

FMCSA Safety and Security Accomplishments

Office of Research and Analysis Washington, DC January 22, 2006

0

U.S. Department of Transportation Federal Motor Carrier Safety Administration

Wireless Inspection Program Highlights

Jeff Loftus Program Manager, Technology Division

U.S. Department of Transportation Federal Motor Carrier Safety Administration

- Project Description
- Need for Improved Inspection Processes
- Comments from Request for Information
- Technology Assessment
- Concept Evaluation
- Recommended Solution
- Estimated Costs and Benefits

Next Steps

Overall Project Goals

- Develop alternative concepts to support commercial vehicle inspections
 - Improve the accuracy and efficiency
 - Allow for increase in total number of inspections completed
- Leverage advanced on-board sensor systems and wireless communication technologies
- Evaluate concepts relative to
 - Safety impacts
 - Estimated cost of implementation
 - Institutional and policy issues

Current Inspection Activities

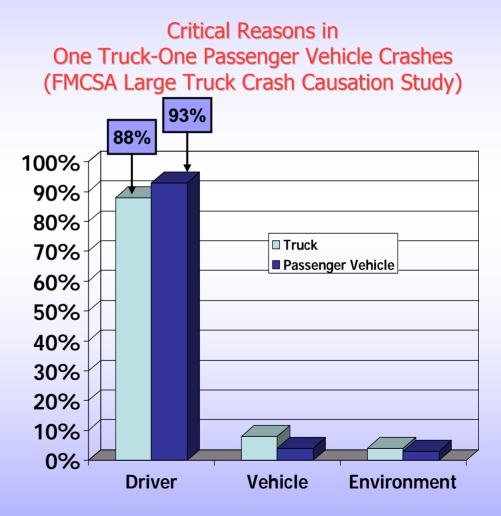
- 3 million roadside safety inspections each year
 - 45 minutes to an hour to complete
 - 1,200 fixed facility inspections stations
 - 1,000 portable/mobile units
- 73% Violation rate
 - 23% Vehicle Out-Of-Service rate

7% Driver OOS rate

Need for Improved Inspection Process

- Infrequent inspections
 - Average less than one per year
 - Many CMVs over 10,000 26,000 lbs rarely inspected due to operations
- Current inspection program directed at interstate carriers using tractor-trailers
 - 27% of all CMV fatal crashes involve straight trucks
 - 40% of all CMV crashes occur on secondary roads
- Inspection program challenged by both volatility and growth in the CMV sector
 - 3.3% annual growth for number of CMVs and VMT
 - 40,000 new entrants annually
 - In last 20 years, 1 million new tractor-trailers on highways

Opportunities for Technology


- Analysis of historical inspection data reveals that a large portion of significant "defects" are limited to a few items
- With the exception of load-securement, most of the key vehicle and operator condition criteria lend themselves to on-board electronic monitoring and diagnostic assessment.

Driver Violations	% Driver OOS Violations	Vehicle Violations	% Vehicle OOS Violations
Logbook	40.0%	Brakes	41.2%
HOS	28.7%	Lighting	16.6%
1105	20.770	Tires	9.4%
CDL	19.4%	Load	15.7%
		Securement	
Total	88.1%	Total	82.9%

Identification of Items to be Inspected

- Examination of CMV crash data also completed to help identify items that should be inspected
 - Most crashes linked to driver error
 - While "fatigue" is not directly cited as the "critical reason" for a crash, drivers were cited as being fatigued in a significant portion of CMV crashes
 - Where a vehicle defect was the critical reason for the crash, brakes, tires and load securement issues were most often cited

Request for Information Summary of Comments

RFI issued in September 2005: 27 respondents, including fleets, drivers, OEMS, safety advocacy groups, and the enforcement community

Type of Respondent	Number of Responses
Vehicle OEMs and Suppliers	9
Fleets/Motor Carriers	1
State Enforcement/Inspection Agency	2
Industry Associations/Advocacy Groups	7
Transportation Research Centers	2
Private Party/Individual	6
Total	27

RFI Responses

- Communication Standards/Protocols
- Data Concerns
 - Security, integrity, privacy
- Data Message Content & Structure
- End-User Concerns
 - Operator resistance, electronic falsification, O&M
- Inspection Frequency Level to Change Behavior
- Implementation Strategies to Equip Every CMV

Technology Assessment

- Most Viable Option for Wireless Inspection Concepts
- Dedicated Short-Range Communication (DSRC) at 5.9 GHz
- 5.9 GHz DSRC has significant advantages:
 - Designed for vehicle-to-infrastructure communications and has high data rates up to 27 Mbps
 - Can support many other safety and "convenience" applications

Concepts of Operation Evaluation

- Deployment-based
 - Fixed, mobile, virtual, remote, kiosk, etc.
- Data Message Set-based
 - Basic
 - Driver License number and log book information
 - Vehicle Fault codes
 - Enhanced
 - Driver Fatigue warning, lane tracking, and collisionavoidance systems
 - Vehicle Brake sensors, tire pressure monitoring

Recommended Wireless Inspection Solution

Driver and Vehicle Basic

- Driver Basic
 - Driver identification, CDL status, and log info
- Vehicle Basic
 - Fault codes

Wireless Inspection Concept Deployment Plan

State and Federal Government

- 1,200 fixed facility inspection sites
- 1,000 virtual inspection stations
- 500 mobile inspection vehicles
- IT infrastructure (roadside to back office systems)
- Motor Carrier Industry
 - All CMVs equipped with DSRC and on-board computers

Estimated Costs

- Public sector annual costs of \$45M \$76M
- Private sector annual costs of \$224M \$395M
 - \$533 \$940/vehicle
 - 420,000 new vehicles equipped per year

Benefits Assumptions

Dramatic Paradigm Shift

- Electronic safety checks will be frequent and expected
- Number of unsafe CMV drivers and vehicles on road would be reduced
- Crashes related to unsafe CMV drivers and vehicle defects would be reduced
- Size & weight program comparison

	CMV Size & Weight Program	CMV Safety Inspection Program
Number of Inspections	82M	3M
Violation Rate	0.63%	73%

Benefit-Cost Analysis

ANNUAL BENEFITS	
Annual Lives Saved	253
Annual Injuries Prevented	6,192
Total Annual Benefits (\$)	\$1.7B
ANNUALIZED COSTS	
Government —Facility, Equipment, IT, Communications Capital Costs (Amortized over 10 years)	\$22M – \$34M
Government—Facility, Equipment, IT, Communications O&M Costs	\$23M – 42M
Industry—Annual Incremental CMV Costs (Based on 420,000 units/yr) (\$533 - \$940/CMV)	\$224M – \$395M
Total Annualized Cost	\$269M – \$471M
BENEFIT/COST RATIO	
High – Low	6.17:1 – 3.51:1
Average	4.84 : 1

- Conduct proof of concept field tests
- Develop data interchange and message set standards
- Partner with states and motor carrier industry to resolve institutional issues
- Coordinate with ongoing testing and deployment programs (e.g., CVISN grants, I-95 Corridor Coalition efforts, Vehicle Infrastructure Integration program)
- Investigate broader DSRC applications for trucks and buses