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Course Outline - Geography 701M 

Advanced Geographic Statistical Methods (Spatial Modeling) 
Professor: Dr. Gary L. Raines 
Office: Laxalt Mineral Research 271, telephone 784-5596, email: graines@usgs.gov 

Course Goals and Objectives: Introduction to the techniques of modeling 
and spatial analysis of non-deterministic processes in GIS for geographers 
and natural scientists.  
The goal of this class is to introduce the concepts of modeling in which multiple categorical and 
ordered spatial-data sets are combined to predict the distribution or occurrence of the product of 
some complex process. Examples of the types of applications addressed might be predictive 
models of animal habitat, occurrence of infectious disease, or undiscovered mineral resources. 
These types of models all have the characteristic that the processes involved are complex and 
sometimes poorly understood, that is the models are not prescriptive, but are often fuzzy or 
probabilistic in nature. 
 
We will use ArcGIS 9.1 and the Spatial Analyst extension with the Spatial Data Modeler 
extension (ArcSDM 3.1). This will require the student to be familiar with ArGIS 9 and Spatial 
Analysis. Students will create simple to complex models using software to gain experience in the 
process of modeling complex natural science processes. Exercises will work toward the types of 
multi-disciplinary problems that are common in land management or natural resources 
organizations. Self directed exercises using available data are utilized. 
 
The class will be a combination of lectures and student-lead discussions. In addition, students will 
present results of exercises to the class. 

Schedule 
Lecture – 2 hours per week 
Laboratory – Three hours per week minimum in 222 or 221 Mackay Science Hall (Geography 
GIS computer lab. The GIS laboratories are open from 8am to 5pm Monday through Friday. 
Software and data will be available in both rooms. From Data Works Computer Laboratory in 
Getchell Library should be able to access the class materials and we plan to get the software there 
in a few weeks. Students need to meet with GIS laboratory manager, Patrick Guiberson in 
room 224 in Mackay Science to get a login for this class and an update on GIS laboratory 
policy. Patrick has office hours from 11 am to Noon, Monday through Thursday. All of the 
exercises for this class can be done with Arcview 3 with the Spatial Analyst, and Spatial Data 
Modeler (ArcSDM) extensions. The ArcSDM extension is available on the class folder. I am 
currently developing an ArcMap version of ArcSDM. It should be available for many of the 
exercises, but it is not yet fully debugged and tested. 
 
Office Hours: to be arranges, 271 Laxalt Mineral Research. I maintain an open door policy. 
When I am in, the door is open. You are welcome to drop by when you have questions. 
 
Textbook: Bonham-Carter, G.F., 1966, Geographic information systems for geoscientists –  
modeling in GIS: Elsevier Science Inc., New York, 398p. Besides the textbook, journal articles 
will be read and discussed in student-led discussions. 

mailto:graines@usgs.gov


 2

Assignments 
All students will use modeling tools in an increasingly complex series of exercises. Later 
exercises will require a group of students with differing science backgrounds to form a team to 
address a problem that requires expertise in several fields of science. Graduate students will be 
expected to take a leadership position in these multidisciplinary teams to define the task, the 
approach, to integrate team members, and to write and present the team report. 
 
Assignment 1 – Using ArcSDM 3.1 in ArcMap 9.1 reproduce weights-of-evidence, logistic-

regression, fuzzy-logic, and neural-network models for Carlin deposits. The intent of this 
exercise is for the student to gain familiarity with ArcSDM, the processing steps, and the 
decisions necessary to calculate these models. 

Assignment 2 – Using various statistical measures, compare the maps prepared in Exercise 1. 
Assignment 3 – Prepare and compare models of animal habitat in the Tahoe Basin. 

Grading  Geog 701M 
Class Participation 10% 
Assignment 1  10% 
Assignment 2  10% 
Assignment 3 Poster 20% 
Assignment 3 Report 30% 
Examinations  10% 
Discussions  10% 
 
Originality, logic, and overall quality of the models will be the primary consideration in grading; 
but cartographic and oral presentation will also influence the grade. 

Additional Requirements for Students Enrolled in Geography 701M 
All graduate students are expected to draw on their experience and knowledge gained elsewhere 
to enhance the formation of connections between the topics covered in this course as well as 
related topics not explicitly covered in the course. In a sense, this course addresses a philosophy 
of creating scientific, spatial models. Thus, the students have to integrate their science, statistics, 
and GIS background to define the spatial problem, the approach necessary to solve a problem, 
and then present a solution to the problem. Graduate students will be called upon throughout the 
semester to lead and participate in class discussion related to advanced concepts of the course 
material. 
 
Students enrolled in 701M will have to prepare a research project and class presentation in 
relation to Assignment 3. The report provides an opportunity for investigating course subjects at 
an advanced level. The graduate students’ technical presentation increases their ability to speak in 
from of an audience, and serves as a synthesis experience, combining explicit class material with 
external independently research information to develop a greater understanding of the subject. 
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Lecture, Reading, and Exercise Schedule 

Date Subject PPT Exercise 1 
Exercise 

2 Exercise 3 Reading 
29-Aug-06 Finland (Reading Ch 9 & Ch 8 (pg 248-258)     Ch.9 
31-Aug-06 Finland     Ch.8 (Pg 250-258) 
5-Sep-06 Arrive Home     Carlin Exercise  
7-Sep-06 Introduction 1 Carlin - WofE   ArcSDM users manual 

12-Sep-06 Redlands      
King & Kramer, 
Velleman 

14-Sep-06 Overview & Demo 2       
19-Sep-06 Patterns & Discussion (King & Kramer, Vellerman) 3     Nova Scotia 
21-Sep-06 Multimap Introduction 4     CI_Agterberg 
26-Sep-06 Boolean and Index Overlay models 5     (Exploratory Carlin) 
28-Sep-06 WofE1 6 Carlin - LR   (Epithermal Gold) 
3-Oct-06 WofE2 7 Carlin - FL     
5-Oct-06 Multi-class Generalization 8 Carlin - NN     
10-Oct-06 Carlin WofE Presentations (Part 1 of Exercise 1)  Expert WofE     
12-Oct-06 Expert WofE, LR, FL, and NN Demo 8B    Final Exercise Logistic Regression  
17-Oct-06 Logistic Regression 9        
19-Oct-06 Fuzzy Logic 10    Form Groups   
24-Oct-06 Neural Networks 11        
26-Oct-06 Miscellany 12    Review Data   
31-Oct-06 Exercise 1 Discussion & Progress on Final Exercise         
2-Nov-06 Ch9 Discussion 13  Correlation   Ch. 8 
7-Nov-06 Overlay 14    Define Approach Kappa 
9-Nov-06 Correlation1 15        
14-Nov-06 Correlation2 16        
16-Nov-06 Exercise 2 Presentations & Discussion       Fragstats 
21-Nov-06 Fragstats 19     Ch 7. 
23-Nov-06 Thanksgiving Holiday        
28-Nov-06 Reclassification 17       
30-Nov-06 Filtering 18   Completed Modeling   
5-Dec-06 Summary 21   Prepare Report/Poster  
7-Dec-06 Spatial-Temporal Modeling? 20     (CA) 
12-Dec-06 Final Exercise Presentations           

 



Additional Reading 
 
Agterberg, F.P., Bonham-Carter, G.F., Cheng, Q. And Wright, D.F., 1993, Weights of 

evidence modeling and weighted logistic regression for mineral potential mapping 
in Davis, J.C., and Herzfeld, U.C. (eds.), Computers in geology, 25 years of 
progress: Oxford, Oxford University Press, p. 13-32. 
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approach: AJR, p. 1119-1121. 
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hazard mapping: Natural Hazards, v. 30, p. 451-472. 
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agreement: Photogrammetric Engineering and Remote Sensing, v. 53, no. 4, p. 
421-422. 

King, J.L., and Kraemer, K.L., 1993 , Models, facts, and the policy process: the political 
ecology of estimated truth in Goodchild, M.F., Parks, B.O., and Steyaert, L.T., 
Environmental modeling with GIS: New York, Oxford University Press, p. 353-
360. 

Levin, S.A., 1992, The problem of pattern and scale in ecology: the Robert H. MacArthur 
award lecture: Ecology, v. 73, no. 6, p. 1943-1967. 

Raines, G.L., and Bonham-Carter, G.F., 2006, Exploratory Spatial Modelling 
Demonstration for Carlin- type deposits, Central Nevada, USA, using Arc-SDM 
in Harris, J.R. (editor), GIS applications in earth sciences: Special Publication, 
Geological Association of Canada, Special Publication 44, p. 23-52. 

Raines, G.L., 1999, Evaluation of.weights of evidence to predict epithermal gold deposits 
in the Great Basin of the western United States: Natural Resources Research, , v. 
8, no. 4, p. 257-276. 

Rosenfield, G.H., and Fitzpatrick-Lins, Katherine, 1986, A coefficient of agreement as a 
measure of thematic classification accuracy: Photogrammetric Engineering and 
Remote Sensing, v. 52, no. 2, p. 223-227. 

Velleman, P.F., 1997, The philosophical past and the digital future of data analysis: 375 
years of philosophical guidance for software design on the occasion of John W. 
Tukey’s 80th birthday in Brillinger, D.R., Fernholz, L.T., and Morgenthaler, S., 
The practice of data analysis: essays in honor of John W. Tukey: Princeton, 
Princeton University Press, p. 317-337. 

 
 
 



Source of Spatial Data Modeller Extension 
 
http://www.ige.unicamp.br/sdm/default_e.htm 

http://www.ige.unicamp.br/sdm/default_e.htm
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Modeling in GIS 
Dr. Gary Raines

Insights Through Integration

•Geography 701M – UNR

Gary Raines

USGS Research Geologist
Remote Sensing applications to 
mineral exploration
Development of techniques for 
spatial modeling in mineral and 
environmental applications
Focus on large areas

Course Outline
Lecture schedule
Three Laboratory Assignments
Examinations
Reading

Geographic Information systems for 
geoscientists - modeling in GIS: Chapters 
7, 8, and 9
Additional reading - student lead discussion

Grading
Task    
Class Participation 10%
Assignment 1 10%
Assignment 2 10%
Assignment 3 Poster 20%
Assignment 3 Report 30%
Examinations 10%
Discussions 10%

Laboratory Assignments
Assignment 1 – Reproduce the weights-of-
evidence, logistic-regression, fuzzy-logic, and 
neural-network models for Carlin deposits. 
Assignment 2 – Using various statistical 
measures, compare the maps prepared in 
Exercise 1.
Assignment 3 – Prepare and compare models 
of animal habitat in the Tahoe Basin.

Class Participation

What I know is obvious!
Your job is to ask questions!
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Schedule Examinations

Take home
Short essays
Probably will be one at the end of 
Chapter 7 and Chapter 8
Presentation and report of third 
exercise will serve as final.

Discussions

Journal articles will be assigned to 
enhance material in book.

Discussion of these articles will be lead by 
students.

Laboratory assignments will be 
presented and discussed in class by 
students.

Goals and Expectations
To introduce the concepts and process 
of spatial modeling in GIS for 
geographers and natural scientists.
Emphasis on probability and favorability 
models, that is nondeterministic 
models.
Students are GIS experts!

What is a model?
A simplification of nature.
A representation of a set of objects and 
their relationships.
A model is a way of describing 
something that cannot be directly 
observed.
A model is a way of communicating 
complex ideas.

Why Model?
“…when you can measure what you are 
speaking about and express it in numbers, 
you know something about it; but when you 
cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory 
kind; it may be the beginning of knowledge, 
but you have scarcely in your thoughts 
advanced to the state of science, whatever 
the matter may be.” Lord Kelvin

GIGO “Garbage In, Garbage Out”
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Modeling in GIS

Spatial
Database

Map A

Map B

Map C

Map D

Map E

Modeling
• Define Problem
• Define User
• Preprocess Data
• Prediction
• Testing

Predictive
Map

Reading Assignment
Read King and Kramer

Why models?
Volunteer to present?

Read Velleman
Philosophy of data analysis
Volunteer to present? Select and explain 3 
most important points.

Chapter 9

Laboratory Assignment
Objective – To gain familiarity with 
ArcSDM, the processing steps, and the 
decisions necessary to calculate these 
models.
Data – Carlin exercise 

Arcview 3 – Carlin_AV3.zip
ArcMap – Carlin_ArcMap83.zip
Carlin Exercise – Carlin_Exercise.pdf

Laboratory Exercise
Reproduce the weights-of-evidence, logistic-
regression, fuzzy-logic, and neural-network 
models for Carlin deposits.

WofE mathematics understood by lecture on Oct 3 
Present your results as a short, 8.5x11 page-
size report. Include a concise summary of 
processing steps for a knowledgeable user.

Example report – Nova Scotia and Nevada 
Epithermal Gold papers
WofE presentation Oct 10
Final Report due Oct 31

Challenges in this exercise
How to process the data  in ArcGIS and 
to report the results elegantly.

How to use ArcSDM while the lectures and 
reading give you an understanding of the 
mathematics and decision process.

How to concisely summarize the 
processing sets.

Assume a knowledgeable ArcGIS and 
ArcSDM users, such as yourself.

Laboratory Grading

Elegant solution
Logical thinking
Quality of writing and cartography

Concise writing is a virtue.
Tell the reader only what is important.
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Background

Measurement Scales
Precision 

Integers versus Real numbers

Map Scale and Resolution
Guidelines for modeling

Nominal (Categorical)
An unordered label of categories or classes. 

Ordinal (Rank)
Measurements ordered (ranked) according to 
relative position on a scale with unequal intervals 
between classes.

Interval
Measurements that can be labeled and ordered 
with an equal interval between classes but without 
a true zero.

Ratio
Measurements that can be labeled and ordered, 
with an equal interval between classes, and with a 
true zero.

Measurement Scales

≠≡,≠=,

Free

O
rdered

Examples of Measurement 
Scales

Scale Type    Examples      Operations   Means

Nominal Rock type = Mode

Ordinal Relative age >< Median

Interval Temperature +-*/ Mean

Ratio Distance +-*/ Mean

Precision = a measure of ability to 
distinguish between nearly equal 
numbers.

The number of significant figures 
determines how maps can be 
reclassified and symbolized.
Integers versus real numbers in ArcGIS

Integer and Real valued grids can be 
classified by various methods that all have 
assumptions about the data.
Integer grids always have VAT or, simply, 
an attribute table.

Resolution
Map Scale    Base   Information  Buffer?
1:2,500,000   1250 2500 5000
1:500,000       250 500 1000
1:250,000 125 250 500
1:100,000 50 100 200

Map Scale and Resolution

Units - Meters
Base Resolution ~ Scale denominator / 2000

Guidelines for Modeling
Formal statement of the problem.
Define the user of the model.
Specification - preprocess the data to provide useful 
information, that is evidence.

Data exploration
Data transformation, filtering, and scaling 
Reduce the dimensionality by eliminating 
redundant or correlated information
Use the minimum information necessary

Prediction - combine the evidence to create the 
model.

A type of multidimensional data exploration.
Testing - evaluate the model and it’s properties.
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Properties of Evidence
Selected attributes must discriminate 
between one or more classes of 
objects.
Selected attributes must not be 
correlated with other attributes to any 
moderately strong extent.
Selected attributes must have meaning 
for humans.

Scientific Method

• Define a problem
• Gather pertinent data
• Form a working hypothesis or explanation
• Do experiments to test the hypothesis
• Interpret the results
• Draw a conclusion and modify the 
hypothesis as needed. 

Occam’s Razor
Occam's razor states that a person should not increase, 

beyond what is necessary, the number of entities 
required to explain anything, or that the person 
should not make more assumptions than the 
minimum needed. 

This principle is often called the principle of parsimony. 
Questions have been raised, however, as to whether a 

person can determine without any doubt that given 
entities or assumptions are not needed in an 
explanation. Unless this determination can be made, 
it is impossible to tell with complete certainty when 
the principle can be applied

Abstracted from the Grolier Encyclopedia. 
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Spatial Analysis in GIS 
Overview 

• Examples of Nondeterministic Spatial 
Models

• Demonstration of ArcSDM

Information
Email addresses
Patch for Arcview 3 on XP operating 
systems

Schedule Revised
Date Subject PPT Exercise 1 Exercise 2 Exercise 3 Reading

1/21/2004 Introduction 1 Carlin - WofE King&Kramer, Velleman
1/26/2004 Overview & Demo 2 Ch.9
1/28/2004 Patterns & Discussion 3
2/2/2004 Multimap Introduction 4 Nova Scotia
2/4/2004 Boolean and Index Overlay models 5 (Exploratory Carlin)
2/9/2004 WofE1 6 (Epithermal Gold)

2/11/2004 WofE2 7 Carlin - LR
2/16/2004 President's Day Holiday Carlin - FL
2/18/2004 Multi-class Generalization 8 Carlin - NN
2/23/2004 Carlin WofE Presentations Expert WofE
2/25/2004 Expert WofE, LR, FL, and NN Demo Final Exercise
3/1/2004 Logistic Regression 9
3/3/2004 Fuzzy Logic 10
3/8/2004 Neural Networks 11

3/10/2004 Spring Break
3/15/2004 Spring Break
3/22/2004 Miscellany 12
3/24/2004 Exercise 1 Discussion & Progress on Final Exercise Ch. 8
3/29/2004 Ch9 Discussion 13 Correlation Kappa
3/31/2004 Overlay 14
4/5/2004 Correlation1 15
4/7/2004 Correlation2 16

4/12/2004 Correlation Presentations & Discussion Ch 7.
4/14/2004 Reclassification 17
4/19/2004 Filtering 18
4/21/2004 Fragstats 19 FRAGSTATS
4/26/2004 Spatial-Temporal Modeling? 20 CA
4/28/2004 Summary 21
5/3/2004 Final Exercise Presentations

ArcSDM Usage Summary 2003

1865 Users (Oct. 2003)

Additional Materials

Raines, G.L., 2001, Resource materials 
for a GIS spatial analysis course: U.S. 
Geological Survey Open File Report 01-
221, http://geopubs.wr.usgs.gov/open-
file/of01-221/, 216p, four zip files of 
software and class exercises, and a zip 
file of student posters.
Exploratory Carlin zip file

Points of Demonstration

What to do with data and why.
There may be no right way to 
analyze any particular data!
There are often several ways to 
analyze data that are good!
Data analysis is like doing an 
experiment.

Paraphrased from Velleman, 1997

http://geopubs.wr.usgs.gov/open-file/of01-221
http://geopubs.wr.usgs.gov/open-file/of01-221
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Demonstration of ArcSDM
Weights of Evidence and Logistic 
Regression
Fuzzy Logic
Neural Networks

Study Area
in

Central 
Nevada

75 km
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Spatial Analysis in GIS 
Overview Continued

•Modeling - Pattern Recognition

•Discussion of King & Kramer and 
Velleman

Data Exploration
Process of seeking patterns on maps 
that help predict spatial phenomena.

Visualization leads to recognition of a 
pattern and the association of the pattern 
with something of interest.
A model is proposed that describes the 
association.

Data Exploration
Seeking patterns involves:

Measurement
Statistical Summary
Visualization
Description
Understanding of processes causing 
pattern

Foundation is data model.

Pattern
An area having a consistent, recognizable 
characteristics associated with some 
object or process.

A pattern is something that deviates from 
the norm.
A pattern is associated with a particular scale 
of observation!
It is a primitive.

Association of patterns and their causes 
are the bricks of scientific knowledge.

Bonham-Carter, 1996

Types of Recognition
Classification is the process of grouping 
objects together in classes according to 
perceived similarities.
Identification is the recognition of an 
individual object as a unique singleton 
class. 
Discrimination is the recognition that an 
individual object as different from a 
class.
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Recognition of a Pattern
Task - Determine what the appropriate level 
of aggregation and simplification is for the 
problem at hand, a problem of 
reclassification.

Aggregation and simplification are tied to scale of 
observation.
There is no single scale at which to view a system.
Does not mean that all scales serve equally well or 
there are not scaling laws.

Description of patterns is the starting point.
Spatial models start with an assemblage of 
patterns and associated processes.

Nominal (Categorical)
An unordered label of categories or classes. 

Ordinal (Rank)
Measurements ordered (ranked) according to 
relative position on a scale with unequal intervals 
between classes.

Interval
Measurements that can be labeled and ordered 
with an equal interval between classes but without 
a true zero.

Ratio
Measurements that can be labeled and ordered, 
with an equal interval between classes, and with a 
true zero.

Measurement Scales

≠≡,≠=,

King and Kramer Modeling Continuum

Engineering Science Public Policy
Decision Making

How to build a 
bridge at 
location X?

Do we need 
a bridge 
somewhere?

Which location 
is best?

Facts Clear
Precise

Deterministic
Probabilistic
Fuzzy

Facts Unclear
Imprecise

King and Kramer
Models are most useful when the right 
answer is not clear.
Modeling clarifies the issues of debate 
in evaluation of an answer.
Modeling enforces a discipline of 
analysis, discourse, and consistency.
Models provide a powerful form of 
“advice”, that is not “truth”, but a 
refined result of a particular viewpoint.

Velleman – Top 3 Points

Aphorism 3 – Iterative learning 
leading to understanding.
Aphorism 7 – Keep it simple!
Aphorism 14 – Multiple working 
hypotheses.
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Tools for Map Analysis
Multiple Maps

Boolean Logic
Index Overlay (Weighted Overlay)

Fuzzy Logic
Weights of Evidence
Logistic Regression

Neural Networks

Reading Assignment
• Chapter 9

– Look over whole chapter and pages 250-258.
– Boolean Logic
– Index Overlay (Weighted Overlay)
– Bayesian Models (Weights of Evidence)
– Logistic Regression
– Fuzzy Logic

• Other Papers
– Nova Scotia: Lecture 9/28 (WofE_NovaScotia.pdf)
– Logistic Regression (WofE_LogisticRegression.pdf)
– Fuzzy knowledge representation (Fuzzy Logic 

Chapter - Report.pdf)

Additional Reading

• Epithermal Gold 
(Nevada_Epithermal_Gold.pdf)

• Exploratory Carlin: (060117_GIS44-2.pdf)
• Fuzzy Logic (060117_GIS44-2.pdf)
• Neural networks (RBFLN_ArcSDM1.pdf)

Guidelines for Modeling
• Formal statement of the problem.
• Define the user of the model.
• Specification - preprocess the data to provide 

useful information, that is evidence.
– Data exploration
– Data transformation, filtering, and scaling 
– Reduce the dimensionality by eliminating 

redundant or correlated information
– Use the minimum information necessary

• Prediction - combine the evidence to create the 
model.

• Testing - evaluate the model and it’s properties.

Purpose of GIS Projects

• Combine data from diverse sources
• To describe and analyze interactions
• To make predictions, that is models
• To provide support for decision makers

Properties of Evidence
• Selected attributes must discriminate 

between one or more classes of 
objects.

• Selected attributes must not be 
correlated with other attributes to any 
moderately strong extent.

• Selected attributes must have meaning 
for humans.
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Scientific Method

• Define a problem
• Gather pertinent data
• Form a working hypothesis or 
explanation
• Do experiments to test the hypothesis
• Interpret the results
• Draw a conclusion and modify the 
hypothesis as needed. 

Types of Models
• Prescriptive or Deterministic

– Application of good technical practices
– Process: Boolean rules, Equations, Index Overlay
– Output: Binary map (yes or no), User defined range 

such as 0 to 10
• Predictive

– Application of mathematics to represent how people 
think about the evidence but cannot represent as 
equations.

– Process: weighting of evidence and combination of 
weights

– Output: Favorability, probability, or fuzzy map [0 to 1]

Types of Models

Theoretical
Hybrid

Empirical
Principles

Heuristics

Groundwater 
flow

Sediment 
transport

Mineral Exploration

Business Siting

Physics
Statistics

Fuzzy
Knowledge Driven Methods

• Boolean Logic - True/False representation of 
maps with all maps rated equally. Simple method 
with True/False answer.

• Index Overlay with Binary Maps - Maps are 
given different weights. Linear combination of 
maps. Can use Weighted Overlay tool.

• Index Overlay with Multi-Class Maps - Maps 
are given different weights as well as the classes 
of the maps are given different weights. Linear 
combination of maps. Can use Weighted Overlay 
tool

• Fuzzy Logic - More flexible weighting of maps 
and map classes. Nonlinear combination of maps.

Fig 9-2

A: Boolean   B: Binary Index Overlay    C: Multi-class Index Overlay   D: Fuzzy logic

Fig 9-4

A: Boolean   B: Binary Index Overlay    C: Multi-class Index Overlay   D: Fuzzy logic
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From Wright, 1996

Fuzzy Logic VHMS Model Data Driven Methods
• Weights of Evidence 

– log linear combination of maps, simplest with binary maps. 
– Classifies areas by probability or favorability of occurrence 

of a training site.
– Model parameters easy to understand.

• Logistic Regression
– log regression combination of binary maps 
– Classifies areas by probability of occurrence of a training 

site.
– Model parameters complex.

• Neural networks
– Experimental, nonlinear combination of fuzzy or rescaled 

maps
– Classifies areas by fuzzy membership in training set.  
– Can also be self organizing to produce fuzzy membership.
– Model parameters complex. 
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Binary Reclassification of Anticline Proximity Variance and Uncertainty
Posterior Probability Studentized Posterior Probability

Compare Results
• ArcSDM Post Processing (Classes)

– Spearman Correlation Coefficienct
– Map of Rank Differences
– Quantile-Quantile Plot

• Spatial Analyst Tools/Multivariate
– Band Collection Statistics

• Covariance and Pearson’s Correlation 
Coefficient (aka Product Moment 
Corelation Coefficient) matrices

Compare ResultsCompare Results
Map of Rank DifferencesMap of Rank Differences

Bonham-Carter, 1999

Compare ResultsCompare Results
QuantileQuantile--quantile Plotquantile Plot

Bonham-Carter, 1999

Logistic Regression
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Tools for Map Analysis
Multiple Maps

Boolean Logic
Index Overlay
Fuzzy Logic

Weights of Evidence
Logistic Regression

Neural Networks

Knowledge
Driven

Data
Driven

Boolean Operators

• And - Returns True (= 1) only if all are true
– Logical intersection

• Or - Returns False (= 0) if all are false, 
otherwise returns True (= 1)
– Logical union

• Xor - Returns True (1) if one and only one 
is true.

• Not - Negates the operation

Examples
• 1 and 1 = 1
• 1 and 0 = 0
• 0 and 0 = 0
• 1 or 1 = 1
• 1 xor 1 = 0 
• 1 or 0 = 1
• 1 xor 0 = 1
• 0 or 0 = 0
• 0 xor 0 = 0
• 0 or (not 0) = 1

• For Boolean operators, 
an input of zero (0) 
equals False.

• Any other number is 
True.

• -3 and 2 = 1
• 2 and 0 = 0
• -3 and 2 and 12 = 1
• -3 or 2 or 12 = 1
• -3 or 2 or 0 = 1
• -3 xor 0 xor 0 = 1

Landsite Selection
Statement of the Problem

1. Be in an area where unconsolidated  surficial 
material is more than a minimum thickness, AND

2. Be in material that has a low permeability, AND
etc.

Example on page 272 of text.

Boolean Map Algebraic
Statement of the Problem

: At current location, determine if conditions for each input are satisfied
: The conditions, C1 to C2 are either TRUE (=1) or FALSE (=0)
: See Table 9-5 for a summary of the map classes

C1 = class(‘OVERTHIK’)>4
etc.
C10 = class(‘ECOLOG’) = = 1

:Combine conditions with Boolean “AND” operator
: The variable OUTPUT is either TRUE (=1) or False (=0)

OUTPUT = C1 AND C2 AND … AND C10
: Map results as a binary 2-class map

RESULTS(OUTPUT)

Portion of calculation on page 273.

Translate class into ArcGIS

• C1 = class(‘OVERTHIK’) > 4
– OVERTHIK is an integer grid
– Returns TRUE (= 1) if OVERTHIK > 4; otherwise 

returns FALSE (= 0)
– ArcMap 9.1:

• Spatial Analysis/Raster Calculator 
CON([OVERTHIK] > 4,  1, O)
• Spatial Analyst/Raster Calculator
[OVERTHIK] > 4
• Spatial Analyst/Reclassify
• Geoprocessing – Weighted Overlay
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Inference Net for Landfill Site
Boolean Logic

OVERTHIK

PERMEAB

SLOPE

Etc.

Map Query>4

Map Query<2

Map Query<2

Etc.

C1

C2

C3

Etc. OUTPUT

Fig 9-2A

C1 AND C2 AND … C10

Version 1, January 2000

Model for Boolean Logic
Reclassify is probably a 
simpler tool than Con for 
categorical evidence.

Boolean Report
Boolean-Logic Carlin Model

Red = 1 Blue = 0

Boolean

And

Boolean

Or

Knowledge-Driven Models

A: Boolean   B: Binary Index Overlay   C: Multi-class Index Overlay D: Fuzzy logic
Bonham-Carter, 1996, Fig.9-2

Decisions for Boolean Logic 
Reclassify Attributes and Map Interactions

• Thresholds
– Greater than some value

• Distance from some feature
• Some high measured value (e.g. slope > 20)

– Less than some value
• Some measured low value (e.g. thickness < 4)

• Equal or Not Equal to some named class
• How the criteria (maps) interact

– AND, OR, XOR, NOT
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Boolean Logic Summary
• Advantages

– Models are simple.
– Where prescriptive guidelines from law, 

Boolean combinations are practical and easily 
applied.

• Disadvantages
– All evidence (Maps) are treated equally. 
– A weak representation of how people think 

about spatial problems
– Output is binary, either Suitable or Not 

Suitable.

Index Overlay

places. favorable more indicate scoresHigh 
 weights.maximum and minimum  

between  ranging score average is Score attribute.  particular  a   

  toassigned  or  weight  score    theis  s  maps,  class-multiFor  
1. and 0between  ranges Score absent.or    falsefor  0  

or present  or    for true 1either    is s  maps, class-binaryFor  

I Map of weight 
Where

                             

ij

ij

1

1

=

∗
=

∑

∑

=

=

i

n

i
i

n

i
iji

w

w

sw
Score

Index Overlay Algebraic
Statement of the Problem

: Calculate normalization sum
SUMW = 3 + 4 + 5 + 3 + 2 + 4 + 5 + 4 + 2 + 1

: Define a variable to name the row
ROW = class(‘BASIN’)

:  For current location, determine map weights
M1 = 3 * (class(‘GEOL’) = = 1 OR class(‘GEOL’) = = 2)
M2 = 4 * table(‘BASIN’, ROW,’AS’) > 30
M3 = 5 * table(‘BASIN’, ROW, ‘SB’) > 0.8
etc.

: Calculate normalized sum of weight factors
NEW = (M1 + M2 + M3 … + M10)/SUMW

: Classify and map output
NEWMAP = CLASSIFY(NEW,’BINWT’)
RESULTS(OUTPUT)

Portion of calculation on page 287, Mineral model.

Translate table into ArcGIS
• M1 = 4 * table(‘BASIN’, ROW,’AS’) > 30

– Basin is an integer grid with multiple attributes. ArcGIS 9.1 
does not do this. Will be in ArcGIS 9.2

– Returns TRUE (= 4) if AS > 30; otherwise returns False (= 0)
– Arcview 3.0 (Something like this in ArcGIS 9.2)

• Analysis/Map Query 
([BASIN.AS] > 30.AsGrid)*4.AsGrid
• Returns 4 if TRUE and 0 if FALSE, but will be labeled TRUE(1) and 

FALSE (0), respectively.
– ArcMap 9.1 (Arsenic raster)

• If had a real or float grid, that is only one attribute (Value), can use the 
same procedure. If want an integer result, may have to appropriately 
use Int() in the equation.

• Can also use the longer form in the Raster Calculator of the Boolean 
example (con statement). 
CON([AS] > 30, 1, 0)*4 

– Returns 4 if TRUE and 0 if FALSE. May need to use Int() function
• Spatial Analysis/Reclassify, specially for categorical data
• Geoprocessing Weighted Overlay tool

From Mineral Model page 287.

Inference Net for Landfill Site
Binary Index Overlay

OVERTHIK

PERMEAB

SLOPE

Etc.

5*Map Query>4

3*Map Query<2

3*Map Query<2

Etc.

M1

M2

M3

Etc. OUTPUT

Fig 9-2B

Sum Map Weights

(M1+M2+…+M10)/SUMW

Model for Multi-class Index Overlay

Used Scores [1,5]

Divide by 5 to rescale [0,1]
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Weighting Scheme Example

• Multi-class weighting 
or scoring scheme

• Influence defines the 
importance of each 
evidence layer

• Note influence is 
percent and scoring 
scheme is same for all 
evidence. Thus 
maximum response is 
fixed, 5 in this case.

Model Report

Weighted Overlay Response

Rescaled [0,1]

Decisions for Index Overlay
Weights for Attributes and Maps

• Thresholds
– Greater than some value

• Distance from some feature
• Some high measured value (e.g. slope > 20)

– Less than some value
• Some measured low value (e.g. thickness < 4)

• Equal or Not Equal to some named class
• How the criteria (maps) interact

– Weight individual maps. What is the value of 
each criteria (map)?

– Summation

Knowledge-Driven Models

A: Boolean   B: Binary Index Overlay   C: Multi-class Index Overlay D: Fuzzy logic
Bonham-Carter, 1996, Fig.9-2

Index Overlay Summary

• Advantages
– Weights for individual maps and attribute values allows 

for better representation of experts opinion of the data.
– By adjusting weights of maps and attributes can 

evaluate many different scenarios.
– Output is a ranking of suitability, which gives decision 

makers more flexibility.
– Scaling of Output is by reclassification, an expert 

decision.
• Disadvantages

– Linear additive nature is greatest disadvantage.
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Model Complexity

• Boolean Logic does binary, logical 
reclassification of evidential layers (maps).

• Binary Index Overlay adds relative 
weighting of evidential layers (maps).

• Multi-Class Index Overlay adds relative 
weighting of an attribute or attributes of 
each evidential layer (map).

Simple

More 
Complex

Knowledge-Driven Models
Boolean-Logic Or Multi-class Index OverlayBoolean-Logic And

0&1 [0,1]0&1
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Tools for Map Analysis
Multiple Maps

Boolean Logic
Index Overlay
Fuzzy Logic

Weights of Evidence (Part 1)
Logistic Regression

Neural Networks

Knowledge
Driven

Data
Driven

1

2
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Venn Diagram
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Probability Table
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Conditional Probability
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Numerical Example

T

B2B1

S

N{T} = 10,000
N{B1} = 3600
N{B2} = 5000
N{S} = 200
N         = 180
N               = 140

Venn diagram of point and 
grid intersections, not draw 
to scale.

W+
1= 0.9474

W-
1= -1.8734

W+
2= 0.3447

W-
2= -0.5189

C1= 2.8208
C2= 0.8636

Fig. 9-9

C1 > C2 :Therefore Pattern B1 is a 
better predictor that Pattern B2!

}{ 1 SB I

}{ 2 SB I
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Weights
• Define the area to be studied

– Count its area in unit cells = N{Study Area}
• Count the number of training sites in the study area = N{Training 

Sites}= N{S}
• Count the area of the pattern B = N{B}
• Prior probability = P{S} = N{Training Sites}/N{Study Area}
• Conditional Probability: Posterior Probability of a training site 

given the presence of a binary pattern B and absence of B.
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Weights Calculation Formula

21-8 eq.   ln

20-8 eq.   ln
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Binary Patterns!

Bayes’ Theorem
P{Rain|Time-of-Year} = P{Rain} * Time-of-Year 
Factor
P{Rain|Evidence} = P{Rain} * Evidence1 * 
Evidence 2 etc.
P{Rain} = Prior Probability, the probability before 
considering the evidence
P{Rain|Evidence} = Posterior Probability, the 
probability after considering the evidence.

• The evidence can increase or decrease the prior 
probability
•Applied to maps, the evidence is a pattern!

Bayes’ Theorem and Training Sites
• Used here to predict the presence or absence 

of a set of point objects.
– Points objects used include mineral deposits, 

animal habitat, human disease, etc.
– Points represent a small unit of area, the unit 

cell, relative to the area studied and the 
resolution of the evidence.

– Points are the training sites.
– Assumes one training site per unit cell.

• Assumes conditional independence of 
evidence with regards to training sites.
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Logit Form of Baye’s Theorem
• This allows for summation of the weights 

for all patterns as opposed to products
• W+ is weight for inside the pattern, B
• W- is weight for outside the pattern, not B 
• Positive W+ and negative W- indicates a 

positive correlation between training sites 
and the pattern

• Contrast = W+ - W-

– Relative measure of correlation - larger the 
contrast the greater the correlation

– Can use contrast to help define best pattern!

Multiple Patterns = Multiple Weights
• Objective is to combine all the evidence to obtain 

a combined posterior probability.
– Use Bayes’ Theorem to combine patterns
– Assumes conditional independence of patterns with 

regards to the training sites.
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Old Overall Test for Conditional Independence
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• Unit cell is a constant in the grid implementation of 
Weights of Evidence.

• CI Ratio is typically less than 1.

•If CI Ratio is less than .90 to .85 then a serious CI 
problem has occurred. Now considered too conservative.

•Replaced by Agterberg-Cheng CI Test

Agterberg-Cheng CI test

27.3015836.13752

4.35E-096.5E-053.41E-053.36E-051.93751937500

5.8E-050.0450760.0001040.00061473.37573375000

4.2153865.3773190.0076310.019985269.06252.69E+08

3.9010655.23840.0017470.0046331130.6251.13E+09

2.5046734.1815960.0001970.0005218026.258.03E+09

4.7546156.3432480.0031880.009275683.8756.84E+08

0.0153160.1169730.0005410.000511228.8752.29E+08

0.0219750.140580.0001230.0001171204.6251.2E+09

0.0200360.1342541.38E-051.31E-0510271.941.03E+10

6.4325267.581168E-050.00023931687.193.17E+10

5.4359256.9788450.0007120.0021323272.753.27E+09

Variance
TTUncertaintyPost_ProbArea (KM2)Area_sqm

N2*S(P)2N*PS(P)PN

See CI_Agterberg.pdf in Documentation or Reading 
folders for details.

Part of the WofE table Test Statistic for 
confidence that the 
predicted number is 
greater than the 
expected number 
(35).

So less than 0.253 
(60% confidence); 
therefore Accept CI

218.0
)(

35
=

−
TStd

T

Testing for Sources of Conditional 
Dependency

• Pair-wise Chi-squared test
– A weak test of pairs only.
– Not implemented in ArcSDM 3.

• Replaced by multiple Agterberg-Cheng tests.
– Make models of pairs, triplets, etc. of evidence 

layers and get the Agterberg-Cheng results.
– Identify combinations causing the problem. Note 

may be a triplet or larger combination.
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Solutions to CI Problems
• Combine group of evidence causing the CI 

problem in some logical fashion or delete one 
evidence and recalculate the model.

• If still have CI problem, must consider the 
WofE Posterior Probability distorted.
– Treat the “posterior probability” as favorability, an 

ordinal measurement-scale number.
– Call it favorability even though the software labels it 

posterior probability.
– Define ranks.

• Use Logistic Regression Posterior Probability.

Variance of Weights and Contrast
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Total Variance of Posterior Probability
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Revised Variance of Missing Data

ilayer in  data missing of area - areastudy   totalis  that           
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a
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PPs i

Revised  Sept. 2006

Note this is a cell based calculation, which is applied to 
cells with missing data!

Studentized Value
• Studentized Contrast = Contrast/s(C)
• Studentized Posterior Probability = Post. 

Prob./s(total Post. Prob.)
• An informal test of the hypothesis that value 

tested is zero. If Studentized value greater than 2 
then can assume that the value tested is not equal 
to zero with approximately 98% confidence.

• Use in a relative sense and to structure decision 
making.

Version 1, January 2000

Student T Values
Confidence Test Value
99.5% 2.576
99% 2.326
97.5% 1.96
95% 1.645
90% 1.282
80% 0.842
70% 0.542
60% 0.253

Because Studentized test applied 
here is only approximate, use 
these values as a guide. If you can 
accept more risk, then you can 
use lower confidence values!

Version 1, January 2000
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Decisions for Weights of Evidence
• Define the study area
• Define the training set
• Select confidence level for contrast
• Select the evidential maps

– Use Contrast and Studentized Contrast to 
evaluate. 

– Binary Reclassification
– Thresholds maximum, minimum, or grouping 

of nominal classes
• These decisions define objective, binary 

reclassification
– Needed measurements: Area of study, Area of 

the pattern, Number of training sites, Number 
of training sites inside the pattern

Weights of Evidence
• Advantages

– Objective assignment of weights, which reflect 
the importance of the class and the layer.

– Multiple patterns combined simply
– Binary reclassification to optimize contrast 

gives insights into spatial relationships
– Deals with missing data
– Measures aspects of uncertainty that can be 

mapped
• Disadvantages

– Assumption of conditional independence
– Requires a training set of sufficient size.
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Tools for Map Analysis
Multiple Maps

Boolean Logic
Index Overlay
Fuzzy Logic

Weights of Evidence (Part 2)
Logistic Regression

Neural Networks

Knowledge
Driven

Data
Driven

Weights-of-Evidence Method

• Originally developed as a medical diagnosis 
system
– relationships between symptoms and disease 

evaluated from a large patient database
– each symptom either present/absent
– weight for present/weight for absent (W+/W-)

• Apply weighting scheme to new patient
– add the weights together to get result

Weights of Evidence
• Data driven technique

– Requires training sites
• Statistical calculations are used to derive the 

weights based upon training sites.
• Evidence (maps) are generally reclassified 

into binary patterns.

Weights-of-Evidence Terms
• Weights for patterns

– W+ - weight for inside the pattern
– W- - Weight for outside the pattern
– 0 - Weights for areas of no data

• Contrast - a measure of the spatial 
association of pattern with sites

• Studentized Contrast - a measure of the 
significance of the contrast

Weights of Evidence
• Binary maps to define favorable areas

– Can use multi-layer patterns
• Measurements

– Area of study
– Area of Pattern
– Number of training sites
– Number of training sites inside the 

pattern

D

B

T

T=total study area                   D=deposit points

B=binary map pattern used as evidential theme
Bonham-Carter, personal comm. 2002
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Preprocessing
Nominal Measurement Scale

• For example - Geological map
– select particular stratigraphic units or 

class
– generalize by reclassification
– extract and buffer boundaries between 

units

Preprocessing
Continuous Measurement Scale

• Histogram transformations
• Physical properties processing
• Filter 

– separate anomaly/background
• Spatial interpolation (e.g. surfaces, krige)
• Logical combinations (merging, boolean, fuzzy 

logic)
• Summarize by zonal statistics

– separate anomaly/background
– define a residual
– multivariate analysis 

• principal components analysis and others

Overlay combination
• In vector

– create polygon overlay and associated 
PAT

– create unique conditions overlay and 
associated PAT

– Topological selections
• In raster

– superimpose grids

Application to Binary Evidence

1 2

1            50            8              0.8/0.5=1.6          ln(1.6)= + 0.47      

2            50            2              0.2/0.5=0.4         ln(0.4)= - 0.92      

Total       100          10                                     

Class      Area      #sites          Relative density        Weight

Expected Values of Weights
• If sites occur randomly,

– Relative density (RD)=1.0
– Weight (W) = ln(RD) =0.0

• If sites occur more frequently than 
chance
– RD > 1.0,  W  is positive

• If sites occur less frequently than 
chance
– RD < 1.0,   W is negative

Example – More Points Than Chance

N(T) = 1000 unit cells  (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 20 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 0.2980             W- = -0.4157           C = 0.7138

More points on theme than would be expected due to chance

B Not B

Bonham-Carter, personal comm. 2002
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Example – Many More Points 

N(T) = 1000 unit cells  (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 28 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 0.6513         W- = -2.0414           C = 2.6927

Many more points on theme than would be expected due to chance

B Not B

Bonham-Carter, personal comm. 2002

Example – Equal Pattern and Points

N(T) = 1000 unit cells  (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 15 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 0.0           W- = -0.0           C = 0.0

Number of points on theme equals that expected due to chance

B Not B

Bonham-Carter, personal comm. 2002

Example – Small Pattern and Many Points

N(T) = 1000 unit cells  (area of study region)

N(B) = 250 unit cells (area of theme B present)

N(B&D) = 20 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 1.0338           W- = -0.8280           C = 1.8617

Many more points on theme than would be expected due to chance

B Not B

Bonham-Carter, personal comm. 2002

Example - Weights Undefined

N(T) = 1000 unit cells  (area of study region)

N(B) = 250 unit cells (area of theme B present)

N(B&D) = 30 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = inf W- = -inf C = inf

Undefined: practical solution--assign fraction of point to (not B)

B Not B

Bonham-Carter, personal comm. 2002

Multi-class Themes

• Maps (themes) with unordered classes (categorical) 
e.g. geological map. Calculate weights for each 
class and then group classes (reclassify) as needed.

• Maps (themes) with ordered classes (contour maps 
e.g. geochemical or geophysical field variables). 
Usually calculate weights based on successive 
contour levels, cumulatively. Then reclassify.

Bonham-Carter, personal comm. 2002

Multi-class – Categorical Classes

N(T) = 1000 unit cells  (area of study region)

N(A)      = 250 ,         N(B)      = 500,        N(C)       = 250,

N(A&D)  = 23,          N(B&D)    = 4,        N(C&D)     = 3, 

N(D) = 30 (count of total number of training points)

W1 = 1.1866     W2 = -1.3442      W3 =-0.9347       Cmax =2.5308 

Three classes, e.g. rock types (categorical scale of measurement)

A B C

Bonham-Carter, personal comm. 2002

Inside

Pattern

Outside

Pattern
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Ordered Classes - Cumulative
B1 B

2
B3B2 B3 B4 B5 B6 B7 B8 B9

N(Bi)   100      100      100      100 100       100      100      100      100

Cum    100      200      300      400 500       600      700      800      900

N(D)     12         11          7          5 1           1          1          1          1

Cum      12         23        30        35 36         37        38         39       40

W+     1.08      1.03     0.87     0.72 0.51      0.35     0.21      0.10        --

W- -0.25     -0.63   -1.01   -1.53 -1.53     -1.53    -1.53    -1.53        --

C         1.33      1.66    1.88     2.25 2.04      1.88      1.74     1.64        --
Bonham-Carter, personal comm. 2002

Inside

Pattern

Outside

Pattern

Weights Calculations
• Choose a small unit cell – affects the prior 

probability but only a little on the weights
• Can have multi-class maps but often not 

enough training points to get stable weights.
– Use Studentized contrast to evaluate stability of 

weights.
• Contrast can be used to define optimal 

thresholds.
– Use Studentized contrast to evaluate stability of 

contrast.

Bonham-Carter, 1996 Bonham-Carter, 1996

Contrast

DISTANCE, km

1 2 3 4 5 6

C

0.0

0.4

0.8

1.0 Maximum contrast at 
1.25 km.

Bonham-Carter, 1996

Inside

Pattern

Outside

Pattern

Bonham-Carter, 1996
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Cumulative-descending ReclassificationCumulative-descending Reclassification

Geophysical Intensity or Geochemical ConcentrationGeophysical Intensity or Geochemical Concentration
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1.01.0

1.51.5

2.02.0

2.52.5
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Intensity or Concentration
Class Grouping

Intensity or Concentration
Class Grouping

Intensity or ConcentrationIntensity or Concentration

Inside

Outside

Modified from Mihalasky, 1999

Categorical-Weighting ReclassificationCategorical-Weighting Reclassification
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-0.5-0.5

0.00.0

0.50.5

1.01.0
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Modified from Mihalasky, 1999

Handling Uncertainty
• Uncertainty due to weights – variance of 

weights.
• Uncertainty due to missing data – estimate 

of variance due to missing data
• Other measures of uncertainty?
• For Response Map can combine the various 

uncertainty measures to obtain a total 
variance.

• Studentized posterior probability (PP/s(PP)) 
can provide a useful measure of confidence.

Decisions for Weights of Evidence
• Define unit area for counting area (Unit Cell)
• Define the study area
• Define the training set
• Select confidence level for contrast
• Select the evidential maps

– Use Contrast and Studentized Contrast to evaluate. 
– Reclassification (Binary or Multi-class)
– Thresholds maximum, minimum, or grouping of 

nominal classes
• These decisions define objective, binary 

reclassification
– Needed measurements: Area of study, Area of the 

pattern, Number of training sites, Number of training 
sites inside the pattern

Weights of Evidence
• Advantages

– Objective assignment of weights
– Multiple patterns combined simply
– Reclassification to optimize contrast gives 

insights into spatial relationships
– Deals with missing data
– Measures aspects of uncertainty that can be 

mapped
• Disadvantages

– Assumption of conditional independence
– Requires a training set of sufficient size.

Evolution of Models
Boolean-Logic Or Multi-class Index OverlayBoolean-Logic And

0&1 0&1

Simple Binary WofE Simple Binary LR

[0,1][0,1]
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Multi-Class Generalization

Boolean Logic
Index Overlay
Fuzzy Logic

Weights of Evidence (Part 3)
Logistic Regression

Neural Networks

Knowledge
Driven

Data
Driven

Student T Values
Confidence Test Value
99.5% 2.576
99% 2.326
97.5% 1.96
95% 1.645
90% 1.282
80% 0.842
70% 0.542
60% 0.253

Because Studentized test applied 
here is only approximate, use 
these values as a guide. If you can 
accept more risk, then you can 
use lower confidence values!

Version 1, January 2000

Categorical Weights Data
Class Code Area Sq km Area Units #Points W+ s(W+) W- s(W-) C s(C) stud(C)

38 LPZE 4766.9375 4767 19 1.9917 0.2299 -0.8617 0.2887 2.8534 0.3690 7.7319
27 C 999.6250 1000 3 1.7066 0.5782 -0.0841 0.1890 1.7907 0.6083 2.9436
45 UPZC 385.9375 386 1 1.5595 1.0013 -0.0260 0.1826 1.5855 1.0178 1.5577
14 LPZ 1805.8750 1806 4 1.4024 0.5006 -0.1059 0.1925 1.5083 0.5363 2.8124
29 UPZE 1469.8750 1470 1 0.2204 1.0003 -0.0066 0.1826 0.2270 1.0169 0.2232
1 TPC 1950.6250 1951 1 -0.0628 1.0003 0.0022 0.1826 -0.0650 1.0168 -0.0639

10 LMZ 3512.9375 3513 1 -0.6512 1.0001 0.0311 0.1826 -0.6823 1.0167 -0.6711
13 Q 24553.4375 24553 1 -2.5958 1.0000 0.5337 0.1827 -3.1295 1.0166 -3.0785
2 TRPE 999.0625 999 0
3 TMF 5511.8125 5512 0
6 TMV 0.2500 0 0
9 UPZ 432.2500 432 0

17 QV 74.8125 75 0
18 TPV 1991.2500 1991 0
20 TPF 1570.8750 1571 0
25 KG 531.8125 532 0
32 P 58.9375 59 0
35 TI 106.8125 107 0
36 LTV 4537.7500 4538 0
39 JG 665.5625 666 0
43 KC 138.5000 138 0
47 LMZV 325.5625 326 0
48 TRG 173.3750 173 0
49 KG2 50.9375 51 0
50 JMI 184.2500 184 0

Categorical Data (Zoomed)

Class Code #Points C s(C) stud(C)
38 LPZE 19 2.8534 0.3690 7.7319
27 C 3 1.7907 0.6083 2.9436
45 UPZC 1 1.5855 1.0178 1.5577
14 LPZ 4 1.5083 0.5363 2.8124
29 UPZE 1 0.2270 1.0169 0.2232
1 TPC 1 -0.0650 1.0168 -0.0639

10 LMZ 1 -0.6823 1.0167 -0.6711
13 Q 1 -3.1295 1.0166 -3.0785
2 TRPE 0

Multi-Class Generalization
Table Method

Editing and Checking

Class S_value3 Area_Sq_km Area_Units No_Points Wplus s_Wplus Wminus s_Wminus Contrast s_Contrast stud_Cnt
3 Inside1 999.625 999.625 3 1.6752 0.5782 -0.0807 0.1857 1.7559 0.6073 2.8913
6 Inside2 1805.875 1805.875 4 1.3707 0.5006 -0.1013 0.189 1.472 0.5351 2.751
4 Inside3 4766.9375 4766.9375 19 1.9599 0.2299 -0.8134 0.2774 2.7734 0.3603 7.6984
8 Inside4 385.9375 385.9375 2 2.2236 0.7089 -0.0578 0.1826 2.2814 0.7321 3.1163
2 Outside1 24287.25 24287.25 3 -1.518 0.5774 0.4598 0.1858 -1.9778 0.6065 -3.2608
1 Outside3 24553.4375 24553.4375 1 -2.6276 1 0.5348 0.1797 -3.1624 1.016 -3.1125

-99 Missing Data 187.375 187.375 0

This version did not work well.

For example Contrast for 
Class4 should be greater than 
Class3.

Number Std
Points Contrast

Outside 11717.75 1 -2.9076 1 0.7788 0.1771 -3.6864 1.0156 -3.6298
Moderate 4275.375 8 0.1818 0.3539 -0.0518 0.2001 0.2337 0.4066 0.5747

High 385.9375 2 1.2038 0.7089 -0.0442 0.1797 1.248 0.7314 1.7063
VHigh 4766.938 22 1.0873 0.2137 -0.8441 0.3016 1.9314 0.3696 5.2251

Younger 35840.44 2

S_value3 Area (km2) W+ Std W+ W- Std W- Contrast Confidence
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Binary

Categorical-Weights Generalization
Multi-class

Ordered-Data Preprocessing
IDW Antimony Surface Integer Antimony Surface

Int(([Sb] * 10) + 0.5))

Ordered-Data Reclassification 
from Integer Source

Reclassified by STD Reclassified by Quantiles

WofE Binary Generalization
from Integer Source

Source: STD Source: Quantile

Ratio Weights Data 
Cumulative Descending

Class Area Sq km Area Units #Points W+ s(W+) W- s(W-) C s(C) stud(C)
14 416.0000 416 4 2.8777 0.5024 -0.1309 0.1925 3.0085 0.5380 5.5917
13 469.0000 469 4 2.7566 0.5021 -0.1299 0.1925 2.8866 0.5378 5.3676
12 526.0000 526 5 2.8661 0.4494 -0.1667 0.1962 3.0327 0.4903 6.1854
11 618.0000 618 6 2.8874 0.4102 -0.2043 0.2000 3.0917 0.4564 6.7738
10 730.0000 730 7 2.8749 0.3798 -0.2431 0.2042 3.1180 0.4312 7.2312
9 868.0000 868 9 2.9538 0.3351 -0.3277 0.2132 3.2815 0.3972 8.2622
8 1137.5000 1138 9 2.6805 0.3347 -0.3228 0.2132 3.0034 0.3968 7.5685
7 1567.5000 1568 11 2.5598 0.3026 -0.4104 0.2236 2.9702 0.3763 7.8941
6 2310.5000 2310 11 2.1701 0.3022 -0.3969 0.2236 2.5670 0.3760 6.8273
5 3746.0000 3746 15 1.9960 0.2587 -0.5934 0.2500 2.5894 0.3598 7.1968
4 7282.5000 7282 21 1.6666 0.2185 -0.9945 0.3163 2.6611 0.3844 6.9225
3 16892.3125 16892 27 1.0752 0.1926 -1.6950 0.5000 2.7703 0.5358 5.1700
2 50663.0625 50663 31
1 56779.0625 56779 31

-99 0.5000 0 0 0.0000

Class Area Sq km Area Units #Points W+ s(W+) W- s(W-) C s(C) stud(C)
-99 0.5000 0 0 0.0000

1 6116.0000 6116 0
2 33770.7500 33771 4 -1.5911 0.5000 0.7748 0.1858 -2.3659 0.5334 -4.4352
3 9609.8125 9610 6 0.0717 0.4084 -0.0152 0.1925 0.0869 0.4515 0.1925
4 3536.5000 3536 6 1.0725 0.4086 -0.1364 0.1925 1.2090 0.4517 2.6767
5 1435.5000 1436 4 1.5693 0.5007 -0.1037 0.1857 1.6730 0.5340 3.1326
6 743.0000 743 0
7 430.0000 430 3 2.4917 0.5794 -0.0878 0.1826 2.5794 0.6075 4.2461
8 269.5000 270 0
9 138.0000 138 2 3.2303 0.7123 -0.0601 0.1797 3.2904 0.7346 4.4793

10 112.0000 112 2 3.4425 0.7135 -0.0606 0.1797 3.5031 0.7358 4.7611
11 92.0000 92 1 2.9390 1.0055 -0.0292 0.1768 2.9681 1.0209 2.9073
12 57.0000 57 1 3.4245 1.0089 -0.0298 0.1768 3.4543 1.0243 3.3724
13 53.0000 53 0
14 416.0000 416 4 2.8151 0.5024 -0.1219 0.1857 2.9370 0.5357 5.4830

Ratio Data – Categorical Weights
Table Method
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Checking Weights from 
Generalization

Input Sb reclassified by Standard Deviation.

Used in subsequent models.

Input Sb reclassified by Natural Breaks with breaks at 10 and 2.

Ratio Data – Chart Method

Ratio Data – Multi-Class 
Generalization

STD SourceQuantile Source

Comparison of Models
Multi-Class ModelBinary Model

Multi-Class vs. Binary Models
Cumulative Area vs. Posterior Probability
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Comparison of Multi-Class Models
Multi-Class Model 
(Sb – STD)

Multi-Class Model 
(Sb – Quantile)
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Multi-Class vs. Multi-Class Models
Cumulative Area vs. Posterior Probability
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Multi-class (Sb Quantile)

Multi-class (Sb Std)

Multi-Class Generalizations

• Many approaches: a complex knowledge 
driven process guided by the statistics
– Evaluate Studentized Contrast
– Pick significant values of contrast and 

Studentized Contrast
– Classes should make sense as measured by  

contrast and logic of process being modeled.
• Test the generalization by calculating 

weights for the generalization
• Evaluate differences between models

Evolution of Models
Boolean-Logic Or Multi-class Index OverlayBoolean-Logic And

0&1 [0,1]0&1

Simple Binary WofE Simple Binary LR

[0,1][0,1]

Evolution of Models
Simple Binary WofE Simple Binary LR

[0,1][0,1]

Multi-class WofE

[0,1]
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Logistic Regression Method

Graeme Bonham-Carter

Bonham-Carter, 1999

Modified by Raines 2006

Introduction

• “Data-driven” method applicable where 
training set of mineral sites is available

• The response variable is dichotomous 
(binary), e.g. presence/absence of mineral 
site

• The explanatory variables (evidential 
themes) are ordered or dichotomous (not 
multi-class categorical).

Bonham-Carter, 1999

In ordinary regression, the response variable is 
continuous, unbounded and measured on an 
interval or ratio scale

In situations where the response variable is 
binary (present/absent) this causes a problem, 
because the predicted response must be in the 
interval [0,1].

The response variable can be assumed to be 
P(Y=1), from which we also know 
P(Y=0)=1-P(Y=1)

Bonham-Carter, 1999

The solution to the problem of forcing the 
response variable to be in the range [0,1] is to 
use the logit transform.

Logits = natural logs of odds

Odds = Probability/(1-Probability)

Logit(Y) =  b0 + b1X1 + b2X2 + b3X3 +…+ bkXk

Where the b’s are unknown coefficients and 
the X’s are the explanatory variables

Bonham-Carter, 1999

Logit(Y) =  b0 + b1X1 + b2X2 + b3X3 +…+ bkXk

Logit(Y) = Prior Logit + W1 + W2 + W3 +….+ Wk

Note that the b0 term in LR is comparable to the 
prior logit in WofE, and the b’s are comparable to 
the W’s. However, instead of 1 coefficient, there 
are 2 (or more) weights, depending on the number 
of classes. Therefore, the b’s are more comparable 
to the contrast values

Logistic Regression Vs. Weights of Evidence

(simultaneous solution of b’s)

(solution for W’s theme by theme, not simultaneous)

Bonham-Carter, 1999

Solution to Logistic Regression Equation

• The coefficients cannot be solved by 
ordinary least squares (a direct matrix 
inversion), because the equation is non-
linear

• The method of maximum likelihood is used 
to maximize the value of a log-likelihood 
function
– This requires an iterative solution

• So coefficients are obtained simultaneously 
without an assumption of conditional 
independence.

Bonham-Carter, 1999
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Practicalities

• Can calculate the logistic regression 
coefficients using the same unique 
conditions table as for WofE
– Muti-class themes must be split into 

binary themes in unique conditions table.
• In ArcSDM deal with missing data and 

multi-class problem automatically.
• In Arc/Info does not deal with missing 

data and has another input format.

Bonham-Carter, 1999

Problem of Missing Data
• Deleting all unique conditions with 

missing values in any of the evidential 
themes.

• Deleting themes that have missing data 
totally.

• Replacing missing values with zero, or 
some other constant.

• Replacing missing values with an 
expected value, e.g. area weighted 

mean
Bonham-Carter, 1999

“Missing Data” Approaches

Used in Arc-SDM

Can then compare the results from weights 
of evidence to logistic regression

This is then a check on the effect of 
conditional dependence on the results of 
weights of evidence, although if missing 
data and multi-class categorical 
evidential themes have been used, then 
one cannot be absolutely sure what effect 
the recoding in logistic regression has on 
the results. 

Bonham-Carter, 1999

Compare ResultsCompare Results

• ArcSDM includes three techniques for 
comparing the results of different 
techniques:
♦ Spearman’s Area Weighted Rank 

Correlation
♦ Quantile-quantile plot
♦ Map of rank differences

Bonham-Carter, 1999

Compare ResultsCompare Results

Bonham-Carter, 1999
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Compare ResultsCompare Results
• Possible inputs:

♦ integer grid theme with numeric field(s)
♦ floating point grid theme

Bonham-Carter, 1999

Compare ResultsCompare Results
SpearmanSpearman’’s Rank Correlation and Rank Mappings Rank Correlation and Rank Mapping

• Arcview 3 - Classifies both variables into 
20 quantiles (ranks). ArcGIS – user 
specifies number of ranks

• Spearman’s Area Weighted Rank 
Correlation is calculated and written to a 
dBase file

• Map of rank differences generates a 
difference map, classifies and symbolizes 
it to show where the two input evidential 
themes are similar or dissimilar

Bonham-Carter, 1999

Compare ResultsCompare Results
SpearmanSpearman’’s Rank Correlations Rank Correlation

Bonham-Carter, 1999

Compare ResultsCompare Results
Map of Rank DifferencesMap of Rank Differences

Bonham-Carter, 1999

ArcGIS – User has to symbolize and 
specify number of classes

Compare ResultsCompare Results
QuantileQuantile--quantile plotquantile plot

• Sorts the values in each field or theme in 
ascending order

• if one variable has more observations than 
the other (for Arcview3), its values are 
interpolated so that there are equal number of 
values. ArcGIS: specify number of classes

• values are plotted as x and y coordinates

Bonham-Carter, 1999

Compare ResultsCompare Results
QuantileQuantile--quantile Plotquantile Plot

Bonham-Carter, 1999

Logistic Regression
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ESRI Band Collection Statistics Tool

ArcSDM 3.1 
Create Raster tool

ESRI Band 
Collection 
Statistics tool

Band Collection Statistics Report

1. SDMUC7 WofE

2. SDMUC7 LR

3. SDMUC10 WofE

Pearson’s Correlation Coefficient

Evolution of Models
Simple Binary WofE Simple Binary LR

[0,1][0,1]

Multi-class WofE

[0,1]

From Wright, 1996

SUMMARY
• Logistic regression can be compared to 

weights of evidence to check CI assumption
• The total expected number of deposits is 

usually slightly underestimated by LR 
(rounding?)

• In general the results of the two methods are 
similar in terms of ranks, except the WofE 
probabilities are usually higher than LR 
probabilities because of CI

Bonham-Carter, 1999

SUMMARY (2)

• ArcSDM will generate LR automatically 
(expanding the UC table for categorical 
themes and substituting area-weighted mean 
values for missing data) at the same time as 
running WofE, if desired

• Tools for comparing maps are provided in 
ArcSDM Post Processing and ArcGIS 
geoprocessing tools.

Bonham-Carter, 1999
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Multiple Maps
Fuzzy Logic

Modified from Graeme Bonham-Carter 

Bonham-Carter, Oct. 1999 
and Sept. 2002

OUTLINE

• Crisp vs. fuzzy logic
• Fuzzy membership functions
• Fuzzy combination operators
• Application 

Bonham-Carter, Oct. 1999

Crisp Logic
• Membership of crisp set defined as either 1 or  

0, True or False
– (1) Truth(This location is close to a lineament) = 1     
– (2) Truth(This location is on a geochemical 

anomaly)= 0 
• Combination of (1) and (2) by AND, OR, NOT 

Boolean operators.
– Truth(1 AND 2) =  0
– Truth(1 OR 2) = 1

Bonham-Carter, Oct. 1999

Fuzzy logic
• Fuzzy membership defined in the range [0,1], 

allowing for gradational membership
– (1) Truth(This location is close to a lineament) = 0.6
– (2) Truth(This location is on a soil geochemical 

anomaly) = 0.9
• Fuzzy operators

– fuzzy AND, fuzzy OR, fuzzy algebraic SUM, fuzzy 
algebraic PRODUCT, fuzzy GAMMA, etc

– Truth(1 Fuzzy Or 2) = 0.9
– Truth(1 Fuzzy And 2) = 0.6

Bonham-Carter, Oct. 1999

Fuzzy Membership Functions

• Membership defined by a functional 
relationship, or by a table of ordered pairs

• Membership reflects degree of truth of 
some proposition or hypothesis (often a 
linguistic statement)

Bonham-Carter, Oct. 1999

Non-spatial example

• Truth of proposition (Person X is Tall)
• Degree of tallness depends on height
• Need a fuzzy membership function relating 

height to degree of tallness
• In range [0,1], similar to probability, but not 

satisfying probability laws
• Sometimes termed “possibility”

Bonham-Carter, Oct. 1999
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Tallness
Person Height Tallness

Fred 3'2" 0.00

Mike 5'5" 0.21

Sally 5'9" 0.38

Marg 5'10" 0.42

John 6'1" 0.54

Sue 7'2" 1.00

Tallness = 0 if height < 5’, 
Tallness = (height-5)/2;

if 5 < =height<=7’; or
Tallness = 1 if height > 7’

Truth(Marg is tall) = 0.42

Bonham-Carter, Oct. 1999

Oldness

165Fred
0.6445Sue
0.5441John
0.3332Marg
0.2930Mike
0.2127Sally
OldnessAgePerson

Oldness = 0 if age < 18; 
Oldness = (age-18)/42 

if 18 <= age <= 60; or

Oldness = 1 if age > 60

Truth(Fred is old)=1.00

Bonham-Carter, Oct. 1999

Truth(Sally is tall AND old) = min(0.38, 0.21) = 0.21

Truth(John is tall OR old) = max(0.54, 0.54) = 0.54
Bonham-Carter, Oct. 1999

Fuzzy Combination of Tallness and Oldness
Person Height Tallness Age Oldness Tall and old Tall or old

Fred 3'2" 0.00 65 1.00 0.00 1.00

Mike 5'5" 0.21 30 0.29 0.21 0.29

Sally 5'9" 0.38 27 0.21 0.21 0.38

Marg 5'10" 0.42 32 0.33 0.33 0.42

John 6'1" 0.54 31 0.54 0.54 0.54

Sue 7'2" 1.00 45 0.64 0.64 1.00

41
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Fuzzy Membership Graph

Fuzzy Membership Function

for x   valuemembership  theis (x) Where
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Modified from Bonham-Carter, 2002

     1      0.8   '142 - 166 ppm As'
     2      0.7   '112 - 142 ppm As'
     3   0.3   '28 - 52 ppm As'
     5      0.2   '17 - 28 ppm As'
     6      0.2   '12 - 17 ppm As'
     7      0.2   '7 - 12  ppm As'
     8      0.2   '2-7 ppm As'
     9      0.2  'No data'

Bonham-Carter, Oct. 1999

Class Membership Source Intervals

Fuzzy Membership Table
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Fuzzification Functions
• Functions

– Large
– Small
– Near
– Gaussian
– MS Small
– MS Large
– Linear

• Hedges (square root 
and squared)
– Somewhat
– Very

Fuzzification Functions
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Mean-Standard Deviation
(MS) Small and Large
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Fuzzy Membership
Nominal Measurement Scale

Fuzzy Membership in ArcSDM2
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Gamma Operator 
Graph

Bonham-Carter, Oct. 1999

Fuzzy Or

Fuzzy And

Bonham-Carter, 1999

Fuzzy Inference NetFuzzy 
Inference Net

Decisions for Fuzzy Logic
• Fuzzy Memberships

– Thresholds can be gradational, potentially many 
values to assign

– Named classes can be fuzzy, potentially a value 
for each class

• How the criteria (maps) interact
– Fuzzy AND, OR, and GAMMA
– Fuzzy SUM and PRODUCT - not used often
– Gamma value to define fuzzy relationships of 

criteria

Fuzzy Logic Summary
• Advantages

– Flexibility of assigning fuzzy memberships
– Choice of combination operators
– Mimic decision making by expert
– Can deal with “maybe”
– Not limited to binary criteria
– Easy to understand

• Disadvantages
– Problem of missing data
– Confusion between fuzzy membership and 

uncertainty
– Potentially many fuzzy membership values to 

assign Modified from Bonham-Carter, 
Oct. 1999;  Wright, 1996

Comparison of Fuzzy Evidence

Bonham-Carter, Oct. 1999

Operator Comparison

Bonham-Carter, Oct. 1999
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Fuzzy Model of Gold 
Favorability

Bonham-Carter, Oct. 1999
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Neural Networks
Fuzzy Clustering (Unsupervised)

Radial Basis Functional Link Net (Supervised)

Modified from
Carl G. Looney, Prof. of Computer Science

Computer Science and Engineering/171, UNR

1. Intro. to Classification

• Humans accumulate knowledge by grouping 
observed objects into classes

• This saves the effort of storing every object as a 
unique item with its own special list of properties

• Classification allows knowledge to be built and 
organized efficiently

Looney, 2004

1. Intro. to Classification

• Given a population of objects and the goal 
of classifying them, we must first find 
measurable properties they all share that

- distinguish them to some extent
- allow multiple individuals to be alike

• We call such measurable properties features

Looney, 2004

1. Intro. to Classification

• We represent the objects in the population by their 
feature vectors

• It is the set of feature vectors that we classify

• To classify, we must partition, or cluster, the 
feature vectors into groups with similarity within 
groups, and dissimilarity between groups

Looney, 2004

1. Intro. to Classification

• Suppose there are 3 types of beetles

• Let us measure the green color intensity x
and the height-to-width ratio y

• Then the feature vector for a beetle is (x,y)

Looney, 2004

1. Intro. to Classification, cont’d

Looney, 2004
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1. Intro. to Classification

• After the clustering into clusters, a vector is used 
to represent each cluster (called prototypes or  
centers)      [a cluster is also called a class]

• When a new feature vector from that population is 
to be recognized, it is compared with the 
prototypes in the various clusters

• It is recognized as belonging to the class that has a 
prototype most similar to it

Looney, 2004

1. Intro. to Classification

• Data may or may not have clustering structure

Looney, 2004

2. Recognition

• Classification:  self-organizing, or unsupervised 
learning, of classes by a system   [e.g., clustering]

• Recognition: supervised learning, or training, of a 
system to determine which class an input feature 
vector belongs to [e.g., neural networks]

Looney, 2004

2. Recognition

+ After classification, we desire to train an on-line
automatic recognizer that recognizes the class of any 
new input vector from the same population.

+ We use the set of labeled feature vectors to train a 

-- fuzzy neural network
-- fuzzy recognizer

Looney, 2004

Fuzzy Clustering

Unsupervised Method
No Training Sites Needed

Unique Conditions Table
VAT

• Each row can be thought of as a feature 
vector, x = (x1, x2, … xn) where each xn is 
the value or attribute of the feature.
– There are N attributes for any object in a 

population of objects.
• There are Q rows or feature vectors
• Goal is to partition the population of feature 

vectors in classes of objects by partitioning 
the feature vectors.
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Classification
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Each + represents vectors (s) in the plane, includes 
error and measurement noise, but on average they 
fall into two subpopulations (classes).
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Fuzzy Clustering Algorithm

• Input a number K of classes that is larger than the 
expected number of classes

• Assign first K of the Q vectors as cluster centers   
z(1), …,z(K)

• For q = 1 to Q
– Assign x(q) to closest z(K) by c[q]=k
– Find WFEV for each cluster to obtain a new center {z(K)}
– If(any center changes more than ε) start over
– Else Compute weighted fuzzy variance for each cluster 

and WFEV dWFEV of distances between centers
• for k =1 to K-1

– for kk = k+1 to K
• if distance(z(k),z(kk))<ßdWFEV then merge (k,kk)

Fuzzy Clustering Flow Chart

Start

Load
.DTA File

Parameter
Setup Dialog

Merge

Save .CEN 
Parameters File

Quit

Cluster

Main
Menu

Calibration of Fuzzy NN Models

• Cluster validity – make as small as possible
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Radial Basis Function Link Net

Supervised
Training Sites Required

Radial Basis Functional Link Nets
• A radial basis functional link net (neural network, NN) 

transforms each N-dimensional input feature vector into 
an output target vector
– x = (x1,…,xn)     NN t = (t1,…,tn)

• Target vector t is a code word that represents a class. This 
is called supervised learning because the network must be 
told the class for each input feature vector x.

• NNs have a relatively large number of parameters that can 
be thought of as dials. The parameters are also known as 
weights.

• During training a set of feature vectors are presented to the 
network and the dials are adjusted until each feature vector 
is mapped to its known target vector
– These feature vectors are called training vectors when used to train 

the network.

Diagram of Process
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Radial Basis Function
• RBF is a Gaussian function. It has a center vector 

v and processes any input vector x via                          
y = f(x;v) = exp[(x-v)2/(2σ2)]  (0<y≤1)

• Each middle-layer node in RBFN or RBFLN 
contains a RBF whose output fans out to each 
node in the output layer.

y y = f(x;v)

x1

x2

v

RBF Contour Curves in the Plane

X1

X2 f1 f2

fM

RBFLN Flow Chart

Start

Load
.DTA File

Quit

RBFLN Train
Parameter Dialog

Load
.PAR File

Train &
Process Info

Random 
Initialization

Parameters
Initialization

Save .PAR
Parameter File

Load
.DTA File

Load
.PAR File

Load
.DTA File

Load
.PAR File

RBFLN
Classify

Save .RBN
Results File

Test
RBFLN

Train
RBFLN

RBFLN
Classify

Check
Results

Ok

Not Ok

Check
Results

Main
Menu
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Input Data Format
• N = number of evidential layers
• M = number of nodes (RBFs) in 

middle layer
• J = number of output classes = 1
• Q = number of feature vector/target 

vector pairs, that is number of unique 
conditions

N M J Q
g1

(1), g2
(1), g3

(1), x1
(1), x2

(1),…, xN
(1), t1

(1)

g1
(2), g2

(2), g3
(2), x1

(2), x2
(2),…, xN

(2), t1
(2)

…………………..
…………………..

g1
(Q), g2

(Q), g3
(Q), x1

(Q), x2
(Q),…, xN

(Q), t1
(Q)

• g1
(1), g2

(1), g3
(1), x1

(1), x2
(1),…, xN

(1) = 
first input feature vector, g1

(1) is the 
key field to join with unique 
conditions table.

• t1
(1) = first target output value in [0,1], 

where 
– 1 = yes and 0 = no
– 0.9 = strong indication of yes
– 0.1 = strong indication of no
– Can use to say “kind of like” a training 

site!

The t1 values are the training-set 
fuzzy-membership output values. 
This allows for ranking of  training 
sets.

Output Results File

• g1
(q) is the key field to 

join with unique 
conditions table

• c(q) is the fuzzy class 
number

• f1
(q) fuzzy membership 

values, respectively 
for input vector q 
belonging to class k = 
1, …,K.

g1
(1), c(1), f1

(1), f2
(1),…, fK

(1)

g1
(2), c(2), f1

(2), f2
(2),…, xK

(2)

…………………..
…………………..

g1
(Q),c(Q), f1

(Q), x2
(Q),…, xK

(Q)

Decision with Neural Networks

• Transform evidential values into range [0,1]
– Can use fuzzy membership values as inputs
– Possibly can use value field

• Ranking of training sites
• Evaluation of reported measures of 

classification

Calibration Measures of RBFLN

• Minimize number of clusters, M.
• Small number of iterations

– Over fitting
• Calibration measures.

PNN

• What say?
• Uses circular functions in space.
• Measures

– Nearness of cluster
– Measures
– Overfitting

Summary
• Advantages

– Can rank training sites
– Non-linear mathematics
– Unsupervised and Supervised method

• Disadvantages
– Model parameters are difficult to understand
– Need training sites for occurrence and non-

occurrence
– Approaches to ranking of training sites not well 

understood
– Overall use is poorly understood
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Miscellany

Fuzzy Membership
Nature of Evidence

Semantic Classification of Response
Testing of Predictions

Fuzzy Membership

Semantic Approach
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Speculations on the Nature of 
Evidence

Generalization
Positive and Negative Evidence

Categorical Generalization
Simple

• Assume both have significant Studentized 
Contrast

• Always check categorical generalization by 
calculating weights of the generalization

• Does Shelly sand belong with Lime mud?
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2.0Sand

Null or 0Shelly sand
-1.0Lime mud

ContrastCategorical 
Class

Inside

Outside

Categorical Generalization
Expert Interpretation
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Inside

• For percolation of water through sediments, Sand 
and Shelly sand are more alike than Lime mud!

• Always check categorical generalization by 
calculating weights of the generalization
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Fuzzy Membership  - Ordered Variables
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What are the rules of Generalization?
• A model should follow a consistent rule 

of generalization.
• Rules might define how to consistently 

derive specific types of models.
• Models are always wrong but 

sometimes useful!
• Not all models are equal.
• Is there a best model or simply a 

collection of better models?

Semantic Classification of Response
• What is the significance of a particular 

posterior probability or fuzzy membership 
value?

• Have to interpret in context of the model.
– Number of training sites: Do you have a large 

or small sample of the possible training sites?
– State of knowledge about process being 

modeled: How good is the scientific 
understanding of the process?

– Quality of the evidence: Consider accuracy and 
precision of the values and the location.

Solution
• Analyst has the best understanding of the 

significance of the response value.
– Highest posterior probability may not be a high 

or large value. Might be quite low.
– Consider the meaning of the prior probability

• Assign names to intervals of response 
values.
– Carefully consider the meaning or implication 

of the selected terms.

Testing of Predictions
• How well does the Response value 

predict the training sites?
– ArcSDM2: Associate Responses with Point 

Theme
• Experimental Design

– Hold back training sites to test the model
– ArcSDM2: Associate Responses with Point 

Theme
• Field studies
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Chapter 9

Summary
Comments on Exercise 1

Guidelines for Modeling
• Formal statement of the problem.
• Define the user of the model.
• Specification - preprocess the data to provide 

useful information, that is evidence.
– Data exploration
– Data transformation, filtering, and scaling 
– Reduce the dimensionality by eliminating 

redundant or correlated information
– Use the minimum information necessary

• Prediction - combine the evidence to create the 
model.

• Testing - evaluate the model and it’s properties.

Purpose of GIS Projects

• Combine data from diverse sources
• To describe and analyze interactions
• To make predictions, that is models
• To provide support for decision makers

Properties of Evidence
• Selected attributes must discriminate 

between one or more classes of 
objects.

• Selected attributes must not be 
correlated with other attributes to any 
moderately strong extent.

• Selected attributes must have meaning 
for humans.

Types of Models
• Prescriptive or Deterministic

– Application of good technical practices
– Process: Boolean rules, Equations
– Output: Binary (yes or no), Index overlay 

(score)
• Predictive

– Application of mathematics to represent how 
people think about the evidence but cannot 
represent as equations.

– Process: weighting of evidence and 
combination of weights

– Output: Favorability, probability, or fuzzy map 
[0 to 1]

Knowledge Driven Methods
• Boolean Logic - True/False representation of maps with 

all maps rated equally. Simple method with True/False 
answer.

• Index Overlay with Binary Maps - Maps are given 
different weights. Linear combination of maps.

• Index Overlay with Multi-Class Maps - Maps are given 
different weights as well as the classes of the maps are 
given different weights. Linear combination of maps.

• Fuzzy Logic - More flexible weighting of maps and map 
classes. Nonlinear combination of maps.

• Expert Weights of Evidence – Weighting of evidence 
easily understood. Log linear combination of maps.
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Data Driven Methods
• Weights of Evidence 

– log linear combination of binary or multi-class maps. 
– Classifies areas by probability or favorability of 

occurrence of a training site.
– Model parameters easy to understand.

• Logistic Regression
– log regression combination of binary maps 
– Classifies areas by probability of occurrence of a 

training site.
– Model parameters complex.

• Neural networks
– Experimental, nonlinear combination of fuzzy or map 

classes
– Classifies areas by fuzzy membership in training set.  
– Can also be self organizing to produce fuzzy 

membership.
– Model parameters complex. 

Recognition of a Pattern

• Task - Determine what the appropriate level of 
aggregation and simplification is for the problem 
at hand, a problem of reclassification.
– Aggregation and simplification are tied to scale of 

observation.
– The is no single scale at which to view a system.
– Does not mean that all scales serve equally well or 

there are not scaling laws.
• Description of patterns is the starting point.
• Spatial models start with an assemblage of 

patterns and associated processes.

Examples of Measurement Scales

Scale Type    Examples      Operations   Means

Nominal Rock type = Mode

Ordinal Relative age >< Median

Interval Temperature +-*/ Mean

Ratio Distance +-*/ Mean

Buffer Resolution
Threshold Weighting Reclassification

Map Scale
Map
Resolution

Geologic
Resolution

Buffer
Resolution

1:2,500,000 1250 2500 5000

1:500,000 250 500 1000

1:250,000 125 250 500

1:100,000 50 100 200

Units - Meters
Map Resolution = (Scale denominator)/2000

Testing
Data-driven Methods

• Evaluate classification of training points
– Associate Points with Response
– Efficiency of Classification

• Use points not included in training set to test the 
model
– Implementation - use a random subset of training set to 

develop the weights and use the remainder to evaluate 
the model. (Efficiency of Prediction)

– Problem - for many models there may only be a small 
number of training points to start with.

– Field Studies
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Spatial Analysis in GIS
Map Pairs

• Overlay
• Map Correlation

Guidelines for Modeling
• Formal statement of the problem.
• Define the user of the model.
• Specification - preprocess the data to provide useful 

information, that is evidence.
– Data exploration

• Reclassification, filtering, transformation, and scaling 
– Reduce the dimensionality by eliminating redundant or 

correlated information
– Use the minimum information necessary

• Prediction - combine the evidence to create the model.
• Testing - evaluate the model and it’s properties.

Spatial Joins

• Define relationships 
between features in 
layers.

• Apply to points, lines, 
or polygons

• Nature of the join 
changes as a function 
of what type of spatial 
layers are being joined

Dissolve Management

Useful for hierarchical 
data

Example

Sedimentary Rock

Carbonate

Limestone

Dolomite

Combining Grids
• Zonal Statistics - summarize one grid for zones in another 

grid or shape file
• Map Calculator - some sort of map algebra

– Combine
– Con

• Multivariate Statistics (Scaling Issues)
– Maximum Likelihood Classification
– Principal Components

• Merge grids
– Unique polygons
– Unique conditions

Spatial and Other 
Transforms
of Rasters

As Sb K
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Simple Shape Files Spatial Analyst Options

An Irregular Area
with holes

A Rectangular
Area

Analysis Properties

Map Calculation 
with Extent

Map Calculation with 
Extent and Mask

Stamped Overlay

Shape Theme

Two Polygons
Red has ID = 2
Green has ID = 1
Gray = No Data

Grid Theme

Spatial Analyst/Option/Extent = View
Reclassify: 2 = 2, 1= 1, No Data = 0

Reclassified Grid

Merging Two Grids
Create the grids

Map A  Map B
Red 2 2
Green 1 1
Blue 0 0

Map A (Grid)

Map B (Grid)

Two Shape Themes

Weighted Sum

(2*MapA) + (3*MapB)

Weighted Sum

0  1  2
0 0  2  4
1 3  5  7
2 6  8  10

Map A

M
ap

 B

Map A

Map B

VAT
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Conditional Overlay
(Join overlay in text)

Con(MapA > MapB, MapA,0)

Conditional Overlay

0  1  2
0 0  1  2
1 0  0  2
2 0  0  0

Map A

M
ap

 B

Map A

Map B

Stamped, Joined, Compare

VAT values

1

2

M A P_ A M A P_B

M A P _ C M A P _ D

1 1

2 2

3 3

4 4

5 5

6 6

7

8

1 1

1

1

1

2 2

2

2

1 1

2

3 3

3

1

M A P_ B M A P_BM A P _ A M A P_A

M
A

P
_

C

2

4

3

1

M
A

P
_
D

A T T R IB U T E  T A B L E  O F  M A P _ C AT T R IB U T E  TA B L E  O F  
"U N IQ U E  C O N D IT IO N

1

1

2

2

2

2

4

4

}

}
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Unique Polygons vs. Unique Conditions

Unique Polygons
14 polygons
Shape file or Grid

Unique Conditions
9 Classes
Grid theme

Two Shape Themes

Transform Grid/Combine
sptrnfrm.avx

Problem with the VAT
Unique Conditions
9 Classes
Grid theme

VALUE COUNT Map B Map A
1 53517 0 0
2 3291 1 0
3 9356 0 1
4 4139 1 1
5 2971 0 2
6 2642 1 2
7 545 2 2
8 1071 2 1
9 718 2 0

Value not sorted with regards to Map B and Map A values.

Frequency

VALUE COUNT Map B Map A CASE
1 53517 0 0 1
3 9356 0 1 2
5 2971 0 2 3
2 3291 1 0 4
4 4139 1 1 5
6 2642 1 2 6
9 718 2 0 7
8 1071 2 1 8
7 545 2 2 9

VAT with Case added

ArcMap: ArcToolBox Analysis Tools/Statistics/Frequency
Sort and add Case in Excel

Or
ArcMap: Symbolize by multiple attributes

Consistent numbering 
of the matrix or VAT.

Do this for Shapefile 
in ArcGIS 9.1.

Can do in ArcGIS 9.2

• Reclassification rasters

• Convert to Shapefiles

• Union Shapefiles

• Symbolize by Multiple 
Attributes.

• Add Sorting Attribute 
[1-25]

• Convert to raster on 
Sorting Attribute.

Grid Overlay 
Application
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Correlation Analysis

Explanation

Antimony Classes

A
rs

e n
ic

 C
la

ss
es

Summary
• Shape files - several tools

– Computations can be slow
• Grid overlay offers great flexibility

– Numerical and logical combinations
– Ordered VAT or table of combinations opens 

the door for many types of modeling
– Unique conditions table shortens the ordered 

matrix and simplifies programming in modeling
– Computations are very fast
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Spatial Analysis in GIS
Map Pairs

•Map Correlation

Probability
Put 3 red balls and 7 blue balls in a bag.

What is the probability of drawing a blue ball from 
the bag?

What is the probability of drawing a red ball from 
the bag?

Probability of drawing a blue ball is 7/10 = 0.7 = Pb

Probability of drawing a red ball is 3/10 = 0.3 = Pr = 1- Pb

Probability

What is the probability of 
drawing each type?

Probability
0.3
0.2
0.1
0.4

3=T11
0.3 =P11

1=T12
0.1=P12

4=T1.
0.4=P1.

2=T21
0.2=P21

4=T22
0.4=P22

6=T2.
0.6=P2.

5=T.1
0.5=P.1

5=T.2
0.5=P.2

10=T..

R BG
B

RG

Area Tabulation Table

Put the following balls in a bag:
3 red-blue balls 
2 red-green balls
1 blue-green ball
4 green balls

----Red-Blue (RB)
----Red-Not Blue (RG)
----Blue-Not Red (BG)
----Not Red-Not Blue (G)

What is probability of 
drawing a blue ball?
Marginal Probability  of a 
blue ball = 0.4

1

2

M A P_ A M A P_B

M A P _ C M A P _ D

1 1

2 2

3 3

4 4

5 5

6 6

7

8

1 1

1

1

1

2 2

2

2

1 1

2

3 3

3

1

M A P_ B M A P_BM A P _ A M A P_A

M
A

P
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C
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3
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M
A

P
_
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1
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4

}

}

U n iq u e p o ly g o n m a p  U n iq u e  c o n d i t io n s  m a

"U N IQ U E  P O LY G O N S "

8-13Bonham-Carter, 1996 Fig.

Combining Two Binary Grids

Bonham-Carter, Fig. 8-14

No Granite 
or Till

Granite 
only

No Till

Granite Till 
only

Granite 
& Till

Granite
Till

No GraniteGranite

Tabulate Areas or Unique Conditions 

Agreement = 100*(Sum of Diagonal (gray cells)/Total).
Also called area cross tabulation or confusion matrix.

Units = Area

Units = Percent of Area

0.803

Reclassified Antimony

R
ec

la
ss

ifi
ed

 A
rs

e n
ic

VALUE VALUE_1 VALUE_2 VALUE_3 VALUE_4 VALUE_5
1 2.00 0.93 0.00 0.00 0.00
2 7.30 59.18 0.81 0.00 0.00
3 0.09 21.42 6.77 0.02 0.00
4 0.00 0.27 1.02 0.10 0.00
5 0.00 0.00 0.05 0.01 0.00

 Agreement
68.07

VALUE VALUE_1 VALUE_2 VALUE_3 VALUE_4 VALUE_5
1 881207640.750 411230232.350 2098113.430 0.000 0.000
2 3212211661.900 26041783897.000 354581169.730 0.000 0.000
3 39864155.177 9426823642.600 2979321071.100 10490567.152 0.000
4 0.000 117494352.100 448996274.100 46158495.468 0.000
5 0.000 0.000 23079247.734 4196226.861 2098113.430

Correlation Coefficient
0.738
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Nominal Scale Data
Information Statistic

M
ap

 B

Area-Proportions Cross-Tabulation Table
         Map A
P11 P12 P13 … P1.
P21 P22 P23 … P2.
P31 P32 P32 … P3.
… … … … …
P.1 P.2 P.3 … P..

Where
Pij = Tij/T..
Pi. = Ti./T..
P.j = T.j/T..
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Nominal Scale Data
Coefficient of Agreement, kappa
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Area-Proportions Cross-Tabulation Table
         Map A
P11 P12 P13 … P1.
P21 P22 P23 … P2.
P31 P32 P32 … P3.
… … … … …
P.1 P.2 P.3 … P..

Where
Pij = Tij/T..
Pi. = Ti./T..
P.j = T.j/T..

Weighted Pearson’s Correlation Coefficient
Modified for Cross-Tabulation Table

( )( )

matrix. tabulation-cross      
  theof cellor pair j-i in thecount or  area T

lyrespectivemean  weighted-Area   and X
lyrespective Y Map and X Map of Values   and 

where
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Same as in Excel!

Band Collection Statistics: Pearson

Layer 1 = As 

Layer 2 = Sb

Both IDW defaults 
as real-valued 
rasters

Same as in Excel!

Ordinal Data
Weighted Spearman’s Rank Correlation

( )
( )

matrix  tabulation-crossin  cells of sum n 
Y and X Mapsfor  ranks are R and R

where

1

*T*6
1

yx

2
1

2

1
ij

=

−

−
−=

∑ ∑
= =

nn

RR
r

rows

i
yjxi

columns

j
s

Use this formula: 
where ranks are numbered 1, 2, 3, …,n and 
where there are no ties.
If have ties, then ranks are given average of the ranks!

Bonham-Carter’s Modification

( )( )

pair.j-i in thecount or  area T
lyrespectiverank  average weighted-Area   and R

lyrespective Y and X Map of ranks   and 
where
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sw

R
RR

RRTRRT

RRRRT
r

Weighted Spearman’s Correlation Coefficient

If the area-weighted average rank is simply the normal area-
weights average this is the same as Pearson Correlation 
Coefficient. This is what is done in ArcSDM 3.1
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Spearman’s - Ordinal Data

80 0 18 0 0 98 98 49
37 71 0 0 0 108 206 152

0 0 0 10 0 10 216 211
0 0 0 22 30 52 268 242
0 0 17 3 51 71 339 303.5

117 71 35 35 81 169.5
117 188 223 258 339 169.5
58.5 152.5 205.5 240.5 298.5

Sum    Cum.   Rank YMap A (x)

M
ap

 B
 (y

)

Sum
Cum.

Rank X

Table 8-9B
Tabulate Area Table

5.169
2

339
2

)(
5.240

2
35223

21

===

=+=+= −

i

i
ii

CumXMaxRankX

SumXCumXRankX

Sum = row or column sum
Cum. = Cumulative row or column sum 874.0

826.0
=
=

sw

swG
r
r

ijT

ArcSDM2 Compare Results

Quantile-Quantile Plot Rank Difference

Area Weighted 
Spearman’s Rank

Correlation
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Spatial Analysis in GIS
Map Pairs

•Map Correlation

Input As and Sb Rasters
Reclassified into 5 classes by Quantiles

Rasters created by IDW 

Spatial Correlation
Area-Weighted 
Spearman’s Correlation 
Coefficient = 0.28

Agreement = 0.31

Rank Difference Sb - As

Source Ratio Data

Log Sb Log Sb

IDW

Log As
Log As
IDW

Correlation Analysis

Explanation

Antimony Classes

A
rs

e n
ic

 C
la

ss
es

Points (ratio scale)
Correlation Coefficient
Log As:Log Sb = 0.738

As:Sb = 0.3000
Grid (ratio scale, IDW)
Correlation Coefficient
Log As:Log Sb = 0.803
Grid (reclassified 5x5)
Agreement = 68%

Nominal-Scale Representation Interval and Ratio Scale

• Pearson’s product moment correlation 
coefficient - measure of linear correlation
– Varies from -1 to 1

• -1 - perfect negative correlation
• 0 - no correlation
• 1 - perfect positive correlation

– Use for ratio and interval measurement scales.
– Not appropriate for nominal and ordinal 

measurement scales.
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Pearson’s Correlation Coefficient

( )( )

Maps.  twoofon intersectiin  cells ofnumber  n
lyrespective Y Map and X Map of Average   and X

lyrespective Y and X Map of  values  and 
where
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Nominal Scale Data
Chi-square statistic

Area Cross-Tabulation Table
         Map A
T11 T12 T13 … T1.
T21 T22 T23 … T2.
T31 T32 T32 … T3.
… … … … …
T.1 T.2 T.3 … T..

Where
Tij, where there are I = 1, 2, 3, …, N
      classes on Map B (rows of the table)
      and j = 1, 2, 3, …, M classes on
      Map A (columns of the table).
Ti. is the sum of the ith row,
T.j is the sum of the jth column, and
T.. is grand sum over rows and columns.

M
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Conditional Odds Example

10  to25 ispresent  being also Till Granite
 of odds  then thepresent, is Granite If

10  to25or 
 45.2

141
345}|{

10  to3or 
 328.0

7272945
727}{

==

=
−

=

GranitelGraniteTilO

lGraniteTilO

Odds Ratio - Binary Maps

ntDisagreeme of Measure
Agreement of Measure

3.13
141*382
2077*345
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=
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Contrast
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Mixed Scales - Box Plots

Use Excel 
chart types 
Stock and 
Combination 
charts to get 
similar plots.

Mixed Scales
Nominal Ordinal Interval/

Ratio
Nominal Chi-square,

Or, Cw, etc.
Median by
nominal
class

Mean by
nominal
class

Ordinal Rank
correlation
coefficient

Rank
correlation
coefficient

Interval/
Ratio

Covariance
Correlation
coefficient

Categorical Correlation Summary
α and κ Useful, nice results between –1 and +1. 
κ Where number of classes match, useful for 

binary and multi-class maps. 
OR and CW Useful, comparable results to κ and α and 

are easy to compute. 
Cj Useful test if positive agreement is more 

important than negative agreement. 
χ2, C, and U Avoid for binary maps. Does not 

distinguish large interactions due to 
agreement or disagreement. 

CA Use with care because does not account 
for chance associations. 

Qualification Choice of counting region (study area) 
influences the correlation measured. 
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Correlation of Rare Events

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80

Area Percent of Rare Event

C
or

re
la

tio
n 

M
ea

su
re Agreement

Jaccard's C

Kappa and 
Contrast are 
zero for all 

cases!

Agreement (              ) and Jaccard’s C (                  ) 
from cross tabulation of two random binary grids.

Cross Tabulation

**
2211 )(

T
TT +

212212
22

TTT
T

++

T**T*2T*1

T2*T22T21

T1*T12T11

Arc/Info Statistical Tools
• Grid: Autocorrelation tools

– Correlation - calculates cross correlation
– Geary and Moran spatial autocorrelation index

• Grid: Multi-variant clustering
– Isocluster( ) - natural clustering of attributes in 

attribute space
– Mlclassify( ) - maximum-likelihood 

classification in attribute space
– Princomp ( ) - principal components 

classification in attribute space
– Regression - linear or logistic regression 

coefficients
• Stackstats - standard statistics for a stack of 

grids

ArcSDM3 Create Raster

Creates a new raster from a 
joined attribute in an raster

Summary
• Ratio and Interval

– Pearson’s correlation coefficient
• Ordinal

– Spearman’s rank correlation coefficient
• Categorical

– Several measures. Kappa is very useful as 
long as have same number of classes.

• Problems when dealing with rare 
events.

Summary
• Quantitative comparison between two 

maps can be done several ways!
– Chap. 8 provides a brief overview 

and a starting point for further 
investigation.

• Area tabulation or cross-tabulation 
table is a fundamental input to most of 
the correlation measures.
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Spatial Analysis in GIS 
Single Maps

•Modeling - Pattern Recognition

•Reclassification

•Filtering

Guidelines for Modeling
Formal statement of the problem.
Define the user of the model.
Specification - preprocess the data to provide useful 
information, that is evidence.

Data exploration
Reclassification, filtering, transformation, and scaling 

Reduce the dimensionality by eliminating 
redundant or correlated information
Use the minimum information necessary

Prediction - combine the evidence to create the 
model.
Testing - evaluate the model and it’s properties.

Data Exploration
Process of seeking patterns on maps 
that help predict spatial phenomena.

Visualization leads to recognition of a 
pattern and the association of the pattern 
with something of interest.
A model is proposed that describes the 
association.

Data Exploration
Seeking patterns involves:

Measurement
Statistical Summary
Visualization
Description
Understanding of processes causing 
pattern

Foundation is data model.

Pattern
An area having a consistent, recognizable 
characteristics associated with some 
object or process.

A pattern is something that deviates from 
the norm.
A pattern is associated with a particular scale 
of observation!
It is a primitive.

Association of patterns and their causes 
are the bricks of scientific knowledge.

Types of Recognition
Classification is the process of grouping 
objects together in classes according to 
perceived similarities.
Identification is the recognition of an 
individual object as a unique singleton 
class. 
Discrimination is the recognition that an 
individual object as different from a 
class.
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Recognition of a Pattern
Task - Determine what the appropriate level 
of aggregation and simplification is for the 
problem at hand, a problem of 
reclassification.

Aggregation and simplification are tied to scale of 
observation.
There is no single scale at which to view a system.
Does not mean that all scales serve equally well or 
there are not scaling laws.

Description of patterns is the starting point.
Spatial models start with an assemblage of 
patterns and associated processes.

Nominal (Categorical)
An unordered label of categories or classes. 

Ordinal (Rank)
Measurements ordered (ranked) according to 
relative position on a scale with unequal intervals 
between classes.

Interval
Measurements that can be labeled and ordered 
with an equal interval between classes but without 
a true zero.

Ratio
Measurements that can be labeled and ordered, 
with an equal interval between classes, and with a 
true zero.

Measurement Scales

≠≡,≠=,

Reclassification
Reclassification Methods - Continuous 
measurement scales - definitions

Natural breaks
Quantile, Equal area
Equal intervals
Standard deviation

Semantic Reclassification - Categorical 
measurement scales

Reclassification 
in Arcview

Mitchell, 1999

Natural Breaks (Jenks)

Quantile

Equal Interval

Standard Deviation

Reclassification 
Another 
Example

Mitchell, 1999
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Reclassification – Normal Distribution

Equal 
Interval

Natural 
Breaks

Standard 
Deviation

Quantile

Data Transformations
Transform to common range

)(
*

XSTD
XX

i
iX −=

minmax
min*
XX
XXX i

i −
−

=

)log(*
ii XX =

Skewed DistributionsStandard Normal Distribution

 valuefloating a is X
lueinteger vaan  is X

where
ArcMap    )5.0int(

AV3   int)..5.0(

i

*
i

*

*

+=

+=

ii

ii

XX

AsGridXX

Floating to Integer Transform Guidelines
Continuous Measurements

Histograms are essential.
Quantile, Natural Breaks, and Equal Intervals 
are least sensitive to frequency distribution.
Standard deviation are very sensitive to 
frequency distribution.
If interested in tails, use standard deviation.
If interested in middle, use quantile.
If interested in minimizing class variance, use 
natural breaks.

Semantic Reclassification
Categorical Measurements

This is an important problem!
Expert Systems

GeoGen - http://geology.usgs.gov/dm/

Spatial Association - How to define?
Expert decision
Measurement such as ArcSDM Contrast

Mineral Trends

Battle
Mountain-

Eureka

Carlin
Getchell

Independence

Sedimentary 
Rock-Hosted 

Gold

Training Theme
(98 sites)

Mihalasky, 1999

http://geology.usgs.gov/dm
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Lithology Evidence Theme
Stewart & Carlson (1978) - 101 Lithologic Units

1:500,000 scale

Mihalasky, 1999
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Lithology Predictor Pattern
Units Having Spatial Association with the Training Sites

Mihalasky, 1999
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Guidelines and Reclassification 
Summary

Concept of a pattern.
Reclassification of continuous 
measurement scales.

Many tools
Reclassification of categorical 
measurement scales.

Few tools - current research
Expert decision guided by statistics, 
Contrast and Studentized Contrast
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Spatial Analysis in GIS 
Single Maps

•Modeling - Pattern Recognition

•Reclassification

•Filtering

Filtering Overview

j at time  valueForcasted F
j at time  valueActualA

averagein  include to
 periodsprior  ofNumber 

1

Average Moving

j

j

1
1)1(

=
=

=

= ∑
=

+−+

N

A/NF
N

j
jtt

High Frequency

Low Frequency

Source

Moving Average

Filters

• Interpolate a surface
– Inverse distance weighting (IDW)
– Spline
– Kriging (Geostatistics extension in ArcMap)

• Block statistics and Focal statistics
– Neighborhood Statistics 

• Zonal Statistics
• Hillshade, slope, and aspect
• Convolution Filters

BA

3x3 BlockStats Function

•No overlap of neighborhoods

•All cells in neighborhood receive same value

•A way to decrease the resolution

AA B

3x3 FocalStats Function

•Overlapping neighborhoods

•Only the central value receives the new value

•Loose the outside of the theme.

Types of Neighborhoods or Filters
Kernal Properties
Height and Width - 3x3
Type of neighborhood
Weights

Interval and Ratio Scales
*Mean (Low Pass)
Standard Deviation
Ordinal Scales
*Median (Low Pass)
Nominal Scales
*Majority (Low Pass)
*Variety (Diversity)
Maximum (High Pass?)
Minimum (Low Pass?)

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Mean Filter 
weights

Others

Minority?

Sum- Program other filters
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Convolution Filters

1   1    -1

1   -2   -1

1    1   -1

Directional

West

-1   -1  -1

1   -2    1

1    1    1

Directional

South

0   -1   0

-1   4   -1

0    -1   0

Laplacian 
weights

-1  -1   -1

-1   9   -1

-1    -1   -1

High 
Frequency

0.25  0.50   0.25
0.50  1.00   0.50
0.25  0.50   0.25

High 
Frequency

There are a large number of other 
filters for many applications.

Available as Arcview 3 extensions 
with problems.

Laplacian Filter

4

2

Source

One-Dimensional Laplacian weigths: -1 2 -1

0
-4 + 8 - 4

2
-4 + 8 - 2

-2
-4 + 4 - 2

0
-2 + 4 - 2Filtered Result

0

Cascade Programming in AV3
Problem: How do you define the weights? 

Neighborhoods can only be defined as 
including or not including a cell (0,1). 

Fragment of Cascading Avenue Code
firstLine = {0,1,0}
secondLine = {1,0,1}
thirdLine = {0,1,0}
theKernal = {firstLine,secondLine,thirdLine}
aNbrHood = NbrHood.MakeIrregurlar (theKernal)
theResult = sourceGrid*4.AsGrid -

sourceGrid.FocalStats(#GRID_STATYPE_SUM, 
theNbrHood, True)

Cascade Programming in ArcMap
Problem: How do you define the weights? 

Neighborhoods can be defined by two 
methods:
SetIrregular (weights 0 and 1)
SetWeights (any real or integer value)

SetWeights is most useful to weight 
individual cells in the filter.

Fragment of VB Code to Define 
and Apply Filter

Dim kernel As Variant
kernel = MakeIrregularKernel 

' pHood.SetIrregular 3, 3, kernel
pHood.SetWeight 3, 3, kernel

' Perform Spatial operation
Dim pOutRaster As IRaster
Set pOutRaster = _
pNeigbOp.FocalStatistics(pGeoDs, _
esriGeoAnalysisStatsSum, pHood, True)

VB Code to fill Kernel
Private Function MakeIrregularKernel() As Variant

Dim OutArray() As Long
Dim X As Long, Y As Long
X = 3
Y = 3
ReDim OutArray(X * Y)
OutArray(0) = 0
OutArray(1) = -1
OutArray(2) = 0
OutArray(3) = -1
OutArray(4) = 4
OutArray(5) = -1
OutArray(6) = 0
OutArray(7) = -1
OutArray(8) = 0
MakeIrregularKernel = OutArray

End Function
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Cascade Neighborhoods in AV3

0  1   0
1   0  1
0   1  0

0  0  0  1 1 1  0  0  0
0  0  0  1 1 1  0  0  0
0  0  0  1 1 1  0  0  0
1  1  1  0  0  0  1  1  1
1  1  1  0  0  0  1  1  1
1  1  1  0  0  0  1  1  1
0  0  0  1 1 1  0  0  0
0  0  0  1 1 1  0  0  0
0  0  0  1 1 1  0  0  0

Laplacian

3x3

Laplacian

9x9

Odd number of 
rows and columns!

Cascade Neighborhoods in ArcMap
SetWeight Method

0  -1   0
-1   4  -1
0   -1  0

0  0  0  -1 -1 -1  0  0  0
0  0  0  -1 -1 -1  0  0  0
0  0  0  -1 -1 -1  0  0  0
-1 -1 -1  4  4  4 -1 -1  -1
-1 -1 -1  4  4  4 -1 -1  -1 
-1 -1 -1  4  4  4 -1 -1  -1 
0  0  0  -1 -1 -1  0  0  0
0  0  0  -1 -1 -1  0  0  0
0  0  0  -1 -1 -1  0  0  0

Laplacian

3x3

Laplacian

9x9

Odd number of 
rows and columns!

Recursive Filtering
• Often necessary to filter the filtered 

grid to remove artifacts.
– For example on the Laplacian, may 

only want the high and not the low.
– May wish to eliminate isolated cells.

• Often human interpretation 
necessary to remove various types 
of artifacts.

ZonalStats

Shape or Grid Theme
The Zones

A

A

B

C

Grid Theme
Measurement to Summarize

X

Y

W

Z

U

V

Mean STD Min Max
A| n1 n2 n3 n4
B| n5 n6 n7 n8
C| n9 n10 n11 n12

Table from 
ZonalStats

Antimony Point Samples
Interpolation Methods

SplineIDW

Symbolized by 1/4 standard deviations
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Filtering Antimony

3x3 12x12 24x24

IDW Log Sb

20km 40km 80km

Neighborhood mean from 3x3 surface at various kernal sizes

A pattern?

0

>2

<-1

High-Pass Residual
(IDW 3x3) - (Mean 40km)

IDW 
Log Sb

Minus

40km
kernal

Original

“Low Pass”

Zonal Statistics

Geologic Units

Central Nevada
Mean Antimony

Another Pattern?

Minus

High-Pass Residual
IDW 3x3 - Zonal Stat

IDW 
Log Sb

Zonal 
Mean

Original

“Low Pass”

Surface with Barriers

Sb Surface without barriers 
applied

Sb Surface with barriers 
applied

3 x 3 Laplacian Filter

Source: DEM Shaded Relief
HillShade

Laplacian of 
Shaded Relief
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Recursively Filtered Laplacian Filtering Summary
• Objective of filtering is to define a pattern 

that may not be obvious in the original data.
– Edges of homogeneous areas are often 

important.
• Filtering is an art!

– May require recursive filtering or 
interpretation to remove artifacts.

• Powerful tool for data exploration!



1

Model Testing

Measures to compare, describe, and validate models
Simple Carlin Model Example

Measures of Models
• Correlation measures to compare models

– Kappa for ranked models
– Pearson’s for raw models

• Fragstats: Measure the texture or appearance of 
the model. Does the model look geologic?

• Efficiency of Classification
– Training sites
– Not-Training sites: What should “Nots” be?

• Efficiency of Prediction (Validation)
– Sites not used for training

Models
All models using 
King and Beikman
geology and Nure Sb

“Nots” all other 
mineral deposits in 
the area.

All models 
symbolized by 
natural breaks.

3-Class Models

Correlation between Models

10.063-0.010.159
WofE 

Unique

0.2910.080.343RBFLN

0.132-0.00610.005
RBFLN 

(Poor)

0.7060.290.0681
WofE 

Binary

WofE 
UniqueRBFLN

RBFLN 
(Poor)

WofE 
Binary

Pearson’s above and Kappa below the diagonal

Kappa: 3 classes by natural breaks

Fragstats: RBFLN-WofE

• 3 classes by Natural 
Breaks.

• RBFLN has larger 
number of smaller 
patches (Higher density 
of patches)

• RBFLN patches have 
more complex shapes.

• RBFLN patches are 
more mixed.

99.096.9Aggregation Index

99.999.7Patch Cohesion Index

18.781.0Interspersion Juxtapostion Index

80.754.7Largest Patch Index

0.40.7Simpson's Evenness Index

0.40.7Shannon's Evenness Index

0.30.5Simpson's Diversity Index

0.50.8Shannon's Diversity Index

1038.61357.8Patch Area Coefficient of Variation

233,087129,952Patch Area Standard Deviation

300287.5Patch Area Median

2,443,2881,774,070Patch Area-Weighted Mean

22,442.39,570.6Patch Area Mean

1.26991.3236Perimeter-Area Fractal Dimension

1.04191.0404Fractal Dimension Index Mean

1.56021.5115Shape Index Mean

6.716.2Landscape Shape Index

1.12.5Edge Density

6,117,00014,398,750Total Edge

62.354.7Largest Patch Index

0.00450.0104Patch Density

253593Number of Patches

WofERBFLN Index Name
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PRC: Efficiency of Prediction
SRC: Efficiency of Classification

• Intersect points with response grid.
• Frequency of points.
• Join frequency of points with counts in response grid.
• Summation

– Sort response value descending
– Cumulative area from high to low response value.
– Cumulative number of points from high to low response value.

• Plot Cumulative area versus cumulative number of points
• Calculate area under the curve.

– Area under the curve for sites should be greater than 50% of total area, 
then have a positive association with points.

– Area under the curve for “Not” sites should be less than 50% of total 
area, then have a positive association with points

– If area under the curve, then have a random association with the
evidence. Evidence provides no better information than guessing.

• Point in curve where goes from steep slope to flat slope is an 
optimal break between predicted sites and not sites.

Chung and Fabbri, 2003, Validation of spatial prediction models for landslide hazard 
mapping: Natural Hazards, v. 20, p.451-472

Efficiency of Classification of WofE

WofE Models
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Validation Models
All models using 
King and Beikman
geology and Nure Sb

“Nots” all other 
mineral deposits in 
the area.

All models 
symbolized by 
natural breaks.

Used 50% of sites for 
training and 
remaining 50% for 
validation.

Efficiency of Classification
Summary

0.45Expert Not Sites
13540.00620.77Expert Sites

0.76RBFLN (Poor) Sites

0.70RBFLN Not Sites

0.85590.01040.93RBFLN Sites
0.96WofE Unique Train

0.59WofE Binary Not Sites

0.52530.00450.89WofE Binary Sites

Shannon 
Diversity 

Index

Number 
of 

Patches
Patch 

Density

Area 
Under 
CurveModel

Correlation: Validation

10.2380.7540.186RBFLN Validation

0.23810.3000.760WofE Binary Validation

0.7540.30010.290RBFLN

0.1860.7600.2901WofE Binary

RBFLN 
Validation

WofE Binary 
ValidationRBFLN

WofE 
Binary

ROC Terminology
• Intersect points with 

response grid to get 
probability at points.

• Frequency of points.
• Summations with data 

sorted from highest to 
lowest response 
values.

TNFNPredicted
Negative

FPTPPredicted
Positive

NegativePositive

Sensitivity = TP/(TP + FN)

TP + FN = Total number of sites

1- Sensitivity = Type II errors (Errors of Omission)

Specificity = TN/(TN+FP)

TN + FP = Total number of “Not” or negative sites

1- Specificity = Type I errors (Errors of Commission)

Measures are free from prevalence (rare events) and thresholds.

How to define the negative sites (“Nots”)?

Processing Steps

Validation: ROC
Receiver Operator Curve

Brismar, 1991, American Roentgen Ray Society: v 157, p. 1119-1121.

Sites

“Not”

Sites

Type II Error

Error of Omission

Type 1 Error

Error of Commission

Validation Measures: ROC
Sensitivity-Specificity Curve
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Training: “Nots” Low Sb

Low_Sb PRC Efficiency
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Validation Summary
WofE versus RBFLN

• Correlation: WofE-validation model (76%) correlates slightly better with WofE than
RBFLN-validation (75%) with RBFLN.

– Insignificant differences. Measure inconclusive.
• FRAGSTATS: WofE is a simpler map.

– Is this a significant measure? 
– What should these statistics be for a good model?

• SRC & PRC: RBFLN has a higher efficiency of classification of training sites (SRC: 
93% to 89%) than WofE and a greater PRC for “Not” sites (PRC: 70% to 59%).

– A small difference for sites and a significant difference with “Not” sites; suggestive of 
significance. RBFLN explicitly considered the “Nots” in training.

– Were the appropriate sites used for “Nots”? 
• ROC: WofE has greater efficiencies of prediction (Other-Deposits ROC: 87% to 

74%).
– Question of ROC test because Other-Deposit “Not” sites have PRC values greater than 50% 

with regards to evidence.

– Using low Sb as “Nots” gives almost the same validation models (Pearson’s correlation 75-
76%) and WofE Validation is the same as the RBFLN Validation (ROC: 94% to 93%).

• Conclusions
– “Nots” were used to train the RBFLN. This issue with the “Nots” raise questions about the 

meaning of the RBFLN model?
– The “Nots” simply further qualifies the meaning of the model. So this RBFLN model may be 

different than this WofE model.
– Therefore, if question the “Nots”, then cannot compare these models. 
– Alternatively accept the “Nots”, therefore the WofE model is slightly better than this RBFLN 

based on multiple ROC curves.
– Definition of the “Nots” would seem to be a critical consideration to understand and validate a 

model.
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Spatial Modeling in GIS

Summary

Examples of Measurement Scales

Scale Type    Examples      Operations   Means

Nominal Rock type = Mode

Ordinal Relative age >< Median

Interval Temperature +-*/ Mean

Ratio Distance +-*/ Mean

Guidelines for Modeling
• Formal statement of the problem.
• Define the user of the model.
• Specification - preprocess the data to provide 

useful information, that is evidence.
– Data exploration
– Data transformation, filtering, and scaling 
– Reduce the dimensionality by eliminating 

redundant or correlated information
– Use the minimum information necessary

• Prediction - combine the evidence to create the 
model.

• Testing - evaluate the model and it’s properties.

Properties of Evidence
• Selected attributes must discriminate 

between one or more classes of 
objects.

• Selected attributes should not be 
correlated with other attributes to any 
moderately strong extent.

• Selected attributes must have meaning 
for humans.

Types of Models
• Prescriptive or Deterministic

– Application of good technical practices
– Process: Boolean rules, Equations
– Output: Binary (yes or no), Index overlay 

(score)
• Predictive

– Application of mathematics to represent how 
people think about the evidence but cannot 
represent as equations.

– Process: weighting of evidence and 
combination of weights

– Output: Favorability, probability, or fuzzy map 
[0 to 1]

Knowledge Driven Methods
• Boolean Logic - True/False representation of maps with 

all maps rated equally. Simple method with True/False 
answer.

• Index Overlay with Binary Maps - Maps are given 
different weights. Linear combination of maps.

• Index Overlay with Multi-Class Maps - Maps are given 
different weights as well as the classes of the maps are 
given different weights. Linear combination of maps.

• Fuzzy Logic - More flexible weighting of maps and map 
classes. Nonlinear combination of maps.

• Expert Weights of Evidence – Weighting of evidence 
easily understood. Log linear combination of maps.
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Data Driven Methods
• Weights of Evidence 

– log linear combination of binary or multi-class maps. 
– Classifies areas by probability or favorability of 

occurrence of a training site.
– Model parameters easy to understand.

• Logistic Regression
– log regression combination of binary maps 
– Classifies areas by probability of occurrence of a 

training site.
– Model parameters complex.

• Neural networks
– Experimental, nonlinear combination of fuzzy or map 

classes
– Classifies areas by fuzzy membership in training set.  
– Can also be self organizing to produce fuzzy 

membership.
– Model parameters complex. 

Recognition of a Pattern
• Task - Determine what the appropriate level of 

aggregation and simplification is for the problem 
at hand, a problem of reclassification.
– Aggregation and simplification are tied to scale of 

observation.
– There is no single scale at which to view a system.
– Does not mean that all scales serve equally well or 

there are not scaling laws.
• Description of patterns is the starting point.
• Spatial models start with an assemblage of 

patterns and associated processes.

Buffer Resolution
Threshold Weighting Reclassification

Map Scale
Map
Resolution

Geologic
Resolution

Buffer
Resolution

1:2,500,000 1250 2500 5000

1:500,000 250 500 1000

1:250,000 125 250 500

1:100,000 50 100 200

Units - Meters
Map Resolution = (Scale denominator)/2000

Reclassification Summary

• Concept of a pattern.
• Reclassification of continuous measurement 

scales.
– Many tools

• Reclassification of categorical measurement 
scales.
– Few tools - current research
– Expert decision

Filtering Summary
• Objective of filtering is to define a pattern that 

may not be obvious in the original data.
– For example, edges of homogeneous areas can 

be important.
• Filtering is an art!

– May require recursive filtering or interpretation 
to remove artifacts.

• Powerful tool for data exploration!

Correlation Summary
• Ratio and Interval

– Pearson’s correlation coefficient
– Independent of thresholds (reclassification).

• Ordinal
– Spearman’s rank correlation coefficient
– Sensitive to thresholds (reclassification).

• Others
– Kappa for correlation involving rare events
– Sensitive to thresholds (reclassification).
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Testing
Data-driven Methods

• Evaluate classification of training points
• Use points not included in training set to test the 

model
– Implementation - use a random subset of training set to 

develop the weights and use the remainder to evaluate 
the model.

– Problem - for many models there may only be a small 
number of training points to start with.

• Make a validation model from a subset of training sites and test
that validation model is same as model from all training sites.

• Conclusion of testing is often identification of 
some deficiency in the evidence.

• Field testing of the model.

KISS - Keep It Simple
• Quickly make a simple model based on binary 

generalization of existing evidence or a neural 
network model without generalization of existing 
evidence.

• Test this model to determine what is right and 
what is wrong with this simple model.

• If the model is reasonably acceptable, refine the 
model within the time available.
– Add new evidence
– Improve evidence: new field work or present in a 

different way (filtering, reclassification, Boolean or 
Fuzzy combination of several evidence layers)

– Rethink the binary generalizations
– Multi-class generalization

Weights of Evidence – Rules of Thumb
• What is the significance of conditional independence – the big issue in 

Bayesian methods?
– If only interested in ranks, not an important issue. Ignore conditional 

dependency.
– Can use combination of generalized evidence as a new evidence factor.
– Can use fuzzy models to combine conditionally dependent evidence as a 

new evidence factor.
• Binary generalization based on maximum contrast or maximum 

confidence with acceptable confidence.
• Multiclass generalization based on categorical weights using contrast 

with acceptable confidence.
• What about generalization based on maximum Studentized contrast or 

equal weights? Area of on-going research.
• Symbolization by natural breaks gives similar breaks points to breaks 

on cumulative area vs. posterior probability or efficiency of 
classification.

• Posterior Probability should be thought of as a measure of favorability 
of occurrence, a relative ranking.

– Prior probability is generally taken as defining the neutral point between 
favorable and unfavorable.

Neural Networks – Rules of Thumb
• Literature suggests equal number of deposits and not deposits produces 

better training
– Basis as a general rule not well tested. May not apply to RBFLN.

• Can always decrease SSE by compressing the evidence, that is fewer 
unique conditions.

– Excessive number of unique conditions can lead to noisy response.
• Should be unaffected by conditional dependency. Not proven.
• Fuzzy memberships of training points improves the classification.
• RBFLN

– Seems unaffected by mix of deposits and not deposits.
– Training most sensitive to number of RBF.

• Make small adjustments in number of RBF, parameter M.
• Then adjust number of iterations. Increasing number of iterations will always 

decrease SSE and might decrease MSE. Trick is to optimize training so get optimal 
classification

• Can test for over fitting by
– A testing set: Complex to do because of design of software. Maybe a weak test if testing 

set only tests unique conditions used in models.
– Optimize the training by finding the optimal classification. Optimal means minimum 

MSE and SSE
• Influence of the “Not” sites is not well understood.

– Symbolize response by natural breaks.

Neural Networks – Rules of Thumb (Continued)
• PNN 

– Sensitivity to “Not” sites is not clear. May be insensitive to “Nots”.
– Training

• Adjust distance parameter by small amounts, for example by 0.1.
• Start by decreasing and if SSE does not decrease then increase parameter.
• Not terribly sensitive to distance parameter

– Symbolize the response by quantiles.
• Fuzzy Neural Network

– Adjust distance parameter by small amounts, for example by 0.1.
– Two outputs, clusters and membership in clusters.
– More clusters may represent subtypes, for example of deposits. 
– Symbolize patterns by natural breaks.

• Response themes are all fuzzy membership in favorability of occurrence, a 
relative ranking.

– There seem to be scaling problems so neutral point between favorable and 
unfavorable is not always defined.  

– Fuzzy membership of 0.5 may be good threshold in RBFLN and Fuzzy Neural 
Network

– Cannot use fuzzy membership of 0.5 in PNN as a threshold. Considering rare 
events, might use some small area of high fuzzy membership.

Fuzzy Logic – Rules of Thumb
• Conditional independence is a consideration for Fuzzy sum, product, 

and gamma.
– Best to use conditionally dependent evidence to create a fuzzy factor that 

utilizes the Fuzzy Or or And.
• A sigma-shaped fuzzification seems to be how people think about 

evidence.
• Can weight evidence by a multiplier, which must be [0,1]. 

– Weighting reflects the importance of the weights. 
– Try to adjust things so 0.5 is neutral.
– Can use training to define weights (Luo and Dimitrakopoulos, 2003)

• Combining factors is an aggregation process where the combination of 
factors is more favorable than individual factors.

– Fuzzy Gamma and Sum are appropriate operators.
• Optimize Gamma so neutral response is fuzzy membership of 0.5.

• Response themes are all fuzzy membership in favorability of 
occurrence, a relative ranking.

– Easier to utilize if tuned so fuzzy membership of 0.5 is neutral between 
favorable and unfavorable. Tune fuzzification and/or weights.

– Can symbolize by equal intervals between 0 and 1.
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Evaluation of Models – Rules of Thumb
• Use efficiency measures (SRC, PRC, and ROC) to evaluate models

– ROC is a stronger test than PRC.
– PRC is simpler to use because does not require “Nots”.

• Symbolization: The big question is how many classes.
– Breaks in Area vs. Posterior Probability
– Breaks in slope of efficiency of classification. 
– Backward first derivative defines ranked break points. 

• Absolute measures
– How well classifies the training points, SRC and PRC.

• A weak test but often all that can be done.
• Use Brown’s probability measure

– How well classifies points not used in training, ROC. 
• A strong test that can be made with existing data if have appropriate “Not”

sites..
• All measures are relative, that is for comparison of different models of 

the same study area.
– Rank differences
– Correlation measures: Spearman’s, Pearson’s, and Kappa
– FRAGSTAT – appearance of the response map
– Efficiency measures

Which Method? – Rules of Thumb
• Have adequate training

– WofE: Need an understanding of physical process
• LR: Dealing with conditional dependency problems

– Can also help define conditionally dependent evidence or highly 
correlated by zero coefficient

– RBFLN or PNN Neural Networks: Quick answer
• Nonlinear classification problems.

• Lack adequate training
– Fuzzy Logic: Based on how experts think about the 

problem
• Address conditional dependency in WofE model.

– Fuzzy Neural Network: Quick answer
• Nonlinear classification problems

– Expert WofE: Model expert thinking in a WofE 
context.

• Apply WofE model from one location in another location.
• Adjust the prior probability to define number of undiscovered 

deposits? A controversial approach.
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Correlation Exercise

Compare Results Rank Difference

Problem with Reclassify from 
Real Values

• Seems to be a problem with Reclassify for 
posterior probability rasters when reclassify 
by quantile and 3 classes.

• Seems to give more reasonable results if 
first use Raster Calculator to calculate to an 
integer and then Reclassify the integer 
raster.
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Overview 
of

Fragstats in ArcGIS

http://www.umass.edu/landeco/research/fragstats/fragstats.html
See FRAGSTATS.PDF in reading for an example.

Terminology
Definitions

Patch – an individual 
polygon.

Class – a group of 
related polygons, such 
as the green areas.

Landscape – the 
whole area.

FRAGSTATS Metrics Menu FRAGSTATS Parameters Menu

FRAGSTATS Metrics Menu

Patch and Class Metrics are subsets of Landscape Metrics.

Total Landscape Area Sum of areas of all patches in the landscape

Number of Patches Total number of patches in the landscape

Mean Patch Size Average patch size

Patch Size Standard Deviation Standard deviation of patch area

Patch Size Coefficient of 
Variation

Coefficient of variation of patch areas, that is patch size standard deviation 
divided by mean path size

Total Edge Sum of perimeter of patches

Edge Density Amount of edge relative to the landscape area

Mean Shape Index Shape complexity, equals 1 when all patches are circular (polygons) or square 
(grids).

Area Weighted Mean Shape 
Index

Shape complexity weighted by the area of patches.

Mean Patch Fractal 
Dimension

Shape complexity, equals 1 for shapes with simple perimeters and approaches 
2 when shapes are more complex.

Area Weighted Mean Fractal 
Dimension

Shape complexity weighted by the area of patches

Interspersion Juxtaposition 
Index

Measure of patch adjacency

Shannon's Diversity Index Measure of relative patch richness.

Shannon's Evenness Index Measure of patch distribution and abundance

Total Core Area Sum of all core areas in the landscape

Core Area Density Measure of relative distribution of core area (hectares).

Mean Core Area Average area of disjunct core patches

Core Area Standard Deviation The standard deviation of disjunct core areas (hectares).

Core Area Coefficient of 
Variation

The relative number of disjunct core patches relative to the landscape area.

FRAGSTATS Metric Short Definition

Total Core Area Index Proportion of core area in the landscape.

http://www.umass.edu/landeco/research/fragstats/fragstats.html


2

Analysis of Patches
Shape Index

of
Nevada

Geologic Map
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Boulder Batholith – Fractal 
Dimensions of Magnetic Anomalies

Fractal Dimensions

If(Mag Anomaly and Simple Shape)
Then Pluton Else Not Pluton

• con([mag_anom] >= 1.879 & [NbrMajor2 of 
magam15id8_FragMagAM15.patch.Frac2] <= 
1.0519,1,0)

Magnetic Anomaly Patch Fractal Dimensions

Boulder Batholith, Plutons
Comparison Carlin

RBFLN – WofE
3 classes

0.922 - Spearman 3 Classes, Natural Breaks
0.659 - Band Collection 3 Classes,  Natural Breaks
0.290 - Band Collection unclassified

Fragstats: RBFLN-WofE

• 3 classes by Natural 
Breaks.

• RBFLN has larger number 
of smaller patches (Higher 
density of patches)

• RBFLN patches have 
more complex shapes.

• RBFLN patches are more 
mixed.

99.096.9Aggregation Index

99.999.7Patch Cohesion Index

18.781.0Interspersion Juxtapostion Index

80.754.7Largest Patch Index

0.40.7Simpson's Evenness Index

0.40.7Shannon's Evenness Index

0.30.5Simpson's Diversity Index

0.50.8Shannon's Diversity Index

1038.61357.8Patch Area Coefficient of Variation

233,087129,952Patch Area Standard Deviation

300287.5Patch Area Median

2,443,2881,774,070Patch Area-Weighted Mean

22,442.39,570.6Patch Area Mean

1.26991.3236Perimeter-Area Fractal Dimension

1.04191.0404Fractal Dimension Index Mean

1.56021.5115Shape Index Mean

6.716.2Landscape Shape Index

1.12.5Edge Density

6,117,00014,398,750Total Edge

62.354.7Largest Patch Index

0.00450.0104Patch Density

253593Number of Patches

WofERBFLN Index Name Fragstats Summary

• Descriptive tool: Quantifies the texture of a 
map at various scales.
– Patches: The pieces of the map
– Classes; The groupings of the pieces of the map.
– Landscape: The whole map.

• Analytical tool: Texture measures can give a 
new presentation of aspects of information in a 
map.
– Maps of shape index, etc.
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Rare Events

Correlation of Rare Events
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Area-Proportions Cross-Tabulation Table
         Map A
P11 P12 P13 … P1.
P21 P22 P23 … P2.
P31 P32 P32 … P3.
… … … … …
P.1 P.2 P.3 … P..

Where
Pij = Tij/T..
Pi. = Ti./T..
P.j = T.j/T..

Calculation for Rare Events
Counts Counts

A Not A Not A A
B 0 0 0 Not B 990 10 1000
Not B 10 990 1000 B 0 0 0

10 990 1000 990 10 1000

Agreement 0.99 Agreement 0.99
Jaccard's C 0 Jaccard's C 0

Proportion Proportion
A Not A Not A A

B 0 0 0 Not B 0.99 0.01 1
Not B 0.01 0.99 1 B 0 0 0

0.01 0.99 1 0.99 0.01 1

Expected Values (Product of marginals) Expected Values (Product of marginals)
Not A A Not A A

B 0 Not B 0.99
Not B 0.99 B 0

Kappa 0 Kappa 0

Correlation of Rare Events
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GIS – Insights Through 
Integration

Graeme Bonham-Carter (GSC)
Gary Raines (USGS)

Mineral Potential Mapping

• Light table origins
• Overlap of anomalies from difference 

evidence
• Multivariate statistical approach started in 

the 1960s. 
– Very tedious process to get data in formats that 

could be used by specially written software.

GIS Catalyst

• Sparked a revolution is spatial data
– Availability of digital data
– General purpose software for spatial data analysis

• Ability to deal with
– High resolution grids
– Spatial objects in vector form
– Complex and simple attributes

• Potential for linkage to specialized analytical tools

GIS Preprocessing
“Extraction of Spatial Evidence

• Surfaces from point data
• Extract texture, diversity, derivatives, and other 

measures
• Reclassify complex data, such as geologic maps, 

with simple or complex attributes
• Derive contact relationships
• Derive proximity relationships (Buffering)
• Subset of spatial objects (linears by orientation, 

deposits by types, etc.) using queries of attributes

Modeling Continuum
King and Kramer (1993)

Engineering Science Public Policy
Decision Making

How to build 
a bridge at 
location X?

Do we need 
a bridge 
somewhere?

Which location 
is best?

Deterministic Probabilistic
Fuzzy
?

Version 2, Sept. 2001

Models –Simplification of Reality

• Modeling involves application of artificial 
constructs at many stages
– The geological map is a model
– Interpolated surfaces are models
– The notion of combining evidence from 

multiple sources using a weighting scheme 
involves a model (statistical or subjective)
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Philosophy of Modeling
Data Exploration

• Models must be used but must never be believed. 
As T.C. Chamberlain said “Science is holding of 
multiple working hypotheses” (Attributed to Tukey in 
The Practice of Data Analysis: Essays in Honor of John W. Tukey)

• … models are not destructive; at worst they are 
ineffectual, and at best, they help to strengthen the 
quality of the decision making process. (King and 
Kramer, 1993)

Why Model?
King and Kramer (1993)

• Models are most useful when the right 
answer is not clear.

• Modeling clarifies the issues of debate in 
evaluation of an answer.

• Modeling enforces a discipline of analysis, 
discourse, and consistency.

• Models provide a powerful form of 
“advice”, that is not “truth”, but a refined 
result of a particular viewpoint.

Version 1, January 2000

Refined Viewpoint
No “Right or “Wrong” Answers

• The models we use can change:
– Different selections of training points
– Different choice of evidence
– Different generalizations of evidence
– Different weightings and combination method

• We learn by experimenting with the data 
and investigating spatial associations

Steps in Typical Study

• Assemble digital data
• Extract spatial evidence (preprocessing)
• Prediction analysis by weighting

– Data Driven
– Knowledge Driven

• Interpretation and Evaluation

• Statistical approach (“data driven”)
– use measured associations between evidential 

themes and known mineral deposits
• e.g. regression, neural networks, weights of 

evidence

• Expert system approach (“knowledge-
driven”)
– use expert exploration knowledge

• e.g. fuzzy logic, Dempster-Shafer belief functions

Approaches to Quantitative Mineral 
Prospectivity Mapping

Program

• Morning
– Overview
– Case Studies
– Weights of Evidence
– Introduction to ArcSDM 

(Hands on)

• Afternoon
– Demonstration of Carlin 

Model
– Carlin Model (Hands on)

Second Day Third Day
• Morning

– Carlin Model (Hands on)
– Demo: Logistic Regression

• Afternoon
– Fuzzy Logic
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Program

Fourth Day

• Morning
– Demo: Neural Networks
– Carlin Model (Hands on)

• Afternoon
– Carlin Model or Your data 

(Hands on)

Fifth Day

• Morning
– Hands on wrap up

• Afternoon
– ArcSDM as geoprocessing 

tools

CD-ROM

• ArcSDM3 – Software and documentation
• Handouts – PDF files of handouts for 

lectures
• Reprints – Useful papers on spatial 

modeling in PDF format
• Training materials

– Carlin – Project with data for the Carlin 
exercise and PDF training file
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Spatial Modeling
Case Studies

Gary Raines and Graeme Bonham-Carter

ArcSDM Usage Summary 2003

1865 Users (Oct. 2003)

Wright Comparison of Methods

From Wright, 1996

Volcanic-hosted Massive Sulfide Deposit 
Models

From Wright, 1996

Photo Lake 
Discovery

Fuzzy Logic Inference Net

From Wright, 1996

Fuzzy Logic VHMS Model – Inference Net

Mineral Trends

Battle
Mountain-

Eureka

Carlin
Getchell

Independence

Sedimentary 
Rock-Hosted 

Gold

Training ThemeTraining Theme

Mihalasky, 1999
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Evidence ThemesEvidence Themes

Lithologic
• Lithologic units 
• Diversity of lithologic units
• Cenozoic igneous rock unit distance buffers
• Cenozoic igneous rock time-slices
• Cenozoic igneous rock composition-slices
• Mesozoic pluton distance buffers
• Mesozoic pluton density
• Clastic and carbonate rock units
• Clastic and carbonate rock unit distance buffers

Geochemical (and related)
• K/Na, Ba/Na, U/Th, Fe/Al, La/K, Sc/Fe, Sc/V, K, 

Al, As (NURE data)
• Igneous rock major element analyses (PETROS)
• Igneous rock radiometric age dates (RADB data)
• Mineralization (metallic deposits) radiometric age 

dates

Geographic
• Topographic elevation
• Shaded relief of topography
• Degree of topographic slope

Lithologic
• Lithologic units 
• Diversity of lithologic units
• Cenozoic igneous rock unit distance buffers
• Cenozoic igneous rock time-slices
• Cenozoic igneous rock composition-slices
• Mesozoic pluton distance buffers
• Mesozoic pluton density
• Clastic and carbonate rock units
• Clastic and carbonate rock unit distance buffers

Geochemical (and related)
• K/Na, Ba/Na, U/Th, Fe/Al, La/K, Sc/Fe, Sc/V, K, 

Al, As (NURE data)
• Igneous rock major element analyses (PETROS)
• Igneous rock radiometric age dates (RADB data)
• Mineralization (metallic deposits) radiometric age 

dates

Geographic
• Topographic elevation
• Shaded relief of topography
• Degree of topographic slope

Structural/tectonic
• Cenozoic fault distance buffers
• Cenozoic fault density
• Thrust-front distance buffers
• Strike-slip fault distance buffers
• LANDSAT linear-features distance buffers
• LANDSAT linear-features density
• Highly extended upper crustal terrain
• Deep-seated basement fracture system buffers
• Lithotectonic terrane
• Crustal thickness
• Tertiary rock dip angle and direction
• Late-Paleozoic–early Mesozoic paleothermal 

anomaly

Geophysical
• Bouguer gravity anomaly
• Isostatic residual gravity anomaly
• Total residual field geomagnetic anomaly
• Geothermal conductivity (gradient)
• Crustal heat flow
• Geothermal wells and springs temperature

Structural/tectonic
• Cenozoic fault distance buffers
• Cenozoic fault density
• Thrust-front distance buffers
• Strike-slip fault distance buffers
• LANDSAT linear-features distance buffers
• LANDSAT linear-features density
• Highly extended upper crustal terrain
• Deep-seated basement fracture system buffers
• Lithotectonic terrane
• Crustal thickness
• Tertiary rock dip angle and direction
• Late-Paleozoic–early Mesozoic paleothermal 

anomaly

Geophysical
• Bouguer gravity anomaly
• Isostatic residual gravity anomaly
• Total residual field geomagnetic anomaly
• Geothermal conductivity (gradient)
• Crustal heat flow
• Geothermal wells and springs temperature

Examined for Potential Inclusion in ModelingExamined for Potential Inclusion in Modeling

Evidence ThemesEvidence Themes

Lithology Pluton Buffers
Lithotectonic

Terrane Fault Buffers
Lithologic
Diversity

Aeromagnetism Isostatic Gravity Ba/Na K/Na

Agreement with Favorable Area = 92.8%Agreement with Favorable Area = 92.8%

Weights-of-Evidence ModelWeights-of-Evidence Model

Comparison to Expert-Defined Favorable AreasComparison to Expert-Defined Favorable Areas

USGS Open File Report 96-2USGS Open File Report 96-2

Favorable
Permissive
Non-Permissive

Favorable
Permissive
Non-Permissive

Permissive
Non-Permissive
(includes area <0.0003, 
the prior probability)

Permissive
Non-Permissive
(includes area <0.0003, 
the prior probability)

How well does the model 
predict 12 newly discovered 

sedimentary rock-hosted 
deposits that were not part of 

the training sites?

10 of 12 deposits
were estimated to have 

posterior probabilities higher 
than the prior probability
(0.0003), where four had 
relatively high posterior 

probabilities

How well does the model 
predict 12 newly discovered 

sedimentary rock-hosted 
deposits that were not part of 

the training sites?

10 of 12 deposits
were estimated to have 

posterior probabilities higher 
than the prior probability
(0.0003), where four had 
relatively high posterior 

probabilities

Wright-Window (0.0008)Wright-Window (0.0008) Winters Creek (0.0046)Winters Creek (0.0046)

Trenton-Valmy (0.0174)Trenton-Valmy (0.0174)
Renoa (0.2124)Renoa (0.2124)

Pipeline & S. Pipeline (0.4921)Pipeline & S. Pipeline (0.4921)
Saddle (0.0018)Saddle (0.0018)

Gold Canyon (0.0593)Gold Canyon (0.0593)
Pan (0.0003)Pan (0.0003)

Treasure Hill (0.0097)Treasure Hill (0.0097)

Golden Butte
(0.0023)
Golden Butte
(0.0023)

Pinon Range-
Cord Ranch (<0.0003)
Pinon Range-
Cord Ranch (<0.0003)

Blind Test

Training Sites – Epithermal Gold

Deposit Types Percentage
Hot Springs Au (25A) 3.2
Comstock Epithermal (25C) 60.6
Volcanogenic U. (25F) 9.3
Epithermal Mn (25G) 5
Hot Spring Hg (27A) 21.9
Summation 100

Raines, 1999
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Evidence
Pattern Criteria Source
Volcanic Rock Proximity Within 8 km of volcanic rocks less than

34 ma
Nevada state geologic map

Alteration Proximity Within 1 km of hydrothermal alteration Western Mining Corp. data
Placer Proximity Within 1 km of known placer workings MRDS sites classification
Vent Proximity Within 2 km of Tertiary vents, shallow

intrusives, dome complexes, and other
units indicating a volcanic rock source
area.

Nevada state geologic map

Fault Proximity Within 4 km of faults trending NNW to
NNE and NW to W

Nevada state geologic map

Anomalous Uranium NURE equivalent uranium greater than 2
eu

NURE data, Duval’s national
compilation

Linear Feature Proximity Within 0.5 km of linear features trending
NS and NE to E

Landsat MSS interpretation,
Offield, Sawatzky, & Raines

Anomalous Aeromagnetics NURE aeromagnetics greater than 0
gammas

NURE data, Hildenbrand
compilation

Anomalous Geochemistry Theisen polygons with Ag > 2ppm or As
> 5ppm or Mn > 2000ppm or Se >
1.9ppm

NURE stream sediment data,
Raines’s Great Basin
compilation

Summary of Contrast

• Volcanic Rock Proximity 4.901 3.65
• Alteration Proximity 3.756 8.27
• Placer Proximity 3.012 8.375
• Vent Proximity 1.42 10.418
• Fault Proximity 1.317 8.446
• Anomalous uranium 1.253 3.864
• Linear Feature Proximity 1.149 6.453
• Anomalous Aeromagnetics 0.762 6.556
• Anomalous Geochemistry 0.721 5.672

Contrast

Studentized
Contrast

Summary of Weights

• Volcanic Rock Proximity 0.204 -4.697
• Alteration Proximity 2.331 -1.425
• Placer Proximity 2.989 -0.024
• Vent Proximity 1.247 -0.172
• Fault Proximity 0.338 -0.979
• Anomalous Uranium 0.072 -1.181
• Linear Feature Proximity 1.072 -0.077
• Anomalous Aeromagnetics 0.334 -0.428
• Anomalous Geochemistry 0.346 -0.375

W+ W-
Permissive

Favorable

Non-permissive

> ~97.5%
> ~95%

> ~90%

> ~75%

< ~75%

Confidence

Model

National 
Assessment

Posters

• Weights of Evidence Solution to Spatial Modeling
• The Problem of Training in Weights of Evidence 

Compared to Neural Networks
• Demonstration of a Method of Regional Small-

Scale Mineral Assessment Based on Geology
• Prediction of Northwest Goshawk Habitat Using 

Weights of Evidence

What have we learned?

• New discoveries
• Massive sulfide deposit (Wright and Bonham-Carter)
• Deposits not in training set are in areas of high posterior probability      
(Raines and Mihalasky)
• Packrat model (Mensing and others)
• Gold deposit in Finland (Nykanen)
• $10M  new investment in exploration in New Zealand based on WofE 
models (Partington)

• Results comparable or acceptable to expert’s assessment
• Comparison with US National Assessment
• Spokane - Epithermal gold and Mississippi Valley deposits
• Humboldt Assessment

• Proximity analysis is powerful data exploration tool
• Results are not dependent on mathematics used

• Conditional Independence problems are most severe in 
mineral-exploration applications
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Weights-of-Evidence Method

• Originally developed as a medical diagnosis 
system
– relationships between symptoms and disease 

evaluated from a large patient database
– each symptom either present/absent
– weight for present/weight for absent (W+/W-)

• Apply weighting scheme to new patient
– add the weights together to get result

Weights of Evidence - WofE
• Data driven technique

– Requires training sites
• Statistical calculations are used to derive the 

weights based upon training sites.
• Evidence (maps) are generally reclassified 

into binary patterns.

Weights-of-Evidence Terms
• Weights for patterns

– W+ - weight for inside the pattern
– W- - Weight for outside the pattern
– 0 - Weights for areas of no data

• Contrast - a measure of the spatial 
association of pattern with sites

• Studentized Contrast - a measure of the 
significance of the contrast

Weights of Evidence
• Binary maps to define favorable areas

– Can use multi-layer patterns
• Measurements

– Area of study
– Area of Pattern
– Number of training sites
– Number of training sites inside the 

pattern

D

B

T

T=total study area                   D=deposit points

B=binary map pattern used as evidential theme
Bonham-Carter, personal comm. 2002

Preprocessing
Nominal Measurement Scale

• For example - Geological map
– select particular stratigraphic units or 

class
– generalize by reclassification
– extract and buffer boundaries between 

units
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Preprocessing
Continuous Measurement Scale

• Histogram transformations
• Physical properties processing
• Filter 

– separate anomaly/background
• Spatial interpolation (e.g. surfaces, krige)
• Logical combinations (merging, boolean, fuzzy 

logic)
• Summarize by zonal statistics

– separate anomaly/background
– define a residual
– multivariate analysis 

• principal components analysis and others

Overlay combination
• In vector

– create polygon overlay and associated 
PAT

– create unique conditions overlay and 
associated PAT

– Topological selections
• In raster

– superimpose grids

Application to Binary Evidence

1 2

1            50            8              0.8/0.5=1.6          ln(1.6)= + 0.47      

2            50            2              0.2/0.5=0.4         ln(0.4)= - 0.92      

Total       100          10                                     

Class      Area      #sites          Relative density        Weight

Expected Values of Weights
• If sites occur randomly,

– Relative density (RD)=1.0
– Weight (W) = ln(RD) =0.0

• If sites occur more frequently than 
chance
– RD > 1.0,  W  is positive

• If sites occur less frequently than 
chance
– RD < 0.0,   W is negative

Example – More Points Than Chance

N(T) = 1000 unit cells  (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 20 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 0.2980             W- = -0.4157           C = 0.7138

More points on theme than would be expected due to chance

B Not B

Bonham-Carter, personal comm. 2002

Example – Many More Points 

N(T) = 1000 unit cells  (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 28 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 0.6513         W- = -2.0414           C = 2.6927

Many more points on theme than would be expected due to chance

B Not B

Bonham-Carter, personal comm. 2002
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Example – Equal Pattern and Points

N(T) = 1000 unit cells  (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 15 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 0.0           W- = -0.0           C = 0.0

Number of points on theme equals that expected due to chance

B Not B

Bonham-Carter, personal comm. 2002

Example – Small Pattern and Many Points

N(T) = 1000 unit cells  (area of study region)

N(B) = 250 unit cells (area of theme B present)

N(B&D) = 20 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = 1.0338           W- = -0.8280           C = 1.8617

Many more points on theme than would be expected due to chance

B Not B

Bonham-Carter, personal comm. 2002

Example - Weights Undefined

N(T) = 1000 unit cells  (area of study region)

N(B) = 250 unit cells (area of theme B present)

N(B&D) = 30 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ = inf W- = -inf C = inf

Undefined: practical solution--assign fraction of point to (not B)

B Not B

Bonham-Carter, personal comm. 2002

Multi-class Themes

• Maps (themes) with unordered classes (categorical) 
e.g. geological map. Calculate weights for each 
class and then group classes (reclassify) as needed.

• Maps (themes) with ordered classes (contour maps 
e.g. geochemical or geophysical field variables). 
Usually calculate weights based on successive 
contour levels, cumulatively. Then reclassify.

Bonham-Carter, personal comm. 2002

Multi-class – Categorical Classes

N(T) = 1000 unit cells  (area of study region)

N(A)      = 250 ,         N(B)      = 500,        N(C)       = 250,

N(A&D)  = 23,          N(B&D)    = 4,        N(C&D)     = 3, 

N(D) = 30 (count of total number of training points)

W1 = 1.1866     W2 = -1.3442      W3 =-0.9347       Cmax =2.5308 

Three classes, e.g. rock types (categorical scale of measurement)

A B C

Bonham-Carter, personal comm. 2002

Inside

Pattern

Outside

Pattern

Ordered Classes - Cumulative
B1 B

2
B3B2 B3 B4 B5 B6 B7 B8 B9

N(Bi)   100      100      100      100 100       100      100      100      100

Cum    100      200      300      400 500       600      700      800      900

N(D)     12         11          7          5 1           1          1          1          1

Cum      12         23        30        35 36         37        38         39       40

W+     1.08      1.03     0.87     0.72 0.51      0.35     0.21      0.10        --

W- -0.25     -0.63   -1.01   -1.53 -1.53     -1.53    -1.53    -1.53        --

C         1.33      1.66    1.88     2.25 2.04      1.88      1.74     1.64        --
Bonham-Carter, personal comm. 2002

Inside

Pattern

Outside

Pattern
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Weights Calculations
• Choose a small unit cell – affects the prior 

probability but only a little on the weights
• Can have multi-class maps but often not enough 

training points to get stable weights.
– Use Studentized contrast to evaluate stability of 

weights.
• Contrast can be used to define optimal thresholds.

– Use Studentized contrast to evaluate stability of 
contrast.

• See Bonham-Carter, Agterberg, and Wright 
(1988) for equations (WofE_NovaScotia.pdf)

Bonham-Carter, 1996

Bonham-Carter, 1996

Contrast

DISTANCE, km

1 2 3 4 5 6

C

0.0

0.4

0.8

1.0 Maximum contrast at 
1.25 km.

Bonham-Carter, 1996

Inside

Pattern

Outside

Pattern

Bonham-Carter, 1996

Categorical-Weighting ReclassificationCategorical-Weighting Reclassification

-1.0-1.0

-0.5-0.5

0.00.0

0.50.5

1.01.0

1.51.5

2.02.0

2.52.5

3.03.0

LimestoneLimestone ShaleShale SandstoneSandstone SiltstoneSiltstone GraniteGranite BasaltBasalt

C (W+ - W-)
W+
W-
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n Inside Pattern

Outside 
Pattern

Modified from Mihalasky, 1999
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Handling Uncertainty
• Uncertainty due to weights – variance of 

weights.
• Uncertainty due to missing data – estimate 

of variance due to missing data
• Other measures of uncertainty?
• For Response Map can combine the various 

uncertainty measures to obtain a total 
variance.

• Studentized posterior probability (PP/s(PP)) 
can provide a useful measure of confidence.

More Evidence

• Most gold deposits occur close to anticlines
• Generate map showing distance to 

anticlines
• How many intervals? The robustness of 

weight estimates inversely proportional to 
number of intervals

• Can explore relationship of contrast for 
binary interval and “optimize” cutoff

Summary of Weights

• Geology               0.31   -1.24    -1.74    2.05
• Lake sed geochem 1.42    -0.38   1.80
• Anticlines                        0.56    -0.83   1.39  
• Au in vegetation              0.84    -0.29   1.13
• Geol contact(1)                0.37    -0.27   0.64
• Geol contact (2)               0.22    -0.04   0.26
• NW lineaments                0.04    -0.01   0.05 

CWEIGHTS

Bonham-Carter, 1996

Decisions for Weights of Evidence
• Define the study area
• Define the training set
• Select confidence level for contrast
• Select the evidential maps

– Use Contrast and Studentized Contrast to 
evaluate. 

– Reclassification (Binary or Multi-class)
– Thresholds maximum, minimum, or grouping 

of nominal classes
• These decisions define objective, binary 

reclassification
– Needed measurements: Area of study, Area of 

the pattern, Number of training sites, Number 
of training sites inside the pattern

Weights of Evidence
• Advantages

– Objective assignment of weights
– Multiple patterns combined simply
– Reclassification to optimize contrast gives 

insights into spatial relationships
– Deals with missing data
– Measures aspects of uncertainty that can be 

mapped
• Disadvantages

– Assumption of conditional independence
– Requires a training set of sufficient size.
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Logistic Regression Method

Graeme Bonham-Carter

Bonham-Carter, 1999

Introduction

• “Data-driven” method applicable where 
training set of mineral sites is available

• The response variable is dichotomous 
(binary), e.g. presence/absence of mineral 
site

• The explanatory variables (evidential 
themes) are ordered or dichotomous (not 
multi-class categorical).

Bonham-Carter, 1999

In ordinary regression, the response variable is 
continuous, unbounded and measured on an 
interval or ratio scale

In situations where the response variable is 
binary (present/absent) this causes a problem, 
because the predicted response must be in the 
interval [0,1].

The response variable can be assumed to be 
P(Y=1), from which we also know 
P(Y=0)=1-P(Y=1)

Bonham-Carter, 1999

The solution to the problem of forcing the 
response variable to be in the range [0,1] is to 
use the logit transform.

Logits = natural logs of odds

Odds = Probability/(1-Probability)

Logit(Y) =  b0 + b1X1 + b2X2 + b3X3 +…+ bkXk

Where the b’s are unknown coefficients and 
the X’s are the explanatory variables

Bonham-Carter, 1999

Logit(Y) =  b0 + b1X1 + b2X2 + b3X3 +…+ bkXk

Logit(Y) = Prior Logit + W1 + W2 + W3 +….+ Wk

Note that the b0 term in LR is comparable to the 
prior logit in WofE, and the b’s are comparable to 
the W’s. However, instead of 1 coefficient, there 
are 2 (or more) weights, depending on the number 
of classes. Therefore, the b’s are more comparable 
to the contrast values

Logistic Regression Vs. Weights of Evidence

(simultaneous solution of b’s)

(solution for W’s theme by theme, not simultaneous)

Bonham-Carter, 1999

Solution to Logistic Regression Equation

• The coefficients cannot be solved by 
ordinary least squares (a direct matrix 
inversion), because the equation is non-
linear

• The method of maximum likelihood is used 
to maximize the value of a log-likelihood 
function
– This requires an iterative solution

• So coefficients are obtained simultaneously 
without an assumption of conditional 
independence.
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Practicalities

• Can calculate the logistic regression 
coefficients using the same unique 
conditions table as for WofE
– Muti-class themes must be split into 

binary themes in unique conditions table.
• In ArcSDM deal with missing data and 

multi-class problem automatically.
• In Arc/Info does not deal with missing 

data and has another input format.

Problem of Missing Data
• Deleting all unique conditions with 

missing values in any of the evidential 
themes.

• Deleting themes that have missing data 
totally.

• Replacing missing values with zero, or 
some other constant.

• Replacing missing values with an 
expected value, e.g. area weighted 

mean

“Missing Data” Approaches

Used in Arc-SDM

Can then compare the results from weights 
of evidence to logistic regression

This is then a check on the effect of 
conditional dependence on the results of 
weights of evidence, although if missing 
data and multi-class categorical 
evidential themes have been used, then 
one cannot be absolutely sure what effect 
the recoding in logistic regression has on 
the results. 

Bonham-Carter, 1999

Compare ResultsCompare Results

• ArcSDM includes three techniques for 
comparing the results of different 
techniques:
♦ Spearman’s Area Weighted Rank 

Correlation
♦ Quantile-quantile plot
♦ Map of rank differences

Bonham-Carter, 1999

Compare ResultsCompare Results

Bonham-Carter, 1999
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Compare ResultsCompare Results
• Possible inputs:

♦ integer grid theme with numeric field(s)
♦ floating point grid theme

Bonham-Carter, 1999

Compare ResultsCompare Results
SpearmanSpearman’’s Rank Correlation and Rank Mappings Rank Correlation and Rank Mapping

• Arcview 3 - Classifies both variables into 
20 quantiles (ranks). ArcGIS – user 
specifies number of ranks

• Spearman’s Area Weighted Rank 
Correlation is calculated and written to a 
dBase file

• Map of rank differences generates a 
difference map, classifies and symbolizes 
it to show where the two input evidential 
themes are similar or dissimilar

Bonham-Carter, 1999

Compare ResultsCompare Results
SpearmanSpearman’’s Rank Correlations Rank Correlation

Bonham-Carter, 1999

Compare ResultsCompare Results
Map of Rank DifferencesMap of Rank Differences

Bonham-Carter, 1999

ArcGIS – User has to symbolize and 
specify number of classes

Compare ResultsCompare Results
QuantileQuantile--quantile plotquantile plot

• Sorts the values in each field or theme in 
ascending order

• if one variable has more observations than 
the other (for Arcview3), its values are 
interpolated so that there are equal number of 
values. ArcGIS: specify number of classes

• values are plotted as x and y coordinates

Bonham-Carter, 1999

Compare ResultsCompare Results
QuantileQuantile--quantile Plotquantile Plot

Bonham-Carter, 1999

Logistic Regression
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From Wright, 1996

SUMMARY
• Logistic regression can be compared to 

weights of evidence to check CI assumption
• The total expected number of deposits is 

usually slightly underestimated by LR 
(rounding?)

• In general the results of the two methods are 
similar in terms of ranks, except the WofE 
probabilities are usually higher than LR 
probabilities because of CI

Bonham-Carter, 1999

SUMMARY (2)

• ArcSDM will generate LR automatically 
(expanding the UC table for categorical 
themes and substituting area-weighted mean 
values for missing data) at the same time as 
running WofE, if desired

• Tools for comparing maps are provided

Bonham-Carter, 1999
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Carlin Demo

Gary Raines

Sept. 2001

Posterior Probability Classes
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Research Topics and New Tools

Gary Raines and Graeme Bonham-Carter
Winter 2005

Generalization of Evidence

Binary map of standard 
deviation classification

Binary map of 
quantile classification

Classification Sb Conc      
Method (ppm) Contrast W+ W- Stud C % Area 
Quantile 3.40 3.1693 0.5015 -2.6678 3.1236 58.8600 
Std Deviation 33.60 3.2155 2.8950 -0.3205 8.5593 1.6000 
Equal Interval 110.60 3.8993 3.7805 -0.1188 7.2529 0.2680 
Raw Antimony 121.00 4.0532 3.9341 -0.1191 7.5247 0.2300 
Natural Breaks 145.10 4.0347 3.9468 -0.0880 6.5866 0.1700 
 

Gene Lohrmeyer, written communication, March 2004

Binary map of natural 
breaks classification
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Neighborhood mean from 3x3 surface at various kernal sizes

Evidence from Geologic Maps

• Lithology
– Map Unit

• Rock Type
• Age

– Proximity to map unit
– Lithodiversity
– Lithotectonic package

• Structure
– Orientation
– Density
– Proximity
– Intersection
– Sinuosity

• Shape
• Topology

Shape Index
of

Nevada
Geologic Map
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Boulder Batholith Intermediate 
BandPass Magnetics

Boulder Batholith – Magnetic 
Anomaly by SA Method

Boulder Batholith – Fractal 
Dimensions of Magnetic Anomalies

Fractal Dimensions

Boulder Batholith Plutons

Variety – Neighborhood Statistic

Geology – Carlin area Variety of map units

Lithodiversity

R2 = 0.378

R2 = 0.3502
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Calculated

Expert Delineated

Permissive Tracts:

Calculated

Expert Delineated

Porphyry Cu & Related Deposits Tract MapPorphyry Cu & Related Deposits Tract Map
Calculated Overlain on Expert-Delineated TractsCalculated Overlain on Expert-Delineated Tracts

~89% Agreement ~89% Agreement 

500 km500 km

Porphyry Cu & Related Deposits Tract MapPorphyry Cu & Related Deposits Tract Map
Expert-Delineated Overlain on Calculated TractsExpert-Delineated Overlain on Calculated Tracts
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Calculated
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Cross Tabulations

PP2

World

78.911.588.5
16.03.613.2P
83.17.975.3NP

PNP
PP3

Expert

US

87.813.786.3
13.97.76.2P
86.16.080.1NP

PNP
PP3

Expert

US

83.516.783.3
13.97.06.8P
86.19.676.5NP

PNP
PP2

Conterminous U.S.

Gray – marginal sums

Red – Percent Agreement

NP – Nonpermissive area

P – Permissive area

PP2 – Exxon map

PP3 – Chorlton’s map

Kappa = 36.5 Kappa = 48.7

Kappa = 13.7

Spatial-Temporal Modeling

Cellular Automata

Further Reading
Toffoli, Tommaso, and Margolus, Norman, 1987, 

Cellular automata machines – a new environment 
for modeling: Mass., MIT Press, 259p.

What is a cellular automata?

• Cellular automata (CA) are defined by an 
array of cells.

• The state of each cell evolves by a simple 
transition rule, the automaton.

• Implementation of a CA in a GIS involves a 
summation filter with an if-then or logic 
rule. 
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How have CAs been used?

• Modeling evolution of cities
– Project Gigalopolis

http://www.ncgia.ucsb.edu/projects/gis/project_gig.htm

• Flow of lava
• Evolution of forest fires
• Physics – diffusion, Brownian motion, 

defraction
• Biology – life processes

Resource Thresholds
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http://www.ncgia.ucsb.edu/projects/gis/project_gig.htm
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Expansive Period
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Contractive Period
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