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AN IMPROVED TEMPERATURE FUNCTION FOR MODELING

CROP RESIDUE DECOMPOSITION

H. H. Schomberg,  G. R. Foster,  J. L. Steiner,  D. E. Stott

ABSTRACT.  Models like the Revised Universal Soil Loss Equation (RUSLE) and Revised Wind Erosion Equation (RWEQ) that
estimate erosion potential need good estimates of crop residue decomposition to evaluate changes in soil surface cover.
Decomposition is modeled based on climate and residue chemical characteristics as controlling factors. Crop–specific
decomposition coefficients account for differences in the chemical and physical properties of the residues. Temperature and
water functions relate climatic conditions in the field to optimum conditions. The models use a scaled temperature function
(TF) to relate monthly temperature to relative biological activity. The half–month time steps and monthly data used in RUSLE
and RWEQ result in the loss of temporal information about temperature effects. Use of average temperature or maximum and
minimum temperatures to estimate TF were compared with TF estimated as the integral from maximum to minimum for
monthly or daily data. The numerically integrated approach appeared to be more robust and was theoretically more appealing
than the two original approaches. However, because RUSLE and RWEQ have been developed for users with limited computer
resources, the integrated function was not considered appropriate. A system of equations for calculating TF on a monthly basis
was developed that captured the dynamic effect of daily temperatures but required less computation time than the integrated
method. Comparison to the original approach in RUSLE for estimating decomposition of wheat residues at several locations
in the U.S. indicates significant improvement in model performance. This system of equations should improve decomposition
estimates in monthly time step models and could be applicable to daily time step models and other biological processes.

Keywords. Revised Universal Soil Loss Equation, Revised Wind Erosion Equation, Crop residue decomposition.

he Revised Universal Soil Loss Equation (RUSLE)
and the Revised Wind Erosion Equation (RWEQ)
are used by government agencies, soil erosion
specialists, and researchers to predict soil

management  effects on potential soil erosion from water and
wind, respectively. Erosion potential is determined from
climatic conditions, soil erodibility, and land management
(Foster, 1991; USDA, 1996; Fryrear et al., 2000). These
models underwent significant improvements during the late
1990s through development of new relationships based on
modern erosion theory and new data. Because of the
empirical approaches used in RUSLE and RWEQ,
half–month time steps are used to capture seasonality of
erosion events and identify critical soil, management, and
climate interactions important for reducing erosion potential.
In addition, the models are designed for users with limited
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computer resources and to be relatively easy to learn and
quick to use.

An important management factor affecting soil erosion is
keeping crop residues on the surface to reduce raindrop
impact, slow runoff, increase infiltration, and decrease
surface wind speed. Emphasis on crop residue management
to meet soil conservation goals has increased the need to
accurately reflect the decomposition process in resource
planning software. As crop residues decompose, soil protec-
tion diminishes. Crop residue decomposition is generally
considered to be controlled by substrate quality and availabil-
ity (Meentemeyer, 1978; Parr and Papendick, 1978; Aber and
Melillo, 1982; Reinertsen et al., 1984; and others) and the
climatic factors of temperature and water (Stott et al., 1986;
Roper, 1985). Laboratory studies indicate that water and
temperature have a greater effect during early stages of
decomposition,  when easily utilizable compounds are readi-
ly available to microorganisms (Stott et al., 1986; Roper,
1985). Greater fluctuations in water and temperature, along
with reduced nutrient availability, adversely affect microbes
colonizing surface residue, thus slowing decomposition,
compared with incorporated crop residues (Brown and
Dickey, 1970; Douglas et al., 1980).

Water and temperature relationships must be evaluated
under a range of field conditions to determine their
applicability  to long–term prediction. Different approaches
in estimating temperature indices were identified as contrib-
uting to the disagreement in crop residue decomposition
estimation between RUSLE and RWEQ (Schomberg and
Steiner, 1997), but a clear indication of the “best” approach
for estimating temperature effects was not determined.

T
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Temperature effects on biological processes are best
modeled with data that reflect fluctuations relevant to the
process being modeled. Data with greater resolution than
might be used in actual modeling of a process can be helpful
in developing functions that more closely simulate tempera-
ture effects. Limitations to using high–resolution data for
running models include lack of appropriate data, long
computation times, and a desire to keep the model as simple
as possible. Temperature effects have been modeled with
functions that simulate daily, monthly, or even yearly mean
temperatures,  or with an interpolated time course of these
data (Lischke et al., 1997). Depending on the time step and
sensitivity of the process, each of these approaches results in
loss of information about temperature variability, particular-
ly diel variation. Processes that respond to temperature in a
nonlinear manner are more sensitive to the type of data used.
Overcoming the conflict between precision and manageabil-
ity requires methods to calculate physiological time as
precisely as needed using information from available input
data. The methods should be able to express temperature
effects from smaller to larger time scales (Lischke et al.,
1997).

The objective of this study was to develop an improved
approach for calculating a temperature function (TF) over a
range of environmental conditions for RUSLE and RWEQ.
In addition, we wanted to improve commonality and
agreement with the Water Erosion Prediction Project (Stott
et al., 1995) and the Wind Erosion Prediction System (Steiner
et al., 1995) models, which are based on a daily time step. We
compared the currently used approach of calculating TF from
maximum and minimum temperature (RWEQ) and from
average temperatures (RUSLE) with an integrated approach
using monthly and daily data simulated for 18 locations in the
U.S. (table 1). Using results from the integrated approach, we
developed a system for calculating TF using monthly
maximum and minimum temperatures that agreed closely
with estimates from daily maximum and minimum tempera-
tures. In addition, the new approach was developed within the

Table 1. Locations used for generation of temperature data with the
CLIGEN weather simulator, and simulated average January, July, and

yearly temperatures and the difference between maximum and
minimum temperatures for January and July (years = 30).

January July Year
Location Avg tmax–tmin Avg tmax–tmin

Year
(Avg)

St. Paul, Minn. –10.9 10.5 22.5 11.2 6.7
Portland Maine –5.8 10.6 19.9 11.1 7.2
Pierre, S.D. –9.2 12.1 23.7 15.4 7.9
Moscow, Idaho –2.3 7.6 18.6 19 8.3
Scotts Bluff, Neb. –3.2 13.1 23 16.7 9.2
Pomeroy, Wash. –0.7 9.6 21.2 18.6 10.3
Tooele, Utah –2.1 10.5 23.9 14 10.3
Jefferson City, Mo. –1.5 12.5 25.4 13.8 12.5
Baltimore, Md. 0.3 10 24.9 11.4 12.7
Vega, Texas 1.3 15.7 24.9 15.4 13.1
Holly Springs, Miss. 2.4 11.9 25.8 12 14.7
Siloam, Ga. 6.3 12.1 26.3 12.2 16.8
Button Willow, Cal. 7.1 12.1 27.3 18.4 17.2
Pascagoula, Miss. 9.7 10.9 27.8 9.1 19.7
Tucson, Ariz. 10.7 14.2 29.9 14.3 20.1
Homestead, Fla. 18.4 12.8 27 10.7 23.2
Yuma, Ariz. 13.6 13.6 34 14.8 23.4
Death Valley, Cal. 11.5 14.6 38.1 15.4 24.6

concept of minimizing run times and using simple ap-
proaches within the models. Development of the equations is
presented so that others may consider the approach in similar
models or where temperature functions need to be adapted
from hourly or daily time step models to longer time steps.

MODEL DESCRIPTION
In RUSLE and RWEQ, the mass loss of surface and buried

residues is predicted with the following exponential decay
function:

( ) timek einitial MassremainingMass ×−×=  (1)

where
Massremaining = estimated from initial mass
–k = crop–specific decomposition coefficient

that accounts for differences in chemical
and physical properties of residues

time = estimated for the period based on a
decomposition day approach, much like
growing degree days for crop growth
models.

Decomposition days for a period are estimated from
scaled climatic functions for water and temperature. Under
non–water limiting conditions, temperature is the controlling
climatic factor for residue decomposition. A temperature
function (TF) used by Stroo et al. (1989) to model wheat
(Triticum aestivum L.) residue decomposition was adopted
for use in RUSLE and RWEQ. The same equation is used in
the Water Erosion Prediction Project (Stott et al., 1995) and
the Wind Erosion Prediction System (Steiner et al., 1995),
which enhances commonality among the models. Biological
activity at field temperatures is related to activity under
optimal conditions using a relative scale of 0 to 1. When
temperatures are less than ideal, decomposition is reduced to
a fraction of the optimal rate. The function is:

( ) ( ) ( )

( )4

4222
TF

Aoptt

AtAopttAt

+

+−++
=  (2)

where
t = air temperature for the current period
topt = optimum air temperature for decomposition, and

determines where TF = 1
A = coefficient indicating the lower limit for microbial

activity, and the point where TF = 0.
RUSLE and RWEQ use A = 0³C and topt = 32³C, which

is slightly different from the values used by Stroo et al.
(1989). Applying these values to equation 2 results in:

432

422322
TF

tt −×=  (3)

Currently, RWEQ calculates TF from maximum and
minimum half–month (14, 15, or 16 d) temperatures and then
averages to obtain a TF value for the period, while RUSLE
uses average half–month temperature to calculate a TF value.
These two approaches result in significantly different TF
values depending on the numeric difference between the
maximum and minimum temperatures and due to the
nonlinear nature of equation 2 (fig. 1) (Schomberg and
Steiner, 1997).
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Figure 1. Daily values of the temperature function (TF) for Jefferson City,
Missouri, estimated from (a) daily average temperature, (b) daily maxi-
mum and minimum temperatures, and (c) hourly temperatures that were
integrated into a daily value.

METHODS
CLIMATE SIMULATIONS

Thirty years of daily maximum and minimum tempera-
tures were simulated with CLIGEN version 5.107 (USDA–
ARS, 2001; Nicks et al., 1995) for 18 locations across the
U.S. (table 1). Data were averaged to produce daily and
monthly maximum, minimum, and average temperatures,
which were then used to calculate TF for each day and month.
A 24–hr integrated value of daily TF was calculated for each
location assuming daily temperatures varied between maxi-
mum and minimum temperatures according to a sine
function, as follows:
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Figure 2. Graphical representation of the TF database developed for a
range of maximum and minimum temperatures differing by 0³C, 5³C,
10³C 15³C, and 20³C using the integrated temperature function.
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where
th = temperature for each hour (h)
tmax = maximum daily temperature
tmin = minimum daily temperature.
Next, equation 4 was substituted into equation 3 and

numerically integrated to estimate a TF value for each day
(TFintegrated). Data from CLIGEN (above) were used to
calculate TFintegrated for each location in table 1. Monthly
values of TFintegrated were calculated from monthly maximum
and minimum values using a time step of 30 instead of 24.
Monthly and daily values of TF and TFintegrated were used to
evaluate differences among the methods. Regression of TF
values against TFintegrated was used to determine the root
mean square error (RMSE), correlation coefficient (R2), and
coefficient of variation (CV) (SAS, 1989).

The comparisons indicated that an integrated TF provided
a better approach than the two original approaches. Run–time
limitations within RUSLE and RWEQ prohibited the use of
the integrated approach; therefore, a system of equations was
developed to capture the results observed with TFintegrated that
was consistent with the form of the original temperature
function (eq. 3). Equations for the new function (TF2) were
derived from TFintegrated values calculated from a synthetic
data set having a range of temperatures from –20³C to 40³C
with maximum and minimum temperature differences of
0³C, 5³C, 10³C, 15³C, and 20³C (fig. 2). Equations
developed for four subregions of the original TF equation
(eq. 3) were chosen and fit using a minimum of parameters.
Coefficients and exponents for equations were determined
using ordinary least–square fits with the MODEL procedure
of SAS ETS (SAS, 1988).

VALIDATION OF APPROACH
Data on mass loss of wheat residue from published

literature were used to compare the original TF approach in
RUSLE to the new TF2 approach for estimating decomposi-
tion. The same routines will be used in RWEQ and were not
included in this comparison. Data were selected from studies
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in Georgia, Texas, Indiana, and Oregon. Climatic data were
obtained from the publication authors. Decomposition in
field environments was measured as mass loss between
sampling periods for residues on the soil surface in the field.
Details of the studies can be found in Douglas et al. (1980),
Stott et al. (1990), Ford (1991), Schomberg et al. (1994),
Steiner et al. (1994), and Schomberg and Steiner (1997).
Comparisons were evaluated by regressing observed versus
predicted values and determining the R2, RMSE, and CV. In
addition, agreement between predicted and measured popu-
lation means and variances were evaluated with a paired
t–test for means and an F ratio test of variances. A
chi–squared test for lack of fit and an estimate of the accuracy
of prediction was determined using the procedures of Freese
(1960).

RESULTS AND DISCUSSION
COMPARISON OF TF FROM MAXIMUM–MINIMUM, AVERAGE,

AND INTEGRATED TEMPERATURES

The three methods of estimating TF produce visually
different results for the locations in table 1, as illustrated for
Jefferson City, Missouri (fig. 1). The TFintegrated values from
daily data were more similar to TF values calculated from
daily maximum and minimum temperatures than to TF
values calculated from average daily temperatures. When
compared against TFintegrated, the RMSEs, R2, and CVs were
0.11, 0.89, and 25.6, respectively, for TF values from daily
maximum and minimum temperatures and 0.15, 0.67, and
64.7, respectively, for TF values from daily average tempera-
tures. Figure 1a demonstrates the limited temperature
variability captured when using daily average temperatures.
Estimation of TF from daily maximum and minimum
temperatures introduces significant variation (fig. 1b) with
distinct upper and lower boundaries below and above the
inflection point of equation 3. The TFintegrated values (fig. 1c)
show a tighter distribution near the plot of equation 3 than for
TF from daily maximum and minimum temperatures
(fig. 1b) and are still restricted by the upper and lower limits
of the original temperature function. Conceptually, values
from TFintegrated should more closely reflect diurnal effects
because equation 4 integrates temperatures from maximum
to minimum for each 24–hr period. A greater dynamic
response for TFintegrated values is apparent near the upper and
lower range of the scale and is attributable to the magnitude
of the difference between maximum and minimum tempera-
tures (near 0 and 1, compare figs. 1a and 1c).

Results comparing the three estimates of TF from monthly
data for the 18 locations are similar to the results with daily
data (fig. 3). Again, monthly average temperatures produce
a smooth plot of equation 3, while temperature variation is
present when using maximum and minimum temperatures,
especially near 0 and 1, and as TF values decline beyond the
maximum TF value (fig. 3). Values of TF from maximum and
minimum data more closely agreed with daily TFintegrated
values than with monthly TFintegrated values. Surprisingly, TF
values estimated from maximum and minimum data and
those from average data compared similarly to monthly
TFintegrated. Plots of residuals for monthly TF estimates
indicated larger deviations from TFintegrated values below 0.20
and above 0.70, or the upper and lower portion of equation 3,
for both maximum and minimum and average data (data not

0.0

0.2

0.4

0.6

0.8

1.0

–10 0 10 20 30 40
Temperature Co

T
F

TFaverage
TFmax–min
TFintegrated

Figure 3. Monthly TF estimates for 18 locations in the U.S. using average
temperature (TFaverage), maximum and minimum temperatures (TF-
max–min), and an integrated value determined using temperatures from the
maximum to the minimum (TFintegrated).

presented). The integrated approach should more closely
represent temperature effects on residue decomposition, and
the greater similarity of results for monthly data reiterates the
loss of dynamics due to large time steps. Divergence from
TFintegrated by values estimated with equation 3 and average
or maximum and minimum temperatures appeared to be
related to the magnitude of the difference between maximum
and minimum temperatures. This was increasingly apparent
for values near the upper and lower ends of the function.

DEVELOPING A NEW METHOD TO CALCULATE TF (TF2)
The integrated approach would eliminate problems of

which type of data to use and problems in estimating TF at
the upper and lower limits of equation 3. However, the
integrated function was not appropriate for RUSLE and
RWEQ because of run–time limitations placed on subrou-
tines in the erosion models by the developers and users of
these models. A system of equations was developed that was
consistent with the original temperature function (eq. 3) and
captured the results observed with TFintegrated. Equations to
calculate the new temperature function (TF2) were devel-
oped with a synthetic data set and chosen to use a minimum
number of parameters based on the monthly maximum and
minimum temperatures. Four regions of the original function
were identified for equation development:

Region 1: the minimum critical temperature (tcritical) for
biological activity, below which no decomposition
occurs.
Region 2: from region 1 to the inflection point (tinflection)
of equation 3.
Region 3: from the inflection point of equation 3 to the
peak temperature (tpeak), where TF2 reaches a maximum
value.
Region 4: from the maximum TF value to an upper
temperature limit (40³C, the upper limit of temperatures
from the 18 locations used in the initial analysis).

Equations for regions 2 and 3 define TF2 for most of the
temperature range and subsequently were used in developing
equations for regions 1 and 4. The defining point between
regions 2 and 3 is the inflection point of equation 3, which is
determined by taking the second derivative, solving for the
temperature where this derivative is zero (18.48³C), and
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using this value in equation 3 to determine the corresponding
TF value (0.556). This point also served as the upper limit of
region 2. The TFintegrated values calculated for temperatures
below 18.5³C were used for fitting a relationship for region 2
(fig. 2) and for defining the lower boundary, which also
produces the defining criteria for tcritical (region 1). Separa-
tions between the lines in figure 2 represent the amplitude
between maximum and minimum temperatures. The follow-
ing equation represents region 2:

m

critical t.
critical taveraget

 a 










−

−
=

4818
TF2  (5)

where
taverage = average monthly temperature
a = upper limit of region 2 (0.556)
m = exponent defining the rate of ascent of the power

function.
The relationship for tcritical was based on the plotted data

(fig. 4), which indicated that the average temperature for the
lower limit of microbial activity declined as the difference
between maximum and minimum temperatures increased
and was described with the following equation (R2 = 1.0):

( )minmax50  tt.criticalt −=  (6)

An equation for m in equation 5 was developed based on
the change in TF2 associated with the magnitude of the
difference between maximum and minimum temperatures.
Data values below the inflection were used with equations 5
and 6 to determine values of m. Plots of m versus the
difference between maximum and minimum temperatures
indicated a quadratic relationship, as follows (R2 = 0.99):

( ) ( )2
minmax32.56minmax0.0751.79 ttEttm −−−+= −( )  (7)

Region 3 of TF2 extends from the inflection point to the
optimum temperature for microbial activity. The equation
derived to describe this region is:

( ) 71.1TF2TF2 averagetpeaktbpeak −−=  (8)

where
tpeak = average monthly temperature at the optimum

temperature (TF2peak)
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Figure 4. Change in the lower temperature limit for microbial activity
(tcritical) due to the difference between maximum and minimum tempera-
tures.

b = coefficient dependent on differences between
maximum and minimum temperatures.

It was observed from plots of the TFintegrated values (fig. 2)
that tpeak and TF2peak varied with the difference between
maximum and minimum temperatures. The data in figure 2
were used to plot this effect (fig. 5) and develop the following
equations describing change in TFpeak (R2 = 0.99) and tpeak
(R2 = 0.99):

( ) 98.1
minmax36.4332 ttEpeakt −−−= ( ) (9)

( ) 95.1
minmax45.311TF ttEpeak −−−= ( )  (10)

The coefficient b and exponent for equation 8 were
determined for equations 9 and 10 by fitting equation 8 to the
TFintegrated values for region 3. The exponent showed little
effect of temperature differences, while the relationship
between b and maximum and minimum temperatures (R2 =
0.98) was described with the following equation:

( )2
minmax62.23.00530 ttEb −− −= ( )  (11)

The convergence point between regions 2 and 3 (eqs. 5 and
8) varied due to the size of the difference between maximum
and minimum temperatures. Because the convergence point
varied from the hypothesized common point a (0.556), a
relationship was determined for a in equation 5 based on the
difference between maximum and minimum temperatures.
This relationship allows equations 5 and 8 to converge at a,
thus giving continuous values over regions 2 and 3 (R2 =
0.96). The equation for a is:

   ( ) ( )2
minmax54.01minmax46.96.5590 ttEttEa −−−−−+= ( )  (12)

For region 4, the following equation was used to describe
the decline in TF2 for temperatures above the optimum for
microbial activity:

( )n
peaktaveragetcpeakTFTF2 −−=  (13)

where c is a coefficient, and n is an exponent. This equation
has the important properties of TF2 equaling TFpeak at the
temperature where taverage equals tpeak and having a zero slope
at tpeak. The TFintegrated values for temperatures above TFpeak
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Figure 5. Change in the maximum TF value (TFpeak) and the peak temper-
ature (tpeak) due to the difference between maximum and minimum tem-
peratures.
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Figure 6. Graphical representation of the new temperature function
(TF2) values calculated using the developed system of equations for a
range of maximum and minimum temperatures differing by 0³C, 5³C,
10³C, 15³C, and 20³C.

Table 2. Comparison of methods for estimating TF from monthly data
to TFintegrated  estimated using daily or monthly data

for the 18 locations in table 1.
TFintegrated

Daily[a] Monthly

Monthly RMSE[b] R2 CV RMSE R2 CV

TFaverage
[c] 0.039 0.986 9.22 0.028 0.993 6.77

TFmax–min
[d] 0.023 0.993 5.60 0.028 0.989 6.85

TFintegrated 0.013 0.998 2.89 –– –– ––
TF2[e] 0.017 0.996 4.07 0.017 0.996 4.44
[a] Daily TFintegrated values were averaged for each month prior to the analy-

sis.
[b] Root mean square error (RMSE), correlation coefficient (R2), and coeffi-

cient of variation (CV).
[c] TFaverage is calculated from average temperatures for the month.
[d] TFmax–min is calculated from monthly maximum and minimum tempera-

tures and then averaged for a single monthly value.
[e] TF2 is calculated from the series of equations using monthly data.
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Figure 7. Monthly TF estimates for 18 locations in the U.S. using average
temperature (TFaverage), integrated temperatures from the maximum to
the minimum (TFintegrated), and maximum and minimum temperatures us-
ing the developed system of equations (TF2).

were used with equation 13 to develop the following
equations for c(R2 = 0.96) and n (R2 = 0.99):

( )2
minmax62.42.00350 ttEc −−−= ( ) (14)

( ) 14.5
minmax81.83.172 ttEn −−+= ( ) (15)

EVALUATING THE DERIVED FUNCTION TF2
Values of TF2 calculated with the synthetic database were

compared to results from TFintegrated (fig. 6). The values are
nearly identical (compare figs. 2 and 6). Values of TF2 for the
18 locations in table 1 agreed closely to values estimated with
TFintegrated, as indicated by the small RMSE and CV and the
large R2 (table 2). When TF2 was compared to the two
original methods of calculating TF, results were similar to
those of comparing these two methods to TFintegrated. A close
agreement between TF2 and TFintegrated is apparent from the
plot of TF values for the 18 locations (fig. 7).

Estimates of wheat residue decomposition using TF2 and
the original TF method in RUSLE were compared for several
locations in the U.S. The decomposition coefficient for wheat
from RUSLE of –0.008 was used for estimating mass
remaining over time. Published data from different environ-
ments can be difficult to use for this type of comparison
because of variations in collection techniques, residue
quality, and management practices (Christensen, 1986; Stott
et al., 1990; Stroo et al., 1989; Douglas and Rickman, 1992).
However, results of the evaluation indicate a small improve-
ment in prediction accuracy with the TF2 approach. Plots of
measured versus estimated mass remaining are presented in
fig. 8. A paired t–test of the means and an F ratio of the
variances (comparing observed to predicted) indicated closer
agreement to the observed data with the TF2 approach (data
not shown). For both TF and TF2, the predicted population
means and variances were significantly greater than those of
the observed data. Regression of TF and TF2 predicted values
vs. observed values indicated a more negative intercept
(–26.9 vs. –12.7) and greater slope (1.17 vs. 1.02) for the TF
approach compared to the TF2 approach (fig. 8). Trends
away from a one–to–one line could be influenced by other
components used in the estimation of mass remaining
(i.e., the water function and decomposition coefficient for
wheat), as well as errors in the actual measurements.

The chi–squared value for goodness of fit indicated
significantly different populations for TF2 and TF compared
to the measured data, but the chi–squared value for TF2 was
numerically smaller than that for TF (274 vs. 482, respective-
ly). An estimate of agreement between predicted and
observed data was determined from the chi–squared accura-
cy approach of Freese (1960). A non–significant chi–squared
value (indicating similar populations) is obtained when the
acceptable  accuracy was set at µ32% mass remaining for TF
and µ25% mass remaining for TF2, indicating improved
predictions with TF2. Decomposition coefficients (K values)
were fit to the field data with both approaches to determine
how much different these data might be from the data used
in developing the original decomposition coefficient in
RUSLE. The new values were –0.0041 and –0.0048 for TF
and TF2, respectively. These values are nearly half of the
currently used value of –0.008 and indicate the variability
present in field data originating from different climates and
residue resources. The TF2 function appears to be an
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Figure 8. Measured versus estimated mass remaining (%) for wheat residue estimated with RUSLE using the original TF and newly developed TF2.
Residual plots are for the same data, indicating the difference between measured and estimated values.

improvement over the original TF used in RUSLE, based on
the closer agreement between measured and predicted mass
remaining for the field data.

SUMMARY AND CONCLUSIONS
Our analysis indicated that the current approach of using

monthly average or maximum and minimum temperatures
does not capture temperature dynamics because of the
averaging process and could be improved with a more
numerically based function. A system of equations was
developed that produces results similar to integrating the
temperature from maximum to minimum using monthly data
but requiring less computation time than the integrated
method. The results are also similar to those estimated with
an integrated function using daily data. The new approach
(TF2) provides a better estimate of temperature effects on
residue decomposition for long time steps like those used in
RUSLE and RWEQ. The system of equations could be used
to improve decomposition estimates in other monthly time
step models and could be applicable in daily time step
models. Our approach to developing the equations could be
used to develop similar relationships for temperature or other
effects in biological process models.
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