

- Seeking patterns involves:
- Measurement
- Statistical Summary
- Visualization
- Description
- Understanding of processes causing pattern
- Foundation is data model.
- Formal statement of the problem.
- Define the user of the model.
- Specification - preprocess the data to provide useful information, that is evidence.
- Data exploration
- Reclassification, filtering, transformation, and scaling
- Reduce the dimensionality by eliminating
redundant or correlated information
- Use the minimum information necessary
- Prediction - combine the evidence to create the model.
- Testing - evaluate the model and it's properties.

Measurement Scales

- Nominal (Categorical)
- An unordered label of categories or classes.
- Ordinal (Rank)
- Measurements ordered (ranked) according to relative position on a scale with unequal intervals between classes.
- Interval
- Measurements that can be labeled and ordered with an equal interval between classes but without a true zero.
- Ratio
- Measurements that can be labeled and ordered, with an equal interval between classes, and with a true zero.
muses

Recognition of a Pattern

- Task - Determine what the appropriate level of aggregation and simplification is for the problem at hand, a problem of reclassification.
- Aggregation and simplification are tied to scale of observation.
- There is no single scale at which to view a system.
- Does not mean that all scales serve equally well or there are not scaling laws.
- Description of patterns is the starting point.
- Spatial models start with an assemblage of patterns and associated processes.

Reclassification

- Reclassification Methods - Continuous measurement scales - definitions
- Natural breaks
- Quantile, Equal area
- Equal intervals
- Standard deviation
- Semantic Reclassification - Categorical measurement scales

Floating to Integer Transform
$X_{i}^{*}=\left(X_{i}+0.5 . A s G r i d\right)$.int AV3
$X_{i}^{*}=\operatorname{int}\left(X_{i}+0.5\right) \quad$ ArcMap
where
$\mathrm{X}_{\mathrm{i}}^{*}$ is an integer value
X_{i} is a floating value

Semantic Reclassification Categorical Measurements

- This is an important problem!
- Expert Systems
- GeoGen - http://geology.usgs.gov/dm/
- Spatial Association - How to define?
- Expert decision
- Measurement such as ArcSDM Contrast

Lithology Predictor Pattern

Lithology Evidence Theme

Near - Proximity To Alteration

Guidelines and Reclassification Summary

- Concept of a pattern.
- Reclassification of continuous measurement scales.
- Many tools
- Reclassification of categorical measurement scales.
- Few tools - current research
- Expert decision guided by statistics, Contrast and Studentized Contrast

Spatial Analysis in GIS Single Maps

-Modeling - Pattern Recognition
-Reclassification
-Filtering

Filters

- Interpolate a surface
- Inverse distance weighting (IDW)
- Spline
- Kriging (Geostatistics extension in ArcMap)
- Block statistics and Focal statistics
- Neighborhood Statistics
- Zonal Statistics
- Hillshade, slope, and aspect
- Convolution Filters

Filtering Overview

Two Signals

Moving Average
$F_{(t+1)}=1 / N \sum_{j=1}^{N} A_{t-j+1}$
$N=$ Number of prior periods to include in average
$A_{j}=$ Actual value at time j
$\mathrm{F}_{\mathrm{j}}=$ Forcasted value at time j

3x3 BlockStats Function

- No overlap of neighborhoods
- All cells in neighborhood receive same value
- A way to decrease the resolution

Types of Neighborhoods or Filters

- Overlapping neighborhoods
- Only the central value receives the new value
- Loose the outside of the theme.

Interval and Ratio Scales
*Mean (Low Pass)
Standard Deviation
Ordinal Scales
*Median (Low Pass)
Nominal Scales
*Majority (Low Pass)
*Variety (Diversity)
Maximum (High Pass?)
Minimum (Low Pass?)

```
Kernal Properties
Height and Width - 3x3
Type of neighborhood
Weights
    1/9 1/9 1/9
    1/9 1/9 1/9 Mean Filter
    1/9 1/9 1/9
    Others
    Minority?
```

Sum- Program other filters

Convolution Filters

$\begin{array}{cccc} \hline 0 & -1 & 0 & \\ -1 & 4 & -1 & \text { Laplacian } \\ 0 & -1 & 0 & \\ \hline \end{array}$	$\begin{array}{\|llll} \hline-1 & -1 & -1 & \\ -1 & 9 & -1 & \text { High } \\ -1 & -1 & \text { Frequency } \end{array}$
$\begin{array}{\|ccc\|} \hline 1 & 1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & -1 \end{array}$	$\begin{array}{llll} 0.25 & 0.50 & 0.25 & \\ 0.50 & 1.00 & 0.50 \\ 0.25 & 0.50 & 0.25 & \text { High } \\ \text { Frequency } \end{array}$
$\begin{array}{cccl} \hline \hline-1 & -1 & -1 & \\ 1 & -2 & 1 & \text { Directional } \\ 1 & 1 & 1 & \text { South } \end{array}$	There are a large number of other filters for many applications. Available as Arcview 3 extensions with problems.

Cascade Programming in AV3

Problem: How do you define the weights?
Neighborhoods can only be defined as
including or not including a cell $(0,1)$.
Fragment of Cascading Avenue Code
firstLine $=\{0,1,0\}$
secondLine $=\{1,0,1\}$
thirdLine $=\{0,1,0\}$
theKernal $=\{$ firstLine,secondLine,thirdLine $\}$
aNbrHood $=$ NbrHood.MakeIrregurlar (theKernal)
theResult $=$ sourceGrid*4.AsGrid -
sourceGrid.FocalStats(\#GRID_STATYPE_SUM, theNbrHood, True)

Fragment of VB Code to Define and Apply Filter

Dim kernel As Variant kernel $=$ MakeIrregularKernel
' pHood.SetIrregular 3, 3, kernel pHood.SetWeight 3, 3, kernel
' Perform Spatial operation
Dim pOutRaster As IRaster
Set pOutRaster $=$
pNeigbOp.FocalStatistics(pGeoDs, esriGeoAnalysisStatsSum, pHood, True)

Laplacian Filter

One-Dimensional Laplacian weigths: -1 $2-1$

Cascade Programming in ArcMap

Problem: How do you define the weights?
Neighborhoods can be defined by two methods:
SetIrregular (weights 0 and 1)
SetWeights (any real or integer value)
SetWeights is most useful to weight individual cells in the filter.

VB Code to fill Kernel

Private Function MakeIrregularKernel() As Variant
Dim OutArray() As Long
Dim X As Long, Y As Long
$\mathrm{X}=3$
$Y=3$
ReDim OutArray(X * Y)
$\operatorname{OutArray}(0)=0$
OutArray $(1)=-1$
OutArray $(2)=0$
OutArray (3) = -1
OutArray (4) $=4$
OutArray $(5)=-1$
OutArray $(6)=0$
OutArray $(7)=-1$
OutArray $(8)=0$
MakeIrregularKernel = OutArray
End Function

Cascade Neighborhoods in AV3

Laplacian	Laplacian
3×3	9×9
010	000011110000
101	000011110000
$\begin{array}{llll}0 & 1 & 0\end{array}$	000011111000
	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$
	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$
	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$
	0000011110000
	000011110000
Odd number of	000011111000

Recursive Filtering

- Often necessary to filter the filtered grid to remove artifacts.
-For example on the Laplacian, may only want the high and not the low.
-May wish to eliminate isolated cells.
- Often human interpretation necessary to remove various types of artifacts.

ZonalStats

Shape or Grid Theme The Zones

Table from ZonalStats

Grid Theme Measurement to Summarize

Mean	STD	Min	Max
n 1	n 2	n 3	n 4
n 5	n 6	n 7	n 8
n 9	n 10	n 11	n 12

Interpolation Methods

Filtering Summary

- Objective of filtering is to define a pattern that may not be obvious in the original data.
- Edges of homogeneous areas are often important.
- Filtering is an art!
- May require recursive filtering or interpretation to remove artifacts.
- Powerful tool for data exploration!

Model Testing

Measures to compare, describe, and validate models Simple Carlin Model Example

PRC: Efficiency of Prediction

 SRC: Efficiency of Classification- Intersect points with response grid.
- Frequency of points
- Join frequency of points with counts in response grid
- Summation
- Sort response value descending
- Cumulative area from high to low response value.
- Cumulative number of points from high to low response value
- Plot Cumulative area versus cumulative number of points
- Calculate area under the curve.
- Area under the curve for sites should be greater than 50% of total area, then have a positive association with points
- Area under the curve for "Not" sites should be less than 50% of total
area, then have a positive association with points area, then have a positive association with points
If area under the curve, then have a random association with the
evidence. Evidence provides no better information than guessing - Point in curve where goes from steep slope to flat slope is an
optimal break between predicted sites and not sites. optimal break between predicted sites and not sites.
Chung and Fabbri, 2003, Validation of spatial prediction models for landslide hazard

Efficiency of Classification of WofE

Efficiency of Classification of RBFLN

Efficiency of Classification RBFLN - WofE

Efficiency of Classification

ROC Terminology

$\underline{\text { Sensitivity }}=T P /(T P+F N)$

	Positive	Negative
Predicted Positive	TP	FP
Predicted Negative	FN	TN

TP + FN = Total number of sites
1- Sensitivity = Type II errors (Errors of Omission)
Specificity $=T N /(T N+F P)$
TN + FP = Total number of "Not" or negative sites
1- Specificity = Type I errors (Errors of Commission)
Measures are free from prevalence (rare events) and thresholds.
How to define the negative sites ("Nots")?

Spatial Modeling in GIS

Summary

Examples of Measurement Scales

Scale Type	Examples	Operations	Means
Nominal	Rock type	$=$	Mode
Ordinal	Relative age	$><$	Median
Interval	Temperature	$+-* /$	Mean
Ratio	Distance	$+-* /$	Mean

Guidelines for Modeling

- Formal statement of the problem.
- Define the user of the model.
- Specification - preprocess the data to provide useful information, that is evidence.
- Data exploration
- Data transformation, filtering, and scaling
- Reduce the dimensionality by eliminating redundant or correlated information
- Use the minimum information necessary
- Prediction - combine the evidence to create the model.
- Testing - evaluate the model and it's properties.

Properties of Evidence

- Selected attributes must discriminate between one or more classes of objects.
- Selected attributes should not be correlated with other attributes to any moderately strong extent.
- Selected attributes must have meaning for humans.

Types of Models

- Prescriptive or Deterministic
- Application of good technical practices
- Process: Boolean rules, Equations
- Output: Binary (yes or no), Index overlay (score)
- Predictive
- Application of mathematics to represent how people think about the evidence but cannot represent as equations.
- Process: weighting of evidence and combination of weights
- Output: Favorability, probability, or fuzzy map

Knowledge Driven Methods

- Boolean Logic - True/False representation of maps with all maps rated equally. Simple method with True/False answer.
- Index Overlay with Binary Maps - Maps are given different weights. Linear combination of maps.
- Index Overlay with Multi-Class Maps - Maps are given different weights as well as the classes of the maps are given different weights. Linear combination of maps.
- Fuzzy Logic - More flexible weighting of maps and map classes. Nonlinear combination of maps.
- Expert Weights of Evidence - Weighting of evidence easily understood. Log linear combination of maps.

Data Driven Methods

- Weights of Evidence
- log linear combination of binary or multi-class maps.
- Classifies areas by probability or favorability of occurrence of a training site.
Model parameters easy to understand.
- Logistic Regression
- log regression combination of binary maps
- Classifies areas by probability of occurrence of a training site.
Model parameters complex.
- Neural networks
- Experimental, nonlinear combination of fuzzy or map classes
- Classifies areas by fuzzy membership in training set.
- Can also be self organizing to produce fuzzy membership.
- Model parameters complex.

Recognition of a Pattern

- Task - Determine what the appropriate level of aggregation and simplification is for the problem at hand, a problem of reclassification.
- Aggregation and simplification are tied to scale of observation.
- There is no single scale at which to view a system.
- Does not mean that all scales serve equally well or there are not scaling laws.
- Description of patterns is the starting point.
- Spatial models start with an assemblage of patterns and associated processes.

Reclassification Summary

- Concept of a pattern.
- Reclassification of continuous measurement scales.
- Many tools
- Reclassification of categorical measurement scales.
- Few tools - current research
- Expert decision

Filtering Summary

- Objective of filtering is to define a pattern that may not be obvious in the original data.
- For example, edges of homogeneous areas can be important.
- Filtering is an art!
- May require recursive filtering or interpretation to remove artifacts.
- Powerful tool for data exploration!

Buffer Resolution
Threshold Weighting Reclassification

Map Scale	Map Resolution	Geologic Resolution	Buffer Resolution
$1: 2,500,000$	1250	2500	5000
$1: 500,000$	250	500	1000
$1: 250,000$	125	250	500
$1: 100,000$	50	100	200

Units - Meters
Map Resolution $=($ Scale denominator $) / 2000$

Correlation Summary

- Ratio and Interval
- Pearson's correlation coefficient
- Independent of thresholds (reclassification).
- Ordinal
- Spearman's rank correlation coefficient
- Sensitive to thresholds (reclassification).
- Others
- Kappa for correlation involving rare events
- Sensitive to thresholds (reclassification).

Testing Data-driven Methods

- Evaluate classification of training points
- Use points not included in training set to test the model
- Implementation - use a random subset of training set to develop the weights and use the remainder to evaluate the model.
- Problem - for many models there may only be a small number of training points to start with.
- Make a validation model from a subset of training sites and test that validation model is same as model from all training sites.
- Conclusion of testing is often identification of some deficiency in the evidence.
- Field testing of the model.

Weights of Evidence - Rules of Thumb

- What is the significance of conditional independence - the big issue in Bayesian methods?

If only interested in ranks, not an important issue. Ignore conditional dependency.
Can use combination of generalized evidence as a new evidence factor. Can use fuzzy models to combine conditionally dependent evidence as a new evidence factor

- Binary generalization based on maximum contrast or maximum confidence with acceptable confidence.
- Multiclass generalization based on categorical weights using contrast with acceptable confidence.
- What about generalization based on maximum Studentized contrast or equal weights? Area of on-going research.
- Symbolization by natural breaks gives similar breaks points to breaks on cumulative area vs. posterior probability or efficiency of classification.
- Posterior Probability should be thought of as a measure of favorability of occurrence, a relative ranking Prior probability is generally taken as defining the neutral point between
favorable and unfavorable. EUSGS

KISS - Keep It Simple

- Quickly make a simple model based on binary generalization of existing evidence or a neural network model without generalization of existing evidence.
- Test this model to determine what is right and what is wrong with this simple model.
- If the model is reasonably acceptable, refine the model within the time available.
- Add new evidence
- Improve evidence: new field work or present in a different way (filtering, reclassification, Boolean or Fuzzy combination of several evidence layers)
- Rethink the binary generalizations
- Multi-class generalization

Neural Networks - Rules of Thumb

- Literature suggests equal number of deposits and not deposits produces

Basis as a general rule not well tested. May not apply to RBFLN.

- Can always decrease SSE by compressing the evidence, that is fewer unique conditions.
- Excessive number of unique conditions can lead to noisy response.
- Should be unaffected by conditional dependency. Not proven.
- Fuzzy memberships of training points improves the classification.
- RBFLN

Seems unaffected by mix of deposits and not deposits.
Training most sensitive to number of RBF

- Make small adjustments in number of RBF, parameter M

Then adjust number of iterations. Increasing number of iterations will always decrease SSE and might decrease MSE. Trick is to optimize training so get optimal

Can test for ov
A testing set: Complex to do because of design of software. Maybe a weak test if testing
set only tests unique conditions used in models.
set only tests unique conditions used in models.
Ottimize the training by finding the optimal classification. Optimal means minimum
MSE
Optimize the training by finding the optimal classific
MSE and SSE
wence of the "Not" sites is not well understood. Symbolize response by natural breaks.

EUSGS

Fuzzy Logic - Rules of Thumb

- Conditional independence is a consideration for Fuzzy sum, product, and gamma.

Best to use conditionally dependent evidence to create a fuzzy factor that utilizes the Fuzzy Or or And.

- A sigma-shaped fuzzification seems to be how people think about evidence.
- Can weight evidence by a multiplier, which must be $[0,1]$.

Weighting reflects the importance of the weights.
Try to adjust things so 0.5 is neutral.
Can use training to define weights (Luo and Dimitrakopoulos, 2003)

- Combining factors is an aggregation process where the combination of Combining factors is an aggregation process whe
factors is more favorable than individual factors.
- Fuzzy Gamma and Sum are appropriate operators.

Fuzzy Gamma and Sum are appropriate operators.

- Optimize Gamma so neutral response is fuzzy membership of 0.5 .
- Response themes are all fuzzy membership in favorability of occurrence, a relative ranking.

Easier to utilize if tuned so fuzzy membership of 0.5 is neutral between favorable and unfavorable. Tune fuzzification and/or weights. Can symbolize by equal intervals between 0 and 1 .

Evaluation of Models - Rules of Thumb

- Use efficiency measures (SRC, PRC, and ROC) to evaluate models ROC is a stronger test than PRC.
PRC is simpler to use because does not require "Nots".
- Symbolization: The big question is how many classes.

Breaks in Area vs. Posterior Probability
Breaks in slope of efficiency of classification.
Backward first derivative defines ranked break points.

- Absolute measures
- How well classifies the training points, SRC and PRC.
- A weak test but often all that can be done

Use Brown's probability measure

- How well classifies points not used in training, ROC
- A strong test that can be made with existing data if have appropriate "Not"

All measures are relative, that is for comparison of different models of the same study area

Rank differences
Correlation measures: Spearman's, Pearson's, and Kappa
FRAGSTAT - appearance of the response map
Efficiency measures

Which Method? - Rules of Thumb

- Have adequate training
- WofE: Need an understanding of physical process
- LR: Dealing with conditional dependency problems

Can also help define conditionally dependent evidence or highly correlated by zero coefficient

- RBFLN or PNN Neural Networks: Quick answer
- Nonlinear classification problems.
- Lack adequate training
- Fuzzy Logic: Based on how experts think about the problem
- Address conditional dependency in WofE model.
- Fuzzy Neural Network: Quick answer
- Nonlinear classification problems
- Expert WofE: Model expert thinking in a WofE context.
- Apply WofE model from one location in another location.
- Adjust the prior probability to define number of undiscovered deposits? A controversial approach.

Correlation Exercise

Problem with Reclassify from
 Real Values

- Seems to be a problem with Reclassify for posterior probability rasters when reclassify by quantile and 3 classes.
- Seems to give more reasonable results if first use Raster Calculator to calculate to an integer and then Reclassify the integer raster.

FRAGSTATS Parameters Menu

If(Mag Anomaly and Simple Shape) Then Pluton Else Not Pluton

- con([mag_anom] >= $1.879 \&[$ NbrMajor2 of magam15id8_FragMagAM15.patch.Frac2] <= $1.0519,1,0$)

Fragstats Summary

- Descriptive tool: Quantifies the texture of a map at various scales.
- Patches: The pieces of the map
- Classes; The groupings of the pieces of the map.
- Landscape: The whole map.
- Analytical tool: Texture measures can give a new presentation of aspects of information in a map.
- Maps of shape index, etc.

Rare Events

Nominal Scale Data

Coefficient of Agreement, kappa

Correlation of Rare Events

Kappa and

Agreement $\left(\frac{\left(T_{11}+T_{22}\right)}{T_{* *}}\right)$ and Jaccard's C $\left(\frac{T_{11}}{T_{12}+T_{11}+T_{21}}\right)$ from cross tabulation of two random binary grids.

Correlation of Rare Events

Kappa and

Agreement $\left(\frac{\left(T_{11}+T_{22}\right)}{T_{* *}}\right)$ and Jaccard's C $\left(\frac{T_{11}}{T_{12}+T_{11}+T_{21}}\right)$ from cross tabulation of two random binary grids.

Source Ratio Data

Color Composite

K - Blue
Sb - Green
As - Red

Short Course Version of Lectures

Mineral Potential Mapping

- Light table origins
- Overlap of anomalies from difference evidence
- Multivariate statistical approach started in the 1960s.
- Very tedious process to get data in formats that could be used by specially written software.

GIS Catalyst

- Sparked a revolution is spatial data
- Availability of digital data
- General purpose software for spatial data analysis
- Ability to deal with
- High resolution grids
- Spatial objects in vector form
- Complex and simple attributes
- Potential for linkage to specialized analytical tools

GIS Preprocessing "Extraction of Spatial Evidence

- Surfaces from point data
- Extract texture, diversity, derivatives, and other measures
- Reclassify complex data, such as geologic maps, with simple or complex attributes
- Derive contact relationships
- Derive proximity relationships (Buffering)
- Subset of spatial objects (linears by orientation, deposits by types, etc.) using queries of attributes

Models -Simplification of Reality

- Modeling involves application of artificial constructs at many stages
- The geological map is a model
- Interpolated surfaces are models
- The notion of combining evidence from multiple sources using a weighting scheme involves a model (statistical or subjective)

Philosophy of Modeling Data Exploration

- Models must be used but must never be believed. As T.C. Chamberlain said "Science is holding of multiple working hypotheses" (Attributed to Tukey in The Practice of Data Analysis: Essays in Honor of John W. Tukey)
- ... models are not destructive; at worst they are ineffectual, and at best, they help to strengthen the quality of the decision making process. (King and Kramer, 1993)

Refined Viewpoint

No "Right or "Wrong" Answers

- The models we use can change:
- Different selections of training points
- Different choice of evidence
- Different generalizations of evidence
- Different weightings and combination method
- We learn by experimenting with the data and investigating spatial associations

Why Model?

King and Kramer (1993)

- Models are most useful when the right answer is not clear.
- Modeling clarifies the issues of debate in evaluation of an answer.
- Modeling enforces a discipline of analysis, discourse, and consistency.
- Models provide a powerful form of "advice", that is not "truth", but a refined result of a particular viewpoint.

Approaches to Quantitative Mineral Prospectivity Mapping

- Statistical approach ("data driven")
- use measured associations between evidential themes and known mineral deposits
- e.g. regression, neural networks, weights of evidence
- Expert system approach ("knowledgedriven")
- use expert exploration knowledge
- e.g. fuzzy logic, Dempster-Shafer belief functions

From Wright, 1996

Volcanic-hosted Massive Sulfide Deposit Models

From Wright, 1996

Evidence		
Pattern	Criteria	Source
Volcanic Rock Proximity	Within 8 km of volcanic rocks less than 34 ma	Nevada state geologic map
Alteration Proximity	Within 1 km of hydrothermal alteration	Western Mining Corp. data
Placer Proximity	Within 1 km of known placer workings	MRDS sites classification
Vent Proximity	Within 2 km of Tertiary vents, shallow intrusives, dome complexes, and other units indicating a volcanic rock source area.	Nevada state geologic map
Fault Proximity	Within 4 km of faults trending NNW to NNE and NW to W	Nevada state geologic map
Anomalous Uranium	NURE equivalent uranium greater than 2 eu	NURE data, Duval's national compilation
Linear Feature Proximity	Within 0.5 km of linear features trending NS and NE to E	Landsat MSS interpretation, Offield, Sawatzky, \& Raines
Anomalous Aeromagnetics	NURE aeromagnetics greater than 0 gammas	NURE data, Hildenbrand compilation
Anomalous Geochemistry	Theisen polygons with $\mathrm{Ag}>2 \mathrm{ppm}$ or As $>5 \mathrm{ppm}$ or $\mathrm{Mn}>2000 \mathrm{ppm}$ or $\mathrm{Se}>$ 1.9 ppm	NURE stream sediment data, Raines's Great Basin compilation

Summary of Contrast		
	Studentized Contrast	
- Volcanic Rock Proximity	4.901	3.65
- Alteration Proximity	3.756	8.27
- Placer Proximity	3.012	8.375
- Vent Proximity	1.42	10.418
- Fault Proximity	1.317	8.446
- Anomalous uranium	1.253	3.864
- Linear Feature Proximity	1.149	6.453
- Anomalous Aeromagnetics	0.762	6.556
- Anomalous Geochemistry	0.721	5.672

What have we learned?

Posters

- Weights of Evidence Solution to Spatial Modeling
- The Problem of Training in Weights of Evidence Compared to Neural Networks
- Demonstration of a Method of Regional SmallScale Mineral Assessment Based on Geology
- Prediction of Northwest Goshawk Habitat Using Weights of Evidence
- Results comparable or acceptable to expert's assessment - Comparison with US National Assessment
- Spokane - Epithermal gold and Mississippi Valley deposits - Humboldt Assessment
- New discoveries
- Massive sulfide deposit (Wright and Bonham-Carter)
- Deposits not in training set are in areas of high posterior probability (Raines and Mihalasky)
- Packrat model (Mensing and others)
- Gold deposit in Finland (Nykanen)
- $\$ 10 \mathrm{M}$ new investment in exploration in New Zealand based on WofE models (Partington)
- Results are not dependent on mathematics used
- Proximity analysis is powerful data exploration tool
- Conditional Independence problems are most severe in mineral-exploration applications

Weights-of-Evidence Method

- Originally developed as a medical diagnosis system
- relationships between symptoms and disease evaluated from a large patient database
- each symptom either present/absent
- weight for present/weight for absent (W+/W-)
- Apply weighting scheme to new patient - add the weights together to get result

Weights-of-Evidence Terms

- Weights for patterns
- W+ - weight for inside the pattern
- W- - Weight for outside the pattern
- 0 - Weights for areas of no data
- Contrast - a measure of the spatial association of pattern with sites
- Studentized Contrast - a measure of the significance of the contrast

Bonham-Carter, personal comm. 2002

Weights of Evidence - WofE

- Data driven technique - Requires training sites
- Statistical calculations are used to derive the weights based upon training sites.
- Evidence (maps) are generally reclassified into binary patterns.

Preprocessing Continuous Measurement Scale

- Histogram transformations
- Physical properties processing
- Filter

- separate anomaly/background

- Spatial interpolation (e.g. surfaces, krige)
- Logical combinations (merging, boolean, fuzzy logic)
- Summarize by zonal statistics
- separate anomaly/background
- define a residual
- multivariate analysis
- principal components analysis and others

Overlay combination

- In vector
- create polygon overlay and associated PAT
- create unique conditions overlay and associated PAT
- Topological selections
- In raster
- superimpose grids

Expected Values of Weights

- If sites occur randomly,
- Relative density (RD)=1.0
- Weight $(\mathrm{W})=\ln (\mathrm{RD})=0.0$
- If sites occur more frequently than chance
$-\mathrm{RD}>1.0, \mathrm{~W}$ is positive
- If sites occur less frequently than chance
$-\mathrm{RD}<0.0, \mathrm{~W}$ is negative

Example - Many More Points

$N(T)=1000$ unit cells (area of study region)
$N(B)=500$ unit cells (area of theme B present)
$N(B \& D)=28$ (count of number of training points on B)
$N(D)=30$ (count of total number of training points)
$\mathrm{W}^{+}=0.6513 \quad \mathrm{~W}^{-}=-2.0414 \quad \mathrm{C}=2.6927$
Many more points on theme than would be expected due to chance Bonham-Carter, personal comm. 2002

Example - Equal Pattern and Points

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{B})=500$ unit cells (area of theme B present)
$N(B \& D)=15$ (count of number of training points on B)
$N(D)=30$ (count of total number of training points)

$$
\mathrm{W}^{+}=0.0 \quad \mathrm{~W}^{-}=-0.0 \quad \mathrm{C}=0.0
$$

Number of points on theme equals that expected due to chance

Example - Small Pattern and Many Points

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{B})=250$ unit cells (area of theme B present)
$\mathrm{N}(\mathrm{B} \& \mathrm{D})=20$ (count of number of training points on B)
$\mathrm{N}(\mathrm{D})=30$ (count of total number of training points)
$\mathrm{W}^{+}=1.0338 \quad \mathrm{~W}^{-}=-0.8280 \quad \mathrm{C}=1.8617$
Many more points on theme than would be expected due to chance Bonham-Carter, personal comm. 2002

Example - Weights Undefined

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$N(B)=250$ unit cells (area of theme B present)
$\mathrm{N}(\mathrm{B} \& \mathrm{D})=30$ (count of number of training points on B)
$N(D)=30$ (count of total number of training points)
$\mathrm{W}^{+}=\inf \quad \mathrm{W}=-\inf \quad \mathrm{C}=\inf$
Undefined: practical solution--assign fraction of point to (not B)
Bonham-Carter, personal comm. 2002

Multi-class - Categorical Classes

$\mathrm{N}(\mathrm{T})=1000$ unit cells (area of study region)
$\mathrm{N}(\mathrm{A})=250, \mathrm{~N}(\mathrm{~B})=500, \mathrm{~N}(\mathrm{C})=250$,
$\mathrm{N}(\mathrm{A} \& \mathrm{D})=23, \quad \mathrm{~N}(\mathrm{~B} \& \mathrm{D})=4, \quad \mathrm{~N}(\mathrm{C} \& \mathrm{D})=3$,
$\mathrm{N}(\mathrm{D})=30$ (count of total number of training points)
$\mathrm{W} 1=1.1866 \quad \mathrm{~W} 2=-1.3442 \quad \mathrm{~W} 3=-0.9347 \quad \mathrm{C}_{\max }=2.5308$
Three classes, e.g. rock types (categorical scale of measurement)
Three classes, e.g. rock types (categorical scale of measurement)
Bonham-Carter, personal comm. 2002

Multi-class Themes

- Maps (themes) with unordered classes (categorical) e.g. geological map. Calculate weights for each class and then group classes (reclassify) as needed.
- Maps (themes) with ordered classes (contour maps e.g. geochemical or geophysical field variables). Usually calculate weights based on successive contour levels, cumulatively. Then reclassify.

Ordered Classes - Cumulative

Weights Calculations

- Choose a small unit cell - affects the prior probability but only a little on the weights
- Can have multi-class maps but often not enough training points to get stable weights.
- Use Studentized contrast to evaluate stability of weights.
- Contrast can be used to define optimal thresholds.

Use Studentized contrast to evaluate stability of contrast.

- See Bonham-Carter, Agterberg, and Wright (1988) for equations (WofE_NovaScotia.pdf)

Handling Uncertainty

- Uncertainty due to weights - variance of weights.
- Uncertainty due to missing data - estimate of variance due to missing data
- Other measures of uncertainty?
- For Response Map can combine the various uncertainty measures to obtain a total variance.
- Studentized posterior probability ($\mathrm{PP} / \mathrm{s}(\mathrm{PP})$) can provide a useful measure of confidence.

More Evidence

- Most gold deposits occur close to anticlines
- Generate map showing distance to anticlines
- How many intervals? The robustness of weight estimates inversely proportional to number of intervals
- Can explore relationship of contrast for binary interval and "optimize" cutoff

Decisions for Weights of Evidence

- Define the study area
- Define the training set
- Select confidence level for contrast
- Select the evidential maps
- Use Contrast and Studentized Contrast to evaluate.
- Reclassification (Binary or Multi-class)
- Thresholds maximum, minimum, or grouping of nominal classes
- These decisions define objective, binary reclassification
- Needed measurements: Area of study, Area of the pattern, Number of training sites, Number of training sites inside the pattern

Weights of Evidence

- Advantages
- Objective assignment of weights
- Multiple patterns combined simply
- Reclassification to optimize contrast gives insights into spatial relationships
- Deals with missing data
- Measures aspects of uncertainty that can be mapped
- Disadvantages
- Assumption of conditional independence
- Requires a training set of sufficient size.

Logistic Regression Method

Graeme Bonham-Carter

In ordinary regression, the response variable is continuous, unbounded and measured on an interval or ratio scale

In situations where the response variable is binary (present/absent) this causes a problem, because the predicted response must be in the interval $[0,1]$.

The response variable can be assumed to be $\mathrm{P}(\mathrm{Y}=1)$, from which we also know
$\mathrm{P}(\mathrm{Y}=0)=1-\mathrm{P}(\mathrm{Y}=1)$

Logistic Regression Vs. Weights of Evidence

$\operatorname{Logit}(Y)=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots+b_{k} X_{k}$ (simultaneous solution of b's)
$\operatorname{Logit}(\mathrm{Y})=$ Prior Logit $+\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3}+\ldots .+\mathrm{W}_{\mathrm{k}}$ (solution for W's theme by theme, not simultaneous)

Note that the b_{0} term in LR is comparable to the prior logit in WofE, and the b's are comparable to the W's. However, instead of 1 coefficient, there are 2 (or more) weights, depending on the number of classes. Therefore, the b's are more comparable to the contrast values

Bonham-Carter, 1999

Introduction

- "Data-driven" method applicable where training set of mineral sites is available
- The response variable is dichotomous (binary), e.g. presence/absence of mineral site
- The explanatory variables (evidential themes) are ordered or dichotomous (not multi-class categorical).

The solution to the problem of forcing the response variable to be in the range $[0,1]$ is to use the logit transform.

Logits = natural logs of odds
Odds $=$ Probability/(1-Probability)
$\operatorname{Logit}(\mathrm{Y})=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\ldots+\mathrm{b}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}$
Where the b's are unknown coefficients and the X's are the explanatory variables

Solution to Logistic Regression Equation

- The coefficients cannot be solved by ordinary least squares (a direct matrix inversion), because the equation is nonlinear
- The method of maximum likelihood is used to maximize the value of a log-likelihood function
- This requires an iterative solution
- So coefficients are obtained simultaneously without an assumption of conditional independence.

Practicalities

- Can calculate the logistic regression coefficients using the same unique conditions table as for WofE
- Muti-class themes must be split into binary themes in unique conditions table.
- In ArcSDM deal with missing data and multi-class problem automatically.
- In Arc/Info does not deal with missing data and has another input format.

Problem of Missing Data

- Deleting all unique conditions with missing values in any of the evidential themes.
- Deleting themes that have missing data totally.
- Replacing missing values with zero, or some other constant.
- Replacing missing values with an expected value, e.g. area weighted mean

Can then compare the results from weights of evidence to logistic regression

This is then a check on the effect of conditional dependence on the results of weights of evidence, although if missing data and multi-class categorical evidential themes have been used, then one cannot be absolutely sure what effect the recoding in logistic regression has on the results.

Compare Results

- ArcSDM includes three techniques for comparing the results of different techniques:
- Spearman's Area Weighted Rank Correlation
- Quantile-quantile plot
- Map of rank differences

Compare Results

Compare Results

- Possible inputs:
- integer grid theme with numeric field(s)
- floating point grid theme

Compare Results

Quantile-quantile plot

- Sorts the values in each field or theme in ascending order
- if one variable has more observations than the other (for Arcview3), its values are interpolated so that there are equal number of values. ArcGIS: specify number of classes
- values are plotted as x and y coordinates

Compare Results

Spearman's Rank Correlation and Rank Mapping

- Arcview 3 - Classifies both variables into 20 quantiles (ranks). ArcGIS - user specifies number of ranks
- Spearman's Area Weighted Rank Correlation is calculated and written to a dBase file
- Map of rank differences generates a difference map, classifies and symbolizes it to show where the two input evidential themes are similar or dissimilar

SUMMARY

- Logistic regression can be compared to weights of evidence to check CI assumption
- The total expected number of deposits is usually slightly underestimated by LR (rounding?)
- In general the results of the two methods are similar in terms of ranks, except the WofE probabilities are usually higher than LR probabilities because of CI

SUMMARY (2)

- ArcSDM will generate LR automatically (expanding the UC table for categorical themes and substituting area-weighted mean values for missing data) at the same time as running WofE, if desired
- Tools for comparing maps are provided

What is a cellular automata?

- Cellular automata (CA) are defined by an array of cells.
- The state of each cell evolves by a simple transition rule, the automaton.
- Implementation of a CA in a GIS involves a summation filter with an if-then or logic rule.

\square

How have CAs been used?

- Modeling evolution of cities
- Project Gigalopolis
http://www.ncgia.ucs.edu/projects/gis/project_gig.htm
- Flow of lava
- Evolution of forest fires
- Physics - diffusion, Brownian motion, defraction
- Biology - life processes

