Fermentation Biotechnology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Industrially Robust Enzymes and Microorganisms for Production of Sugars and Ethanol from Agricultural Biomass

Location: Fermentation Biotechnology Research

Title: Energy crops for ethanol: a processing perspective

Authors

Submitted to: International Crop Science Congress Proceedings
Publication Type: Proceedings/Symposium
Publication Acceptance Date: April 18, 2008
Publication Date: May 1, 2008
Citation: Dien, B.S., Sarath, G., Pedersen, J.F., Vogel, K.P., Jung, H.G., Sattler, S.E., Casler, M.D., Mitchell, R., Cotta, M.A. 2008. Energy crops for ethanol: a processing perspective. In: Proceedings of the 5th International Crops Science Congress, April 13-18, 2008, Jeju Island, Korea. p. 1-5.

Technical Abstract: Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today¿s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has been estimated that enough perennial crops can be grown to supply 9¿23 billion gal of ethanol/yr ¿ assuming a yield of 60 gal/ton. However, further research is needed to understand the roles that agronomic practices and genetics play in affecting realizable ethanol yields. Biochemical conversion of biomass following thermo-chemical pretreatment is currently the leading technology for producing ethanol from these feedstocks. We compared a warm season grass (switchgrass), cool season grass (reed canary grass), and legume (alfalfa stems) for sugar production. To introduce further variation in this sample set, each species was harvested at 2 or 3 different maturities. Both species and maturity significantly affected carbohydrate content, composition, and sugar yields, indicating that looking beyond biomass yield may be important for determining feedstock suitability. We also evaluated the influence of plant genetics on ethanol yield. Over 100 samples of switchgrass were evaluated for ethanol yield by applying a low severity pretreatment assay. Xylose yields were positively correlated with xylan content as expected. However, ethanol yield could not be predicted by glucan content and was negatively correlated with acid detergent lignin content. More recently, a set of brown midrib lignin mutants of sorghum was likewise assayed for ethanol yield and, in this case, lignin composition was also found to negatively impact glucose yield. These results will be further discussed in the context of what can be done to further enhance the quality of energy crops for conversion to ethanol.

   

 
Project Team
Dien, Bruce
Cotta, Michael - Mike
Mertens, Jeffrey
Jordan, Douglas
Nichols, Nancy
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Biological Hydrogen Production from Biomass Sugars by Electrochemically-Assisted Hydrogen Production in Microbial Fuel Cells
 
Patents
  Method For Turning Plant Material Into Sugar For Producing Ethanol
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House