
AWRA 2003 Spring Specialty Conference                                                     May 12-14, 2003 
 

 

 
 
 
 
 

SUSCEPTIBILITY OF SURFACE WATER IN TEXAS TO NONPOINT SOURCE PESTICIDE 
CONTAMINATION 

 
William A. Battaglin, Randy Ulery, Toby Welborn, and Thomas Winterstein* 

 
ABSTRACT: Surface-water (streams and reservoirs) sources of public drinking-water supply (PWS) are susceptible to 
contamination from point and nonpoint sources. The Texas Commission on Environmental Quality (TCEQ) and the U.S. 
Geological Survey (USGS) developed a system for assessing the susceptibility of PWS source waters to the occurrence of 
227 contaminants. To accomplish these assessments for surface-water PWS’s, water-quality data at 323 USGS and TCEQ 
sampling sites are matched with GIS-derived basin characteristics data for the watersheds upstream from these sites. Logistic 
regression models are then used to estimate the probability that a particular contaminant will occur above a given threshold 
concentration. Once developed, these equations are used to estimate the probability of contaminant occurrence at PWS’s. For 
many of the 227 contaminants, either monitoring data or contaminant detections were insufficient to produce viable logistic 
regression models. Significant models were developed for 20 (32%) of the 64 contaminants classified as pesticides. 
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INTRODUCTION 
In Texas, surface water and ground water are used as sources of public drinking-water supply (PWS). The 1996 

Amendment to the Safe Drinking Water Act (U.S. Environmental Protection Agency, 2003) requires that each State prepare a 
source water assessment for each PWS. States are required to identify the drinking-water source, the potential contaminants 
of concern, and the intrinsic susceptibility of the source water. To help protect sources of drinking water and to develop 
protective and economically feasible water-supply monitoring strategies, the Texas Commission on Environmental Quality 
(TCEQ) and the U.S. Geological Survey (USGS) developed an automated system for assessing the susceptibility of PWS 
source waters to the occurrence of 227 contaminants. One component of this system is the assessment of susceptibility of 
surface-water PWS’s to contamination from nonpoint sources. This report presents susceptibility model results for a subset 
(64) of the 227 contaminants, those classified as pesticides. The results for the remaining contaminants will be available on-
line at http://co.water.usgs.gov/midconherb/html/texas.html. 

Texas Source-Water Assessment Project 
The automated system for assessing susceptibility of PWS source water to contamination enables TCEQ staff to (1) 

focus source-water protection efforts on the most susceptible PWS’s, (2) reduce monitoring costs, (3) help educate the public, 
and (4) identify land-management practices needed to protect source water. A PWS susceptibility assessment is composed of 
eight components (Ulery, 2000; also see http://www.tnrcc.state.tx.us/permitting/waterperm/pdw/swap/swavap.html): 
1. Identification Component - determine hydrologic attributes used to delineate the source area(s) for the PWS.   
2. Delineation Component - delineate PWS source area(s) from hydrologic attributes. 
3. Intrinsic Susceptibility Component – determine the intrinsic attributes (for example, soil erodibility) within PWS source 

area(s) that have the potential to make a PWS more or less susceptible to contamination.  
4. Nonpoint-Source Susceptibility Component – determine statistical relations between measured contaminants in surface 

water and environmental variables (for example, land use) within associated watersheds. In cases of limited or no 
data, susceptibility is assigned based on the frequency of contaminant detection. 

5. Point-Source Susceptibility Component – determine potential point sources of contaminants to the PWS. 
6. Area of Primary Influence Component - determine the density and proximity of potentially threatening activities or land 

uses and associated contaminants within the PWS source area(s). 
7. Contaminant Occurrence Component – determine contaminant detections (above TCEQ-threshold concentrations) at 

water-quality monitoring and finished water sites near the PWS.  
8. Susceptibility Summary Component – combine the first 7 components into a summary assessment for the PWS.  
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Surface-Water Nonpoint-Source Component - Pesticides 
The surface-water nonpoint-source component is addressed by investigating the relations between known pesticide 

occurrences in surface water and environmental variables, either natural or anthropogenic, within each of the contributing 
watersheds. In cases where monitoring data are sufficient, logistic regression models are developed to quantify these relations 
and to provide a means for extrapolation of results from monitoring sites to actual PWS intakes. In cases where monitoring 
data are not sufficient or pesticide occurrence is infrequent, the monitoring results are used to identify susceptibility of PWS 
to contamination in all areas of the State and not at specific PWS intakes.   

Surface-Water Sites and Water-Quality Data 
The USGS operates an extensive surface-water data-collection network in Texas, with more than 500 sites on rivers 

and reservoirs (Gandara and Barbie, 2001). For this investigation, 323 sites were selected to represent surface-water quality 
in the State of Texas. These 323 sites were selected because there was information about the occurrence of a least one of the 
227 target contaminants in water-quality data from the site. Most sites are at USGS gages, but some are PWS reservoirs, and 
others are sites sampled by TCEQ.  

Sixty-four pesticide compounds were evaluated in this study. All water-quality data associated with the 323 selected 
sites from the USGS and TCEQ databases were accumulated and merged into a single database of approximately 2 million 
values. A contaminant occurrence code was assigned to each site for each contaminant as follows: -1, the contaminant was 
never analyzed for at the site; 0, the contaminant was analyzed for but never detected at the site; 1, the contaminant was 
analyzed for and detected but always at a concentration less than the TCEQ threshold; and 2, the contaminant was analyzed 
for and detected one or more times at a concentration equal to or greater than the TCEQ threshold. This coding scheme 
transforms the raw concentration data into a format suitable for analysis by logistic regression. 

Watershed Characteristics Data 
Watershed characteristics data were quantified within the watersheds of the 323 sampling sites by using a 

geographic information system (GIS). Land-cover characteristics (U.S. Geological Survey, 2000), soils characteristics (U.S. 
Department of Agriculture, 1995), land and stream physiography (Brown et al., 2000), population density (U.S. Department 
of Commerce, 1990), oil and gas well density, agricultural chemical use, fertilizer use, and manure production estimates 
(Battaglin and Goolsby, 1994; Goolsby and others, 1999) were calculated for individual watersheds by overlaying basin 
boundaries on source datasets and summarizing the information.  Twenty-five land-use, 6 soils, 2 population (people and oil 
wells), 44 agricultural chemical use, 2 manure production, and 5 land and stream physiography variables were tested for 
potential use in the logistic regression models. Using logistic regression, variables not significantly related to pesticide 
occurrence can be identified and excluded from the models. The variables listed in table 1 are those that were statistically 
significant in one or more of the models of pesticide occurrence. 

Many of the watershed characteristics are related to or correlated with each other. For example, the percentage of 
high-intensity residential land in the 323 watersheds is correlated (r2 = 0.86) with population density in the watersheds. 
Including strongly correlated explanatory variables in multivariate statistical models can have undesirable consequences in a 
regression equation such as coefficients with unrealistic signs or unstable values (Helsel and Hirsch, 1992). For the results 
presented here, explanatory variables that were highly correlated (r2 = 0.7 or greater) were not allowed to appear in the same 
regression equation. 

 
Logistic Regression Models 

Logistic regression is a statistical technique that uses one or more explanatory variables to predict the probability of 
a categorical response. Logistic regression is well suited for modeling the probability or likelihood of the occurrence or non-
occurrence of some event (Hosmer and Lemeshow, 2000). Used primarily in medical research, logistic regression has been 
gaining popularity in environmental investigations (Battaglin and Goolsby, 1998; Nolan, 2001; Smith et al., 2001).  

The SAS statistical software system (use of trade names in this publication does not connote product endorsement 
by the USGS) was used to develop logistic regression models. Both the “Best” and the “Stepwise” model selection 
procedures were used to screen potential models. Neither the “Best” nor the “Stepwise” model selection procedures will 
prevent correlated explanatory variables from entering the models, so supervision of the process is required. Logistic 
regression equations for individual pesticides were compared based on model-fit statistics such as the Akaike information 
criterion, and the predictive abilities of the models were compared based on the Somers’ D measure of rank correlation 
between the observed and predicted responses, and by contingency tables analysis of predicted versus observed responses. 
The final logistic regression models should not be affected by multicollinearity among the explanatory variables because 
variables that were correlated (r2 = 0.7 or greater) were not permitted to appear in the same model. A logistic regression 
model was developed for a pesticide only if there were more than 50 sample analyses from a total of 32 or more sites, and the 
pesticide was detected in 15% or more of the samples. 
 



 

  

Table 2. Statistically significant explanatory variables in pesticide occurrence logistic regression models. 

Variable Definition 
P21 Percent land use 21 – low intensity residential 
P22 Percent land use 22 – high intensity residential 
P23 Percent land use 23 – commercial/industrial/transportation 
P41 Percent land use 41 – deciduous forest 
P42 Percent land use 42 – evergreen forest 
P43 Percent land use 43 – mixed forest 
P51 Percent land use 51 – shrubland 
P61 Percent land use 61 – orchards/vineyards 
P71 Percent land use 71 – grasslands/herbaceous 
P81 Percent land use 81 – pasture/hay 
P82 Percent land use 82 – row crops 
P83 Percent land use 83 – small grains 
P84 Percent land use 84 – fallow 
P85 Percent land use 85 – urban/recreational grasses 
P91 Percent land use 91 – woody wetlands 
P92 Percent land use 92 – emergent herbaceous wetlands 
P_ag Percent agricultural land – sum of p81, p82, p83, p84, p85, and p61 
P_clay Total clay content of soil expressed as percent clay in material less than 2 mm in size. 
P_drain Percent artificially drained agricultural land 
P_forest Percent forest land – sum of p41, p42, and p43 
P_org Total soil organic matter in percent by weight. 
P_urban Percent urban land – sum of p21, p22, and p23 
P_wet Percent wetlands – sum of p91 and p92 
Ala_use Alachlor use rate in kilograms per square kilometer 
Atr_use Atrazine use rate in kilograms per square kilometer 
BS Average basin slope in feet per mile 
DCPA_use DCPA use rate in kilograms per square kilometer 
Diuron_use Diuron use rate in kilograms per square kilometer 
Hydgrp Average soil hydrologic group  
Kfact Average soil total K factor  
MCS Main channel slope in feet per mile 
Perm Average soil permeability in inches per hour  
Pop_den Basin population density in people per square mile 
TDA Total drainage area in square miles 
Well_den Density of oil and gas wells in number per square kilometer 
 

RESULTS 
Two statistically significant logistic regression models were developed for 20 of the 64 pesticide contaminants. 

Pesticide occurrence was not modeled due to a lack of detections in the otherwise sufficient monitoring data (28 of 44 not 
modeled), the lack of monitoring data at 10% or more of the 323 sites (10 of 44), or the complete lack of monitoring data (5 
of 44). Logistic regression equations return an estimate of the probability (p) of pesticide detection above a particular 
threshold value. This probability value is used by the TCEQ to assign a PWS susceptibility rating as follows: 

 
If   p Pesticide  > 0.67   Susceptibility Rating = High 
If  p Pesticide > 0.33 but < 0.67  Susceptibility Rating = Medium 
If  p Pesticide  < 0.33   Susceptibility Rating = Low 
 
An example of the modeling results is given in equation 1 and figure 1. Equation 1 is the model used to predict the 

probability of simazine occurrence. This model suggests that the presence of residential land and pasture land is positively 
related to simazine occurrence, while evergreen forest land and woody wetlands are inversely related to simazine occurrence.  

 
P = [exp (-0.719 + 0.098*p21 + 0.052*p81 – 0.028*p42 - 0.463*p91) / 
       (1 + (exp (-0.719 + 0.098*p21 + 0.052*p81 – 0.028*p42 - 0.463*p91)]  (1) 

 
In figure 1, the top panel shows simazine monitoring data were available for model development; the bottom panel shows the 
simazine model results. On both the top and bottom panels, the pink areas are the parts of the State of Texas that were not 
covered by one of the 323 watersheds. The top panel shows where dissolved simazine occurred at least once at a 
concentration of 0.01 µg/L or greater (red), occurred but always at a concentration less than 0.01 µg/L (yellow), was analyzed 
for but not detected (blue), and was not analyzed for (gray). The bottom panel shows the modeled probability that simazine 
will occur at a concentration of 0.01 µg/L or greater, with red areas having a probability of greater than 0.67, yellow areas 



 

  

having a probability between 0.33 and 0.67, and blue areas having a probability of less than 0.33. There was monitoring data 
for simazine at 129 of the 323 sites with about 1,300 analyses.  

The complete table of model results is too large for this publication but can be accessed via the Internet at 
(http://co.water.usgs.gov/midconherb/html/texas.html). Figures like figure 1 for the other pesticides for which logistic 
regression models were developed are also available 
at this site. 
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Figure 1. Simazine monitoring data and results of 
logistic regression model estimating the probability of 
simazine occurrence at or above 0.01 µg/L in Texas 


