Vegetable and Forage Crops Research Laboratory Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Accomplishments - Potato
Accomplishments - Forage Crops
Accomplishments - Legumes
 


Hal Collins
Rick Boydston
Ashok Alva
A. Hang

Biodiesel

Sustainability is a requirement for all new biobased technologies. Sustainability is dependent upon; acceptable environmental impacts of products; economic viability for all participants; and a positive social impact of the product and its production. Over the past four years the Integrated Farming Systems group at Prosser, WA has been recommending that growers incorporate oilseed cover crops that contain glucosinolates in rotation to control soil pathogens and protect soil resources. Growers incorporating these cover crops have experienced savings of up to $130/ha by offsetting soil fumigation costs. As a result, the area planted to oilseed cover crops has increased from 400 to 8,000 ha (20,000 ac). In response to this increase we are developing an additional strategy that further improves farm profitability while maintaining the desired benefits of biofumigation. Currently, mustard cover crops and other oilseed green manures are planted and incorporated in the fall prior to reaching seed maturity. We have initiated a series of studies evaluating a number of oilseed crops grown to maturity for an emerging biodiesel market and how they will fit into current high value irrigated vegetable cropping systems. We are evaluating five oil seed crops that can be grown in the PNW, as well as, nationally. These include: spring and winter rapeseed, mustard, sunflower, safflower and soybean. For each of these crops the general production practices; date of planting, flowering, harvest date, oil production etc. fertility, pest management, irrigation and soil quality issues will need to be addressed for this industry to become sustainable and economically sound for U.S. agriculture. Our preliminary data indicates that approximately 7-15 million liters (2-5 M gallons) of biodiesel can be produced on the area currently growing the cover crop, using such crops as safflower or winter rapeseed. In the Midwest, production of biodiesel using soybeans averages 3.8 M liters (1 M gallons) on equivalent acreage.
The developing U.S. bioenergy market is an opportunity for PNW growers to fill a feedstock production niche. Nationally, annual production of biodiesel has reached approximately 20-25 million gallons. The use of petrodiesel in the U.S. averages about 43 billion gallons a year. The U.S. currently has an oil supply problem with the Middle East, and a need for oil that will not decline in the near future. U.S. agriculture can add to the fuel pipeline by producing biodiesel which would have significant impacts on local economies.”

Ethanol

Hal Collins,
Rick Boydston
Ashok Alva
S. Fransen

Another bioenegy crop we are studying is switchgrass production and its conversion to ethanol. About 90% of the domestic ethanol feedstock supply is derived from corn grain (Zea mays L.). Reasons for having selected corn include: 1) corns’ high starch content which can be rapidly distilled to alcohol, 2) corns’ higher distillation efficiencies are greater than most other feedstocks, 3) most of the ethanol produced is in the mid-West where corn is widely grown, and 4) many refineries are located in the Gulf Coastal States, close to current ethanol distillation centers. Total dependence of the ethanol market on corn has inherent problems in sustaining feedstock supplies including: 1) as a warm-season crop, corn cannot be grown in all areas, such as those with short growing seasons or low rainfall, 2) corn requires high inputs of fertilizers, herbicides and insecticides to ensure high yields, 3) as an annual crop, corn grown under rain-fed conditions has yield potentials varying significantly from “bin busters to empty bins”, making it risky to grow due to the uncertainty of shifts in rain fall as a result of global climate change, and 4) wind erosion of soils resulting from annual cropping is a major problem in the arid west.
Switchgrass is adapted to the warmer and irrigated regions of the Pacific Northwest (PNW) and therefore a viable alternative to corn. Switchgrass contrasts to corn in the west by: 1) being a perennial crop, eliminates the need for annual tillage, reducing soil loss from wind erosion, 2) having lower fertilizer requirements, and fewer pest issues decreases fertilizer and pesticide use, 3) ability to produce a harvestable biomass and becoming dormant if irrigation water is restricted compared to corn which would senesce and produce little harvestable yield, and 4) since 2001, switchgrass has proven to be productive and adapted to the lower Columbia Basin region of the PNW in exploratory WSU research trials. To be economical for the grower and local ethanol production facilities, a low-cost, high-return sustainable crop is required. Many questions surround the feasibility of switchgrass as an ethanol feedstock in the PNW. The specific objectives are:

1. To determine adaptability of switchgrass based upon yield monitoring, fiber quality, cultivar selection, nutrient use efficiencies, weed control and irrigation requirements.
2. To compare energy balances of ethanol produced from switchgrass silage and hay to that of corn silage or grain over seasonal accumulation.
3. To determine the reductions in feedstock quality and ethanol yield from switchgrass hay stored under covered or uncovered storage facilities.
4. To develop an economic analysis of costs and returns to switchgrass growers necessary to sustain feedstock supply to ethanol production facilities.

Preliminary research plot yields of 13.5 and 13.8 Mg/ha dry matter for switchgrass and grain corn, respectively, hectares needed to sustain a 38 million L per year ethanol facility would be 8,431 and 7,075 ha, respectively. When placed in context of the energy return balance of 4.4 and 1.2 (energy output:input ratio) for switchgrass and corn, respectively, corn will be a more expensive feedstock than switchgrass. Comparatively, irrigated corn producers currently grow high yields of grain while our preliminary switchgrass research indicates a significant potential for crop improvement and improved ethanol yields. To produce sustainable feedstocks as alternative energy supplies in the PNW we would likely see a shift from less profitable crops to those that meet feedstock demands while increasing grower returns.


Research Emphasis:

Variety Trials: There are five major oil seed crops that can be grown in the PNW. These include: rapeseed, mustard, sunflower, safflower and soybean. For each of these crops the general production practices; date of planting, flowering, harvest date, oil production etc.

Fertility: Nutrients nitrogen, phosphorus and sulfur are most relevant. Importance will be related to soil types and irrigation rates. Yields can double under irrigation and affect fertilization optimums. Determine rates and timing of fertilizer application. Current recommendations are 1/3 pre-plant, 1/3 before flower, 1/3 after flower.

Irrigation: Determine threshold irrigation rates and timing for major soil types. Identify economics of irrigation.

Rotation Trials: How each of the oilseed crops (rapeseed, mustard, sunflower, safflower and soybean) fits into an irrigated vegetable/potato based rotation. Incorporation of biofuel crop before or after potatoes, etc to maximize economic return. Also, implications to disease severity of the crops within the rotation.

Insect and Disease Impacts: Determine the impact of each oilseed crop on soilborne pathogens and insects. Example: sunflowers are known to harbor white mold, mustard can harbor leafhoppers. What is the impact if any on potatoes or other crops in rotation? Value added: use of oilseed residues as biological control agents of many soilborne diseases, for use in organic systems.

Soil Quality: Determine impact on soil quality. How, under irrigation inclusion of oilseed crops affect C, N, P and S cycling, soil organic matter, soil water relations, soil tilth properties (bulk density, infiltration, soil crusting etc.)

Life Cycle Energy Balance: To quantify the total primary energy requirements and the overall energy efficiencies of processes and products. Understanding the overall energy requirements of biodiesel and ethanol production is vital in understanding the extent to which biodiesel made from oilseeds or ethanol made from switchgrasses are a renewable energy source. The more fossil energy required to make a fuel, the less the fuel is renewable. Energy efficiency estimates will determine how much additional energy must be expended to convert the energy available in raw materials used in the fuel’s life cycle to a useful fuel.

Socioeconomic Studies: Bioenergy production has the potential for assisting rural and farm development, aiding our national security through increased reliance on domestic renewable energy. Determine production sustainability, economic profitability and influence on local communities.



   
2007 Switchgrass Field Day
BioCycle Website*
 
* Goes to a non-federal site
 
Last Modified: 06/27/2007
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House