

Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

By Aaron J. Slowey,¹ James J. Rytuba,² Roger L. Hothem,³ and Jason T. May⁴

2007

Open File Report 2007-1132

U.S. Department of the Interior U.S. Geological Survey

¹ Research Chemist, Geology Discipline, 345 Middlefield Rd, MS 901, Menlo Park, California 94025; aslowey@usgs.gov; 650 329-5474.

 ² Research Geologist, Geology Discipline, jrytuba@usgs.gov
 ³ Research Wildlife Biologist, Biology Discipline, roger_hothem@usgs.gov

⁴ Aquatic Ecologist, Water Resources Discipline, jasonmay@usgs.gov

U.S. Department of the Interior

DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Menlo Park, California 2007

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Suggested citation:

Slowey, A.J., Rytuba, J.J., Hothem, R.L., May, J.T., 2001, Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, sediment, water, and biota, 2003-2004: U.S. Geological Survey Open-File Report 2007-1132, 60 p. [http://pubs.usgs.gov/of/2007/1132/]

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Contents

List of Tables	iv
List of Figures	iv
Executive Summary	v
1. Introduction	1
1.1 Background	1
1.2 Geology and Mining History	1
1.3 Transport and biogeochemistry of mercury in mine waste-contaminated sediments	2
2. Sample Locations and Methods	4
2.1 Sample Locations and conditions	4
2.2 Sampling	4
2.2.1 Dry sediment and tailings	4
2.2.2 Wet sediment and tailings	5
2.2.3 Water	5
2.2.4 Biota	6
2.3 Analytical Methods	8
2.3.1 Sediment and tailings	8
2.3.2 Waters	9
2.3.3 Biota	9
2.4 Geochemical Modeling	10
3. Results	10
3.1 Tailings and Dry Sediment at OHE Mine	10
3.2 Water and Sediment in James Creek and the Tributary Draining the OHE Mine	12
3.2.1 Mercury and monomethyl mercury	12
3.2.2 Geochemistry of James Creek water and OHE drainage	17
3.3 Biota	
3.3.1 Invertebrates (Hg _T and organic mercury)	
3.3.2 Frogs (Hg _T)	23
3.3.3 Fish (Hg _T)	23
3.3.4 Trophic transfer of mercury	27
4. Conclusions	27
5. References	
Appendix 1. Thermodynamic modeling results	A1

List of Tables

List of Figures

Figure 1. Location of Oat Hill Extension Mine and other mercury mines in the James Creek
watershed. Locations of water and sediment samples taken in James Creek, Tributary 1 that
drains the Oat Hill Extension Mine area, and the spring at the mine
Figure 2. Location of sample sites of tailings and sediment at the Oat Hill Extension and water
and sediment samples in James Creek and Oat Hill Extension tributary
Figure 3. Overview of tailings pile at the Oat Hill Extension. Note drainage channel containing
barrels in central part of photo is shown in detail in Figure 122
Figure 4. Remains of brick retort at Oat Hill Extension location of sample 23OE112
Figure 5. Historic placer mining of cinnabar using a rocker in James Creek below the Oat Hill
Mine tailings
Figure 6. James Creek location JC1 upstream of OHE drainage sampled for biota in Spring and
Autumn 2004
Figure 8. Sampling location JC2 on Tributary 1, spring 2004. The drain was dry in the Autumn
sampling period, and no samples were collected7
Figure 9. Wetland area near Oat Hill Extension Mine (OHE1, Fig. 2) sampled for biota in Spring
and Autumn 2004

Figure 13. James Creek at water, sediment and biota sample site 04JC1. Iron staining on rocks in creek results from precipitation of iron (hydr)oxide from the Corona and Twin Peaks mines.

1J
Figure 14. (a) James Creek at sample site 04JC1. Sediment consists of medium to coarse sand
and fine silt to clay sizes, the latter containing iron (hydr)oxides derived from Corona and
Twin Peaks mine drainage. (b) Cinnabar present in panned concentrate from this location.15
Figure 15. Average methylmercury concentration (µg/g, wet wt.) in larval dragonflies (Odanata)
from 42 Sierra Nevada sites, 1999-2002, compared with selected water striders from the Oat
Hill/James Creek study area, 2004
Figure 16. Average methylmercury concentration (µg/g, wet wt.) in adult waterstriders
(Gerridae) from 74 Sierra Nevada sites, 1999-2002, compared with selected water striders
from the Oat Hill/James Creek study area, 2004
Figure 17. Log ₁₀ transforms of Hg _T (ppm, wet-weight basis) in Rainbow Trout and California
Roach ([Hg]) compared to log ₁₀ transforms of total fish body length in mm (L). See text for
an explanation as to why the data were log-transformed. The results of the regression
analysis includes the squared correlation coefficient R ² which denotes the proportion of
variance of Hg accounted for by length and analysis of variance (ANOVA) significance
tests in which the F ratio statistic evaluates the probability that a relationship this strong
could be made by chance, as is more fully explained in the text

Executive Summary

The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed *Drainage A* and *B*) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed.

The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, Hg_T) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L Hg_T measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (*Drainage A*; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an appreciable source of sulfate and carbonate to

James Creek, because the spring water was enriched in sulfate (130 mg/L) and carbonate (430 mg/L as CaCO₃) compared to James Creek water (70 to 100 mg/L SO₄²⁻ and 110 to 170 mg/L as CaCO₃) at the time of sampling. Concentrations of mercury in active channel sediment from James Creek are variable and potentially high, on the basis of chemical analysis (2.5 to 17 μ g/g-wet sediment) and easily visible cinnabar grains in panned concentrates.

Average (geometric mean) organic mercury (presumably monomethyl mercury (MMHg); §2.3.3) concentrations in several invertebrate taxa collected from the James Creek watershed locations were higher than invertebrates taken from a Northern California location lacking a known point source of mercury. The mean proportion of MMHg to total mercury in James Creek predatory insect samples was 40 percent (1 standard deviation = 30 percent); only 40 percent of all insect samples had a MMHg/Hg_T proportion greater than 0.5. The low proportions of MMHg measured in invertebrates in James Creek and the presence of cinnabar in the creek suggest that some invertebrates may have anomolously high Hg concentrations as a result of the injestion or adhesion of extremely fine-grained cinnabar particles.

Interpretation of Hg_T in frogs and fish as an indicator of mercury reactivity, biouptake, or trophic transfer is limited, pending MMHg measuremens, by the possibility of these whole-body samples having contained cinnabar particles at the time of analysis. To minimize this limitation, the gastrointestinal tracts and external surfaces of all amphibians, where cinnabar most likely resides, were carefully flushed to remove any visible particles. However, extremely fine-grained, invisible, adhesive cinnabar particles likely exist in the amphibians' habitats.

Hg_T in foothill yellow-legged frogs collected from the James Creek study area, ranging from 0.1 to 0.6 μ g/g Hg, was on average twice that of an extensive database compiled from Hg_T in frogs studied throughout Northern California. Average concentrations of Hg_T in frogs from James Creek were similar upstream (0.18 μ g/g) and downstream (0.15 μ g/g) of the confluence with Tributary 1 and at the lower Corona Mine adit drainage (0.14 μ g/g). Frogs may be susceptible to trophic transfer of MMHg from invertebrates, but further study is required to rule out cinnabar 'contamination.'

 Hg_T concentrations in rainbow trout collected from James Creek upstream and downstream of Tributary 1 averaged 0.10 µg/g and 0.13 µg/g, respectively. Compared to invertebrates, trout Hg_T was less variable, suggesting that trout were less contaminated with cinnabar. California roach had significantly higher Hg_T on average than trout (0.16 vs. 0.12 µg/g), and can be considered moderately contaminated compared to the same species from other sites in Northern California, which average 0.12 µg/g Hg.

While limited measurements of mercury in water, sediment, and fish exceed, in some samples, predefined ecologically protective criteria for mine-impacted California systems, they do not clearly demonstrate that the biota residing in James Creek in the vicinity of the OHE are ecologically impaired. The potential for ecological impairment is clearly evident from invertebrate methyl mercury results and may manifest in other biological ecosystem residents that have yet to be studied (e.g., piscivorous birds). Methyl mercury concentrations in flowing water and sediment from James Creek and the tributary that drains the OHE are relatively low, ranging from 0.04 to 0.08 ng/L, although these data should be cautiously interpreted (see § 3.2).

While the results of this investigation suggest that the OHE contributes inorganic mercury to James Creek, they do not indicate the extent to which the OHE site is ecologically impairing biota relative to other sources of mercury. Improved sampling and analytical methods are recommended for future study.

1. Introduction

1.1 Background

The Oat Hill Extension (OHE) Mine is one of several mercury mines in the East Mayacamas mining district that produced mercury from the early 1870s until 1944 (U.S. Bureau of Mines, 1965). This mine produced an estimated 1,000 flasks of mercury, whereas the larger neighboring Oat Hill Mine produced 165,000 flasks of mercury over a similar period. The Oat Hill and nearby Corona and Twin Peaks mercury mines are located on private land in the upper part of the James Creek watershed (Fig. 1, appended). The OHE is located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize mercury and other chemical constituents in tailings, sediment, water, and biota at the OHE Mine and the tributary of James Creek that drains the mine area (Fig. 2, appended) relevant to recognizing impairment of biota. This report summarizes data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed.

1.2 Geology and Mining History

The mercury ores in the Mayacamas mining district occur in greywacke (sandstone) of the Franciscan Formation at the Oat Hill and OHE mines, and in silica-carbonate altered serpentinite at the Corona and Twin Peaks mines. The sandstone has been hydrothermally altered primarily to kaolinite and quartz in the mineralized area. Cinnabar (alpha-HgS) is the primary ore mineral and usually occurs in association with pyrite (FeS₂). Calcite and quartz veins are present in the altered sandstone and locally contain cinnabar. Elemental sulfur is present in the upper part of the Oat Hill deposit that, along with kaolinite alteration, indicates that the mercury was deposited in the steam-heated environment above the paleo-groundwater table.

Mercury ores at the OHE mine were mined from the eastern extension of veins and mineralized fault zones of the Oat Hill mine. Thus, the ore grades were likely similar at both mines, although specific information for ore grades at the OHE are not available. Ore grades at the Oat Hill mine ranged from 0.75 to 1.0 percent, with grades as high as 2 percent during the early years of mining. Because of poor mercury recovery from the ore, both the waste rock and tailings, containing as much as 0.16 percent mercury, were locally reprocessed at both the Oat Hill and OHE Mine.

Material from mine waste piles was brought from the Oat Hill mine to the OHE property and reprocessed using a trommel (rotating sieve) and concentrating tables. During this concentration process, oversized fragments from the trommel were discarded to a waste pile and undersized fragments¹ were sent to a concentrating table where the cinnabar was removed, and the waste sent to a tailings pile (Fig. 3) (U.S. Bureau of Mines, 1965). Because the material was not processed in a retort or furnace, the tailings from this process are unusual. Only the cinnabar

¹ There is no record indicating that additional crushing occurred prior to cinnabar removal.

concentrate was processed in a one-pipe retort (Fig. 4). As a result, only a minimal amount of calcine generated from the retort was disposed of in the tailings pile.

Figure 3. Overview of tailings pile at the Oat Hill Extension. Note drainage channel containing barrels in central part of photo is shown in detail in Figure 12.

Mercury contamination of James Creek by cinnabar from the Oat Hill and OHE mines is substantial. Erosion down steep slopes of waste rock, tailings,

and other mine waste at the Oat Hill and OHE seasonally replenished placer cinnabar deposits in James Creek (Yates and Hilpert, 1946). Some of the cinnabar from these deposits was recovered using a rocker (Fig. 5) and other placer mining techniques within a distance of 3 km downstream from the Oat Hill mine area.

Figure 4. Remains of brick retort at Oat Hill Extension location of sample 230E11.

1.3 Transport and biogeochemistry of mercury in mine waste-contaminated sediments

The transport of mercury from mercury mine waste materials, including waste rock and calcines, is usually dominated by $HgS_{(s)}$ colloids (Conaway *et al.*, 2004; Kim *et al.*, 2004; Slowey *et al.*, 2005a; Whyte and Kirchner, 2000). In addition, more soluble forms of mercury

are released, a fraction of which is adsorbed to particles.² During fluvial transport, $HgS_{(s)}$ remains in sediments and soluble mercury may accumulate by binding to organic-rich material in sediments. Investigations at other sites by the authors have found evidence of anaerobiosis where plant roots trap sediment. While plant roots stabilize sediment at these locations, plant litter

² Speciation measurements by Kim et al. (2004) of a calcine sample at the Oat Hill mine found it to contain 940 ppm total Hg, consisting of (in order of increasing expected solubility) 60 percent cinnabar (alpha-HgS), 10 percent each of coderoite (Hg₃S₂Cl₂) and terlinguite (Hg₂OCl), and 20 percent HgCl₂.

Figure 5. Historic placer mining of cinnabar using a rocker in James Creek below the Oat Hill Mine tailings.

provides organic matter, enhancing microbial activity. In sulfate-rich water, sulfide production has been observed in this type of environment, presumably due to the activity of sulfate-reducing bacteria (SRB). Some species of SRB are known to methylate mercury in freshwater sediments

(Benoit *et al.*, 2003; Gilmour *et al.*, 1992). The abundant iron present in James Creek³ also likely affects the transport and biogeo-chemistry of mercury.

Fe(III)-(hydr)oxide formed from pyrite weathering or microbially mediated Fe(II) oxidation is often fine-grained with high surface area (Banfield *et al.*, 2000; Gilbert and Banfield, 2005; Kappler and Straub, 2005; Nordstrom and Southam, 1997). The properties of these types of particles are relevant in at least three respects to the reactivity of inorganic mercury (including its propensity to be methylated):

- (1) Hg(II) will adsorb to Fe(III)-(hydr)oxide (Barrow and Cox, 1992),
- (2) Fe(III)-(hydr)oxide will readily react with sulfide, and
- (3) bacteria can metabolically reduce Fe(III), potentially releasing sorbed Hg(II) into solution.

Some Fe(III)-reducing bacteria have also been found to methylate mercury (Fleming *et al.*, 2006; Kerin *et al.*, 2007). Geochemical reactions between Fe(III)-(hydr)oxide and sulfide appreciably affect the reactivity of HgS_(s) under anaerobic conditions, because sulfide oxidation by Fe(III) can result in the formation of polysulfide ions (Poulton *et al.*, 2004; Pyzik and Sommer, 1981; Slowey and Brown Jr., 2007), which can increase the solubility of HgS_(s) by up to three orders of magnitude (Jay *et al.*, 2000; Paquette and Helz, 1997) and make more mercury (initially as aqueous Hg(II)-polysulfide complexes) available for methylation (Benoit *et al.*, 2001; Jay *et al.*, 2002). The aqueous chemistry of polysulfide has been studied more to understand the diagenesis of iron and sulfur in sediments (Rickard and Morse, 2005).

Estimating the methylation potential of a system that has an abundant source of inorganic mercury such as James Creek is limited in part by the extent to which potentially relevant biogeochemical processes have been investigated and understood. Discussion of the results of

³ Since 2003, reductions in discharge of iron (hydr)oxide from the Twin Peaks and Corona mine sites through trench and settling basin construction has noticably reduced the amount of iron (hydr)oxide in James Creek, based on observations in January and March, 2007.

this investigation explains how a sampling program may under-represent methylation potential in the absence of information on biogeochemical processes associated with methylation.

2. Sample Locations and Methods

2.1 Sample Locations and conditions

Samples were collected to assess the concentration of mercury and other potentially relevant chemical constituents in tailings at the OHE Mine, and in sediments, waters, and biota in James Creek and the unnamed tributary to James Creek that drains the mine area, here termed *Tributary 1*. Samples of tailings and sediments at the OHE Mine were collected on October 17, 2003. Water, sediment, and biota from James Creek and Tributary 1 were sampled on May 20, 2004, during early summer base stream-flow conditions. Flow measurements were not made at the time of sampling and, to our knowledge, no gage is present in the James Creek watershed. During both sampling times, the weather was stable and no precipitation occurred. Field sites are shown on Figure 1 and 2 and listed and described in Table 1. The geographic coordinates in Table 1 were obtained in the field using a hand-held global positioning system referenced to the NAD 27 datum.

Sample ¹	Latitutde	Longitude	Description
04JC1	38.66965	122.5178	James Creek above confluence with Oat Hill Extension drainage (<i>Tributary</i> 1).
04JC2	38.67013	122.5142	Tributary 1 at confluence with James Creek.
04JC3	38.66988	122.5127	James Creek water below confluence with Tributary 1.
040HE1(S)	38.67857	122.5177	OHE drainage (Drainage B) to Tributary 1 (spring water).
230E12	38.67910	122.51814	OHE tailings above adit (upper tailings)
230E13S	Near	OE12	Sediments near upper tailings
230E1 through 9	Near	OHE1	OHE tailings or, with an 'S' suffix, sediments
230E11	Near	OHE1	Sample of retort brick
230E14	38.67752	122.51819	OHE office site (background soil sample)
CRN-D/U	38.67077	122.5369	James Creek up & down-stream of lower Corona Mine adit

Table 1. Sample locations and descriptions. See Fig. 1 and 2 for maps illustrating these locations and their hydrological relationship. Coordinates are based on the NAD 27 datum.

Notes: (1) 04 indicates samples taken in 2004; JC = James Creek; OHE = Oat Hill Extension Mine site.

2.2 Sampling

2.2.1 Dry sediment and tailings

Visually representative, 100 to 500 g samples of tailings were collected from the OHE tailings pile after removing the upper 2 cm of exposed tailings. Tailings were also sampled along Drainage A where exposed in vertical sections along the channel. Up to 500 g of air-dried tailings were placed in trace-metal free certified borosilicate glass jars with Teflon-lined caps (I-CHEM Series 300). Grab samples of dry sediment consisting primarily of transported tailings (on the basis of visually similar composition and grain size) were similarly collected and stored. Most sediment clasts larger than coarse sand size (2 mm) were discarded.

2.2.2 Wet sediment and tailings

Grab samples of wet sediments were collected for total mercury (Hg_T) and monomethyl mercury (MMHg) analysis at three James Creek locations and in Tributary 1 (Figs. 1 and 2). On May 20, 2004, sediment samples, which consisted of silt and fine to medium sand-size particles, were taken from the active channel of the creek into 100-mL polycarbonate jars. Samples were stored in coolers with ice immediately after collection and frozen upon return from the field within four hours after collection until shipped to the analytical laboratory. Samples were shipped with blue ice packs and arrived at the analytical lab at 15°C, which is warmer than recommended for MMHg analysis (Bloom, 2001; USEPA2002). Once at the laboratory (May 24, 2004), sediment samples were frozen again until processed.

2.2.3 Water

Spring and stream water samples were collected with new 60-mL sterile polypropylene syringes at the same time as sediments were collected on May 20, 2004. Bulk water samples were subsampled for analysis of metals and metalloids [to be referred to hereafter using the shorthand metal(loid)s] and anions. Subsamples for metal(loid)s determinations were acidified to pH<2 with trace metal (*Ultrex*, J.T. Baker)-grade HNO₃ and stored in acid-washed, high-density polyethylene (HDPE) bottles. Subsamples for anion and alkalinity measurements were filtered, stored in HDPE bottles, and chilled to approximately 4°C until analysis, in accordance with U.S. Geological Survey protocols (http://pubs.water.usgs.gov/twri9A). Water samples for analysis of anions alkalinity, and ICP-MS and ICP-AES analysis were filtered in the field with 0.45 μ m, 25-mm sterile cellulose acetate syringe filters. Field method blanks were collected for one site by processing deionized water according to the same procedures used for field samples (except for alkalinity).

Water parameters including pH, conductivity, and temperature were measured in the field with a Orion Model 290 pH meter equipped with a temperaturecompensated electrode and an Orion Model 120 conductivity meter.

Samples for Hg_T and MMHg analyses were obtained separately from the same location in James Creek and Tributary 1 in 1-L borosilicate bottles with no headspace using Teflon-lined caps (I-CHEM Series 300) following ultra-clean sampling and handling protocols (Bloom, 1995). Samples were kept on ice at approximately 5°C until analysis.

Figure 6. James Creek location JC1 upstream of OHE drainage sampled for biota in Spring and Autumn 2004.

Figure 7. James Creek location JC3 downstream of Oat Hill Extension mine drainage sampled for biota in Spring and Autumn 2004.

2.2.4 Biota

Biological samples were collected from five sites in the James Creek the Oat watershed at Hill Extension mine area based on suspected Hg contamination and the presence of appropriate study organisms. Locations on James Creek upstream (JC1), above the confluence (JC2), and downstream (JC3) of Tributary 1 (Figs. 2, 6, and 7) and a small

wetland area formed by a spring at location OHE1 (Figs. 1, 2 and 9) were sampled along with water and sediment on May 20, 2004. JC1, JC3, OHE1 and a location where lower Corona Mine⁴ adit drainage enters James Creek at the base of Kidd Canyon were sampled on October 29, 2004 (location CRN, Figs. 1 and 10).

Target macroinvertebrates for this study were predatory aquatic insects, collected depending on their abundance and availability at sampling sites. Preferred macroinvertebrates included: dragonflies (Odonata, families Gomphidae, Cordulegastridae, and Aeshnidae), beetles (Coleoptera, family Dyticidae, predaceous divingbeetles), aquatic and semi-aquatic predaceous insects of the order Hemiptera (family Gerridae, water striders; family Notonectidae, back swimmers; family Belostomatidae,giant water bugs), stoneflies (Plecoptera, family Perilidae), and dobsonflies (Megaloptera, family Corydalidae). Water striders are surface, not sediment feeders. Giant Waterbugs are of the same order (Hemiptera) as water striders, and similar to the striders, feed with piercing sucking mouthparts. However, they are not surface feeders like water striders, but feed within the water column and sediments. Dragonflies, dobsonflies, beetles, and stoneflies are benthic invertebrates and feed in sediment. Invertebrates were collected using dip nets or by hand, placed in zip-lock plastic bags with native water, kept on wet ice, and sorted at the end of each day.

Individual invertebrates were sorted by family and placed in disposable dishes using Tefloncoated forceps or a gloved hand. Organisms were thoroughly rinsed with deionized water and patted dry with clean paper towels. Up to 30 individuals of the same family were composited into 0.5 to 3 g samples in clean glass jars with Teflon-lined lids and frozen until shipped to the laboratory for analysis for total mercury and methyl mercury.

⁴ Speciation measurements by Kim et al. (2004) of condenser soot at the Corona Mine found it to contain 550 ppm total Hg, consisting of 50 percent cinnabar (alpha-HgS), 40 percent metacinnabar (beta-HgS), and 10 percent schuetteite (Hg₃O₂SO₄). Reductions of mercury transport achieved by recent construction of settling basins to intercept Corona Mine drainage have yet to be documented.

Figure 8. Sampling location JC2 on Tributary 1, spring 2004. The drain was dry in the Autumn sampling period, and no samples were collected.

yellow-legged Foothill frogs (Rana boylii) were captured by hand or with a net during the day: five in May and two in October, Foothill yellow-legged 2004. frogs appeared to be relatively abundant in James Creek in the spring, but few were seen in autumn of that year. Frogs were individually placed in plastic bags on wet ice, humanely euthanized with MS-222 the same day they

were collected (American Society of Ichthyologists and Herpetologists et al., 1987), and frozen until processed within 2 days after collection.

Clean tools, weigh dishes, and disposable latex gloves were used to process each frog specimen to avoid cross contamination. Each frog was thawed, rinsed first with tap water to remove debris and then with deionized water, patted dry, and weighed (\pm 0.1 g). The snout-vent length (SVL) was measured using calipers (\pm 0.1 mm), and we examined each specimen for gross abnormalities. The digestive tract was removed, and the carcass, including the stripped and rinsed digestive tract, was placed in a clean jar (VWR TraceClean), sealed with Parafilm, and frozen at -20° C pending chemical analysis for total Hg.

Rainbow trout (*Oncorhynchus mykiss*) and California roach (*Hesperoleucus symmetricus*) were collected from the two James Creek sites (JC1 and JC3; Fig. 1) in spring of 2004 using a backpack electroshocker. Similar sizes and species were collected at each site as much as possible. Captured fish were held in buckets with native water and then euthanized. Each fish was weighed using an electronic balance (\pm 0.1 g), measured using a measuring board (\pm 0.1 mm) for 'standard' and 'total' length, individually wrapped in aluminum foil, placed in zip-lock bags, and placed on wet ice in a cooler. 'Standard' length is defined as the distance from the tip of the closed mouth to the posterior end of the caudal peduncle, whereas 'total' length is the distance from the closed mouth to the extreme tip of the caudal fin. Samples were stored frozen until they could be processed. In the laboratory, individual fish were examined for gross deformities, dissected to determine sex, and the gastrointestinal tract removed and foods preserved for later identification. Carcasses, less the food contents, were stored frozen in chemically cleaned jars for later analysis for total mercury.

Figure 9. Wetland area near Oat Hill Extension Mine (OHE1, Fig. 2) sampled for biota in Spring and Autumn 2004.

2.3 Analytical Methods

2.3.1 Sediment and tailings

Multi-element analyses for all tailings and dry sediments were performed in the laboratories of ALS Chemex (Reno, NV). Bulk samples were ground in a zirconia ring mill and subjected to a neartotal four-acid digestion. Major elements were determined by

inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Trace elements other than mercury were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Mercury was determined by cold vapor atomic absorption spectroscopy (CVAAS) following methods similar to those described by Crock (1996) and O'Leary and others (1996).

Mercury and MMHg analyses of wet sediments were carried out by Brooks Rand (Seattle, WA). Sediment subsamples were not homogenized prior to analysis. For total mercury, approximately one gram of sediment was digested with 7 mL conc. nitric acid plus 3 mL conc. sulfuric acid and heated to 100°C for one hour, followed by refluxing at 150°C for two hours in a glass vial with Telon-lined lids. BrCl was added to the digestate after it had cooled to room temperature, diluted to 40 mL with deionized water, further diluted by 40 to 100-fold (such that the concentration was within instrumental range), and followed by stannous chloride reduction, single-stage gold amalgamation, and cold vapor atomic fluorescence spectroscopy (CVAFS) (U.S. EPA Method 1631E). The acid digestion procedure should recover elemental, adsorbed, and almalgamated

mercury, and mercury sulfide $(HgS_{(s)})$, including cinnabar and metacinnabar), but does not appreciably dissolve silicate minerals.

Figure 10. James Creek site downstream of lower Corona Mine adit (Fig. 1) sampled for biota in Autumn 2004. Previous studies suggest that mercury is sorbed to aluminosilicate minerals that exist in fluvial sediment such as those studied here, but only minor fractions of mercury have been found within aluminosilicate mineral structures (Lowry *et al.*, 2004; Slowey *et al.*, 2005b). MMHg in sediment was determined by acid bromide-methyl chloride extraction, followed by aqueous phase ethylation, isothermal gas chromatographic separation, and CVAFS detection (Horvat *et al.*, 1993b). Results are reported on both a wet- and dry-weight basis, with the latter calculated from wet concentrations and gravimetrically measured sediment water contents. Detection limits for Hg_T and MMHg in sediment were 0.12 ng/g and 0.02 ng/g, respectively, representing three standard deviations above mean values derived from multiple analyses of blanks. NIST-certified mercury standard reference materials were measured, including MMHg standards made from pure powder and calibrated against NBS-3133, and cross verified by daily analysis of Certified Reference Material DORM-2 (National Research Council of Canada Institute for National Measurement Standards, 1999).

2.3.2 Waters

Alkalinity was measured two to four days after sample collection by titration with sulfuric acid using Gran's technique (Rounds, 2006). Sulfate, chloride, nitrate, and fluoride were determined by ion chromatography (Fishman and Friedman, 1989). Cations were analyzed by ICP–AES and ICP–MS. Duplicate water samples, blank samples, and USGS Water Resource Division standard reference waters were analyzed with the data set and yielded acceptable results.

Samples for Hg_T and MMHg analyses were handled in a Class-100 clean-air station to minimize sample contamination (Brooks Rand, Seattle, WA). Hg_T was measured by bromine monochloride (BrCl) oxidation followed by $SnCl_2$ reduction, single-stage gold amalgamation, and detection by CVAFS (EPA Method 1631Bloom *et al.*, 1988). MMHg was analyzed using aqueous phase ethylation with purging onto Carbotrap, gas chromatographic (GC) separation, isothermal decomposition, and CVAFS detection (Horvat *et al.*, 1993a). Detection limits for Hg_T and MMHg in water were 0.2 ng/L and 0.04 ng/L, respectively, based on three standard deviations above mean values for multiple blanks.

2.3.3 Biota

All samples collected in May were analyzed by the Trace Element Research Laboratory (TERL, College Station, TX), while the samples collected in October were analyzed by Brooks Rand (Seattle, WA). At Brooks Rand, for Hg_T , samples were digested in a mixture of nitric and sulfuric acid and then oxidized with BrCl, and the digestates analyzed for Hg_T as explained in section 2.3.2. At Brooks Rand, for MMHg, samples were digested in KOH-methanol solution, and the digestates analyzed for MMHg as explained in section 2.3.2. Moisture content was determined by weight loss upon freeze-drying and was expressed as a percent of the original wet sample weight. Mercury and MMHg concentrations are reported on a wet-weight basis.

At TERL, tissue samples were homogenized in the original sample containers either after freezedrying or with a Tekmar Tissumizer and subsampled. Subsamples were digested with nitric acid, sulfuric acid, potassium permanganate, and potassium persulfate in polypropylene tubes in a water bath at 90-95° C, according to a modified version of EPA methods 245.5 and 245.6. Before total Hg analysis, hydroxylamine hydrochloride was added to digestates to reduce excess permanganate. Digestates were brought to volume with deionized water and analyzed using

Figure 11. Exposure of coarse grained tailings at the lower part of the Oat Hill Extension tailings pile, site of sample 23OE1. Tailings appear to be coated by white efflorescent salts.

stannous chloride reduction, purging and cold-vapor atomic absorption spectroscopy (CVAAS) detection.

Determination of methylmercury in biota was based on extraction of organo-mercury compounds at TERL following the method of Uthe et al. (1972). Organic mercury compounds were

extracted from homogenized tissue aliquots using an organic solvent amended with potassium bromide and copper sulfate to improve partitioning from the aqueous to the organic phase. The organic phase was digested in combusted glass vials using nitric and sulfuric acids and potassium permanganate, to convert all Hg species to ionic Hg(II) and to remove traces of organic solvent that would otherwise affect the measurement. The digestates were finally analyzed by CVAAS.

2.4 Geochemical Modeling

A thermodynamic model was used to compare ion activity products of major elements in James Creek water and OHE drainage to the solubility of minerals that may precipitate and dissolve

under low-temperature aqueous conditions. The computer program Geochemist's Workbench (version 6) estimated activities from concentrations using a modified form of the "B-dot" equation (Helgeson, 1969) and computed the saturation index, S.I. = Q/K, for minerals contained in the 'thermo.dat' database (http://www.geology.uiuc.edu/Hydrogeology/hydro_thermo.htm), where Q is the ion activity product of a given mineral's constituents (e.g., Mg²⁺ and CO₃²⁻ for magnesite) and K is the solubility product of that mineral. Calculations used a constituent basis estimated from water quality (temperature, pH, and alkalinity) and aqueous constituent measurements, included a fixed sea-level atmospheric oxygen fugacity of 0.2 (approximately 10 mg/L dissolved oxygen), and took ion-pairing into account.

3. Results

3.1 Tailings and Dry Sediment at OHE Mine

Ore processing at the Oat Hill Extension (OHE) resulted in significant residual cinnabar and pyrite in the tailings. The OHE mill feed, consisting of sandstone and former tailings from the Oat Hill Mine operation, was gravimetrically separated but not heated. This method is in contrast to the more typical process of roasting, which would have removed more mercury and oxidized minerals such as pyrite. Waste pile tailings are stratified based on clast size, apparently ranging

from coarse sand to coarse gravel (Fig. 11). The coarser tailings occur in the northern part of the pile (sample 23OE9; Fig. 2), and reflect accumulation of oversize clasts rejected from the trommel. Tailings in the southern part of the pile, samples 23OE1 through 5 (Fig. 2), consist primarily of undersize clasts rejected from the concentrating tables.

The geochemical results for samples of mill tailings at the OHE are listed in Table 2 (appended). The mercury concentrations in the tailings range from 400 to 1000 μ g/g (ppm). Tailings present above the adit in the northern-most part of the mine area, sample 23OE12 (Fig. 2), have the highest concentration of mercury (1175 ppm). Other potentially toxic metal(oid)s are present at lower concentrations, including arsenic (0.2-6 ppm), copper (30-50 ppm), nickel (50-70 ppm), lead (10-20 ppm), and zinc (90-130 ppm) (discussed further below).

Background soil sampled at the OHE at a distance of 0.5 km from the retort site has a mercury concentration of approximately 7 ppm (230E14; Fig. 2). The high level of mercury in the soil is either due to mercury mineralization of the sandstone from which the soil developed or atmospheric deposition following emission from retort and furnace stacks at the Oat Hill and

adjacent Corona and Twin Peaks mine sites (Ericksen *et al.*, 2005; Gustin *et al.*, 2003; Gustin *et al.*, 2004). Further soil sampling is required to evaluate disseminated mineralization and furnace emissions as sources of mercury to the James Creek area.

Elevated mercury concentrations exist in sediment sampled from a channel that transects the upper and lower part of the tailings, here termed Drainage A (Fig. 2). The mercury concentration of sediment in the upper part of Drainage A is 930 ppm (sample 23OE13S), increasing to 1500 ppm (sample 23OE3S) in the lower part of the drainage where it incises the main tailings pile (Figs. 2 and 12). Since the 'upper tailings' piles (location 23OE13S) apparently contain high concentrations of mercury, a portion of the mercury in sediment sampled downstream at location 23OE3S could have come from the 'upper tailings' piles. However, since the downstream sample site is located at the tail-end of the OHE tailings piles, the mercury measured in the sediment there could have originated from the OHE tailings alone or from both the OHE tailings and contaminated sediment originating from the 'upper tailings.' That the mercury concentration measured at the downstream location was higher than at the 'upper tailings' location could suggest that mercury is released from the 'upper tailings,' transported down to the OHE site, and mixed with OHE tailings-contaminated sediment in such a way that the mercury concentration is augmented, and then finally discharged at the tail-end of the OHE. Since mercury does not transport conservatively, and in the absence of any hydrological information, the hypothesis stated above cannot be resolved by this simple comparison. Even this small region would require a detailed (e.g., including suspended solids concentrations under different flow regimes), highresolution characterization to determine from where and in what quantities mercury originates.

Drainage A was dry at the time of sampling, but intense rain in winter probably transports mercury-enriched sediment from the tailings pile into Tributary 1 and then James Creek. The data are consistent with the hypothesis that winter runoff from the Oat Hill and OHE areas replenishes cinnabar in the James Creek placer (Yates and Hilpert, 1946).

Figure 12. Sediment in Drainage A located in the lower part of Oat Hill Extension tailing pile.

Concentrations of mercury, copper, lead and zinc in the lower tailings pile at the OHE site, two sediment samples from Drainage A from the OHE, and tailings above the adit exceed USBLM Robin Scenario (RS) ecotoxicity screening criteria. In addition, five lower tailings samples, two sediment samples from the OHE drainage ditch. and the 'background' soil sample taken at the OHE office site contained

arsenic (As) concentrations exceeding the USBLM's RS ecotoxicity screening criteria. Comparisons of all element concentration results with the USBLM's Human Risk Management Camper Scenario and US Environmental Protection Agency preliminary remediation goals (USEPA-PRG) criteria are provided in Table 2. One OHE tailings contained As and chromium exceeding USEPA-PRG criteria, and all but one sample exceeded the USEPA-PRG thorium criterion. All but two samples (retort brick and background soil) exceed the the USBLM Camper Scenario criterion for mercury. Brick and mortar from the retort used to process cinnabar concentrates from the OHE Mine have a relatively low mercury concentration (5 ppm), although it exceeds the USBLM's RS ecotoxicity screening criterion. Other metals that exceed this criteria for this material include As, Cu, Pb, and Zn (Table 2).

3.2 Water and Sediment in James Creek and the Tributary Draining the OHE Mine

In summarizing our mercury monitoring results, we cite predefined water, sediment, and biota quality criteria to compare our observations with what is currently thought by public agencies to pose ecological risk due to mercury in organisms such as piscivorous fish and birds. In California mine-impacted systems, multiple criteria are used, including concentrations of Hg_T or MMHg in water, sediment, fish, or combinations thereof. As further explained in sections 3.2.1 and 3.3.3, direct comparison of a given mercury concentration with the predefined criterion of similar analyte and medium is inappropriate, because multiple and often undisclosed/implicit assumptions used to derive the criterion do not fully apply to the present case. Although beyond the scope of this report, we note that some predefined criteria also intertwine causal relationships derived from seemingly incompatible conceptual models. Ultimately, we cite these predefined criteria to promote awareness and further elucidate the limitations of both the current data set and the criteria themselves.

3.2.1 Mercury and monomethyl mercury

Water and sediment were sampled from a tributary that drains the OHE Mine area (termed *Tributary 1*), and in James Creek in order to assess whether mercury and associated elements were being transported from the mine site into James Creek. In Tributary 1 water just above the

confluence with James Creek, the Hg_T concentration was 14 ng/L (sample 04JC2, Table 3). In James Creek, Hg_T concentrations below this confluence was 55 percent higher than above (7.3 *vs.* 4.8 ng/L; sample 04JC3 *vs.* 04JC1; Table 3), suggesting that mercury is transported through Tributary 1 to James Creek under base flow conditions. Filtered mercury concentrations in Tributary 1 and James Creek waters account for 50 to 60 percent of Hg_T. Drainage from a spring located below the adit of the OHE Mine (termed *Drainage B*; Fig. 2) is an important source of mercury to Tributary 1, since it contains an exceptionally high 770 ng/L Hg_T (sample 04OHE1; Table 3). The water from this spring deposits calcite and magnesite, on the basis of visual observation of the sediment in the spring area and thermodynamic calculations (§3.2.2). This deposition may enhance the accumulation of mercury in OHE drainage sediment (110 µg/g-dry was measured in sample 04OHE1; Table 3).

MMHg concentrations in waters of James Creek and Tributary 1 (0.04 to 0.08 ng/L) are lower than those typical for mine impacted watersheds (~0.1 ng/L; Krabbenhoft et al., 1999), but are near or above a proposed level (0.04 to 0.06 ng/L MMHg on an annual-averaged basis of undefined statistical population) for the mercury mine-impacted Tomales Bay (Marin County), California watershed (Marshall, 2006)⁵. The spring water with the relatively high Hg_T concentration at the OHE (770 ng/L) had the highest MMHg concentration, 0.09 ng/L, which is more typical of mine impacted waters and yet was only 0.01 percent of Hg_T. Invertebrates from this location also had higher levels of MMHg (section 3.3.1). These results should be interpreted with caution for two reasons: (1) sample storage may have resulted in MMHg degradation prior to analysis (Bloom, 2001; Parker and Bloom, 2005) and, more importantly, (2) the waters were oxygenated and sunlit, which can promote biological and photochemical degradation of MMHg (Benoit et al., 2003; Sellers et al., 1996), reducing the likelihood of measuring all of the MMHg produced in sediment, resulting in an unrepresentative coverage of the system's total methylation potential. This sampling bias results in concentrations that are so small as to be especially prone to error when used to relate water quality to impacts on biota. Pore waters at these sample sites should be analyzed to better assess the methylation potential at each site, as discussed at the end

of this section.

Figure 13. James Creek at water, sediment and biota sample site 04JC1. Iron staining on rocks in creek results from precipitation of iron (hydr)oxide from the Corona and Twin Peaks mines.

High concentrations of mercury are present in sediment from the active channel of James Creek (Figs. 2 and 13, sample site 04JC1), indicated by panned concentrates that contain a large amount of cinnabar (Figs. 14) and high concentrations of mercury in

⁵ This criterion is accompanied by sediment criteria, which arguably is an example of the use of incompatible conceptual models to derive a mercury concentration-ecological impairment relationship.

sediment (7 to 21 ppm; samples 04JC1 and 04JC3, Table 3). Mercury concentrations in sediment and the amount of cinnabar in the panned concentrate were highest at sample site 04JC1, located above the confluence with Tributary 1 (Fig. 2). Mercury concentrations and the amount of cinnabar in the panned concentrate decrease downstream from the confluence with Tributary 1. Concentrations in Tributary 1 (3 ppm, sample 04JC2), are lower than at both samples sites (04JC1and 04JC3) in James Creek. The data suggest that although Tributary 1 is a source of mercury-enriched sediment to James Creek, more significant sources of mercury-enriched sediment exist upstream of Tributary 1. These results must be qualified using quality control analyses, as follows.

Duplicate matrix spike analyses of total mercury in sediment revealed a heterogeneous distribution of mercury within a given grab sample. Recoveries of mercury from two *un*spiked sample aliquots actually exceeded those of two *spiked* aliquots from the same sample. This result, and the presence of cinnabar in the creek sediments, suggests that subsamples from a given grab sample contain different amounts of cinnabar. Another less likely source of variability may have been inconsistent (i.e., matrix-dependent) and incomplete digestion of mercury (primarily cinnabar).

For these reasons, future sediment investigations should include the following: (1) to determine whether there is a 'nugget effect' due to a heterogeneous distribution of mercury, split large samples into equally sized subsamples (according to mass) and analyze, (2) to prevent exclusion of cinnabar particles when subsampling just prior to analysis (as commonly occurs at commercial laboratories) and to facilitate subsample digestion, thoroughly homogenize (sub)samples, and, (3) to assess which sample size is statistically representative of the bulk sediment volume that one wishes to quantify, analyze a series of samples of increasing size (e.g., 1, 10, 20, 50, 100 mg, etc., each homogenized) taken from the same bulk sediment volume. As sample size increases, the mercury concentrations recovered should converge on a representative value. Ideally, for sediments along a drainage channel, the bulk sediment volumes for which representative sample sizes are determined would adjoin. Practical sampling limitations result in bulk sediment volumes separated in space, with unknown but potentially quantifable implications for the reliability of sediment mercury measurements and the conclusions about mercury transport derived from these data. Despite uncertainty in the concentration of Hg_T in sediments of James Creek and its tributaries, the level of mercury contamination is apparently high compared to criteria developed for total mercury in mine-contaminated sediments elsewhere in California. For example, Tomales Bay (Marin County): 5 µg/g in sediment close to mine waste and 0.5 µg/g further downstream (Marshall, 2006).

MMHg concentrations in sediments were relatively low in comparison to sediments from mineimpacted watersheds, which average 1.9 ng/g (Krabbenhoft et al. 1999). Even in the sediment at the OHE with the highest total mercury concentration, the MMHg concentration was only 0.7 ng/g. In addition to the caveats stated earlier for MMHg in water, one sample from James Creek (04JC2) and another from Drainage B (04OHE1) had MMHg concentrations (Table 3) above the method detection limit (MDL) but below a statistically quantifiable concentration (i.e., 10x MDL), and therefore are of questionable value in examining relationships between MMHg in water and MMHg in biota. Nevertheless, high levels of mercury present in sediment and water at the OHE spring, Tributary 1, and James Creek did not result in correspondingly high concentrations of MMHg in the apparently aerobic water and sediment sampled. The biogeochemical basis for this observation is discussed below.

Cinnabar is typically more soluble under anaerobic, sulfidic conditions (Jay *et al.*, 2000) or in the presence of humic substances (Waples *et al.*, 2005), neither of which characterize the OHE and James Creek sediments sampled in this investigation. Since cinnabar is probably the dominant mercury species in the sediments, the lack of methylation is likely due to the stability of cinnabar under the conditions sampled. To better evaluate the system's true methylation potential, future investigations of James Creek should locate and enumerate zones of anaerobic sediments and analyze the Hg_T and MMHg contents in pore water at these locations.

To more reliably characterize and compare methylation potential among various sites, sampling procedures that minimize *ex situ* environmental and handling effects are needed. For example, if saturated sediments up- and downstream of a mine tailings pile produce MMHg, sediment porewaters will likely contain higher concentrations of MMHg than overlying water, since MMHg will be dispersed and possibly abiotically and biotically degraded (Benoit *et al.*, 2003) as it transports into the water column. If overlying water is sampled at each location, differences in MMHg concentrations may be due to varying degrees of dispersion and/or degradation, not neccessarily a difference MMHg production.

Figure 14. (a) James Creek at sample site 04JC1. Sediment consists of medium to coarse sand and fine silt to clay sizes, the latter containing iron (hydr)oxides derived from Corona and Twin Peaks mine drainage. (b) Cinnabar present in panned concentrate from this location.

Table 3. Mercury and methy	I mercury in water and sec	diment. Error intervals (2σ of duplicate analyses, or
95 percent confidence level	are reported where they a	re on the order of the l	ast significant digit.

Sample	Mercury	in water ¹	Monomethyl mercury in water ²		Merci sedi	ury in iment ^{3,6}	Monometh in se	yl mercury diment ⁴
	unfiltered	Filtered (<0.45 µm)	Unfiltered	Wt% Solid	μg/g wet	μg/g dry¹	ng/g wet	ng/g dry⁵
04JC1	4.8 ± 0.9	2.8 ± 0.5	0.04	79	17	21	0.72	0.92
04JC2	14 ± 3	7.8 ± 1.5	0.08	76	2.5	3.3	0.06	0.08
04JC3	7.3 ± 1.4	3.4 ± 0.6	0.04	72	5.0	6.9	0.05	0.07
040HE1	780 ± 150	5.8 ± 1.1	0.10	57	64 ⁶	110	0.43	0.74

Notes: Analytical detection limits based on 3σ of reagent blank recoveries were (1) 0.2 ng/L, (2) 0.04 ng/L, (3) 0.12 ng/g, and (4) 0.02 ng/g.

(5) Concentrations on a dry weight basis were computed by dividing the ng/g-wet sediment by the wtpercent solids of the sediment.

(6) Matrix spike recovery was *less* than unspiked recovery, indicating substantial heterogeneity in the distribution of Hg within the sediment sample. The true bulk concentration of this and the other sediment samples may be substantially different than these reported values.

In the current study, these processes could not be evaluated because the MMHg concentrations are so low as to be indistinguishable by biogeochemical interpretation. Minimizing ambiguities of dispersion and degradation through appropriate sampling is the first step towards a more direct evalution of methylation potential. Higher, distinguishable MMHg concentrations, perhaps 1 to 10 ng/L differing by tens of percent, would indicate appreciable differences in MMHg production, pending the development of a statistically based method that accounts for biogeochemical effects (i.e., systematic variability). Differences in MMHg production would further imply differences in the locations' abilities to labilize mercury into forms more reactive than cinnabar. MMHg production differences also likely reflect the activity of bacterial populations that are methylating Hg(II). In situ sediment pore water sampling using passive or vacuum membrane samplers [e.g., peepers, 'Rhizon' samplers (Seeberg-Elverfeldt et al., 2005), or other high-resolution devices (Merritt and Amirbahman, 2007; Sigg et al., 2006)] will likely recover higher concentrations of MMHg compared to flowing creek water where MMHg that originated in sediment pore water is dispersed in a demethylating environment. The effect of dispersion is clearly evident when comparing MMHg measurements of field samples versus laboratory sediment incubations (Bloom, 2001). Despite the vastly different MMHg concentrations observed in preserved field samples (to estimate *in situ* MMHg concentrations) and field or laboratory reactors, both are used to infer the degree to which inorganic Hg is susceptible to methylation. More reliable assessment of the propensity for inorganic mercury to be methylated will be achieved by determining MMHg concentrations in field samples obtained directly from potential methylation sites by improved sampling methods such as those above.

Reliable assessment of methylation potential is critical to understanding how and to what extent the inorganic Hg load to the James Creek system impacts biota. Measurements of Hg_T and MMHg in biota in conjunction with water and sediment mercury data limited by sampling deficiencies will fail to achieve this understanding, as will be more apparent after reading section 3.3.

3.2.2 Geochemistry of James Creek water and OHE drainage

The pH of James Creek and OHE drainage is buffered by bicarbonate, resulting in a narrow range of pH 8.2 to 8.4 (Table 4). Chloride concentrations are similar among the tested waters and are lower than sulfate, Mg(II), and Ca(II). Thermodynamically calculated ionic strengths of all sampled waters were lower than expected, primarily due to ion pairing of Mg^{2+} and Ca^{2+} with sulfate (20 to 30 percent of Mg(II) and Ca(II) is in the form of MgSO₄ and CaSO₄; complete results, including other ion pairs, are provided in Appendix 1). These model results emphasize the importance of taking ion pairing into account when interpreting indirect measurements of ionic strength (e.g., conductivity). Magnesium and calcium are nearly saturated with respect to calcite (CaCO₃) and magnesite (MgCO₃) in James Creek (Table 7), which is consistent with observations of efflorescent salts on dry sediments. Sources of sulfate to James Creek include oxidation of pyrite in mine workings, tailings, and waste rock along the tributary, the spring at the OHE, and weathering of native soil. The sulfate concentration in James Creek near the confluence with Tributary 1 was elevated for a fresh water [70 to 100 mg/L (0.7 to 1 mM); Table 4], in part due to drainage from Tributary 1, which contained 130 mg/L (1.4 mM).

Fe(III)-(hydr)oxide colloids are common in many tributaries of James Creek and its upper reaches. These colloids are formed by the oxidation of ferrous iron dissolved from iron-sulfide minerals (presumably pyrite) associated with the volcanic sandstone and silica-carbonate alterred serpentinite veins that were mined. Infiltration of water into mined hillsides and the availability of oxygen through open adits promotes pyrite oxidation. Open adits likely yield the highest quantity of colloid-bearing water, but there are also seeps near collapsed adits from which iron-rich water flows, according to our recent observations at the OHE and other mines in the region. Precipitation of Fe(Al,Si)-(hydr)oxides under low-temperature conditions results in small particle size and high specific surface area (i.e., surface area normalized by volume). As a result, these metals may be reactive under organic-rich or anaerobic conditions and should therefore not be considered inert.

Dissolved iron and aluminum concentrations are low in James Creek (<50 to 100 µg/L Fe and 10 to 20 µg/L Al; Table 5), which is consistent with the oxidized and alkaline pH that characterize the portion of James Creek sampled (these conditions usually favor the formation of Al,Fe(III)-(hydr)oxides). Samples containing detectable dissolved iron appear to be supersaturated with respect to iron (hydr)oxides including hematite and goethite, based on thermodynamic calculations (Table 7). This supersaturation suggests that either most of the iron is present as filter-passing (<0.45 µm) colloids-a widely documented occurrence (e.g., Zanker et al., 2003)—or that some unmeasured and unmodeled factors are causing the dissolution of Fe(III), conceivably including organic complexation (Stumm, 1995) and photoreduction (Waite and Morel, 1984). Dissolved silica is relatively abundant in James Creek (20 to 30 mg/L), despite several Si-bearing minerals (clay minerals and potassium-feldspar) being thermodynamically supersaturated (Table 7 and Appendix 1). Metals and metalloids (collectively referred using the shorthand metal(loid)s), including aluminum and silicon, readily coprecipitate with Fe(III). The affect of silica is unclear, although it may partially inhibit the precipitation and reduce the specific surface area of Fe(III)-(hydr)oxides (Doelsch et al., 2001). An unstudied constituent that may be present in colloids is sulfur, which is especially abundant near adits where sulfur in pyrite is oxidized. White-yellow flocs have been observed, sometimes in close association with orange (presumably Fe(III)-rich) flocs but have not yet been characterized. We speculate that these flocs consist of appreciable amounts of elemental sulfur-formed either by abiotic (dissolved oxygen) or biological (e.g., bacterium *Beggiatoa*) oxidation of sulfide-and hydroxysulfates such as jarosite, which can exist with goethite (FeOOH) (Stoffregen *et al.*, 2000).

On the basis of prior research in controlled laboratory systems and a variety of field-based studies metal-(hydr)oxides sorb metal(loid)s (for reviews, see Brown and Parks, 2001; Brown and Sturchio, 2002), and so we expect that metal(loid)s such as Hg(II), As(V), Cr(VI), and Ni— for which concern has been expressed—are transported as sorption complexes with Fe(III)-(hydr)oxide colloids. With the exception of iron, the differences between dissolved (filtered) and unfiltered metal(loid) concentrations were negligible. The fate of a portion of these metal(loid) contaminants may be affected by the stability of Fe(III)-(hydr)oxide (including its coprecipitates).

Table 4. Temperature, pH, alkalinity, and select anions. All concentration units are mg/L, except ionic strength, which is reported in molar units. Nitrate was not detected (<0.2 mg/L) in any sample.

							Anions	6	
Sample	Temperature °C	рН	Specific Conduct -ivity (µS/cm)	Alkalinity, mg/L as CaCO ₃	HCO3 ^{- (1,2)}	Cl⁻	F	SO4 ²⁻	lonic strength (mol/L) ⁽¹⁾
04JC1	14	8.4	410	114	66	5	0.2	95	0.006
04JC2	16	8.2	450	168	98	5.1	0.2	68	0.007
04JC3	14	8.2	410	118	69	5.1	0.2	94	0.006
040HE1	19	8.3	210	431		4.5	0.3	130	0.013

<u>Note</u>: (1) Calculated from all available aqueous constituents using a thermodynamic model (section 2.4). (2) Minor fractions of CO_3^{2-} and $H_2CO_3^{+}$ are also likely present (Appendix 1).

Table 5. Elemental composition of *filtered* (<0.45 μ m) water. ICP-MS results. All units are μ g/L (microgram per liter) unless otherwise noted. Data highlighted in yellow were used to evaluate saturation indices of selected minerals (Table 7).

Sample	Al	Ba	Ca mg/L	Ce	Co	Cr	Cs	Cu	Eu	Fe	K mg/L	La	Li	Mg mg/L	Mn
04JC1-B	15	33	14	nd	7.6	1.5	0.06	Nd	nd	82	1.8	nd	3.6	44	66
04JC2-B	17	45	36	nd	0.16	1.0	nd	0.56	nd	nd	1.9	0.01	6	35	1.1
04JC3-B	20	32	15	0.01	5.0	1.0	0.05	nd	nd	110	1.8	0.01	3.7	43	45
040HE1-B	14	140	47	nd	0.09	1.1	0.11	0.73	0.01	nd	2.5	nd	68	110	2.3
Sample	Na mg/L	Nd	Ni	P mg/L	Rb	Sc	SiO ₂ mg/L	SO ₄ mg/L	Sr	Ti	U	V	Y	Yb	Zn
Sample 04JC1-B	Na mg/L 5.5	Nd	Ni 440	P mg/L	Rb 5.3	Sc 2.7	SiO ₂ mg/L 30	SO₄ mg/L 95	Sr 140	Ti 1	U 0.11	V	Y 0.04	Yb 0.01	Zn 1.8
Sample 04JC1-B 04JC2-B	Na mg/L 5.5 7.8	Nd 0.02	Ni 440 1.4	P mg/L 0.02	Rb 5.3 0.59	Sc 2.7 1.6	SiO ₂ mg/L 30 17	SO ₄ mg/L 95 79	Sr 140 260	Ti 1 0.7	U 0.11 0.71	V 0.7	Y 0.04 0.04	Yb 0.01	Zn 1.8 5.2
Sample 04JC1-B 04JC2-B 04JC3-B	Na mg/L 5.5 7.8 5.6	Nd 0.02 0.02	Ni 440 1.4 350	P mg/L 0.02	Rb 5.3 0.59 4.9	Sc 2.7 1.6 2.6	SiO ₂ mg/L 30 17 27	SO₄ mg/L 95 79 99	Sr 140 260 150	Ti 1 0.7 1.2	U 0.11 0.71 0.14	V 0.7 0.5	Y 0.04 0.04 0.03	Yb 0.01	Zn 1.8 5.2 5.3

<u>Notes</u>: (1) The following elements were not detected (detection limits in μ g/L are in parentheses): Ag (<3), As (<1), Be (<0.05), Bi (<0.2), Cd (<0.02), Dy (<0.005), Er (<0.005), Ga (<0.05), Gd (<0.005), Ge (<0.05), Ho (<0.005), Lu (<0.1), Mo (<2), Nb (<0.2), Pb (<0.05), Pr (<0.01), Sb (<0.3), Se (<1), Sm (<0.01), Ta (<0.02), Tb (<0.005), Th (<0.2), Tl (<0.1), W (0.5), Zr (<0.2).

(2) nd = not detected: Ce (<0.01), Cr (<1), Cs (<0.02), Cu (<0.5), Eu (<0.005), Fe (<50), Ge (<0.05), La (<0.01), Nd (<0.01), P (<0.01), Pb (<0.05), Pr (<0.01), Sm (<0.01), V (<0.5), Yb (<0.005).

Sample	Al	Ba	Ca mg/L	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Gd	Ge	K mg/L	La	Li	Mg mg/L	-
04JC1	17	34	15	0.08	8.5	2.0	0.06	0.51	0.01	0.01	0.01	1650	0.01	nd	2.0	0.07	7 3.8	43	
04JC2	19	44	37	0.02	0.06	1.1	nd	0.60	Nd	Nd	nd	Nd	0.01	nd	2.0	0.02	2 6.3	35	
04JC3	6.1	34	15	0.05	5.6	1.4	0.05	0.50	0.01	0.01	0.01	1060	0.02	nd	1.9	0.05	54	42	
040HE1	35	140	48	0.09	0.17	nd	0.14	0.94	0.01	0.01	0.01	160	0.01	0.05	2.5	0.04	1 67	105	
Sample	Mn	Na mg/L	Nd	Ni	P mg/L	Pb	Pr	Rb	Sc	SiO₂ mg/L	Sm	SO₄ mg/L	Sr	Ti	U	V	Y	Yb	Zn
Sample 04JC1	Mn 72	Na mg/L 5.3	Nd 0.06	Ni 480	P mg/L nd	Pb nd	Pr	Rb 1 5.1	Sc 2.7	SiO₂ mg/L 31	Sm	SO₄ mg/L 95	Sr 140	Ti 1.1	U 0.12	V 0.7	Y 0.12	Yb 0.01	Zn 7.5
Sample 04JC1 04JC2	Mn 72 1.3	Na mg/L 5.3 7.6	Nd 0.06 0.02	Ni 480 1.4	P mg/L nd 0.02	Pb nd nd	Pr 0.0 ⁻ nd	Rb 1 5.1 0.56	Sc 2.7 5 1.7	SiO₂ mg/L 31 17	Sm 0.02 nd	SO₄ mg/L 95 70	Sr 140 250	Ti 1.1 0.8	U 0.12 0.73	V 0.7 0.7	Y 0.12 0.04	Yb 0.01 Nd	Zn 7.5 4.9
Sample 04JC1 04JC2 04JC3	Mn 72 1.3 48	Na mg/L 5.3 7.6 5.3	Nd 0.06 0.02 0.05	Ni 480 1.4 380	P mg/L nd 0.02 nd	Pb nd nd nd	Pr 0.0 [°] nd 0.0 [°]	Rb 1 5.1 0.56 1 4.7	Sc 2.7 5 1.7 2.6	SiO₂ mg/L 31 17 28	Sm 0.02 nd 0.01	SO ₄ mg/L 95 70 90	Sr 140 250 150	Ti 1.1 0.8 1	U 0.12 0.73 0.13	V 0.7 0.7 0.5	Y 0.12 0.04 0.1	Yb 0.01 Nd 0.01	Zn 7.5 4.9 6.5

Table 6. Elemental composition of *unfiltered* water. ICP-MS results. All units are µg/L (microgram per liter) unless otherwise noted. See Table 5 for detection limits of undetected elements (denoted with an "nd").

Mineral name	Chemical formula		Log	Q/K ¹	
		JC1	JC2	JC3	OHE
Birnessite	Na₄Mn ₁₄ O ₂₇ ·9 H₂O	62	45	58	48
Todorokite	(Mn ²⁺ ,Ca,Mg)Mn ⁴⁺ ₃O ₇ · H₂O	54	39	51	42
Nontronite ²	Na _{0.3} Fe ³⁺ ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ · nH ₂ O	17.2-18.0	-	17.5-18.2	-
Hematite	Fe ₂ O ₃	12.9		13.2	-
Saponite ²	(Mg,Fe) ₃ (Al,Si) ₄ O ₁₀ (OH) ₂ (0.5Ca,Na) _{0.3} -4H ₂ O	5.7-6.4	3.6-4.2	5.0	5.1-6.5
Goethite	α–FeOOH	6.0	-	6.1	-
Sepiolite	Mg ₄ Si ₆ O ₁₅ (OH) ₂ ·6 H ₂ O	3.5	0.3	1.7	3.2
Illite	K _{0.65} Al ₂ Al _{0.65} Si _{3.35} O ₁₀ (OH) ₂	3.4	2.7	3.8	1.8
K-feldspar	KAISi ₃ O ₈	2.5	1.8	2.6	1.3
Kaolinite	$Al_2Si_2O_5(OH)_4$	2.4	2.2	3.0	1.2
Ferrihydrite	Fe(OH) ₃	1.5	-	1.6	-
Dolomite	CaMg(CO ₃) ₂	1.4	1.7	1.0	2.1
Calcite	CaCO ₃	-0.1	0.3	-0.3	0.3
Gibbsite	AI(OH) ₃	-	0.3	0.4	-0.2
Magnesite	MgCO ₃	-0.2	-0.3	-0.4	0.1
Amorphous	Silica SiO ₂	-0.5	-0.7	-0.5	-0.8
Gypsum	$CaSO_4 \cdot 2 H_2O$	-2.4	-2.2	-2.4	-1.9
Brucite	Mg(OH) ₂	-3.3	-3.7	-3.7	-2.8
Epsomite	MgSO₄·7 H₂O	-4.3	-4.5	-4.3	-3.9

Table 7. Mineral saturation indices (S.I.) under a fixed atmospheric oxygen fugacity of 0.2 (approxmately 10 mg/L dissolved oxygen), based on the Geochemist's Workbench 'thermo.dat' database (http://www.geology.uiuc.edu/Hydrogeology/hydro_thermo.htm).

<u>Notes</u>: (1) Q = ion activity product; K = solubility product. Log Q/K > 0 indicates the water was thermodynamically supersaturated with respect to the indicated mineral. However, log Q/K > 0 does not indicate that the mineral was present or would necessarily precipitate (see text).

(2) Several cations, with Na-Nontronite the least supersaturate to Mg-Nontronite most supersaturated.

3.3 Biota

In the following three subsections, two different types of data are discussed: total mercury (Hg_T) in invertebrates, frogs, and fish, and organic mercury in invertebrates, which is presumed to be and hereafter referred to as monomethyl mercury (MMHg). Interpretation of Hg_T in frogs and fish as an indicator of mercury reactivity, biouptake, or trophic transfer is limited, pending MMHg measuremens, by the possibility of these samples having contained cinnabar particles at the time of analysis. To minimize this limitation, the gastrointestinal tracts and external surfaces of all amphibians, where cinnabar most likely resides, were carefully flushed to remove any visible particles. However, extremely fine-grained, invisible, adhesive cinnabar particles and minerals to which inorganic Hg(II) was sorbed likely exist in the amphibians' habitats.

3.3.1 Invertebrates (Hg_T and organic mercury)

The relative contribution to the ecological impairment of James Creek by the OHE relative to other sources of mercury is not clear from invertebrate Hg_T or organic mercury measurements. Hg_T and MMHg was detected in all composite samples of invertebrates (Table 8). The geometric means for MMHg in invertebrates collected from James Creek upstream and downstream of the OHE were not appreciably different (0.057 vs. 0.060 μ g/g, with a t-test *P* = 0.39). MMHg concentrations in 12 samples of invertebrates collected from James Creek upstream of Tributary

1 ranged from 0.03 to 0.1 μ g/g, while those in 12 samples collected downstream ranged from 0.03 to 0.3 μ g/g. Giant waterbugs collected in Spring and water striders collected in Autumn had the highest MMHg concentrations. Although sample quantity may be insufficient to compare mercury concentrations in invertebrates residing nearer to point sources of mercury with those farther downstream, invertebrate MMHg concentrations collected in Spring from Tributary 1 (approx. 0.1 μ g/g) and four samples collected from James Creek at the lower Corona Mine adit drainage (Figs. 1 and 10) in Autumn (0.09 to 0.2 μ g/g) were higher than those observed downstream (location JC3).

Average (geometric mean) MMHg concentrations in several invertebrate taxa collected from the James Creek watershed locations, summarized in Table 8 and Figures 15 and 16, were generally higher than those measured at a Bear River watershed 'baseline' station where there are no known point sources of mercury (Alpers *et al.*, 2005). Specifically, dragonflies and water striders contained approximately three times as much MMHg (0.07 *vs.* 0.02 μ g/g and 0.09 *vs.* 0.04 μ g/g, respectively), dobsonflies were 30 percent higher (0.05 *vs.* 0.04 μ g/g), while beetles and predaceous stoneflies contained similar concentrations (0.12 *vs.* 0.11 μ g/g and 0.05 μ g/g, respectively).

Like other fresh water and marine ecosystems, where mercury in invertebrates has been found to consist of both inorganic and methyl mercury (Berzas Nevado *et al.*, 2003; Faganeli *et al.*, 2003), 40 percent (16 of 39) of predatory insect samples had greater than 50 percent mercury as organic mercury (presumably MMHg; §2.3.3). The mean MMHg/Hg_T proportion was 40 percent (1 σ = 30 percent; Table 8), consisting of the following average proportions per taxon: dragonflies (20 percent), dobsonflies (25 percent), predaceous stoneflies (30 percent), predaceous diving beetles (40 percent), giant waterbugs (50 percent), backswimmers (60 percent), and water striders (80 percent). Compared to a gold mine-impacted ecosystem, the mean MMHg/Hg_T proportion in predatory insects collected from the OHE area was approximately half [cf. 1999–2001 study of Greenhorn Creek, Nevada County, CA, where MMHg/Hg_T averaged 75 percent (1 σ = 20 percent); (Alpers *et al.*, 2005)].

The low proportions of MMHg measured in invertebrates in James Creek and the presence of cinnabar in the creek (Fig. 14) suggest that some invertebrates may have anomolously high mercury concentrations as a result of cinnabar contamination. For example, one dragonfly larva contained 30 µg/g (ww) Hg_T, but only 0.06 µg/g (ww) MMHg, or 0.20 percent. Unlike this and other benthic invertebrates collected, water striders, whose exoskeletons should have been more thoroughly cleaned of particles and which do not feed in sediments, yielded the highest measured MMHg/Hg_T ratios since they likely were least contaminated by cinnabar. The current invertebrate data set is similar to that of a 1998 study by Slotton and Ayers (1999), which showed a similar range of Hg_T concentrations and a subset of anomalously high Hg_T concentrations that are likely due to cinnabar contamination. Other sources of inorganic mercury could be through consumption of phytoplankton and zooplankton, both of which can acquire and excrete dissolved inorganic and methyl mercury from water on relatively short time scales (Pickhardt and Fisher, 2007; Pickhardt et al., 2005; Tsui and Wang, 2004). Therefore, a rigorous assessment of ecological impairment in mercury mine-impacted ecosystems should include methyl mercury measurements in addition to Hg_T, as was performed for invertebrates. The following discussion of invertebrates focuses on methyl mercury concentrations.

$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
James Creek upstream of Oat Hill Extension Mine drainage JC1 Function Mine Size/20204 Hemiptera Function Mine drainage Gerridae Odonata (Gomphidae) Comphidae Colo Colo Colo <t< td=""></t<>
James Creek upstream of Oat Hill Extension Mine drainage JC1 JC1 5/20/2004 Godnata (Gomphidae) Gomphidae 20 2.36 0.12 2.006 0.099 77 19 Plecoptera Perlidae 10 1.99 0.2 0.015 0.034 77 22 Plecoptera Perlidae 20 2.32 0.12 0.064 0.035 80 56 Odonata Aeshnidae 1 0.46 0.46 32.1 0.058 78 0 Hemiptera Belostomatidae 2 3.19 1.6 0.445 0.277 72 62 Odonata Aeshnidae 1 1.35 0.012 1.35 0.061 78 5 Odat Coloptera Perlidae 11 1.35 0.012 1.35 0.061 78 5 Oat Area Odonata Cordulegastridae 3 1.81 0.6 0.97 0.142 80 11 Dat Hill Extension drainage<
James Creek upstream of Oat Hill Extension Mine drainage JC1 5/20/2004 600 anta Plecoptera Peridae Compidae 20 1.22 0.06 0.499 0.093 77 19 Plecoptera drainage Peridae 10 1.99 0.2 0.155 0.034 77 22 Plecoptera drainage Peridae 10 1.99 0.2 0.155 0.034 77 22 Plecoptera drainage Peridae 1 0.46 0.46 0.21 0.058 78 0 Odonata Aeshnidae 1 0.46 0.46 0.21 0.058 78 0 Odonata Aeshnidae 1 1.59 0.07 0.097 0.096 66 99 Plecoptera Peridae 11 1.35 0.061 135 0.064 51 Oat Hill Extension wetlan area JL JL 0.142 80 15 Oat Hill Extension drainage near James Creek JL Megaloptera Cordulegastridae 1
Galine Science View Grainage JC1 5/20/2004 Plecoptera Plecoptera (dainage Peridae 10 1.99 0.2 0.155 0.034 77 22 Odt Hill Extension Mine drainage JC1 5/20/2004 Plecoptera Plecoptera Peridae 20 2.32 0.12 0.064 0.035 80 56 Odt Mill Extension Wetland area Developmenta Gerridae 2 3.19 1.6 0.445 0.277 72 62 Oat Hill Extension wetland area OHE1 5/20/2004 Gerridae 24 1.59 0.07 0.097 0.096 66 99 Oat Hill Extension wetland area OHE1 5/20/2004 Codonata Cordulegastridae 31 1.81 0.6 0.97 0.142 80 15 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Odonata Cordulegastridae 1 1 1 0.135 0.064 81 19 Lower Corona Mine- Downstream CRND JC1 5/20/2004 Feridae
drainage Plecoptera Perlidae 20 2.32 0.12 0.064 0.035 80 56 Odonata Aeshnidae 1 0.46 0.46 0.321 0.058 78 0 Hemiptera Belostomatidae 2 3.19 1.6 0.445 0.277 72 62 Hemiptera Geridae 24 1.59 0.07 0.097 0.096 66 99 Plecoptera Perlidae 11 1.35 0.12 1.35 0.061 78 5 Oat Hill Extension wetland area OHE1 5/20/2004 Cordulegastridae 3 1.81 0.6 0.97 0.142 80 15 Oat Hill Extension drainage near James Creek JC2 JC2 Odonata Cordulegastridae 1 1 1 0.135 0.064 81 19 Megaloptera Cordulegastridae 4 0.9 0.23 0.346 0.064 81 19 Jower Corona Mine- Downstream
Odonata Aeshnidae 1 0.46 0.46 32.1 0.058 78 0 Hemiptera Belostomatidae 2 3.19 1.6 0.445 0.277 72 62 Hemiptera Gerridae 24 1.59 0.07 0.097 0.096 66 99 Plecoptera Perlidae 11 1.35 0.12 1.35 0.061 78 5 Oat Hill Extension wetland area 0HE1 5/20/2004 Odonata Cordulegastridae 3 1.81 0.6 0.97 0.142 80 15 Oat Hill Extension drainage near James Creek 0HE1 5/20/2004 Gerridae 25 1.6 0.06 0.20 0.18 69 90 Oat Hill Extension drainage near James Creek JC2 F/20/2004 Megaloptera Corydalidae 1 1 1 0.132 0.074 78 57 Oat Hill Extension drainage near James Creek CRND Crydalidae 6 0.88 0.11 0.172
Hemiptera Belostomatidae 2 3.19 1.6 0.445 0.277 72 62 Hemiptera Gerridae 24 1.59 0.07 0.097 0.096 66 99 Plecoptera Perlidae 11 1.35 0.12 1.35 0.061 78 5 Oat Hill Extension wetland area OHE1 5/20/2004 Colcoptera Dytiscidae 30 1.81 0.66 0.97 0.142 80 15 area JAB Odonata Cordulegastridae 30 1.89 0.06 1.35 0.064 51 1 Oat Hill Extension drainage near James Creek JC2 JAP Megaloptera Cordulegastridae 1 1 1 0.132 0.074 78 57 Oat Hill Extension drainage near James Creek JC2 Megaloptera Cordulegastridae 4 0.9 0.23 0.346 0.064 81 19 Lower Corona Mine- Downstream CRND Hemiptera Gerridae <td< td=""></td<>
Hemiptera Gerridae 24 1.59 0.07 0.097 0.096 66 99 Plecoptera Perlidae 11 1.35 0.12 1.35 0.061 78 5 Oat Hill Extension wetland area 0HE1 5/20/2004 Odonata Cordulegastridae 3 1.81 0.6 0.97 0.142 80 15 Oat Hill Extension wetland area 0HE1 5/20/2004 Gerridae 25 1.6 0.06 0.20 0.18 69 90 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Corydalidae 1 1 1 0.132 0.074 78 57 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Corydalidae 4 0.9 0.23 0.346 0.064 81 19 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 25 1.5 0.06 0.172 0.102 77 59 Lower Corona
Plecoptera Perlidae 11 1.35 0.12 1.35 0.061 78 5 Oat Hill Extension wetland area OHE1 5/20/2004 Odonata Cordulegastridae 3 1.81 0.6 0.97 0.142 80 15 Oat Hill Extension wetland area 0HE1 5/20/2004 Gerridae 25 1.6 0.06 0.20 0.18 69 90 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Cordulegastridae 4 0.9 0.23 0.346 0.064 81 19 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Corydalidae 4 0.9 0.23 0.346 0.064 81 19 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 25 1.5 0.06 0.172 0.127 65 74 Lower Corona Mine- Downstream CRNU Hemiptera Gerridae 16 0.66 0.04 0.161 0.09
$ \begin{array}{c} \label{eq: constraints} \\ \mbox{Oat Hill Extension wetland} \\ \mbox{area} \end{array} \\ \begin{array}{c} \mbox{OHE1} \end{array} \\ \mbox{OHE1} \end{array} \\ \begin{array}{c} Sigma for the set of the set of$
area OHE1 5/20/2004 Coleoptera Dytiscidae 30 1.89 0.06 13.5 0.064 51 1 Area Hemiptera Gerridae 25 1.6 0.06 0.20 0.18 69 90 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Cordulegastridae 1 1 1 0.132 0.074 78 57 Odonata Cordulegastridae 4 0.9 0.23 0.346 0.064 81 19 Odonata Gerridae 25 1.79 0.07 0.103 0.079 67 76 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 8 0.88 0.11 0.172 0.127 65 74 Lower Corona Mine- Downstream CRNU Hemiptera Gerridae 8 0.88 0.11 0.173 0.102 77 59 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 </td
Hemiptera Gerridae 25 1.6 0.06 0.20 0.18 69 90 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Cordulegastridae 1 1 1 0.132 0.074 78 57 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Corydalidae 4 0.9 0.23 0.346 0.064 81 19 Lower Corona Mine- Downstream CRND CRND Hemiptera Gerridae 25 1.5 0.06 0.172 0.127 65 74 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 17 1.79 0.11 0.123 0.102 77 59 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Coleoptera Dytiscidae 20 0.71 0.04 0.156 0.105 NC 67 James Creek
Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Hemiptera Cordulegastridae 1 1 0.132 0.074 78 57 Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Hemiptera Corydalidae 4 0.9 0.23 0.346 0.064 81 19 Lower Corona Mine- Downstream CRND CRND Hemiptera Gerridae 25 1.5 0.06 0.172 0.127 65 74 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 8 0.88 0.11 0.173 0.102 77 59 Lower Corona Mine- Upstream CRND Hemiptera Notonectidae 17 1.79 0.11 0.253 0.155 62 61 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82<
Oat Hill Extension drainage near James Creek JC2 5/20/2004 Megaloptera Hemiptera Corydalidae 4 0.9 0.23 0.346 0.064 81 19 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 25 1.79 0.07 0.103 0.079 67 76 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 8 0.88 0.11 0.172 0.127 65 74 Lower Corona Mine- Downstream CRNU Hemiptera Gerridae 8 0.88 0.11 0.173 0.102 77 59 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Coleoptera Dytiscidae 20 0.71 0.04 0.156 0.105 NC 67 James Creek upstream Oat Hill Mine Drain JC1 JC1 Gerridae 3 0.93 0.31 0.111 0.042 NC 30
Hemiptera Gerridae 25 1.79 0.07 0.103 0.079 67 76 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 25 1.5 0.06 0.172 0.127 65 74 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 8 0.88 0.11 0.173 0.102 77 59 Lower Corona Mine- Upstream CRNU CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.156 0.105 NC 67 James Creek upstream Oat Hill Mine Drain JC1 JC1 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat JC1 Odonata <td< td=""></td<>
Hemiptera Gerridae 25 1.5 0.06 0.172 0.127 65 74 Lower Corona Mine- Downstream CRND Hemiptera Gerridae 8 0.88 0.11 0.173 0.102 77 59 Lower Corona Mine- Upstream CRNU CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gerridae 21 2.5 0.23 0.347 0.042 78 12<
Lower Corona Mine- Downstream CRND Hemiptera Gerridae 8 0.88 0.11 0.173 0.102 77 59 Lower Corona Mine- Upstream CRNU Image: Coleoptera Notonectidae 17 1.79 0.11 0.253 0.155 62 61 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 JC1 Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gerridae 11 2.5 0.23 0.347 0.042 78 12
Downstream Hemiptera Notonectidae 17 1.79 0.11 0.253 0.155 62 61 Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Coleoptera Dytiscidae 20 0.71 0.04 0.156 0.105 NC 67 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Georphidae 11 2.5 0.23 0.347 0.042 78 12
Lower Corona Mine- Upstream CRNU Coleoptera Dytiscidae 16 0.66 0.04 0.161 0.09 NC ^a 56 Coleoptera Dytiscidae 20 0.71 0.04 0.161 0.09 NC ^a 67 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gomphidae 11 2.5 0.23 0.347 0.042 78 12
Upstream Coleoptera Dytiscidae 20 0.71 0.04 0.156 0.105 NC 67 Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gomphidae 11 2.5 0.23 0.347 0.042 78 12
Odonata Aeshnidae 8 1.18 0.15 0.06 0.025 82 41 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 Hemiptera Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gomphidae 11 2.5 0.23 0.347 0.042 78 12
James Creek upstream Oat Hill Mine Drain JC1 Megaloptera Corydalidae 3 0.93 0.31 0.141 0.042 NC 30 James Creek upstream Oat Hill Mine Drain JC1 Hemiptera Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gomphidae 11 2.5 0.23 0.347 0.042 78 12
James Creek upstream Oat Hill Mine Drain JC1 Hemiptera Gerridae 25 1.14 0.05 0.135 0.117 53 87 Odonata Gomphidae 11 2.5 0.23 0.347 0.042 78 12
Hill Mine Drain Odonata Gomphidae 11 2.5 0.23 0.347 0.042 78 12
Odonata Gomphidae 11 2.54 0.23 14.4 0.074 79 1
Plecoptera Perlidae 10 1.01 0.1 0.111 0.058 NC 52
Odonata Aeshnidae 7 1.17 0.17 0.091 0.048 82 53
Hemiptera Belostomatidae 2 2.4 1.2 0.128 0.058 80 46
Hemiptera Belostomatidae 2 2.66 1.33 0.19 0.069 77 36
James Creek downstream Odonata Cordulegastridae 1 1.19 1.19 0.216 0.033 85 15
Drain drainage Hemiptera Gerridae 25 1.1 0.04 0.086 0.042 71 49
Hemiptera Gerridae 25 1.04 0.04 0.097 0.058 68 60
Odonata Gomphidae 7 1.6 0.23 0.201 0.051 80 25
Plecontera Perlidae 10 1 01 0 0.20 0.001 78 12
Odonata Aeshnidae 4 1.07 0.27 4.427 0.09 NC 2
Oat Hill Extension wetland
area OHE1 Coleontera Dutiscidae 20 11 0.06 0.477 0.100 NC 42
Coleoptera Dytiscidae 29 1.01 0.03 0.469 0.193 NC 41

Table 8. Mercury and methlymercury in invertebrates collected from James Creek and the Oat Hill Extension Mine. ww = wet weight.

MMHg concentrations in invertebrates from the wetland area near OHE (OHE1) suggest that the sediments there produce methyl mercury that is taken up by lower trophic level organisms. Too few samples of invertebrates were collected to statistically compare biouptake of MMHg among sites. Seasonal (Spring *vs.* Autumn) comparisons are also not meaningful, because different taxa were collected in each season. However, MMHg concentrations in certain taxa at certain sites are noteworthy. The most contaminated invertebrates were from the OHE1 location (Table 8 and Figs. 14 and 15), where MMHg concentrations in seven samples of invertebrates ranged from 0.06 to 0.22 µg/g MMHg, five of which exceeded 0.14 µg/g MMHg (Table 8). Of the taxa available at OHE1, dragonflies, water striders, and diving beetles were found to have the highest concentrations of MMHg (all approximately 0.2 µg/g ww, on average) of all the samples collected from the study area. These results demonstrate that MMHg produced in sediments can be taken up by local invertebrates, potentially providing a link between mercury methylation and trophic transfer to higher level organisms.

3.3.2 Frogs (Hg_T)

As is the case for invertebrate data, the ecological impact of the OHE in addition to other sources of mercury to James Creek is not clear from frog Hg_T measurements. Five Foothill Yellow-legged frogs were collected on May 20 and two more on October 29; all were analyzed for Hg_T (Table 9). Average concentrations of Hg_T in frogs from James Creek were similar upstream (0.18 μ g/g) and downstream (0.15 μ g/g) of OHE drainage and at the lower Corona Mine adit drainage (0.14 μ g/g).

 Hg_T in foothill yellow-legged frogs collected from the James Creek study area, ranging from 0.1 to 0.6 μ g/g Hg (Table 9), was on average twice that of values in an extensive database compiled from studies throughout Northern California⁶ (0.2 *vs.* 0.1 μ g/g Hg_T), with the highest concentration observed at the wetland area of the OHE in Autumn.

Frogs may be susceptible to trophic transfer of MMHg from invertebrates at this location, on the basis of relatively high Hg_T in one frog (0.6 μ g/g, approximately 40 times higher than the ten lowest frog recoveries in the Northern California database) and MMHg in invertebrates at that location. The concentration of Hg_T in this frog from the wetland area of the OHE was exceeded by only 16 of the 190 foothill yellow-legged frogs analyzed by the USGS to-date in Northern CA⁷. While these results suggest that Hg is accumulated in biota above the lowest trophic level in James Creek, further study is required to rule out their misinterpretation due to cinnabar contamination.

3.3.3 Fish (Hg_T)

Like invertebrates and frogs, fish mercury results do not clearly indicate that the OHE site is responsible for ecological impairment of biota in addition to that from other sources of mercury to James Creek. A number of factors could limit the use of fish data for this assessement, including the close proximity of the sampling locations. The fish are more mobile than invertebrates and could have resided upstream and downstream of Tributary 1. Hg_T

⁶ Foothill yellow-legged frogs have been collected in various studies in Northern California and analyzed for Hg since 1997. During that period, 190 frogs were analyzed from seven major watersheds, including Cache Creek in the Coast Range, the Bear-Yuba Watershed in the Sierras, the Trinity River, and Upper Clear Creek, including Whiskeytown National Recreation Area (R. Hothem unpubl. data).

⁷ These 16 frogs were collected from the Cache Creek or Trinity River watersheds.

Site	Site code	Date	Sample code	Total Mass (g)	Age	Sex	Hg (µg/g dw)	Hg (µg/g ww)	Percent liquid
James Creek upstream Oat Hill Extension (OHE) drainage	JC1	5/20/04	1994	12.4	Adult	Male	0.77	0.18	76.0
James Creek downstream OHE drainage	JC3	5/20/04	1995 1996 1997	28.1 20.2 15.3	Adult Adult Adult	Female Female Male	0.93 0.59 0.69	0.20 0.13 0.15	78.0 80.2 78.2
OHE drainage (Tributary 1)	OHED	5/20/04	1998	3.06	Juvenile	Female	0.84	0.19	77.1
Downstream of lower Corona Mine Adit	CRND	10/29/04	2027	NA	Adult	Female	0.58	0.14	76.5
Oat Hill Extension wetland area	OHE1	10/29/04	2028	NA	Juvenile	Unknown	2.8	0.61	78.2

Table 9. Mercury concentrations in Foothill Yellow-legged frogs (*Rana boylii*) collected from James Creek and Oat Hill Extension Mine.

concentrations in rainbow trout collected from James Creek up- and downstream of Tributary 1 ranged from 0.05 to 0.2 $\mu g/g$ (geometric mean 0.1 $\mu g/g$) and 0.1 to 0.3 $\mu g/g$ (geometric mean 0.13 µg/g), respectively. It is uncertain whether fillets from rainbow trout collected from James Creek would exceed the U.S. Environmental Protection Agency 2001 advisory level of 0.3 µg of methyl mercury per gram of edible tissue (www.epa.gov/mercury), but whole body Hg_T did not exceed 0.3 µg/g (Table 10; the highest recovery was 0.27 µg/g). California roach upstream and downstream of OHE drainage ranged from 0.1 to 0.2 μ g/g Hg_T, (geometric mean 0.16 μ g/g). To protect the health of wildlife and humans, a target level of 0.05 µg-*methyl* Hg g⁻¹ whole body fish tissue have been set for small (less than four-inch total length) fish such as roach in another California mine-impacted subwatershed of Cache Creek, Harley Gulch (Cooke and Morris, 2005). While the roach collected in this study contain much higher levels of Hg_T , we are not sure what portion is methylated and therefore whether they pose an ecological risk as defined by Cooke and Morris (2005). Beckvar et al. (2005) concluded that 0.2 μ g Hg_T g⁻¹ whole-body fish tissue (on a wet weight basis) protects the health of juvenile and adult fish, but they did not consider the effect of mercury speciation, a necessary consideration given that the chemical steps required to render cinnabar reactive may be different than those required for different forms of inorganic Hg in other fresh water systems. Whether systems such as James Creek are unique in this regard is unknown. Therefore, broadly databased assessments of mercury toxicity or other bio-relevant behavior that do not explicitly take fundamental inorganic mercury reactivity into account should be applied with caution.

If enough mercury present in James Creek fish is cinnabar, Hg_T concentrations exceeding 0.2 $\mu g/g$ may still be protective of their health. In addition to water and sediment (section 3.2.1), criteria for Hg_T in predator (0.2 $\mu g/g$, presumably after Beckvar et al. (2005)) and prey (0.03 $\mu g/g$) fish have been proposed in the Tomales Bay watershed (Marshall, 2006).⁸ The effect of

⁸ We do not know if Marshall and others were aware of speciation measurements of Kim *et al.* (2004) and Slowey (unpublished data transmitted by letter to Dyan Whyte and J. Marshall, SF Bay RWQCB), finding Hg dominant

mercury speciation in that case was also not explicitly considered. Consequently, it would be dubious to conclude, based on eight percent of fish (3 out of 37) exceeding 0.2 μ g/g Hg_T (Table 10), that the aquatic ecology of James Creek is impaired. However, in light of the invertebrate results, the potential for ecological impairment is clearly evident and may manifest in other biota (e.g., piscivorous birds).

California roach had significantly higher Hg_T on average than trout (0.16 µg/g for 14 roach samples vs. 0.12 µg/g for 23 trout samples; test done with logged data), based on a *P* value of 0.03 for a one-tailed *t* test assuming equal variance for roach and trout Hg_T . Compared with the same species from other sites in Northern California, fish from James Creek were moderately contaminated with Hg^9 . Similar fish Hg_T was measured in Spring 1998 in small and juvenile fish above the confluence of Tributary 1 with James Creek (Slotton and Ayers, 1999).

Fish Hg_T concentrations in muscle tissue (on a wet weight basis) have been found to positively and non-linearly correlate to body length in other mine-impacted settings by Slotton et al. (2004), who were cognizant, unlike others (Jewett et al., 2003), of the potential for wide-ranging Hg concentrations to falsely imply this correlation. To linearize the relationship and normalize the errors as required in tests of significance, we \log_{10} transformed our fish Hg_T (ppm wet weight) and length (mm) data prior to exploring their possible correlation. Because rainbow trout and California roach have different eating habits (trout are primarily insectivores, feeding on insects in drift and on the water surface, while roach are omnivores, eating algae and insects at or near sediment), we investigated each fish species data set separately. For the case of whole-body Hg_T analyses of James Creek trout and roach collected during this study, log₁₀ fish Hg_T is correlated to total length (Fig. 17). However, the significance of these correlations is a matter of interpretation. Analysis of variance (ANOVA), which compares the variance of the \log_{10} Hg_T data with the variance about the best-fit function, suggests that, 3.7 percent of the time, a correlation this large ($R^2 = 0.19$) could happen by chance alone. ANOVA of roach data suggest the observed correlation ($R^2 = 0.46$) could happen 9.4 percent of the time by chance alone. The likelihoods of improving estimation is the most interpretive part of these correlation results, and would depend on the policy implications and/or remedial expenditures. Given that the correlations are at best marginally significant with this small number of samples, validation of this putative correlation would require additional fish sampling.

For a single fish species, or among species of similar lifestyle and physiology, the presence or absence of a significant correlation between Hg and length is likely related, among other factors, to the proportion of MMHg to total Hg. Since MMHg is retained more than inorganic Hg, a stronger correlation with length will likely characterize fish containing higher proportions of MMHg. In the present study, we have no direct evidence of this proportion at this time. We would like to conclude whether the majority of Hg in the fish collected is methylated or not, because this distinction is critical to knowning whether the mercury in James Creek taken up by biota will likely be retained long enough to impact the ecology of the larger Putah Creek

cinnabar and metacinnabar in the source mine waste and apparent colloid transport of mercury to Gambonini Creek due to organic acids in hydrophytic plants, the processes of which was studied by Slowey *et al.* (2005a).

⁹ Compared with 62 samples of California roach collected from Northern California since 1999 (R. Hothem, unpubl. data), which had a geometric mean of 0.14 μ g/g Hg, the James Creek roach had a mean concentration of 0.16 μ g/g. A total of 406 samples of rainbow trout collected from Northern California since 1999 (R. Hothem, unpubl. data) had a geometric mean of 0.115 μ g/g Hg, compared with 0.122 μ g/g from James Creek.

Figure 17. Log_{10} transforms of Hg_T (ppm, wet-weight basis) in Rainbow Trout and California Roach ([Hg]) compared to log_{10} transforms of total fish body length in mm (L). See text for an explanation as to why the data were log-transformed. The results of the regression analysis includes the squared correlation coefficient R² which denotes the proportion of variance of Hg accounted for by length and analysis of variance (ANOVA) significance tests in which the *F ratio* statistic evaluates the probability that a relationship this strong could be made by chance, as is more fully explained in the text.

watershed, including Lake Berryessa. Given the policy implications of interpreting these and other biota data, we strongly discourage reliance on other studies (e.g., Bloom, 1992) as the basis for interpreting total mercury measurements as indicative of methyl mercury uptake. Appreciably different conditions at locations such as James Creek compared to systems that are more extensively studied (e.g., those receiving mercury primarily as a result of atmospheric deposition, not past mining) may have decisive implications.

To our knowledge, study of the proportion of methyl to total mercury in fish residing in cinnabar mine-impacted riverine systems is limited to two studies of the Yukon-Kuskokwim delta, Alaska (Gray *et al.*, 2000; Jewett *et al.*, 2003). Gray *et al.* (2000) sampled Arctic grayling (a low trophic-level fish) from Cinnabar Creek, a tributary of the Kuskokwim River known to contain cinnabar. The muscle tissue of three of these grayling were analyzed for both Hg_T and MMHg, finding 94 to 127 percent of mercury was methylated. Allowing for analytical errors evident from these results suggestst that most if not all mercury in *muscle tissue* of these fish species is methylated. In discussing these and the James Creek results, Gray noted there is a legitimate concern that an appreciable portion of mercury measured in *whole-body* samples of fish from a cinnabar-contaminated creek could be inorganic (*pers. comm.* March 28, 2007). At other locations along the Yukon and Kuskokwim Rivers, Jewett *et al.* (2003) found that, on average, 94 percent of mercury in pike muscle was methylated, but these fish were not collected near tributaries known to contain cinnabar (mercury in water or sediment was not measured). In conclusion, there currently is no strong basis on which to assume that the mercury measured in whole-body fish samples is mostly methylated. We recommend that, given the cost of MMHg

analysis, a subset of fish samples be analyzed for both Hg_T and MMHg and, when possible, to analyze muscle tissue in lieu of whole bodies.

3.3.4 Trophic transfer of mercury

On a sample-averaged basis at the two James Creek locations JC1 and JC3, frogs, roach, and trout all had higher levels of mercury than invertebrates (Fig. 18). Invertebrate MMHg was compared with upper trophic level biota to avoid bias due to the apparent ingestion by or adhesion of cinnabar to invertebrates. Estimation of bioaccumulation factors (BAFs) would be better supported by consistent use of MMHg data, since Hg_T in these frogs and fish may include inorganic mercury resulting in overestimation of BAFs.

4. Conclusions

The OHE tailings are unusual in comparison to most mercury mine tailings because they were not heated in a retort or furnace. Processing of the ores through a gravity circuit to recover cinnabar concentrates resulted in tailings that should have considerably higher residual cinnabar and metal-sulfide mineals such as pyrite. The tailings, containing 600 to 1,000 ppm mercury, contaminate a tributary (*Tributary 1*) that drains the OHE area into James Creek. The 1,500 ppm mercury recovered from sediment in a drainage that transects the tailings pile (Drainage A) suggests that mercury-enriched sediment will be transported from the tailings during both base and high flows. However, there are other sources of mercury, including mercury-enriched (930 to 1,200 ppm) tailings above the OHE mine area from a dump near the USBLM property boundary (presumably from a past Oat Hill mining operation). Water from a spring located below the adit at the OHE had high Hg_T (780 ng/L), elevated sulfate (130 mg/L), and is saturated with respect to calcite and magnesite, both of which were observed in the spring sediment. This spring water flows into Tributary 1, which then flows into James Creek. Elevated concentration of mercury and sulfate in James Creek below the confluence with Tributary 1 may, therefore, partly result from drainage from this spring (Drainage B). Dispersion along this hydrological

pathway is suggested by Hg and sulfate results (listed from Drainage B to Tributary 1 to James Creek): 780 to 14 to 7 ng/L Hg_T; similarly, 130 to 70 to 90 mg/L sulfate.

Figure 18. Average concentrations of MMHg in invertebrates and Hg_T in Foothill Yellow-legged frogs, California Roach, and Rainbow Trout sampled from James Creek locations JC1 and JC3 (Fig. 1).

	Site		,	,			Ha	
	Cod	Unique Sample			Total Length		(ug/g	percent
Site	е	Code	Common Name	Number	(ave. mm)	Hg (ug/g dw)	ww)	Moisture
		CR-JC1-001F	California roach	4	93.5	0.890	0.200	77.5
		CR-JC1-002F	California roach	4	82.3	0.828	0.185	77.6
		CR-JC1-003F	California roach	1	80.0	0.891	0.198	77.8
		CR-JC1-004F	California roach	4	71.3	0.669	0.146	78.2
		CR-JC1-005F	California roach	1	70.0	0.496	0.109	78.1
		CR-JC1-006F	California roach	4	63.5	0.759	0.173	77.2
		CR-JC1-007F	California roach	1	53.0	0.538	0.122	77.3
Jamos Crook upstroom Oat Hill Extension		CR-JC1-015F	Rainbow trout	1	215.0	0.469	0.143	69.5
drainage (Tributany 1)	JC1	CR-JC1-016F	Rainbow trout	1	191.0	0.483	0.140	71.0
drainage (moutary 1)		CR-JC1-017F	Rainbow trout	1	182.0	0.152	0.048	68.7
		CR-JC1-018F	Rainbow trout	1	175.0	0.849	0.186	78.1
		CR-JC1-019F	Rainbow trout	1	157.0	0.524	0.133	74.6
		CR-JC1-020F	Rainbow trout	1	111.0	0.376	0.085	77.3
		CR-JC1-021F	Rainbow trout	1	109.0	0.462	0.103	77.7
		CR-JC1-022F	Rainbow trout	1	108.0	0.610	0.138	77.4
		CR-JC1-023F	Rainbow trout	1	104.0	0.513	0.118	77.0
		CR-JC1-024F	Rainbow trout	1	94.0	0.423	0.091	78.5
		CR-JC3-008F	California roach	4	80.5	0.869	0.201	76.9
		CR-JC3-009F	California roach	4	67.5	0.815	0.191	76.6
		CR-JC3-010F	California roach	1	71.0	0.455	0.106	76.6
		CR-JC3-011F	California roach	4	63.0	0.538	0.133	75.2
		CR-JC3-012F	California roach	1	64.0	0.845	0.171	79.8
		CR-JC3-013F	California roach	4	58.3	0.756	0.183	75.8
		CR-JC3-014F	California roach	1	59.0	0.548	0.136	75.1
		CR-JC3-025F	Rainbow trout	1	209.0	0.476	0.151	68.2
		CR-JC3-026F	Rainbow trout	1	208.0	1.140	0.266	76.7
James Creek downstream Oat Hill	103	CR-JC3-027F	Rainbow trout	1	204.0	1.160	0.247	78.7
Extension drainage (Tributary 1)	303	CR-JC3-028F	Rainbow trout	1	165.0	0.302	0.085	71.7
		CR-JC3-029F	Rainbow trout	1	162.0	0.675	0.152	77.5
		CR-JC3-030F	Rainbow trout	1	154.0	0.855	0.191	77.7
		CR-JC3-031F	Rainbow trout	1	146.0	0.507	0.120	76.4
		CR-JC3-032F	Rainbow trout	1	129.0	0.397	0.096	75.8
		CR-JC3-033F	Rainbow trout	1	120.0	0.380	0.096	74.8
		CR-JC3-034F	Rainbow trout	1	116.0	0.346	0.084	75.7
		CR-JC3-035F	Rainbow trout	1	105.0	0.505	0.120	76.2
		CR-JC3-036F	Rainbow trout	1	93.0	0.449	0.108	75.9
		CR-JC3-037F	Rainbow trout	1	88.0	0.512	0.116	77.3

Table 10. Mercury concentrations in fish collected from James Creek on May 20, 2004.

Placer cinnabar has historically been mined from James Creek, and seasonal enrichment of the cinnabar in James Creek has been reported in at least one report (Yates and Hilpert, 1946), presumably due to erosion of mercury-enriched sediment from the Oat Hill and OHE mines during winter storm events. Panned concentrates containing appreciable amounts of cinnabar were obtained from James Creek both above and below the confluence with Tributary 1, indicating that significant sources of mercury-enriched sediment are released from both the Oat Hill¹⁰ and OHE mine sites. A larger amount of cinnabar was apparent in the panned concentrate above Tributary 1, tentatively suggesting that the Oat Hill Mine site may be a more significant source of cinnabar than the OHE Mine to the nearest reach of James Creek (other mine sites may have more or less impact on James Creek as a whole).

High levels of mercury present in sediment and water at the OHE spring, Tributary 1, and James Creek did not result in correspondingly high concentrations of MMHg in the apparently aerobic water and sediment sampled. This finding is likely due to the stability of cinnabar in water and sediments containing low concentrations of organic matter and sulfide and/or degradation of MMHg. To better evaluate the methylation potential of the James Creek system and enhancement of this potential by nearby mine sites, additional sampling and analysis of sediments where MMHg production is more likely to occur should be performed. These locations include root-stabilized fluvial and riparian sediments and wetlands. Although localized production of MMHg may not yield appreciable MMHg concentrations in the bulk waters of James Creek, accumulation of MMHg in fish in mine-impacted waters can be facilitated by uptake of MMHg by benthic invertebrates followed by their consumption by bottom-feeding fish (Slotton *et al.*, 2004).

While there is evidence from measurements of water, sediment, and biota that mercury from the OHE and other mines may be impairing the James Creek ecosystem, the measurements suggest that the degree of impairment is not commensurate with the extraordinary degree of mercury contamination present. Methyl mercury concentrations in flowing water and sediment from James Creek and the tributary that drains the OHE are relatively low, ranging from 0.04 to 0.08 ng/L, although these data should be interpreted with caution (see § 3.2).

While the results of this investigation suggest that the OHE contributes inorganic mercury to James Creek, they do not indicate whether the OHE site is ecologically impairing biota in addition to impairment from other sources of mercury to James Creek, nor do they provide any indication of the relative importance of the OHE to the ecological impairment.

Acknowledgments. This field investigation was funded by the USBLM, who also granted access to study locations. We thank David Lawler (USBLM) for sampling assistance. Permission to collect biological specimens for study was kindly granted by the California Department of Fish and Game. Ion chromatography and alkalinity analyses were performed by USGS laboratories under the direction of Paul Lamothe. ICP-AES analyses were performed in USGS laboratories under the direction of Paul Briggs. R. Taylor of TERL and C. Davies of Brooks Rand conducted or oversaw the chemical analyses of biota. K. DeClercq and A. Meckstroth helped collect biota.

¹⁰ See footnote 1, p. 2.

Forthright and careful reviews by Roger Ashley and Steve Ludington (USGS) improved this report. AJS gratefully acknowledges the help of Donald Singer (USGS) with statistics.

5. References

- Alpers, C. N., Hunerlach, M. P., May, J. T., Hothem, R. L., Taylor, H. E., Antweiler, R. C., DeWild, J. F., Lawler, D. A., 2005. Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, California, 1999-2001. U.S. Geological Survey Scientific Investigations Report. 2004-525, 278 pp.
- Banfield, J. F., Welch, S. A., Zhang, H. Z., Ebert, T. T., Penn, R. L., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. *Science* 289, 751-754.
- Barrow, N. J., Cox, V. C., 1992. The Effects of pH and chloride concentration on mercury sorption 1. By goethite. *J. Soil Sci.* **43**, 295-304.
- Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., Miller, C. L., 2003. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Cai, Y., Braids, O. C. (Eds.), *Biogeochemistry of Environmentally Important Trace Elements.* 835 ACS Symposium Series Oxford University Press, Oxford. pp. 262-297.
- Benoit, J. M., Gilmour, C. C., Mason, R. P., 2001. The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of *Desulfobulbus propionicus* (1pr3). *Environ. Sci. Technol.* 35, 127-132.
- Berzas Nevado, J. J., Garcia Bermejo, L. F., Rodriguez Martin-Doimeadios, R. C., 2003. Distribution of mercury in the aquatic environment at Almaden, Spain. *Environ. Pollut.* **122**, 261-271.
- Bloom, N. S., 1992. On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue. *Can. J. Fish. Aquat. Sci.* **49**, 1010-1017.
- Bloom, N. S., 1995. Mercury as a case study of ultra-clean sample handling and storage in aquatic trace metal research. *Environmental Laboratory* **3-4**, 20-25.
- Bloom, N. S., 2001. Solid Phase Hg Speciation and Incubation Studies in or Related to Mine-site Runoff in the Cache Creek Watershed (CA). Assessment of Ecological and Human Health Impacts of Mercury in the San Francisco Bay-Delta Watershed. 37 pp. California Bay Delta Authority, Sacramento.
- Bloom, N. S., Crecelius, E. A., Fitzgerald, W. F., 1988. Determination of volatile mercury species at the picogram level by low temperature gas chromatography with cold vapor atomic fluorescence detection. *Anal. Chim. Acta* **208**, 151-161.
- Brown, G. E., Jr., Parks, G. A., 2001. Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies, and comments on sorption in the marine environment. *Int. Geol. Rev.* **43**, 963-1073.
- Brown, G. E., Sturchio, N. C., 2002. An overview of synchrotron radiation applications to low temperature geochemistry and environmental science. In: Fenter, P. A., Rivers, M. L., Sturchio, N. C., Sutton, S. R. (Eds.), *Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Sciences. Rev. Mineral. Geochem.* 49 Mineralogical Society of America, Washington, DC. pp. 1-115.

- Conaway, C. H., Watson, E. B., Flanders, J., Flegal, A. R., 2004. Mercury deposition in a tidal marsh of south San Francisco Bay downstream of the historic New Almaden mining district, California. *Mar. Chem.* **90**, 175-184.
- Crock, J. G., 1996. Mercury. In: Sparks, D. L. (Ed.), Methods of Soil Analysis, Part 3. Chemical Methods. 5 Soil Science Society of America, Madison, WI. pp. 769-791.
- Doelsch, E., Stone, W. E. E., Petit, S., Masion, A., Rose, J., Bottero, J. Y., Nahon, D., 2001. Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO4 ligands. 2. Characterization of Si-Fe aggregates by FTIR and Si-29 solid-state NMR. *Langmuir* 17, 1399-1405.
- Ericksen, J. A., Gustin, M. S., Lindberg, S. E., Olund, S. D., Krabbenhoft, D. P., 2005. Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope. *Environ. Sci. Technol.* **39**, 8001-8007.
- Faganeli, J., Horvat, M., Covelli, S., Fajon, V., Logar, M., Lipej, L., Cermelj, B., 2003. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). *Sci. Total Environ.* **304**, 315-326.
- Fishman, M. J., Friedman, L. C., 1989. Ion Chromatography, Methods for Determination of Inorganic Substances in Water and Fluvial Sediments. Techniques of Water-Resources Investigations of the United States Geological Survey. U.S. Geological Survey, http://pubs.usgs.gov/twri/twri5-a1/pdf/twri_5-A1_b.pdf. pp. 38-43.
- Fleming, E. J., Mack, E. E., Green, P. G., Nelson, D. C., 2006. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. *Appl. Environ. Microbiol.* **72**, 457-464.
- Gilbert, B., Banfield, J. F., 2005. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. In: Banfield, J., CerviniSilva, J., Nealson, K. (Eds.), *Molecular Geomicrobiology. Reviews in Mineralogy & Geochemistry.* 59 Mineralogical Society of America and Geochemical Society, Virginia. pp. 109-155.
- Gilmour, C. C., Henry, E. A., Mitchell, R., 1992. Sulfate stimulation of mercury methylation in freshwater sediments. *Environ. Sci. Technol.* **26**, 2281-2287.
- Gray, J., Theodorakos, P., Bailey, E., Turner, R., 2000. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. *Sci. Total Environ.* **260**, 21-33.
- Gustin, M. S., Coolbaugh, M. F., Engle, M. A., Fitzgerald, B. C., Keislar, R. E., Lindberg, S. E., Nacht, D. M., Quashnick, J., Rytuba, J. J., Sladek, C., Zhang, H., Zehner, R. E., 2003. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. *Environ. Geol.* 43, 339-351.
- Gustin, M. S., Ericksen, J. A., Schorran, D. E., Johnson, D. W., Lindberg, S. E., Coleman, J. S., 2004. Application of controlled mesocosms for understanding mercury air-soil-plant exchange. *Environ. Sci. Technol.* **38**, 6044-6050.
- Helgeson, H. C., 1969. Thermodynamics of Hydrothermal Systems at Elevated Temperatures and Pressures. Am. J. Sci. 267, 729-804.
- Horvat, M., Bloom, N. S., Liang, L., 1993a. A comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples, part 2, water. *Anal. Chim. Acta* **282**, 153-168.
- Horvat, M., Bloom, N. S., Liang, L., 1993b. Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: Part 1. Sediments. *Anal. Chim. Acta* **281**, 135-152.

- Jay, J. A., Morel, F. M. M., Hemond, H. F., 2000. Mercury speciation in the presence of polysulfides. *Environ. Sci. Technol.* **34**, 2196-2200.
- Jay, J. A., Murray, K. J., Gilmour, C. C., Mason, R. P., Morel, F. M. M., Roberts, A. L., Hemond, H. F., 2002. Mercury methylation by *Desulfovibrio desulfuricans* ND132 in the presence of polysulfides. *Appl. Environ. Microbiol.* 68, 5741-5745.
- Jewett, S. C., Zhang, X. M., Naidu, A. S., Kelley, J. J., Dasher, D., Duffy, L. K., 2003. Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. *Chemosphere* **50**, 383-392.
- Kappler, A., Straub, K. L., 2005. Geomicrobiological Cycling of Iron. In: Banfield, J. F., Cervini-Silva, J., Nealson, K. H. (Eds.), *Molecular Geomicrobiology. Rev. Mineral. Geochem.* 59 Mineralogical Society of American and Geochemical Society, Virginia. pp. 85-108.
- Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., Mason, R. P., 2007. Mercury methylation by dissimilatory iron-reducing bacteria. *Appl. Environ. Microbiol.* 72, 7919-7921.
- Kim, C. S., Rytuba, J. J., Brown, G. E., Jr., 2004. Geological and anthropogenic factors influencing mercury speciation in mine wastes: an EXAFS spectroscopy study. *Appl. Geochem.* 19, 379-393.
- Lowry, G. V., Shaw, S., Kim, C. S., Rytuba, J. J., Brown, G. E., Jr., 2004. Particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings: Column experiments and macroscopic, microscopic and spectroscopic analysis. *Environ. Sci. Technol.* 38, 5101-5111.
- Merritt, K. A., Amirbahman, A., 2007. Mercury Mobilization in Estuarine Sediment Porewaters: A Diffusive Gel Time-Series Study. *Environ. Sci. Technol.* **41**, 717-722.
- Nordstrom, D. K., Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In: Banfield, J. F., Nealson, K. H. (Eds.), *Geomicrobiology: Interactions between Microbes and Minerals. Rev. Mineral. Geochem.* 35 Mineralogical Society of America, Washington, D.C. pp. 361-390.
- O'Leary, R. M., Hageman, P. L., Crock, J. G., 1996. Determination of mercury in water, geologic, and plant materials by continuous flow-cold vapor-atomic absorption spectrophotometry. In: Arbogast, B. F. (Ed.), *Analytical methods for the Mineral Resource Surveys Program.* **Open File Report 96-525** U.S. Geological Survey, Denver. pp. 42-55.
- Paquette, K. E., Helz, G. R., 1997. Inorganic speciation of mercury in sulfidic waters: The importance of zero-valent sulfur. *Environ. Sci. Technol.* **31**, 2148-2153.
- Parker, J. L., Bloom, N. S., 2005. Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 337, 253-263.
- Pickhardt, P. C., Fisher, N. S., 2007. Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. *Environ. Sci. Technol.* **41**, 125-131.
- Pickhardt, P. C., Folt, C. L., Chen, C. Y., Klaue, B., Blum, J. D., 2005. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. *Sci. Total Environ.* **339**, 89-101.
- Poulton, S. W., Krom, M., Raiswell, R., 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. *Geochim. Cosmochim. Acta* 68, 3703-3715.

- Pyzik, A., Sommer, S., 1981. Sedimentary iron monosulfides: kinetics and mechanism of formation. *Geochim. Cosmochim. Acta* **45**, 687-698.
- Rickard, D., Morse, J. W., 2005. Acid volatile sulfide (AVS). Mar. Chem. 97, 141-197.
- Rounds, S. A., 2006. Alkalinity and acid neutralizing capacity. In: Wilde, F. D. (Ed.), National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations. U.S. Geological Survey. http://pubs.water.usgs.gov/twri9A.
- Seeberg-Elverfeldt, J., Schluter, M., Feseker, T., Kolling, M., 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. *Limnol. Oceanogr. Methods* 3, 361-371.
- Sellers, P., Kelly, C. A., Rudd, J. W. M., MacHutchon, A. R., 1996. Photodegradation of methylmercury in lakes. *Nature* 380, 694-697.
- Sigg, L., Black, F., Buffle, J., Cao, J., Cleven, R., Davison, W., Galceran, J., Gunkel, P., Kalis, E., Kistler, D., Martin, M., Noel, S., Nur, Y., Odzak, N., Puy, J., vanRiemsdijk, W., Temminghoff, E., Tercier-Waeber, M. L., Toepperwien, S., Town, R. M., Unsworth, E., Warnken, K. W., Weng, L., Xue, H., Zhang, H., 2006. Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. *Environ. Sci. Technol.* **40**, 1934-1941.
- Slotton, D. G., Ayers, S. M., 1999. Pope Creek Watershed 1998 Biological Mercury Assessment. 45 pp. for Public Resource Associates, San Francisco, CA and Reno, NV.
- Slotton, D. G., Ayers, S. M., Suchanek, T. H., Weyand, R. D., Liston, A. M., 2004. Mercury Bioaccumulation and Trophic Transfer in the Cache Creek Watershed of California in Relation to Diverse Aqueous Mercury Exposure Conditions. Assessment of Ecological and Human Health Impacts of Mercury in the San Francisco Bay-Delta Watershed. 74 pp. California Bay Delta Authority, Sacramento.
- Slowey, A. J., Brown Jr., G. E., 2007. Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide. *Geochim. Cosmochim. Acta* 71, 877-894.
- Slowey, A. J., Johnson, S. B., Rytuba, J. J., Brown, G. E., Jr., 2005a. Role of organic acids in promoting colloid transport of mercury from mine tailings. *Environ. Sci. Technol.* 39, 7869-7874.
- Slowey, A. J., Rytuba, J. J., Brown, G. E., Jr., 2005b. Speciation of mercury and mode of transport from placer gold mine tailings. *Environ. Sci. Technol.* **39**, 1547-1554.
- Stoffregen, R. E., Alpers, C. N., Jambor, J. L., 2000. Alunite-jarosite crystallography, thermodynamics, and geochronology. In: Alpers, C. N., Jambor, J. L., Nordstrom, D. K. (Eds.), Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance. Rev. Mineral. Geochem. 40 Mineralogical Society of America, Washington D.C. pp. 453-479.
- Stumm, W., 1995. The Inner-Sphere Surface Complex-A Key to Understanding Surface Reactivity, Aquatic Chemistry. Advances in Chemistry Series. 244 American Chemical Society, Columbus, OH. pp. 1-32.
- Tsui, M. T. K., Wang, W.-X., 2004. Uptake and elimination routes of inorganic mercury and methylmercury in *Daphnia magna*. *Environ. Sci. Technol.* **38**, 808-816.
- United States Bureau of Mines, 1965. Mercury potential of the United States. Information Circular 8252.

- United States Environmental Protection Agency, 2002. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. *Report 821-R-02-019*, http://www.epa.gov/waterscience/methods/1631e.pdf.
- Uthe, J. F., Solomon, J., Grift, B., 1972. Rapid semimicro method for the determination of methylmercury in fish tissue. J. Assoc. Official Anal. Chem. 55, 583-589.
- Waite, T. D., Morel, F. M. M., 1984. Photoreductive dissolution of colloidal iron oxide: Effect of citrate. J. Colloid Interf. Sci. 102, 121-137.
- Waples, J., Nagy, K. L., Aiken, G. R., Ryan, J. N., 2005. Dissolution of cinnabar (HgS) in the presence of natural organic matter. *Geochim. Cosmochim. Acta* **69**, 1575-1588.
- Whyte, D. C., Kirchner, J. W., 2000. Assessing water quality impacts and cleanup effectiveness in streams dominated by episodic mercury discharges. *Sci. Total Environ.* **260**, 1-9.
- Yates, R. G., Hilpert, L. S., 1946. Quicksilver deposits of the Eastern Mayacmas District, Lake and Napa Counties, California. *California Journal of Mines and Geology Report XLII of the State Mineralogist*, 231-286.
- Zanker, H., Richter, W., Huttig, G., 2003. Scavenging and immobilization of trace contaminants by colloids in the waters of abandoned ore mines. *Colloids Surfaces A: Physicochem. Eng. Aspects* 217, 21-31.

50 m

Figure 15. Average methylmercury concentration (μ g/g, wet wt.) in larval dragonflies (Odonata) from 42 Sierra Nevada sites, 1999-2002, compared with selected water striders from the Oat Hill/James Creek study area, 2004. Methyl mercury in Sierra dragonflies was considered high (red), medium (yellow), or low (green) based on a comparison with the median for all sites. High: > 2 times the median, Medium: < 2 times the median, but greater than the median, and Low: less than the median.

Figure 16. Average methylmercury concentration (μ g/g, wet wt.) in adult water striders (Gerridae) from 74 Sierra Nevada sites, 1999-2002, compared with selected water striders from the Oat Hill/James Creek study area, 2004. Methyl mercury in Sierra water striders was considered high (red), medium (yellow), or low (green) based on a comparison with the median for all sites. High: > 2 times the median, Medium: < 2 times the median, but greater than the median, and Low: less than the median.

	Lat	Long	Hg	Ag	Al	As	Ba	Be	Bi	Са	Cd	Ce	Со	Cr	Cs	Cu	Fe	Ga	Ge	Hf	In	К	La	Li
	Lai	Long	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
Lower Tai	ilings Pile at	t the Oat Hill	Extension	Mine																				
23-OE-1	38.67716	122.51748	767	0.17	6.4	5.2	750	1.4	0.2	1.8	0.2	44	16	91	5	36	3.9	14.0	0.3	1.5	0.03	1.6	22	32
23-OE-2	38.67813	122.5174	599	0.16	6.1	6.1	750	1.1	0.2	2.0	0.2	45	16	61	4	42	4.9	13.2	0.3	1	0.04	1.5	23	31
23-OE-4	38.67833	122.51745	827	0.16	6.1	3.2	700	1.3	0.1	1.9	0.1	48	15	92	4	32	4.3	13.3	0.3	1	0.04	1.5	24	31
23-OE-5	38.67833	122.51745	998	0.18	6.6	3.3	800	1.4	0.1	2.0	0.2	56	16	58	4	37	4.9	14.4	0.4	1.1	0.04	1.6	28	33
23-OE-6	38.67844	122.51781	891	0.15	5.9	4.4	720	1.2	0.1	2.0	0.2	48	16	96	4	38	4.5	13.0	0.3	1.1	0.03	1.5	24	29
23-OE-7	38.6784	122.51772	430	0.16	5.6	1.9	710	1.4	0.1	2.5	0.2	53	17	56	4	40	5.8	12.5	0.3	1.2	0.03	1.4	27	32
23-OE-8	38.67853	122.51758	830	0.15	5.5	0.2	610	1.1	0.1	1.9	0.2	49	14	87	4	31	4.9	12.0	0.3	1.4	0.03	1.3	25	34
23-OE-9	38.6787	122.51777	731	0.17	7.2	5.2	840	1.5	0.2	2.0	0.2	46	18	57	5	48	4.9	15.4	0.3	1.5	0.05	1.8	23	39
23-OE-10	38.67856	122.51746	403	0.1	5.1	<0.2	790	0.6	0.0	19.8	0.1	21	20	220	1	18	2.4	9.8	0.3	1.8	0.04	0.3	12	32
Upper Tai	lings above	Adit at the 0	Oat Hill Exte	ension Mi	ne																			
23-OE-12	38.6791	122.51866	1175	0.14	6.6	1.9	610	1.2	0.1	2.0	0.1	41	14	86	4	28	3.5	13.6	0.3	1.3	0.03	1.4	21	33
Sediment	s in Drainag	e A that tran	sects the O	at Hill Ex	tension	Tailngs Pi	e																	
23-OE-13	38.6791	122.51866	930	0.18	8.3	11.6	910	1.6	0.4	1.0	0.2	42	19	78	5	60	4.1	18.2	0.3	1.2	0.05	2.1	21	34
23-OE-3S	38.67813	122.5174	1495	0.18	7.5	9.3	880	1.2	0.2	1.2	0.2	44	21	73	4	63	4.7	16.5	0.3	1.1	0.06	1.9	22	31
Sample of	f retort brick	k at Oat Hill I	Extension M	line																				
23-OE-11	38.67846	122.51814	5.21	0.15	8.6	5.6	750	1.3	0.1	1.7	0.1	41	19	138	4	44	5.2	18.9	0.2	1.4	0.06	1.8	24	32
Backgrou	nd soil sam	ple at Oat H	ill Extensior	n Office S	ite																			
23-OE-14	38.67752	122.51819	6.71	0.13	7.3	8	750	1.3	0.1	0.3	0.2	45	16	62	4	36	4.5	16.2	0.2	0.7	0.05	1.57	23	38

Table 2. Chemical analysis of tailings and sediments at the Oat Hill Extension site, and soil deemed as representing background concentrations.

Screening criteria, in mg/kg (ppm)

BLM Camper	40			700			20					70			
BLM Eco Risk	1						4					0.3			
EPA PRG	23			390		76000	22			5400	150	37			4700
23-OE-1	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-
23-OE-2	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-
23-OE-4	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-
23-OE-5	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-
23-OE-6	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-
23-OE-7	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-
23-OE-8	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-
23-OE-9	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-
23-OE-10	+	+	+	-	-	-	+	+	+	-	-	-	-	-	-
23-OE-12	+	+	+	-	-	-	I	-	I	I	I	-	-	-	-
23-OE-3S	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-
23-OE-13S	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-
23-OE-11	-	+	I	-	-	-	I	+	I	I	I	-	-	-	-
23-OE-14	-	+	I	-	-	-	-	+	-	-	-	-	-	-	-

		7			
4700	210	2900			23000
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	+	-	+	-	-
-	-	-	+	-	I
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-
-	-	-	+	-	-

5000

Note: Plus (+) signs indicate exceedance of the criterion listed, while minus (-) signs indicate that the element's concentration was below the criterion.

Table 2 continued.

	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm						
Lower Tailing	gs Pile at t	the Oa	t Hill	Exter	nsion Mir	ne																		
23-OE-1	576	0.96	0.5	7	55	630	15	64	0.23	1.06	2	2.5	235	0.3	0.05	8	0.3	0.5	1.9	119	2	15	92	36
23-OE-2	741	0.95	0.4	5.5	57	680	15	60	0.08	1.28	1	2.2	252	0.2	<0.05	7	0.3	0.4	1.9	126	1.2	16	110	26
23-OE-4	668	0.79	0.4	5.3	54	660	14	59	0.11	1.02	1	2	217	0.2	<0.05	6	0.3	0.4	2.1	122	1.1	16	105	28
23-OE-5	713	0.85	0.6	5.4	61	870	14	62	0.17	0.93	1	2.1	464	0.2	<0.05	7	0.3	0.4	2.1	128	1.4	19	108	35
23-OE-6	644	0.87	0.5	5.5	62	660	15	58	0.12	0.91	2	1.7	223	0.2	<0.05	7	0.3	0.4	1.9	118	1	18	112	27
23-OE-7	827	0.91	0.2	5.5	66	630	16	55	0.11	0.87	1	2.3	289	0.1	<0.05	7	0.3	0.4	2	128	1	21	127	19
23-OE-8	720	0.83	0.3	5.7	58	590	15	53	0.15	0.72	1	1.6	202	0.2	<0.05	6	0.3	0.3	1.8	116	0.8	18	113	34
23-OE-9	808	1.25	0.1	7	62	750	16	72	0.17	1.11	2	2.1	263	0.4	<0.05	6	0.4	0.5	2.2	134	1	16	110	45
23-OE-10	702	0.18	0.7	3.2	104	390	10	11	0.04	0.21	2	1.6	1450	0.2	<0.05	4	0.2	0.1	2.7	80	0.3	10	50	48
Upper Tailing	gs above A	Adit at	the (Dat Hi	ll Extens	ion Mi	ne																	
23-OE-12	545	0.65	0.5	6.6	48	600	13	56	0.08	0.71	2	1.6	207	0.3	<0.05	7	0.3	0.4	1.6	114	1	14	87	40
Sediments in	n Drainage	A that	t trar	sects	the Oat	Hill Ex	tension 1	Tailngs	Pile															
23-OE-13S	575	1.07	0.6	7	68	850	27	82	0.08	1.15	1	6.5	168.5	0.2	0.08	8	0.4	0.5	1.7	144	1.4	14	120	37
23-OE-3S	690	0.89	0.6	6.6	68	840	23	73	0.11	1.1	2	2.1	170.5	0.2	<0.05	8	0.4	0.5	1.8	140	1.2	15	121	28
Sample of re	tort brick	at Oat	Hill I	Exten	sion Mine	e																		
23-OE-11	946	0.73	1.0	7.7	82	830	14	86	0.01	0.77	1	2.1	113.5	0.3	<0.05	7	0.5	0.4	1.7	144	0.8	16	110	43
Background	soil samp	le at C	at H	ill Ext	ension O	ffice S	ite																	
23-OE-14	698	0.88	0.1	6.6	54	940	15	70	0.02	0.96	<1	1.8	81	0.1	<0.05	7	0.4	0.4	1.8	130	1.1	15	123	18

Screening criteria. in ma/ka (nom)

Screening ci	nena, n	1 11	ig/kg (ppiii)				
BLM Camper	19000			2700		1000	
BLM Eco Risk	I Eco Risk					6	
EPA PRG	1800			1600			
23-OE-1	-	-		-	-	-	+
23-OE-2	-	-		-	-	-	+
23-OE-4	-	-		-	-	-	+
23-OE-5	-	-		-	-	-	+
23-OE-6	-	-		-	-	-	+
23-OE-7	-	-		-	-	-	+
23-OE-8	-	-		-	-	-	+
23-OE-9	-	-		-	-	-	+
23-OE-10	-	-		-	-	-	+
23-OE-12	-	-		-	-	-	+
23-OE-3S	-	-		-	-	-	+
23-OE-13S	-	-		-	-	-	+
23-OE-11	-	-		-	-	-	+
23-OE-14	-	-		-	-	-	+

50		700	
31		390	
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	+	+

130			40000	
			43	
5.2		550	23000	
-	+	-	-	
-	+	-	-	
-	+	-	-	
-	+	-	-	
-	+	-	-	
-	+	-	-	
-	+	-	-	
-	+	-	-	
-	-	-	-	
-	+	-	-	•
-	+	-	-	•
-	+	-	-	
-	+	-	-	
-	+	-	-	

Appendix 1. Thermodynamic Modeling Results

A1.1 Sample 04JC1

	Temperature = pH = 8.400 Eh = 0.7423 Ionic strengt Activity of w Solvent mass Solution mass Solution dens Chlorinity Dissolved sol Rock mass Carbonate alk	<pre>14.3 C volts h = ater = ity = ids = alinity=</pre>	Pressure = 1.0 log f02 = -0. pe = 13.0145 0.006416 0.999995 0.999999 kg 1.000274 kg 1.020 g/cm3 0.000141 molal 274 mg/kg 0.000000 kg 57.09 mg/kg	13 bars 699 sol'n as CaCO3	
No minera	als in system				
Aqueous	species	molality	mg/kg sol'n	act. coef.	log act.
Mg++		0.001650	40.10	0.7376	-2.9146
HCO3-		0.001088	66.39	0.9213	-2.9989
SO4		0.0008443	81.08	0.7166	-3.2182
S102(aq)	0.0004/52	28.54	1.0017	-3.3224
O2(aq) Ca++		0.0003151	10.08	0 7275	-3.5008
Na+		0.0002381	5.473	0.9204	-3.6592
Cl-		0.0001405	4.981	0.9185	-3.8891
MaSO4		0.0001169	14.06	1.0000	-3.9323
K+		4.585e-005	1.792	0.9185	-4.3756
CaSO4		2.693e-005	3.665	1.0000	-4.5698
H3SiO4-		1.434e-005	1.363	0.9204	-4.8796
MgHCO3+		1.308e-005	1.115	0.9204	-4.9196
CO3		1.245e-005	0.7467	0.7194	-5.0480
CO2(aq)		1.101e-005	0.4844	1.0000	-4.9582
F-		9.865e-006	0.1874	0.9195	-5.0424
MgCO3		7.121e-006	0.6002	1.0000	-5.14/5
Carco3+		3./64e-006	0.3804	0.9225	-5.4594
		1 383e-006	0.2833	1.0000	-5.8591
0H-		1.303e-000	0.1470	0 9195	-5 9681
MaH3SiO	4+	8.082e-007	0.09648	0.9204	-6.1285
Mn++	-	7.964e-007	0.04374	0.7275	-6.2370
NaSO4-		6.720e-007	0.07998	0.9204	-6.2087
MgF+		6.390e-007	0.02766	0.9204	-6.2305
Al(OH)4	-	5.505e-007	0.05229	0.9204	-6.2953
MgH2SiO	4	3.851e-007	0.04559	1.0000	-6.4144
NaHCO3		3.669e-007	0.03081	1.0000	-6.4355
MnO4-		3.135e-007	0.03728	0.9204	-6.5398
MgC1+		2.855e-007	0.01706	0.9204	-6.5804
		2.006e-007	0.01515	0.9204	-0./33/
KSO4-		1.906e=007	0.02576	0.9204	-6.7558
CaH3SiO	4+	8.519e-008	0.01151	0.9204	-7.1056
Fe(OH)4	-	6.119e-008	0.007578	0.9204	-7.2494
MnSO4		5.603e-008	0.008458	1.0000	-7.2516
Mg2CO3+·	+	5.155e-008	0.005597	0.7222	-7.4292
Mg(H3Si	04)2	5.042e-008	0.01081	1.0000	-7.2974
NaH3SiO	4	4.210e-008	0.004971	1.0000	-7.3757
Fe(OH)2·	+	2.387e-008	0.002145	0.9204	-7.6581
CaF+		2.315e-008	0.001367	0.9204	-7.6715
MnCO3		2.181e-008	0.002506	1.0000	-/.0614
MINHCO3+		7.1726-008	0.001304	0.9204	- 1.9830
Callocio	Δ	6 0290-009	0.0007455	1 0000	-8 2107
	I	5.4090-009	0.0004218	1.0000	-8.2669
CaOH+		4.816e-009	0.0002749	0.9204	-8.3534
H+		4.287e-009	4.320e-006	0.9285	-8.4000
MnOH+		1.768e-009	0.0001272	0.9204	-8.7885
Ca(H3Si	04)2	1.106e-009	0.0002547	1.0000	-8.9561
NaCl		5.582e-010	3.261e-005	1.0000	-9.2532
MnO4		3.760e-010	4.471e-005	0.7166	-9.5695

A1

NaF	2.207e-010	9.264e - 0.06	1.0000	-9.6562
HSO4-	1.892e=010	1.836e=005	0.9204	-9.7591
H2SiO4	1.746e-010	1.642e-0.05	0.7166	-9.9027
H6(H2SiO4)4	1.664e-010	6.362e-005	0.7166	-9.9236
NaOH	1.476e-010	5.904e-006	1.0000	-9.8308
KCl	1.198e-010	8.926e-006	1.0000	-9.9217
MnF+	1.039e-010	7.678e-006	0.9204	-10.0195
MnCl+	5.152e-011	4.656e-006	0.9204	-10.3240
Al(OH)2+	4.624e-011	2.820e-006	0.9204	-10.3710
HF	4.405e-011	8.810e-007	1.0000	-10.3561
КОН	1.363e-011	7.644e-007	1.0000	-10.8656
Mg2OH+++	1.254e-011	8.228e-007	0.5039	-11.1992
Mn2(OH)3+	7.357e-012	1.183e-006	0.9204	-11.1694
Mn (OH)2	2.327e-012	2.069e-007	1.0000	-11.6332
Mineral saturation	states			
	log Q/K		log Q/K	
Birnessite	62.0314s/sat	Corundum	-5.6814	
Todorokite	53.8835s/sat	Analc-dehydr	-5.9301	
Antigorite	23.5060s/sat	Tephroite	-6.3095	
Nontronit-Mg	17.9904s/sat	Kieserite	-6.3415	
Nontronit-Ca	17.8719s/sat	Kalicinite	-7.3269	
Nontronit-K	1/.3/91s/sat	Monticellite	-7.3284	
Nontronit-Na	17.2487s/sat	Ca2S1308^5/2H20	-7.5949	
Hematite	12.8693s/sat	Jarosite-K	-7.7439	
Bixbyite	11./912s/sat	Grossular	-7.9896	
Hausmannite	10./2/0s/sat	Manganosite	-8.1233	
Pyrolusite	10.29/35/sat	Mirabilite	-8.9470	
Andradite	8.4136S/Sat	Sylvite	-9.1036	
Clinoptii-K	7.59315/Sat		-9.1091	
Cilhoptil-Ca	6.0008/Sat	MHSH(Mg1.5)	-9.1485	
Saponite Ca	6.40/35/Sat		-9.2037	
Saponite-Ca	0.20/35/Sat	NafeO2(C)	-9.3334	
Goechite K	5.97295/Sat	Spinol	-9.0003	
	5.79115/Sat	Jarogito Na	-9.0209	
Manganito	5.77845/Sat	Jarosite-Na Grongtodt 70	-9.0830	
Saponito Na	5.6643c/cat	Arganito	-10.0430	
Smoctite-Na Smoctite_Peykian	5 2870g/gat	Portlandite	-10.1025	
Saponito H	5 1299c/cat		10.2674	
Enidote_ord	1.0176 g/gat	Thenardite	-10.2074	
Epidote-Old Epidote	4.91/05/Sat	Gavlussite	-10.6330	
Phengite	4.8676s/sat	Ma2Cl(OH)3^4H2O	-11.0770	
Tremolite	4.7374s/sat	Pirssonite	-11.2014	
Ferrite-Ma	4.6942s/sat	Ca-Al Pyroxene	-11.5126	
Clinochl=14A	4.3247s/sat	MaSO4(c)	-11.7262	
Phlogopite	4.1606s/sat	Cordier^anhy	-11.8580	
Muscovite	4.0978s/sat	Alunite	-11.9142	
Heulandite	3.8585s/sat	KNaCO3^6H2O	-12.0369	
Mordenite-K	3.7969s/sat	Ferrosilite	-12.4965	
Ferrite-Ca	3.6283s/sat	MnSO4(c)	-12.5243	
Sepiolite	3.4883s/sat	Siderite	-12.7491	
Illite	3.3986s/sat	FeO(c)	-13.3426	
Beidellit-Mg	3.0448s/sat	Wustite	-13.4707	
Beidellit-Ca	2.9264s/sat	Akermanite	-13.5386	
Clinoptil-Mg	2.6546s/sat	FeF3(c)	-14.1988	
Maximum Microcli	2.5272s/sat	Mercallite	-14.3171	
K-feldspar	2.5256s/sat	Kainite	-14.3472	
Beidellit-K	2.4300s/sat	Bloedite	-14.4061	
Pyrophyllite	2.4238s/sat	Fe(OH)2(ppd)	-14.8048	
Kaolinite	2.3948s/sat	Hedenbergite	-15.1280	
Beidellit-Na	2.3031s/sat	MgOHCl	-15.2249	
Chrysotile	2.0032s/sat	Ca2SiO4^7/6H2O	-15.2640	
Laumontite	1.9559s/sat	Bischofite	-15.3237	
Beidellit-H	1.7649s/sat	Antarcticite	-15.4917	
Clinoptil-Na	1.6297s/sat	Hercynite	-15.5839	
Fe(OH)3(ppd)	1.4635s/sat	Na2Si2O5	-15.6939	
Amesite-14A	1.3535s/sat	ca2SiO4(gamma)	-15.9706	
Dolomite	1.3528s/sat	Pargasite	-16.1825	
Dolomite-ord	1.35285/sat		-10.3/44	
Sanidine high	1.2550s/sat	K2CO3^3/2H2O	-10.5364	
Smectite-low-Fe-	0.9025s/sat	Na2S103	-10.6765	
Quartz Clinochl 77	0.00145/Sat	HIICIZ ⁴ H2U	-10./940	
Clinochi-/A	0.802US/Sat	Larnite	-1/.5003	
morgenite-Na	0.01225/Sat	MILCIZ"ZHZU	-10.209/	

Tridymite	0.7053s/sat	MgCl2^4H2O	-18.4317
Paragonite	0.6909s/sat	Melanterite	-18.9253
Magnetite	0.6812s/sat	Ripidolit-14A	-19.2978
Chalcedony	0.6000s/sat	Gehlenite	-19.3793
Cristobalite	0.3060s/sat	CaCl2^2H2O	-19.8055
Gibbsite	0.1088s/sat	Ferrite-2-Ca	-19.8335
Albite low	0.0447s/sat	Ca5Si6O17^21/2H2	-19.8387
Albite	0.0446s/sat	MnCl2^H2O	-19.8629
Calcite	-0.1090	CaCl2^H2O	-19.9904
Magnesite	-0.2345	Lime	-20.8108
Dolomite-dis	-0.2722	Rankinite	-21.1398
Aragonite	-0.2751	Ca5Si6O17^11/2H2	-22.0555
Lawsonite	-0.3166	Ripidolit-7A	-22.7633
Anthophyllite	-0.4425	Scacchite	-23.2493
Amrph [^] silica	-0.4939	Carnallite	-23.3558
Rhodochrosite	-0.7202	Hydrophilite	-23.7580
Diaspore	-0.7786	MgCl2 [^] 2H2O	-24.1788
Analcime	-1.0252	Merwinite	-24.3629
Monohydrocalcite	-1.0822	Chamosite-7A	-24.3692
Mn(OH)3(c)	-1.1293	FeSO4(c)	-24.4838
Albite high	-1.3464	Са45і3010^3/2H20	-24.5444
Enstatite	-1 4613	Na3H(SO4)2	-24 5479
Diopside	-1.4682	Ca2C12(0H)2^H20	-25.1677
Prehnite	-1.5086	Ca5Si6017^3H20	-26.0551
Boehmite	-1 6806	Favalite	-26 1180
Smectite_high_Fe	_1 7432	$F = F^2 (c)$	-26 1333
Gypsum	-2.4084	MaC12^H20	-27.7091
Jadeite	-2 4594	Ca3Si207^3H20	-29 5057
Kalsilite	-2.5336	Minnesotaite	-32.0173
Huntite	-2.6292	Burkeite	-32.0173
Fluorite	-2.6313	Annite	-32.0252
Anhydrite	-2.6922	KMaCl3^2H2O	-33 58/2
Wairakito	-2.8022	Chloromagnesite	-33 72/3
Phodonite	-2.0027	Greenalite	-34 4342
Dawsonite	-3 0874	Lawrencite	-35 5295
Brucite	-3 2864		-36 8727
Negguebenite	2 2002		40 5750
Pagganito	-3.2902		40.3730
$C_{a}C_{a}(1/2)$	3 5060	Cassion	41 2551
Casi205^2H20	-3.5010	Molveite	-41.2331
Kuanito	2 6522	A12/204/3^6H20	46 1329
Andalugita	2 0562	Fo2(SO4)3(G)	40.1320
Margarito	-3.9505	Tec(SO4)S(C)	-40.0420
Encomito	4.2556	Nadgiod	52 0174
Wollastonito	4.2074	Na45104	-55 /030
	-4.2974	Daphnite 70	-55.4959
	-4.3300		-28.9022
	-4.3370	R8H4(CO3)8 3H20	-02.1921
ZOISIte	-4.4048	AI2(S04)3	-04.0102
Artillite	-4.4102		-/0.44/0
Revellenter	-4.5/15	NaoSizo/	-83.0050
Nerheline	-4./13/	MISENILE Cultur Dhmb	-95.0075
Nepheline	-4.8090	Sullur-KnmD	-111.9342
Pentanyarite	-4.89/8	Alabandite	-146.2425
mgr2(C)	-4.9218	ryrrnotite	-148.3603
rorsterite	-5.0606	Trollite	-154.6743
Anorthite	-5.0644	Pyrite	-255./272
Mn(OH)2(am)	-5.3/0/	u-pnth acid(c)	-018.8118
Leonhardtite	-5.42/0		

Gases	fugacity	log fug.
02(g)	0.2000	-0.699
Steam	0.01600	-1.796
CO2(g)	0.0002275	-3.643
H2(g)	8.245e-044	-43.084
H2S(g)	9.329e-150	-149.030
CH4(g)	3.843e-152	-151.415
S2(g)	2.451e-239	-238.611
	In	fluid
Original bas	is total moles mo	les mg/kg
Al+++ Ca++ Cl-	5.56e-007 5.56 0.000344 0.0 0.000141 0.0	e-007 0.0150 00344 13.8 00141 5.00

F-	1.05e-005	1.05e-005	0.	200
Fe++	1.47e-006	1.47e-006	0.0	820
H+	-3.51e-005 ·	-3.51e-005	-0.0	354
H2O	55.5	55.5	1.00e+	006
HCO3-	0.00114	0.00114	6	9.5
K+	4.60e-005	4.60e-005	1	.80
Mg++	0.00179	0.00179	4	3.5
Mn++	1.20e-006	1.20e-006	0.0	660
Na+	0.000239	0.000239	5	.50
02(aq)	0.000316	0.000316	1	0.1
SO4	0.000989	0.000989	9	5.0
SiO2(aq)	0.000491	0.000491	2	9.5
		-		,
Elemental (composition		ln flui	.a
	total moles	s moles	5	mg/kg
Aluminum	5.559e-00	 7 5.559e-	 -007	0.01500
Aluminum Calcium	5.559e-00 0.0003443	7 5.559e- 3 0.0003	 -007 3443	0.01500 13.80
Aluminum Calcium Carbon	5.559e-00 0.0003443 0.001139	7 5.559e- 3 0.0003 9 0.001	 -007 3443 L139	0.01500 13.80 13.68
Aluminum Calcium Carbon Chlorine	5.559e-00 0.000344 0.001139 0.0001410	7 5.559e- 3 0.0003 9 0.001 0 0.0001	-007 3443 L139 L410	0.01500 13.80 13.68 4.999
Aluminum Calcium Carbon Chlorine Fluorine	5.559e-00 0.000344 0.001139 0.0001410 1.053e-009	7 5.559e- 3 0.0003 9 0.001 0 0.0001 5 1.053e-	-007 3443 1139 1410 -005	0.01500 13.80 13.68 4.999 0.1999
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen	5.559e-00 0.000344 0.00113 0.000141 1.053e-00 111.0	7 5.559e- 3 0.0003 9 0.001 0 0.0001 5 1.053e- 0 11	-007 3443 1139 1410 -005 11.0 1	0.01500 13.80 13.68 4.999 0.1999 .119e+005
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron	5.559e-00 0.000344 0.001139 0.0001410 1.053e-009 111.0 1.468e-000	7 5.559e- 3 0.0003 9 0.001 0 0.0001 5 1.053e- 0 11 5 1.468e-	-007 3443 1139 1410 -005 11.0 1 -006	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium	5.559e-00 0.000344 0.00113 0.000141 1.053e-00 111.0 1.468e-000 0.001790	7 5.559e- 3 0.0003 9 0.001 0 0.0001 5 1.053e- 0 11 5 1.468e- 0 0.001	-007 3443 1139 1410 -005 11.0 1 -006 1790	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198 43.49
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium Manganese	5.559e-00 0.000344 0.00113 0.000141 1.053e-00 111.0 1.468e-00 0.00179 1.201e-000	7 5.559e- 3 0.0003 9 0.001 0 0.0001 5 1.053e- 0 11 6 1.468e- 0 0.001 5 1.201e-	-007 3443 1139 1410 -005 11.0 1 -006 1790 -006	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198 43.49 0.06598
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium Manganese Oxygen	5.559e-00 0.000344 0.001139 0.0001410 1.053e-009 1111.0 1.468e-000 0.001790 1.201e-000 55.52	5.559e- 3 0.0003 9 0.001 0 0.001 5 1.053e- 0 11 5 1.468e- 0 0.001 5 1.201e- 2 55	-007 3443 1139 1410 -005 11.0 1 -006 1790 -006 5.52 8	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198 43.49 0.06598 .880e+005
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium Manganese Oxygen Potassium	5.559e-00'0.000344'0.0011330.000141(1.053e-009111.(1.468e-0000.0017901.201e-00055.554.604e-009	7 5.559e- 3 0.0003 9 0.001 0 0.001 5 1.053e- 0 11 5 1.468e- 0 0.001 6 1.201e- 2 55 5 4.604e-	-007 3443 1139 1410 -005 11.0 1 -006 1790 -006 5.52 8 -005	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198 43.49 0.06598 .880e+005 1.800
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium Manganese Oxygen Potassium Silicon	5.559e-00'0.000344'0.0011330.00014101.053e-009111.01.468e-000'0.0017901.201e-00055.55'4.604e-0090.0004910'	7 5.559e- 3 0.0003 9 0.001 5 1.053e- 0 11 5 1.468e- 0 0.001 5 1.201e- 5 4.604e- 0 0.004	-007 3443 1139 4410 -005 11.0 1 -006 1790 -006 5.52 8 -005 4910	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198 43.49 0.06598 .880e+005 1.800 13.79
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium Manganese Oxygen Potassium Silicon Sodium	$\begin{array}{c} 5.559e-00\\ 0.000344\\ 0.00113\\ 0.000141\\ 1.053e-00\\ 111.0\\ 1.468e-000\\ 0.001790\\ 1.201e-000\\ 55.5\\ 4.604e-009\\ 0.0004910\\ 0.0002392\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-007 3443 L139 L410 -005 L1.0 1 -006 5.52 8 -005 4910 2392	0.01500 13.80 13.68 4.999 0.1999 .119e+005 0.08198 43.49 0.06598 .880e+005 1.800 13.79 5.498

A1.2 Sample 04JC2

Temperature = 15.6 (pH = 8.200	С	Pressure log fO2 =	= 1. = -0	013	bars)
Eh = 0.7513 volts		pe = 13	.1138		
Ionic strength =	=	0.006656			
Activity of water	=	0.999995			
Solvent mass =	=	1.000000	kg		
Solution mass =	=	1.000284	kg		
Solution density =	=	1.019	g/cm3		
Chlorinity =	=	0.000144	molal		
Dissolved solids	=	283	mg/kg	so]	l'n
Rock mass =	=	0.000000	kg		
Carbonate alkalinity	=	83.58	mg/kg	as	CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
нсоз -	0.001602	97.71	0.9199	-2.8316
Mg++	0.001366	33.19	0.7338	-2.9989
Ca++	0.0008142	32.62	0.7234	-3.2299
SO4	0.0005904	56.70	0.7122	-3.3762
Na+	0.0003378	7.765	0.9190	-3.5080
02(aq)	0.0003074	9.833	1.0018	-3.5116
SiO2(aq)	0.0002819	16.93	1.0018	-3.5492
C1-	0.0001431	5.072	0.9171	-3.8820
MgSO4	6.745e-005	8.116	1.0000	-4.1710
CaSO4	4.922e-005	6.699	1.0000	-4.3078
K+	4.845e-005	1.894	0.9171	-4.3523
CO2(aq)	2.518e-005	1.108	1.0000	-4.5990
MgHCO3+	1.592e-005	1.358	0.9190	-4.8347
CaHCO3+	1.450e-005	1.466	0.9212	-4.8742
CO3	1.194e-005	0.7164	0.7151	-5.0685
F-	9.925e-006	0.1885	0.9180	-5.0404
CaCO3	7.173e-006	0.7178	1.0000	-5.1443
MgCO3	5.761e-006	0.4856	1.0000	-5.2395
H3SiO4-	5.608e-006	0.5332	0.9190	-5.2879
OH-	8.247e-007	0.01402	0.9180	-6.1209
NaHCO3	7.444e-007	0.06252	1.0000	-6.1282
NaSO4-	6.668e-007	0.07936	0.9190	-6.2127
Al(OH)4-	6.211e-007	0.05899	0.9190	-6.2435
MgF+	5.401e-007	0.02338	0.9190	-6.3042

CaCl+	5.170e-007	0.03904	0.9190	-6.3232
MgH3SiO4+	2.495e-007	0.02978	0.9190	-6.6396
MgCl+	2.341e-007	0.01399	0.9190	-6.6673
KSO4-	1.404e-007	0.01898	0.9190	-6.8892
MgOH+	1.169e-007	0.004829	0.9190	-6.9688
CaH3SiO4+	8.328e-008	0.01125	0.9190	-7.1162
MgH2SiO4	7.490e-008	0.008866	1.0000	-7.1255
CaF+	6.217e-008	0.003672	0.9190	-7.2431
Mg2CO3++	3.370e-008	0.003659	0.7179	-7.6163
NaH3SiO4	2.322e-008	0.002741	1.0000	-7.6341
Mn++	1.643e-008	0.0009025	0.7234	-7.9249
NaCO3-	1.177e-008	0.0009769	0.9190	-7.9658
CaOH+	8.946e-009	0.0005106	0.9190	-8.0850
Al(OH)3	8.852e-009	0.0006903	1.0000	-8.0530
H+	6.803e-009	6.855e-006	0.9274	-8.2000
Mg(H3SiO4)2	5.817e-009	0.001248	1.0000	-8.2353
CaH2SiO4	3.713e-009	0.0004981	1.0000	-8.4303
MnO4-	1.985e-009	0.0002360	0.9190	-8.7389
NaCl	8.282e-010	4.839e-005	1.0000	-9.0819
MnSO4	8.180e-010	0.0001235	1.0000	-9.0872
MnCO3	4.149e-010	4.768e-005	1.0000	-9.3820
Ca(H3SiO4)2	4.041e-010	9.305e-005	1.0000	-9.3935
MnHCO3+	3.415e-010	3.958e-005	0.9190	-9.5034
NaF	3.210e-010	1.347e-005	1.0000	-9.4935
HSO4-	2.159e-010	2.095e-005	0.9190	-9.7025
NaOH	1.474e-010	5.894e-006	1.0000	-9.8315
KCl	1.311e-010	9.767e-006	1.0000	-9.8826
Al(OH)2+	1.077e-010	6.570e-006	0.9190	-10.0043
HF	7.174e-011	1.435e-006	1.0000	-10.1442
H2SiO4	4.749e-011	4.468e-006	0.7122	-10.4708
MnOH+	2.544e-011	1.830e-006	0.9190	-10.6311
KOH	1.016e-011	5.699e-007	1.0000	-10.9930
H6(H2SiO4)4	8.252e-012	3.155e-006	0.7122	-11.2308
Mg2OH+++	6.082e-012	3.990e-007	0.4981	-11.5186
MnF+	2.194e-012	1.621e-007	0.9190	-11.6955
MnO4	1.601e-012	1.903e-007	0.7122	-11.9430
MnCl+	1.076e-012	9.726e-008	0.9190	-12.0047

Mineral saturation states log Q/K

log Q/K

		5 2.		5 2.
-	Birnessite	45.3285s/sat	MgF2(c)	-4.9899
	Todorokite	39.20855/sat	Anorthite	-5.0920
	Antigorite	9.446/s/sat	Pentanydrite	-5.1401
	Pyrolusite	8.1982s/sat	Rhodonite	-5.1802
	Bixbyite	7.6590s/sat	Anthophyllite	-5.2332
	Clinoptil-K	5.092/s/sat	Corundum	-5.2998
	Hausmannite	4.5699s/sat	Leonhardtite	-5.6513
	Clinoptil-Ca	4.4318s/sat	Forsterite	-6.0857
	Saponite-Mg	4.2496s/sat	Analc-dehydr	-6.2539
	Saponite-Ca	4.2100s/sat	Kieserite	-6.5443
	Muscovite	3.6850s/sat	Kalicinite	-7.1839
	Manganite	3.6613s/sat	Mn(OH)2(am)	-7.3784
	Saponite-K	3.6433s/sat	Monticellite	-7.8615
	Saponite-Na	3.5628s/sat	Grossular	-8.1061
	Talc	3.5494s/sat	Ca2Si3O8^5/2H2O	-8.1654
	Phengite	3.4498s/sat	Mirabilite	-8.8628
	Saponite-H	3.0427s/sat	Halite	-8.9550
	Illite	2.7092s/sat	Sylvite	-9.0885
	Mordenite-K	2.5466s/sat	MHSH(Mg1.5)	-9.5347
	Heulandite	2.5389s/sat	Spinel	-9.6290
	Beidellit-Mg	2.4615s/sat	Gaylussite	-10.0732
	Beidellit-Ca	2.4231s/sat	Manganosite	-10.1164
	Kaolinite	2.2292s/sat	Portlandite	-10.1462
	Phlogopite	2.1912s/sat	Ca(OH)2(C)	-10.1462
	Clinochl-14A	1.8902s/sat	Thenardite	-10.1548
	Beidellit-K	1.8564s/sat	Arcanite	-10.2363
	Maximum Microcli	1.7760s/sat	Hydromagnesite	-10.3275
	Beidellit-Na	1.7759s/sat	Cordier^hydr	-10.5397
	K-feldspar	1.7746s/sat	Tephroite	-10.5799
	Pyrophyllite	1.7682s/sat	Pirssonite	-10.5916
	Dolomite	1.6648s/sat	Alunite	-11.1851
	Dolomite-ord	1.6648s/sat	Ca-Al Pyroxene	-11.2679
	Laumontite	1.3833s/sat	Mg2Cl(OH)3^4H2O	-11.7805
	Beidellit-H	1.2527s/sat	MqSO4(c)	-11.8979
	Tremolite	0.8826s/sat	KNaCO3^6H2O	-12.0086

Quartz	0.6299s/sat	Cordier^anhy -13.1200	
Sanidine high	0 5129s/sat	$\Delta kermanite -14 2061$	
Tridymite	0.4551g/gat	Mercallite -14.2001	
Paragonite	0.4324 g/gat	MnSO4(c) = 14.3210	
Chalcedony	0 3498s/sat	$ \begin{array}{c} \text{Bloedite} \\ -14 5039 \end{array} $	
Seniolite	0.33/5g/gat	= 14.5035	
Calcite	0.2931g/gat	Antarcticite _15 0673	
Chrusotilo	0.2903 c/cat	$C_{2}2G_{1}O_{1}^{7}/G_{2}O_{1}^{7}$	
Gibbgite	0.20033/3ac	Rigchofite = 15,2902	
Aragonito	0.27275/Sat		
Clipoptil Ma	0.12725/Sat	CaCl2^/H2O 15 0372	
Cristobalito	0.0575c/cat	$C_{2}C_{2}C_{1}O((a_{2})) = 15.9572$	
Dolomito dia	0.03735/Sat	$N_{2}25104 (gamma) = 15.9043$	
Amogite_14A		$K_{2}C_{03}^{3}/_{2}H_{2}O = 16.1970$	
Mordenite-Na	-0.2896	Na2SiO3 - 16 9306	
Magnesite	-0.3163	Larnite -17.5056	
Lawsonite	-0.3912	MnCl2^4H2O =18,4592	
Albite low	-0.5556	$MaCl_{2^4H20} = 18.4674$	
Albite	-0.5557	Pargasite -18,5273	
Clipoptil-Na	-0.5735	Gehlenite -19.0147	
Diaspore	-0.6029	$CaCl_{2^{2}H20} = 19.3402$	
Monohydrocalcite	-0.6821	$CaCl_2^H20 = 19.5190$	
Amrph^silica	-0.7344	$MnCl2^{2}H2O = 19.8567$	
Analcime	-1.3734	Lime -20.6368	
Boehmite	-1.4977	$Ca5Si6017^{21}/2H2 = 20.9138$	
Clinochl=7A	-1.5614	Rankinite -21.2945	
Prehnite	-1.7381	MnCl2^H2O -21.4972	
Albite high	-1.9378	Ca5Si6017^11/2H2 -23.0862	
Enstatite	-2.1025	Hvdrophilite -23.2644	
Gvpsum	-2.1519	Carnallite -23.4036	
Fluorite	-2.2288	MgCl2^2H2O -24.1762	
Diopside	-2.2771	Na3H(SO4)2 -24.2706	
Anhvdrite	-2.4226	Ca2Cl2(OH)2^H2O -24.6508	
Rhodochrosite	-2.4252	Ca4Si3O10^3/2H2O -24.8654	
Huntite	-2.4621	Scacchite -24.8663	
Dawsonite	-2.6258	Merwinite -24.8998	
Kalsilite	-2.7665	Ca5Si6O17^3H2O -27.0506	
Jadeite	-2.8086	MgCl2^H2O -27.6845	
Bassanite	-3.0540	Ca3Si2O7^3H2O -29.6476	
Mn(OH)3(c)	-3.1706	Burkeite -31.5446	
CaSO4^1/2H2O(bet	-3.2344	KMgCl3^2H2O -33.5648	
Wairakite	-3.3324	Chloromagnesite -33.6678	
Nesquehonite	-3.3668	Ca6Si6O18^H2O -37.7169	
Kyanite	-3.5302	Ca4Cl2(OH)6^13H2 -40.0655	
Brucite	-3.6795	Ca3SiO5 -40.5581	
Margarite	-3.8096	KMqCl3 -41.1906	
Andalusite	-3.8299	Al2(SO4)3^6H2O -45.0866	
CaSi2O5^2H2O	-4.0093	Tachyhydrite -50.4305	
Sillimanite	-4.2075	Na4SiO4 -53.0881	
Clinozoisite	-4.3885	K8H4(CO3)6^3H2O -61.6640	
Zoisite	-4.4354	Al2(SO4)3 -63.4383	
Wollastonite	-4.4443	Graphite -77.7269	
Epsomite	-4.5050	Na6Si2O7 -83.4210	
Hexahydrite	-4.8120	Misenite -95.0248	
Pseudowollastoni	-4.8574	Sulfur-Rhmb -111.1877	
Artinite	-4.9131	Alabandite -147.3430	
Nepheline	-4.9524	0-phth acid(c) -613.1751	
Gases	fugacity	log fug.	
02(g)	0.2000	-0.699	
Steam	0.01739	-1.760	
CO2(g)	0.0005389	-3.268	
H2(g)	1.410e-043	-42.851	
H2S(g)	8.576e-149	-148.067	
CH4(g)	4.844e-151	-150.315	
S2(g)	9.702e-238	-237.013	

		In flı	iid	
Original basis	total moles	moles	mg/kg	_
Al+++	6.30e-007	6.30e-007	0.0170	
Ca++	0.000886	0.000886	35.5	
C1-	0.000144	0.000144	5.10	
F-	1.05e-005	1.05e-005	0.200	
H+	-9.34e-006	-9.34e-006	-0.00941	
H2O	55.5	55.5	1.00e+006	
HCO3-	0.00168	0.00168	103.	
K+	4.86e-005	4.86e-005	1.90	
Mg++	0.00146	0.00146	35.4	
Mn++	2.00e-008	2.00e-008	0.00110	
Na+	0.000339	0.000339	7.80	
02(aq)	0.000307	0.000307	9.83	
SO4	0.000708	0.000708	68.0	
SiO2(aq)	0.000288	0.000288	17.3	
Elemental comp	osition	1	[n fluid	<i></i>
	total mole	s moles	s mg,	/kg
Aluminum	6.301e-00	7 6.301e-	-007 0	01700
Calcium	0.000885	7 0.0008	3857	35.49
Carbon	0.00168	3 0.001	L683	20.21
Chlorine	0.000143	9 0.0001	L439	5.099
Fluorine	1.053e-00	5 1.053e-	-005 (0.1999
Hydrogen	111.	0 11	1.119	9e+005
Magnesium	0.00145	6 0.001	L456	35.39
Manganese	2.002e-00	8 2.002e-	-008 0.0	001100
Oxygen	55.5	2 55	5.52 8.880)e+005
Potassium	4.860e-00	5 4.860e-	-005	1.899
Silicon	0,000287	9 0.0002	2879	8.084
Sodium	0.000339	3 0.0003	3393	7.798

A1.3 Sample 04JC3

С	Pressure	= 1.0	013 bars
	log f02 =	= -0	.699
	pe = 13	.2223	
=	0.006399		
=	0.999995		
=	1.000000	kg	
=	1.000273	kg	
=	1.020	g/cm3	
=	0.000144	molal	
=	274	mg/kg	sol'n
=	0.000000	kg	
/=	58.39	mg/kg	as CaCO3
	C = = = = = = = =	$\begin{array}{rcl} C & Pressure \\ & \log fO2 = \\ & pe = 13 \\ = & 0.006399 \\ = & 0.999995 \\ = & 1.000000 \\ = & 1.000273 \\ = & 1.020 \\ = & 0.000144 \\ = & 274 \\ = & 0.000000 \\ & & 58.39 \end{array}$	C Pressure = 1.0 log f02 = -0 pe = 13.2223 = 0.006399 = 0.999995 = 1.000000 kg = 1.020 g/cm3 = 0.000144 molal = 274 mg/kg = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Mg++	0.001620	39.36	0.7379	-2.9226
HCO3-	0.001126	68.69	0.9214	-2.9840
SO4	0.0008353	80.21	0.7169	-3.2227
SiO2(aq)	0.0004436	26.64	1.0017	-3.3523
Ca++	0.0003364	13.48	0.7278	-3.6112
02(aq)	0.0003158	10.10	1.0017	-3.4999
Na+	0.0002425	5.573	0.9205	-3.6513
C1-	0.0001433	5.081	0.9186	-3.8805
MgSO4	0.0001135	13.66	1.0000	-3.9450
K+	4.585e-005	1.792	0.9186	-4.3755
CaSO4	2.887e-005	3.929	1.0000	-4.5396
CO2(aq)	1.808e-005	0.7955	1.0000	-4.7428
MgHCO3+	1.328e-005	1.133	0.9205	-4.9128
F-	9.875e-006	0.1876	0.9196	-5.0419
H3SiO4-	8.415e-006	0.8001	0.9205	-5.1109
CO3	8.105e-006	0.4863	0.7197	-5.2341
MgCO3	4.544e-006	0.3830	1.0000	-5.3425
CaHCO3+	4.219e-006	0.4265	0.9226	-5.4097
CaCO3	1.996e-006	0.1997	1.0000	-5.6998
Fe(OH)3	1.900e-006	0.2030	1.0000	-5.7212
Al(OH)4-	7.369e-007	0.07000	0.9205	-6.1686

OH-	7.323e-007	0.01245	0.9196	-6.1718
Mn++	6.820e-007	0.03746	0.7278	-6.3042
NaSO4-	6.769e-007	0.08057	0.9205	-6.2054
MgF+	6.271e-007	0.02715	0.9205	-6.2387
MgH3SiO4+	4.673e-007	0.05578	0.9205	-6.3664
NaHCO3	3.874e-007	0.03253	1.0000	-6.4119
MgCl+	2.864e-007	0.01711	0.9205	-6.5790
CaCl+	2.223e-007	0.01679	0.9205	-6.6891
KSO4-	1.887e-007	0.02549	0.9205	-6.7603
MgH2SiO4	1.405e-007	0.01663	1.0000	-6.8523
MgOH+	1.218e-007	0.005032	0.9205	-6.9502
MnO4-	6.640e-008	0.007895	0.9205	-7.2138
CaH3SiO4+	5.437e-008	0.007349	0.9205	-7.3006
Fe(OH)4-	5.283e-008	0.006543	0.9205	-7.3131
Fe(OH)2+	5.226e-008	0.004695	0.9205	-7.3178
MnSO4	4.742e-008	0.007159	1.0000	-7.3240
Mg2CO3++	3.235e-008	0.003513	0.7225	-7.6313
NaH3SiO4	2.517e-008	0.002972	1.0000	-7.5991
CaF+	2.507e-008	0.001481	0.9205	-7.6368
Mg(H3SiO4)2	1.717e-008	0.003682	1.0000	-7.7652
MnCO3	1.220e-008	0.001402	1.0000	-7.9137
Al(OH)3	1.156e-008	0.0009011	1.0000	-7.9372
MnHCO3+	9.965e-009	0.001155	0.9205	-8.0375
H+	6.795e-009	6.846e-006	0.9286	-8.2000
NaCO3-	5.973e-009	0.0004956	0.9205	-8.2598
CaOH+	3.263e-009	0.0001862	0.9205	-8.5224
CaH2SiO4	2.428e-009	0.0003257	1.0000	-8.6147
MnOH+	9.479e-010	6.818e-005	0.9205	-9.0592
NaCl	5.784e-010	3.380e-005	1.0000	-9.2377
Ca(H3SiO4)2	4.159e-010	9.575e-005	1.0000	-9.3810
HSO4-	2.960e-010	2.872e-005	0.9205	-9.5647
NaF	2.246e-010	9.428e-006	1.0000	-9.6486
Al(OH)2+	1.579e-010	9.629e-006	0.9205	-9.8376
KCl	1.220e-010	9.092e-006	1.0000	-9.9137
NaOH	9.405e-011	3.761e-006	1.0000	-10.0266
MnF+	8.892e-011	6.572e-006	0.9205	-10.0870
HF	6.977e-011	1.395e-006	1.0000	-10.1563
H2SiO4	6.417e-011	6.036e-006	0.7169	-10.3372
H6(H2SiO4)4	5.025e-011	1.921e-005	0.7169	-10.4434
MnO4	5.000e-011	5.945e-006	0.7169	-10.4456
MnCl+	4.502e-011	4.068e-006	0.9205	-10.3826
КОН	8.526e-012	4.782e-007	1.0000	-11.0693
Mg2OH+++	7.557e-012	4.957e-007	0.5043	-11.4189
FeOH++	1.948e-012	1.419e-007	0.7225	-11.8515
Mn2(OH)3+	1.356e-012	2.181e-007	0.9205	-11.9037

Mineral saturation states log Q/K

Mineral saturation	states log Q/K		log Q/K
Birnessite	58.2938s/sat	Analc-dehydr	-5.8496
Todorokite	50.6131s/sat	Forsterite	-5.9196
Nontronit-Mg	18.2118s/sat	Kieserite	-6.3570
Nontronit-Ca	18.1005s/sat	Jarosite-K	-6.7304
Nontronit-K	17.6028s/sat	Tephroite	-7.2840
Nontronit-Na	17.4746s/sat	Kalicinite	-7.3083
Hematite	13.1507s/sat	Monticellite	-8.1438
Antigorite	13.0965s/sat	Ca2Si3O8^5/2H2O	-8.4207
Bixbyite	10.8535s/sat	Grossular	-8.5218
Pyrolusite	9.8310s/sat	Manganosite	-8.5978
Hausmannite	9.3172s/sat	Jarosite-Na	-8.6492
Clinoptil-K	7.5771s/sat	Cordier^hydr	-8.9081
Andradite	7.4990s/sat	Mirabilite	-8.9310
Clinoptil-Ca	6.5202s/sat	Halite	-9.0922
Goethite	6.1137s/sat	Sylvite	-9.0938
Manganite	5.2820s/sat	MHSH(Mg1.5)	-9.3724
Saponite-Mg	5.1045s/sat	Spinel	-9.3817
Saponite-Ca	4.9920s/sat	NaFeO2(c)	-9.3912
Epidote-ord	4.8981s/sat	Cronstedt-7A	-9.5226
Epidote	4.8973s/sat	Arcanite	-10.1051
Muscovite	4.8126s/sat	Thenardite	-10.2868
Smectite-Reykjan	4.8103s/sat	Alunite	-10.3168
Ferrite-Mg	4.5581s/sat	Portlandite	-10.6406
Saponite-K	4.4906s/sat	Ca(OH)2(C)	-10.6406
Phengite	4.4746s/sat	Hydromagnesite	-10.8067
Talc	4.4247s/sat	Gaylussite	-10.9453
Saponite-Na	4.3660s/sat	Ca-Al Pyroxene	-11.2503

Heulandite	3.9570s/sat	Cordier^anhy	-11.5035
Saponite-H	3.8940s/sat	Pirssonite	-11.5176
Illite	3.8427s/sat	Mg2C1(OH)3^4H2O	-11.6888
Mordenite-K	3./889s/sat	MgSO4(C)	-11./441
Beidellit-Mg Boidollit Ca	3.0490S/Sat 3.5370c/cat	KNACO3 6H2O	-12.2054
Ferrite_Ca	3.5362s/sat	Siderite	-12.3918
Beidellit-K	3.0365s/sat	MnSO4(c)	-12.5997
Kaolinite	3.0053s/sat	FeO(c)	-13.2100
Pyrophyllite	2.9772s/sat	Wustite	-13.3453
Phlogopite	2.9669s/sat	FeF3(c)	-13.4530
Beidellit-Na	2.9118s/sat	Mercallite	-14.1186
Clinochl-14A	2.8361s/sat	Kainite	-14.3514
Clinoptil-Mg	2.6232s/sat	Bloedite	-14.4072
Maximum Microcli	2.5755s/sat	Fe(OH)2(ppd)	-14.6720
K-feldspar	2.5/40s/sat	Akermanite	-14.7548
Beideilit-H Laumontite	2.43/15/Sat 2 1300g/gat	Bischofite	-14./8/0
Tremolite	1.7011s/sat	Hedenbergite	-15.4225
Sepiolite	1.6657s/sat	MaOHCl	-15.4316
Clinoptil-Na	1.6261s/sat	Antarcticite	-15.4391
Fe(OH)3(ppd)	1.6032s/sat	Ca2SiO4^7/6H2O	-16.0369
Paragonite	1.4115s/sat	Na2Si2O5	-16.1416
Sanidine high	1.3027s/sat	CaCl2^4H2O	-16.3228
Magnetite	1.0956s/sat	K2CO3^3/2H2O	-16.7187
Dolomite	1.0060s/sat	Ca2SiO4(gamma)	-16.7445
Dolomite-ord	1.0060s/sat	MnCl2^4H2O	-16.8446
Amesite-14A	0.9715s/sat	Na2SiO3	-17.0961
Quartz	0.8534s/sat	Pargasite	-17.9522
Smectite-low-re-	0.825/s/sat	MnC12~2H2O	-18.201/
Chrugotilo	0.01045/Sat	Molantorito	-18.2730
Tridymite	0.70333/sat	Macl2^4H2O	-18 4251
Chalcedony	0.5719s/sat	Gehlenite	-19.4900
Gibbsite	0.4425s/sat	Ripidolit-14A	-19.6910
Cristobalite	0.2777s/sat	CaCl2^2H2O	-19.7559
Albite low	0.0991s/sat	MnCl2^H2O	-19.9160
Albite	0.0990s/sat	CaCl2^H2O	-19.9414
Lawsonite	-0.0770	Ferrite-2-Ca	-20.3039
Calcite	-0.2607	Lime	-21.1880
Aragonite	-0.4267	Ca5S16017^21/2H2	-21.8593
Magnesite	-0.4303	Rankinite	-22.3140
Amrph^silica	-0.4439	Scacchite	-23.1074
Dolomite-dis	-0.6198	Carnallite	-23.3372
Clinochl-7A	-0.6274	Chamosite-7A	-23.4651
Analcime	-0.9429	Hydrophilite	-23.7107
Rhodochrosite	-0.9737	FeSO4(c)	-23.9541
Monohydrocalcite	-1.2336	Ca5Si6O17^11/2H2	-24.0795
Albite high	-1.2927	MgCl2^2H2O	-24.1752
Boehmite	-1.3484	Na3H(SO4)2	-24.3285
Mn(OH)3(c)	-1.6001	Ca2Cl2(OH)2^H2O	-25.4860
Prennite Smaatita biab Da	-1.6683	FeF2(C)	-25.5968
Smectite-High-re	-1.0754	Morwinito	-25.0000
Dionside	-2.3098	Ca4Si3010^3/2H20	-26.1170
Jadeite	-2.3769	MgCl2^H2O	-27.7071
Gvpsum	-2.3777	Ca5Si6017^3H20	-28.0818
Kalsilite	-2.4303	Ca3Si2O7^3H2O	-30.6810
Fluorite	-2.5940	Minnesotaite	-31.7289
Wairakite	-2.6229	Burkeite	-32.1658
Anhydrite	-2.6625	Annite	-32.3253
Dawsonite	-2.7295	KMgCl3^2H2O	-33.5708
Kyanite	-3.0176	Chloromagnesite	-33.7248
Margarite	-3.2180	Greenalite	-34.0894
Andalusite	-3.2943		-39.27/09
Huntite	-3.3691	KMaC13	-41,2452
Rhodonite	-3.4216	Ca4Cl2(OH)6^13H2	-41.6202
CaSO4^1/2H2O(bet	-3.4766	Ca3SiO5	-41.8912
Nesquehonite	-3.4951	Molysite	-43.6771
Anthophyllite	-3.5697	Al2(SO4)3^6H2O	-44.2784
Brucite	-3.7015	Fe2(SO4)3(C)	-47.1812
Sillimanite	-3.7015	Tachyhydrite	-50.7194
CaSi205^2H20	-4.0174	Na4SiO4	-53.7351
Clinozoisite	-4.1863	uapnnite-14A	-54.2443

Zoisite Epsomite Hexahydrite Wollastonite Nepheline Anorthite Pentahydrite MgF2(c) Corundum Artinite Pseudowollasto Leonhardtite Mn(OH)2(am)	-4.2335 -4.2675 -4.5840 -4.6973 -4.7597 -4.8284 -4.9102 -4.9297 -5.0184 -5.0275 oni -5.1138 -5.4408 -5.8441	Daphni K8H4(C Al2(SO Graphi Na6Si2 Miseni Sulfur Alaban Pyrrho Troili Pyrite O-phth	te-7A 03)6^3H2O 4)3 te 07 te -Rhmb dite tite te acid(c)	-57.7168 -62.4822 -62.7654 -78.2601 -84.3083 -93.8150 -111.5776 -146.3717 -147.8976 -154.1967 -254.8885 -617.3016
Gases	fugacity	y log f	ug.	
O2(g) Steam CO2(g) H2(g) H2S(g) CH4(g) S2(g)	0.20 0.011 0.0003 7.910e-(2.040e-) 5.532e-1 1.243e-2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	699 799 429 102 690 257 906	
Original basis	total moles	In fluid moles m	g/kg	
Al+++ Ca++ Cl- F- Fe++ H2O HCO3- K+ Mg++ Mn++ Na+ O2(aq) SO4 SiO2(aq) Elemental compo	7.49e-007 7 0.000372 0 0.000144 0 1.05e-005 1 2.01e-006 2 -1.39e-005 -1 55.5 0.00118 4.60e-005 4 0.00175 8.19e-007 8 0.000244 0 0.000316 0 0.000979 0 0.000453 0 0.000453 0 0.000453 0	A9e-007 .000372 .000144 .05e-005 .01e-006 .39e-005 - 55.5 1.0 0.00118 .60e-005 0.00175 .19e-007 0.000244 0.000316 0.000979 0.000453 In f moles - 7.487e-007	0.0202 14.9 5.10 0.200 0.112 0.0140 0e+006 71.8 1.80 42.6 0.0450 5.60 10.1 94.0 27.2 luid mg/kg	
Aluminum Calcium Carbon Chlorine Fluorine Hydrogen Iron Magnesium Manganese Oxygen Potassium Silicon Sodium Sulfur	7.48/e-007 0.0003718 0.001177 0.0001439 1.053e-005 111.0 2.005e-006 0.001753 8.191e-007 55.52 4.604e-005 0.0004527 0.0002436 0.0009786	7.487e-007 0.0003718 0.001177 0.0001439 1.053e-005 111.0 2.005e-006 0.001753 8.191e-007 55.52 4.604e-005 0.0004527 0.0002436 0.0009786	0.020 14. 14. 5.0 0.19 1.119e+0 0.11 42. 0.044 8.880e+0 1.8 12. 5.5 31.	99 90 13 99 99 05 20 59 99 05 00 71 98 36

A1.3 Sample 04OHE1

Temperature = 19.3 pH = 8.300	С	Pressure log fO2 =	= 1.0 = -0.)13 bars .699
Eh = 0.7387 volts		pe = 12	7316	
Ionic strength	=	0.013425		
Activity of water	=	0.999995		
Solvent mass	=	1.000000	kg	
Solution mass	=	1.000405	kg	
Solution density	=	1.017	g/cm3	
Chlorinity	=	0.000127	molal	
Dissolved solids	=	405	mg/kg	sol'n
Rock mass	=	0.000000	kg	
Carbonate alkalinity	/=	58.89	mg/kg	as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
 Ma++	0 004155	100 9	0 6631	_2 5599
HCO3-	0.001086	66.23	0.8926	-3.0135
Ca++	0.001075	43.05	0.6464	-3.1583
SO4	0.0009844	94.52	0.6280	-3.2088
Na+	0.0005976	13.73	0.8909	-3.2737
02(aq)	0.0002867	9.169	1.0035	-3.5411
MgSO4	0.0002793	33.60	1.0000	-3.5539
SiO2(aq)	0.0002671	16.04	1.0035	-3.5718
C1-	0.0001259	4.462	0.8874	-3.9519
	8./62e-005	11.92	1.0000	-4.05/4
KT Mauco3+	0.307e-005	2.400	0.8874	-4.2400
MgCO3	1.530e-005	1.290	1.0000	-4.8152
F-	1.354e-005	0.2571	0.8892	-4.9195
CO2(aq)	1.253e-005	0.5514	1.0000	-4.9019
CO3	1.205e-005	0.7228	0.6328	-5.1178
CaHCO3+	1.176e-005	1.188	0.8949	-4.9780
CaCO3	7.976e-006	0.7980	1.0000	-5.0982
H3S104-	7.778e-006	0.7395	0.8909	-5.1593
MgF+	2.146e-006	0.09287	0.8909	-5.7186
NaSO4-	1./6/e-006	0.2103	0.8909	-5.8029
0n- MaH3SiO4+	8 453e-007	0.02405	0.8909	-6 1232
NaHCO3	7.814e-007	0.06562	1.0000	-6.1071
MgOH+	5.898e-007	0.02436	0.8909	-6.2794
MgCl+	5.323e-007	0.03179	0.8909	-6.3240
Al(OH)4-	5.180e-007	0.04920	0.8909	-6.3358
CaCl+	4.937e-007	0.03728	0.8909	-6.3567
MgH2SiO4	3.097e-007	0.03666	1.0000	-6.5091
KSO4-	2.736e-007	0.03697	0.8909	-6.6130
Mg2CO3++	2.605e-007	0.02828	0.6374	-6.7797
CaH3SiO4+	1.211e-007	0.01636	0.8909	-6.9672
CaF+	1.070e-007	0.006319	0.8909	-7.0208
NaH35104 Mp++	2.303e-008	0.000201	0.6464	-7.7430
Mg(H3SiO4)2	2.283e-008	0.004896	1.0000	-7.6414
CaOH+	1.917e-008	0.001094	0.8909	-7.7676
NaCO3-	1.699e-008	0.001409	0.8909	-7.8201
MnO4-	1.098e-008	0.001306	0.8909	-8.0094
CaH2SiO4	6.588e-009	0.0008836	1.0000	-8.1813
H+	5.534e-009	5.575e-006	0.9057	-8.3000
Al(OH)3	4.511e-009	0.0003517	1.0000	-8.3458
MnSO4	1.956e-009	0.0002952	1.0000	-8.7086
NaCI	1.315e-009	7.085e-005	1.0000	-0.0009
Ca(H3SiO4)2	6.807e-010	0 0001567	1 0000	-9.1112
MnCO3	5.223e-010	6.002e-005	1.0000	-9.2820
NaOH	4.325e-010	1.729e-005	1.0000	-9.3640
MnHCO3+	3.578e-010	4.147e-005	0.8909	-9.4966
HSO4-	2.873e-010	2.787e-005	0.8909	-9.5919
KCl	1.500e-010	1.118e-005	1.0000	-9.8239
H2SiO4	1.181e-010	1.110e-005	0.6280	-10.1299
Mg2OH+++	1.003e-010	6.582e-006	0.3962	-10.4006
	8.037e-011	1.607e-006	T.0000	-10.0949
	0./200-UII 3 3250 011	4.03/0-000 2 0270 006	0 8000	-10.2224
KOH	2.2450-011	1.2590-006	1,0000	-10.5264
MnO4	1.444e-011	1.717e-006	0.6280	-11.0424
H6(H2SiO4)4	1.204e-011	4.604e-006	0.6280	-11.1212
MnF+	4.856e-012	3.589e-007	0.8909	-11.3639
MnCl+	1.437e-012	1.298e-007	0.8909	-11.8928
Mineral saturation	states		1 0/**	
	TOG Ñ\R		⊥og Q/K	
Birnessite	48.38355/eat	Clinozoisite	_4.8469	
Todorokite	41.9416s/sat	Zoisite	-4.8929	
Antigorite	28.3814s/sat	Nepheline	-4.9896	
Pyrolusite	8.5484s/sat	Leonhardtite	-4.9943	
Bixbyite	8.5443s/sat	Sillimanite	-5.0083	
Saponite-Mg	6.4792s/sat	Margarite	-5.0382	

Saponite-Ca	6.3723s/sat	Anorthite	-5.4923
Hausmannite	6.0132s/sat	Kieserite	-5.8259
Saponite-K	5.8020s/sat	Corundum	-6.0066
Saponite-Na	5.7760s/sat	Analc-dehydr	-6.3516
Talc	5.7453s/sat	Monticellite	-6.5198
Tremolite	5.4209s/sat	Mn(OH)2(am)	-6.7729
Saponite-H	5.1434s/sat	Kalicinite	-7.3944
Clinochl-14A	5.1122s/sat	Ca2Si3O8^5/2H2O	-7.4720
Phlogopite	4.3124s/sat	Hydromagnesite	-7.6040
Manganite	4.0432s/sat	Grossular	-7.6900
Clinoptil-K	3.8441s/sat	MHSH(Mg1.5)	-8.3319
Phengite	3.7381s/sat	Mirabilite	-8.3987
Clinoptil-Ca	3.2031s/sat	Halite	-8.8021
Sepiolite	3.1612s/sat	Svlvite	-9.0962
Chrvsotile	2.6668s/sat	Spinel	-9.4096
Muscovite	2.4040s/sat	Tephroite	-9.4683
Dolomite	2.1408s/sat	Manganosite	-9.4693
Dolomite-ord	2.1408s/sat	Thenardite	-9.5199
Mordenite-K	1 9218s/sat	Portlandite	-9 5808
	1 8010s/sat	$Ca(OH)^2(C)$	-9 5808
Clipochl_7A	1 6015g/gat	Arcanite	_9 9213
Amogito 14A	1.6204g/gat	Carlugaito	-9.9213
Amesice-14A	1.02945/Sal	Diragonito	-9.9000
neulandite Doidollit Ma	1.30335/Sal		-10.3371
Beideiiit-Mg	1.33905/Sat	Mg2CI(OH)3 4H2O	-10.5120
	1.32315/Sat		-10.6076
K-Ieldspar	1.32195/sat	MgSO4(C)	-11.0917
Beidellit-Ca	1.232/s/sat	Ca-Al Pyroxene	-11.5188
Kaolinite	1.2159s/sat	KNaCO3^6H2O	-12.0719
Laumontite	0.6825s/sat	Akermanite	-12.4016
Beidellit-K	0.6625s/sat	Alunite	-12.5244
Beidellit-Na	0.6364s/sat	Cordier^anhy	-13.1485
Pyrophyllite	0.6092s/sat	Bloedite	-13.2616
Dolomite-dis	0.5538s/sat	MnSO4(c)	-13.8322
Quartz	0.5388s/sat	Kainite	-13.8905
Tridymite	0.3677s/sat	Mercallite	-14.2246
Calcite	0.3359s/sat	Ca2SiO4^7/6H2O	-14.2986
Chalcedony	0.2622s/sat	MgOHCl	-14.6681
Anthophyllite	0.2228s/sat	Ca2SiO4(gamma)	-14.9574
Aragonite	0.1706s/sat	Bischofite	-15.0474
Magnesite	0.1403s/sat	Antarcticite	-15.1517
Sanidine high	0.0853s/sat	Pargasite	-15.1744
Beidellit-H	-0.0001	Na2Si2O5	-15.4413
Cristobalite	-0.0251	CaCl2^4H2O	-15.9855
Gibbsite	-0.1563	Na2SiO3	-16.0876
Clinoptil-Mg	-0.6369	Larnite	-16.4549
Paragonite	-0.6449	K2CO3^3/2H2O	-16.5310
Monohvdrocalcite	-0.6461	MgCl2^4H2O	-18.0707
Mordenite-Na	-0.7258	MnCl2^4H2O	-18,3937
Amrph^silica	-0.7950	Gehlenite	-18,7037
Albite low	-0 8145	Ca5Si6017^21/2H2	_19 1173
Albite	-0.8146	CaC12^2H20	-19 3096
Lawgonito	0 0225		10 4700
	-0.9235		-19.4709
	-0.9965	MICIZ ZHZO	-19.7390
	-1.0202	Rankinice	-19.0234
	-1.0946		-19.9232
Enstatite	-1.2897		-21.1644
Clinoptil-Na	-1.4453	MnC12^H2O	-21.3440
Analcime	-1.5394	Merwinite	-22.5034
Prehnite	-1.8648	Ca4Si3010^3/2H20	-23.0211
Boehmite	-1.8733	Carnallite	-23.0913
Gypsum	-1.9160	Hydrophilite	-23.1538
Fluorite	-1.9630	Na3H(SO4)2	-23.4994
Anhydrite	-2.1497	MgCl2^2H2O	-23.6718
Albite high	-2.1716	Ca2Cl2(OH)2^H2O	-24.2505
Rhodochrosite	-2.2809	Scacchite	-24.6642
Mn(OH)3(c)	-2.6594	Ca5Si6017^3H2O	-25.0297
Bassanite	-2.7802	MgCl2^H2O	-27.1184
Brucite	-2.7850	Ca3Si2O7^3H2O	-28.1410
Nesquehonite	-2.8798	Burkeite	-30.1022
CaSO4^1/2H2O(bet	-2.9560	Chloromagnesite	-33.0120
Jadeite	-2.9771	KMgCl3^2H2O	-33.0636
Kalsilite	-2.9946	Ca6Si6018^H2O	-35.0458
Dawsonite	-3.0609	Ca3SiO5	-38.7615
Artinite	-3.6188	Ca4Cl2(OH)6^13H2	-39.2404
CaSi205^2H20	-3.7290	KMgCl3	-40.5627
Wairakite	-3.9127	A12(SO4)3^6H2O	-46.0578
	J.J.121		10.0010

Epsomite Wollastonite Hexahydrite MgF2(c) Kyanite Forsterite Pseudowollast Pentahydrite Andalusite Rhodonite	-3.9196 -4.0165 -4.1994 -4.2728 -4.3481 -4.3526 oni -4.4209 -4.5336 -4.6380 -4.6672	Tachyhy Na4SiO K8H4 (CC Al2(SO Graphi Na6Si2 Miseni Sulfur Alaban O-phth	ydrite 4 03)6^3H2O 4)3 te 07 te -Rhmb dite acid(c)	-49.7167 -51.0701 -62.4544 -64.0564 -77.0176 -80.3655 -94.4424 -109.8050 -144.9036 -607.8719
Gases	fugacit	y log fi	1g.	
O2(g) Steam CO2(g) H2(g) H2S(g) CH4(g) S2(g)	0.2 0.02 0.0002 6.339e- 8.408e- 2.870e- 1.110e-	000 -0.0 195 -1.0 957 -3.0 043 -42.0 147 -146.0 149 -148.0 234 -233.0	599 559 529 198 075 542 955	
Original basis	total moles	In fluid moles mo	g/kg	
Al+++	5.23e-007 5	.23e-007	0.0141	
Ca++	0.00118	0.00118	4/.4	
CI-	0.000127	0.000127	4.50	
F'-	1.58e-005 1	.58e-005	0.300	
H+	-3.6/e-005 -3	.6/e-005 -0	0.0370	
H2O	55.5	55.5 1.00	Je+006	
HCO3-	0.00118	0.00118	/1.8	
K+	6.39e-005 6	.39e-005	2.50	
Mg++	0.00448	0.00448	109.	
Mn++	4.19e-008 4	.19e-008 0	.00230	
Na+	0.000600	0.000600	13.8	
02 (aq)	0.000287	0.000287	9.17	
504 Si02(2g)	0.00135	0.00135	150.	
5102 (aq)	0.000278	0.000278	10.0	
Elemental comp	osition	In fi	luid	
	total moles	moles	mg/kg	
Aluminum	5.226e-007	5.226e-007	0.014	 09
Calcium	0.001183	0.001183	47.	38
Carbon	0.001177	0.001177	14.	13
Chlorine	0.0001269	0.0001269	4.4	98
Fluorine	1.579e-005	1.579e-005	0.29	99
Hydrogen	111.0	111.0	1.119e+0	05
Magnesium	0.004485	0.004485	109	.0
Manganese	4.187e-008	4.187e-008	0.0022	99
Oxygen	55.52	55.52	8.879e+0	05
Potassium	6.394e-005	6.394e-005	2.4	99
Silicon	0.0002763	0.0002763	7.7	56
Sodium	0.0006003	0.0006003	13.	79
Sulfur	0.001353	0.001353	43.	37